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POINTWISE ERROR ESTIMATES FOR FINITE ELEMENT
SOLUTIONS OF THE STOKES PROBLEM∗

HONGSEN CHEN†

Abstract. In this paper pointwise error estimates for general finite element approximations of
the Stokes problem are established on quasi-uniform grids in RN . The results obtained in this paper
improve and extend the existing error estimates in the maximum norm for the Stokes problem. The
new pointwise error estimates exhibit a more local dependence of the errors on the true solution
and as a by-product provide logarithm-free bounds for all errors except the error of the velocity
approximation of the lowest order.
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1. Introduction. This paper is devoted to new pointwise error estimates of fi-
nite element approximations of the Stokes equations on general quasi-uniform meshes
in RN . The results in this paper represent an improvement on and extension of the ex-
isting maximum norm error estimates found in Durán, Nochetto, and Wang [6], which
were obtained for two-dimensional problems. Our analysis is based on the technique
developed recently by Schatz [15, 16] for the finite element method for second order
elliptic problems (see also Schatz and Wahlbin [17]). In contrast to the traditional ap-
proach for proving error estimates in the maximum norm with the weighted function
method (Scott [19], Natterer [10], Rannacher and Scott [14], etc.), the new method
relies on the availability of local error estimate in energy norm for the underlying finite
element discretization. The results in [15] indicate a more localized dependence of the
errors on the derivatives of the true solution. As a consequence of these estimates
error expansion inequalities have been derived and applied to superconvergence and
extrapolation and a posteriori estimates (see [16, 8]). The aim of this paper is to
extend the new technique from elliptic problems to the Stokes problem, which has a
saddle point nature and requires a more careful investigation.

It is well known that the conforming finite element approximation (uh, ph) to the
true solution (u, p) of the Stokes problem admits the following optimal error estimates
in energy and L2 norms (Brezzi and Fortin [4], Girault and Raviart [7]):

‖u − uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C
(

inf
v∈Vh

‖u − v‖H1(Ω) + inf
q∈Wh

‖p− q‖L2(Ω)

)
and

‖u − uh‖L2(Ω) ≤ Ch
(

inf
v∈Vh

‖u − v‖H1(Ω) + inf
q∈Wh

‖p− q‖L2(Ω)

)
,

where Vh is the finite element subspace for velocity unknown and Wh is the finite
element subspace for pressure unknown. The spaces Vh and Wh are assumed to satisfy
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a certain condition (e.g., the inf-sup condition) to ensure the solvability and uniqueness
of the solution of the resulting finite element system. Under the assumption that there
exists a locally constructed projection operator Πh : H1

0 (Ω)N → Vh satisfying

(∇ · (v − Πhv), qh) = 0 ∀v ∈ H1
0 (Ω)N , qh ∈ Wh,

the following error estimates in the maximum norm have been derived for the two-
dimensional Stokes problem (Durán, Nochetto, and Wang [6]):

‖u − uh‖L∞(Ω) ≤ Ch ln
1

h
B(u, p),(1.1)

‖p− ph‖L∞(Ω) ≤ C

(
ln

1

h

)1/2

B(u, p),(1.2)

where

B(u, p) = inf
v∈Vh

‖u − v‖W 1,∞(Ω) + inf
q∈Wh

‖p− q‖L∞(Ω).

Similar error estimates were derived by using weighted inf-sup conditions instead of
the local projection operator in Durán and Nochetto [5]. The proofs of these error
estimates are based on the estimates in weighted Sobolev norms for some so-called
regularized Green’s functions and their finite element approximations. This is the
standard approach for proving error estimates in the maximum norm for finite element
methods. Nevertheless, with this approach it is difficult to generalize these results to
the case of higher space dimensions.

Following the approach developed in [15], some new pointwise error estimates for
the finite element solutions of the Stokes problem will be derived in this paper. Our
new pointwise error estimates for both the velocity and pressure approximations take
the following form: for any z ∈ Ω̄,

|∇(u − uh)(z)| + |(p− ph)(z)| ≤ C

(
ln

1

h

)s̄

B(u, p, z, s), 0 ≤ s ≤ r,(1.3)

|(u − uh)(z)| ≤ Ch

(
ln

1

h

)¯̄s

B(u, p, z, s), 0 ≤ s ≤ r − 1,(1.4)

where

B(u, p, z, s) = inf
v∈Vh

‖u − v‖W 1,∞(Ω),z,s + inf
q∈Wh

‖p− q‖L∞(Ω),z,s,

and ‖ · ‖W 1,∞(Ω),z,s and ‖ · ‖L∞(Ω),z,s are weighted Sobolev norms with the weight
function σz(x)s = (h/(|x− z|+h)s, and s̄ = 0 if 0 ≤ s < r and s̄ = 1 if s = r; ¯̄s = 0 if
0 ≤ s < r−1 and ¯̄s = 1 if s = r−1. Here, r is the order of approximation of the finite
element spaces in the H1 norm for the velocity and the L2 norm for the pressure (in
most cases, r equals the degree of polynomials used in space Vh).

Notice that estimates (1.4) and (1.1) coincide when r = 1, which corresponds to
the case of the lowest order finite element spaces because the only possible value of s
is zero. Nevertheless, (1.4) indeed improve (1.1) for r > 1. Estimates (1.4) and (1.3)
are sharper than (1.1) and (1.2) in the sense that (1.4) and (1.3) imply (1.1) and
(1.2) but not vice versa. Because of the weighted norms on the bounds of (1.4) and
(1.3), they indicate a more local dependence of the errors at z on the true solution
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(u, p) near z than (1.1) and (1.2) do. The larger the r, the higher local properties
these estimates provide. Besides the more localized dependence on the true solution,
estimates (1.4) and (1.3) also represent sharper bounds for the errors. They provide
logarithm-free error bounds for the velocity approximation when r > 1 and for the
approximations and the derivatives of the velocity and the pressure for any r ≥ 1. In
fact, (1.4) and (1.3) imply the following estimates in the maximum norm:

‖u − uh‖L∞(Ω) ≤ Ch

(
ln

1

h

)r̄

B(u, p),

‖u − uh‖W 1,∞(Ω) + ‖p− ph‖L∞(Ω) ≤ CB(u, p).

Here, r̄ = 0 if r > 1 and r̄ = 1 if r = 1.
The new estimates (1.4) and (1.3) are stated in Theorems 4.2, 5.1, and 6.1 and

are proved under abstract assumptions on the finite element spaces. These hypothe-
ses include the quasi-uniformity of the partitions, the approximation properties, the
inverse properties, local L2 error estimates for the Stokes finite element solutions,
and the scaling property. Note that the superapproximation property and the inf-sup
(stability) condition or the existence of locally orthogonal projection operator are not
assumed explicitly. Instead, local error estimates for the velocity in the H1 norm and
the pressure in the L2 norm are assumed, which can be proved under the assump-
tions of superapproximation and the presence of local stability or local orthogonal
projection operator (see Arnold and Liu [3]).

We end this introduction with a brief outline of the rest of this paper. In section 2,
we discuss some preliminaries and introduce notation and assumptions. Section 3
contains estimates of a priori type for the Stokes problem and error estimates for
some special auxiliary problems. In section 4, we prove the pointwise error estimate
for the pressure approximation. The pointwise error estimates for the velocity and
the derivatives of the velocity are proved in sections 5 and 6, respectively.

2. Preliminaries and notation. For the sake of simplicity, we consider the
following Stokes problem with a homogeneous Dirichlet boundary condition:

−νΔu + ∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ RN (N ≥ 2) is an open subset with a smooth boundary ∂Ω, u and p are
unknown functions called velocity and pressure of the fluid, respectively, f is a given
function, and ν > 0 is a constant representing the viscosity of the fluid. Without loss
of generality, we assume that ν = 1.

We shall use the standard notation for Sobolev spaces and their norms (see, e.g.,
Adams [1]). For nonnegative integer j and real number 1 ≤ t ≤ ∞ and subdomain
D ⊂ Ω, denote the Sobolev spaces by W j,t(D) =

{
v : ‖v‖W j,t(D) < ∞

}
with

‖v‖W j,t(D) =

(
j∑

i=0

|v|tW i,t(D)

)1/t

, |v|W i,t(D) =

⎛
⎝∑

|α|=i

∫
D

|∂αv(x)|tdx

⎞
⎠1/t

.

Let W j,t
0 (D) denote the completion of C∞

0 (D) according to the norm ‖·‖W j,t(D), where
C∞

0 (D) represents the space of functions with continuous derivatives of arbitrary order
and compact supports in D. We also adopt the usual notation

Hj(D) = W j,2(D), Hj
0(D) = W j,2

0 (D), Lt(D) = W 0,t(D).
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Denote by (·, ·)D the standard inner product in L2(D) given by (u, v)D =
∫
D
uv dx.

When D = Ω, we write (·, ·) = (·, ·)Ω. The subspace of L2(D) consisting of functions
of zero mean values is denoted by L2

0(D), i.e.,

L2
0(D) =

{
q ∈ L2(D) :

∫
D

q(x) dx = 0

}
.

For j ≥ 0 and 1 ≤ t < ∞, the negative Sobolev norm ‖·‖W−j,t(D) is defined as follows:

‖v‖W−j,t(D) = sup
ϕ∈C∞

0 (D)

(v, ϕ)

‖ϕ‖W j,t′ (D)

,

where t′ is the conjugate of t, i.e., 1/t + 1/t′ = 1. We will make no distinction
in notation between the Sobolev norms for scalar and vector valued functions. For
instance, the norm of u in

H1(D)N =

N︷ ︸︸ ︷
H1(D) × · · · ×H1(D)

is denoted by ‖u‖H1(D).

The solution (u, p) of (2.1) satisfies the following weak formulation:

a(u,v) − b(v, p) = (f ,v) ∀ v ∈ H1
0 (Ω)N ,

b(u, q) = 0 ∀ q ∈ L2
0(Ω),

(2.2)

where a(·, ·) and b(·, ·) are bilinear forms defined by

a(u,v) =

∫
Ω

∇u : ∇v dx, b(v, q) =

∫
Ω

∇ · v q dx.

To define the finite element solution of (2.2), let Vh ⊂ H1
0 (Ω)N and Wh ⊂ L2

0(Ω) be
two families of finite-dimensional subspaces with a parameter h ∈ (0, 1). The finite
element approximation (uh, ph) ∈ Vh ×Wh is defined to be the solution of

a(uh,v) − b(v, ph) = (f ,v) ∀ v ∈ Vh,
b(uh, q) = 0 ∀ q ∈ Wh.

(2.3)

By (2.2) and (2.3), the following error equation holds:

a(u − uh,v) − b(v, p− ph) = 0 ∀ v ∈ Vh,
b(u − uh, q) = 0 ∀ q ∈ Wh.

(2.4)

We point out that the pointwise error estimates obtained in this paper are all
based on the error equation (2.4).

For any subset D ⊂ Ω, let Vh(D) denote the set of restrictions of functions in Vh

on D, and Wh(D) the set of restrictions of functions in Wh on D. We also introduce
the notation for balls in RN . Denote by Bd(x) the ball of radius d > 0 and centered
at x ∈ RN .

Throughout this paper, κ > 0 denotes a constant. Below, we list the assumptions
that will be used by our results.
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A.0 (quasi-uniform partition). The domain Ω is decomposed into Nh subdomains:

Ω̄ =

Nh⋃
j=1

K̄j , so that Wh(Kj) ⊂ C∞(Kj), j = 1, . . . , Nh.

Furthermore, there are constants C0 > 0 and τ0 > 0 such that for any τ ∈
(0, τ0), and 1 ≤ j ≤ Nh and x ∈ K̄j , there exists an x̄ ∈ Kj such that

Bτh(x̄) ⊂ Kj and |x− x̄| ≤ C0τh.

A.1 (approximation properties). There exist r ≥ 1 and two linear operators

Πh : H1(Ω)N → Vh and Qh : L2(Ω) → Wh

such that for any D1 ⊂ D2 ⊂ Ω with dist(D1, ∂D2\∂Ω) ≥ κh,
(i) for 0 ≤ i ≤ 1 ≤ j ≤ r + 1, 2 ≤ t ≤ ∞, and any v ∈ W j,t(D2)

N ,

‖v − Πhv‖W i,t(D1) ≤ Chj−i|v|W j,t(D2);

if N < t ≤ ∞,

‖v − Πhv‖W 1,∞(D1) ≤ Chr−N/t‖v‖W 1+r,t(D2);

(ii) for 0 ≤ i ≤ j ≤ r, 2 ≤ t ≤ ∞, and any q ∈ W j,t(D2),

‖q −Qhq‖W i,t(D1) ≤ Chj−i|q|W j,t(D2);

if N < t ≤ ∞,

‖q −Qhq‖L∞(D1) ≤ Chr−N/t‖q‖W r,t(D2).

A.2 (inverse properties). Let D1 ⊂ D2 ⊂ Ω with dist(D1, ∂D2\∂Ω) ≥ κh. Then,
for any 1 ≤ s ≤ t ≤ ∞, i = 0, 1, j ≥ 0 and v ∈ Vh, q ∈ Wh,

‖v‖W i,t(D1) ≤ Ch−N(1/s−1/t)−i−j‖v‖W−j,s(D2),

‖q‖Lt(D1) ≤ Ch−N(1/s−1/t)−j‖q‖W−j,s(D2),

‖q‖W 1,∞(Kj) ≤ Ch−1‖q‖L∞(Kj), 1 ≤ j ≤ Nh.

A.3 (local L2 error estimate). Let (v, q) ∈ H1
0 (Ω)N × L2

0(Ω) and (vh, qh) ∈ Vh ×
Wh satisfy

a(v − vh, ϕ) − b(ϕ, q − qh) = 0 ∀ ϕ ∈ Vh,
b(v − vh, ψ) = 0 ∀ ψ ∈ Wh.

If D1 ⊂ D2 ⊂ Ω with d = dist(D1, ∂D2\∂Ω) > 0, then there holds

‖v − vh‖H1(D1) + ‖q − qh‖L2(D1)

≤ Chr
(
‖v‖Hr+1(D2) + ‖q‖Hr(D2)

)
+C

(
‖v − vh‖W−t,1(D2) + ‖q − qh‖W−t−1,1(D2)

)
,

where t ≥ 0, and the constant C > 0 may be dependent on t and d but is
independent of h and v and q.
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A.4 (scaling property). Let x0 ∈ Ω̄ and d ≥ κh. The linear transformation
y = (x − x0)/d takes the domain Bd(x0) ∩ Ω into a new domain B̂1(x0),

Vh(Bd(x0)) into a new function space V̂h/d(B̂1(x0)), and Wh(Bd(x0)) into

a new space Ŵh/d(B̂1(x0)). Then, V̂h/d(B̂1(x0)) and Ŵh/d(B̂1(x0)) satisfy
A.1 and A.2 with h replaced by h/d. The constants occurring in A.1 and A.2
remain unchanged, in particular, independent of d.

Assumptions A.1, A.2, and A.4 are very standard (see [15, 17, 18]). The results
in A.3 can be found in Arnold and Liu [3] under additional assumptions such as
the availability of the local inf-sup condition or the orthogonal projection operator.
Although the results in [3] were obtained for two-dimensional problems, it is easily
seen that they can be extended to higher dimensions. Assumption A.0 is used only for
the existence of the regularized Dirac delta function in the derivation of the pointwise
error estimate of the pressure approximation (see section 4 for details).

Throughout this paper we assume that Assumptions A.0, A.1, A.2, A.3, and A.4
are satisfied and use the letter C for generic constants.

Before we end this section, let us introduce some notation about the weighted
norms: Following the notation of [15], for a fixed z ∈ Ω̄, a real number s, and
arbitrary x ∈ RN , define the weight function

σs
z,h(x) =

(
h

|x− z| + h

)s

.(2.5)

Clearly, σs
z,h(x) = O(1) if s > 0 and |x−z| = O(h), σs

z,h(x) = O(hs) if |x−z| = O(1).
For 1 ≤ t ≤ ∞ and fixed z, we define the following weighted norms:

‖ϕ‖Lt(Ω),z,s = ‖σs
z,hϕ‖Lt(Ω),(2.6)

‖ϕ‖W 1,t(Ω),z,s = ‖ϕ‖Lt(Ω),z,s + ‖∇ϕ‖Lt(Ω),z,s.(2.7)

It is straightforward to extend this notation to vector valued functions.

3. A priori estimates. In this section, we shall collect and show some results
on the regularities of the Stokes problem. These results include the global and local
estimates of the higher order derivatives of the true solutions and the global and
local error estimates for the finite element approximations of some special auxiliary
problems.

The first result is the following global a priori estimates for the Stokes equations.
Lemma 3.1. Suppose Ω and (v, μ) ∈ H1

0 (Ω)N × L2
0(Ω) are sufficiently smooth.

Then, for k ≥ −1, there holds

‖v‖Hk+2(Ω) + ‖μ‖Hk+1(Ω) ≤ C
(
‖f‖Hk(Ω) + ‖g‖Hk+1(Ω)

)
,(3.1)

where f = −Δv + ∇μ, g = ∇ · v, and C > 0 is a constant independent of v, μ.
Proof. The proof can be found in Ladyzhenskaya [9] and Agmon, Douglis, and

Nirenberg [2].
Next, we show a special local estimate of the solution of the Stokes problem,

which is based on the pointwise bounds for Green’s tensors of the Stokes problem.
Lemma 3.2. Suppose D0 ⊂ D1 ⊂ Ω are sufficiently smooth domains with d =

dist(D0, ∂D1\∂Ω) > 0, and f ∈ L∞(Ω), g ∈ C∞
0 (Ω), ζ ∈ C∞

0 (Ω) with (1, ζ) = 1. Let
(v, μ) ∈ H1

0 (Ω)N × L2
0(Ω) be the solution of

−Δv + ∇μ = f , ∇ · v = g − (1, g)ζ.
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If f and g vanish in D1, then for k ≥ −1 and 1 ≤ t ≤ ∞, there holds

‖v‖Wk+2,∞(D0) + ‖μ‖Wk+1,∞(D0)(3.2)

≤ Cd−N/t−k
(
‖f‖Lt(Ω) + d−1‖g‖Lt(Ω)

)
+ C‖g‖L1(Ω)‖ζ‖Wk+2,∞(Ω).

Proof. For any x ∈ D0, let (Gj
x, Q

j
x), j = 1, . . . , N, and (GN+1,β

x , QN+1,β
x ) be

Green’s tensor of the Stokes problem (2.1) (see Solonnikov [20], Ladyzhenskaya [9],
Stupelis [21], Odqvist [13]) so that v and μ can be expressed in terms of the compo-
nents of Green’s tensor through the following integrals:

v(x) =
N∑
j=1

∫
Ω

Gj
x(y)fj(y) dy +

∑
|β|≤k+2

∫
Ω

GN+1,β
x (y)∂β

y g̃(y) dy,(3.3)

μ(x) =

N∑
j=1

∫
Ω

Qj
x(y)fj(y) dy +

∑
|β|≤k+2

∫
Ω

QN+1,β
x (y)∂β

y g̃(y) dy.(3.4)

Here, g̃ = g − (1, g)ζ, fj are the components of f , and Gj
x, Qj

x, GN+1,β
x , and QN+1,β

x

satisfy the inequalities

|∂αx
x ∂

αy
y Gj

x(y)| ≤ Cϕ0(|x− y|; 2 −N − |αx| − |αy|),

|∂αx
x ∂

αy
y Qj

x(y)| ≤ Cϕ0(|x− y|; 1 −N − |αx| − |αy|),

|∂αx
x ∂

αy
y GN+1,β

x (y)| ≤ Cϕ0(|x− y|; 2 −N − |α| + k + 1),

|∂α
x ∂

β
yQ

N+1,β
x (y)| ≤ Cϕ0(|x− y|; 1 −N − |α| + k + 1),

(3.5)

where j = 1, . . . , N , |β| ≤ k + 2, and

ϕ0(|x− y|; τ) =

⎧⎨
⎩
|x− y|τ if τ < 0,
1 + | ln |x− y|| if τ = 0,
1 if τ > 0.

Differentiating (3.4), using the assumption that f and g vanish in D1, and integrating
by parts, we have

∂α
xμ(x) =

N∑
j=1

∫
Ω\D1

∂α
xQ

j
x(y)fj(y) dy + (1, g)

∑
|β|≤k+2

∫
Ω

∂α
xQ

N+1,β
x (y)∂βζ(y) dy(3.6)

+
∑

|β|≤k+2

(−1)|β|
∫

Ω\D1

∂β
y ∂

α
xQ

N+1,β
x (y)g(y) dy.

We shall estimate each summation in (3.6) separately. According to (3.5), we have
for each j and |α| ≥ 1,∫

Ω\D1

∂α
xQ

j
x(y)fj(y) dy ≤ C

∫
Ω\D1

|x− y|1−N−|α||fj(y)| dy.(3.7)
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Let t′ be the conjugate of t, i.e., 1/t′+1/t = 1. Then, by (3.7) and Hölder’s inequality,
there holds for |α| = k + 1

∫
Ω\D1

∂α
xQ

j
x(y)fj(y) dy ≤ C

(∫
Ω\D1

|x− y|(1−N−|α|)t′dy

)1/t′

‖fj‖Lt(Ω)(3.8)

≤ C

(∫ ∞

d

ρ(1−N−|α|)t′ρN−1 dρ

)1/t′

‖fj‖Lt(Ω)

≤ Cd−N/t−k‖fj‖Lt(Ω).

Similarly, for the integrals in the second summation of (3.6), we have for |α| = k + 1

∫
Ω\D1

∂β
y ∂

α
xQ

N+1,β
x (y)g(y) dy ≤ C

(∫
Ω\D1

|x− y|(−N−|α|)t′dy

)1/t′

‖g‖Lt(Ω)(3.9)

≤ Cd−N/t−k−1‖g‖Lt(Ω).

For the third summation in (3.6), for |α| = k + 1 there holds

(1, g)
∑

|β|≤k+2

∫
Ω

∂α
xQ

N+1,β
x (y)∂βζ(y) dy(3.10)

≤ C‖g‖L1(Ω)

∫
Ω

|x− y|1−N dy‖ζ‖Wk+2,∞(Ω) ≤ C‖g‖L1(Ω)‖ζ‖Wk+2,∞(Ω).

Substituting (3.10), (3.9), and (3.8) into (3.6), we obtain

‖μ‖Wk+1,∞(D0) ≤ Cd−N/t−k
(
‖f‖Lt(Ω) + d−1‖g‖Lt(Ω)

)
(3.11)

+C‖g‖L1(Ω)‖ζ‖Wk+2,∞(Ω).

Reasoning in the same way, we can also bound ‖v‖Wk+2,∞(D0) by the right-hand side
of (3.11). This completes the proof.

We now turn to the error estimates for the finite element approximation of the
Stokes problem in energy and L2 norms. First of all, we state the following well-known
global error estimate.

Lemma 3.3. Let (u, p) and (uh, ph) satisfy (2.4). Then,

(3.12)

‖u − uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C

(
inf

v∈Vh
‖u − v‖H1(Ω) + inf

q∈Wh
‖p− q‖L2(Ω)

)
.

Proof. The proof is found in Temam [22] or Girault and Raviart [7].
The results in the next lemma are error estimates of the pressure approximation

in some special negative Sobolev norms. They are used for the error estimates of the
finite element approximations of the auxiliary Stokes problem constructed during the
proofs of our main results in other sections.

Lemma 3.4. Suppose (u, p) and (uh, ph) satisfy (2.4). Then,

‖p− ph‖H−r(Ω) ≤ Chr

(
inf

v∈Vh
‖u − v‖H1(Ω) + inf

q∈Wh
‖p− q‖L2(Ω)

)
,(3.13)

‖p− ph‖H−r−1−[N/2](Ω) ≤ Chr
(
‖u − uh‖W 1,1(Ω) + ‖p− ph‖L1(Ω)

)
,(3.14)

where [N/2] denotes the maximum integer less than or equal to N/2.
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Proof. For any ψ ∈ C∞
0 (Ω), let (w, λ) ∈ H1

0 (Ω)N × L2
0(Ω) satisfy

−Δw + ∇λ = 0, ∇ · w = ψ − 1

|Ω| (1, ψ) in Ω.

Then, some simple manipulations give

(3.15)

(p− ph, ψ) =
(
p− ph, ψ − 1

|Ω| (1, ψ)
)

= b(w, p− ph)

= a(u − uh,Π
hw − w) − b(Πhw − w, p− ph) − b(u − uh, Q

hλ− λ).

By the Cauchy–Schwarz inequality and the approximation properties in A.1, we have

(p− ph, ψ) ≤ C
(
‖u − uh‖H1(Ω) + ‖p− ph‖L2(Ω)

)
(3.16)

×
(
‖w − Πhw‖H1(Ω) + ‖λ−Qhλ‖L2(Ω)

)
≤ Chr

(
‖u − uh‖H1(Ω) + ‖p− ph‖L2(Ω)

)
×

(
‖w‖H1+r(Ω) + ‖λ‖Hr(Ω)

)
.

Using (3.1) of Lemma 3.1,

‖w‖H1+r(Ω) + ‖λ‖Hr(Ω) ≤ C

∥∥∥∥ψ − 1

|Ω| (1, ψ)

∥∥∥∥
Hr(Ω)

≤ C‖ψ‖Hr(Ω)

and estimate (3.12) of Lemma 3.3 in inequality (3.16), we prove (3.13). To show
(3.14), we use (3.15), Hölder’s inequality, and the approximation properties in A.1:

(p− ph, ψ) ≤ C
(
‖u − uh‖W 1,1(Ω) + ‖p− ph‖L1(Ω)

)
(3.17)

×
(
‖w − Πhw‖W 1,∞(Ω) + ‖λ−Qhλ‖L∞(Ω)

)
≤ Chr

(
‖u − uh‖W 1,1(Ω) + ‖p− ph‖L1(Ω)

)
×
(
‖w‖W 1+r,∞(Ω) + ‖λ‖W r,∞(Ω)

)
.

From the Sobolev embedding theorem (Adam [1]) and (3.1) of Lemma 3.1,

‖w‖W 1+r,∞(Ω) + ‖λ‖W r,∞(Ω) ≤ C
(
‖w‖H2+r+[N/2](Ω) + ‖λ‖H1+r+[N/2](Ω)

)
(3.18)

≤ C‖ψ‖H1+r+[N/2](Ω)

and estimate (3.17), the desired estimate (3.14) follows. This completes the proof of
Lemma 3.4.

For the local error estimates, the results will be stated and used for special
subdomains of Ω. Without loss of generality we assume throughout this paper that
diam(Ω) ≤ 1. Let

dj = 2−j for j = 0, 1, 2, . . .

and for any fixed z ∈ Ω set

Ωj = {x ∈ Ω : dj+1 < |x− z| < dj},
Ω

(1)
j = {x ∈ Ω : dj+2 < |x− z| < dj−1},

Ω
(2)
j = {x ∈ Ω : dj+3 < |x− z| < dj−2},

Ω
(3)
j = {x ∈ Ω : dj+4 < |x− z| < dj−3}.

(3.19)
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Assumption A.3, along with Assumption A.4, takes the following form on the
subdomains Ωj .

Lemma 3.5. Let (u, p) and (uh, ph) satisfy (2.4). If dj ≥ κh, then

‖u − uh‖H1(Ωj) + ‖p− ph‖L2(Ωj)(3.20)

≤ Chr
(
‖u‖

Hr+1(Ω
(1)
j )

+ ‖p‖
Hr(Ω

(1)
j )

)
+Cd

−N/2−1−t
j

(
‖u − uh‖W−t,1(Ω

(1)
j )

+ d1−t1
j ‖p− ph‖W−t−t1,1(Ω

(1)
j )

)
,

where t ≥ 0, t1 = 0, 1.
Proof. Without loss of generality, we assume z = 0 and Ω is the unit ball centered

at z = 0. Then,

Ωj = {x ∈ RN : dj+1 < |x| < dj}, Ω
(1)
j = {x ∈ RN : dj+2 < |x| < dj−1}.

Introduce a new variable x̃ = x/dj−1. The regions Ω
(1)
j and Ωj are transferred into

regions D̃1 and D̃0, respectively,

D̃0 = {x̃ ∈ RN : 1/4 < |x̃| < 1/2}, D̃1 = {x̃ ∈ RN : 1/8 < |x̃| < 1}.

Then, dist(D̃0, ∂D̃1) = 1/2. Set

ũ(x̃) = u(x̃dj−1), ũh(x̃) = u(x̃dj−1),

p̃(x̃) = p(x̃dj−1)dj−1, p̃h(x̃) = ph(x̃dj−1)dj−1.

Then,

(∇̃(ũ − ũh), ∇̃ṽ) − (∇̃ · ṽ, p̃− p̃h) = 0 ∀ ṽ ∈ Ṽ ,

(∇̃ · (ũ − ũh), q̃) = 0 ∀ q̃ ∈ W̃ ,
(3.21)

where Ṽ and W̃ are the transferred spaces of Vh and Wh. We have

‖u − uh‖H1(Ωj) + ‖p− ph‖L2(Ωj)(3.22)

≤ d
N/2−1
j

(
‖ũ − ũh‖H1(D̃0)

+ ‖p̃− p̃h‖L2(D̃0)

)
.

Using Assumption A.3 on problem (3.21), we have for t ≥ 0 and t1 = 0 or 1,

‖ũ − ũh‖H1(D̃0)
+ ‖p̃− p̃h‖L2(D̃0)

(3.23)

≤ C(h/dj)
r
(
|ũ|Hr+1(D̃1)

+ |p̃|Hr(D̃1)

)
+C

(
‖ũ − ũh‖W−t,1(D̃1)

+ ‖p̃− p̃h‖W−t−t1,1(D̃1)

)
.

Noting that

|ũ|H1+r(D̃1)
+ |p̃|Hr(D̃1)

≤ Cd
−N/2+1+r
j

(
|u|

H1+r(Ω
(1)
j )

+ |p|
Hr(Ω

(1)
j )

)
and

‖ũ − ũh‖W−t,1(D̃1)
+ ‖p̃− p̃h‖W−t−t1,1(D̃1)

≤ Cd−N−t
j

(
‖u − uh‖W−t,1(Ω

(1)
j )

+ d1−t1
j ‖p− ph‖W−t−t1,1(Ω

(1)
j )

)
,

and using (3.22) and (3.23), we complete the proof.
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Lemma 3.6. For ρ ∈ L∞(Ω), let (Φ, λ) ∈ H1
0 (Ω)N × L2

0(Ω) be the solution of

−ΔΦ + ∇λ = ρ, ∇ · Φ = 0,

and let (Φh, λh) ∈ Vh×Wh be the finite element approximation of (Φ, λ). If supp(ρ) ⊂
B2κh(z) and ‖ρ‖L2(B2κh(z)) ≤ Ch−N/2, then

‖Φ − Φh‖H1(BMh(z)) + ‖λ− λh‖L2(BMh(z)) ≤ Ch1−N/2,(3.24)

and for j = 0, 1, . . . , J , t1 = 0 or 1,

‖Φ − Φh‖H1(Ωj) + ‖λ− λh‖L2(Ωj)(3.25)

≤ Cd
−N/2−1
j

(
‖Φ − Φh‖L1(Ω

(1)
j )

+ d1−t1
j ‖λ− λh‖W−t1,1(Ω

(1)
j )

)
+Chrd

−N/2+1−r
j .

Proof. Using Lemmas 3.3 and 3.1, we obtain

‖Φ − Φh‖H1(BMh(z)) + ‖λ− λh‖L2(BMh(z))

≤ Ch
(
‖Φ‖H2(Ω) + ‖λ‖H1(Ω)

)
≤ Ch‖ρ‖L2(B2κh(z)),

which implies (3.24) according to the assumption on ρ. To prove (3.25), we use Lemma
3.5 to get

‖Φ − Φh‖H1(Ωj) + ‖λ− λh‖L2(Ωj)(3.26)

≤ Chr
(
‖Φ‖

Hr+1(Ω
(1)
j )

+ ‖λ‖
Hr(Ω

(1)
j )

)
+Cd

−N/2−1
j

(
‖Φ − Φh‖L1(Ω

(1)
j )

+ d1−t1
j ‖λ− λh‖W−t1,1(Ω

(1)
j )

)
.

In view of Lemma 3.2 and the assumption on ρ, it follows that

‖Φ‖
hr+1(Ω

(1)
j )

+ ‖λ‖
Hr(Ω

(1)
j )

≤ Cd
N/2
j

(
‖Φ‖

W r+1,∞(Ω
(1)
j )

+ ‖λ‖
W r,∞(Ω

(1)
j )

)
≤ Cd

−N/2+1−r
j ‖ρ‖L1(B2κh(z)) ≤ Cd

−N/2+1−r
j hN/2‖ρ‖L2(B2κh(z))

≤ Cd
−N/2+1−r
j .

Substituting this into (3.26) implies (3.25). Therefore, the proof is complete.

Lemma 3.7. Let (Φ, λ) ∈ H1
0 (Ω)N × L2

0(Ω) be the solution of

−ΔΦ + ∇λ = 0, ∇ · Φ = g − (1, g)ζ,

and let (Φh, λh) ∈ Vh × Wh be the finite element approximation of (Φ, λ), where
ζ ∈ C∞

0 (Ω) is a fixed function satisfying (1, ζ) = 1, and

g ∈ C∞
0 (B2κh(z)) and ‖g‖L2(B2κh(z)) ≤ Ch−N/2.

Then

‖Φ − Φh‖H1(BMh(z)) + ‖λ− λh‖L2(BMh(z)) ≤ Ch−N/2,(3.27)
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and for j = 0, 1, . . . , J , t ≥ 0, and t1 = 0 or 1,

‖Φ − Φh‖H1(Ωj) + ‖λ− λh‖L2(Ωj)(3.28)

≤ Cd
−N/2−1−t
j

(
‖Φ − Φh‖W−t,1(Ω

(1)
j )

+ d1−t1
j ‖λ− λh‖W−t1−t,1(Ω

(1)
j )

)
+Chrd

−N/2−r
j .

Proof. The proof is analogous to that of Lemma 3.6. In view of Lemmas 3.3 and
3.1, it follows that

‖Φ − Φh‖H1(BMh(z)) + ‖λ− λh‖L2(BMh(z))

≤ C
(
‖Φ‖H1(Ω) + ‖λ‖L2(Ω)

)
≤ C‖g − (1, g)ζ‖L2(B2κh(z))

≤ C‖g‖L2(B2κh(z)) ≤ Ch−N/2,

which proves (3.27). To prove (3.28), we use Lemma 3.5,

‖Φ − Φh‖H1(Ωj) + ‖λ− λh‖L2(Ωj)(3.29)

≤ Chr
(
‖Φ‖

Hr+1(Ω
(1)
j )

+ ‖λ‖
Hr(Ω

(1)
j )

)
+Cd

−N/2−1−t
j

(
‖Φ − Φh‖W−t,1(Ω

(1)
j )

+ d1−t1
j ‖λ− λh‖W−t1−t,1(Ω

(1)
j )

)
.

By Lemma 3.2 and the assumption on g, it follows that

‖Φ‖
Hr+1(Ω

(1)
j )

+ ‖λ‖
Hr(Ω

(1)
j )

≤ Cd
N/2
j

(
‖Φ‖

W r+1,∞(Ω
(1)
j )

+ ‖λ‖
W r,∞(Ω

(1)
j )

)
≤ Cd

−N/2+1−r
j d−1

j ‖g − (1, g)ζ‖L1(B2κh(z)) ≤ Cd
−N/2−r
j hN/2‖g‖L2(B2κh(z))

≤ Cd
−N/2−r
j .

Substituting this into (3.29), we obtain (3.28) and thus complete the proof.
Now, we have the last lemma of this section.

Lemma 3.8. Assume that ϕ ∈ C∞
0 (Ω

(1)
j )N , ψ ∈ C∞

0 (Ω
(1)
j ) satisfying

‖ϕ‖
L∞(Ω

(1)
j )

≤ 1, ‖ψ‖
W 1,∞(Ω

(1)
j )

≤ 1,

and (v, μ) ∈ H1
0 (Ω)N × L2

0(Ω) is the solution of the problem

−Δv + ∇μ = ϕ, ∇ · v = ψ − (1, ψ)ζ,

where ζ ∈ C∞
0 (Ω) is a function such that (1, ζ) = 1. Then, for any e1 ∈ H1

0 (Ω) and
e2 ∈ L2

0(Ω), there holds∣∣a(e1,v − Πhv) − b(v − Πhv, e2) − b(e1, μ−Qhμ)
∣∣(3.30)

≤ Chrd1−r
j

(
‖e1‖W 1,1(Ω) + ‖e2‖L1(Ω)

)
+Chd

N/2
j

(
‖e1‖H1(Ω

(2)
j )

+ ‖e2‖L2(Ω
(2)
j )

)
.

Proof. Let us start with the following decomposition:

a(e1,v − Πhv) − b(v − Πhv, e2) − b(e1, μ−Qhμ) = I1 + I2,(3.31)
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where

I1 = a
Ω\Ω(2)

j
(e1,v − Πhv) − b

Ω\Ω(2)
j

(v − Πhv, e2) − b
Ω\Ω(2)

j
(e1, μ−Qhμ),

I2 = a
Ω

(2)
j

(e1,v − Πhv) − b
Ω

(2)
j

(v − Πhv, e2) − b
Ω

(2)
j

(e1, μ−Qhμ).

Here, aD(·, ·) and bD(·, ·) stand for the respective bilinear forms a(·, ·) and b(·, ·) in
which the integrals are computed on the subdomain D. By the Cauchy–Schwarz
inequality and the approximation assumption A.1, it follows that

I1 ≤ C
(
‖e1‖W 1,1(Ω\Ω(2)

j )
+ ‖e2‖L1(Ω\Ω(2)

j )

)
×C

(
‖v − Πhv‖

W 1,∞(Ω\Ω(2)
j )

+ ‖μ−Qhμ‖
L∞(Ω\Ω(2)

j )

)
≤ C

(
‖e1‖W 1,1(Ω\Ω(2)

j )
+ ‖e2‖L1(Ω\Ω(2)

j )

)
×Chr

(
‖v‖

W 1+r,∞(Ω\Ω(1)
j )

+ ‖μ‖
W r,∞(Ω\Ω(1)

j )

)
.

This, along with Lemma 3.2 and the assumption on ϕ and ψ, yields

I1 ≤ Chrd1−r
j

(
‖e1‖W 1,1(Ω\Ω(2)

j )
+ ‖e2‖L1(Ω\Ω(2)

j )

)
(3.32)

×
(
‖ϕ‖

L∞(Ω
(1)
j )

+ d−1
j ‖ψ‖

L∞(Ω
(1)
j )

)
≤ Chrd1−r

j

(
‖e1‖W 1,1(Ω) + ‖e2‖L1(Ω)

)
.

Here, we have used the fact that ψ vanishes on ∂Ω
(1)
j and, therefore, the following

estimate holds:

‖ψ‖
L∞(Ω

(1)
j )

≤ Cdj‖ψ‖W 1,∞(Ω
(1)
j )

≤ Cdj .(3.33)

According to the Cauchy–Schwarz inequality and A.1, I2 is estimated as follows:

I2 ≤ C
(
‖e1‖H1(Ω

(2)
j )

+ ‖e2‖L2(Ω
(2)
j )

)
×C

(
‖v − Πhv‖

H1(Ω
(2)
j )

+ ‖μ−Qhμ‖
L2(Ω

(2)
j )

)
≤ C

(
‖e1‖H1(Ω

(2)
j )

+ ‖e2‖L2(Ω
(2)
j )

)
×Ch

(
‖v‖

H2(Ω
(3)
j )

+ ‖μ‖
H1(Ω

(3)
j )

)
.

Using Lemma 3.1,

I2 ≤ Ch
(
‖e1‖H1(Ω

(2)
j )

+ ‖e2‖L2(Ω
(2)
j )

)(
‖ϕ‖

L2(Ω
(1)
j )

+ ‖ψ‖
H1(Ω

(1)
j )

)
(3.34)

≤ Chd
N/2
j

(
‖e1‖H1(Ω

(2)
j )

+ ‖e2‖L2(Ω
(2)
j )

)
.

Using (3.32) and (3.34) in (3.31), we conclude (3.30). The proof is complete.
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4. Pressure error. In this section we derive the pointwise error estimates for
the pressure approximation. The main result of this section is in Theorem 4.2. For
our purpose, throughout this section, we denote by δ a fixed nonnegative function
which satisfies δ ∈ C∞

0 (B1(0) and
∫
RN δ(x) dx = 1. We shall construct a regularized

delta function δz,h, following an approach suggested by Durán, Nochetto, and Wang
[6].

Lemma 4.1. There exists a τ ∈ (0, τ0) such that for any q ∈ Wh and z ∈ Ω̄,
there holds the following inequality:

|q(z)| ≤ 2 |(δz,h, q)| ,

where

δz,h = (τh)−Nδ

(
x− z̄

τh

)
and |z − z̄| ≤ Ch.

Proof. For any q ∈ Wh and z ∈ Ω̄, we have z ∈ K̄j for some 1 ≤ j ≤ Nh and
y ∈ K̄j such that ‖q‖L∞(Kj) = |q(y)|. For any τ ∈ (0, τ0), according to A.0, choose

z̄ ∈ Kj so that Bτh(z̄) ⊂ Kj and |y − z̄| < C0τh. Set δz,h = (τh)−Nδ(x−z̄
τh ). By the

mean value theorem of calculus, there is a ȳ ∈ Bτh(z̄) such that

(q, δz,h) =

∫
Bτh(z̄)

qδz,h dx = q(ȳ).

Using the triangular inequality and the inverse properties in A.2, it follows that

‖q‖L∞(Kj) = |q(y)| ≤ |q(ȳ)| + |q(y) − q(ȳ)|(4.1)

≤ |q(ȳ)| + 2C0τh‖∇q‖L∞(Kj)

≤ |(q, δz,h)| + C1τ‖q‖L∞(Kj).

The constant C1 in (4.1) depends only on C0 and the inverse properties. Choosing
any τ ≤ τ1 = 1

2C1
, we obtain

‖q‖L∞(Kj) ≤ 2|(q, δz,h)|.

In view of |q(z)| ≤ ‖q‖L∞(Kj), we complete the proof.
The main result of this section is the following pointwise error estimate for the

pressure approximation.
Theorem 4.2. Suppose (u, p) and (uh, ph) satisfy (2.4). Let z ∈ Ω̄. Then there

exists a constant C > 0 independent of z,u, p, h such that for 0 ≤ s ≤ r there holds

(4.2)

|(p− ph)(z)| ≤ C

(
ln

1

h

)s̄ (
inf

v∈Vh
‖u − v‖W 1,∞(Ω),z,s + inf

q∈Wh
‖p− q‖L∞(Ω),z,s

)
,

where s̄ = 0 if 0 ≤ s < r and s̄ = 1 if s = r.
Proof. Let us start with a triangular inequality: for any qh ∈ Wh,

|(p− ph)(z)| ≤ |(p− qh)(z)| + |(qh − ph)(z)|.(4.3)

Obviously, the first term in (4.3) is bounded by ‖p − qh‖L∞(Ω),z,s. For the second
term of (4.3), we shall use the result of Lemma 4.1. In fact, according to Lemma 4.1,
there exists a τ ∈ (0, τ0) such that

(qh − ph)(z) ≤ 2|(qh − ph, δz,h)|,
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where

δz,h(x) = (τh)−Nδ((x− z̄)/(τh)) for some |z − z̄| ≤ C0τh.(4.4)

Note that ‖δz,h‖L1(Bτh(z̄)),z,−s ≤ C and (p − qh, δz,h) ≤ C‖p − qh‖L∞(Ω),z,s. From
(4.3), it follows that

|(p− ph)(z)| ≤ C‖p− qh‖L∞(Ω),z,s + 2|(p− ph, δz,h)|.(4.5)

Choose a function ζ ∈ C∞
0 (Ω) satisfying (1, ζ) = 1. Then, δ̃z,h ≡ δz,h − ζ ∈ L2

0(Ω) ∩
C∞

0 (Ω) and

|(p− ph, δz,h)| ≤ |(p− ph, δ̃z,h)| + |(p− ph, ζ)|.(4.6)

The second term in (4.6) can be estimated by the negative norm of p− ph:

|(p− ph, ζ)| ≤ ‖p− ph‖H−r(Ω)‖ζ‖Hr(Ω)(4.7)

≤ Chr

(
inf

v∈Vh
‖u − v‖H1(Ω) + inf

q∈Wh
‖p− q‖L2(Ω)

)

≤ C

(
inf

v∈Vh
‖u − v‖W 1,∞(Ω),z,s + inf

q∈Wh
‖p− q‖L∞(Ω),z,s

)
,

where 0 ≤ s ≤ r. We shall employ a duality argument in order to estimate the first

term in (4.6). Let (Φ
(1)
z , λ

(1)
z ) ∈ H1

0 (Ω)N × L2
0(Ω) denote the unique solution of the

Stokes problem

a(v,Φ
(1)
z ) − b(v, λ

(1)
z ) = 0 ∀ v ∈ H1

0 (Ω)N ,

b(Φ
(1)
z , q) = (δ̃z,h, q) ∀ q ∈ L2

0(Ω),
(4.8)

and let (Φ
(1)
z,h, λ

(1)
z,h) ∈ Vh ×Wh be the corresponding finite element approximation of

(Φ
(1)
z , λ

(1)
z ). Namely, the following error equations are satisfied:

a(v,Φ
(1)
z − Φ

(1)
z,h) − b(v, λ

(1)
z − λ

(1)
z,h) = 0 ∀ v ∈ Vh,

b(Φ
(1)
z − Φ

(1)
z,h, q) = 0 ∀ q ∈ Wh.

(4.9)

By using (4.8), (4.9), and (2.4), the first term of (4.6) is represented in terms of the

errors Φ
(1)
z,h − Φ

(1)
z and λ

(1)
z − λ

(1)
z,h as follows:

(p− ph, δ̃z,h) = b(Φ(1)
z , p− ph)

= a(u − v,Φ
(1)
z,h − Φ(1)

z ) − b(u − v, λ
(1)
z,h − λ(1)

z ) − b(Φ
(1)
z,h − Φ(1)

z , p− q),

where v ∈ Vh and q ∈ Wh are arbitrary functions. Hence, by Hölder’s inequality, we
have

|(p− ph, δ̃z,h)| ≤ C
(
‖Φ(1)

z − Φ
(1)
z,h‖W 1,1(Ω),z,−s + ‖λ(1)

z − λ
(1)
z,h‖L1(Ω),z,−s

)
×

(
‖u − v‖W 1,∞(Ω),z,s + ‖p− q‖L∞(Ω),z,s

)
,

which together with (4.7), (4.6), (4.5), and the result of Lemma 4.3 proves (4.2). The
proof of Theorem 4.2 is complete.
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Next, we show the estimates for Φ
(1)
z − Φ

(1)
z,h and λ

(1)
z − λ

(1)
z,h in the weighted

W 1,1(Ω) and L1(Ω) norms, which have been used in the proof of Theorem 4.2.

Lemma 4.3. Let (Φ
(1)
z , λ

(1)
z ) and (Φ

(1)
z,h, λ

(1)
z,h) satisfy (4.8) and (4.9). Then, there

is a constant C > 0 such that for 0 ≤ s ≤ r,

‖Φ(1)
z − Φ

(1)
z,h‖W 1,1(Ω),z,−s + ‖λ(1)

z − λ
(1)
z,h‖L1(Ω),z,−s ≤ C

(
ln

1

h

)s̄

,(4.10)

where s̄ = 0 if 0 ≤ s < r and s̄ = 1 if s = r.
Proof. Let M > 1 be a real number large enough so that the ball BMh(z) contains

the support of function δz,h defined by (4.4). M will be further determined later in
this proof. Let J be an integer such that Mh = 2−J . Then, J ≤ C ln(1/h). Set

e
(1)
1 = Φ

(1)
z − Φ

(1)
z,h and e

(1)
2 = λ

(1)
z − λ

(1)
z,h. Then, in view of Ω = BMh(z)

⋃
(
⋃J

j=0 Ωj)
and Hölder’s inequality, it follows that

‖e(1)
1 ‖W 1,1(Ω),z,−s + ‖e(1)

2 ‖L1(Ω),z,−s(4.11)

≤ CMN/2+shN/2(‖e(1)
1 ‖H1(BMh(z)) + ‖e(1)

2 ‖L2(BMh(z)))

+C

J∑
j=0

d
s+N/2
j h−s(‖e(1)

1 ‖H1(Ωj) + ‖e(1)
2 ‖L2(Ωj)).

By applying (3.27) and (3.28) in Lemma 3.7 with t = 0, t1 = 1, g = δz,h, it follows
from inequality (4.11) that

‖e(1)
1 ‖W 1,1(Ω),z,−s + ‖e(1)

2 ‖L1(Ω),z,−s ≤ CMN/2+s + C

J∑
j=0

(h/dj)
r−s(4.12)

+C

J∑
j=0

ds−1
j h−s

(
‖e(1)

1 ‖
L1(Ω

(1)
j )

+ ‖e(1)
2 ‖

W−1,1(Ω
(1)
j )

)
≤ CMN/2+s + CΘ(r − s) + L1 + L2,

where Θ, L1, and L2 are defined, respectively, by

Θ(γ) =

J∑
j=0

(h/dj)
γ ,

L1 = Ch−1‖e(1)
1 ‖L1(Ω),z,1−s, L2 =

J∑
j=0

ds−1
j h−s‖e(1)

2 ‖
W−1,1(Ω

(1)
j )

.

We note that since dj = 2−j and J ≤ C ln 1
h , there holds

Θ(γ) =

J∑
j=1

(
h

dj

)γ

≤

⎧⎨
⎩

ln 1
h if γ = 0,

1

Mγ(1 − 2−γ)
if γ > 0.

(4.13)

As one can see, the first two terms in (4.12) are already bounded by C(ln 1/h)s̄. It
suffices to estimate L1 + L2. To this end, we observe that

L1 + L2 ≤ CMN/2+s + C

J∑
j=0

ds−1
j h−s

(
‖e(1)

1 ‖
L1(Ω

(1)
j )

+ ‖e(1)
2 ‖

W−1,1(Ω
(1)
j )

)
,

(4.14)



POINTWISE ESTIMATES OF STOKES FINITE ELEMENT SOLUTIONS 17

which is obtained through the same procedure as is (4.11). We shall estimate the
norms ‖e(1)

1 ‖
L1(Ω

(1)
j )

and ‖e(1)
2 ‖

W−1,1(Ω
(1)
j )

in the summation of (4.14). Recall the

definitions of norms in L1(Ω
(1)
j ) and W−1,1(Ω

(1)
j ),

‖e(1)
1 ‖

L1(Ω
(1)
j )

= sup
ϕ∈C∞

0 (Ω
(1)
j )N

‖ϕ‖
L∞(Ω

(1)
j

)
=1

(e
(1)
1 , ϕ)(4.15)

and

‖e(1)
2 ‖

W−1,1(Ω
(1)
j )

= sup
ψ∈C∞

0 (Ω
(1)
j )

‖ψ‖
W1,∞(Ω

(1)
j

)
=1

(e
(1)
2 , ψ).(4.16)

To estimate ‖e(1)
1 ‖

L1(Ω
(1)
j )

, for any ϕ ∈ C∞
0 (Ω

(1)
j )N satisfying ‖ϕ‖L∞(Ω) = 1, let

w1 ∈ H1
0 (Ω)N and λ1 ∈ L2

0(Ω) be the solution of

−Δw1 + ∇λ1 = ϕ, ∇ · w1 = 0 in Ω.(4.17)

Then, some simple computations yield

(e
(1)
1 , ϕ) = a(e

(1)
1 ,w1) − b(e

(1)
1 , λ1)(4.18)

= a(e
(1)
1 ,w1 − Πhw1) − b(w1 − Πhw1, e

(1)
2 ) − b(e

(1)
1 , λ1 −Qhλ1).

Using Lemma 3.8 for the right-hand side of (4.18), we have

(e
(1)
1 , ϕ) ≤ Chrd1−r

j

(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
(4.19)

+Chd
N/2
j

(
‖e(1)

1 ‖
H1(Ω

(2)
j )

+ ‖e(1)
2 ‖

L2(Ω
(2)
j )

)
.

On the other hand, for each ψ ∈ C∞
0 (Ω

(1)
j ) with unit norm ‖ψ‖W 1,∞(Ω) = 1, let

(w2, λ2) ∈ H1
0 (Ω)N × L2

0(Ω) denote the unique solution of the following auxiliary
Stokes problem:

−Δw2 + ∇λ2 = 0, ∇ · w2 = ψ − (1, ψ)ζ in Ω.

Here, ζ ∈ C∞
0 (Ω) is a fixed function satisfying (1, ζ) = 1. Then, some straightforward

manipulations yield

(e
(1)
2 , ψ) = (e

(1)
2 , ψ − (1, ψ)ζ) + (1, ψ)(e

(1)
2 , ζ)

= b(w2, e
(1)
2 ) + (1, ψ)(e

(1)
2 , ζ)

= a(e
(1)
1 ,Πhw2 − w2) + b(w2 − Πhw2, e

(1)
2 ) + b(e

(1)
1 , λ2 −Qhλ2)

+ (1, ψ)(e
(1)
2 , ζ).

Applying (3.14) of Lemma 3.4,

∥∥e(1)
2

∥∥
H−1−r−[N/2](Ω)

≤ Chr
(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
,
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and Lemma 3.8, we obtain

(e
(1)
2 , ψ) ≤ Chrd1−r

j

(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
(4.20)

+Chd
N/2
j

(
‖e(1)

1 ‖
H1(Ω

(2)
j )

+ ‖e(1)
2 ‖

L2(Ω
(2)
j )

)
+C‖e(1)

2 ‖H−1−r−[N/2](Ω)‖ζ‖H1+r+[N/2](Ω)

≤ Chrd1−r
j

(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
+Chd

N/2
j

(
‖e(1)

1 ‖
H1(Ω

(2)
j )

+ ‖e(1)
2 ‖

L2(Ω
(2)
j )

)
.

For the second terms of (4.19) and (4.20), we apply (3.28) of Lemma 3.7 with t1 = 0,
t = 0 and obtain

‖e(1)
1 ‖

H1(Ω
(2)
j )

+ ‖e(1)
2 ‖

L2(Ω
(2)
j )

(4.21)

≤ Cd
−N/2−1
j

(
‖e(1)

1 ‖
L1(Ω

(3)
j )

+ dj‖e(1)
2 ‖

L1(Ω
(3)
j )

)
+ Chrd

−N/2−r
j .

Substituting (4.21) into (4.19) and (4.20) and taking into account the definitions of
norms (4.15) and (4.16), we conclude that

‖e(1)
1 ‖

L1(Ω
(1)
j )

+ ‖e(1)
2 ‖

W−1,1(Ω
(1)
j )

(4.22)

≤ Chrd1−r
j

(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
+Ch1+rd−r

j + Chd−1
j ‖e(1)

1 ‖
L1(Ω

(3)
j )

+ Ch‖e(1)
2 ‖

L1(Ω
(3)
j )

.

Thus, combining (4.22) and (4.14), we have

L1 + L2 ≤ CMN/2+s + CΘ(r − s)
(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
(4.23)

+CΘ(1 + r − s) + CΘ(1)L1 + CΘ(1)‖e(1)
2 ‖L1(Ω),z,−s.

Notice that Θ(γ) → 0 as M → ∞ for any fixed γ > 0 according to (4.13). Choose M
large enough so that CΘ(1) ≤ 1/2. Then, the term CΘ(1)L1 on the right-hand side
of (4.23) is absorbed into the left-hand side and we arrive at

L1 + L2 ≤ CMN/2+s + CΘ(1 + r − s) + CΘ(1)‖e(1)
2 ‖L1(Ω),z,−s(4.24)

+CΘ(r − s)
(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
.

The substitution of (4.24) into (4.12) results in

‖e(1)
1 ‖W 1,1(Ω),z,−s + ‖e(1)

2 ‖L1(Ω),z,−s(4.25)

≤ CMN/2+s + CΘ(r − s) + CΘ(1 + r − s) + CΘ(1)‖e(1)
2 ‖L1(Ω),z,−s

+CΘ(r − s)
(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
.

The particular case when s = 0 in inequality (4.25) implies

‖e(1)
1 ‖W 1,1(Ω) + ‖e(1)

2 ‖L1(Ω) ≤ CMN/2 + CΘ(r) + CΘ(1 + r) + CΘ(1)‖e(1)
2 ‖L1(Ω)

+CΘ(r)
(
‖e(1)

1 ‖W 1,1(Ω) + ‖e(1)
2 ‖L1(Ω)

)
,
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which, choosing M large enough, results in

‖e(1)
1 ‖W 1,1(Ω) + ‖e(1)

2 ‖L1(Ω) ≤ C.(4.26)

Using (4.26) in (4.25), we get (4.10). This completes the proof of Lemma 4.3.

5. Velocity error. This section is devoted to deriving the pointwise error esti-
mate for the velocity error u − uh. The result is stated in Theorem 5.1.

Theorem 5.1. Suppose (u, p) and (uh, ph) satisfy (2.4). Let z ∈ Ω̄. Then there
exists a constant C > 0 independent of z,u, p, h such that for 0 ≤ s ≤ r − 1 there
holds

(5.1)

|(u − uh)(z)| ≤ Ch

(
ln

1

h

)¯̄s (
inf

v∈Vh
‖u − v‖W 1,∞(Ω),z,s + inf

q∈Wh
‖p− q‖L∞(Ω),z,s

)
,

where ¯̄s = 0 if 0 ≤ s < r − 1 and ¯̄s = 1 if s = r − 1.
Proof. The triangular inequality, the inverse properties in A.2, and the approxi-

mation properties in A.1 yield for any v ∈ Vh

|(u − uh)(z)| ≤ |(u − v)(z)| + Ch−N/2‖v − uh‖L2(B2κh(z))

≤ C‖u − v‖L∞(B2κh(z)) + Ch−N/2‖u − uh‖L2(B2κh(z))

≤ Ch‖u‖W 1,∞(B3κh(z)) + Ch−N/2‖u − uh‖L2(B2κh(z))

≤ Ch‖u‖W 1,∞(Ω),z,s + Ch−N/2‖u − uh‖L2(B2κh(z)).

Replacing u by u − v, we obtain

|(u − uh)(z)| ≤ Ch‖u − v‖W 1,∞(Ω),z,s + Ch−N/2‖u − uh‖L2(B2κh(z)).(5.2)

We shall estimate the second term in (5.2) by employing a duality argument. To this
end, define a function

ρ(x) =

{
h−N/2(u − uh)(x)/‖u − uh‖L2(E2κh(x)) for x ∈ B2κh(z),
0 elsewhere

and let (Φ
(2)
z , λ

(2)
z ) ∈ H1

0 (Ω)N × L2
0(Ω) denote the unique solution of

a(v,Φ
(2)
z ) − b(v, λ

(2)
z ) = (ρ,v) ∀ v ∈ H1

0 (Ω)N ,

b(Φ
(2)
z , q) = 0 ∀ q ∈ L2

0(Ω),
(5.3)

and let (Φ
(2)
z,h, λ

(2)
z,h) ∈ Vh ×Wh be the corresponding finite element approximation of

(Φ
(2)
z , λ

(2)
z ) so that

a(v,Φ
(2)
z − Φ

(2)
z,h) − b(v, λ

(2)
z − λ

(2)
z,h) = 0 ∀ v ∈ Vh,

b(Φ
(2)
z − Φ

(2)
z,h, q) = 0 ∀ q ∈ Wh.

(5.4)

Then, for any v ∈ Vh and q ∈ Wh, some simple manipulations using (5.3), (2.4), and
(5.4) and Hölder’s inequality result in

h−N/2‖u − uh‖L2(E2κh(z)) = (ρ,u − uh) = a(u − uh,Φ
(2)
z ) − b(u − uh, λ

(2)
z )

= a(u − v,Φ(2)
z − Φ

(2)
z,h) − b(u − v, λ(2)

z − λ
(2)
z,h) − b(Φ(2)

z − Φ
(2)
z,h, p− q)

≤ C
(
‖Φ(2)

z − Φ
(2)
z,h‖W 1,1(Ω),z,−s + ‖λ(2)

z − λ
(2)
z,h‖L1(Ω),z,−s

)
×C

(
‖u − v‖W 1,∞(Ω),z,s + ‖p− q‖L∞(Ω),z,s

)
,
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which, along with (5.2) and Lemma 5.2, yields the desired estimate (5.1). Thus, the
proof is complete.

The result of the next lemma is used in the proof of Theorem 5.1. It is a sharp
error estimate for the solution of the auxiliary Stokes problem (5.3) and (5.4) in the
weighted W 1,1(Ω) and L1(Ω) norms.

Lemma 5.2. Let (Φ
(2)
z , λ

(2)
z ) be the solution of (5.3) and let (Φ

(2)
z,h, λ

(2)
z,h) be the

corresponding finite element approximation satisfying (5.4). Then, there is a constant
C > 0 such that for 0 ≤ s ≤ r − 1,

‖Φ(2)
z − Φ

(2)
z,h‖W 1,1(Ω),z,−s + ‖λ(2)

z − λ
(2)
z,h‖L1(Ω),z,−s ≤ Ch

(
ln

1

h

)¯̄s

,(5.5)

where ¯̄s = 0 if 0 ≤ s < r − 1 and ¯̄s = 1 if s = r − 1.
Proof. As before, let M > 1 be a real number, whose value will be determined

later in the proof, and let J be an integer such that Mh = 2−J . Then, J ≤ C ln 1
h .

Set e
(2)
1 = Φ

(2)
z − Φ

(2)
z,h and e

(2)
2 = λ

(2)
z − λ

(2)
z,h. Then, analogous to inequality (4.11),

we have

‖e(2)
1 ‖W 1,1(Ω),z,−s + ‖e2‖L1(Ω),z,−s(5.6)

≤ CMN/2+shN/2(‖e(2)
1 ‖H1(BMh(z)) + ‖e(2)

2 ‖L2(BMh(z)))

+C

J∑
j=0

d
s+N/2
j h−s(‖e(2)

1 ‖H1(Ωj) + ‖e(2)
2 ‖L2(Ωj)).

The norms on the right-hand side of (5.6) can be estimated by using (3.24) and (3.25)
in Lemma 3.6 with t1 = 1. Consequently,

‖e(2)
1 ‖W 1,1(Ω),z,−s + ‖e(2)

2 ‖L1(Ω),z,−s ≤ CMN/2+sh + Ch

J∑
j=0

(h/dj)
r−1−s(5.7)

+C

J∑
j=0

ds−1
j h−s

(
‖e(2)

1 ‖
L1(Ω

(1)
j )

+ ‖e(2)
2 ‖

W−1,1(Ω
(1)
j )

)
≤ CMN/2+sh + ChΘ(r − 1 − s) + L3 + L4,

where

L3 = Ch−1‖e(2)
1 ‖L1(Ω),z,1−s, L4 =

J∑
j=0

ds−1
j h−s‖e(2)

2 ‖
W−1,1(Ω

(1)
j )

.

We are now in a position to estimate L3 +L4. It follows immediately from the defini-
tions of L3 and L4 that

L3 + L4 ≤ CMN/2+sh + C

J∑
j=0

ds−1
j h−s

(
‖e(2)

1 ‖
L1(Ω

(1)
j )

+ ‖e(2)
2 ‖

W−1,1(Ω
(1)
j )

)
.(5.8)

To estimate ‖e(2)
1 ‖

L1(Ω
(1)
j )

and ‖e(2)
2 ‖

W−1,1(Ω
(1)
j )

for each 0 ≤ j ≤ J , recall the defini-

tions of the norms

‖e(2)
1 ‖

L1(Ω
(1)
j )

= sup
ϕ∈C∞

0 (Ω
(1)
j )N

‖ϕ‖
L∞(Ω

(1)
j

)
=1

(e
(2)
1 , ϕ),(5.9)
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‖e(2)
2 ‖

W−1,1(Ω
(1)
j )

= sup
ψ∈C∞

0 (Ω
(1)
j )

‖ψ‖
W1,∞(Ω

(1)
j

)
=1

(e
(2)
2 , ψ).(5.10)

For each ϕ ∈ C∞
0 (Ω

(1)
j )N satisfying ‖ϕ‖L∞(Ω) = 1, similar to (4.19), we have

(e
(2)
1 , ϕ) ≤ Chrd1−r

j

(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
(5.11)

+Chd
N/2
j

(
‖e(2)

1 ‖
H1(Ω

(2)
j )

+ ‖e(2)
2 ‖

L2(Ω
(2)
j )

)
,

and for each ψ ∈ C∞
0 (Ω

(1)
j ) satisfying ‖ψ‖W 1,∞(Ω) = 1, similar to (4.20), we have

(e
(2)
2 , ψ) ≤ Chrd1−r

j

(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
(5.12)

+Chd
N/2
j

(
‖e(2)

1 ‖
H1(Ω

(2)
j )

+ ‖e(2)
2 ‖

L2(Ω
(2)
j )

)
.

Using (3.25) of Lemma 3.7 with t1 = 0, the last terms of (5.12) and (5.11) are bounded
as follows:

‖e(2)
1 ‖

H1(Ω
(2)
j )

+ ‖e(2)
2 ‖

L2(Ω
(2)
j )

(5.13)

≤ Cd
−N/2−1
j

(
‖e(2)

1 ‖
L1(Ω

(3)
j )

+ dj‖e(2)
2 ‖

L1(Ω
(3)
j )

)
+ Chrd

−N/2+1−r
j .

Substituting (5.11), (5.12), and (5.13) into (5.9) and (5.10), we obtain

‖e(2)
1 ‖

L1(Ω
(1)
j )

+ ‖e(2)
2 ‖

W−1,1(Ω
(1)
j )

(5.14)

≤ Chrd1−r
j

(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
+Ch1+rd1−r

j + Chd−1
j ‖e(2)

1 ‖
L1(Ω

(3)
j )

+ Ch‖e(2)
2 ‖

L1(Ω
(3)
j )

.

Thus, using (5.14) in (5.8), we obtain

L3 + L4 ≤ CMN/2+sh + CΘ(r − s)
(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
(5.15)

+ChΘ(r − s) + CΘ(1)L3 + CΘ(1)‖e(2)
2 ‖L1(Ω),z,−s.

Because of (4.13), we can choose M large enough so that the term CΘ(1)L3 becomes
so small that it can be absorbed into the left-hand side of (5.15). Therefore,

L3 + L4 ≤ CMN/2+sh + ChΘ(r − s) + CΘ(1)‖e(2)
2 ‖L1(Ω),z,−s(5.16)

+CΘ(r − s)
(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
.

From (5.16) and (5.7), it follows that

‖e(2)
1 ‖W 1,1(Ω),z,−s + ‖e(2)

2 ‖L1(Ω),z,−s

≤ CMN/2+sh + ChΘ(r − 1 − s) + ChΘ(r − s) + CΘ(1)‖e(2)
2 ‖L1(Ω),z,−s

+CΘ(r − s)
(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
.
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Choosing M sufficiently large such that Θ(1) is small enough so that the term
CΘ(1)‖e(2)

2 ‖L1(Ω),z,−s on the right-hand side can be absorbed into the left-hand side,
we get

‖e(2)
1 ‖W 1,1(Ω),z,−s + ‖e(2)

2 ‖L1(Ω),z,−s(5.17)

≤ CMN/2+sh + ChΘ(r − 1 − s) + ChΘ(r − s)

+CΘ(r − s)
(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
.

The special case of (5.17) when s = 0 is

‖e(2)
1 ‖W 1,1(Ω) + ‖e(2)

2 ‖L1(Ω) ≤ CMN/2+sh + ChΘ(r − 1) + ChΘ(r)

+CΘ(r)
(
‖e(2)

1 ‖W 1,1(Ω) + ‖e(2)
2 ‖L1(Ω)

)
,

which, by choosing M large enough, gives

‖e(2)
1 ‖W 1,1(Ω) + ‖e(2)

2 ‖L1(Ω) ≤ CMN/2+sh + ChΘ(r − 1) + ChΘ(r),

≤ Ch + ChΘ(r − 1).

Combining this with (5.17), we obtain

‖e(2)
1 ‖W 1,1(Ω),z,−s + ‖e(2)

2 ‖L1(Ω),z,−s

≤ CMN/2+sh + ChΘ(r − 1 − s) + ChΘ(r − s) + ChΘ(r − 1)Θ(r − s)

≤ Ch

(
ln

1

h

)¯̄s

.

This completes the proof of Lemma 5.2.

6. Gradient of velocity error. This section is devoted to the pointwise esti-
mate for the derivatives of the velocity error. The main result is stated in Theorem
6.1.

Theorem 6.1. Suppose (u, p) and (uh, ph) satisfy (2.4). Let z ∈ Ω̄. Then there
exists a constant C > 0 independent of z,u, p, h such that for 0 ≤ s ≤ r there holds

(6.1)

|∇(u − uh)(z)| ≤ C

(
ln

1

h

)s̄ (
inf

v∈Vh
‖u − v‖W 1,∞(Ω),z,s + inf

q∈Wh
‖p− q‖L∞(Ω),z,s

)
,

where s̄ = 0 if i 0 ≤ s < r and s̄ = 1 if s = r.

Proof. To begin with, using A.1 and A.2 and following a similar procedure as in
deriving (5.2), we easily arrive at∣∣∣∣ ∂

∂xi
(u − uh)(z)

∣∣∣∣ ≤
∥∥∥∥ ∂

∂xi
(u − uh)

∥∥∥∥
L∞(B2κh(z))

(6.2)

+Ch−N/2−1

∥∥∥∥ ∂

∂xi
(u − uh)

∥∥∥∥
H−1(B2κh(z))

.



POINTWISE ESTIMATES OF STOKES FINITE ELEMENT SOLUTIONS 23

By a duality argument and integration by parts,

h−N/2−1

∥∥∥∥ ∂

∂xi
(u − uh)

∥∥∥∥
H−1(B2κh(z))

(6.3)

= sup
ϕ∈C∞

0 (B2κh(z))N

‖ϕ‖H1(B2κh(z))=1

(
h−N/2−1 ∂

∂xi
(u − uh), ϕ

)

= sup
ϕ∈C∞

0 (B2κh(z))N

‖ϕ‖H1(B2κh(z))=1

(
u − uh,−h−N/2−1 ∂ϕ

∂xi

)
.

Set

ρ1 = −h−N/2−1 ∂ϕ

∂xi
,(6.4)

let (Φ
(3)
z , λ

(3)
z ) ∈ H1

0 (Ω)N × L2
0(Ω) denote the solution of

a(v,Φ
(3)
z ) − b(v, λ

(3)
z ) = (ρ1,v) ∀ v ∈ H1

0 (Ω)N ,

b(Φ
(3)
z , q) = 0 ∀ q ∈ L2

0(Ω),
(6.5)

and let (Φ
(3)
z,h, λ

(3)
z,h) ∈ Vh ×Wh be the finite element approximation of (Φ

(3)
z , λ

(3)
z ) so

that

a(v,Φ
(3)
z − Φ

(3)
z,h) − b(v, λ

(3)
z − λ

(3)
z,h) = 0 ∀ v ∈ Vh,

b(Φ
(3)
z − Φ

(3)
z,h, q) = 0 ∀ q ∈ Wh.

(6.6)

Then, for any v ∈ Vh and q ∈ Wh, arguing in the same way as before, we obtain(
u − uh, h

−N/2−1 ∂ϕ

∂xi

)
= (ρ1,u − uh)

= a(u − uh,Φ
(3)
z ) − b(u − uh, λ

(3)
z )

= a(u − v,Φ(3)
z − Φ

(3)
z,h) − b(u − v, λ(3)

z − λ
(3)
z,h) − b(Φ(3)

z − Φ
(3)
z,h, p− q),

which, along with Hölder’s inequality and (6.8) of Lemma 6.2, yields(
u − uh, h

−N/2−1 ∂ϕ

∂xi

)
(6.7)

≤ C
(
‖Φ(3)

z − Φ
(3)
z,h‖W 1,1(Ω),z,−s + ‖λ(3)

z − λ
(3)
z,h‖L1(Ω),z,−s

)
×C

(
‖u − v‖W 1,∞(Ω),z,s + ‖p− q‖L∞(Ω),z,s

)
≤ C

(
ln

1

h

)s̄ (
‖u − v‖W 1,∞(Ω),z,s + ‖p− q‖L∞(Ω),z,s

)
.

Estimate (6.7), together with (6.2) and (6.3), shows∣∣∣∣ ∂

∂xi
(u − uh)(z)

∣∣∣∣
≤ C

(
ln

1

h

)s̄ (
inf

v∈Vh
‖u − v‖W 1,∞(Ω),z,s + inf

q∈Wh
‖p− q‖L∞(Ω),z,s

)
,

which proves (6.1).
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In the rest of this section, we prove the error estimates for the solutions of (6.5)
and (6.6) in the weighted W 1,1 and L1 norms, which have been used in the proof of
Theorem 6.1.

Lemma 6.2. Let (Φ
(3)
z , λ

(3)
z ) and (Φ

(3)
z,h, λ

(3)
z,h) satisfy (6.5) and (6.6). Then, there

is a constant C > 0 such that for 0 ≤ s ≤ r,

‖Φ(3)
z − Φ

(3)
z,h‖W 1,1(Ω),z,−s + ‖λ(3)

z − λ
(3)
z,h‖L1(Ω),z,−s ≤ C

(
ln

1

h

)s̄

,(6.8)

where s̄ = 0 if 0 ≤ s < r and s̄ = 1 if s = r.
Proof. The proof of (6.8) follows closely that of (4.10). Let M and J be as before

and set e
(3)
1 = Φ

(3)
z − Φ

(3)
z,h and e

(3)
2 = λ

(3)
z − λ

(3)
z,h. Then, analogous to (4.11), there

holds

‖e(3)
1 ‖W 1,1(Ω),z,−s + ‖e(3)

2 ‖L1(Ω),z,−s(6.9)

≤ CMN/2+shN/2(‖e(3)
1 ‖H1(BMh(z)) + ‖e(3)

2 ‖L2(BMh(z)))

+C

J∑
j=0

d
s+N/2
j h−s(‖e(3)

1 ‖H1(Ωj) + ‖e(3)
2 ‖L2(Ωj)).

This time, we shall not use (3.24) and (3.25) in Lemma 3.24 for the norms in (6.9) as
we did for (5.6). Instead, (3.12) and (3.20) combined with (6.23) of Lemma 6.3 will
be used. As a matter of fact, using (3.12) of Lemma 3.3, we obtain

‖e(3)
1 ‖H1(BMh(z)) + ‖e(3)

2 ‖L2(BMh(z))(6.10)

≤ Ch
(
‖Φ(3)

z ‖H2(Ω) + ‖λ(3)
z ‖H1(Ω)

)
≤ Ch‖ρ1‖L2(Ω) ≤ Ch−N/2.

Applying (3.20) with t1 = 1, t = 0 in Lemma 3.5 and (6.23) in Lemma 6.3, we have

‖e(3)
1 ‖H1(Ωj) + ‖e(3)

2 ‖L2(Ωj)(6.11)

≤ Chr
(
‖Φ(3)

z ‖
H1+r(Ω

(1)
j )

+ ‖λ(3)
z ‖

Hr(Ω
(3)
j )

)
+Cd

−N/2−1
j

(
‖e(3)

1 ‖
L1(Ω

(1)
j )

+ ‖e(3)
2 ‖

W−1,1(Ω
(1)
j )

)
≤ Chrd

−N/2−r
j + Cd

−N/2−1
j

(
‖e(3)

1 ‖
L1(Ω

(1)
j )

+ ‖e(3)
2 ‖

W−1,1(Ω
(1)
j )

)
.

Substituting (6.10) and (6.11) into (6.9), we obtain

‖e(3)
1 ‖W 1,1(Ω),z,−s + ‖e(3)

2 ‖L1(Ω),z,−s ≤ CMN/2+s + CΘ(r − s) + L5 + L6,(6.12)

where L5 and L6 are defined by

L5 = Ch−1‖e(3)
1 ‖L1(Ω),z,1−s, L6 =

J∑
j=0

ds−1
j h−s‖e(3)

2 ‖
W−1,1(Ω

(1)
j )

.

Since

L5 + L6 ≤ CMN/2+s + C

J∑
j=0

ds−1
j h−s

(
‖e(3)

1 ‖
L1(Ω

(1)
j )

+ ‖e(3)
2 ‖

W−1,1(Ω
(1)
j )

)
,

(6.13)
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we shall estimate the norms ‖e(3)
1 ‖

L1(Ω
(1)
j )

and ‖e(3)
2 ‖

W−1,1(Ω
(1)
j )

, which are defined

through

‖e(3)
1 ‖

L1(Ω
(1)
j )

= sup
ϕ∈C∞

0 (Ω
(1)
j )N

‖ϕ‖
L∞(Ω

(1)
j

)
=1

(e
(3)
1 , ϕ),(6.14)

‖e(3)
2 ‖

W−1,1(Ω
(1)
j )

= sup
ψ∈C∞

0 (Ω
(1)
j )

‖ψ‖
W1,∞(Ω

(1)
j

)
=1

(e
(3)
2 , ψ).(6.15)

For each ϕ ∈ C∞
0 (Ω

(1)
j )N with unit norm ‖ϕ‖L∞(Ω) = 1, and each ψ ∈ C∞

0 (Ω
(1)
j ) with

unit norm ‖ψ‖W 1,∞(Ω) = 1, following (4.19) and (4.20), we have

(e
(3)
1 , ϕ) ≤ Chrd1−r

j

(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
(6.16)

+Chd
N/2
j

(
‖e(3)

1 ‖
H1(Ω

(2)
j )

+ ‖e(3)
2 ‖

L2(Ω
(2)
j )

)
and

(e
(3)
2 , ψ) ≤ Chrd1−r

j

(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
(6.17)

+Chd
N/2
j

(
‖e(3)

1 ‖
H1(Ω

(3)
j )

+ ‖e(3)
2 ‖

L2(Ω
(2)
j )

)
.

Applying (3.20) with t1 = 0 in Lemma 3.5 and (6.23) in Lemma 6.3,

‖e(3)
1 ‖H1(Ωj) + ‖e(3)

2 ‖L2(Ωj)(6.18)

≤ Chr
(
‖Φ(3)

z ‖
H1+r(Ω

(1)
j )

+ ‖λ(3)
z ‖

Hr(Ω
(3)
j )

)
+Cd

−N/2−1
j

(
‖e(3)

1 ‖
L1(Ω

(1)
j )

+ dj‖e(3)
2 ‖

L1(Ω
(1)
j )

)
≤ Chrd

−N/2−r
j + Cd

−N/2−1
j

(
‖e(3)

1 ‖
L1(Ω

(1)
j )

+ dj‖e(3)
2 ‖

W−1,1(Ω
(1)
j )

)
.

Substituting (6.18) into (6.16) and (6.17) and then using (6.16) and (6.17) in (6.14)
and (6.15), we obtain

‖e(3)
1 ‖

L1(Ω
(1)
j )

+ ‖e(3)
2 ‖

W−1,1(Ω
(1)
j )

≤ Chrd1−r
j

(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
+Ch1+rd−r

j + Chd−1
j ‖e(3)

1 ‖
L1(Ω

(3)
j )

+ Ch‖e(3)
2 ‖

L1(Ω
(3)
j )

,

which, combined with (6.13), yields

L5 + L6 ≤ CMN/2+s + Θ(r − s)
(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
(6.19)

+CΘ(1 + r − s) + CΘ(1)L5 + CΘ(1)‖e(3)
2 ‖L1(Ω),z,−s.

Because of (4.13), we can choose M large enough so that

L5 + L6 ≤ CMN/2+s + CΘ(1 + r − s) + CΘ(1)‖e(3)
2 ‖L1(Ω),z,−s(6.20)

+ Θ(r − s)
(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
.
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Using (6.20) and (6.12), we arrive at

‖e(3)
1 ‖W 1,1(Ω),z,−s + ‖e(3)

2 ‖L1(Ω),z,−s(6.21)

≤ CMN/2+s + CΘ(r − s) + CΘ(1 + r − s) + CΘ(1)‖e(3)
2 ‖L1(Ω),z,−s

+ Θ(r − s)
(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
.

Choosing M sufficiently large to cancel the term CΘ(1)‖e(3)
2 ‖L1(Ω),z,−s on the right-

hand side of (6.21), we conclude

‖e(3)
1 ‖W 1,1(Ω),z,−s + ‖e(3)

2 ‖L1(Ω),z,−s(6.22)

≤ CMN/2+s + CΘ(r − s) + CΘ(1 + r − s)

+ Θ(r − s)
(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
.

Taking s = 0 in (6.21), we have

‖e(3)
1 ‖W 1,1(Ω) + ‖e(3)

2 ‖L1(Ω) ≤ CMN/2 + CΘ(r) + CΘ(1 + r)

+Θ(r)
(
‖e(3)

1 ‖W 1,1(Ω) + ‖e(3)
2 ‖L1(Ω)

)
,

which, when M is chosen sufficiently large, implies

‖e(3)
1 ‖W 1,1(Ω) + ‖e(3)

2 ‖L1(Ω) ≤ CMN/2 + CΘ(r) + CΘ(1 + r) ≤ C.

Substituting this into (6.21), we get

‖e(3)
1 ‖W 1,1(Ω),z,−s + ‖e(3)

2 ‖L1(Ω),z,−s

≤ CMN/2+s + CΘ(r − s) + CΘ(1 + r − s) + Θ(r − s)

≤ C

(
ln

1

h

)s̄

,

which is the desired (6.8). The proof is complete.
Lemma 6.3. Suppose ρ1 is defined by (6.4) for some ϕ ∈ C∞

0 (B2κh(z))N satisfy-
ing ‖ϕ‖H1(B2κh(z)) = 1 and (v, λ) ∈ H1

0 (Ω)N × L2
0(Ω) is the solution of

−Δv + ∇λ = ρ1, ∇ · v = 0 in Ω.

Then, there holds

‖v‖
H1+r(Ω

(1)
j )

+ ‖λ‖
Hr(Ω

(1)
j )

≤ Cd
−N/2−r
j .(6.23)

Proof. We shall start with the integral representation (3.3) and (3.4) for the

solution of the Stokes problem. For x ∈ Ω
(1)
j , it follows that

v(x) =

N∑
t=1

∫
Ω

Gt
x(y)ρ1(y) dy, λ(x) =

N∑
t=1

Qt
x(y)ρ1(y) dy.(6.24)

In view of (6.4) and integrations by parts,

v(x) = −h−N/2−1
N∑
t=1

∫
Ω

Gt
x(y)

∂ϕ

∂yi
dy = h−n/2−1

N∑
t=1

∫
B2κh(z)

ϕ
∂Gt

x(y)

∂yi
dy.(6.25)
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Differentiating (6.25) and using Hölder’s inequality and estimates (3.5), we obtain for
multiple index |α| ≤ 1 + r

∂α
xv(x) = h−N/2−1

N∑
t=1

∫
B2κh(z)

ϕ∂yi
∂α
xGt

x(y) dy(6.26)

≤ Ch−N/2−1d
1−N−|α|
j hN/2‖ϕ‖L2(B2κh(z))

≤ Cd−N−r
j ‖∇ϕ‖L2(B2κh(z)) ≤ Cd−N−r

j .

Here, we have used the facts that ‖ϕ‖H1(B2κh(z)) = 1 and ϕ ∈ C∞
0 (B2κh(z)), which

imply

‖ϕ‖L2(B2κh(z)) ≤ Ch‖∇ϕ‖L2(B2κh(z)) ≤ Ch.

Thus, integrating (6.26) yields

‖v‖
H1+r(Ω

(1)
j )

≤ Cd
−N/2−r
j .(6.27)

With the same procedure, we show

‖λ‖
Hr(Ω

(1)
j )

≤ Cd
−N/2−r
j .(6.28)

Consequently, (6.27) and (6.28) imply (6.23). The proof is complete.
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[10] F. Natterer, Über die punktwise konvergenz finiter elemente, Numer. Math., 25 (1975), pp.
67–77.

[11] J. A. Nitsche, L∞ convergence of finite element approximations, in Mathematical Aspects of
Finite Element Methods, Lecture Notes in Math. 6060, Springer-Verlag, New York, 1977,
pp. 261–274.

[12] J. A. Nitche and A. H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp.,
28 (1974), pp. 937–958.
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ON THE LONG-TIME STABILITY OF THE IMPLICIT
EULER SCHEME FOR THE TWO-DIMENSIONAL

NAVIER–STOKES EQUATIONS∗
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Abstract. In this paper we study the stability for all positive time of the fully implicit Eu-
ler scheme for the two-dimensional Navier–Stokes equations. More precisely, we consider the time
discretization scheme and with the aid of the discrete Gronwall lemma and the discrete uniform
Gronwall lemma we prove that the numerical scheme is stable.
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1. Introduction. Let Ω ⊂ R
2 be an open bounded set with boundary ∂Ω of

class C2. The Navier–Stokes equations of viscous incompressible fluids are

ut + (u · ∇)u− νΔu + ∇p = f,(1.1)

divu = 0,(1.2)

where u = (u1, u2) is the velocity, p is the pressure, ν is the kinematic viscosity, and
f represents body forces applied to the fluid. We complete these equations with the
initial condition

u(x, 0) = u0(x),(1.3)

with u0 : Ω → R
2 being given, and with the nonslip boundary condition

u = 0 on ∂Ω.(1.4)

In the notation described below, system (1.1)–(1.4) can be written as the functional
evolution equation

ut + νAu + B(u, u) = f, u(0) = u0.(1.5)

In the two-dimensional case under consideration, the solution to the Navier–Stokes
equations is known to be smooth for all time (cf. [13]). The velocity u is bounded
uniformly for all time by

|u(t)|2L2(Ω)2 ≤ e−νλ1t|u0|2L2(Ω)2 + c
(
1 − e−νλ1t

)
|f |2L∞(R+;L2(Ω)2),(1.6)

where λ1 is the first eigenvalue of the Stokes operator A, and we have assumed that
f ∈ L∞(R+;L2(Ω)2). Furthermore, using techniques based on the uniform Gronwall
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lemma (cf. [12]), one can bound u uniformly in H1
0 (Ω) for all t ≥ 0 by a function

which depends on the initial condition

|u(t)|2H1
0 (Ω)2 ≤ K(|u0|H1

0 (Ω)2 , |f |L∞(R+;L2(Ω)2)).(1.7)

This dependence on the initial data can be dropped when one considers sufficiently
large time, t ≥ Tc(|u0|L2(Ω)2 , |f |L∞(R+;L2(Ω)2)), giving

|u(t)|2H1
0 (Ω)2 ≤ K(|f |L∞(R+;L2(Ω)2)) ∀ t ≥ Tc.(1.8)

In this paper we consider a time discretization of (1.5) using the fully implicit
Euler scheme

un − un−1

k
+ νAun + B(un, un) = fn, u0 = u0,(1.9)

where

fn =
1

Δt

∫ nΔt

(n−1)Δt

f(t) dt,(1.10)

and seek to obtain similar bounds on |un|H1
0 (Ω)2 .

Before we proceed further, we note that a related result for the linearized implicit
Euler scheme

un − un−1

k
+ νAun + B(un−1, un) = fn, u0 = u0,(1.11)

is proved in [7]. A different approach for the linearized implicit Euler scheme for the
case without forcing term appears in [3].

Important background information on different computational methods can be
found in some of the books and articles available in the literature. On finite elements,
see, e.g., [4], [6]; on finite differences and finite elements, [9], [13]; on spectral methods,
[1], [5].

For the mathematical setting of the problem, we consider the following spaces:

V = {v ∈ H1
0 (Ω)2, div v = 0},(1.12)

H = {v ∈ L2(Ω)2, div v = 0, v · n = 0 on ∂Ω},(1.13)

where n is the unit outward normal on ∂Ω. The space V is endowed with the scalar
product

((u, v)) =

2∑
i,j=1

∫
Ω

∂ui

∂xj
(x)

∂vi
∂xj

(x) dx(1.14)

and with the corresponding norm

‖u‖ = ((u, u))1/2,(1.15)

and H is endowed with the scalar product and the norm of L2(Ω)2, denoted by (·, ·)
and | · |.

We denote by A the linear continuous operator from V into V ′ such that

〈Au, v〉V ′,V = ((u, v)) ∀u, v ∈ V.(1.16)
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The domain of A in H is denoted by D(A) and, using the regularity theory for
the Stokes equation (see, for instance, [13]), one can show that

D(A) = H2(Ω)2 ∩ V.(1.17)

We have the following inclusions:

D(A) ⊂ V ⊂ H,(1.18)

and the so-called Poincaré inequality holds true:

|u| ≤ 1√
λ1

‖u‖ ∀u ∈ V,(1.19)

where λ1 > 0 is the first eigenvalue of the Stokes operator A.
As is well known, the form (1.5) of the Navier–Stokes equations was derived by

Leray [8], using the weak formulation of the Navier–Stokes equations. The latter is
obtained by multiplying (1.1) by a test function v ∈ V and integrating by parts over
Ω, using Green’s formula, viz.,

d

dt
(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = (f(t), v) ∀ v ∈ V,(1.20)

where

b(u, v, w) =
∑

i,j=1,2

∫
Ω

ui(x)
∂vj
∂xi

(x)wj(x) dx.(1.21)

The form b is trilinear continuous on H1(Ω)2 and enjoys the following properties:

|b(u, v, w)| ≤ cb|u|1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ V, w ∈ H,(1.22)

|b(u, v, w)| ≤ cb|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀u, v, w ∈ V,(1.23)

b(u, v, v) = 0 ∀u, v ∈ V,(1.24)

the last equation implying

b(u, v, w) = −b(u,w, v) ∀u, v, w ∈ V.(1.25)

Using b, we define the bilinear operator B from V × V into V ′ by

〈B(u, v), w〉V ′,V = b(u, v, w) ∀u, v, w ∈ V.(1.26)

For more details about the functional spaces D(A), V , and H as well as the
operators A, B, and b, the reader is referred to, e.g., [2], [11], and [13].

2. H1 stability and the main result. Throughout the paper, we assume that
f ∈ L∞(R+;H) and we set |f |∞ := |f |L∞(R+;H). We adopt the following convention:
ci denotes constants that depend only on the parameters such as λ1, ν, etc.; Ki depend
in addition on u(t∗) at some specified time t∗ and on the forcing f ; κi are bounds on
the timestep k and may depend on u0 and f .

In proving the main result, we will need a couple of preliminary lemmas. We begin
with an analogue of (1.6), proved in almost the same way (see, e.g., [12, p. 109]).
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Lemma 2.1. For every k > 0, we have

|un|2 ≤ (1 + νλ1k)−n|u0|2 + [1 − (1 + νλ1k)−n]
|f |2∞
ν2λ2

1

∀n ≥ 0,(2.1)

and there exists K1 = K1(|u0|, |f |∞) such that

|un|2 ≤ K1 ∀n ≥ 0,(2.2)

and

ν

n∑
j=i

k‖uj‖2 ≤ K1 + (n− i + 1)k
|f |2∞
νλ1

∀ i = 1, . . . , n.(2.3)

Proof. Taking the scalar product of (1.9) with 2kun in H and using the relation

2(ϕ− ψ,ϕ) = |ϕ|2 − |ψ|2 + |ϕ− ψ|2 ∀ϕ,ψ ∈ H,(2.4)

and the skew property (1.24), we obtain

|un|2 − |un−1|2 + |un − un−1|2 + 2νk‖un‖2 = 2k(fn, un).(2.5)

Using the Cauchy–Schwarz inequality and the Poincaré inequality (1.19), we majorize
the right-hand side of (2.5) by

2k|fn||un| ≤ 2k√
λ1

|fn|‖un‖ ≤ νk‖un‖2 +
k

νλ1
|fn|2.(2.6)

Relations (2.5) and (2.6) imply

|un|2 − |un−1|2 + |un − un−1|2 + νk‖un‖2 ≤ k

νλ1
|fn|2.(2.7)

Using again the Poincaré inequality (1.19), we find from (2.7)

|un|2 ≤ 1

α
|un−1|2 +

k

ανλ1
|fn|2,(2.8)

where

α = 1 + νλ1k.(2.9)

Using (2.8) recursively, we find

|un|2 ≤ 1

αn
|u0|2 +

k

νλ1

n∑
i=1

1

αi
|fn+1−i|2(2.10)

≤ (1 + νλ1k)
−n |u0|2 +

|f |2∞
ν2λ2

1

[1 − (1 + νλ1k)
−n

],

which proves (2.1); (2.1) easily implies (2.2) with

K1(|u0|, |f |∞) := |u0|2 +
1

ν2λ2
1

|f |2∞.(2.11)
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Now adding up (2.7) with n from i to m and dropping some terms, we find

νk
m∑
j=i

‖uj‖2 ≤ |ui−1|2 +
k

νλ1

m∑
j=i

|f j |2

≤ K1 +
|f |2∞
νλ1

(m− i + 1)k,

(2.12)

which is just (2.3) with n in place of m.
Corollary 2.2. If

0 < k ≤ 1

νλ1
=: κ1,(2.13)

then

|un|2 ≤ 2ρ2
0 ∀nk ≥ T0(|u0|, |f |∞) :=

4

νλ1
ln

(
|u0|
ρ0

)
,(2.14)

where ρ0 := |f |∞/(νλ1).
Proof. From the bound (2.1) on |un|2, we infer that

|un|2 ≤
(
1 + νλ1k

)−n|u0|2 + ρ2
0,

and using assumption (2.13) on k and the fact that 1 + x ≥ exp(x/2) if x ∈ (0, 1), we
obtain

|un|2 ≤ exp
(
−nk

νλ1

2

)
|u0|2 + ρ2

0.

For nk ≥ T0, the above inequality implies conclusion (2.14) of the corollary.
We now seek to obtain uniform bounds on un in V similar to those obtained in

H (see (2.2)). To this end, we first derive bounds on a finite interval of time (see
Proposition 2.5). We then repeatedly use these together with (a discrete uniform
Gronwall) Lemma 2.6 on successive intervals to arrive at the desired uniform bounds.

We begin with some preliminary inequalities. Taking the scalar product of (1.9)
with 2kAun in H, we obtain

‖un‖2 − ‖un−1‖2 + ‖un − un−1‖2 + 2νk|Aun|2

+ 2kb(un, un, Aun) = 2k(fn, Aun).
(2.15)

Using property (1.22) of the trilinear form b and recalling (2.2), we have the following
bound of the nonlinear term:

2kb(un, un, Aun) ≤ 2 cb k |un|1/2‖un‖|Aun|3/2(2.16)

≤ νk

2
|Aun|2 +

27c4b
2ν3

K1k‖un‖4.

We bound the right-hand side of (2.15) by Cauchy–Schwarz,

2k(fn, Aun) ≤ 2k|fn||Aun|(2.17)

≤ νk

2
|Aun|2 +

2

ν
k|fn|2.
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Relations (2.15)–(2.17) imply

‖un‖2 − ‖un−1‖2 + ‖un − un−1‖2 + νk|Aun|2(2.18)

≤ 27c4b
2ν3

K1k‖un‖4 +
2

ν
k|fn|2,

from which we obtain

0 ≤ c2K1k‖un‖4 − ‖un‖2 + ‖un−1‖2 + c3k|f |2∞ ,(2.19)

where

c2 =
27c4b
2ν3

and c3 =
2

ν
.(2.20)

Unlike (2.7), (2.19) does not (directly) provide a useful bound for ‖un‖, so we proceed
to show that (2.19) does give a proper bound for ‖un‖ if the timestep k is sufficiently
small.

Lemma 2.3. Suppose that 0 < k ≤ κ1 and assume that, for some n, we have

c2K1k
(
K2‖un−1‖2 + c4|f |2∞

)
≤ 1

5
,(2.21)

where K2(|u0|, |f |∞) = 2 + 4c2bK1/ν
2 and c4 = 4/(ν2λ1). Then (2.19) implies

‖un‖2 ≤ ‖un−1‖2
[
1 + c5K1k

(
‖un−1‖2 + k|f |2∞

)]
+ c6k|f |2∞(2.22)

for some constants c5 and c6.
Proof. Relation (2.19) implies either

‖un‖2 ≤ 1 −
√

Δn−1

2c2K1k
(2.23)

or

‖un‖2 ≥ 1 +
√

Δn−1

2c2K1k
,(2.24)

where

Δn−1 = 1 − 4c2K1k(‖un−1‖2 + c3k|f |2∞) > 0 by (2.13) and (2.21).(2.25)

We now show that (2.21) excludes (2.24). Indeed, taking the scalar product of
(1.9) with 2k(un − un−1) in H, we obtain

2|un − un−1|2 + νk‖un‖2 − νk‖un−1‖2 + νk‖un − un−1‖2(2.26)

+ 2k b(un, un, un − un−1) = 2k (fn, un − un−1).

Using properties (1.23), (1.24), and (1.25) of the trilinear form b and recalling (2.2),
we bound the nonlinear term as

2kb(un, un, un − un−1) = −2kb(un, un, un−1)

≤ 2cbk|un|‖un‖‖un−1‖

≤ ν

2
k‖un‖2 +

2c2b
ν

K1k‖un−1‖2.

(2.27)
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We bound the right-hand side of (2.26) using Cauchy–Schwarz,

2k(fn, un − un−1) ≤ 2k|fn||un − un−1|

≤ 2√
λ1

k|fn|‖un − un−1‖

≤ ν

2
k‖un − un−1‖2 +

2

νλ1
k|fn|2.

(2.28)

Relations (2.26)–(2.28) imply

2|un − un−1|2 +
ν

2
k‖un‖2 −

(
ν +

2c2b
ν

K1

)
k‖un−1‖2(2.29)

+
ν

2
k‖un − un−1‖2 ≤ 2

νλ1
k|fn|2,

from which we obtain

‖un‖2 ≤ K2‖un−1‖2 + c4|f |2∞,(2.30)

and using hypothesis (2.21) we find

2c2K1k‖un‖2 ≤ 2c2K1k
(
K2‖un−1‖2 + c4|f |2∞

)
< 1,(2.31)

which contradicts (2.24). Therefore, (2.19) implies (2.23) and hence

‖un‖2 ≤
1 −

[
1 − 4c2K1k

(
‖un−1‖2 + c3k|f |2∞

)]1/2
2c2K1k

(2.32)

= 2
‖un−1‖2 + c3k|f |2∞

1 +
√

1 − x
,

where

x = 4c2K1k(‖un−1‖2 + c3k|f |2∞).

Since x ≤ 4/5 by (2.21) and

2

1 +
√

1 − x
≤ 1 +

x

2
if 0 ≤ x ≤ 4

5
,

relation (2.32) implies, under assumption (2.21), that

‖un‖2 ≤
(
‖un−1‖2 + c3k|f |2∞

) [
1 + 2c2K1k

(
‖un−1‖2 + c3k|f |2∞

)]
.(2.33)

Using (2.21) once again, (2.33) immediately implies (2.22).
In order to obtain estimates on a finite interval of time, we will inductively use

Lemma 2.3, together with the following result, which was proved in [10] and which
we repeat here for convenience.

Lemma 2.4. Given k > 0, an integer n∗ > 0, and positive sequences ξn, ηn, and
ζn such that

ξn ≤ ξn−1(1 + kηn−1) + kζn for n = 1, . . . , n∗,(2.34)
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we have, for any n ∈ {2, . . . , n∗},

ξn ≤ ξ0 exp

(
n−1∑
i=0

kηi

)
+

n−1∑
i=1

kζi exp

⎛
⎝n−1∑

j=i

kηj

⎞
⎠ + kζn .(2.35)

Proof. Using (2.34) recursively, we derive

ξn ≤ ξ0

n−1∏
i=0

(1 + kηi) +

n∑
i=1

kζi

n−1∏
j=i

(1 + kηj)

with the convention that
∏β

j=α rj = 1 for β < α. Using the fact that 1 + x ≤ ex for
all x ∈ R, the conclusion of the lemma follows.

Proposition 2.5 (estimates on a finite interval). Let T > 0 and let K3(·, ·, ·) be
the function, monotonically increasing in all its arguments, given in (2.47). Suppose
the timestep k is such that

k ≤ min{κ1, κ2(|u0|, |f |∞), κ3(‖u0‖, |f |∞, T )},(2.36)

where κ1 is given by (2.13), and

κ2(|u0|, |f |∞) =
1

10c2c4K1|f |2∞
,(2.37)

κ3(‖u0‖, |f |∞, T ) =
1

10c2K1K2K3(‖u0‖, |f |∞, T )
.(2.38)

Then (i) relation (2.22) holds for all n = 1, . . . , N := �T/k�, and (ii)

‖un‖2 ≤ K3(‖u0‖, |f |∞, nk) ∀n = 1, . . . , N := �T/k�.(2.39)

Proof. Let T > 0 and k be such that hypothesis (2.36) is satisfied. We will use
induction on n.

Since ‖u0‖2 ≤ K3(‖u0‖, |f |∞, 0), (2.37) and (2.38) imply that condition (2.21) of
Lemma 2.3 is satisfied for n = 1,

c2K1k(K2‖u0‖2 + c4|f |2∞) ≤ 1

10
+

1

10
≤ 1

5
.(2.40)

By the same lemma, we have

‖u1‖2 ≤ ‖u0‖2
[
1 + c5K1k

(
‖u0‖2 + k|f |2∞

)]
+ c6k|f |2∞.(2.41)

Now assume that (2.21) holds for n = 1, . . . ,m for some m ≤ N . Then by Lemma
2.3, (2.22) holds for n = 1, . . . ,m; furthermore, we can bound ‖um‖ as follows. We
write the stepwise bound (2.22) in Lemma 2.3 in the form

ξn ≤ ξn−1(1 + kηn−1) + kζ,(2.42)

where

ξn = ‖un‖2, ηn = c5K1(‖un‖2 + k|f |2∞), and ζ = c6|f |2∞.(2.43)
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Our intention is to apply (the discrete Gronwall) Lemma 2.4. So we compute for
i > 0, using (2.3),

m−1∑
j=i

kηj = c5K1

m−1∑
j=i

k
(
‖uj‖2 + k|f |2∞

)
(2.44)

≤ c7K1

[
K1 + (m− i)k|f |2∞

]
;

similarly, for i = 0,

m−1∑
j=0

kηj = c5K1

m−1∑
j=0

k
(
‖uj‖2 + k|f |2∞

)
(2.45)

≤ c7K1

(
K1 + mk|f |2∞

)
+ c5K1k‖u0‖2.

We note that, using (2.38) and recalling that K2 ≥ 2, the last term can be bounded
as

c5K1k‖u0‖2 ≤ c5‖u0‖2

10c2K2K3(‖u0‖, |f |∞, T )
(2.46)

≤ c5
10c2K2

‖u0‖2

K3(‖u0‖, |f |∞, 0)
≤ c5

20c2
.

The middle term in (2.35) here is

m−1∑
i=1

kζ exp

⎛
⎝m−1∑

j=i

kηj

⎞
⎠ ≤ c6|f |2∞

m−1∑
i=1

k exp(c7K
2
1 + c7K1(m− i)k|f |2∞)

≤ c6|f |2∞ exp(c7K
2
1 )mk exp(c7K1 mk |f |2∞).

The following bound on ‖um‖2 then follows from (2.35):

‖um‖2 ≤ ‖u0‖2 exp(c7K1 |f |2∞ mk) exp(c7K
2
1 + c5/(20c2))

+ 2c6|f |2∞ exp(c7K
2
1 )mk exp(c7K1 |f |2∞ mk)

=: K3(‖u0‖, |f |∞,mk).

(2.47)

We note that the bound K3 depends on the initial discrete value through its norm
‖u0‖ and also on m, but this latter dependence is only through the time mk. We also
note the dependence of K3 on |u0| through K1, but K1 bounds all |un|2.

It is now clear that, given the hypothesis of the proposition, the timestep k satisfies
condition (2.21) as long as m ≤ �T/k�, completing the proof.

Now, since Proposition 2.5 gives a bound on ‖un‖2 that is valid on a finite time
interval only, we are going to extend the result to infinite time by repeatedly applying
it and the following (discrete uniform Gronwall) lemma, which is a slightly more
general version of the discrete uniform Gronwall lemma of Shen [10].

Lemma 2.6. Given k > 0, positive integers n1, n2, n∗ such that n1 < n∗, n1 +
n2 + 1 ≤ n∗, positive sequences ξn, ηn, and ζn such that

ξn ≤ ξn−1(1 + kηn−1) + kζn for n = n1, . . . , n∗,(2.48)
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and given the bounds

n′+n2∑
n=n′

kηn ≤ a1(n1, n∗),

n′+n2∑
n=n′

kζn ≤ a2(n1, n∗),

n′+n2∑
n=n′

kξn≤ a3(n1, n∗)(2.49)

for any n′ satisfying n1 ≤ n′ ≤ n∗ − n2, we have

ξn ≤
(
a3(n1, n∗)

kn2
+ a2(n1, n∗)

)
ea1(n1,n∗)(2.50)

for any n such that n1 + n2 + 1 ≤ n ≤ n∗.
Proof. Let n3 and n4 be such that n1 ≤ n3 − 1 ≤ n4 ≤ n2 + n3 − 1 ≤ n∗ − 1.

Using (2.48) recursively, we derive

ξn2+n3 ≤ ξn4

n3+n2−1∏
i=n4

(1 + kηi) +

n3+n2∑
i=n4+1

kζi

n2+n3−1∏
j=i

(1 + kηj)(2.51)

with the convention that
∏β

j=α rj = 1 for β < α. Using the fact that 1 + x ≤ ex for
all x ∈ R, and recalling the first two assumptions in (2.49), we obtain

ξn2+n3 ≤ (ξn4 + a2)e
a1 .

Multiplying this inequality by k, summing n4 from n3 − 1 to n2 + n3 − 2, and using
the third assumption in (2.49) gives the conclusion (2.50) of the lemma.

We are now in a position to give the main result, that is, to derive a uniform
bound for ‖un‖ for all n ≥ 1.

Theorem 2.7. Let u0 ∈ V , f ∈ L∞(R+;H), and un be the solution of the
numerical scheme (1.9). Also, let r ≥ 4κ1 be arbitrarily fixed and let k be such that

k ≤ min{κ1, κ2(|u0|, |f |∞), κ3(‖u0‖, |f |∞, T0 + r), κ3(ρ1, |f |∞, r)},(2.52)

where κ1 = 1/(νλ1) was defined in (2.13), κ2(·, ·) and κ3(·, ·, ·) are given in Proposi-
tion 2.5, T0, the time of entering an absorbing ball for |un|, is given by (2.14), and
ρ1(|f |∞, r) is given in (2.57).

Then we have

‖un‖2 ≤ K5(‖u0‖, |f |∞) ∀n ≥ 1,(2.53)

where K5(·, ·) is a continuous function defined on R
2
+, increasing in both arguments.

Moreover,

‖un‖2 ≤ K4(|f |∞) ∀n ≥ N0 + Nr := �T0/k� + �r/k�,(2.54)

i.e., ‖un‖ is bounded independently of u0 beyond N0 + Nr.
Proof. Let r ≥ 4κ1 be arbitrarily fixed and let k be such that (2.52) holds.
The idea for deriving a uniform bound for ‖un‖2 for all n ≥ 1 is as follows:
(i) Applying first Proposition 2.5 on (0, T0 + r) (that is, for n = 1, . . . , N0 +Nr),

we get an upper bound for ‖un‖ for n = 1, . . . , N0 + Nr; applying Lemma 2.6, we
show that ‖uN0+Nr‖2 ≤ ρ2

1, where ρ1(|f |∞, r) is defined in (2.57).
(ii) Iterating Proposition 2.5 and Lemma 2.6, at each step i ≥ 2, we show that

for all n = N0 + (i− 1)Nr + 1, . . . , N0 + iNr, ‖un‖2 is bounded by K3(‖uN0+(i−1)Nr‖,
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|f |∞, r); using the estimate on ‖uN0+(i−1)Nr‖ from the previous step, we obtain that
‖un‖2 is bounded independently of the initial value for all n = N0 + (i − 1)Nr +
1, . . . , N0 + iNr for every i ≥ 2 (and thus for all n ≥ N0 + Nr).

We now proceed to give a rigorous proof of the theorem.
Noting that, by hypothesis, k satisfies condition (2.36) of Proposition 2.5 with

T = T0 + r, we first apply Proposition 2.5 and obtain that (2.22) holds for all n =
1, . . . , N0 +Nr, and

‖un‖2 ≤ K3(‖u0‖, |f |∞, nk) ∀n = 1, . . . , N0 + Nr.(2.55)

At this point we know that for k satisfying hypothesis (2.52),

(2.56)

‖un‖2 ≤ ‖un−1‖2[1 + c5K1k(‖un−1‖2 + k|f |2∞)] + c6k|f |2∞ ∀n = 1, . . . , N0 + Nr,

and we apply (the discrete uniform Gronwall) Lemma 2.6 with ξn = ‖un‖2, ηn =
c5K1(‖un‖2 + k|f |2∞), ζn = c6|f |2∞, n1 = N0 + 1, n2 = Nr − 2, and n∗ = N0 + Nr

to obtain a bound for ‖uN0+Nr‖. In computing the sums a1(n1, n∗), a2(n1, n∗), and
a3(n1, n∗) that appear there, we note that since all those sums are taken for n ≥
N0 and since, by hypothesis, k satisfies condition (2.13) of Corollary 2.2, we can
replace K1, the bound on |un|2, by 2ρ2

0, whenever the former appears. For every
n′ = N0 + 1, N0 + 2, we compute, using (2.3) and (2.14) for the first and last lines,

2c5ρ
2
0

n′+n2∑
n=n′

(
k‖un‖2 + k2|f |2∞

)
≤ c8ρ

2
0(ρ

2
0 + r|f |2∞),

c6

n′+n2∑
n=n′

k|f |2∞ ≤ c6 r|f |2∞,

n′+n2∑
n=n′

k‖un‖2 ≤ c9(ρ
2
0 + r|f |2∞).

Using the conclusion (2.50) of Lemma 2.6 and the fact that r ≥ 4κ1, we obtain

‖uN0+Nr‖2 ≤
[
2c9

(
ρ2
0/r + |f |2∞

)
+ c6 r|f |2∞

]
exp

(
c8ρ

2
0(ρ

2
0 + r|f |2∞)

)
=: ρ1(|f |∞; r)2.

(2.57)

Now, since by hypothesis k ≤ κ3(ρ1, |f |∞, r) and since κ3(·, ·, ·) is a decreas-
ing function of its arguments, we can regard uN0+Nr as our initial data and ap-
ply Proposition 2.5 with T = r. We obtain that relation (2.22) holds for all n =
N0 + Nr + 1, . . . , N0 + 2Nr, and

‖un‖2 ≤ K3(‖uN0+Nr‖, |f |∞, Nrk) ∀n = N0 + Nr + 1, . . . , N0 + 2Nr.(2.58)

Thanks to (2.57) and to the fact that K3(·, ·, ·) is an increasing function of all its
arguments, we have

‖un‖2 ≤ K3(ρ1, |f |∞, Nrk) ∀n = N0 + Nr + 1, . . . , N0 + 2Nr.(2.59)

Applying again Lemma 2.6 with n1 =N0 +Nr + 1, n2 =Nr − 2, and n∗ = N0 +
2Nr, we obtain

‖uN0+2Nr‖2 ≤ ρ2
1 .(2.60)
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Iterating Proposition 2.5 and Lemma 2.6 and reasoning as above, we arrive at

‖un‖2 ≤ K3(ρ1, |f |∞, r) =: K4(|f |∞) ∀n ≥ N0 + Nr,(2.61)

and recalling (2.55), we conclude

‖un‖2 ≤ max{K3(‖u0‖, |f |∞, T0 + r),K4(|f |∞)}
=: K5(‖u0‖, |f |∞) ∀n ≥ 1,

(2.62)

thus proving the theorem.

Acknowledgments. The authors thank Prof. R. Temam for suggesting the prob-
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ON THE PROBLEM OF TESTING THE STRUCTURE OF
A MATRIX BY DISPLACEMENT OPERATIONS∗
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Abstract. This paper deals with the problem of testing whether a large matrix X has a
prescribed structure by looking at the magnitude of a displacement matrix D(X) associated with
the structure. We provide parameters on the basis of which one can judge whether the problem is
well-conditioned or ill-conditioned. It turns out that even for very general structures it is the minimal
eigenvalues of positive definite and banded Toeplitz matrices that are the most important of these
parameters.
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1. Introduction. Assume our machine has computed and stored an n×n matrix
X = (xij)

n
i,j=1 and we want to know whether it is a Toeplitz matrix. We could proceed

as follows. We let U be the n× n forward-shift matrix,

U =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and we compute the so-called displacement matrix XU − UX, which equals⎛
⎜⎜⎜⎜⎜⎝

x12 x13 · · · x1,n−1 0
x22 − x11 x23 − x12 · · · x2n − x1,n−1 −x1n

x32 − x21 x33 − x22 · · · x3n − x2,n−1 −x2n

...
...

...
...

xn2 − xn−1,1 xn3 − xn−1,2 · · · xnn − xn−1,n−1 −xn−1,n

⎞
⎟⎟⎟⎟⎟⎠ .

(This and more general displacement matrices XU − V X were employed in [6, 9]
for other purposes.) Let D(X) denote the lower-left (n − 1) × (n − 1) submatrix
of XU − UX. Clearly, X is Toeplitz if and only if D(X) is the zero matrix. As
testing whether a numerically computed quantity equals zero is a critical issue, we
test whether D(X) is small, say whether ‖D(X)‖2 < ε, where ‖ · ‖2 denotes the
Frobenius norm. Does this imply that X is close to a Toeplitz matrix?

We will show that the answer is in the negative theoretically but gives rise to
optimism practically.
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Let us consider an explicit example. Put ωn = exp(2πi/n), xj = ωj
n, and X =

diag (x1, . . . , xn). Then

‖D(X)‖2
2 = |x1 − x2|2 + |x2 − x3|2 + · · · + |xn−1 − xn|2

= (n− 1)|ωn − 1|2 = 4(n− 1) sin2 π

n
.

Let Tn be the set of all n× n Toeplitz matrices. It is easily seen that

dist22(X, Tn) := min
T∈Tn

‖X − T‖2
2 =

n∑
j=1

∣∣∣∣∣xj −
1

n

n∑
k=1

xk

∣∣∣∣∣
2

.

Since
∑

xk = 0, it follows that dist22(X, Tn) =
∑

|xj |2 = n. Consequently, if n is
large, then ‖D(X)‖2 is small and dist2(X, Tn) is large. This is what we mean by
saying that theoretically the answer to the above question is in the negative.

On the other hand, we will prove the following two theorems. Let K stand for R
or C and Mn(K) for the n×n matrices with entries in K. We equip Mn(K) with the
Frobenius norm. Further let Tn(K) denote the set of all Toeplitz matrices in Mn(K).
The probability of an event E will be denoted by P (E).

Theorem 1.1. We have

max
X/∈Tn(K)

dist2(X, Tn(K))

‖D(X)‖2
=

1

2 sin π
2n

∼ n

π
.

Theorem 1.2. Take X randomly from the unit sphere of Mn(K) with the uniform
distribution. Put dist2(X, Tn(K))/‖D(X)‖2 = 0 if ‖D(X)‖2 = 0. Then

P

(
dist2(X, Tn(K))

‖D(X)‖2
> 10

)
<

13

n2
for n ≥ 10.

Theorem 1.1 reveals that if ‖D(X)‖2 = ε, then dist2(X, Tn(K)) is at most about
nε/π. This linear growth prevents nε/π from becoming an astronomic number if ε
and n are appropriately adapted. Moreover, Theorem 1.2 tells us that the worst-case
situation of Theorem 1.1 is a very rare event for matrices of large sizes. These two
conclusions make precise our statement that practically and optimistically the answer
to the question raised above is in the affirmative.

The paper is organized as follows. In section 2, we pose and study the problem
in the general setting. Section 3 is devoted to what we call string structures. Several
concrete string structures are then examined in sections 4–7. In sections 8 and 9, we
tackle the Toeplitz-plus-Hankel structure with two different tools. The conclusions
are formulated in section 10.

2. The general setting. We assume that the matrix structure we are interested
in can be characterized by at most n2 linear equations for the entries of the matrix.
Thus, let D : Mn(K) → Mn(K) be a linear operator. We put KerD = {Y ∈ Mn(K) :
D(Y ) = 0}. Given X ∈ Mn(K), we define dist2 (X,KerD) as minY ∈KerD ‖X − Y ‖2.
We want to determine

max
X/∈KerD

dist2 (X,KerD)

‖D(X)‖2
,(2.1)
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where X /∈ KerD is an abbreviation for X ∈ Mn(K)\KerD. Notice that in section 1,
D(X) was an (n − 1) × (n − 1) matrix. Extending this matrix by a zero row and a
zero column we obtain an n× n matrix, which puts us into the present context.

It will be convenient to change language slightly. Namely, let i1 : Mn(K) → Kn2

and i2 : Mn(K) → Kn2

be two stackings of the entries of matrices in Mn(K) to
columns of length n. The concrete choice of i1 and i2 may depend on D. Clearly,
there is a unique linear operator ∇ : Kn2 → Kn2

such that D = i−1
2 ◦ ∇ ◦ i1. We

freely identify ∇ with an n2 × n2 matrix. The Frobenius norm on Mn(K) becomes

the �2 norm ‖ · ‖ on Kn2

, and for x ∈ Kn2

and a closed subset F of Kn2

we define
dist (x, F ) = minf∈F ‖x− f‖. Obviously, (2.1) coincides with

max
x/∈Ker∇

dist (x,Ker∇)

‖∇x‖ .(2.2)

For example, to test whether X = (xij)
3
i,j=1 is of the form⎛

⎝a b a
b a c
a d a

⎞
⎠(2.3)

with certain numbers a, b, c, d ∈ K, we may compute ‖D(X)‖2
2 with

D(X) =

⎛
⎝x11 − x13 x13 − x22 x22 − x31

x31 − x33 0 x12 − x21

0 0 0

⎞
⎠

or ‖∇x‖2 with

∇x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11

x13

x22

x31

x33

x12

x21

x23

x32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following result is well known. It follows from the equality I−PKerD = D+D,
where PKerD is the orthogonal projection onto KerD and D+ is the Moore–Penrose
inverse of D. For the reader’s convenience, we cite it with a self-contained proof.

Theorem 2.1. If s+
min is the smallest nonzero singular value of D, then

max
X/∈KerD

dist2 (X,KerD)

‖D(X)‖2
=

1

s+
min

.(2.4)

Proof. We consider ∇ instead of D. Put N = n2. Suppose ∇ has exactly k zero
singular values and let sk+1 ≤ · · · ≤ sN be the nonzero singular values. Denote by
Pk and Qk the projections on KN that replace, respectively, the last N − k and first
k coordinates with zero. Let ∇ = USV ∗ with S = diag (0, . . . , 0, sk+1, . . . , sN ) be the
singular value decomposition. Obviously, Ker∇ = RanV Pk, Ran∇∗ = RanV Qk.
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For x ∈ K, put z = V ∗x. Then x = V Pkz + V Qkz is the decomposition of x
corresponding to the orthogonal decomposition KN = Ker∇ ⊕ Ran∇∗. It follows
that dist2(x,Ker∇) = ‖V Qkz‖2 = ‖Qkz‖2 and ‖∇x‖2 = ‖USV V ∗Qz‖2 = ‖SQkz‖2,
which shows that (2.2) is ‖Qkz‖/‖SQkz‖ ≤ 1/sk+1, with equality for x = V ∗ek+1,
where ek+1 is the column whose (k + 1)st entry is 1 and whose remaining entries are
zero.

Theorem 2.2. Consider the random variable ξ = ‖D(X)‖2/dist22(X,KerD),
where X is drawn from the uniform distribution on the unit sphere of Mn(K) with the
�2 norm and ‖D(X)‖2/dist22(X,KerD) := +∞ for X ∈ KerD. Suppose dim KerD =
k < n2. Then the expected value Eξ and the variance σ2ξ satisfy

Eξ =
‖D‖2

2

n2 − k
, σ2ξ ≤ 2 ‖D‖4

∞
n2 − k

,

respectively, where ‖ · ‖∞ denotes the spectral norm.
Proof outline. We proceed as in [3], where the result was proved with ‖X‖2

2 and
n2 in place of dist22(x,KerD) and n2 − k, respectively. Thus, we turn again to ∇,
put N = n2, and use the singular value distribution ∇ = USV ∗ from the proof of
Theorem 2.1. We have to compute E(ξj) for j = 1, 2. For the sake of simplicity,
suppose K = R. With SN and BN denoting the unit sphere and the unit ball of RN ,

E(ξj) =
1

|SN |

∫
SN

‖∇x‖2j

dist2j(x,Ker∇)
dσ(x) =

1

|BN |

∫
BN

‖∇x‖2j

dist2j(x,Ker∇)
dx

=
1

|BN |

∫
BN

‖SV ∗x‖2j

dist2j(x,RanV Pk)
dx =

1

|BN |

∫
BN

‖Sy‖2j

dist2j(y,RanPk)
dy

=
1

|BN |

∫
Bk

(∫
BN−k(rk)

(s2
k+1y

2
k+1 + · · · + s2

Ny2
N )j

(y2
k+1 + · · · + y2

N )j
dyk+1 . . . dyN

)
dy1 . . . dyk,

where rk =
√

1 − y2
1 − · · · − y2

k and BN−k(rk) is the ball with the radius rk. After
the substitution yi = rkzi for i = k + 1, . . . , N , the inner integral becomes an integral
over the ball of radius 1, and this integral was computed in [3]. We are left with∫

Bk

(1 − y2
1 − · · · − y2

k)
(N−k)/2dy1 . . . dyk,

which can be shown to be πk/2Γ((N − k)/2 + 1)/Γ(N/2 + 1) (see [4, No. 676.8(a)] or
[13, No. 3.3.2.1]). Putting all pieces together we arrive at the asserted formulas for
Eξ and σ2ξ = E(ξ2) − (Eξ)2.

Corollary 2.3. Under the hypothesis of Theorem 2.2,

P

(
dist2 (X,KerD)

‖D(X)‖2
>

1

ε

)
≤ 2(n2 − k)‖D‖4

∞
(‖D‖2

2 − (n2 − k)ε2)2

whenever 0 < ε2 < ‖D‖2
2/(n

2 − k).
Proof. The probability in question is P (ξ < ε2) ≤ P (|ξ − Eξ| > Eξ − ε2), and

Chebyshev’s inequality along with Theorem 2.2 shows that the last probability does
not exceed

σ2ξ

(Eξ − ε2)2
≤ 2

n2 − k

‖D‖4
∞

(‖D‖2
2/(n

2 − k) − ε2)2
.
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3. String structures. We start with a partition

{1, . . . , n} × {1, . . . , n} = L1 ∪ · · · ∪ LM(3.1)

of the index set into pairwise disjoint sets L1, . . . , LM , called strings, and an ordering
of the elements of each string. The number of elements in Lm will be denoted by �m.
We further associate a polynomial

am(x) = a
(m)
0 + a

(m)
1 x + · · · + a(m)

rm xrm(3.2)

with each string and require that 0 ≤ rm ≤ �m − 1. For a matrix X = (xij)
n
i,j=1, we

label the entries with indices in Lm by x
(m)
1 , . . . , x

(m)
�m

(following the ordering of Lm).
We say that X has the string structure specified by (3.1) and (3.2) (and the selected
orderings in the strings) if the entries of X satisfy the difference equations

a
(m)
0 x

(m)
k + a

(m)
1 x

(m)
k+1 + · · · + a(m)

rm x
(m)
k+rm

= 0 (k = 1, . . . , �m − rm)(3.3)

for each m. To test whether a given matrix X has this structure, we compute

M∑
m=1

�m−rm∑
k=1

∣∣a(m)
0 x

(m)
k + a

(m)
1 x

(m)
k+1 + · · · + a(m)

rm x
(m)
k+rm

∣∣2(3.4)

and check whether this is smaller than ε2. The number of left-hand sides of (3.3)
(= the number of terms in sum (3.4)) is

∑M
m=1(�m − rm) = n2 −

∑M
m=1 rm ≤ n2. We

denote by D : Mn(K) → Mn(K) any linear operator that computes the left-hand
sides of (3.3) and arranges them in an n× n matrix, setting the remaining entries of
the matrix zero if

∑
rm ≥ 1. Clearly, (3.4) is just ‖D(X)‖2

2.
Example 3.1. Let Lm = {(i, j) : i − j = m}, m = −(n − 1), . . . , n − 1. The

circumstance that the strings are not labeled from 1 to 2n− 1 but from −(n− 1) to
n−1 clearly causes no problems. We order the indices (i, j) in Lm by increasing i. The
structure obtained in this way requires that the entries of a matrix satisfy a difference
equation along each diagonal of the matrix. For rm = 0 and a

(m)
0 = 0, this is no

requirement. If rm = 0 and a
(m)
0 = 1 for all m, then the only matrix with the structure

is the zero matrix. In the case where rm = 1 and am(x) = 1−x for all m, we arrive at
the set of all Toeplitz matrices. In the case where rm = 2 and am(x) = 1−2x+x2 for
all m, we have the set of all matrices whose entries on each diagonal form an arithmetic
progression. The case where rm = 1 and am(x) = αm − x for all m corresponds to
the matrices whose entries on the mth diagonal are cm, cmαm, . . . , cmα

n−|m|−1
m with

some cm ∈ K.
Example 3.2. The choice Lm = {(i, j) : i + j = m}, m = 2, . . . , 2n, produces

structures of the Hankel type. With am(x) = 1−x for all m, we obtain the pure Hankel
matrices. Letting L1 = {(i, j) : i + j is odd } and L2 = {(i, j) : i + j is even } we get
chessboard structures. Pure chessboard matrices result from a1(x) = a2(x) = 1 − x.
The class of matrices of the form cI is characterized by the partition

{1, . . . , n} × {1, . . . , n} = {(1, 1), . . . , (n, n)} ∪
⋃
i �=j

{(i, j)}

with the polynomial 1−x on {(1, 1), . . . , (n, n)} and the polynomial 1 on the singletons
{(i, j)}. The lower-triangular matrices arise from

{1, . . . , n} × {1, . . . , n} = {(i, j) : i ≥ j} ∪
⋃
i<j

{(i, j)},
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the zero polynomial on {(i, j) : i ≥ j}, and the polynomial 1 on the singletons {(i, j)}
with i < j. Finally, for matrices of the form (2.3) the partition of {1, 2, 3} × {1, 2, 3}
into strings is {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}∪{(1, 2), (2, 1)}∪{(2, 3)}∪{(3, 2)}, and
the polynomials are 1−x on the strings of lengths 5 and 2 and are the zero polynomials
on the two singletons.

Given polynomial (3.2), we define the function bm on the complex unit circle T
by bm(t) = |am(t)|2 (t ∈ T) and expand bm into its Fourier series,

bm(t) =

rm∑
k=−rm

b
(m)
k tk (t = eiθ ∈ T).

We denote by T (bm) the infinite Toeplitz matrix (b
(m)
i−j )

∞
i,j=1 and by TR(bm) the princi-

pal R×R section (b
(m)
i−j )

R
i,j=1 of T (bm). The matrices TR(bm) are all positive definite.

We denote by λmin(TR(bm)) and λmax(TR(bm)) the minimal and maximal eigenvalues
of TR(bm), respectively.

Theorem 2.1 and Corollary 2.3 allow us to compute the maximum of (2.1) and
to estimate stochastically the ratio occurring in (2.1) in terms of the quantities s+

min,
‖D‖2

2, and ‖D‖2
∞. The following result provides us with these quantities in the case

of string structures.
Theorem 3.3. For every string structure,(
s+
min

)2
= min

1≤m≤M
λmin(T�m−rm(bm)),

‖D‖2
2 =

M∑
m=1

(�m − rm)

rm∑
k=1

|a(m)
k |2, ‖D‖2

∞ = max
1≤m≤M

λmax(T�m−rm(bm)).

Proof. After stacking matrices in Mn(K) string by string (and following the
ordering within the strings) to columns in Kn2

, the operator D becomes an n2 × n2

block diagonal matrix ∇ = diag (B1, . . . , BM ) with �m × �m matrices Bm. The first
�m − rm rows of Bm are the (�m − rm) × �m Toeplitz matrix whose first row is

(a
(m)
0 , a

(m)
1 , . . . , a

(m)
rm , 0, . . . , 0) and whose first column is (a

(m)
0 , 0, . . . , 0)	. The last rm

rows of Bm are zero. This implies the asserted formula for ‖D‖2
2. A straightforward

computation gives

BmB∗
m =

(
T�m−rm(bm) 0

0 Orm

)
,

where Orm is the rm × rm zero matrix. This yields the asserted expressions for s+
min

and ‖D‖2
∞.

4. Toeplitz, Hankel, and chessboard structures. Let Lm be as in Example
3.1 and choose am(x) = 1 − x for all m. The corresponding structure is the Toeplitz
structure. The functions bm are all bm(t) = |t−1|2. It is well known (see, e.g., [2, 5, 7])
that the eigenvalues of TR(bm) are λj = 2 + 2 cos πj

R+1 (j = 1, . . . , R). Thus, Theorem
3.3 with �m = n− |m| and rm = 1 for m = −(n− 1), . . . , n− 1 yields

‖D‖2
2 = 2

∑
(�m − rm) = 2n2 − 2

∑
rm = 2n2 − 2(2n− 1) = 2(n− 1)2,

‖D‖2
∞ = 2 + 2 cos

π

n
= 4 cos2

π

2n
,

(
s+
min

)2
= 2 − 2 cos

π

n
= 4 sin2 π

2n
.
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Theorem 1.1 is now immediate from Theorem 2.1, while Theorem 1.2 follows from
Corollary 2.3 and the fact that

2n2‖D‖4
∞

(‖D‖2
2 − n2/100)2

≤ 2n2 · 42

(2(n− 1)2 − n2/100)2
<

13

n2
for n ≥ 10.

In the Hankel case we take the partition considered in Example 3.2 and arrive at
the same results as in the Toeplitz case. In particular, Theorems 1.1 and 1.2 remain
literally true with Tn(K) replaced by the set of all Hankel matrices in Mn(K).

To give another illustration, let us consider chessboard matrices. In this case
L1, L2, a1(x) = a2(x) = 1 − x are as in Example 3.2. The functions b1, b2 are again
b1(t) = b2(t) = |t− 1|2, but now �1 = [n2/2] and �2 = [(n2 + 1)/2], where [q] denotes
the integral part of q. Thus,

‖D‖2
2 =

([
n2

2

]
− 1

)
· 2 +

([
n2 + 1

2

]
− 1

)
· 2 = 2(n2 − 2),

‖D‖2
∞ = 4 cos2

π

2[n2/2 + 1/2]
∼ 4 cos2

π

n2
,

(
s+
min

)2
= 4 sin2 π

2[n2/2 + 1/2]
∼ 4 sin2 π

n2
∼ 4π2

n4
,

which shows that (2.4) increases asymptotically as n2/(2π). From Corollary 2.3 we
deduce that nevertheless

P

(
dist2 (X,KerD)

‖D(X)‖2
> 10

)
<

33

n2
for n ≥ 10.

5. Symmetric matrices. These come from the partition

{1, . . . , n} × {1, . . . , n} =
⋃
i<j

{(i, j), (j, i)} ∪
⋃
i

{(i, i)}

with aij(x) = 1 − x on the doubletons and ai(x) = 0 on the singletons. Theorem 3.3
gives (s+

min)2 = λmin(T1(|t− 1|2)) = 2, and hence (2.4) equals
√

2/2 for all n.

6. Vandermonde-like structures. We start with any partition (3.1) and any
ordering of the strings. In the classic Vandermonde case, Lm is {(i,m) : 1 ≤ i ≤ n}
and is ordered by increasing i. Let am(x) = αm − x. We get

bm(t) = |αm − t|2 = 1 + |αm|2 − αmt−1 − αmt.

The eigenvalues of the tridiagonal Toeplitz matrix TR(bm) are

1 + |αm|2 + 2|αm| cos
πj

R + 1
(j = 1, . . . , R)

(see again [2, 5, 7]). Consequently, by Theorem 3.3,

(
s+
min

)2
= min

m

(
1 + |αm|2 − 2|αm| cos

π

�m

)
= min

m

(
(1 − |αm|)2 + 4|αm| sin2 π

2�m

)
.

Thus, if there is a δ > 0 such that |αm| /∈ (1 − δ, 1 + δ), then (2.4) is not greater
than 1/δ. The ratio (2.4) becomes large only if there is an m such that |αm| is close
to 1 and, at the same time, �m is large. Note that in the classic case �m = n for
all m.
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7. Polynomially ill-conditioned structures. We know that (2.4) increases
asymptotically as n/π for the Toeplitz and Hankel structures and as n2/(2π) for the
chessboard structure. In this section we provide string structures for which (2.4)
increases as a polynomial of arbitrarily prescribed degree.

For the sake of definiteness, take partition (3.1) with Lm = {(i,m) : 1 ≤ i ≤ n}
with the ordering induced by increasing i. For each m, let am(x) be a polynomial
of degree rm ≤ n − 1 and define bm by bm(t) = |am(t)|2. The asymptotic behavior
of the extreme eigenvalues of TR(bm) has been studied by many authors, including
[5, 8, 10, 11, 12, 15, 21, 22, 23]. These results imply the following (a full proof of
which is also given in [2]). If 2γ is the maximal order of the zeros of bm on T, then
there exist constants 0 < C1 < C2 < ∞ depending only on bm such that

C1
1

R2γ
≤ λmin(TR(bm)) ≤ C2

1

R2γ

for all R. Consequently, Theorems 2.1 and 3.3 imply that the ratio (2.4) increases as
nmax(r1,...,rn).

To be more concrete, let am(x) = (1 − x)r for all m. Thus, we require that the
entries of each column are the values of a polynomial of degree r − 1 at 1, . . . , n. We
have bm(t) = |t − 1|2r for all m. The function bm(t) = |t − 1|2r has exactly one zero
t = 1 on T, and the order of this zero is 2r. From what was said in the preceding
paragraph we deduce that (2.4) increases as nr. In the special case at hand it is
even known from the works cited above that R2rλmin(TR(bm)) converges to a limit
cr as R → ∞. The limiting constants are rapidly increasing (c1 = π2 = 9.8696,
c2 ≈ 500, c3 ≈ 61529) and cr can be shown to coincide with the minimal eigenvalue of
the differential operator (−1)ru(2r) on (0, 1) with the boundary conditions u(j)(0) =
u(j)(1) = 0 for 0 ≤ j ≤ r − 1 (see [1, 12, 14, 22, 23]). From Theorem 3.3 we also
deduce that

‖D‖2
2 = n(n− r)

r∑
k=0

( r

k

)2

=

(
2r

r

)
n(n− r),

‖D‖2
∞ = λmax(Tn−r(|t− 1|2r)) ≤ 22r

(note that ‖TR(b)‖∞ ≤ maxt∈T |b(t)| for every b). Consequently, Corollary 2.3 implies
that nonetheless

P

(
dist2 (X,KerD)

‖D(X)‖2
> 10

)
≤ 2n2 · 24r((

2r
r

)
n(n− r) − n2/100

)2 = O

(
1

n2

)
.

8. Toeplitz-plus-Hankel matrices I. A Toeplitz-plus-Hankel matrix (T+H
matrix, for short) is a matrix of the form (ti−j + hi+j)

n
i,j=1 with tk, hk ∈ K. The

T+H structure is not a string structure in the sense of section 3, and hence it is
not as easy to detect as a string structure—for example, with unskilled eyes it is not
trivial to decide whether ⎛

⎝2.9 7.3 −1.9
5.4 0.3 0.7
5.2 −1.2 1.9

⎞
⎠

is T+H or not—and, moreover, Theorem 3.3 is not applicable to T+H matrices.
Heinig and Rost [6] observed that in the T+H case one may consider the dis-

placement matrix XW − WX, where W = U + U	 and U is the shift matrix in-
troduced in section 1. One can show that X ∈ Mn(K) is T+H if and only if the
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central (n − 2) × (n − 2) submatrix of XW −WX is zero. Consequently, we define
D(X) ∈ Mn(K) as the matrix that results from XW −WX by replacing the first and
last rows and the first and last columns with zero. Throughout this section it will be
convenient to emphasize the dependence on n. We therefore write Wn and Dn for W
and D, respectively. Thus, X ∈ Mn(K) is T+H if and only if Dn(X) = 0.

After appropriate stacking, Dn becomes an n2 × n2 matrix

∇n = I ⊗Wn −Wn ⊗ I −Rn,

where ⊗ denotes the Kronecker product. The matrix Rn stems from deleting the first
and last rows and columns of XWn − WnX. We take advantage of the two lucky
circumstances that Wn is Hermitian and that Rn is an n2 × n2 matrix whose rank is
at most 4n− 2 = o(n2) to prove the following.

Theorem 8.1. In the Toeplitz-plus-Hankel case,

lim
n→∞

max
X/∈KerDn

dist2 (X,KerDn)

‖Dn(X)‖2
= ∞.

Proof. We employ the general fact that if {An} and {Bn} are two sequences of
n2 × n2 matrices such that rank (An −Bn) = o(n2) and if sj(An) and sj(Bn) are the
singular values of An and Bn, respectively, then

lim
n→∞

1

n2

n2∑
j=1

(ϕ(sj(An)) − ϕ(sj(Bn))) = 0

for every compactly supported continuous function ϕ on R (see [19, 20]).

We apply this result to An = ∇n and Bn = I ⊗ Wn − Wn ⊗ I. Given an
interval (a, b) ⊂ R, we denote by αn(a, b) and βn(a, b) the number of singular values
of An and Bn in (a, b) (multiplicities taken into account). The eigenvalues of Wn

are λj = 2 cos πj
n+1 (j = 1, . . . , n), and hence the eigenvalues of Bn are λj − λk

(j, k = 1, . . . , n). Since Wn and thus Bn is Hermitian, it follows that the singular
values of Bn are

sjk = |λj − λk| = 2

∣∣∣∣cos
πj

n + 1
− cos

πk

n + 1

∣∣∣∣ = 4

∣∣∣∣sin π(j − k)

2n + 2
sin

π(j + k)

2n + 2

∣∣∣∣ ,
where j, k = 1, . . . , n. Fix ε ∈ (0, 1). A little thought reveals that

lim
n→∞

βn(2ε, 3ε)

(n + 1)2
=

1

4π2
|Gε|,

where |Gε| is the area of the region

Gε =

{
(x, y) ∈ (0, 2π)2 : 2ε < 4

∣∣∣∣ sin x− y

2
sin

x + y

2

∣∣∣∣ < 3ε

}
.

Clearly, |Gε| > 0 whenever ε < 2. Thus, we have

βn(2ε, 3ε) =
|Gε|
4π2

n2 + o(n2) with |Gε| > 0.
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Let ϕ : R → [0, 1] be a compactly supported continuous function which is identically
1 in (2ε, 3ε) and identically 0 outside (ε, 4ε). Then

αn(ε, 4ε) ≥
n2∑
j=1

ϕ(sj(An)) =

n2∑
j=1

ϕ(sj(Bn)) + o(n2)

≥ βn(2ε, 3ε) + o(n2) =
|Gε|
4π2

n2 + o(n2),

and since |Gε| > 0, we conclude that αn(ε, 4ε) → ∞ as n → ∞.
Now pick a large number C > 0. By what was just proved, there exists an

n0 = n0(C) such that ∇n = An and thus Dn also has a singular value in ( 1
4C , 1

C ) for
all n ≥ n0. It follows that the smallest nonzero singular value of Dn does not exceed
1/C for n ≥ n0. Theorem 2.1 therefore gives

max
X/∈KerDn

dist2 (X,KerDn)

‖Dn‖2
> C for n ≥ n0(C).

As C > 0 was arbitrary, we arrive at the assertion.
Theorem 8.2. In the Toeplitz-plus-Hankel case,

‖Dn‖2
2 = 4(n− 2)2, ‖Dn‖∞ ≤ 4, lim

n→∞
‖Dn‖∞ = 4.

Proof. We may write Dn(X) = P (XWn −WnX), where P : Mn(K) → Mn(K)
is the projection on the central (n− 2)× (n− 2) matrix. This implies that ‖Dn‖∞ ≤
‖P‖∞(‖Wn‖∞ +‖Wn‖∞) = 1 · (1+1) = 4. To prove that ‖Dn‖∞ → 4, we proceed as
in the proof of Theorem 8.1. Namely, βn(4 − 3ε, 4 − 2ε) = 1

4π2 |Hε|n2 + o(n2), where
|Hε| > 0 is the area of the region

Hε =

{
(x, y) ∈ (0, 2π)2 : 4 − 3ε < 4

∣∣∣∣ sin x− y

2
sin

x + y

2

∣∣∣∣ < 4 − 2ε

}
,

which implies that αn(4−4ε, 4−ε) → ∞ as n → ∞. Consequently, Dn has a singular
value in (4 − 4ε, 4 − ε) if only n is large enough, which shows that ‖Dn‖∞ → 4.

We know that Dn is unitarily similar to the matrix ∇n introduced in the proof of
Theorem 8.1. The matrix ∇n has 4n− 4 zero rows, and the remaining (n− 2)2 rows
have 1, 1,−1,−1, and n2 − 4 zeros as entries. This gives ‖Dn‖2

2 = 4(n− 2)2.
Corollary 8.3. We have

P

(
dist2 (X,KerDn)

‖Dn(X)‖2
> 10

)
<

79

n2
for n ≥ 10.

Proof. From Corollary 2.3 and Theorem 8.2 we deduce that the probability con-
sidered is at most 2n2 · 44/(4(n − 2)2 − n2/100)2, which is smaller than 79/n2 for
n ≥ 10.

9. Toeplitz-plus-Hankel matrices II. To estimate the growth rate in Theo-
rem 8.1, we have to exploit heavier machinery. Let Q = (−π, π)2. For a function
f ∈ L∞(Q), the quarter-plane Toeplitz operator T (2)(f) is defined on �2(N × N) by

(
T (2)(f)x

)
ij

=

∞∑
k,�=1

fi−k,j−�xk� (i, j ≥ 1),
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where the numbers fk� are the Fourier coefficients of f ,

fk� =
1

4π2

∫ π

−π

∫ π

−π

f(x, y)e−ikxe−i�y dx dy.

The compression of T (2)(f) to the square {1, . . . , n}×{1, . . . , n} is denoted by T
(2)
n (f).

Writing

f(x, y) =

∞∑
k,�=−∞

fk,�e
ikxei�y =

( ∞∑
k=−∞

fk�e
ikx

)
ei�y =:

∞∑
k=−∞

f�(e
ix)ei�y,(9.1)

one can identify T
(2)
n (f) with (Tn(fi−j))

n
i,j=1, which is a block Toeplitz matrix with

Toeplitz blocks. If f is nonnegative and not identically zero, then T
(2)
n (f) is positive

definite. We denote by λmin(T
(2)
n (f)) the smallest eigenvalue of T

(2)
n (f) and by s+

min(n)
the smallest nonzero singular value of Dn.

Theorem 9.1. For n ≥ 3,

(s+
min(n))2 = λmin

(
T

(2)
n−2(f)

)
with f(x, y) = 16 sin2 x + y

2
sin2 x− y

2
.

Proof. Let ∇n be as in the preceding section. One can show that

∇n∇∗
n = J

(
Fn 0
0 O4n−4

)
J with Fn = (Tn−2(fi−j))

n−2
i,j=1,

where J is a permutation matrix and f0(t) = 4+t2+t−2, f1(t) = f−1(t) = −2(t+t−1),

f2(t) = f−2(t) = 1, f�(t) = 0 for |�| ≥ 3. By (9.1), we may identify Fn with T
(2)
n−2(f)

for

f(x, y) =
2∑

�=−2

f�(e
ix)ei�y = 4 + 2 cos 2x− 2(2 cosx)(2 cos y) + 2 cos 2y

= 4(cosx− cos y)2 = 16 sin2 x + y

2
sin2 x− y

2
.

The following is a significant refinement of Theorem 8.1.
Theorem 9.2. There exist constants 0 < C1 < C2 < ∞ such that for all n ≥ 1,

C1 n
2 ≤ max

X/∈KerDn

dist2 (X,KerDn)

‖Dn(X)‖2
≤ C2 n

2.

Proof outline. By Theorems 2.1 and 9.1, we have to prove that

C3/n
4 ≤ λmin(T (2)

n (f)) ≤ C4/n
4

with certain constants 0 < C3 < C4 < ∞. Papers [16, 21, 23] pertain to that question,
but they are restricted to the case where f ≥ 0 has only a single zero and are therefore
not applicable to the case at hand. We will instead benefit from the special structure
of f .

We identify Kn with the set Pn of all trigonometric polynomials of the form
ϕ(x) = ϕ0 + ϕ1e

ix + · · · + ϕn−1e
i(n−1)x (x ∈ (−π, π)). The �2 norm on Kn induces
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the norm ‖ϕ‖2 =
∫ π

−π
|ϕ(x)|2 dx/(2π) on Pn. Accordingly, �2({1, . . . , n} × {1, . . . , n})

may be identified with Pn ⊗ Pn. For ϕ ∈ Pn ⊗ Pn,

(
T (2)
n (f)ϕ,ϕ

)
= 16

∫ π

−π

∫ π

−π

sin2 x + y

2
sin2 x− y

2
|ϕ(x, y)|2 dx dy

4π2
,

and using periodicity and substituting x+ y = 2ξ, x− y = 2η, one can show that this
is not smaller than

C5

∫ π

−π

∫ π

−π

sin2 ξ sin2 η |ϕ(ξ + η, ξ − η)|2 dξ dη = C5((A2n ⊗A2n)ϕ̃, ϕ̃),(9.2)

where C5 > 0 is some constant, A2n = T2n(sin2 x), and ϕ̃ ∈ P2n ⊗ P2n is defined by
ϕ̃(ξ, η) = ϕ(ξ + η, ξ− η). The smallest eigenvalue of A2n is sin2 π

2n+2 , and hence (9.2)
is at least

C5

(
sin2 π

2n + 2

)2 ∫ π

−π

∫ π

−π

|ϕ(ξ + η, ξ − η)|2 dξ dη ≥ C3

n4

∫ π

−π

∫ π

−π

|ϕ(x, y)|2 dx dy

4π2

with some constant C3 > 0. In summary, (T
(2)
n (f)ϕ,ϕ) ≥ (C3/n

4)‖ϕ‖2, which implies
that λmin(T

(2)
n (f)) ≥ C3/n

4.
The reverse inequality can be proved as in [2, pp. 37–41]. Namely, let n = 6m+k

with 1 ≤ k ≤ 6, define pm ∈ P3m+1 by pm(x) = (1 + eix + · · · + eimx)3, and put
ϕ(x, y) = pm(x + y)pm(x − y). Then ϕ ∈ P6m+1 ⊗ P6m+1 ⊂ Pn ⊗ Pn and one can
show that

‖ϕ‖2 ≥ C6

(∫ π

−π

|pm(ξ)|2 dξ
)2

≥ C7 m
10,

‖fϕ‖2 ≤ C8

(∫ π

−π

sin4 x

2
|pm(x)|2 dx

)2

≤ C9 m
2,

where C6, C7, C8, and C9 are constants in (0,∞). This implies (again see [2, p. 38])
that

1/λ2
min

(
T (2)
n (f)

)
= ‖(T (2)

n (f))−1‖∞ ≥ ‖ϕ‖2

‖fϕ‖2
≥ C7

C9
m8,

whence λmin(T
(2)
n (f)) = O(1/m4) = O(1/n4).

As pointed out by one of the referees, an alternative proof of the reverse inequality
is as follows. From the last line of the proof of Theorem 9.1 we infer that

f(x, y) ≤ 16

(
x + y

2

)2 (
x− y

2

)2

= (x2 − y2)2 ≤ x4 + y4 =: g(x, y).

Consequently, by a monotonicity argument (for which, see, for example, [16, p. 116]),
the minimal eigenvalue of T

(2)
n (f) does not exceed the minimal eigenvalue of T

(2)
n (g),

and the latter is known to be asymptotically equal to a constant times 1/n4 (see
[16, 21, 22, 23]).

10. Conclusions. We have provided parameters that allow us to estimate how
far a matrix X may be from a given structure KerD if the Frobenius norm of the
displacement matrix D(X) is small. In this way we can, for each structure, estimate
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the conditioning of the problem of testing membership in this structure by checking
whether the displacement matrix is small.

In practice, one would perhaps work with the norm nmax |xij | instead of the
Frobenius norm. The treatment of this norm is theoretically more difficult and we
have not embarked on this question. However, a consideration of examples shows
that the basic qualitative (though not quantitative) results on the conditioning of the
problem seem to be independent of the choice of the norm.

We have seen that the more ill-conditioned the string structures, the larger the
maximal string length. (The maximal string length is n for n× n Toeplitz or Hankel
matrices and about n2/2 for n×n chessboard matrices.) In these cases it is advisable
to replace consideration of ‖D(X)‖2 by the direct computation of dist2 (X,KerD),
which is an easy task if an orthonormal basis in KerD is available. If, for example, we
want to test whether a matrix is constant along prescribed strings, we should replace
the entries of each string by their arithmetic mean and test whether the distance of
this matrix to the original matrix is small.

The conditioning of checking the Toeplitz-plus-Hankel structure by having re-
course to the displacement matrix XW −WX increases as the square of the matrix
dimension. The search for alternative tests of the Toeplitz-plus-Hankel structure is
therefore desirable.

More generally, as also observed by the referees, the question of testing whether a
given matrix has a prescribed structure deserves a further and careful consideration.
The message of this paper is that the naive use of displacement operations may at least
theoretically be dangerous. We have left open the question of how to do it in the right
way. Furthermore, we have restricted ourselves to structures for which the correspond-
ing displacement operations are known or easy to guess. Other important structures,
such as locally Toeplitz sequences [18] or generalized locally Toeplitz sequences [17],
cannot be tackled by displacement operations in an obvious way. These and related
matters await further investigation.

Acknowledgments. I thank Peter Benner and Harold Widom for useful discus-
sions on several aspects of the topic. I am also greatly indebted to the referees for
their competent and valuable remarks.
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CONVERGENCE OF MULTISTEP TIME DISCRETIZATIONS OF
NONLINEAR DISSIPATIVE EVOLUTION EQUATIONS∗
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Abstract. Global error bounds are derived for multistep time discretizations of fully nonlin-
ear evolution equations on infinite dimensional spaces. In contrast to earlier studies, the analysis
presented here is not based on linearization procedures but on the fully nonlinear framework of loga-
rithmic Lipschitz constants and nonlinear semigroups. The error bounds reveal how the contractive
or dissipative behavior of the vector field, governing the evolution, and the properties of the multistep
method influence the convergence. A multistep method which is consistent of order p is proven to
be convergent of the same order when the vector field is contractive or strictly dissipative, i.e., of
the same order as in the ODE-setting. In the contractive context it is sufficient to require strong
zero-stability of the method, whereas strong A-stability is sufficient in the dissipative case.
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1. Introduction. The evolution equation

u̇ = f(u), u(0) = η,

where u : [0,∞) → X and the vector field f is a dissipative map on the Banach space
X, has received much attention as this type of equation is found in a wide range of
applications, e.g., advection-diffusion-reaction processes. In the early 1970s the theory
of nonlinear semigroups made it possible to characterize the solutions of evolution
equations with fully nonlinear vector fields; see [1, 2, 21]. Shortly thereafter, multistep
time discretizations of such evolution equations were analyzed in the literature; see
[11, 12, 16], where some stability and convergence results are derived in a Hilbert
space context. Studies of multistep discretizations on infinite dimensional spaces
have predominantly considered linear vector fields, e.g., [6, 14], where the analysis
is based on analytic semigroups (by definition linear). The same analysis is also
used when combining multistep and Galerkin methods; this is reviewed in [19]. It is
not until just recently that the fully nonlinear setting has been addressed; see, e.g.,
[5, 13]. Here, bounds of the global error are derived by expressing the vector field
as a sum of its linearization and a nonlinear residual, which enables the usage of
the linear theory. The aim of this paper is therefore to derive global error bounds
in the setting of fully nonlinear problems on infinite dimensional spaces, which are
not necessarily linearizable, and to obtain a qualitative understanding of how the
mathematical setting and the numerical methods influence such bounds.

2. Preliminaries. This paper is based on the theory of logarithmic Lipschitz
constants, which was developed in [9, 17, 18]. Below follows a short summary of the
theory. Assume that X is a real valued Banach space, with norm ‖ · ‖X , and f is a
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nonlinear map on X with domain D(f) and range R(f). The Lipschitz constants of
f on X are defined as follows.

Definition 2.1. For u, v ∈ D(f) define the lub and glb Lipschitz constants of
f on X by

LX [f ] := sup
u �=v

‖f(u) − f(v)‖X
‖u− v‖X

, lX [f ] := inf
u �=v

‖f(u) − f(v)‖X
‖u− v‖X

.

The basic properties of the Lipschitz constants are given in Proposition 2.2.
Proposition 2.2. Assume that R(g) ⊆ D(f) in property 4 and D(f)

⋂
D(g) �= ∅

in properties 3 and 5. Then,
1. LX [f ] ≥ 0,
2. LX [αf ] = |α|LX [f ],
3. LX [f + g] ≤ LX [f ] + LX [g],
4. LX [fg] ≤ LX [f ]LX [g],
5. lX [f ] − LX [g] ≤ lX [f + g].

In order to mimic an inner product space, introduce semi-inner products on X
induced by the norm ‖ · ‖X .

Definition 2.3. Let u, v ∈ X and define the left (·, ·)−X and right (·, ·)+X semi-
inner products on X as

(u, v)±X := ‖u‖X lim
ε→0±

‖u + εv‖X − ‖u‖X
ε

.

The semi-inner products exist as they are Gateaux differentials of the norm ‖·‖X ;
see [4]. If the norm is induced by an inner product 〈·, ·〉X , then (·, ·)±X = 〈·, ·〉X . Like
the true inner product, the semi-inner products satisfy the relation (u, u)±X = ‖u‖2

X

and the Cauchy–Schwarz inequalities

−‖u‖X‖v‖X ≤ (u, v)±X ≤ ‖u‖X‖v‖X .

Next, the logarithmic Lipschitz constants are introduced.
Definition 2.4. For u, v ∈ D(f), define the lub and glb logarithmic Lipschitz

constants of f on X as

M±
X [f ] := sup

u �=v

(u− v, f(u) − f(v))±X
‖u− v‖2

X

, m±
X [f ] := inf

u �=v

(u− v, f(u) − f(v))±X
‖u− v‖2

X

.

Some of the basic properties of the logarithmic Lipschitz constants are given in
Proposition 2.5.

Proposition 2.5. Assume that D(f)
⋂
D(g) �= ∅ in property 4. Then,

1. m±
X [−f ] = −M∓

X [f ],

2. −LX [f ] ≤ m−
X [f ] ≤ m+

X [f ] ≤ lX [f ],

3. m±
X [αf ] = αm±

X [f ], α ≥ 0,

4. m−
X [f ] + m±

X [g] ≤ m±
X [f + g].

The first and second properties in Proposition 2.5 imply that it is preferable to
use m+

X [f ] and M−
X [f ], since they correspond to the weakest requirements.

Lemma 2.6. If lX [f ] > 0, then f is injective and LX [f−1] = lX [f ]−1.
Proof. Definition 2.1 trivially yields that f is injective when lX [f ] > 0 and

f−1 : R(f) → D(f) is bijective. Let u1, u2 ∈ D(f), and v1 := f(u1), v2 := f(u2);
then

lX [f ]−1 = sup
u1 �=u2

‖u1 − u2‖X
‖f(u1) − f(u2)‖X

= sup
v1 �=v2

‖f−1(v1) − f−1(v2)‖X
‖v1 − v2‖X

= LX [f−1].
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Lemma 2.6 together with the inequality m+
X [f ] ≤ lX [f ] yields the following corol-

lary.
Corollary 2.7. If m+

X [f ] > 0, then f is injective and LX [f−1] ≤ m+
X [f ]−1.

3. Direct product spaces. Introduce the Banach space XN , i.e., the direct
product of N real valued Banach spaces, equipped with the norm ‖ · ‖X,p. Elements
U ∈ XN are denoted as U = (U1, . . . , UN )T , and the norm ‖ · ‖X,p on XN is defined
as

‖U‖X,p :=

(
N∑
i=1

‖Ui‖pX

)1/p

,

when p < ∞ and ‖U‖X,∞ := max1≤i≤N ‖Ui‖X . In the error analysis only two types of
maps on XN are needed. To every map f on X we relate the map F : D(f)N → XN

defined as

(F(U))i := f(Ui) for i = 1, . . . , N.

The lemma below now follows trivially from the definition of ‖ · ‖X,p.
Lemma 3.1. LX,p[F ] = LX [f ] and lX,p[F ] = lX [f ].
Furthermore, to every real matrix A = {aij}Ni,j=1 we relate the linear map A :

XN → XN defined as

(AU)i :=

N∑
j=1

aijUj for i = 1, . . . , N.

Lemma 3.2. If X = lp(N), where 1 ≤ p < ∞, equipped with the usual p-norm
‖ · ‖p, then Lp,p[A] = Lp[A] and lp,p[A] = lp[A].

Proof. Every element u ∈ lp(N) is the limit of a sequence {uj}j≥1 where uj ∈
Xj := {v ∈ lp(N) : vi = 0, ∀i > j}, as limj→∞

∑
i>j |ui|p = 0 when p < ∞. Hence,

Lp,p[A] = sup
j≥1

sup
{U∈XN

j
: ‖U‖p,p=1}

‖A⊗ Ij×jU‖p,p ≤ Lp[A] sup
j≥1

Lp[Ij×j ] = Lp[A].

The equality is now obtained as Lp,p[A] ≥ sup{u∈XN
1 : ‖u‖p=1} ‖Au‖p = Lp[A]. The

other equality is obtained by the same procedure.
Corollary 3.3. If there exists a linear isometric imbedding of X into lp(N),

where 1 ≤ p < ∞, then LX,p[A] ≤ Lp[A] and lX,p[A] ≥ lp[A].
Proof. Let the linear map φ be the isometric imbedding of X into lp(N), i.e.,

‖φu‖p = ‖u‖X , and define Φ : XN → lNp (N) by (ΦU)i := φUi for i = 1, . . . , N . It is

easily seen that Φ is an isometric imbedding of XN into lNp (N) and the linearity of φ
yields that ΦA = AΦ. Hence, by Lemma 3.2,

‖AU‖X,p = ‖ΦAU‖p,p = ‖AΦU‖p,p ≤ Lp,p[A]‖ΦU‖p,p = Lp[A]‖U‖X,p,

which implies that LX,p[A] ≤ Lp[A]. The other inequality in this corollary follows in
the same fashion.

Note that the inequalities related to the Lipschitz constants in Corollary 3.3 can
be replaced by equalities if the imbedding is surjective, and in the case of X being a
separable Hilbert space the corollary is valid with p = 2, as these spaces are linearly
and isometrically imbedded into l2(N). Next, consider the semi-inner products (·, ·)±X,p
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on XN generated by the norm ‖ · ‖X,p for which we introduce the concept of proper
semi-inner products.

Definition 3.4. The semi-inner products (·, ·)±X,p are called proper if M±
X,p[F ] =

M±
X [f ] and m±

X,p[F ] = m±
X [f ].

Lemma 3.5. The semi-inner products (·, ·)±X,1 and (·, ·)±X,2 are proper.
Proof. By Definition 2.3 and the construction of the norm ‖ · ‖X,p it follows that

(U, V )±X,1 = ‖U‖X,1

N∑
i=1

(Ui, Vi)
±
X

‖Ui‖X
and (U, V )±X,2 =

N∑
i=1

(Ui, Vi)
±
X .

The desired equalities are now obtained via these representations together with Defi-
nition 2.4.

4. Problem setting. Let X be a real valued Banach space and consider the
nonlinear evolution equation

u̇ = f(u), u(0) = η ∈ D(f),(4.1)

where u : [0,∞) → X and the vector field f is a nonlinear map on X such that
M−

X [f ] < ∞; i.e., f is dissipative [1], and

R(I − hf) = X ∀h > 0 such that hM−
X [f ] < 1.(4.2)

Example 4.1. Define the evolution triple (V,X, V ∗) by V ⊂ X = X∗ ⊂ V ∗ where
X := L2[0, 1] and V := W 1,r

0 [0, 1], with 2 ≤ r < ∞. Next, consider the perturbed
r-Laplacian Δr : C∞

0 [0, 1] → X defined as

Δr : u �→ ∂x(|∂xu|r−2∂xu) + su,

with s < 0, and its energetic extension ΔE,r : V → V ∗, i.e.,

ΔE,r : u �→
∫ 1

0

−(|∂xu|r−2∂xu)∂x(·) + su(·)dx.

Then, the map f : D → X, with D := Δ−1
E,r(X

∗) and 〈f(u), ·〉X = ΔE,r(u) for all

u ∈ D, fulfills (4.2), LX [f ] = ∞, and M±
X [f ] ≤ s; see sections 26.5 and 31.5 in [21]

for details and generalizations.
Before the main propositions are stated, one needs the following definitions [2, 3].
Definition 4.2. A function u : [0,∞) → X is said to be a strong solution of

(4.1) on [0,∞) if u ∈ W 1,1([0,∞), X), u(0) = η, and (4.1) is satisfied a.e. on (0,∞).
Definition 4.3. Let Ω be a closed subset of X. Then the set Q(ω,Ω) of ω-type

semigroups is defined as the collection of maps S : [0,∞) × Ω → Ω such that
1. St+τ (u) = StSτ (u) for all u ∈ Ω, t, τ ≥ 0,
2. S0(u) = u for all u ∈ Ω,
3. S(·)(u) ∈ C([0,∞),Ω) for all u ∈ Ω,
4. LX [St(·)] ≤ etω for all t ≥ 0.

Now, in the setting of (4.1), one may apply the standard nonlinear semigroup
theory for dissipative maps; see [1, 3, 21] for proofs and further results.

Proposition 4.4. For all u ∈ D(f) and t ≥ 0, the evolution map

etf (u) := lim
n→∞

(
I − t

n
f

)−n

(u)

exists, and e(·)f ∈ Q(M−
X [f ], D(f)).
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Proposition 4.5. If X is a reflexive Banach space, then e(·)f (η) is the unique
strong solution of (4.1) on [0,∞).

By comparing the hypothesis of Propositions 4.4 and 4.5, we note that the evo-
lution map can be well defined even if (4.1) does not have a strong solution. This
may occur if η ∈ D(f)\D(f) or if X is not a reflexive Banach space. Thus, the most
general numerical setting is obtained if one considers approximations of the evolu-
tion map, i.e., finding a sequence {ui} in X for every fixed t ∈ [0,∞) and η ∈ D(f)
such that etf (η) = limi→∞ ui, rather then approximating the strong solution of (4.1),
which is not even necessarily well defined for all t ∈ (0,∞).

The multistep approximation un ∈ X of etnf (η) is defined by the difference equa-
tion ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
h−1

k∑
i=0

αk−iun−i =

k∑
i=0

βk−if(un−i), n ≥ 1,

un = etnf (η), n = 1 − k, . . . , 0,

(4.3)

where tn := (n+k−1)h, αk �= 0, and α0 or β0 �= 0. To every multistep method relate
the real polynomials ρ and σ, where

ρ(ξ) :=

k∑
i=0

αiξ
i and σ(ξ) :=

k∑
i=0

βiξ
i.

Denote the sets of roots to ρ and σ by {ξρi }ki=1 and {ξσi }ki=1, respectively. In order for
the approximation un to be well defined one needs the following assumption:

(A1) etnf (η) ∈ D(f) for n = 1 − k, . . . , 0.
This holds, e.g., for all t ≥ 0 when η ∈ D(f) and X is a Hilbert space; see [21].

Theorem 4.6. If (A1) holds and the multistep method (ρ, σ) is implicit, i.e.,
βk/αk > 0, and hβk/αkM

−
X [f ] < 1, then there exists a unique solution to (4.3).

Proof. Assume that un−k to un−1 are known elements in D(f). As

m+
X

[
I − h

βk

αk
f

]
≥ 1 − h

βk

αk
M−

X [f ] > 0,

one has, by (4.2) and Corollary 2.7, that (I − hβk/αkf)−1 : X → D(f) is a bijection
and

un =

(
I − h

βk

αk
f

)−1
(

1

αk

k∑
i=1

(−αk−iI + hβk−if)(un−i)

)
.

By (A1), un ∈ D(f) for n = 1 − k, . . . , 0, and the proof of the theorem now follows
by induction.

Note that the implicitness of the method is a necessity for the existence of a
solution to (4.3), as an explicit method with un ∈ D(f) may yield un+1 ∈ X\D(f)
and un+2 is therefore not generally well defined.

Definition 4.7. A multistep method (ρ, σ) is said to fulfill the stability property
(S1) if |ξρi | < 1 for i = 1, . . . , k − 1, and ξρk = 1;
(S2) if |ξσi | < 1 for i = 1, . . . , k;
(S3) if Re{ρ(ξ)/σ(ξ)} > 0 for |ξ| > 1.
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The terminology of stability properties varies somewhat in the literature, but
most commonly properties (S1), (S2), and (S3) are referred to as strong zero-stability,
A∞-stability, and A-stability, respectively. Methods fulfilling both (S2) and (S3) are
usually referred to as strongly A-stable.

Definition 4.8. A multistep method (ρ, σ) is said to be consistent of order p if

ρ(1) = 0 and

k∑
i=0

αii
q = q

k∑
i=0

βii
q−1 for q = 1, . . . , p.

The classical ODE-analysis of the global error

en := etnf (η) − un, n ≥ 1,

is often based on the order, with respect to h, of the local residual

wn :=

k∑
i=0

(h−1αk−iI − βk−if)
(
etn−if (η)

)
, n ≥ 1.

The order is usually obtained by a Taylor expansion. If the same approach is to be
used here, the following additional assumptions on the evolution map are sufficient:

(A2) d
dt (e

tf (η)) = f(etf (η)) for all t ≥ 0,

(A3) e(·)f (η) ∈ Cp+1([0,∞), X).
These assumptions imply the standard result related to the order of the local

residual stated below.
Theorem 4.9. If (A1)–(A3) hold and the multistep method (ρ, σ) is consistent

of order p, then

‖wn‖X = O(hp) ∀n ≥ 1.

Proof. Assumptions (A1)–(A3) imply that e(·)f (η) can be written as a p-order
Taylor expansion, since integration by parts is possible in the context of Bochner
integrals. Thus, the proof follows as in the ODE-setting; see [7].

Note that (A1)–(A3) hold if f is a linear map and η ∈ D(fp+1); see [15].

5. Global error analysis. The aim is now to derive bounds of the global error
by formulating (4.3) and the definition of the local residual as equations in XN . To
this end, introduce the nonlinear map F : D(f)N → XN related to the vector field f
on X and the linear maps P, S : XN → XN related to the N ×N -Toeplitz matrices

P :=

⎛
⎜⎜⎜⎜⎜⎜⎝

αk . . . α0

. . .

αk . . . α0

. . .

αk

⎞
⎟⎟⎟⎟⎟⎟⎠ and S :=

⎛
⎜⎜⎜⎜⎜⎜⎝

βk . . . β0

. . .

βk . . . β0

. . .

βk

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Next, define the nonlinear map H : D(f)N → XN as

H(U) := h−1PU − SF(U) + V0,

where V0 is a constant vector in XN with k nonzero elements given by the initial
data. Thus, the numerical approximations U := (uN , . . . , u1)

T , the analytic solutions
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V := (etNf (η), . . . , et1f (η))T , and the local residuals W := (wN , . . . , w1)
T fulfill the

equations H(V ) = W and H(U) = 0. Hence, H(V ) −H(U) = W ; i.e.,

h−1P(V − U) − S(F(V ) −F(U)) = W.(5.1)

It is possible to derive bounds for the global errors E := V − U from (5.1) if the
topology imposed on XN is correctly chosen. Before the bounds are derived, one
needs to relate the stability properties presented in Definition 4.7 to the linear maps
P and S.

Lemma 5.1. There exist positive constants Cρ and Cσ such that if the multistep
method (ρ, σ) fulfills

1. (S1), then LX,p[P−1] ≤ CρN ;
2. (S2) and is implicit, then LX,p[S−1] ≤ Cσ for all N ≥ 1.

Proof. As P is an upper triangular Toeplitz matrix of size N × N with one
(αk �= 0) to k + 1 nonzero diagonals, the map P can be represented as

P = αk

k∏
i=1

(I − ξρi E),(5.2)

where E is the linear map related to the left shift matrix⎛
⎜⎜⎜⎜⎝

0 1
. . .

. . .

. . . 1
0

⎞
⎟⎟⎟⎟⎠ .

Since E is nilpotent of order N , one has that

(I − ξρi E)−1 =

N−1∑
n=0

(ξρi )nEn.

Hence, P−1 : XN → XN is well defined and

LX,p[P−1] ≤ 1

|αk|

k∏
i=1

N−1∑
n=0

|ξρi |nLX,p[E ]n.

The first assertion is now obtained as LX,p[E ] = 1, and the method (ρ, σ) fulfills
stability property (S1); i.e., |ξρi | < 1 for i = 1, . . . , k − 1 and ξρk = 1. The second
assertion follows by making the same factorization of S as made for P in the previous
part, which is possible as the method is implicit (βk �= 0), and by using the fact that
the method (ρ, σ) fulfills stability property (S2), i.e., |ξσi | < 1 for i = 1, . . . , k.

Lemma 5.2. If X is a separable Hilbert space and the implicit multistep method
(ρ, σ) fulfills (S2) and (S3), then m±

X,2[S−1P] ≥ 0.
Proof. Corollary 3.3, Lemma 5.1, and the factorization of P in (5.2) yields that

LX,2[S−1P] ≤ L2[S
−1P ] ≤ Cσ|αk|2k for all N ≥ 1. Hence,

M+
X,2[S−1P] = sup

{U∈XN :‖U‖X,2=1}
lim

ε→0+

‖(I + εS−1P)U‖X,2 − ‖U‖X,2

ε

≤ lim
ε→0+

LX,2[I + εS−1P] − 1

ε
≤ lim

ε→0+

L2[I + εS−1P ] − 1

ε
= max{λ : λ ∈ spec((S−1P + PTS−T )/2)}.
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The last equality follows by the well-known theory of logarithmic norms; see [7]. Thus,
by Proposition 2.5,

m±
X,2[S−1P] ≥ −M+

X,2[−S−1P] ≥ min{λ : λ ∈ spec((S−1P + PTS−T )/2)}.

Using the analysis of Toeplitz matrices on l2(N) one has the bound

min{λ : λ ∈ spec((S−1P + PTS−T )/2)} ≥ min
|ξ|=1

Re{ρ(ξ)/σ(ξ)}.

See [20] for general theory and [10] for the applications in connection to multistep
methods. As the method (ρ, σ) fulfills stability properties (S2) and (S3), the function
r : ξ �→ Re{ρ(ξ)/σ(ξ)} is continuous for |ξ| ≥ 1 and r(ξ) > 0 for all |ξ| > 1. Hence,
r(ξ) ≥ 0 for |ξ| = 1. Combining these results gives the bound

m±
X,2[S−1P] ≥ min

|ξ|=1
Re{ρ(ξ)/σ(ξ)} ≥ 0,

which concludes the proof.
It is now possible to derive a discrete L2-bound of the global error for an im-

plicit multistep approximation on Hilbert spaces, when the vector field f is (strictly)
dissipative but otherwise unbounded.

Theorem 5.3. Consider the approximation of etNf (η), using the implicit multi-
step method (ρ, σ) on the separable Hilbert space X. If (A1)–(A3) hold, M−

X [f ] < 0,
and the method (ρ, σ) is consistent of order p and fulfills (S2) and (S3), then

(
h

N∑
i=1

‖ei‖2
X

)1/2

≤ C

√
tN

−M−
X [f ]

hp,

where the positive constant C is independent of N , M−
X [f ], and tN .

Proof. Equip XN with the norm ‖ · ‖X,2. Note that this norm induces the proper
semi-inner products (·, ·)±X,2; see Lemma 3.5. The hypotheses imposed on X and

the method (ρ, σ) together with Lemmas 5.1 and 5.2 imply that S−1 is well defined,
LX,2[S−1] ≤ Cσ, and m±

X,2[S−1P] ≥ 0. It is therefore possible to apply the functional

(E,S−1(·))+X,2 to (5.1), which yields the bound

(E,S−1W )+X,2 = (E, h−1S−1P(V − U) − [F(V ) −F(U)])+X,2

≥ m+
X,2[h

−1S−1P − F ]‖E‖2
X,2

≥ (h−1m−
X,2[S−1P] −M−

X [f ])‖E‖2
X,2.

Assume that M−
X [f ] < 0 and use the right Cauchy–Schwarz inequality on the term

(E,S−1W )+X,2; then

‖E‖X,2 ≤ LX,2[S−1]

h−1m−
X,2[S−1P] −M−

X [f ]
‖W‖X,2 ≤ Cσ

−M−
X [f ]

‖W‖X,2.

The desired bound is now obtained by Theorem 4.9 together with the inequality

‖W‖X,2 ≤
√
N max

1≤i≤N
‖wi‖X ≤

√
tN
h

max
1≤i≤N

‖wi‖X .
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Table 5.1

Numerically observed convergence orders.

Δx IE BDF2

2−7 p = 1.0426 p = 1.9868
2−8 p = 1.0426 p = 1.9867
2−9 p = 1.0426 p = 1.9867

It is easy to see how the mathematical problem influences the global error bound:
the more dissipative the vector field is, i.e., the smaller M−

X [f ], the smaller is the error.
One important application of Theorem 5.3 is in the context of nonlinear parabolic
PDEs where X = L2(Ω). We illustrate this by the numerical example below.

Example 5.4. Consider the evolution governed by the dissipative extension f :
D → L2[0, 1] of the perturbed r-Laplacian

Δr : u �→ ∂x(|∂xu|r−2∂xu) + su

presented in Example 4.1. The evolution equation is discretized in space by finite
differences on the equidistant grid {0,Δx, 2Δx, . . . ,KΔx, 1}, i.e., we consider the
evolution governed by the vector field fΔx : XΔx → XΔx defined as

(fΔx(u))i :=
1

Δx

(
g

(
ui+1 − ui

Δx

)
− g

(
ui − ui−1

Δx

))
+ sui for i = 1, . . . ,K,

where g = | · |r−2(·) and u0 = uK+1 = 0. Furthermore, XΔx = (RK , ‖ · ‖Δx) with

‖u‖Δx :=

(
Δx

K∑
i=1

|ui|2
)1/2

.

As Theorem 5.3 requires the multistep method (ρ, σ) to fulfill stability property (S3),
we are restricted to methods which are consistent of order one or two, e.g., the implicit
Euler (ξ−1, ξ) and the BDF2 (3ξ2/2−2ξ+1/2, ξ2) methods; see [8]. In Table 5.1 the
numerically observed convergence orders are given for these multistep discretizations
applied to the evolution equation

u̇ = fΔx(u), u(0) = ηΔx,

with ηiΔx = 5e−1/iΔx(1−iΔx), {r, s} = {3,−1}, and tN = 0.3. In the implementation
of both methods, the solution of (4.3) was approximated by using Newton’s method
with an exact Jacobian which is well defined as g is differentiable. The second starting
value for the BDF2 method was obtained by an implicit Euler step. The errors were
estimated by computing the numerical solutions for h/tN ∈ [h1, h2] and comparing
with the one obtained with h/tN = h0. The parameters {h0, h1, h2} were chosen as
{2−13, 2−10, 2−7} and {2−15, 2−13, 2−10} for the implicit Euler and the BDF2 imple-
mentations, respectively. As seen in Table 5.1, the observed convergence orders are
independent of Δx and in agreement with Theorem 5.3.

In Theorem 5.3 we obtained the same convergence orders in the discrete L2-
norm as presented in [10] for ODEs, but it is also possible to derive error bounds
in the infinity-norm on arbitrary Banach space if one considers approximations of an
evolution governed by a Lipschitz continuous vector field on a restricted time interval.
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Theorem 5.5. Approximate etNf (η), where tN ∈ (0, 1/(C1LX [f ])), by using
the implicit multistep method (ρ, σ). If (A1)–(A3) hold, hβk/αkM

−
X [f ] < 1, and the

method (ρ, σ) is consistent of order p and fulfills (S1), then

max
1≤i≤N

‖ei‖X ≤ C2tN
1 − C1tNLX [f ]

hp,

where the positive constants C1 and C2 are independent of N , LX [f ], and tN .
Proof. Equip XN with the norm ‖ · ‖X,∞. The hypotheses on the method (ρ, σ)

and Lemma 5.1 give that the map P−1 is well defined and that LX,∞[P−1] ≤ CρN .
Furthermore, factorizing S as in (5.2) yields that LX,∞[S] ≤ |βk|2k. Thus, one can
apply the functional ‖P−1(·)‖X,∞ to (5.1) and the following bound is obtained:

‖P−1W‖X,∞ = ‖h−1(V − U) − P−1S(F(V ) −F(U))‖X,∞
≥ lX,∞[h−1I − P−1SF ]‖E‖X,∞
≥ (h−1 − LX,∞[P−1]LX,∞[S]LX [f ])‖E‖X,∞.

Assume that C1tNLX [f ] < 1, with C1 := Cρ|βk|2k; then

‖E‖X,∞ ≤ LX,∞[P−1]

h−1 − C1NLX [f ]
‖W‖X,∞ ≤ CρtN

1 − C1tNLX [f ]
‖W‖X,∞,

and the desired bound follows by Theorem 4.9.
Note how the global error decreases and the time interval (0, 1/(C1LX [f ])) in-

creases as the contractive behavior of the vector field increases, i.e., as LX [f ] tends
to zero.

6. Conclusions. Using the theory of logarithmic Lipschitz constants, global er-
ror bounds have been derived in the setting of multistep time discretizations of fully
nonlinear evolution equations on infinite dimensional spaces. The bounds clearly re-
veal how the contractive or dissipative behavior of the vector field, governing the
evolution, and the properties of the multistep method influence the convergence. Fur-
thermore, the obtained convergence results are closely related to the ones found in
the ODE-context.

Acknowledgment. The author would like to thank Gustaf Söderlind for intro-
ducing the author to the topic of this paper and for all the inspiring discussions.
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SEMI-ITERATIVE REGULARIZATION IN HILBERT SCALES∗

HERBERT EGGER†

Abstract. In this paper we investigate the regularizing properties of semi-iterative regularization
methods in Hilbert scales for linear ill-posed problems and perturbed data.

It is well known that standard Landweber iteration can be remarkably accelerated by polynomial
acceleration methods leading to optimal speed of convergence, which can be obtained by several
efficient two-step methods, e.g., the ν-methods by Brakhage. It was observed earlier that a similar
speed of convergence, i.e., similar iteration numbers yielding optimal convergence rates, can be
obtained if Landweber iteration is performed in Hilbert scales.

We show that a combination of both ideas allows for a further acceleration, yielding optimal
convergence rates with only the square root of iterations as compared to the ν-methods or Landweber
iteration in Hilbert scales. The theoretical results are illustrated by several examples and numerical
tests, including a comparison to the method of conjugate gradients.

Key words. inverse problems, regularization, Hilbert scales, semi-iterative methods
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1. Introduction. In this paper, we study inverse problems of the form

Tx = y,(1.1)

where T : X → Y is a linear bounded operator between infinite-dimensional Hilbert
spaces X and Y with range R(T ) ⊂ Y. It is well known (see, e.g., [6]) that the
Moore–Penrose inverse T †, which is defined on D(T †) = R(T ) + R(T )⊥ and maps
data y ∈ D(T †) onto the best approximate solution x†, is unbounded if R(T ) is not
closed, and hence the solution of (1.1) is ill-posed; in particular, even for y ∈ D(T †)
a solution of (1.1) does not depend continuously on the right-hand side and thus has
to be regularized.

Especially for large-scale problems, iterative regularization algorithms have turned
out to be an attractive alternative to Tikhonov regularization, which is probably the
most well-known regularization method (see, e.g., [4, 7]). Application of Landweber
iteration (cf. [12]),

xk = xk−1 + ωT ∗(y − Txk−1), k ≥ 1,(1.2)

with 0 < ω < 2/‖T ∗T‖ to the solution of inverse problems has been investigated
intensively in the literature (see, e.g., [1, 4, 9] and the references cited there). Formally,
(1.2) corresponds to Richardson iteration (successive approximation) applied to the
normal equation

T ∗Tx = T ∗y.
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If y ∈ D(T †), then the iterates xk converge to T †y; if, however, only perturbed data
yδ with a known upper bound on the noise level

‖y − yδ‖ ≤ δ(1.3)

are known and yδ /∈ D(T †), which is most probable if (1.1) is ill-posed and R(T ) is
not closed, then ‖xk‖ tends to infinity.

Iterative methods are turned into regularization algorithms by stopping the iter-
ation after an adequate number k∗ of steps. Besides a priori stopping rules, which
require knowledge of the smoothness of x† − x0 in terms of spaces R((T ∗T )μ), the
discrepancy principle (cf. [4, 14])

‖yδ − Txk∗‖ ≤ τδ < ‖yδ − Txk‖, 0 ≤ k < k∗,(1.4)

with τ > 1 has turned out to be an appropriate a posteriori stopping rule yielding
optimal convergence rates for Landweber iteration; i.e., if

x† − x0 ∈ R((T ∗T )μ), μ > 0,(1.5)

then stopping by the discrepancy principle (1.4) yields (see, e.g., [4])

‖xδ
k∗ − x†‖ = o(δ

2μ
2μ+1 ) and k∗ = O(δ−

2
2μ+1 ).(1.6)

The main drawback of Landweber iteration is its slow performance, i.e., a large num-
ber of iterations needed to obtain the optimal convergence rates (1.6). In order to
accelerate the solution process, several semi-iterative methods (polynomial accelera-
tion methods) have been proposed and analyzed in the framework of regularization
(see, e.g., [8] for an overview). In our numerical experiments, we will use Brakhage’s
ν-methods [2], for which the number of iteration can be bounded by

k∗ ∼ δ−
1

2μ+1 for 0 < μ ≤ ν − 1
2(1.7)

in case of stopping according to the discrepancy principle (1.4) (see Theorem 2.1).
Thus optimal convergence rates can be obtained with approximately the square root
of iterations than needed for ordinary Landweber iteration. Note that in contrast to
Landweber iteration, the ν-methods show a saturation phenomenon; i.e., the optimal
rates and (1.7) hold only for μ ≤ ν, respectively, μ ≤ ν − 1/2, if the iteration is
stopped according to (1.4).

Regularization in Hilbert scales was introduced by Nǎtterer [15] in the framework
of Tikhonov regularization for linear problems. More recently, the Hilbert scale ap-
proach has been investigated also for more general regularization methods for linear
problems (see [4, 19]) by means of spectral theory. Originally, Hilbert scales were
used to increase the range of optimal convergence for Tikhonov regularization [15, 17]
and Landweber iteration for nonlinear inverse problems [18]. In [3], the case s < 0
(undersmoothing) was investigated in more detail for Landweber iteration, and it was
shown that the application of Hilbert scales can be understood as preconditioning
in this case, i.e., the number of iterations needed to get optimal convergence can be
reduced, essentially, to (1.7). Additionally, the results in [3] were derived under more
general than the usual assumptions for regularization in Hilbert scales (cf. section 3).

The aim of this paper is to show that the combination of polynomial acceleration
methods with the Hilbert scale approach leads to a further acceleration of iterative
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regularization methods, yielding optimal rates of convergence with stopping indices

bounded by k∗ = O(δ−
1

2(2μ+1) ). In case of mildly ill-posed problems, i.e., if the
singular values σn of the operator T decay like O(n−α) for some 0 < α < 1, the
performance may even be better than that of the conjugate gradient method in the

standard spaces, where we have k∗ ≤ δ−
1

(2μ+1)(1+α) (cf. [4, Theorem 7.14]). The faster
convergence of a Hilbert scale ν-method is also illustrated numerically in Examples
5.1 and 5.3. At least formally, preconditioning in Hilbert scales can also be applied
to the conjugate gradient method; a rigorous analysis of such a method will be the
subject of a subsequent article.

The paper is organized as follows: in sections 2 and 3, we briefly repeat the main
results on convergence of semi-iterative regularization methods and regularization in
Hilbert scales. The convergence analysis for semi-iterative methods in Hilbert scales is
presented in section 4. We conclude with numerical examples comparing the proposed
method to the standard Landweber iteration and ν-methods, Landweber iteration in
Hilbert scales, and the conjugate gradient method.

2. Accelerated Landweber methods. While for Landweber iteration (1.2)
only information about the last iterate xδ

k−1 is used to construct the new approxima-

tion xδ
k, semi-iterative methods make use of all the approximations for T †y obtained

so far: a basic step of a semi-iterative method has the form (cf. [4, 8])

xδ
k = μ1,kx

δ
k−1 + · · · + μk,kx

δ
0 + ωkT

∗(yδ − Txδ
k−1), k ≥ 1,∑k

i=1 μi,k = 1, ωk 	= 0,
(2.1)

where we set xδ
0 = x0. The iterates defined by (2.1) with yδ replaced by the true data

y will be denoted by xk. Obviously xδ
k − x0 ∈ Kk(T

∗T, T ∗(yδ − Tx0)), where

Kk(T
∗T, p) := span{p, T ∗Tp, . . . , (T ∗T )k−1p}

denotes the kth Krylov subspace of T ∗T with respect to p. Consequently, there exist
polynomials gk(λ) and rk(λ) := 1−λgk(λ) of degree (k−1), respectively, k, such that

xk − x† = rk(T
∗T )(x0 − x†) and xδ

k − xk = gk(T
∗T )T ∗(yδ − y).

In other words, the approximation error xk − x† is determined by the residual poly-
nomials rk, while the propagated data error xδ

k − xk is determined by the iteration
polynomials gk. Of particular importance are methods whose residual polynomials rk
form an orthogonal sequence with respect to some positive weight function. In this
case, the residual polynomials satisfy a three-term recurrence, which also carries over
to the iterates; i.e., there exist sequences μk and ωk such that

xδ
k = xδ

k−1 + μk(x
δ
k−1 − xδ

k−2) + ωkT
∗(yδ − Txδ

k−1), k ≥ 1,

with xδ
0 = xδ

−1 = x0. A specific instance of such methods are the ν-methods by
Brakhage [2], which are defined by μ1 = 0, ω1 = (4ν + 2)/(4ν + 1), and

μk =
(k − 1)(2k − 3)(2k + 2ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)(2k + 2ν − 3)
,

ωk = 4
(2k + 2ν − 1)(k + ν − 1)

(k + 2ν − 1)(2k + 2ν − 1)
, k > 1.
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Each ν-method has optimal speed of convergence for x† − x0 ∈ R((T ∗T )μ) with 0 ≤
μ ≤ ν; i.e., its residual polynomials satisfy

‖λμrk(λ)‖C[0,1] = O(k−2μ)(2.2)

for μ ≤ ν. In fact, it seems that the estimate (2.2) is the best possible in terms of
powers of k for semi-iterative methods with real orthogonal polynomials, cf. [8].

The following theorem (cf. [4, Theorem 6.11]) guarantees convergence rates of
optimal order for semi-iterative regularization methods satisfying (2.2) if they are
equipped with appropriate stopping rules.

Theorem 2.1. Let y ∈ R(T ), and let the residual polynomials rk satisfy (2.2)
for some μ0 > 0. Then the semi-iterative method (2.1) is a regularization method of
optimal order for T †y ∈ R((T ∗T )μ) with 0 < μ ≤ μ0 − 1/2, provided the iteration is
stopped with k∗ = k∗(δ, y

δ) according to the discrepancy principle (1.4) with fixed τ >

supk∈N ‖rk‖C[0,1]. In this case we have k∗ = O(δ−
1

2μ+1 ) and ‖xδ
k − x†‖ = O(δ

2μ
2μ+1 ).

Note that even o(·) can be derived for the error ‖xδ
k − x†‖ (see [4]).

3. Regularization in Hilbert scales. Before we recall some results on regu-
larization in Hilbert scales, we briefly repeat the definition of a Hilbert scale (see [11]):
let L be a densely defined, unbounded, self-adjoint and strictly positive operator in
X . Then (Xs)s∈R denotes the Hilbert scale induced by L if Xs is the completion
of

⋂∞
k=0 D(Lk) with respect to the Hilbert space norm ‖x‖s := ‖Lsx‖X ; obviously

‖x‖0 = ‖x‖X (see [11] or [4, section 8.4] for details).
Regularization in Hilbert scales was introduced by Natterer [15] in order to im-

prove convergence rates for Tikhonov regularization. In [18], Landweber iteration for
nonlinear problems, which exhibits saturation phenomena similar to that of Tikhonov
regularization (i.e., optimal convergence only for x† −x0 ∈ R((T ∗T )μ), μ ≤ 1/2), has
been shifted to Hilbert scales (with s > 0) in order to overcome the restriction μ ≤ 1/2.

In [3], the application of the Hilbert scale approach to iterative regularization
methods has been investigated from a different point of view: there, the emphasis is
on the case s < 0, in which the Hilbert scale operator L−2s appearing in the modified
Landweber iteration

xδ
k+1 = xδ

k + L−2sT ∗(yδ − Txδ
k), k ≥ 0,(3.1)

acts as a preconditioner for the adjoint operator T ∗. As a consequence, the operator
L−2sT ∗T in the preconditioned normal equation

L−2sT ∗Tx = L−2sT ∗yδ(3.2)

has a smaller degree of ill-posedness than T ∗T , while being self-adjoint in Xs. For
a finite-dimensional approximation, this implies smaller condition numbers of the
iteration operators (L−2sT ∗T ), which in turn yields a faster decrease of the residual
and allow to stop the residual earlier.

For a convergence rates analysis of iterative regularization methods in Hilbert
scales we will need the following assumption (cf. [3]).

Assumption 3.1. For T and L as above assume that
(A1) Tx = y has a solution x†.
(A2) ‖Tx‖ ≤ m‖x‖−a for all x ∈ X and some a > 0,m > 0. Moreover, the

extension of T to X−a (again denoted by T ) is injective.
(A3) For some s ≥ −a let B := TL−s be such that ‖B‖X ,Y ≤ 1.
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The following result, taken from [3], draws some conclusions from Assumption
3.1, which will be needed for the subsequent convergence analysis.

Proposition 3.2. Let Assumption 3.1 hold. Then condition (A2) is equivalent
to

R(T ∗) ⊂ Xa and ‖T ∗w‖a ≤ m‖w‖ for all w ∈ Y.

Moreover, for all ν ∈ [0, 1] it holds that D((B∗B)−
ν
2 ) = R((B∗B)

ν
2 ) ⊂ Xν(a+s) and

‖(B∗B)
ν
2 x‖ ≤ mν‖x‖−ν(a+s) for all x ∈ X ,

‖(B∗B)−
ν
2 x‖ ≥ m−ν‖x‖ν(a+s) for all x ∈ D((B∗B)−

ν
2 ).(3.3)

Furthermore, (3.5) is equivalent to

Xã ⊂ R(T ∗) and ‖T ∗w‖ã ≥ m‖w‖
for all w ∈ N (T ∗)⊥ with T ∗w ∈ Xã,

and if (3.5) holds, then it follows for all ν ∈ [0, 1] that Xν(ã+s) ⊂ R((B∗B)
ν
2 ) =

D((B∗B)−
ν
2 ) holds and

‖(B∗B)
ν
2 x‖ ≥ mν‖x‖−ν(ã+s) for all x ∈ X ,

‖(B∗B)−
ν
2 x‖ ≤ m−ν‖x‖ν(ã+s) for all x ∈ Xν(ã+s).

Usually, for the analysis of regularization methods in Hilbert scales, a stronger
condition than (A2) is used, namely (cf., e.g., [15, 17])

‖Tx‖ ∼ ‖x‖−a for all x ∈ X ,(3.4)

where the number a can be interpreted as the degree of ill-posedness. However, if
s ≤ 0, an estimate from below (possibly in a weaker norm), e.g.,

‖Tx‖ ≥ m‖x‖−ã for all x ∈ X and some ã ≥ a, m > 0,(3.5)

is only needed to interpret the smoothness condition on x† − x0 required for the
convergence analysis in terms of the Hilbert scale {Xs}s∈R: if (3.4) holds, then it
follows from Proposition 3.2 that Xνa = R((T ∗T )ν/2) for |ν| ≤ 1 (see also Remark
3.7 below).

Before we come to our convergence analysis, we briefly discuss the connection of
regularization in Hilbert scales to regularization in standard spaces and we point out
the appropriate smoothness conditions for x† − x0.

Remark 3.3. Regularization in Hilbert scales, e.g., (3.1), amounts to standard
regularization when considering (the extension of) T as an operator on Xs. The
adjoint with respect to the spaces Xs and Y is denoted by T � = L−2sT ∗, where T ∗

denotes the adjoint with respect to X and Y. Hence (3.2) are the normal equations
for Tx = y with T : Xs → Y. Using the notation z = Lsx and B = TL−s, one sees
that (1.1) is equivalent to

Bz = y, Lsx = z,(3.6)

where in the second problem Ls maps from Xs to X and thus is an isomorphism.
Applying standard regularization theory to (3.6) yields

zδk = gk(B
∗B)B∗yδ, respectively, xδ

k = L−sgk(B
∗B)B∗yδ.(3.7)
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Moreover, the usual source condition for (3.6) reads

z† − z0 = (B∗B)μw, or equivalently, x† − x0 = L−s(B∗B)μw(3.8)

for some w ∈ X . Due to (3.8), we call x†−x0 = L−s(B∗B)μw also a source condition
below.

As can be seen from the previous remark, the following shifted Hilbert scale will
play an important role in the convergence analysis of iterative regularization methods
in Hilbert scales, in particular for the formulation of appropriate source, respectively,
smoothness conditions.

Definition 3.4. Let a, s > −a, and B be as in Assumption 3.1. We define the
shifted Hilbert scale {X s

r }r∈R by

X s
r := D((B∗B)

s−r
2(a+s)Ls) equipped with the norm

|||x|||r := ‖(B∗B)
s−r

2(a+s)Lsx‖X .
(3.9)

Remark 3.5. Note, that for s 	= 0 the spaces X s
r form no Hilbert scale over X

in general. In particular, X s
−r is usually not the dual space of X s

r . Nevertheless, the
spaces X s

r have some properties (interpolation, embedding) that justify the notion of
shifted Hilbert scale (see Proposition 3.6 below). To see that the spaces X s

u are natural
source sets for (1.1) considered over Xs, observe that

X s
u = {L−s(B∗B)

u−s
2(a+s)w, w ∈ X} = {(T �T )

u−s
2(a+s)ws, ws ∈ Xs},

where the second equality follows directly for u−s
2(a+s) being integer. For arbitrary

indices it follows by interpolation and Proposition 3.2.
The next proposition (cf. [3, Proposition 3]) summarizes the main properties of

the shifted Hilbert scale (3.9), which are needed for the convergence analysis below,
and clarifies the relation between the spaces Xs and X s

r .
Proposition 3.6. Let Assumption 3.1 hold and let (X s

r )r∈R be defined as in
Definition 3.4. Then the following hold:

(i) For p < q, the spaces X s
q are continuously embedded in X s

p , i.e., for x ∈ X s
q ,

|||x|||p ≤ γp−q |||x|||q,

where γ is such that

〈(B∗B)−
1

2(a+s)x, x〉 ≥ γ‖x‖2 for all x ∈ D((B∗B)−
1

2(a+s) ).

(ii) The interpolation inequality

|||x|||q ≤ |||x|||
r−q
r−p
p |||x|||

q−p
r−p
r , p < q < r,

holds for all x ∈ X s
r .

(iii) For s ≤ r ≤ a + 2s,

‖x‖r ≤ m
r−s
a+s |||x|||r for all x ∈ X s

r ⊂ Xr.(3.10)

In particular, if −a/2 ≤ s ≤ 0, we obtain

‖x‖0 ≤ m
−s
a+s |||x|||0 for all x ∈ X s

0 ⊂ X0.

Moreover,

|||x|||−a = ‖Tx‖ for all x ∈ X .
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(iv) If, in addition, (3.5) is satisfied, then the following estimates hold for s ≤ r ≤
a + 2s with p = s + r−s

a+s (ã + s):

‖x‖p ≥ m
r−s
a+s |||x|||r for all x ∈ Xp ⊂ X s

r .

Proof. We prove only (3.10) in detail: by definition of the Hilbert scale norm ‖·‖s
in (3.9), and with (3.3), we obtain for x ∈ X s

r ∩ Xr

‖x‖r = ‖Lr−sLsx‖ ≤ m
r−s
a+s ‖(B∗B)

s−r
2(a+s)Lsx‖ = |||x|||r.

This implies the space inclusion X s
r ⊂ Xr. The other assertions follow similarly from

[4, Proposition 8.19] and Proposition 3.2.
Before we begin our convergence analysis, we discuss the assertions of the previous

proposition in more detail.
Remark 3.7. Under Assumption 3.1, and for the range −a ≤ r ≤ s, we have

Xr ⊂ X s
r , while for s ≤ r ≤ a + 2s the opposite inclusion X s

r ⊂ Xr holds. If the
stronger condition (3.4) holds instead of (A2), then the reverse statements are valid;
i.e., both inclusions together yield X s

r = Xr for −a ≤ r ≤ a + 2s. The restriction
r ≤ a + 2s amounts to ν ≤ 1 in Proposition 3.2 and can be relaxed if, e.g., the
stronger condition ‖(T ∗T )ηx‖ ≤ ‖x‖−2ηa holds for some η > 1/2, or if L and T
commute (cf. [19]), in which case the previous estimate holds for all η > 0.

If (3.4) holds, we also obtain by Proposition 3.2 and Definition 3.4 that

‖(T ∗T )−
u
2ax‖ ∼ ‖x‖u = ‖Lu−sLsx‖ ∼ |||x|||u

for −a ≤ u ≤ min{a, a+2s}. Here, the first estimate holds for |u| ≤ a and the second
for |u−s

a+s | ≤ 1, which is −a ≤ u ≤ a + 2s.

4. Convergence rates for iterative regularization methods in Hilbert
scales. We start by citing a convergence rate result for Landweber iteration in Hilbert
scales derived in [3].

Theorem 4.1. Let Assumption 3.1 hold and −a/2 ≤ s ≤ 0. Additionally, assume
x† − x0 ∈ X s

u , i.e.,

x† − x0 = L−s(B∗B)
u−s

2(a+s)w(4.1)

for some w ∈ X and u > 0. Then

‖xδ
k − x†‖ ≤ c(δk

a
2(a+s) + k−

u
2(a+s) |||x† − x0|||u).

If the iteration (3.1) is stopped according to the a priori rule k∗ ∼ (‖w‖δ−1)
2(a+s)
a+u ,

then

‖xδ
k − x†‖ = O(‖w‖ a

a+u δ
u

a+u ).

If, alternatively, the iteration is stopped according to the discrepancy principle (1.4),
then

k∗ ∼ δ−
2(a+s)
a+u and ‖xδ

k − x†‖ = O(δ
u

a+u ).(4.2)

Remark 4.2. It was mentioned in [3] that, if the usual condition (3.4) holds
instead of (A2), then for 0 < u ≤ a+2s these rates are optimal, i.e., the best possible
worst-case error bounds under the given source condition (cf. Remarks 3.3 and 3.5).
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Observe that for s < 0, the stopping index of the Hilbert scale method is smaller
than the one for Landweber iteration; e.g., for x† − x0 ∈ R((T ∗T )

u
2a ) ∩ X s

u and
s = −a

2 the preconditioned iteration yields approximately the square root of iterations
compared to standard Landweber. As can be seen from (3.1), the preconditioned
iterations are in general not well defined as iterations on X for s < −a

2 and arbitrary
yδ ∈ Y.

The rest of this section is devoted to the derivation of a corresponding conver-
gence rate result for general semi-iterative regularization methods in Hilbert scales.
Recall the connection of Hilbert scale regularization with standard regularization over
Xs; cf. Remark 3.3. The formulae in (3.7) then allow the following closed-form repre-
sentations of the approximation error and the propagated data error:

zk − z† = rk(B
∗B)(z0 − z†) and zδk − zk = gk(B

∗B)B∗(yδ − y).(4.3)

Noting that z = Lsx, this yields

xk − x† = L−srk(B
∗B)Ls(x0 − x†),

xδ
k − xk = L−sgk(B

∗B)B∗(yδ − y).
(4.4)

If the residual polynomials are generated by (2.1), the preconditioned iterates xδ
k can

be assembled by the iteration

xδ
k = μ1,kx

δ
k−1 + · · · + μk,kx0 + ωkL

−2sT ∗(yδ − Txδ
k), k ≥ 1,∑k

i=1 μi,k = 1, ωk 	= 0.
(4.5)

Note that in practice (4.5) is typically a two- or three-term recurrence. The only
difference between the preconditioned iteration (4.5) and the standard method (2.1)
is that the residuals T ∗(yδ − Txk) are preconditioned by L−2s.

We are now in the position to state and prove the main results.
Proposition 4.3. Let Assumption 3.1 hold with −a/2 ≤ s ≤ 0, and let xδ

k be de-
fined by the semi-iterative method (4.5) satisfying (2.2) for some μ0 > 0. Additionally,
assume that x† − x0 ∈ X s

u ; i.e., (4.1) holds for some w ∈ X and 0 < u ≤ 2(a + s)μ0.
Then

‖xδ
k − x†‖ ≤ Cu(δk

a
(a+s) + k−

u
(a+s) ‖w‖).(4.6)

Proof. Using the source condition (4.1) and the representation (4.4), we obtain
with (3.3) that

‖xk − x†‖ = ‖L−srk(B
∗B)(B∗B)

u−s
2(a+s)w‖

≤ c ‖(B∗B)
u

2(a+s) rk(B
∗B)‖ ‖w‖.

By spectral theory and (2.2) this yields for 0 < u ≤ 2(a + s)μ0 the estimate

‖xk − x†‖ ≤ cuk
− u

(a+s) ‖w‖

for the approximation error. Similarly, the propagated data error can be estimated
by

‖xδ
k − xk‖ = ‖L−sgk(B

∗B)B∗(yδ − y)‖ ≤ c δ ‖(B∗B)
a+2s

2(a+s) gk(B
∗B)‖

≤ cδ‖λ
a+2s

2(a+s) gk(λ)‖C[0,1].
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Next, we derive an estimate for ‖λμgk(λ)‖C[0,1]: since rk(λ) = 1 − λgk(λ), we obtain
for 0 ≤ μ ≤ 1 that

λμgk(λ) = λμ−1(1 − rk(λ))

= [λ−1(1 − rk(λ))]1−μ[1 − rk(λ)]μ.

Now, by the mean value theorem, one can find a λ̃ ∈ [0, 1] such that

λ−1(1 − rk(λ)) = −r′k(λ̃),

which, together with Markov’s inequality (|r′k(λ)| ≤ 2k2) and |rk(λ)| ≤ 2 for λ ∈ [0, 1],
yields

λμgk(λ) ≤ 2k2(1−μ) for λ ∈ [0, 1].

Since −a/2 ≤ s ≤ 0 by assumption, we obtain 0 ≤ a+2s
2(a+s) ≤ 1 and thus by the

previous estimates ‖xδ
k − xk‖ ≤ 2 c δ k

a
a+s .

Proposition 4.3 guarantees convergence if k∗ is chosen such that δk
a

a+s
∗ → 0 and

k∗ → ∞ with δ → 0. In order to get convergence rates in terms of δ one has to bound
the number of iterations k∗ in terms of δ appropriately.

Theorem 4.4. Let the assumptions of Proposition 4.3 be satisfied and xδ
k be

generated by the method (4.5) with residual polynomials rk satisfying (2.2) for some

μ0 > 0. If the iteration is stopped according to the a priori stopping rule k∗ = O(δ
a+s
a+u ),

then

‖xδ
k − x†‖ = O(δ

u
a+u )

for x† − x0 ∈ X s
u with 0 < u ≤ 2(a + s)μ0.

If, alternatively, the iteration is stopped according to the discrepancy principle
(1.4), then

k∗ = O(δ
a+s
a+u ) and ‖xδ

k − x†‖ = O(δ
u

a+u )(4.7)

for x† − x0 ∈ X s
u with 0 < u ≤ 2(a + s)μ0 − a.

Proof. The first result follows immediately from Proposition 4.3. For the second,
observe that by (1.4) it follows that for k < k∗

(τ − 1) δ ≤ ‖T (xδ
k − xk)‖ + ‖T (xk − x†)‖.

Similarly as in the proof of Proposition 4.3, one obtains

‖T (xδ
k − xk)‖ = ‖Bgk(B

∗B)B∗(yδ − y)‖ ≤ c δ.

Hence, for τ sufficiently large and some C > 0,

Cδ ≤ ‖T (xk − x†)‖ ≤ k−
a+u
a+s |||x† − x0|||u,

where the last inequality holds for u ≤ 2(a+ s)μ0 − a. This already yields the bound
on k∗. Next, observe that by (1.4) it follows that ‖T (xk∗ − x†)‖ ≤ cδ. Application of
the interpolation inequality yields

‖xk − x†‖ ≤ c ‖T (xk − x†)‖ u
a+u ‖w‖ a

a+u

≤ Cδ
u

a+u ‖w‖ a
a+u ,
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which, together with ‖xδ
k∗

− xk∗
‖ ≤ c k

a
a+s
∗ δ (cf. the proof of Proposition 4.3) and the

bound on k∗, yields the a posteriori rate.
Remark 4.5. For s = 0, Theorem 4.4 coincides with Theorem 2.1. As in [3],

the rate (4.7) can also be proven in the stronger norm |||xδ
k∗

− x†|||0. Furthermore,

it is possible to show that |||xδ
k − x†|||u stays bounded for k ≤ k∗. Together with

|||xδ
k∗

−x†|||−a = ‖T (xδ
k∗

−x†)‖ = O(δ) and interpolation arguments, one then obtains
the rates

|||xδ
k − x†|||r = O(δ

u−r
a+u ) for − a ≤ r ≤ u(4.8)

in intermediate norms. If additionally the stronger condition (3.4) holds, then by
Proposition 3.6 and Remark 3.7, the spaces X s

u and Xu coincide with equivalent norms
for −a ≤ u ≤ a + 2s, and the rates in (4.8) hold for ‖xδ

k − x†‖r with −a ≤ r ≤ u
(cf. [10]) and under the usual source condition for regularization in Hilbert scales,
namely x† − x0 ∈ Xu. Using the improved a posteriori stopping rule given in [4,
section 6], the rates (4.7) even hold for 0 < u ≤ 2(a + s)μ0, as in the case of a priori

stopping with k∗ = c δ
a+s
a+u .

To see the effect of preconditioning, consider s = −a/2, and x†−x0 ∈ R((T ∗T )μ)∩
X s

u , where u = 2aμ. Then the following bounds on the stopping index hold: k∗ =

O(δ
2

2μ+1 ) for Landweber iteration, k∗ = O(δ
1

2μ+1 ) for ν-methods (with ν ≥ μ + 1/2)

or Landweber iteration in Hilbert scales, and k∗ = O(δ
1

2(2μ+1) ) for the Hilbert scale
ν-methods (with ν ≥ μ + 1). For μ = 1/2 and δ = 0.01, this amounts to a reduction
of the iteration numbers from 10,000 to 100 to 10, when switching from Landweber
iteration to the ν-methods and then to their Hilbert scale versions. This remarkable
acceleration will be demonstrated in several numerical examples below.

5. Examples and numerical tests. In this section we present several exam-
ples, where the conditions of Assumption 3.1 are satisfied and thus the results of
section 4 are applicable. We compare the performance of the proposed Hilbert scale
ν-methods with standard Landweber iteration and ν-methods, Landweber iteration
in Hilbert scales, and the method of conjugate gradients. For our numerical tests, we
use very fine discretizations (by standard piecewise linear finite elements) in order to
ensure that discretization errors can be neglected.

As a first example we consider the identification of a source term from distributed
measurements.

Example 5.1. Let Ω be a bounded domain in R
n, n = 2, 3, with sufficiently

smooth boundary (e.g., ∂Ω ∈ C1,1 or ∂Ω ∈ C0,1 and Ω convex) or let Ω be a paral-
lelepiped. Consider the operator T : L2(Ω) → L2(Ω) defined by Tf = u, with

Au := −∇ · (q∇u) + p · ∇u + cu = f, u|∂Ω = 0,(5.1)

and given sufficiently smooth parameters q, p, and c. Assume that A is uniformly
elliptic; then a solution to (5.1) has improved regularity, i.e., u ∈ H2(Ω)∩H1

0 (Ω) and
‖u‖H2 ∼ ‖f‖L2 . Let X2 = H2(Ω)∩H1

0 (Ω), with L2u = −Δu, define the Hilbert scale
{Xs}s∈R over X = L2(Ω). Then we have T ∼ X2, and thus Assumption 3.1 holds
with a = 2. Moreover, the stronger condition (3.4) holds.

For our numerical tests, we set Ω = [0, 1]2, q = c = 1, and p = 0. We choose
s = −a/2 = −1 for preconditioning and ν = 2 for the ν-methods; note that ν ≥ 3/2
is necessary to apply Theorem 4.4 for u = 2aμ = 1/2 in our case. In our experiment,
we try to identify the function

f† = (π2 + 1) sin(πx) + (4π2 + 1) sin(2πy)
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Table 5.1

Iteration numbers for Landweber iteration (lw), the ν-method (nu), Landweber iteration in
Hilbert scales (hs), the proposed Hilbert scale ν-method (hsnu), and the conjugate gradient algorithm
(cg); see Example 5.1.

δ/‖u‖ k∗(lw) k∗(nu) k∗(hs) k∗(hsnu) k∗(cg)
0.016 86 24 11 8 6
0.008 240 42 18 10 8
0.004 725 75 29 14 13
0.002 2150 130 51 18 19
0.001 6080 219 87 24 28

Table 5.2

Iteration error ek∗ = ‖fδ
k∗

− f†‖ for Landweber iteration (lw), the ν-method (nu), Landwe-

ber iteration in Hilbert scales (hs), the proposed Hilbert scale ν-method (hsnu), and the conjugate
gradient algorithm (cg); see Example 5.1.

δ/‖u‖ ek∗ (lw) ek∗ (nu) ek∗ (hs) ek∗ (hsnu) ek∗ (cg)
0.016 0.328403 0.33310 0.34812 0.34210 0.32499
0.008 0.283369 0.28547 0.29510 0.28842 0.27948
0.004 0.240430 0.24163 0.25057 0.24648 0.23434
0.002 0.205203 0.20668 0.21525 0.21041 0.20361
0.001 0.175605 0.17691 0.18289 0.17889 0.17137

corresponding to u = sin(πx) + sin(2πy). As a starting value we choose f0 = 0. With
this setting, we have f† ∈ R((T ∗T )μ) for all 0 ≤ μ < 1/8, and thus one would expect
the iteration numbers k∗ ∼ δ−8/5 for Landweber iteration, k∗ ∼ δ−4/5 for Landweber
iteration in Hilbert scales and the ν-methods, and k∗ ∼ δ−2/5 for the Hilbert scale ν-
method. For Ω = [0, 1]2, the singular values of T behave like σn = O(n−1). Thus, the
stopping index for the conjugate gradient method can be bounded by (apply Theorem
7.14 in [4] with α = 1)

k∗(cg) ≤ cδ−
1

(2μ+1)(1+α) = cδ−
1

2(2μ+1) ,(5.2)

which is the same bound as that for the proposed Hilbert scale ν-method. Finally,
the error should behave like ‖fδ

k∗
− f†‖ ∼ δ1/5 for all methods.

The numerically observed iteration numbers listed in Table 5.1 yield the rates
k∗ = δ−1.54 for Landweber iteration, k∗ = δ−0.80 for the 2-method, k∗ = δ−0.75

for Landweber iteration in Hilbert scales, and k∗ = δ−0.40 for the proposed Hilbert
scale 2-method. As expected, the iteration numbers for conjugate gradients and the
Hilbert scale ν-method are of the same order. Table 5.2 lists the iteration error
ek∗ = ‖fδ

k∗
− f†‖ for our numerical test. The corresponding convergence rates are

ek∗ ∼ δ0.22 for Landweber iteration and ek∗ ∼ δ0.23 for the other methods. Note that
for Ω ⊂ R

3, the Hilbert scale method should theoretically outperform the conjugate
gradient algorithm, since there we have only α = 2/3 in (5.2) yielding k∗(cg) ∼
δ−

3
5(2μ+1) , while the estimate for the semi-iterative method in Hilbert scales is still

k∗ ∼ δ−
1

2(2μ+1) .
Regularization in Hilbert scales was originally investigated under the stronger con-

dition (3.4), which is satisfied in Example 5.1. However, in the case s ≤ 0, condition
(A2) suffices to obtain the appropriate convergence rates. In the following example,
only a weaker estimate from below (3.5) holds. Note that due to Proposition 3.6, the
source condition x† − x0 ∈ X s

u can still be interpreted in terms of the Hilbert scale
{Xs}s∈R.
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Table 5.3

Iteration numbers k∗ and error ek∗ = ‖xδ
k∗

− x†‖ for the 2-method (nu), the proposed Hilbert

scale 2-method (hsnu), and the conjugate gradient algorithm (cg); see Example 5.2.

δ/‖y‖ k∗(nu) ek∗ (nu) k∗(hsnu) ek∗ (hsnu) k∗(cg) ek∗ (cg)
0.016 60 0.42317 11 0.38092 5 0.38866
0.008 100 0.37634 15 0.33851 6 0.33448
0.004 178 0.32480 21 0.28897 8 0.30918
0.002 313 0.28257 28 0.25193 11 0.26304
0.001 541 0.24696 36 0.22362 14 0.23447

Example 5.2. As a model problem for linear inverse problems, we consider the
following Fredholm integral equation of the first kind: let T : L2[0, 1] → L2[0, 1] be
defined by

(Tx)(s) =

∫ 1

0

s1/2k(s, t)x(t)dt,(5.3)

with the standard Green’s kernel

k(s, t) =

{
s(1 − t), s < t,
t(1 − s), t ≤ s.

Noting that

(T ∗y)(t) = (1 − t)

∫ t

0

s3/2y(s)ds + t

∫ 1

t

s1/2(1 − s)y(s)ds,

we obtain

R(T ∗) = {w ∈ H2[0, 1] ∩H1
0 [0, 1] : t−1/2w′′(t) ∈ L2[0, 1]}.

As a Hilbert scale operator, we choose L2x = −x′′, i.e.,

Lsx :=

∞∑
n=1

(nπ)s〈x, xn〉xn, xn :=
√

2 sin(nπ·).(5.4)

This choice yields R(T ∗) � X2 := H2[0, 1] ∩H1
0 [0, 1]; additionally, R(T ∗) ⊃ X2.5 :=

{w ∈ H2.5[0, 1] ∩ H1
0 [0, 1] : ρ−1/2w′′ ∈ L2[0, 1]}, with ρ(t) = t(1 − t). By Theorem

11.7 in [13], we have ‖w‖2
2.5 ∼ ‖w′′‖2

H1/2 + ‖ρ−1/2w′′‖2
L2

, and thus

m ‖x‖−2.5 ≤ ‖Tx‖ ≤ m ‖x‖−2;

see [3] for details. As a numerical test, we consider the reconstruction of the function

x†(s) = 2t− sign(2t− 1) − 1

and choose s = −1 and x0 = 0. In Table 5.3, we report the iteration numbers
obtained for the classical ν-method, the one in Hilbert scales, and for the conjugate
gradient algorithm. The corresponding stopping indices behave like k∗ ∼ δ−0.8 for
the ν-method, k∗ ∼ δ−0.43 for the Hilbert scale ν-method, and k∗ ∼ δ−0.38 for the
conjugate gradient algorithm; the convergence rates are ek∗ ∼ δ0.2 for all examples.
Again, the values are almost exactly the ones predicted by the theory (μ = 1/8).
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Fig. 5.1. Iterates xδ
k and true solution x† after 1 and 14 iterations (k∗ = 14 is the stopping

index of the Hilbert scale ν-method) for a noise level δ = 1%; see Example 5.2.

As a consequence of the preconditioning in Hilbert scales, the updates and iterates
of the Hilbert scale iterations are less smooth than those of the standard iterations.
Therefore, one may conjecture that especially nonsmooth parts of a solution can be
reconstructed faster than without preconditioning. This behavior is illustrated in
Figure 5.1. Note that the oscillations that can be seen for the Hilbert scale iterates
are small in the norm of X = L2.

In the next example, we study the problem of transmission computerized tomog-
raphy (see [16]).

Example 5.3. Let Ω ⊂ R
n, n = 2, 3, be a compact domain with spatially varying

density f . In a simple physical model the relative intensity loss along a distance Δx
is assumed to satisfy

ΔI

I
= f(x)Δx.

Denoting by I1(θ, s) and I0(θ, s) the intensities of the X-ray beams measured at the
detector and emitter connected by the line parameterized by the distance to the origin
s and the direction θ and located outside of the domain Ω, one gets

(Rf)(θ, s) :=

∫
x·θ=s

f(x)dx = − log
I1(θ, s)

I0(θ, s)
= g(θ, s)(5.5)

for w ∈ R
2, ‖w‖ = 1, and t > 0. Determining the unknown density f from measure-

ments of the intensity drop g(θ, s) corresponds to inversion of the Radon transform.
By [16, Theorem 5.1], we know that for each α there exist positive constants c(α, n)
and C(α, n) such that for f ∈ C∞

0 (Ωn),

c(α, n)‖f‖Hα
0 (Ωn) ≤ ‖Rf‖Hα+(n−1)/2(Z) ≤ C(α, n)‖f‖Hα

0 (Ωn),
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with Ωn ⊂ R
n denoting the unit ball, and Z the cylinder Sn−1×R. This implies (3.4)

for an appropriate choice of spaces; e.g., for X = L2(Ω
n) and Y = L2(Z), we see that

the Radon transform behaves like differentiation of order one 1
2 in dimension n = 2,

and like 1 times differentiation in dimension n = 3.
If Ω is a circle with radius r and f(θ, s) = f(s), and consequently g(θ, s) = g(s),

are radially symmetric, then (5.5) can be reduced to the solution of an Abel integral
equation of the first kind (see [16]), whose solution we investigate numerically below.

Let T : L2[0, 1] → L2[0, 1] be defined by

(Tx)(s) :=
1√
π

∫ s

0

x(t)√
s− t

dt,(5.6)

with data y and “true” solution x† = T †y. One can show that (T 2x)(s) =
∫ s

0
x(t)dt,

and thus inverting T amounts to differentiation of half order; more precisely (cf. [5]),

R(T ) ⊂ Hr[0, 1] for all 0 ≤ r < 1/2.

Let the Hilbert scale operator L be defined by

L2sx =

∞∑
n=0

λs
n〈x, xn〉xn with xn(t) =

√
2 sin(λnt), λn = (n + 1/2)π,(5.7)

with X = L2[0, 1] and X2 = {x ∈ H1[0, 1] : x(0) = 0}. Then R(T ) ⊂ Xr holds for
all 0 < r < 1 and 0 < a < 1, and the choice −1/2 < s = −a/2 is possible. Thus,
the iteration can be preconditioned with L−a, which corresponds to differentiation of
fractional order and can be realized efficiently via (5.7) and the fast Fourier transform.

In the numerical test we set s = −1/2 (which is the limiting case of allowed
choices) and try to identify the unknown density

x†(s) = 2t− sign(2t− 1) − 1.

The iterations are started with x0 = 0. In this setting we have x† ∈ R((T ∗T )μ) for all
0 ≤ μ < 1/2, and thus we can expect the iteration numbers k∗ ∼ δ−1 for Landweber
iteration, k∗ ∼ δ−1/2 for the ν-method and Landweber iteration in Hilbert scales,
and k∗ ∼ δ−1/4 for the proposed Hilbert scale ν-method. The stopping index for
the conjugate gradient algorithm is bounded by k∗ ∼ δ−1/3. As mentioned in the
introduction, the bound for the Hilbert scale ν-method is stronger than that for the
conjugate gradient algorithm if the singular values σn of T decay no faster than n−α

with some 0 < α < 1, which is the case here.
The numerically realized rates for the stopping index are k∗ ∼ δ−1.0 for the

Landweber iteration, k∗ ∼ δ−0.53 for the 2-method, k∗ ∼ δ−0.44 for the Landweber
iteration in Hilbert scales, and k∗ ∼ δ−0.4 for the conjugate gradient method, and
these rates are in good accordance with the theoretically predicted ones. The two
Hilbert scales ν-methods yield k∗ ∼ δ−0.48 for ν = 1 and k∗ ∼ δ−0.3 for ν = 2. Note
that due to the restriction on the qualification μ0 of the method used in Theorem 4.4,
one has to choose

ν ≥ u− s

2(a + s)
+

1

2
= 2

in order to get an optimal number of iteration and convergence rates for the Hilbert
scale ν-method stopped with the discrepancy principle (1.4). This explains the higher
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Table 5.4

Iteration numbers k∗ for the Landweber iteration (lw), the 2-method (nu), Landweber iteration
in Hilbert scales (hs), the proposed Hilbert scale ν-methods (hs1, hs2), and the conjugate gradient
algorithm (cg); see Example 5.3.

δ/‖u‖ k∗(lw) k∗(nu) k∗(hs) k∗(hs1) k∗(hs2) k∗(cg)
0.016 37 16 9 7 6 6
0.008 75 24 12 9 8 8
0.004 146 33 15 14 10 10
0.002 300 48 21 19 12 14
0.001 643 71 31 26 15 19

Table 5.5

Iteration numbers k∗ for the Landweber iteration (lw), the 2-method (nu), Landweber itera-
tion in Hilbert scales (hs), the proposed Hilbert scale ν-method (hsnu), and the conjugate gradient
algorithm (cg); see Example 5.4.

δ/‖u‖ k∗(lw) k∗(nu) k∗(hs) k∗(hsnu) k∗(cg)
0.016 20 12 6 4 3
0.008 50 21 8 6 5
0.004 377 56 28 13 5
0.002 723 74 53 17 5
0.001 1116 88 80 21 5

number of iterations needed for the Hilbert scale 1-method; cf. Table 5.4. Finally, for
all examples, the iteration error ek∗ = ‖xδ

k∗
−x†‖ decreases approximately like δ0.4 in

accordance to the predicted rate δ
2μ

2μ+1 .
In the final example, we investigate the performance of iterative regularization

methods for an exponentially ill-posed problem, namely the backwards heat equation
and compare the numerical results obtained in [3] to those for ν-methods in Hilbert
scales and the conjugate gradient algorithm.

Example 5.4. Consider Tx = y with operator T : L2[0, 1] → L2[0, 1] defined by
(Tg)(x) = y(x) = u(x, t) for some t > 0 and

−ut + quxx = 0, u(0, t) = u(1, t) = 0, u(x, 0) = g.

Let Ls be defined by (5.4). Then we have

‖T ∗y‖r ≤ c(r)‖y‖0 for all r < 2.5,

but no estimate from below (3.5) exists.
We consider the numerical reconstruction and compare the numerically observed

convergence rates and iteration numbers for the example

g†(x) = 2x− sign(2x− 1) − 1

and set g0 = 0. For preconditioning we set s = −1, and thus L−2s amounts to twice
differentiation. Note, that for exponentially ill-posed problems only a logarithmic
convergence rate can be expected under the weak source-condition of our example.

The stopping indices for Example 5.4 listed in Table 5.5 are bounded by k∗ ∼
δ−1.54 for Landweber iteration, k∗ ∼ δ−0.75 for the ν-method, k∗ ∼ δ−1.02 for Landwe-
ber iteration in Hilbert scales, and k∗ ∼ δ−0.63 for the Hilbert scale ν-method. Accord-
ing to Theorem 7.14 in [4], the stopping index for the conjugate gradient method can
be bounded by k(δ, yδ) ≤ c (1 + log 1

δ ) for exponentially ill-posed problems, i.e., if the
singular values σn of T decay like O(qn) with some q < 1, which explains the almost
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constant iteration numbers for the conjugate gradient method in our numerical test.
The numerically observed convergence rates are approximately ‖xδ

k∗
− x†‖ ∼ δ0.05 for

all methods.
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Abstract. We present a new family of stabilized methods for the Stokes problem. The focus of
the paper is on the lowest order velocity-pressure pairs. While not LBB compliant, their simplicity
and attractive computational properties make these pairs a popular choice in engineering practice.
Our stabilization approach is motivated by terms that characterize the LBB “deficiency” of the un-
stable spaces. The stabilized methods are defined by using these terms to modify the saddle-point
Lagrangian associated with the Stokes equations. The new stabilized methods offer a number of at-
tractive computational properties. In contrast to other stabilization procedures, they are parameter
free, do not require calculation of higher order derivatives or edge-based data structures, and always
lead to symmetric linear systems. Furthermore, the new methods are unconditionally stable, achieve
optimal accuracy with respect to solution regularity, and have simple and straightforward imple-
mentations. We present numerical results in two and three dimensions that showcase the excellent
stability and accuracy of the new methods.
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1. Introduction. Despite the fact that they violate the LBB [10] stability condi-
tion, low-order velocity-pressure pairs remain a popular practical choice in mixed finite
element approximation of incompressible materials; see, e.g., [29] and the references
cited therein. This popularity results from factors such as local mass conservation for
the lowest order conforming pair (piecewise linear, bilinear or trilinear C0 velocities,
and piecewise constant pressures), simple and uniform data structures for the lowest
equal order pair (piecewise linear, bilinear or trilinear C0 velocities and pressures), and
algebraic problems with manageable sizes and small bandwidths in three dimensions
for both pairs. The latter are of paramount importance in engineering applications,
where geometry resolution requires very fine meshes and higher order elements can
quickly lead to intractable algebraic problems in three space dimensions; see [27] for
an example setting.

To counteract the lack of LBB stability, low-order pairs are usually supplemented
by stabilization or postprocessing procedures that remove spurious pressure modes.
Unlike penalty methods (see [16, 22, 24, 25]) for which the goal is to uncouple the
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pressure and velocity, stabilized methods aim to relax the continuity equation so as to
allow application of LBB incompatible spaces. Consistently stabilized methods (see,
e.g., [1, 2, 3, 5, 15, 20, 21]) accomplish this by using the residual of the momentum
equation in the added stabilization terms. However, for low-order pairs, pressure and
velocity derivatives in this residual term either vanish or are poorly approximated,
causing difficulties in the application of consistent stabilization. One possible remedy
is to reformulate the Stokes problem as a first-order system so that the momentum
residual contains only first-order terms [5]. This, of course, leads to more unknowns
and larger problems to solve. A second approach is to reconstruct the higher order
derivatives [23] or to replace the Laplace operator by a discrete operator [8]. In either
case, computation of a global L2 projection may be required.

It is possible to stabilize unstable velocity pressure pairs without using residuals.
One example, motivated by fractional step algorithms for time-dependent problems,
is the pressure gradient projection (PGP) method (see [6, 7, 13]) and the related local
pressure gradient stabilization (LPS) method [4]. In both methods the compressibil-
ity constraint is relaxed by subtracting the discontinuous pressure gradient from its
projection onto a piecewise polynomial space. The difference is that PGP projects
the pressure gradient onto the continuous velocity space and gives rise to a globally
coupled problem, while LPS assumes nested spaces and projects the gradient onto an
element patch space, which leads to local problems. However, it is clear that both
methods are not appropriate for pairs with constant pressure elements.

Other examples of nonresidual stabilization are the local and global pressure jump
formulations for the bilinear-constant pair [28, 29]. In these methods, the constraint
is relaxed by using the jumps of the discontinuous pressure across element interfaces.
Application of pressure jump stabilization requires edge-based data structures, and in
the case of the local formulation, subdivision of the mesh into patches. Stabilization of
the bilinear-constant pair is also considered in [26] where, instead of pressure jumps, lo-
cal projections onto 2×2 macroelements are employed to relax the continuity equation.

In this paper, we analyze a new, nonresidual-based approach to the stabilization of
low-order mixed finite element discretizations of the Stokes equations, further develop-
ing the idea of polynomial-pressure-projection–based stabilization that was presented
and studied computationally in [14]. The starting point for the analysis of the method
is a lower bound for a discrete negative seminorm of the pressure gradient which quan-
tifies the LBB “deficiency” of an unstable pair. We show that the LBB “deficiency”
admits a representation in terms of operators with suitable range spaces. This very
general characterization opens up a possibility for stabilizing the mixed Stokes equa-
tions in a manner that is independent of the space dimension and the shape of the
finite elements and also does not require choosing any mesh-dependent parameters.

Our approach differs from existing residual and nonresidual stabilization tech-
niques in several important aspects. Most notably, the new methods do not require
approximation of derivatives, specification of mesh-dependent parameters, or nonstan-
dard data structures. Furthermore, our methods are unconditionally stable, optimally
accurate, and always lead to symmetric problems. Their implementation relies on op-
erators whose actions can be evaluated locally at the element level using standard
finite element techniques. As a result, an existing code can be easily modified to
handle the new stabilization procedures.

The paper is organized as follows. The remainder of this section introduces the no-
tation used throughout the paper. Section 2 reviews the mixed variational formulation
of the Stokes problem and a weaker form of the LBB stability condition that holds for
the spaces of interest to us. The new method is formulated in section 3. Sections 4 and
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5 deal with the stability and the error analysis, respectively, of the new methods while
section 6 is a succinct summary of some implementation details. The paper concludes
with section 7 in which the results of a series of numerical experiments are collected.

1.1. Nomenclature. In what follows, Ω denotes a simply connected bounded
domain in R

d, d = 2, 3, with a Lipschitz continuous boundary Γ. Throughout the
paper, we employ the standard notation H l(Ω), ‖ · ‖l, (·, ·)l, l ≥ 0, for the Sobolev
spaces of all functions having square integrable derivatives up to order l on Ω, and
the standard Sobolev norm and inner product, respectively. When l = 0 we will
write L2(Ω) instead of H0(Ω) and drop the index from the inner product designation.
H l

0(Ω) will denote the closure of C∞
0 (Ω) with respect to the norm ‖ · ‖l and L2

0(Ω)
will denote the space of all square integrable functions with vanishing mean. Spaces
consisting of vector-valued functions will be denoted in boldface. Throughout the
paper we use C to denote a generic positive constant whose value may change from
place to place but that remains independent of the mesh parameter h.

In this paper, we formulate methods for the Stokes equations that use pressure
and velocity finite element spaces defined with respect to the same partition Th of Ω
into finite elements Ωe. For instance, Ωe can be a hexahedron or a tetrahedron in
three dimensions, or a triangle or a quadrilateral in two dimensions. The boundary
∂Ωe of an element consists of faces γf . In two dimensions, each γf is an edge; in
three dimensions, γf can be triangles or quadrilaterals. We assume that each face
is oriented by selecting a normal direction nf . The set of all interior faces will be
denoted by Γh. The norm

‖u‖Γh
=

⎛
⎝ ∑

γf∈Γh

∫
γf

u2 dS

⎞
⎠1/2

(1.1)

will prove useful in what follows.
Our main focus is on low-order velocity and pressure pairs. For simplicial ele-

ments, we consider the affine finite element families

P1 =
{
uh ∈ C0(Ω) | uh|Ωe ∈ P1(Ωe) ∀Ωe ∈ Th

}
,(1.2)

where P1(Ωe) is the space of linear polynomials on Ωe. For quadrilateral and hexa-
hedral elements we consider the space

Q1 =
{
uh ∈ C0(Ω) | uh|Ωe = ûh ◦ F−1; ûh ∈ Q1(Ω̂e)

}
,(1.3)

where Ω̂e is a reference element, F : Ω̂e �→ Ωe is a bilinear or a trilinear mapping, and
Q1(Ωe) is the space of all polynomials on Ω̂e whose degree does not exceed 1 in each
coordinate direction. Note that unless Ωe is a parallelogram or a parallelepiped, uh

is not a piecewise polynomial function. For convenience, in what follows we will use
the symbol R1 to represent both kinds of finite element spaces. In accordance with
our earlier convention, vector-valued finite element spaces will be denoted in bold-
face, e.g., R1. A well-known approximation result (see [18, p. 217]) is that for every
u ∈ H2(Ω), there exists a function uh ∈ R1 such that

‖u− uh‖0 + h1/2‖u− uh‖Γh
+ h‖u− uh‖1 ≤ Ch2‖u‖2 .(1.4)

In addition to the C0 spaces R1, we will also need the piecewise constant space

R0 =
{
qh ∈ L2(Ω) | qh|Ωe

∈ P0(Ωe) ∀Ωe ∈ Th
}
,(1.5)
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where P0(Ωe) is a constant polynomial space on Ωe. In (1.5), Th can be a simplicial
or a nonsimplicial partition of Ω into finite elements. The space R0 has the following
approximation property (see [18, p. 102]): for every q ∈ H1(Ω), there exists qh ∈ R0

such that

‖q − qh‖0 ≤ Ch‖q‖1 .(1.6)

Finite element functions satisfy a number of useful inverse inequalities [12]. In
particular, we will use the standard inverse inequality

‖∇qh‖0 ≤ CIh
−1‖qh‖0(1.7)

that holds under some mild assumptions on Th for all functions in R1, and the inverse
inequality for R0 functions

‖[qh]‖Γh
≤ CIh

−1/2‖qh‖0 ∀ qh ∈ R0 ,(1.8)

where [qh] denotes the jump of qh ∈ R0.

2. Mixed finite element methods for the Stokes problem. We consider
the incompressible Stokes problem1

−λΔu + ∇p = f in Ω,(2.1)

∇ · u = 0 in Ω(2.2)

along with the homogeneous velocity boundary condition

u = 0 on Γ .(2.3)

The mixed variational form of (2.1)–(2.3) is to seek (u, p) ∈ H1
0(Ω)×L2

0(Ω) such
that

Q(u, p;v, q) = F (v, q) ∀ (v, q) ∈ H1
0(Ω) × L2

0(Ω) ,(2.4)

where

F (v) =

∫
Ω

f · v dΩ ,

Q(u, p;v, q) = A(u,v) + B(v, p) + B(u, q) ,(2.5)

A(u,v) = λ

∫
Ω

∇u : ∇vdΩ , and B(v, p) = −
∫

Ω

p∇ · vdΩ .(2.6)

1We work with a nondimensional form of the Stokes problem. The dimensional form of the Stokes
equation has the form

−μΔu + ∇p = ρf ,

where μ is the given (dynamic) viscosity, ρ is the given fluid density, and f is a given body force
per unit mass. We choose a reference speed uref , length �ref , and density ρref which we use to,
respectively, nondimensionalize the velocity u, the position vector x, and the density ρ. We then
arrive at (2.1) by nondimensionalizing the pressure p using ρrefu

2
ref and ρf using ρrefu

2
ref/�ref .

Then, in (2.1), the nondimensional parameter λ = μ/(ρref �refuref ) is the inverse of the “Reynolds
number.”

Solely for the sake of keeping the presentation simple, we make the assumption that μ is constant.
For nonconstant μ, the viscous term in the Stokes equations (2.1) is given by ∇ · (λ(∇u + (∇u)T ),
where λ is no longer constant, and, in (2.6), the first bilinear form is given by A(u,v) = 2

∫
Ω λD(u) :

D(v)dΩ, where D(v) = 1
2
(∇v + (∇v)T ). Only minor modifications in the analyses are needed.
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The mixed variational equation (2.4) is the first-order optimality condition for the
saddle-point (u, p) of the Lagrangian functional

L(v, q) =
λ

2

∫
Ω

|∇v|2 dx−
∫

Ω

q∇ · v dx−
∫

Ω

f · v dx .(2.7)

To define a mixed finite element method for the Stokes problem (2.1)–(2.2), we
restrict (2.4) to a pair of finite elements subspaces Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω).

A stable and accurate solution of (2.4), or equivalently, a stable and accurate ap-
proximation of the saddle-point of (2.7), requires that Vh and Sh satisfy the discrete
inf-sup condition

sup
vh∈Vh,vh �=0

B(ph,vh)

‖vh‖1
≥ γ‖ph‖0 ∀ ph ∈ Sh(2.8)

with γ > 0 independent of h; see [18, 19].
In this paper, we will formulate stabilized mixed methods for the lowest equal

order C0 pair

Vh = R1 ∩ H1
0(Ω) and Sh = R1 ∩ L2

0(Ω) ,(2.9)

and for the lowest order conforming pair

Vh = R1 ∩ H1
0(Ω) and Sh = R0 ∩ L2

0(Ω) .(2.10)

For simplicial elements, (2.10) is the unstable linear-constant pair that provides a
textbook example for an overconstrained velocity space; see [19, p. 23]. For quadrilat-
eral elements, it is the bilinear-constant pair that exhibits the notorious checkerboard
pressure mode. A common misconception is that once this mode is taken care of, the
bilinear-constant pair can be safely used. However, in [9] it is shown that this is not
the case and that, in fact, for this pair the constant γ in (2.8) is of order h. The pair
(2.9) is an additional classical example of unstable velocity-pressure pairs; see, [19,
pp. 21–25].

2.1. Weak inf-sup bounds. In this section, we show that the unstable velocity-
pressure pairs (2.9) and (2.10) satisfy a weaker form of the inf-sup condition (2.8).
This condition identifies terms that can be used to stabilize the mixed method. To
state the relevant form of the weaker inf-sup condition, we first review some results
of [17, 30, 31] specialized to (2.9) and (2.10).

Lemma 2.1. Let Vh and Sh be the spaces defined in (2.9). Then, there exist
positive constants C1 and C2 such that

sup
vh∈Vh

∫
Ω

ph∇ · vh dΩ

‖vh‖1
≥ C1‖ph‖0 − C2h‖∇ph‖0 ∀ ph ∈ Sh .(2.11)

Proof. By the definition of Sh, every ph ∈ Sh also belongs to L2
0(Ω). As a result,

there exists w ∈ H1
0(Ω) such that∫

Ω

ph∇ · w dΩ ≥ C̃1‖ph‖0‖w‖1 .(2.12)
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Let wh denote the interpolant of w out of Vh. Then, from (1.4)

‖w − wh‖0 + h1/2‖w − wh‖Γh
≤ Ch‖w‖1 and ‖wh‖1 ≤ C‖w‖1 .(2.13)

Using (2.12), (2.13), and the fact that all elements of Sh are C0 functions,∣∣∫
Ω
ph∇ · wh dΩ

∣∣
‖wh‖1

≥
∣∣∫

Ω
ph∇ · wh dΩ

∣∣
C‖w‖1

=

∣∣∫
Ω
ph∇ ·

(
wh − w

)
dΩ +

∫
Ω
ph∇ · w dΩ

∣∣
C‖w‖1

≥
∫
Ω
ph∇ · w dΩ

C‖w‖1
−

∣∣∫
Ω
∇ph ·

(
wh − w

)
dΩ

∣∣
C‖w‖1

≥ C̃1

C
‖ph‖0 −

‖∇ph‖0‖w − wh‖0

C‖w‖0
≥ C1‖ph‖0 − C2h‖∇ph‖0 .

(2.14)

Then, since

sup
vh∈Vh,vh �=0

∫
Ω
ph∇ · vh dΩ

‖vh‖1
≥

∣∣∫
Ω
ph∇ · wh dΩ

∣∣
‖wh‖1

,(2.15)

the lemma is proved.
For the velocity-pressure pair (2.10), the discontinuity of the pressure space ne-

cessitates some minor modifications in the statement and proof of the weak inf-sup
condition.

Lemma 2.2. Let Vh and Sh be the spaces defined in (2.10). Then, there exist
positive constants C1 and C2 such that

sup
vh∈Vh

∫
Ω

ph∇ · vh dΩ

‖vh‖1
≥ C1‖ph‖0 − C2h

1/2‖[ph]‖Γh
∀ ph ∈ Sh .(2.16)

Proof. The pressure space Sh defined in (2.10) is also a subspace of L2
0(Ω). Thus,

there exists a w ∈ H1
0(Ω) and a wh ∈ Vh that satisfy (2.12) and (2.13). Proceeding

as in Lemma 2.1, we find that∣∣∫
Ω
ph∇ · wh dΩ

∣∣
‖wh‖1

≥
∣∣∫

Ω
ph∇ · wh dΩ

∣∣
C‖w‖1

≥
∫
Ω
ph∇ · w dΩ

C‖w‖1
−

∣∣∫
Ω
ph∇ ·

(
wh − w

)
dΩ

∣∣
C‖w‖1

≥ C̃1

C
‖ph‖0 −

∣∣∫
Ω
ph∇ ·

(
wh − w

)
dΩ

∣∣
C‖w‖1

.

Using the fact that ph is constant on each element Ωe and integrating by parts gives∫
Ω

ph∇ ·
(
wh − w

)
dΩ =

∑
Ωe

∫
Ωe

ph∇ ·
(
wh − w

)
dΩ =

∑
Ωe

∫
∂Ωe

phn ·
(
wh − w

)
dS .
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Each interior face γf participates twice in this sum. Collecting the two integrals over
the same face and using (2.13) we obtain

∑
Ωe

∫
∂Ωe

phn ·
(
wh − w

)
dS =

∑
γf

∫
γf

[ph]nf ·
(
wh − w

)
dS

≤

⎛
⎝∑

γf

∫
γf

[ph]2 dS

⎞
⎠1/2⎛⎝∑

γf

∫
γf

∣∣wh − w
∣∣2 dS

⎞
⎠1/2

≤ Ch1/2‖[ph]‖Γh
‖w‖1

which proves that∣∣∫
Ω
ph∇ · wh dΩ

∣∣
‖wh‖1

≥ C1‖ph‖0 − C2h
1/2‖[ph]‖Γh

∀ ph ∈ Sh .(2.17)

Then, using (2.15), the lemma is proved.
The terms

−h‖∇ph‖0 and − h1/2‖[ph]‖0(2.18)

appearing in (2.11) and (2.16) quantify the inf-sup “deficiency” of the unstable pairs
(2.9) and (2.10), respectively. This observation has been used implicitly in the design
of stabilized methods; additional terms are introduced to counterbalance (2.18). For
instance, consistently stabilized methods are based on the observation that adding a
properly weighted residual of (2.1) to the continuity equation (2.2) will contribute a
term that can offset −h‖∇ph‖0. The rest of the added terms are introduced to fulfill
the consistency requirement and may actually be destabilizing. As a result, residual-
based stabilization must rely on carefully selected values of parameters to keep such
terms under control. Nonresidual stabilization follows the same idea but introduces
balancing terms that do not involve residuals. For example, in [28], pressure jumps
are added directly to the continuity equation to help offset the destabilizing effect of
the −h1/2‖[ph]‖0 term, while in [11] Brezzi and Pitkaranta use the first term in (2.18)
to obtain a stabilized formulation for piecewise linear velocity-pressure pairs.

As a template for the design of stabilizing terms, (2.18) is insufficiently general.
One is always led to consider either the gradient or the jumps of the pressure. The
latter case also has the drawback of requiring face-based assembly and data struc-
tures. Below, we will derive an alternative characterization of the inf-sup “deficiency”
for low-order spaces that is formulated in terms of abstract operators. This character-
ization does not involve gradients or jumps, does not depend on the space dimension
or the type of the element shapes, and has no explicit dependence on mesh parame-
ters. As a result, it leads to new classes of stabilized mixed methods with attractive
computational properties. At this point it will suffice to specify only the ranges of
the abstract operators needed to characterize the inf-sup deficiency. As we proceed
to establish stability and prove convergence results, more assumptions will be added
as needed. The first operator

Π0 : L2(Ω) �→ R0(2.19)

has a piecewise constant range; it will be used to stabilize (2.9). The second operator

Π1 : L2(Ω) �→ R1(2.20)
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has a continuous range; it will be used to stabilize (2.10).
Lemma 2.3. There exists a positive constant C such that

Ch‖∇ph‖0 ≤ ‖ph − Π0p
h‖0 ∀ ph ∈ R1 .(2.21)

There exists another positive constant C such that

Ch1/2‖[ph]‖0 ≤ ‖ph − Π1p
h‖0 ∀ ph ∈ R0 .(2.22)

Proof. To prove (2.21), note that Π0p
h is constant on each element Ωe, and so

∇(Π0p
h)|Ωe

= 0. As a result, using the inverse inequality (1.7),

h2‖∇ph‖2
0 =

∑
Ωe

h2‖∇ph‖2
0,Ωe

=
∑
Ωe

h2‖∇(ph − Π0p
h)‖2

0,Ωe

≤
∑
Ωe

CI‖ph − Π0p
h‖2

0,Ωe
= CI‖ph − Π0p

h‖2
0 .

To prove (2.22), note that Π1p
h ∈ R1 ⊂ C0(Ω). Thus, [(Π1p

h)|γf
] = 0 on every

interior element face γf . Using the inverse inequality (1.8),

h‖[ph]‖2
Γh

=
∑
γf

h‖[ph]‖2
0,γf

=
∑
γf

h‖[ph − Π1p
h]‖2

0,γf

= h‖[ph − Π1p
h]‖2

Γh
≤ CI‖ph − Π1p

h‖0 .

Using (2.21) and (2.22), results of Lemmas 2.1 and 2.2 can be combined into one
statement. Let

Π =

{
Π0 if Sh is defined by (2.9),
Π1 if Sh is defined by (2.10) .

(2.23)

Corollary 2.4. Let Vh and Sh be the spaces defined in (2.9) or (2.10). Then,
there exist positive constants C1 and C2 whose values are independent of h and such
that

sup
vh∈Vh

∫
Ω

ph∇ · vh dΩ

‖vh‖1
≥ C1‖ph‖0 − C2‖(I − Π)ph‖0 ∀ ph ∈ Sh .(2.24)

We note that Π0 and Π1 are complementary in the sense that Π0 acts on C0

pressures and has a discontinuous range and Π1 acts on discontinuous pressures and
has a C0 range. Note that besides the range assumption, Corollary 2.4 does not
require any additional hypotheses about Π.

3. The new stabilized mixed methods. We will stabilize (2.4) by using

1

2
‖(I − Π)p‖2

0(3.1)

to compensate for the inf-sup deficiency of the low-order finite element pairs in (2.9)
and (2.10). We add this term to (2.7) to obtain the following modified Lagrangian
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functional:2

L̃m(v, q)=
λ

2

∫
Ω

|∇v|2 dΩ−
∫

Ω

q∇ · v dΩ−
∫

Ω

f · v dΩ − 1

2
‖(I − Π)q‖2

0 .(3.2)

The saddle-point (ũ, p̃) of (3.2) satisfies the variational problem

A(ũ,v) + B(p̃,v) = F (v) ∀v ∈ H1
0(Ω),(3.3)

B(q, ũ) −G(p̃, q) = 0 ∀ q ∈ L2
0(Ω),(3.4)

where

G(p̃, q) =

∫
Ω

(p̃− Πp̃)(q − Πq) dΩ .(3.5)

Equivalently, we can write (3.3)–(3.4) in the following form: seek (ũ, p̃) ∈ H1
0(Ω) ×

L2
0(Ω) such that

Q̃(ũ, p̃;v, q) = F (v, q) ∀ (v, q) ∈ H1
0(Ω) × L2

0(Ω) ,(3.6)

where

Q̃(u, p;v, q) = A(u,v) + B(p,v) + B(q,u) −G(p, q) .(3.7)

The stabilized method is obtained by a restriction of (3.6) or, equivalently, of (3.3)–
(3.4) to the finite element spaces (2.9) or (2.10). Thus, we seek (uh, ph) in Vh × Sh,
such that

Q̃(uh, ph;vh, qh) = F (vh, qh) ∀ (vh, qh) ∈ Vh × Sh .(3.8)

The stabilization term (3.1) is not a residual of the Stokes equations. As a result,
(3.8) is not a consistent finite element formulation of the Stokes equations. However,
as noted earlier, for low-order elements, formally consistent stabilized methods [15,
20, 21] also lose their consistency, and so lack of consistency in our method should
not be viewed as a serious flaw.

3.1. Comparison with the penalty method. The last term in (3.2) resembles
the term that appears in the penalized Lagrangian

Lε(v, q) =
λ

2

∫
Ω

|∇v|2 dΩ −
∫

Ω

q∇ · v dΩ −
∫

Ω

f · v dΩ − ε

2
‖q‖2

0 .(3.9)

However, the method (3.8) resulting from (3.2) is fundamentally different from a
classical penalty approach based on (3.9). Taking first variations of (3.9) with respect
to v and q gives the variational equation: seek (uε, pε) in H1

0(Ω) × L2
0(Ω) such that

A(uε,v) + B(pε,v) = F (v) ∀v ∈ H1
0(Ω),(3.10)

B(q,uε) − εD(pε, q) = 0 ∀ q ∈ L2
0(Ω),(3.11)

2The modified Lagrangian (3.2) is in nondimensional form; its dimensional counterpart has the
form

L̃m(v, q)=
μ

2

∫
Ω
|∇v|2 dΩ−

∫
Ω
q∇ · v dΩ−

∫
Ω
ρf · v dΩ − α

2
‖(I − Π)q‖2

0 ,

where α = (ρrefuref �ref )−1 = λ/μ. It is important to note that α is not a stabilization parameter,
but is merely a parameter introduced to make the dimensional form of the modified Lagrangian
dimensionally correct; this observation is made obvious by examining the nondimensional form (3.2)
in which the stabilization term − 1

2
‖(I − Π)p‖2

0 is parameter free.
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where D(·, ·) is the L2 inner product. The second equation can be used to eliminate
the pressure and to obtain an equation in terms of uε only:

A(uε,v) +
1

ε

∫
Ω

(∇ · uε)(∇ · v) dΩ = F (v) ∀v ∈ H1
0(Ω) .(3.12)

Restriction of (3.12) to a discrete velocity space Vh leads to the classical penalty
method. Alternatively, one can discretize (3.10)–(3.11), eliminate the discrete pres-
sure from the linear system, and obtain another problem in terms of the discrete ve-
locity only. Regardless of which version of the penalty method is used, i.e., eliminate
and then discretize, or discretize and then eliminate, the ensuing penalty problem
continues to require a discrete inf-sup compatibility condition. For instance, well-
posedness of the eliminate and discretize method is subject to an inf-sup condition
between Vh and an implicit pressure space defined by εpε = −∇ · uε; see [24, 25]. A
classical example of a failure in this method is the locking phenomena that occurs for
linear velocities. In this case the implicit pair (Vh, Sh) is equivalent to the unstable
P1-P0 element.

Because the penalty method still requires compatible finite element spaces, it is
not a stabilization procedure. Rather, it is a solution method that allows one to solve
the mixed problem more easily by uncoupling the velocity and pressure. In contrast
to (3.10)–(3.11), in (3.8) we seek (uh, ph) ∈ Vh × Sh such that

A(uh,vh) + B(ph,vh) = F (vh) ∀vh ∈ Vh(3.13)

B(qh,uh) −G(ph, qh) = 0 ∀ q ∈ Sh .(3.14)

In addition to the absence of a penalty parameter, another difference between (3.13)–
(3.14) and the penalized problem (3.10)–(3.11) is that G(·, ·) vanishes for all pressures
in the range of Π. As a result, this variable cannot be eliminated from (3.14). Of
course, the main difference is that, as we shall see in the next section, (3.13)–(3.14)
is stable for the low-order pairs in (2.9) and (2.10), while (3.10)–(3.11) may fail as
ε → 0.

The penalty method can be extended to a stabilization procedure by using the
stronger H1-seminorm penalty ε/2‖∇q‖2

0 instead of the classical L2 penalty ε/2‖q‖2
0.

This leads to a stabilized finite element method proposed by Brezzi and Pitkaranta
[11]. The bound (2.21) in Lemma 2.3 implies that for R1 pressures their method and
(3.8) have similar stability properties. However, (3.8) can be extended to constant
pressures, while the method of [11] cannot.

4. Stability. To show that (3.8) is a stable variational problem, we have to
additionally assume that Π is continuous as an operator L2(Ω) �→ L2(Ω):

‖Πp‖0 ≤ C‖p‖0 ∀ p ∈ L2(Ω) .(4.1)

Using (4.1), it is easy to show that Q̃ is continuous, i.e.,

Q̃(uh, ph;vh, qh) ≤ C
(
‖uh‖1 + ‖ph‖0

) (
‖vh‖1 + ‖qh‖0

)
(4.2)

for all (uh, ph) and (vh, qh) in Vh×Sh. We now prove the stability of the variational
problem (3.8).

Theorem 4.1. Let (Vh, Sh) be one of the pairs (2.9) or (2.10). Then, there
exists a positive constant C whose value is independent of h such that

sup
(vh,qh)∈Vh×Sh

Q̃(uh, ph;vh, qh)

‖vh‖1 + ‖qh‖0
≥ C

(
‖uh‖1 + ‖ph‖0

)
∀ (uh, ph) ∈ Vh × Sh .(4.3)
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Proof. We will construct a pair (v̂h, q̂h), such that

Q̃(uh, ph; v̂h, q̂h) ≥ C
(
‖uh‖1 + ‖ph‖0

) (
‖v̂h‖1 + ‖q̂h‖0

)
.

Setting (vh, qh) = (uh,−ph) yields

Q̃(uh, ph;uh,−ph) = λ‖∇uh‖2
0 + ‖ (I − Π) ph‖2

0 .

For a given arbitrary but fixed pressure ph ∈ Sh, let w and wh be the functions
that satisfy (2.12) and (2.13). Assume that wh is normalized so that

‖∇wh‖0 =
√
λ ‖ph‖0 .(4.4)

From (2.14) and (2.21) if Π = Π0 and (2.17) and (2.22) if Π = Π1, we have that∫
Ω

ph∇ · wh dΩ ≥ C1‖ph‖2
0 − C2‖ (I − Π) ph‖0‖ph‖0 .

Setting (vh, qh) = (−αwh, 0), where α is a real, positive parameter, together with
the last inequality and (4.4), yields

Q̃(uh, ph;−αwh, 0) = −α

∫
Ω

∇uh · ∇wh dΩ + α

∫
Ω

ph∇ · wh dΩ

≥ −α‖∇uh‖0‖∇wh‖0 + α
(
C1‖ph‖2

0 − C2‖(I − Π)ph‖0‖ph‖0

)
≥ −α

√
λ‖∇uh‖0‖ph‖0 + α

(
C1‖ph‖2

0 − C2‖(I − Π)ph‖0‖ph‖0

)
.

As a result, for (vh, qh) = (uh − αwh,−ph), we have the bound

Q̃(uh, ph;uh − αwh,−ph) ≥ ‖∇uh‖2
0 + ‖ (I − Π) ph‖2

0 + αC1‖ph‖2
0

−α
√
λ‖∇uh‖0‖ph‖0 − αC2‖ (I − Π) ph‖0‖ph‖0 .

Using the ε-inequality with ε = C1/2, we have that

√
λ‖∇uh‖0‖ph‖0 ≤ λ

C1
‖∇uh‖2

0 +
C1

4
‖ph‖2

0

and

C2‖ (I − Π) ph‖0‖ph‖0 ≤ C2
2

C1
‖ (I − Π) ph‖2

0 +
C1

4
‖ph‖2

0 .

In combination with the earlier lower bounds, these inequalities lead to

Q̃(uh, ph;uh − αwh,−ph)

≥ λ

(
1 − α

C1

)
‖∇uh‖2

0 +
αC1

2
‖ph‖2

0 +

(
1 − αC2

2

C1

)
‖ (I − Π) ph‖2

0 .

Choosing

α̂ = min

{
C1

2
,
C1

2C2
2

}
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guarantees that (
1 − α̂

C1

)
≥ 1

2
and

(
1 − α̂C2

2

C1

)
≥ 1

2
.

We now set

v̂h = uh − α̂wh and q̂h = −ph .

It is then easy to see that

Q̃(uh, ph; v̂h, q̂h) ≥ 1

2

(
λ‖∇uh‖2

0 + α̂C1‖ph‖2
0 + ‖ (I − Π) ph‖2

0

)
≥ 1

6

(√
λ‖∇uh‖0 +

√
α̂C1‖ph‖0 + ‖ (I − Π) ph‖0

)2

≥ C
(
‖∇uh‖0 + ‖ph‖0

)2
,

where the last bound follows from (a+ b+ c)2 ≤ 3(a2 + b2 + c2) . Finally, (4.4) implies
that

‖∇v̂h‖0 + ‖q̂h‖0 = ‖∇(uh − α̂wh)‖0 + ‖ph‖0 ≤ ‖∇uh‖0 + α̂‖∇wh‖0 + ‖ph‖0

≤ ‖∇uh‖0 + α̂
√
λ‖ph‖0 + ‖ph‖0 ≤ C

(
‖∇uh‖0 + ‖ph‖0

)
,

i.e., (v̂h, q̂h) is bounded by (uh, ph) in the norm of H1
0(Ω) × L2(Ω). This proves the

theorem.
Together, (4.2) and (4.3) imply that (3.8) is a stable variational problem.

Remark 1. Because Q̃ is symmetric, (4.3) is sufficient to establish weak coercivity
of this form.

Remark 2. The stabilized problem (3.8) is well-posed if (4.2) and (4.3) hold, i.e.,

if the bilinear form Q̃ is continuous and weakly coercive. From the proof of Theorem
4.1, it is clear that weak coercivity depends only on Π having the appropriate range.
The continuity of Q̃, on the other hand, is impossible without assuming that Π itself
is continuous.

5. Error estimates. To prove convergence of stabilized solutions, the properties
of Π must be augmented by an approximation hypothesis. We will assume that

‖(I − Π)p‖0 ≤ Ch‖p‖1(5.1)

for every p ∈ H1(Ω).
Theorem 5.1. Let (Vh, Sh) denote one of the spaces (2.9) or (2.10), let (u, p) be

the solution of the Stokes problem (2.4), and let (uh, ph) ∈ Vh×Sh solve the stabilized
mixed problem (3.8), where the operator Π defined in (2.23) satisfies (4.1). Then,

‖u − uh‖1 + ‖p− ph‖0

≤ C

(
inf

qh∈Sh
‖p− qh‖0 + inf

vh∈Vh
‖u − vh‖1 + ‖(I − Π)p‖0

)
.

(5.2)
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Proof. Since (Vh, Sh) is a subspace of H1
0(Ω) × L2

0(Ω), we have from (2.4) that

A(u,vh) + B(p,vh) = F (vh) ∀vh ∈ Vh,

B(qh,u) = 0 ∀ qh ∈ Sh.

Subtracting these equations from (3.13)–(3.14) yields

A(uh − u,vh) + B(ph − p,vh) = 0 ∀vh ∈ Vh,

B(qh,uh − u) = G(ph, q) ∀ qh ∈ Sh,

or, equivalently,

Q̃(uh − u, ph − p;vh, qh) = G(p, qh) ∀ (vh, qh) ∈ Vh × Sh .(5.3)

Let (wh, rh) be an arbitrary pair in Vh × Sh. We estimate the discrete error

‖uh − wh‖1 + ‖ph − rh‖0

using the weak coercivity bound (4.3) and the error “orthogonality” (5.3):

C
(
‖uh − wh‖1 + ‖ph − rh‖0

)
≤ sup

(vh,qh)∈Vh×Sh

Q̃(uh − wh, ph − rh;vh, qh)

‖vh‖1 + ‖qh‖0

= sup
(vh,qh)∈Vh×Sh

Q̃(uh − u, ph − p;vh, qh) + Q̃(u − wh, p− rh;vh, qh)

‖vh‖1 + ‖qh‖0

= sup
(vh,qh)∈Vh×Sh

G(p, qh) + Q̃(u − wh, p− rh;vh, qh)

‖vh‖1 + ‖qh‖0
.

From (4.2) we have that

Q̃(u − wh, p− rh;vh, qh) ≤ C
(
‖u − wh‖1 + ‖p− rh‖0

) (
‖vh‖1 + ‖qh‖0

)
and from (4.1) we have that

G(p, qh) ≤ CG(p, p)1/2‖qh‖0 .

As a result, there exists a positive constant C such that

C
(
‖uh − wh‖1 + ‖ph − rh‖0

)
≤ sup

(vh,qh)∈Vh×Sh

G(p, p)1/2‖qh‖0 +
(
‖u − wh‖1 + ‖p− rh‖0

) (
‖vh‖1 + ‖qh‖0

)
‖vh‖1 + ‖qh‖0

≤ G(p, p)1/2 +
(
‖u − wh‖1 + ‖p− rh‖0

)
=

(
‖u − wh‖1 + ‖p− rh‖0

)
+ ‖(I − Π)p‖0 .

To complete the proof, we use the triangle inequality to obtain

‖u − uh‖1 + ‖p− ph‖0

≤
(
‖u − wh‖1 + ‖p− rh‖0

)
+
(
‖uh − wh‖1 + ‖ph − rh‖0

)
≤ C

(
‖u − wh‖1 + ‖p− rh‖0 + ‖(I − Π)p‖0

)
,
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and then take the infimum over wh ∈ Vh and rh ∈ Sh.
Together with the assumption (5.1) this theorem can be used to show that solu-

tions of (3.8) converge optimally with respect to the solution regularity.
Corollary 5.2. Assume that (u, p) ∈ H1

0(Ω) ∩ H2(Ω) × L2
0(Ω) ∩H1(Ω) solves

the Stokes problem (2.1)–(2.2) and that (uh, ph) is the solution of the stabilized mixed
problem (3.8), where the operator Π defined in (2.23) satisfies (4.1) and (5.1). Then,

‖u − uh‖1 + ‖p− ph‖0 ≤ Ch (‖u‖2 + ‖p‖1) .(5.4)

Proof. The assertion follows immediately from (5.2) using (1.4), (1.6), and
(5.1).

6. Implementation. Among the attractive features of our stabilization ap-
proach is the great flexibility in the definition of the stabilization term (3.1). The
main prerequisite to achieve stabilization of the mixed method with the low-order
finite element pairs (2.9) and (2.10) is to choose a Π with the appropriate range.
The simplest way to accomplish this is to use standard finite element projection or
interpolation operators. Then, the remaining assumptions about Π are easily verified.

From a practical viewpoint the main factors in the choice of Π are simplicity and
locality, i.e., computation of its action must be done at the element level using only
standard nodal data structures. With this in mind, a suitable choice of Π0 to stabilize
the lowest equal order pair (2.9) is a local L2 projection operator. Given a function
q ∈ L2(Ω) we define Π0 : L2(Ω) �→ R0 by Π0q = qh ∈ R0 if and only if∫

Ωe

(Π0q − q) dΩe = 0 ∀Ωe ∈ Th .(6.1)

It is easy to see that

Π0q|Ωe =
1

V (Ωe)

∫
Ωe

q dΩe

is the element average of q and that Π0 satisfies both assumptions (4.1) and (5.1); see
[18, p. 102].

A suitable choice of Π1 to stabilize the lowest order conforming pair (2.10) is a
Clement-like interpolant; see [18, p. 110]. Instead of using a projection onto a patch
of elements that share the same node we choose to define our interpolant by using a
projection onto the dual (or complementary) volume associated with each node. For
piecewise constant pressures this choice leads to a particularly simple formula for the
action of Π1 that does not require explicit construction of a dual cell. Specifically,
we define Π1 : L2(Ω) �→ R1 as follows. For a given node Ni in Th, let Ω̂i denote its

dual volume. Given a function q ∈ L2(Ω), let qi be the constant function on Ω̂i that
minimizes the functional

Ji(q) =
1

2

∫
Ω̂i

(qi − q)
2
dΩ ;(6.2)

then set

Π1q =

Nnodes∑
i=1

qiNi(x) ∈ R1 ,(6.3)
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where Ni denotes the nodal basis of R1 and Nnodes is the number of nodes in Th. The
action of the operator defined in (6.3) can be computed locally at the element level
and has the same properties as the usual Clement interpolant, i.e., (4.1) and (5.1) are
satisfied. For q = qh ∈ R0, the functional in (6.2) further simplifies to

Ji(q
h) =

∑
Ωe∩Ωi �=0

Vi(Ωe)(qi − qhe )2,

where qhe is the constant value of qh on Ωe and Vi(Ωe) is the volume fraction of the

element Ωe that belongs to the dual cell Ω̂i associated with node Ni. For constant
pressures, we can choose

Vi(Ωe) = V (Ωe)/ne ,

where ne is the number of nodes in Ωe. Minimization of Ji then yields the formula

qi =

∑
Ωe∈Ωi

Vi(Ωe)q
h
e∑

Ωe∈Ωi
Vi(Ωe)

=
∑

Ωe∈Ωi

dieq
h
e ,

i.e., the nodal values of Π1q
h are area weighted averages of the surrounding constant

pressure values of qh.
The stabilized mixed problem gives rise to a linear system of algebraic equations

with a matrix that has the form [
A B

T

B −G

]
.(6.4)

The matrices A and B are assembled in the usual manner from the bilinear forms
A(·, ·) and B(·, ·), respectively, and G is a symmetric, semidefinite matrix generated
at the element level from G(·, ·). The form of this matrix depends on the particular
operator Π employed in the stabilization. However, computation of G is completely
local and can be accomplished by augmenting the standard nodal assembly process
by a few simple calculations. For example, the only information needed to compute
G in the case of Π1 is the area of each element. This information should be readily
available during the standard assembly process; moreover, calculation of G is simple
in comparison to the calculations required to determine A and B.

It is also easy to see that G is a sparse matrix. In the case of Π = Π0, its
sparsity pattern is the same as for the standard nodal R1 pressure mass matrix. In
the case of Π = Π1, the original mass matrix associated with piecewise constant
pressures is diagonal while G is not. Nevertheless, the important point is that the
action of (I − Π) in both cases is obtained by multiplication of pressure degrees of
freedom by a sparse matrix rather than by an inversion of a mass matrix as occurs in
determining L2 projections. As a result, in the context of iterative solution methods,
our stabilization method is very efficient as it requires only one sparse matrix-vector
multiply per iteration.

7. Numerical examples. In this section, we report on some numerical results
obtained using the stabilized method (3.8). The main goal of these experiments is to
verify the convergence rates of (5.2) for the low-order pairs (2.9) and (2.10) in two
and three space dimensions. For each pair of spaces, we consider both simplicial and
nonsimplicial partitions Th of the computational domain into finite elements. Figure
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Fig. 7.1. A sequence of refined nonuniform quadrilateral grids.

7.1 shows an example of a nonsimplicial sequence of grids used for a convergence
study in two dimensions. The following error norms are used for the investigation of
convergence rates:

ehuL2
= ‖uh − u‖0 =

√√√√ d∑
i=1

∫
Ω

(uh
i − ui)2dΩ,(7.1)

ehuH1
= ‖uh − u‖1 =

√√√√ d∑
i=1

∫
Ω

∇(uh
i − ui) · ∇(uh

i − ui)dΩ,(7.2)

ehpL2
= ‖ph − p‖0 =

√∫
Ω

(ph − p)2dΩ ,(7.3)

where d denotes the spatial dimension, ui, i = 1, . . . , d, denote the components of the
vector u, and (uh, ph) denotes the stabilized finite element approximation of the exact
solution (u, p). To estimate convergence rates, we select a pair of smooth functions
(u, p), with u solenoidal and p having zero mean, and evaluate the Stokes equations
to generate the source term f and the boundary data. This synthetic data is then
used by (3.8) to approximate the smooth exact solution on a sequence of grids.

The first example is for a unit square with3 λ = 1 and the smooth exact solution

u1 = x + x2 − 2xy + x3 − 3xy2 + x2y,(7.4)

u2 = −y − 2xy + y2 − 3x2y + y3 − xy2,(7.5)

p = xy + x + y + x3y2 − 4/3 .(7.6)

The values of u on the boundary of the square are constrained to those given by (7.4)
and (7.5). To remove the constant pressure mode from the numerical solution, the
constraint ∫

Ω

p(x)dΩ = 0(7.7)

is also imposed. Results for stabilized triangular elements P1-P1 and P1-P0 and sta-
bilized quadrilateral elements Q1-Q1 and Q1-P0 are shown in Figure 7.2. The ehuH1

errors for the continuous pressure elements (P1-P1 and Q1-Q1) and the discontinuous

3The implementation of the new stabilized method for nonconstant viscosity is straightforward
by using, e.g., viscosity values at quadrature points.
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Fig. 7.2. Errors for the first two-dimensional example (structured meshes).

Table 7.1

Solution errors for triangular stabilized elements normalized with respect to results for the stable
MINI element.

P1-P1 P1-P0

1/h ehuL2
ehuH1

ehpL2
ediv ehuL2

ehuH1
ehpL2

ediv

8 0.892 0.985 0.588 0.976 1.009 0.986 0.807 0.823
16 0.890 0.996 0.583 0.976 1.114 0.997 1.201 0.826
24 0.890 0.999 0.574 0.976 1.155 1.000 1.552 0.827
32 0.889 1.000 0.565 0.976 1.176 1.001 1.872 0.827
40 0.889 1.001 0.556 0.976 1.189 1.001 2.167 0.828
48 0.889 1.001 0.549 0.976 1.198 1.002 2.442 0.828
56 0.889 1.001 0.542 0.976 1.204 1.002 2.698 0.828

pressure elements (P1-P0 and Q1-P0) are nearly identical. Although not predicted by
theory, the ehpL2

line segment slopes for the continuous pressure elements exceed those
of the discontinuous pressure elements. In all cases, the theoretical convergence rates
are confirmed.

For purposes of comparison, we show in Table 7.1 the P1-P1 and P1-P0 results of
Figures 7.2 normalized with respect to those of the stable MINI element. Also shown
in the table are the normalized values of the maximum error in the divergence within
an element as defined by

ediv = max
e

∣∣∣∣
∫

Γe

u · n dΓe

∣∣∣∣ ,(7.8)

where Γe is the boundary of element e and n is the unit outward normal of Γe. The
normalized maximum errors in the divergence are close to the stable MINI element
for both the P1-P1 and P1-P0 elements. The higher normalized values of ehpL2

for
the P1-P0 elements are consistent with previous comments regarding continuous and
discontinuous pressure elements.

The second example uses the same exact solution, but now the square domain
has three circular cutouts as shown in Figure 7.1. Note that it is necessary to adjust
the constant value of 4/3 in (7.6) to satisfy (7.7). Meshes of triangles were obtained
from the quadrilateral meshes by splitting each quadrilateral into two triangles. Plots
of the error norms for the different element types are shown in Figure 7.3. In this
figure, he = 1/

√
Ne where Ne is the number of quadrilateral elements in the mesh.

As expected, the error norms become smaller as the meshes are refined.
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Fig. 7.3. Errors for the second two-dimensional example (unstructured meshes).
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Fig. 7.4. Errors for the three-dimensional example.

The final example is for a unit cube with λ = 1 and the smooth exact solution

u1 = x + x2 + xy + x3y,(7.9)

u2 = y + xy + y2 + x2y2,(7.10)

u3 = −2z − 3xz − 3yz − 5x2yz,(7.11)

p = xyz + x3y3z − 5/32 .(7.12)

The hexahedral meshes have (1/h)3 elements whereas the tetrahedral meshes have
6(1/h)3 elements. Plots of the error norms versus element length are shown in Fig-
ure 7.4. As was the case for the two-dimensional examples, the theoretical convergence
rates are confirmed. Again, the ehpL2

line segment slopes for the continuous pressure
elements are larger than those for the discontinuous pressure elements.

For further examples and numerical studies, we refer to [14].

8. Conclusions. We have formulated a new approach to stabilization of low-
order velocity-pressure pairs for the incompressible Stokes equations. Central to our
approach is the characterization of the LBB deficiency of the unstable pairs in terms of
suitable operators, and their subsequent application in the formulation of a stabilized
mixed variational equation. This characterization remains valid for a broad range
of operators which makes our stabilization technique extremely flexible and leads to
stabilized mixed methods with attractive computational properties. Most notably,
our methods do not require selection of mesh-dependent stabilization parameters,
retain the symmetry of the original equations, and can be implemented at the ele-
ment level with minimal additional cost. Numerical examples presented in this paper
demonstrate the excellent stability and accuracy properties of the new methods.
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CONVERGENCE OF THE LLOYD ALGORITHM
FOR COMPUTING CENTROIDAL VORONOI TESSELLATIONS∗
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Abstract. Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a bounded
geometric domain such that the generating points of the tessellations are also the centroids (mass
centers) of the corresponding Voronoi regions with respect to a given density function. Centroidal
Voronoi tessellations may also be defined in more abstract and more general settings. Due to the
natural optimization properties enjoyed by CVTs, they have many applications in diverse fields.
The Lloyd algorithm is one of the most popular iterative schemes for computing the CVTs but its
theoretical analysis is far from complete. In this paper, some new analytical results on the local and
global convergence of the Lloyd algorithm are presented. These results are derived through careful
utilization of the optimization properties shared by CVTs. Numerical experiments are also provided
to substantiate the theoretical analysis.

Key words. centroidal Voronoi tessellations, k-means, optimal vector quantizer, Lloyd algo-
rithm, global convergence, convergence rate
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1. Introduction. A centroidal Voronoi tessellation (CVT) is a special Voronoi
tessellation of a given set such that the associated generating points are the centroids
(centers of mass) of the corresponding Voronoi regions with respect to a predefined
density function [7]. CVTs are indeed special as they enjoy very natural optimization
properties which make them very popular in diverse scientific and engineering appli-
cations that include art design, astronomy, clustering, geometric modeling, image and
data analysis, resource optimization, quadrature design, sensor networks, and numer-
ical solution of partial differential equations [1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 17, 15,
26, 29, 30, 31, 39, 44, 45]. In particular, CVTs have been widely used in the design
of optimal vector quantizers in electrical engineering [25, 28, 40, 43]. They are also
related to the so-called method of k-means [27] in clustering analysis. CVTs can also
be defined in more general cases such as those constrained to a manifold [12, 11] or
those corresponding to anisotropic metrics [16, 18], and other abstract settings [7, 9].

For modern applications of the CVT concept in large-scale scientific and engineer-
ing problems, it is important to develop robust and efficient algorithms for construct-
ing CVTs in various settings. Historically, a number of algorithms have been studied
and widely used [7, 19, 25, 27, 38]. A seminal work is the algorithm first developed
in the 1960s at Bell Laboratories by S. Lloyd which remains to this day one of the
most popular methods due to its effectiveness and simplicity. The algorithm was later
officially published in [35]. It is now commonly referred to as the Lloyd algorithm and
is the main focus of this paper.
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The Lloyd algorithm has many elegant and simple interpretations [7], but to
present it more rigorously, we begin with a more detailed description of the CVT.
First of all, we recall the concept of the Voronoi tessellation (or Voronoi diagram).
A Voronoi tessellation refers to a tessellation of a given domain Ω ∈ R

N by the
Voronoi regions {Vi}ki=1 associated with a set of given generating points or generators
{zi}ki=1 ⊂ Ω [22, 33, 41]. For each i, {Vi}ki=1 consists of all points in the domain Ω that
are closer to zi than to all the other generating points. For a given density function
ρ defined on Ω, we may define the centroids, or mass centers, of regions {Vi}ki=1 by

z∗i =

∫
Vi

yρ(y) dy∫
Vi

ρ(y) dy

.(1.1)

Then, a CVT refers to a Voronoi tessellation for which the generators themselves
are the centroids of their respective Voronoi regions, that is, zi = z∗i for all i. We
refer to [7] for a more comprehensive review of the mathematical theory and diverse
applications of CVTs.

In the seminal work of Lloyd on the least square quantization [35], one of the
algorithms proposed for computing the CVTs (referred to as the optimal quantizers
in the particular setting) is an iterative algorithm consisting of the following simple
steps: starting from an initial Voronoi tessellation corresponding to an old set of
generators, a new set of generators is defined by the mass centers of the Voronoi
regions. This process is continued until a certain stopping criterion is met. With the
notation given above, the Lloyd algorithm for constructing CVTs can be described
more precisely by the following procedure.

Algorithm 1.1 (Lloyd algorithm for computing CVTs).
Input:

Ω, the domain of interest; ρ, a density function defined on Ω;
k, number of generators; {zi}ki=1, the initial set of generators.

Output:
{Vi}ki=1, a CVT with k generators {zi}ki=1 in Ω.

Iteration:
1. Construct the Voronoi tessellation {Vi}ki=1 of Ω with generators {zi}ki=1.
2. Take the mass centroids of {Vi}ki=1 as the new set of generators {zi}ki=1.
3. Repeat procedures 1 and 2 until some stopping criterion is met.

Given a set of points {zi}ki=1 and a tessellation {Vi}ki=1 of the domain, we may
define the energy functional or the distortion value for the pair ({zi}ki=1, {Vi}ki=1) by

H
(
{zi}ki=1, {Vi}ki=1

)
=

k∑
i=1

∫
Vi

ρ(y)|y − zi|2 dy .

The minimizer of H necessarily forms a CVT which illustrates the optimization prop-
erty of the CVT [7]. Meanwhile, it is easy to see that the Lloyd algorithm is an energy
descent iteration, which gives strong indications of its practical convergence.

The Lloyd algorithm sparked enormous research efforts in later years and its
variants have been proposed and studied in many contexts for different applications
[25, 28, 40, 43, 35, 24, 23, 32, 34, 36]. A particular extension was made in [30] to
combine the deterministic features of the Lloyd algorithm with some random sampling
techniques. Despite its great success in applications and a large number of studies over
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the last few decades, only limited theoretical results on the Lloyd algorithm have been
obtained [7] and many fundamental issues remain open concerning its convergence.

In this paper, we present a systematic study on both the local and the global
convergence properties of the Lloyd algorithm. A number of new global convergence
theorems are rigorously proved, including the global convergence of subsequences for
any density functions, the global convergence of the whole sequence in one-dimensional
space, and the global convergence under some nondegeneracy conditions. We also
present some theoretical studies on the local convergence properties of the Lloyd
algorithm including estimates on the convergence rates. Some numerical results are
also presented to substantiate our theoretical investigation. Many of the techniques
employed in this paper, in fact, work for more general settings. As an illustration, we
analyze the application of the Lloyd algorithm to the construction of the constrained
CVTs on a manifold and present some similar convergence theorems.

The rest of the paper is organized as follows. We present our main convergence
theorems and some detailed discussions in section 2, followed by the extensions to
more general settings that are considered in section 3 and numerical results that are
given in section 4. Conclusions are drawn in section 5.

2. Convergence. Since Lloyd’s pioneering work, many studies have been made
on the convergence of the iteration [21, 24, 32, 36]. For example, the local conver-
gence has been proved for strictly logarithmically concave density functions in the
one-dimensional space [32]. An extension to CVTs defined on a circle is given in [12].
The convergence analysis in multidimensional space for general density functions is
far from complete. There are very few known conditions that guarantee the global
convergence. We now present some new results that have not been previously explored
in the literature.

For clarity, since a Voronoi tessellation is defined using a point set with k points
Y = {yi}ki=1 as the respective generators, let us redefine the energy functional, or the
distortion value, as a functional for a pair (Y,Z) with Z = (z1, z2, . . . , zk) ∈ R

kN :

H
(
Y,Z

)
=

k∑
i=1

∫
Vi(Y)

ρ(y)|y − zi|2 dy ,

where {Vi(Y)}ki=1 are the Voronoi regions with respect to {yi}ki=1. The Lloyd al-
gorithm may be viewed as a fixed point iteration of the so-called Lloyd map [7], a
mapping from a set of distinct generators {zi}ki=1 ⊂ Ω ⊂ R

N to the corresponding
mass centers, defined by T = (T1,T2, . . . ,Tk)

T : R
kN → R

kN with

Ti(Z) =

∫
Vi(Z)

yρ(y) dy∫
Vi(Z)

ρ(y) dy

.

A set of generators of a centroidal Voronoi tessellation is obviously a fixed point of
T. Moreover, the Lloyd algorithm is equivalent to a fixed point iteration of T:

Zn = T(Zn−1) for n ≥ 1 .

Notice that in general, the map T can be defined only on an open subset of
Ωk ⊂ R

kN as we need to ensure that the denominators are nonzero, that is, the
corresponding Voronoi regions are nonempty. This, in particular, implies that the
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generating points must be distinct. With this being noted, one needs to be cautious
in applying general optimization theory concerning the convergence of energy descent
algorithms [37] as such abstract theory often requires the compactness of the domain
and the closedness of the associated map.

We now first quote some elementary facts for which one may find more detailed
discussions in [7] and [41].

Lemma 2.1. Let ρ be a positive and smooth density function defined on a smooth
bounded domain Ω. Then

(1) H is continuous and differentiable in Ω̄k × Ω̄k;

(2) H(Z,T(Z)) = minY∈Ω̄k H
(
Z,Y

)
;

(3) H(Z,Z) = minY∈Ω̄k H(Y,Z).
Next, we restate the strong connections between the map T, the CVTs, and the

Lloyd algorithm that we alluded to earlier.
Lemma 2.2. Let {Zn}∞1 be the sequence of generating sets produced by the Lloyd

algorithm. Then
(1) Zn = T(Zn−1);
(2) H(Zn,Zn) ≤ H(Zn−1,Zn−1).
The first conclusion of the above lemma is obvious while the second one follows

from properties (2) and (3) of Lemma 2.1 (for more details, see [7]). The results of
Lemma 2.2 imply that the distortion (energy) values decrease when they are evaluated
at consecutive iterations of the Lloyd algorithm; thus, the energy functional may be
viewed as a descent function of the map T, a fact that has been explored in [42],
though the notion of a closed algorithm does not readily apply here due to the possible
degeneracy of the Lloyd map T when some of the generating points either coincide
or become arbitrarily close.

It is perhaps also interesting to note that the Lloyd algorithm may be viewed
as an alternating variable algorithm for minimizing the energy functional, that is, in
which one alternates between minimizing H(Y,Z) with respect to Y and Z. It is well
known that there are examples of simple optimization problems with special objective
functions for which such an alternating variable algorithm does not always converge.
It is thus interesting to see whether the special features of the functional H can help
us to establish the convergence of the Lloyd algorithm.

2.1. Existence of convergent subsequence. We now present some new con-
vergence theorems concerning the Lloyd algorithm. It has been shown in [7] that if
the density function is positive, except on a measure zero set, stationary points of the
energy H are given by fixed points of the Lloyd map T. The result below justifies
that fixed points are attainable as a limit of Lloyd iterations.

Theorem 2.3. Any limit point Z of the Lloyd algorithm is a fixed point of the
Lloyd map, and thus, (Z,Z) is a critical point of H. Moreover, for an iteration started
with a given initial guess, all elements in the set of its limit points share the same
distortion value.

Proof. The Lloyd algorithm produces a sequence {Zn}, which is bounded in Ω̄k,
and thus it has a convergent subsequence. Let Z be a limit point; then there exists
a subsequence {Znj} such that Znj → Z as nj → ∞. Since the distortion values
are monotonically decreasing, it follows that all limiting points must share the same
distortion value.

Now, by properties of the iteration, H(Zn,Zn) is monotonically decreasing, so

H
(
Z,Z

)
= limH

(
Znj ,Znj

)
= inf H

(
Zn,Zn

)
.
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On the other hand, we know from Lemma 2.1 that

H1

(
U,Zn

)
|U=Zn

= 0 .

Here we use the notation H1 to denote the partial derivatives with respect to all the
components of the first argument (gradient with respect to the first argument U) and
H2 (the gradient) with respect to the second argument.

By continuity, we get

H1

(
Z,Z

)
= 0 .

Now, if H2(Z,U) |U=Z= 0, (Z,Z) is a critical point of H and we are done. Otherwise,
there exists some Y such that

H
(
Z,Y

)
< H

(
Z,Z

)
.

Thus, for small enough δ, we have for large enough nj that

H
(
Znj ,Y

)
< H

(
Z,Y

)
+ δ

< H
(
Z,Z

)
≤ H

(
Znj+1,Znj+1

)
≤ H

(
Znj ,Znj+1

)
.

This contradicts the fact that

H
(
Znj ,Znj+1

)
= minYH

(
Znj ,Y

)
.

Thus, the theorem is proved.
The above theorem may be simply classified as a theorem for the global conver-

gence of subsequences of the Lloyd algorithm. It leads to a more precise characteriza-
tion of the algorithm and a hint on why it rarely fails, while also motivating the global
convergence theorems for the whole sequence with some additional assumptions that
we are going to present next.

2.2. Global convergence. As an immediate consequence of Theorem 2.3, we
easily get the following result.

Corollary 2.4. If the fixed point is unique, the Lloyd algorithm converges
globally.

The uniqueness of the fixed point has been established in some special cases in
the literature. We will come back to this point later in the section. The unique-
ness is obviously not a necessary condition, but we may in fact derive the following
convergence theorem.

Theorem 2.5. If the set of fixed points with any particular distortion value is
finite, the Lloyd algorithm converges globally.

Proof. Convergence may fail only if the generated sequence possesses infinitely
many jumps from a neighborhood of one fixed point to another. Suppose U and V
are two fixed points with ||U − V|| = δ > 0. Denote the generated sequence of the
Lloyd algorithm as Zn, i.e., Zn+1 = T(Zn).
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Suppose Znr
→ U and Znl

→ V. Then for any δ > 0, there exists M > 0 such
that for all nr, nl > M we have ||Znr − U|| < δ/3 and ||Znl

− V|| < δ/3. The Lloyd
map is continuous near the fixed points (see Proposition 3.5 in [7]), so M can be
chosen to be suitably large to assure

||T(Znr
) − Znr

|| < δ/3.

Now suppose the sequence makes infinitely many jumps from subsequence {nr} to
{nl}; i.e., there are infinitely many μ, ν s.t. nlμ = nrν + 1. Then ||T(Znrν

) − V|| =
||Znrν +1 − V|| = ||Znlμ

− V||. Hence

δ = ||U − V|| ≤ ||U − Znrν
|| + ||Znrν

− T(Znrν
)|| + ||T(Znrν

) − V|| < δ.

We get a contradiction.
To this end, we have proved the global convergence of the Lloyd method in case

the set of fixed points, Γ, does not have an accumulation point. Note that there are
situations where Γ contains accumulation points and all points in Γ share the same
distortion value. For example, consider the CVTs formed with two generators in a
unit disc centered at the origin for the constant density function. Simple calculation
shows that the critical points fill a circle of radius 4/(3π). That is, due to the rotation
symmetry, any pair of points in the opposite ends of such a circle determines a CVT,
and all the critical points share the same energy values. Of course, cases like this
are very rare, so this fact does not present any difficulties for the convergence of the
Lloyd algorithm in most practical applications.

We now present another result which further substantiates the global convergence
of Lloyd algorithm in general.

Theorem 2.6. If the iterations in the Lloyd algorithm stay in a compact set,
where the Lloyd map T is continuous, then the algorithm is globally convergent to a
critical point of H.

Proof. The proposition follows from the global convergence theorem (GCT), [37]
and similar arguments have been presented in [42]. Indeed, the Lloyd algorithm
can be regarded as a descent method with the descent function given by H(·,T(·)).
Let {Zn}∞n=1 be a sequence generated by Zn+1 = T(Zn). All Zn’s are contained
in a compact set. If Γ is the set of solutions, H(Y,T(Y)) < H(Z,T(Z)) for all
Z /∈ Γ, Y ∈ T(Z) and H(Y,T(Y)) = H(Z,T(Z)) for all Z ∈ Γ, Y ∈ T(Z). The
continuity implies the closedness of T in a compact set. Applying the GCT, we get
the convergence of the sequence Zn, and the limit Z is a fixed point of T; thus, the
algorithm converges to a critical point of H.

We note that the compactness of the iteration seems to be intuitively true but it
has not been rigorously justified in the literature. The difficulty is related to showing
that during the iteration, the generators of the Voronoi regions do not get arbitrarily
close as the Lloyd map is not well defined at degenerating points, where some of the
generators may coincide.

2.3. The compactness in the one-dimensional case. Here, we take Ω =
[a, b], a compact interval, let ρ be smooth and positive, and assume that 0 < M1 ≤
||ρ||∞,Ω ≤ M2 < ∞. Let Mc = M2/M1; obviously, Mc ≥ 1. We verify that throughout
the Lloyd algorithm, the Voronoi regions remain nondegenerate (i.e., the generating
points remain distinct); thus, it will lead to the global convergence.

First, we have the following simple fact.



108 QIANG DU, MARIA EMELIANENKO, AND LILI JU

Lemma 2.7. Given an interval V = [zl, zr] ∈ Ω, let z∗ be the mass centroid of V
with respect to the density function ρ. Then we have

L(V ) ≤ 2Mc min(z∗ − zl, zr − z∗),(2.1)

where L(V ) denotes the length of V .
Proof. Without loss of generality, we suppose that z∗ − zl ≤ zr − z∗. By the

definition of mass centroid, we have

z∗ − zl =

∫ zr

zl

(x− zl)ρ(x) dx∫ zr

zl

ρ(x) dx

≥ M1

2M2
(zr − zl),

so we get

zr − zl ≤ 2Mc(z
∗ − zl).

With z∗ − zl ≤ zr − z∗, we get the inequality (2.1).

Denote by {z(n)
i }ki=1 (z

(0)
1 < z

(0)
2 < · · · < z

(0)
k , n ≥ 0) the positions of the

generators after n iterations in the Lloyd method and by {V (n)
i = (y

(n)
i−1, y

(n)
i )}ki=1 the

corresponding Voronoi regions. Clearly, y
(n)
0 = a and y

(n)
k = b. We now present a

nondegeneracy result.
Lemma 2.8. For any 1 < i < k, we have

L(V
(n+1)
i ) < min

(
L(V

(n)
i ) + L(V

(n)
i+1)

2
+ L(V

(n+1)
i−1 ),

L(V
(n)
i ) + L(V

(n)
i−1)

2
+ L(V

(n+1)
i+1 )

)
.

Proof. First we have

L(V
(n+1)
i ) =

z
(n+1)
i+1 − z

(n+1)
i

2
+

z
(n+1)
i − z

(n+1)
i−1

2
.

Since z
(n+1)
i ∈ V

(n)
i , z

(n+1)
i+1 ∈ V

(n)
i+1 , we know

z
(n+1)
i+1 − z

(n+1)
i

2
<

L(V
(n)
i ) + L(V

(n)
i+1)

2
.

With L(V
(n+1)
i−1 ) > (z

(n+1)
i − z

(n+1)
i−1 )/2, we get

L(V
(n+1)
i ) <

L(V
(n)
i ) + L(V

(n)
i+1)

2
+ L(V

(n+1)
i−1 ).(2.2)

Similarly, we can prove that

L(V
(n+1)
i ) <

L(V
(n)
i ) + L(V

(n)
i−1)

2
+ L(V

(n+1)
i+1 ).(2.3)

Combining (2.2) and (2.3), we complete the proof.
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This leads to the following uniform lower bound between the adjacent generators
throughout the Lloyd algorithm.

Proposition 2.9. Let d
(n)
i = z

(n)
i+1 − z

(n)
i for i = 1, 2, . . . , k − 1. Then we have

d
(n)
i >

b− a

k42k−1Mk
c

, n > k ,(2.4)

and consequently,

L(V
(n)
i ) >

b− a

k42k−1Mk
c

, 1 < i < k, n > k ,(2.5)

and

L(V
(n)
i ) >

b− a

2k42k−1Mk
c

, i = 1 or k, n > k .(2.6)

Proof. Let us consider any d
(n)
i for 1 ≤ i ≤ k−1 and n > k. Since d

(n)
i = z

(n)
i+1−z

(n)
i

and y
(n−1)
i < z

(n)
i+1, we have

y
(n−1)
i − z

(n)
i < d

(n)
i .

Then from Lemma 2.7, we have

L(V
(n−1)
i ) < 2Mcd

(n)
i .(2.7)

On the other hand, we know that L(V
(n−1)
i ) > (z

(n−1)
i+1 − z

(n−1)
i )/2, which means

d
(n−1)
i < 2L(V

(n−1)
i ) < 4Mcd

(n)
i .

Again by Lemma 2.7, we know that

L(V
(n−2)
i−1 ) < 8M2

c d
(n)
i .

Repeating this process, we have for j = 1, . . . , i,

L(V
(n−j)
i−j+1) < 22j−1M j

c d
(n)
i .

Now let us consider j = i. Clearly, V
(n−i)
1 = (a, y

(n−i)
1 ), and we have

L(V
(n−i+1)
1 ) < L(V

(n−i)
1 ) + L(V

(n−i+1)
2 )

< 22i−1M i
cd

(n)
i + 22i−3M i−1

c d
(n)
i

< 4iM i
cd

(n)
i .

Furthermore, by Lemma 2.8, we get

L(V
(n−i+2)
2 ) <

L(V
(n−i+1)
2 ) + L(V

(n−i+1)
1 )

2
+ L(V

(n−i+2)
3 )

<
22i−3M i−1

c d
(n)
i + 4iM i

cd
(n)
i

2
+ 22i−5M i−2

c d
(n)
i

< 4iM i
cd

(n)
i .
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Repeating this process, we have for j = 1, . . . , i− 1,

L(V
(n−i+j)
j ) < 4iM i

cd
(n)
i ,

which means

L(V
(n−1)
i−1 ) < 4iM i

cd
(n)
i .

Using the same trick again and again, we finally arrive at

L(V
(n−1)
i−j ) < 4i+j−1M i

cd
(n)
i , j = 1, . . . , i− 1.

Combining (2.7) and the above equation with i, j ≤ k, we get

L(V
(n−1)
j ) < 42k−1Mk

c d
(n)
i , j = 1, . . . , i .(2.8)

By symmetry, we also have

L(V
(n−1)
j ) < 42k−1Mk

c d
(n)
i , j = i + 1, . . . , k .

Then, we get

b− a = L(Ω) =
k∑

j=1

L(V
(n−1)
j ) < k42k−1Mk

c d
(n)
i ,

which implies (2.4), (2.5), and (2.6).
We then have the following theorem.
Theorem 2.10. For any positive and smooth density function in one dimension

and a given set of k distinct generators as a starting point, the Lloyd map is continuous
at any of the iteration points.

Proof. In order to show the continuity it is enough to justify the fact that Voronoi
cells do not collapse. Indeed, after a sufficient number of steps, the latter is the
direct consequence of Proposition 2.9. For the initial finite number of iterations, the
continuity is obvious.

Finally, using Theorems 2.6 and 2.10, we get Theorem 2.11.
Theorem 2.11. The Lloyd algorithm is globally convergent in one dimension for

any positive and smooth density function.
Proof. Using the result of Theorem 2.10, we see that we can define a compact

set (away from the degenerating points) such that for any initial condition, the Lloyd
iteration (the images of the Lloyd maps) will stay in such a compact set after suffi-
ciently many steps. Thus, we may apply Theorem 2.6 to deduce the convergence of
the algorithm.

The above theorem provides an affirmative answer to the question of global con-
vergence of the Lloyd algorithm for the one-dimensional interval case without any
restrictive assumptions on the density functions. It remains an open problem to ver-
ify the same conclusion in the multidimensional case.

2.4. The logarithmic concave density for the one-dimensional case. Be-
yond the study on the global convergence, the characterization of the convergence
rate is often also important in practice. For instance, one may inquire if a geometric
convergence rate can be established. This is indeed verified in [7] for the constant
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density function corresponding to the unit interval [0, 1], where, via the spectral anal-
ysis of dT at the minimizer, the established geometric convergence rate r is shown to
satisfy

sin2

(
π

2(k + 1)

)
≤ r ≤ sin2

(
π

2(k − 1)

)
,(2.9)

so that asymptotically for large k (the total number of generators) the convergence
rate is on the order of 1 − π2/(4k2), as verified by the numerical experiments in the
next section.

In general, finding the convergence rate exactly is not possible, but estimates may
be obtained from the analytical bounds of the ‖dT‖.

First, it follows from Theorem 2.10 that T : Ωk → Ωk is a continuously dif-
ferentiable mapping away from the degenerate points, where the generating points
collapse. If this mapping T is a contraction, i.e., ||dT|| < 1 at all nondegenerate
points, the contraction mapping theorem can be used to get a good estimate of the
local convergence rate for the corresponding fixed point iteration, which in our case is
the Lloyd algorithm. Moreover, the contraction mapping properties also imply that
T has a unique fixed point z∗ in the set of nondegenerate points upon a consistent
ordering. Indeed, if there existed two fixed points x = {xi}ki=1 and y = {yi}ki=1, with
components corresponding to generating points whose coordinates are ordered from
small to large, that is, xi < xi+1 and yi < yi+1 for all indices i, then any point along
the line segment (1 − t)x + ty would remain nondegenerate and thus, by uniform
continuity, we may assume that

sup
0≤t≤1

||dT(x + t(y − x))|| ≤ α(x,y) < 1

for some constant α(x,y) independent of t. From the multidimensional form of the
mean value theorem, we then get

||x − y|| = ||Tx − Ty|| ≤ sup
0≤t≤1

||dT(x + t(y − x))|| ||x − y|| ≤ α||x − y|| ,

which is possible only if x = y; thus, we have the uniqueness. We refer to [32] for
similar discussions.

The concept of logarithmic concavity has played an important role in the classifi-
cation of one-dimensional density functions since it is a class of density functions for
which the Lloyd maps can be shown to be contractions [7].

Let us take a closer look at the structure of the Jacobian dT. By the notation of
the previous section, for the one-dimensional case (i.e., Ω = [a, b]), we have

∂Ti

∂zi
=

∂Ti

∂zi−1
+

∂Ti

∂zi+1
,

∂Ti

∂zi−1
=

ρ(z−i )(Ti − z−i )

2Ri
, and

∂Ti

∂zi+1
=

ρ(z+
i )(z+

i − Ti)

2Ri
,(2.10)

where Ri =
∫
Vi

ρ(y)dy and Vi = [z−i , z+
i ].

The following useful relation may be found in [7, 24]:

R2
i

⎛
⎝1 −

∑
j

∂Ti

∂zj

⎞
⎠ =

1

2

∫
Vi

∫
Vi

ρ(t)ρ(s)

(
ρ′(s)

ρ(s)
− ρ′(t)

ρ(t)

)
(t− s)dt ds(2.11)

at a fixed point z = T(z).
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Based on this, it can be shown that for the class of logarithmically concave func-
tions (i.e., (log ρ)′′ < 0), the spectral radius of the Jacobi map is less than 1 in the
neighborhood of a fixed point. In fact, it is easy to show that the same estimate holds
for all points as the identity (2.11) remains universally true. Hence the fixed point of
the Lloyd map is unique when the generators are ordered in an increasing manner.
The following convergence of the Lloyd algorithm for the logarithmically concave case
is easily one of the most popular results studied in the literature.

Proposition 2.12. In one dimension, in case of logarithmically concave density,
the Lloyd algorithm converges globally to the unique fixed point.

The class of logarithmically concave functions covers many densities used in prac-
tice, for instance, linear densities and normal distributions. Notice that the result
quoted in Proposition 2.12 does not provide the estimate of the actual distance of the
spectral radius from 1. We now focus on getting estimates on θ = 1 − ||dT|| more
accurately. For this, we use a more precise measure of the logarithmic concavity for
the density, that is, we assume that

ρ(t)ρ(s)

(
ρ′(s)

ρ(s)
− ρ′(t)

ρ(t)

)
(t− s) ≥ c20(t− s)2(2.12)

for some constant c0 > 0 and any (t, s) except for a set of measure zero. Upon
availability of an estimate of this type, the following conclusion can be reached:

1 − ||dT|| ≥ c20 min
i

{
R−2

i

∫
Vi

∫
Vi

(t− s)2dtds

}
∼ c20

12
min

{
h2
i

ρ(ζi)2

}

for some ζi ∈ Vi and hi = z+
i − z−i . Let h = mini hi, the smallest Voronoi cell size,

and M = supx∈[0,1] ρ(x); then we can rewrite the above result as follows.
Lemma 2.13. For any smooth density ρ satisfying (2.12) on the unit interval,

the Lloyd algorithm is globally convergent with a geometric convergence rate no larger
than

||dT|| ≤ 1 − c20
12

h2

M2
.(2.13)

The convergence estimate obtained here essentially depends on characteristics
c0 and the relative size of a Voronoi cell in comparison with the density distribution.
Since the minimizer of the energy gives a nondegenerate Voronoi diagram (Proposition
3.5 in [7]), there is a positive lower bound for the distance h in the neighborhood of
the solution in terms of the density and the number of generators. Moreover, for large
k, due to the asymptotic equipartition of energy property in one dimension [7], after
sufficiently many iterations, one can roughly estimate each cell size as

hi ∼ k−1ρ(ζi)
−1/3

∫ 1

0

ρ1/3(x)dx .

Thus, we have effectively θ = 1 − ||dT|| ≥
(
c1
k

)2
, where for large k,

c1 ∼ c0√
12M4/3

∫ 1

0

ρ1/3(x)dx .(2.14)



LLOYD ALGORITHM FOR COMPUTING CVTS 113

The estimate (2.14) in general tends to be rather pessimistic; for instance, for a
linear perturbation of the constant density ρ(x) = 1 − εx for a small ε, we have
c1 ∼ 3

4
√

12
(1 − (1 − ε)4/3), which is significantly different from π/2 in the limit as

ε → 0 (for the constant density case, c1 can be estimated more accurately from the
estimate (2.9) as π/2). This is due to the fact that the class of constant densities shares
zero value of the parameter c0. Nevertheless, it allows us to reach the conclusion that
the geometric convergence rate for all densities satisfying (2.12) is comparable with
that of the constant density in the sense that θ remains of the order k−2 for large
values of k.

We expect that such a conclusion holds for even more general density functions,
but the rigorous analysis is still not available.

3. Extensions to constrained CVTs. We now briefly illustrate how much of
our earlier analysis can be extended to more general settings, where the concept of
CVTs can be defined. The example to be used is of constrained CVTs on general
surfaces as defined in [12].

Consider a compact and smooth surface S ⊂ R
N . Similar to the definition of

conventional CVTs, for a given set of points {zi}ki=1 ∈ S, one may define their corre-
sponding Voronoi regions on S by

Vi = {x ∈ S : |x − zi| < |x − zj | for j = 1, . . . , k, j �= i }.(3.1)

For a density function ρ defined on the surface S and positive almost everywhere,
one may encounter a problem with the original definition when one defines centroidal
Voronoi tessellations {(zi, Vi)}ki=1 of S: the mass centroids {z∗i }ki=1 of {Vi}ki=1 as de-
fined by (1.1) do not in general belong to S. For example, the mass centroid of
any region on the surface of a sphere is always located in the interior of the sphere.
Therefore, a generalized definition of a mass centroid on surfaces is needed. For each
Voronoi region Vi ⊂ S, we call zci the constrained mass centroid of Vi on S if zci is a
solution of the following problem:

min
z∈S

Fi(z) , where Fi(z) =

∫
Vi

ρ(x)|x − z|2 dx .(3.2)

The integral over {Vi} is understood as a standard surface integration on S. Note
that the constrained mass centroid coincides with the conventional mass center if S is
replaced by R

N and Vi is a convex subset of R
N . Clearly, for each i = 1, . . . , k, Fi(·)

is convex. Since S is compact and ρ(·) is continuous almost everywhere, there exists
a constant C such that for any z1, z2 ∈ S, we have

|Fi(z1) − Fi(z2)| =

∣∣∣∣
∫
Vi

ρ(x)(|x − z1|2 − |x − z2|2) dx
∣∣∣∣ ≤ C|z1 − z2| .

Thus, Fi is continuous and compact, and consequently we have the existence of solu-
tions of (3.2), although the solution may not be unique.

We call the tessellation defined by (3.1) a constrained centroidal Voronoi tessella-
tion (CCVT) if and only if the points {zi}ki=1 which serve as the generators associated
with the Voronoi regions {Vi}ki=1 are the constrained mass centroids of those regions
[12]. This definition of CCVT conforms with that of CVT for general spaces and
clearly the energy H defined in (3.2) for CVTs is still valid for CCVTs. In Figure
1, we give two examples of CCVTs, one with six generators constrained to a circle
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Fig. 1. Examples of CCVTs for a circle (dots are for generators and dashes show the partition
of the constrained Voronoi regions) and for a sphere (dots are generators and lines are planar
projections of Voronoi edges). Only portion in one hemisphere is shown.

(one-dimensional curve) and the other with 162 generators constrained to a sphere
(two-dimensional surface). Both correspond to the constant density.

The following generalized Lloyd algorithm for computing CCVTs was proposed
in [12].

Algorithm 3.1 (Lloyd algorithm for computing CCVTs).
Input:

S, the surface of interest; ρ, a density function defined on S;
k, number of generators; {zi}ki=1, the initial set of generators.

Output:
{Vi}ki=1, a CCVT with k generators {zi}ki=1 in S.

Iteration:
1. Construct the Voronoi tessellation {Vi}ki=1 of S with generators {zi}ki=1.
2. Take the constrained mass centroids of {Vi}ki=1 as the new set of

generators {zi}ki=1.
3. Repeat the procedures 1 and 2 until some stopping criterion is met.

It is clear that Algorithm 3.1 is almost identical to Algorithm 1.1 except the
constrained mass centroids are used instead of standard mass centroids in step 2 of
each iteration. So Algorithm 3.1 again can be regarded as a fixed point iteration of
T, the Lloyd map for CCVTs which now is defined to map the current generators to
the constrained mass centroids of the corresponding Voronoi regions. It is transparent
that the analysis done in sections 2.1 and 2.2 can be applied here, so we obtain the
following general results similar to Theorems 2.3 and 2.5.

Theorem 3.1. Any limit point Z of the Lloyd algorithm for computing CCVTs
is a fixed point of the Lloyd map for CCVTs, and thus, (Z,Z) is a stationary point
of H. Moreover, for an iteration started with a given initial guess, all elements in
the set of its limit points share the same distortion value. Furthermore, if the set of
fixed points with the same distortion value is finite, the Lloyd iteration for CCVTs
converges globally.

Now suppose that S is a smooth curve without self-intersection such as S = f(Ω),
where Ω = [a, b] for some smooth function f ; then using the analysis similar to that
provided in section 2.3, we obtain the following result.

Theorem 3.2. The Lloyd algorithm for computing CCVTs of S is globally con-
vergent for any positive and smooth density function when S is a bounded smooth
curve.
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Note that, unlike the one-dimensional conventional CVT in R
1, we have not given

any general estimate here on the convergence rate of the Lloyd algorithm for CCVTs.
Even for the case where S is a bounded smooth curve, the geometric convergence rate
has not been carefully derived, though the notion of contraction for the Lloyd map has
been studied for density functions which share similar logarithmic concave properties
with respect to the angular variable in the case of a perfect disc [12]. There are also
natural generalizations of the Lloyd algorithm to the anisotropic CVTs as defined in
[16] and also [18]. The details are omitted here.

4. Numerical examples. To further substantiate some of our earlier analysis,
we now present a few numerical examples. All examples given below correspond to
the Lloyd iteration on the interval [0, 1].

4.1. Constant density. In Figure 2, we show a log-log plot of both the numer-
ical estimates and the analytical estimate 1 − ||dT|| ∼ π2/(4k2) with respect to the
constant density for various values of k, the number of generating points. The two
estimates match very well and the results verify that the analytical estimates are very
sharp.

4.2. Nonconstant density. Consider the case of ρ(x) = e−x2

. Figure 3 com-
pares the analytical estimate with the computed norms of the Jacobian for different
system sizes. Here, the analytical estimate is based on c21k

−2 with the constant c1
estimated by (2.14) with c0 =

√
2/e, M = 1, and

∫ 1

0
ρ1/3(x)dx =

√
3π ·Erf(1/

√
3)/2,

which leads to c1 =
√
π ·Erf(1/

√
3)/2e ∼ 0.19. The plot is again given in log-log scale,

and we see that although we underestimated the exact value of c1, the slope was equal
to −2 for both estimates, which indicates good agreement of the asymptotic rates on
the order of 1 −O(1/k2).

Figure 4 gives a similar comparison for ρ(x) = 1 + x4 cos(πx). The numerical
data in this case were compared to the asymptotic rate of 1 − π2/4k2.

Figures 5–7 provide some insight into the dependence of the actual convergence
factor on the number of generators and on the density function. The convergence
factor in the plot is defined as the ratio of the 2-norm defects between two consecutive
iterations after sufficiently many steps. A density function of the form ρ(x) = 1 +
ε cos2 (πx) is chosen. In Figure 5, we fix the number of generators to be k = 16, while
letting ε vary in the range [10−10, 1010]. It is seen that the actual convergence factor
and the theoretical estimate given by ||dT|| agree well in general.
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Fig. 2. Convergence of Lloyd method for constant density.
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Fig. 3. Convergence factor of Lloyd method for ρ(x) = e−x2
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Fig. 4. Convergence factor of Lloyd method for ρ(x) = 1 + x4 cos(πx).
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Fig. 5. Convergence factor for k = 16 and ρ(x) = 1 + ε cos2 (πx) with ε = 10−10 : 1010.

To see the effect of the increasing k, in Figure 6 we fix ε and let the number of
generators vary. The two estimates again compare well with each other.

To see more clearly the dependence of convergence rates on k, we again plot the
data in a log-log scale for the density ρ(x) = 1 + 103 cos2 (πx) against the number of
generators. The slope value of −2 is very evident from Figure 7, which is consistent
with our earlier analysis.
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Fig. 6. Convergence factor for ρ(x) = 1 + 103 cos2 (πx) and k = 2 : 40.
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Fig. 7. Asymptotic behavior of the convergence factor for ρ(x) = 1 + 103 cos2 (πx).

5. Conclusions. In many practical applications of the centroidal Voronoi tes-
sellations, it is very important to find their reliable and efficient constructions. Lloyd
algorithm has been one of the most widely used techniques for such purposes. In this
paper, a systematic study of both the local and the global convergence properties
of the Lloyd algorithm is presented. We established several new convergence theo-
rems, made further characterizations on the properties of the iteration, and performed
relevant numerical experiments. We also extended our discussion to more general set-
tings such as the construction of the CCVTs on a manifold. Still, one important
open problem remains, that is, the global convergence of the Lloyd algorithm in any
dimensions for any smooth density. The nondegeneracy of the Lloyd map should be
true in this general case, but its proof has not been produced rigorously except for
the one-dimensional case discussed here. We hope that our present study generates
some interest along this direction, as there are certainly many issues to be considered
further—in particular, the improvement of the Lloyd method for large number of
generators. Even in the one-dimensional case, both our theoretical estimates and the
experiments indicate the possible slow convergence rates. Recently, we have worked on
making improvements in two directions: one is to explore the coupling with Newton-
like methods, and another is to introduce the ideas of multilevel schemes [5, 6, 20].
As previously studied in [30], one may also consider parallel implementation issues for
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these approaches. In conclusion, there are still many interesting problems associated
with the construction of CVTs that can be investigated in the future.
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Abstract. The goal of this paper is to introduce a new multilevel solver for two-dimensional
elliptic systems of nonlinear partial differential equations (PDEs), where the nonlinearity is of the
type u∂v. The incompressible Navier–Stokes equations are an important representative of this class
and are the target of this study. Using a first-order system least-squares (FOSLS) approach and
introducing a new variable for ∂v, for this class of PDEs we obtain a formulation in which the
nonlinearity appears as a product of two different dependent variables. The result is a system that
is linear within each variable but nonlinear in the cross terms. In this paper, we introduce a new
multilevel method that treats the nonlinearities directly. This approach is based on a projection
multilevel (PML) method [S. F. McCormick, Multilevel Projection Methods for Partial Differential
Equations, SIAM, Philadelphia, 1992] applied to the FOSLS functional. The implementation of the
discretization process, relaxation, coarse-grid correction, and cycling strategies is discussed, and opti-
mal performance is established numerically. A companion paper [T. A. Manteuffel, S. F. McCormick,
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1. Introduction. The goal of nonlinear solution techniques is to solve the dis-
cretized nonlinear PDEs efficiently and accurately. Many popular, efficient methods
for this purpose are based on multilevel strategies and all require a linearization pro-
cess somewhere in the algorithm. These methods can be grouped into two broad
categories, depending on when and how they apply the linearization step: global
linearization such as Newton-type methods (cf. [14, 26]) and local linearization such
as Brandt’s FAS (full approximation scheme; cf. [6]) or Hackbusch’s similar NMGM
scheme (nonlinear multigrid method; cf. [17]).

Global linearization methods usually involve the solution of large linear systems
of equations. Since substantial multigrid research is directed on developing robust,
fast, and efficient linear solvers, there is an extensive repertoire of algorithms and
knowledge to draw upon in this category of techniques. On the other hand, it is well
known that the basin of attraction for efficient global linearization methods can be
relatively small. Some of these problems might be handled by a full multigrid or nested
iteration process that uses coarse-level processing to provide fine-level initial guesses.
But problems with very small basins of attraction might need more expensive global
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search methods. Local linearization methods tend to have a bigger basin of attraction,
but often rely on rediscretizing each of the coarser levels separately. This might result
in some loss of robustness since, for some problems with strong nonlinearities, the
discretization on coarse levels might not accurately reflect the fine-level properties.

Although most research for nonlinear multilevel methods certainly focuses on
these two main categories, there also exist other nonlinear solution techniques. For
example, Dardyk and Yavneh [13] propose a nonlinear multigrid method that com-
bines global and local linearization. Apparently, it is “at least as good as the more
suitable of these two approaches, and often better than both” [13].

This paper introduces a new multilevel method that does not fit into either of
these two categories, since we do not appeal to a linearization process anywhere in the
algorithm. To achieve this direct approach, we focus on PDEs with nonlinear terms of
type u∂v, especially the incompressible Navier–Stokes equations, that we reformulate
as a least-squares problem. Least-squares methods are based on a minimization prin-
ciple for a functional constructed by taking the residual of the governing equations in
some Hilbert norm. The intent is to ensure that the minimizer is the solution of the
original set of equations and that the formulation is well posed. We should emphasize
that our ability to avoid linearization is due to the nature of the functional that we
construct. In particular, linearization is not needed in relaxation because the system
to which the least-squares principle is applied is linear in its individual unknowns.
Application of our solver methodology to other nonquadratic functionals is likely to
require linearization in relaxation and coarse-level correction.

Least-squares methods for the Navier–Stokes equations have been addressed, for
example, by Bochev and Gunzburger [4], Jiang [19], and Bochev et al. [1, 2]. In
this paper, we consider a first-order system least-squares (FOSLS) method, where the
functional is constructed by taking the L2-norm of each interior first-order equation.

Instead of using FAS, Newton, or Newton-like methods to solve the resulting
algebraic equations, we want to develop a new multigrid algorithm that can treat the
nonlinearity directly and, thus, potentially more effectively. To this end, we consider
a projection multilevel (PML) method cf. [24]) that solves an optimization problem by
correcting a current approximation using projections onto various subspaces. In the
context of FOSLS, the solution to a PDE is the minimizer of the FOSLS functional.
So, naturally, we choose the minimization of the FOSLS functional as the optimization
problem for our projection method. The minimization is done by corrections from
certain finite element subspaces by way of the natural embedding of these spaces into
the fine-grid space. The projection of the error that this defines is orthogonal with
respect to the inner product associated with the functional, because it is defined as
the approximation to the error from the given subspace that is best in the sense of
minimizing the functional.

The algorithm developed here is new in that it is constructed with a special
discretization approach that achieves optimal complexity. However, the underlying
multilevel projection methodology has its origin in the so-called unigrid method intro-
duced in [25], the indefinite-system framework presented in [16], and the Rayleigh–Ritz
PML method formalized in [24]. The basic idea is to minimize the objective functional
on subspaces that include the relaxation directions from all levels used in the multi-
grid process. As such, this methodology has been used by Mandel and McCormick
for eigenvalue problems (cf. [22]); by Gelman and Mandel for constraint optimization
problems (cf. [15]); by McCormick for parameter estimation, transport equations,
general eigenvalue problems, Riccati equations, finite volume element methods, and
image reconstruction (cf. [24]); by Tai and Xu for general convex optimization prob-
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lems (cf. [30]); and by Tai for variational inequalities (cf. [29]). In fact, under certain
circumstances, these methods relate to specific forms of classical multilevel methods.
Consider, for example, the standard fully variational multigrid method applied to
the Poisson problem in two dimensions, as given in [28], with Gauss–Seidel as the
smoother, full coarsening, bilinear interpolation, and a nine-point stencil. This classi-
cal algorithm could also be classified as a PML method. It can be interpreted, at each
stage, as a Rayleigh–Ritz method applied to minimizing the energy functional, where
the optimization is taken as a correction over the continuous space projected onto cer-
tain subspaces of the fine-grid finite element space. This exemplifies that there exist,
under certain circumstances, similarities and relations between a standard multigrid
method and a PML method. In fact, PML exhibits the same basic principles as any
other multilevel algorithm. Such principles include appropriate discretizations for the
fine-grid problem, relaxation, coarsening, coarse-grid solves, interpolation, and cycling
strategies.

The challenge in developing such a scheme is to ensure that the cost of processing
coarse levels is less expensive in total than that of the fine grid. The major task in
addressing this challenge is to cast the coarse subspace projection in terms of coarse-
level computation. This ability we call coarse-grid realizability. We show below how
this is done for our scheme applied to the Navier–Stokes equations.

To illustrate the basic ideas and principles of this new PML method, we introduce
in section 2 a projection-based discretization process. Based on this process, we derive
in section 3 an abstract framework for PML. In section 4, we discuss how coarse-
grid realizability can be done efficiently for quasi-linear PDEs, for which the highest-
order terms are linear. Additionally, we show that this is also feasible for different
relaxation types and higher-order discretizations. We conclude this paper by giving
numerical results (section 5) for model problems in two dimensions and making a few
general remarks. While the numerical results in section 5 show optimal convergence
properties, we provide in the companion paper [23] a two-level convergence proof.

2. Embedding operators and discretization by projection. As for any nu-
merical scheme that discretely approximates continuous problems, the discretization
process plays an important role. This process is even more important for multilevel
schemes since they use a sequence of coarse-grid discretizations that must in some
sense be compatible with the fine-grid discretization. For our particular PML method,
we want to exploit a natural discretization process by using the same approach on
all levels. Even though this seems to be the most natural and straightforward way
to obtain discretizations for all levels, there exist other methodologies for which it
is more advantageous to use a variational type of discretization process instead. Al-
gebraic multigrid (AMG) is just one example. On coarser levels, AMG applied to a
discretized PDE obtains matrices that often differ from what one would obtain using
a discretization process analogous to that used on the finest level. For further details
on AMG, see [7, 9, 27].

One way to relate a continuous PDE to a discrete problem is to think of the
discretization process as a projection from an infinite-dimensional space onto a discrete
one, with some nodal or finite element representation. (Here we restrict ourselves to a
finite element representation.) To illustrate this process, consider a partial differential
operator, L, which maps between two infinite-dimensional spaces, VVV and VVVL (L :
VVV → VVVL). For a specific g ∈ VVVL and domain Ω, we formally obtain a PDE, which we
denote by

L(x) = g in Ω.(2.1)
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For equation (2.1) to be properly defined, it may need to be taken in the weak
sense, but this would complicate the discussion. We use the strong form here for
simplicity. Note the use of boldface type for unknown x and source term g. We do
this to allow for different types of principal variables, such as pressure, temperature,
and velocity. When we want to emphasize this possibility, we write these variables in
component form, such as x = (x1, . . . , xv)

t.
Now let Sh be a finite-dimensional subset of VVV (e.g., a standard finite element

space associated with an approximate mesh size, h). Then denote the natural em-
bedding operator by Ph : Sh ↪→VVV. This operator leads to a natural discretization of
our functional minimization problem as follows. Consider the least-squares functional
associated with (2.1):

F(x; g) = ‖L(x) − g‖2

0,Ω
∀x ∈ VVV.(2.2)

Note that F( · ; g) is a mapping from VVV to R. A discrete functional is obtained by
defining Fh(xh; g) := F(Phxh; g), with xh ∈ Sh and Phxh ∈ VVV. Discretization is thus
simply a matter of restricting the functional to the discrete space. This is the essence
of Rayleigh–Ritz. Note that since Fh( · ; g) is a mapping from Sh to R, notations
F(xh; g) and Fh(xh; g) are equivalent. From now on, we refer to F(xh; g) as the
discrete functional.

The abstract discretization process depends only on the choice of the embedding
operator, Ph, and the associated finite element space, Sh. Hence, for coarser levels,
we can define the discrete functional in the same way. Let S2h be a finite-dimensional
space (associated with an approximate mesh size, 2h) and let P2h : S2h ↪→ VVV be the
natural embedding from S2h into VVV. Then the coarse-grid discretization of functional
(2.2) is given by F(x2h; g) := F(P2hx2h; g), with x2h ∈ S2h. In our framework,

for consecutive coarser levels, we typically choose nested spaces, so that S2Lh ⊂
. . .S2h ⊂ Sh ⊂ VVV. In this way, the interlevel transfer operators are induced in a
natural, straightforward, and advantageous way and are easy to implement within
PML. Furthermore, the coarse-grid problems are ensured to be compatible with the
procedures used to define the fine-level problem, with the difference being that the
coarse-level unknown is an approximation to the fine-level error and not to its solution;
that is, the coarse-level correction is of the form xh + c2h. (Since xh = Phxh for
xh ∈ Sh and c2h = P2hc2h for c2h ∈ S2h, we omit the embedding operators Ph and
P2h here and henceforth.)

Note that relaxation also depends on the choice of subspaces (and, hence, on
the embeddings). We thus have to be particularly careful in picking the underlying
subspaces for relaxation and coarsening.

3. Abstract framework of PML. To describe the general framework of PML
applied to a functional minimization principle, let F(x; g) : VVV → R and assume that
we have a conforming finite element structure in the sense that S2h ⊂ Sh ⊂ VVV. The
aim of this section is to develop a multilevel framework that applies directly to

F(xh
∗ ; g) = min

xh∈Sh
F(xh; g), xh

∗ ∈ Sh.(3.1)

To do this, we focus on two important ingredients of multilevel methods: relaxation
and coarsening. Relaxation is a generic term for an iterative process that is typically
very inexpensive to use but is effective only at reducing certain “oscillatory” error
components. Coarsening refers to the process of determining a coarse-level correction
that, we hope, eliminates the “smooth” errors that relaxation leaves behind.
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We first provide a general framework for a point or nodal relaxation scheme on
the finest level. To maintain a certain form of generality in this section, let {φh

n}m0
n=1

be a basis for Sh, where m0 is the dimension of Sh. Then write Sh as a direct sum of
the one-dimensional subspaces, Sh

n = span{φh
n}, 1 ≤ n ≤ m0: Sh = Sh

1 ⊕ · · · ⊕ Sh
m0

.
(Higher-dimensional subspaces can be considered for relaxation processes that update
several variables at once, e.g., line or box relaxation. However, we consider only the
one-dimensional case here for simplicity.)

These definitions set the stage for an abstract definition of a relaxation scheme to
approximately solve for xh

∗ ∈ Sh in (3.1) by PML. To do so, we want to improve an
initial guess, xh, by corrections, ch ∈ Sh

n , 1 ≤ n ≤ m0. Thus, one sweep of relaxation
consists of performing the following correction steps for each n = 1, 2, . . . ,m0 in turn:⎧⎨

⎩
F(xh + chn∗ ; g) = min

ch
n∈Sh

n

F(xh + chn; g),

xh ← xh + chn∗ .
(3.2)

Next, consider the coarse-grid correction process, first in terms of an exact solve,
then as an iterative process. Let xh ∈ Sh be a random initial guess or a current
iterate for our PML scheme. Then, the exact coarse-grid solve is described by

F(xh + c2h
∗ ; g) = min

c2h∈S2h
F(xh + c2h; g), c2h

∗ ∈ S2h.(3.3)

To develop an iterative version of (3.3), we proceed in analogy to fine-grid re-
laxation. Let {φ2h

n }m1
n=1 be a basis for S2h. Then, write S2h as a direct sum of the

one-dimensional subspaces, S2h
n = span{φ2h

n }, 1 ≤ n ≤ m1: S2h = S2h
1 ⊕ · · · ⊕ S2h

m1
.

Then one coarse-grid relaxation sweep consists of performing the following correction
steps for each n = 1, 2, . . . ,m1 in turn:⎧⎨

⎩
F(xh + c2h

n∗ ; g) = min
c2h
n ∈S2h

n

F(xh + c2h
n ; g),

xh ← xh + c2h
n∗ .

(3.4)

Our notation is at the crux of our ability to make PML practical. Iterative
methods are commonly formulated as processes that directly update the original ap-
proximation, xh. Our choice of the more complicated correction form in (3.2) was
made for consistency with (3.4). We complicate this notation further below by writing
the respective fine- and coarse-level iterative processes as corrections to the approxi-
mate solutions, ch and c2h, of (3.2) and (3.4). (To avoid further complication, we use
ch and c2h to denote either the exact solutions or their approximations, a distinction
that is clear by context.) Furthermore, we use these formulations to allow the multiple
corrections that come from yet coarser levels. Hopefully, the three-term correction
forms that we use in what follows are enough to expose the mechanisms needed to
make the process efficient. The key is to write relaxation on the level 4h correction
as a process that involves only changes to level 4h vectors.

To compute the corrections in (3.2) and (3.4), we use fine- and coarse-level re-
laxation processes. For xh ∈ Sh fixed and ch ∈ Sh, the current approximation to
the exact correction defined in (3.2), the nth step of a fine-grid relaxation sweep is
defined by solving

s = argmin
t∈R

F(xh + ch + tdh; g), s ∈ R,(3.5)
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and forming the update,

ch ← ch + sdh,(3.6)

where dh = φh
n, 1 ≤ n ≤ m0. Note that (3.5) and (3.6) describe a basic line search

method, in direction dh, with optimal step length s. For simplicity, we combine (3.5)
and (3.6) and refer to it as a directional iteration step. For given xh, ch, and dh, we
denote the operator describing (3.5) and (3.6) by

ch ← Dxh(ch,dh).(3.7)

In an analogous way, coarse-grid relaxation is defined for xh ∈ Sh and c2h ∈ S2h

by c2h ← Dxh(c2h,d2h), where d2h = φ2h
n , 1 ≤ n ≤ m1. Successive application of this

process yields an abstract formulation of a general PML method. Assume that there
are L+ 1 distinct grid levels corresponding to mesh sizes 2lh, l = 0, . . . , L. (We label
the finest level by superscript h and the coarsest one by superscript 2Lh.) Assume

that each level is defined by a finite-dimensional subspace, S2lh, that is nested in the

sense that S2l+1h ⊂ S2lh, l = 0, . . . , L− 1. Suppose that these spaces are written as a

direct sum of one-dimensional subspaces: S2lh = S2lh
1 ⊕· · ·⊕S2lh

ml
, l = 0, . . . , L. Then

one V (0, 1)-PML cycle is defined as follows:

c2lh ← 0, l = 0, . . . , L

For l = L, . . . , 1 : (coarse-grid process)⎡
⎢⎢⎣

For n = 0, . . . ,ml

c2lh ← Dxh(c2lh,d2lh
n ), d2lh

n ∈ S2lh
n ,

c2l−1h = c2lh

For l = 0 : (fine-grid process)[
For n = 0, . . . ,m0

ch ← Dxh(ch,dh
n), dh

n ∈ Sh
n ,

xh ← xh + ch.

(3.8)

4. Coarse-grid realizability, different relaxation types, and higher-order
discretizations. The key to obtaining an efficient multigrid-optimal PML implemen-
tation from (3.8) is the capability to perform the directional iteration step efficiently
on coarse levels. Since the directional iteration step is based on functional evaluations,
we focus now on how to do this efficiently on coarse levels.

4.1. Coarse-grid realizability. To obtain optimality, our multigrid algorithm
must achieve two key objectives. First, we must be able to compute the FOSLS
functional efficiently. Thus, update c2h and the resulting new functional value must
be computed quickly. Essentially, all level 2h calculations should in effect be performed
on grid 2h, not on grid h. Second, it must be possible to go from level 2h to level 4h
without first updating the approximations on grid h.

To show how the first objective can be achieved, we need some additional notation
and definitions. For simplicity, we choose the discretization to be the space, Sh, of
continuous piecewise-linear functions and the domain, Ω ⊂ R

2, to be two-dimensional,
simply connected, and polygonal so that it can be partitioned into triangles. We con-
sider here only triangulations by standard linear Lagrange triangles (cf. [5]). We need
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to maintain a certain block-structured grid in order to obtain an efficient multigrid-
optimal implementation of PML in two dimensions. Each level is defined by a finite-

dimensional subspace, S2lh, nested in the sense that S2l+1h ⊂ S2lh, l = 0, . . . , L− 1.
For this section, we consider xh = (xh

1 , . . . , x
h
v )t ∈ Sh to be an arbitrary but fixed

fine-grid approximation to the solution of the PDE. The xh components, xh
i : Ω → R

(i = 1, . . . , v), represent the different principal PDE variables (e.g., pressure, temper-

ature, energy, and velocity). Further, we denote with c2lh a correction to fine-grid
approximation xh on level l (with approximate mesh size 2lh). Each component of

correction c2lh = (c2lh
1 , . . . , c2lh

v )t ∈ S2lh is a continuous piecewise-linear function and

can be written, restricted to an element Ω2lh
j , as a linear function as follows:

c2lh
i (x, y)

∣∣∣
Ω2lh

j

= s
(i,j,l)
1 + s

(i,j,l)
2 x + s

(i,j,l)
3 y.(4.1)

This representation holds for all i = 1, . . . , v and j = 1, 2, . . . , N (l), where N (l) is

the total number of elements on level l. The coefficients, s
(i,j,l)
p with p = 1, 2, 3, are

determined uniquely on level l by solving on each element, Ω2lh
j (j = 1, 2, . . . , N (l)),

and for each i = 1, . . . , v the corresponding linear interpolation problem. In contrast
to standard finite element practice, (4.1) can be seen as an alternative way to obtain a
representation of ch in Sh. Standard nodal finite element bases could be used instead
to represent (4.1), but this leads to substantially increased complexities for which we
could not find an efficient way to avoid.

We next show how F(xh+ch; g) is computed for a modifiable fine-grid correction,
ch, and an arbitrary but fixed approximation, xh. This is an essential step towards
a multigrid-optimal algorithm and provides the basis for computing the FOSLS func-
tional efficiently on coarser levels. For simplicity, we focus on one fine-grid element,
Ωh

j . This can be done without any loss of generality, since the sum of all fine-grid

element contributions, FΩh
j
(xh+ch; g), is the functional value, F(xh+ch; g). Further,

we represent the fine-grid correction, ch (level l = 0), as in (4.1) and consider its coef-

ficients, s
(i,j,0)
p , as unknowns. In the next step, we use this representations to express

the functional contribution, FΩh
j
(xh + ch; g), in terms of the coefficients, s

(i,j,0)
p . Due

to the nature of our quasi-linear first-order system and its L2 least-squares functional,
it is possible that the expansion of FΩh

j
(xh + ch; g), with respect to the coefficients

of ch, includes product terms of the coefficients, s
(i,j,0)
p , of up to order four. In the

context of our new PML method, we regard all these terms as separate unknowns
and store them as a matrix, Ch

j . In this way, we are able to write the expansion of

FΩh
j
(x + ch; g) as a matrix inner product of the form Ah

j : Ch
j . In the following, we

refer to Ah
j as the local functional matrix and to Ch

j as the local coefficient matrix for

element Ωh
j on grid h. Now, whenever ch changes on Ωh

j , we obtain the new functional

value, FΩh
j
(xh + ch; g), by recomputing the local coefficient matrix and by evaluating

the matrix inner product.
To show that we can compute the functional on coarser levels by coarse-grid

calculations (the first objective), we assume a regular-structured grid. We further
assume that four fine-grid elements always form one coarse-grid element. Denote
by C2h

k the coefficient matrix for c2h on coarse-grid element Ω2h
k . Further, let Ch

j ,

with j ∈ {i|Ωh
i ⊂ Ω2h

k }, be the coefficient matrices for c2h restricted to the fine-
grid elements, Ωh

j . The key observation now is to recognize that C2h
k = Ch

j for all
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j ∈ {i|Ωh
i ⊂ Ω2h

k }. Then, we obtain the functional contribution for coarse-grid element
Ω2h

k as follows:

FΩ2h
k

(xh + c2h; g) =
∑
j

Ah
j : Ch

j =

⎛
⎝∑

j

Ah
j

⎞
⎠: C2h

k = A2h
k : C2h

k ,(4.2)

where j ∈ {i|Ωh
i ⊂ Ω2h

k }. Having all local fine-grid functional matrices available,
we obtain the local coarse-grid functional matrices by a simple element-by-element
addition of the respective fine-grid functional matrices. In this way, we can compute
the functional, F(xh + c2h; g), for fixed fine-grid approximation xh ∈ Sh and any
c2h ∈ S2h, entirely by grid 2h computations. We remark that, because of the nonlinear
nature of our problems, these coarse-grid functional evaluations are possible only

for approximations of the form xh + c2lh, l = 0, . . . , L, and not, for example, for
approximations of the form xh+c2h+c4h. But, to fulfill the second objective, we would
have to be able to compute approximations of the second type. To circumvent this
drawback, we simply restrict ourselves to V (0, ν)-cycles. Such a cycle is characterized
for our new PML method by the following steps: fix the current approximation/initial
guess; compute all local fine-grid functional matrices, Ah

j ; calculate the corresponding
local coarse-grid functional matrices for all coarse levels; start the relaxation process

on the coarsest level by applying ν sweeps there to compute the correction, c2Lh;
interpolate this correction to the next finer level; use the interpolated correction as
an initial value for relaxation on this next finer level; repeat the steps for l = L, . . . , 0;
and update the current approximation, xh, by ch.

By introducing local functional matrices and restricting ourselves to structured
grids and V (0, ν)-cycles, we can fulfill all the objectives for an efficient and multigrid
optimal algorithm. Note that the same efficiency and optimality is retained if, in-
stead of regular-structured grids, we use block-structured grids. Such grids allow the
coarsest level to be unstructured, while the subsequent finer levels exhibit a regular
structure.

4.2. Relaxation. The description of a V (0, 1)-PML cycle defines relaxation in

general as c2lh ← Dxh(c2lh,d2lh
n ), with n = 0, . . . ,ml, where xh is the current fine-

grid approximation, c2lh is a coarse-grid correction on level 2lh, d2lh
n ∈ S2lh

n is a search

direction, and S2lh
n , n = 0, . . . ,ml, are spaces that decompose S2lh. We clearly see

that picking S2lh
n characterizes the type of relaxation. Before illustrating relationships

between S2lh
n and different relaxation types, we first comment on issues concerning the

realization and implementation of directional iteration or relaxation steps in general.
The classical approach for relaxation schemes, such as Gauss–Seidel or damped

Jacobi, are based on a finite number of either explicitly given linear equations, typ-
ically written in matrix form, or nonlinear equations. Since relaxation for our PML
method is based on a nonlinear functional minimization principle, we cannot use them
in the same way that most standard approaches present them. To implement relax-
ation so that we keep the overall promise of avoiding linearization while obtaining an
efficient algorithm, we restrict ourselves to a FOSLS functional for quasi-linear PDEs.
For this class of PDE formulations, the nonlinearity appears in the functional as a
cross product of two different variables, which implies linearity of the weak form with
respect to each variable.

To illustrate this linearity, consider a least-squares functional consisting of the
product of two variables: F([u, v]t; 0) = ‖uv‖2

0,Ω
. (For clarity, we use u and v instead
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of x1 and x2.) Let Sh be a standard finite element space with approximate mesh
size h. Then choose a relaxation direction for each variable: dh

1 = [dhuh , 0]t ∈ Sh and
dh

2 = [0, dhvh ]t ∈ Sh. Relaxing on each variable of F([uh, vh]t; 0) separately, we obtain
for xh = [uh, vh]t ∈ Sh the following relaxation process:

⎧⎨
⎩

s1 =argmin
t∈R

F(xh + tdh
1 ; 0)= argmin

t∈R

F([uh + tdhuh , v
h]t; 0) =: argmin

t∈R

F̄1(t),

uh ← uh + s1d
h
uh

(4.3)

and

⎧⎨
⎩

s2 = argmin
t∈R

F(xh + tdh
2 ; 0) = argmin

t∈R

F([uh, vh + tdhvh ]t; 0) =: argmin
t∈R

F̄2(t),

vh ← vh + s2d
h
vh .

(4.4)

For our class of PDEs, functions F̄1(t) and F̄2(t) defined in (4.3) and (4.4) are
quadratic polynomials in the scalar, t. To obtain the quadratic formulation for F̄1(t)
(or F̄2(t)), we evaluate F̄1(t) (or F̄2(t)) at three different locations and fit the func-
tional values quadratically. In this way, the quadratic polynomial fits F̄1(t) (or F̄2(t))
exactly. Actually, we need only evaluate F̄1(t) (or F̄2(t)) at two locations because
the current functional value (t = 0) is known. Also, after computing the optimal step
length, which is the minimum of the quadratic polynomial, we obtain the new current
functional value by plugging s1 (or s2) into our quadratically fitted curve.

For nonlinear PDEs with the type of nonlinearity that is the focus of this research,
an alternating-variable relaxation process leads to scalar minimization problems in
which the objective function is quadratic. This property is due to the nature of our
constructed FOSLS functional, but it is no longer true for a relaxation scheme that
simultaneously relaxes on both (resp., all) variables. Instead of (4.3) and (4.4), block
relaxation on both variables leads to the following relaxation process:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(s1, s2) = argmin
(t1,t2)∈R2

F(xh + t1d
h
1 + t2d

h
2 ; 0)

= argmin
(t1,t2)∈R2

F(
[
uh + t1d

h
uh , v

h + t2d
h
vh

]
; 0) =: argmin

(t1,t2)∈R2

F̄3(t1, t2),

uh ← uh+s1d
h
uh , vh ← vh + s2d

h
vh .

(4.5)

Now, the possibility of performing a relaxation step without appealing to linearization
depends on the capability of computing the minimizer of F̄3(t1, t2). Similar conclu-
sions can be made for PDEs in which derivatives appear to some integer power.

Even though we illustrated only one fine-grid relaxation step for two scalar un-
knowns, we can apply the same techniques for more than two variables, for unknowns
that are vector functions, and on coarser levels. Moreover, at this point, we see why it
is extremely important to be able to compute functional values on all levels efficiently.
Relaxation is the main contributor to the overall computational cost and is almost
solely based on functional evaluations.

We can relax on the unknowns in an alternating fashion, as described by (4.3) and
(4.4), for almost any choice of relaxation subspaces, S2lh

n , and discretization. These
choices only affect the type of relaxation. In what follows, we give two examples for



PML FOR QUASILINEAR ELLIPTIC PDES 129

different relaxation types, a Richardson-like scheme and a Gauss–Seidel-like scheme.
Although we describe the different relaxation types as if the functional had only one
unknown, we still relax on the unknowns in an alternating way.

To obtain a Richardson-like relaxation scheme, we choose ml = 1 on all levels.
This means that there is only one relaxation step per sweep. As the single direction,

d2lh
1 ∈ S2lh

1 = S2lh, we make the natural choice of “steepest” descent given by the
gradient of the functional with respect to the unknown. We compute the gradient
of our nonlinear functional numerically: its value at node n is determined by the

forward-difference formula,
(
F(x2lh + s e2lh

n ; g)−F(x2lh; g)
)
/s, where e2lh

n is the nth
nodal finite element basis function (with value one at grid point n and zero elsewhere)

and s is sufficiently small; the discrete representation of the gradient, d2lh
1 , is then

just the continuous piecewise polynomial in S2lh that has these nodal values.
If we now choose our relaxation subspaces as the span of individual basis or

nodal finite element basis functions (with a value of one at a single node and zero
at all other nodes), we obtain a coordinate minimization or nonlinear Gauss–Seidel
relaxation process. Hence, we choose ml to be equal to the number of nodes on level

l, d2lh
n as the nodal finite element basis function, and S2lh

n as the space spanned by
the nodal basis function of node n. This means that we minimize consecutively over

all nodes, n, by computing the step length, s = mint∈R F(xh + c2lh + td2lh
n ; g), and

the resultant update, c2lh ← c2lh + sd2lh
n . Note that this is a local process in that

the approximation, xh, changes only at one node per step of the sweep.
Gauß-Seidel is typically a more efficient smoother than a gradient or Richardson-

type process.

4.3. Higher-order discretizations. Many engineering problems require more
than just a linear finite element discretization. For example, the numerical solution to
the Navier–Stokes equations obtained by using linear finite elements and a triangular
discretization in a FOSLS formulation usually does not conserve mass very well. This
section shows the potential of using higher-order finite elements in our framework of
PML. For simplicity, however, we limit ourselves in this section to standard quadratic
Lagrange triangles, which generate the space, Sh

Q, of continuous piecewise-quadratic
finite elements. It should be noted that any other higher-order discretization or other
element type can be implemented in a similar way. Mimicking the representation
of linear functions over elements, we describe approximations or corrections in Sh

Q

restricted to an element (in this case, we use a less cumbersome notation as we restrict
our correction to a reference element, Ωh

ref ) by

ch(x, y)
∣∣∣
Ωh

ref

= sh0 + sh1x + sh2y + sh3xy + sh4x
2 + sh5y

2.(4.6)

Similar to fine-grid level h, we introduce quadratic finite element spaces on coarser

levels: S2lh
Q , l = 1, . . . , L. The subscript Q indicates the use of quadratic ansatz

functions to generate the space. We stress that the lack of such a subscript signifies
linear ansatz functions. For the multilevel implementation with quadratic finite el-
ements, we use an unstructured triangulation for the coarsest level. All finer levels
are obtained by subdividing each coarser-grid-level triangle into four equal triangles.
To this end, we consider as follows two different coarse-grid correction processes that
differ by the choice of the coarse-grid correction subspaces:

1. On all levels, corrections are obtained from the quadratic finite element sub-

spaces, S2lh
Q (l = 0, . . . , L).
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2. Only Sh
Q is used for the fine-grid corrections, while the coarse-grid process

uses corrections from the linear finite element subspaces, S2lh (l = 1, . . . , L).
To achieve for both approaches an efficient or even multigrid-optimal algorithm for
quadratic finite elements, we mimic ideas and techniques from previous discussions
on linear finite elements. There, we introduced local functional matrices, which led
to an efficient way of handling modifications to coarse-grid corrections. These local
functional matrices can be computed for quadratic finite elements in a similar way.
The key observation, which led to multigrid-optimality, is to recognize the need to
use V (0, ν)-cycles instead of V (μ, ν)-cycles for our PML method.

For the first approach, coarse-grid functional matrices are obtained as in the case
for linear finite elements by adding up the respective fine-grid functional matrices.
At the end of each cycle, we update the current approximation of the solution, xh

Q,

by chQ, compute the new local functional matrices, and repeat the cycle. For the
second approach, we first alter the triangulation from quadratic Lagrange triangles
to linear Lagrange triangles. Then we apply a standard V (0, ν)-cycle that involves
relaxation on corrections represented by continuous piecewise-linear functions. At
the end of this V (0, ν)-cycle, we project the current (piecewise-linear) correction onto
the original triangulation with quadratic Lagrange triangles. We continue the cycle
by performing ν further relaxation sweeps on the correction, now represented by
continuous piecewise-quadratic functions, by updating the current approximation of
the solution, xh

Q, by chQ, and by computing the new local functional matrices to repeat
the cycle.

Compared to the first approach, the second has two advantages. First, it allows
reuse of most of the code for linear finite elements. Second, the coarsening process
is independent of the order of the fine-grid discretization. This property becomes
increasingly important as we choose increasingly higher-order discretizations on the
finest level. To illustrate this, recall that our PML method treats the nonlinearity
directly without any kind of linearization process. Thus, our local functional matrices
are growing rapidly in complexity for higher-order discretizations. (The complexity
grows for quasi-linear problems even more than for linear ones.) With the second
approach, we use a multilevel strategy to compute a piecewise-linear approximation
to the fine-grid correction. Having this approximation on the finest level available,
we have the advantage of no longer being constrained to use local functional matrices
or the same relaxation process as on coarser levels. In principle, we could consider
the fine-level correction as a separate minimization process, with the advantage of
having a good coarse-grid corrected initial guess. This is very appealing in particular
for high-order finite elements.

However, low-order spaces do not always provide an effective coarse-level correc-
tion for high-order spaces in the same elements. An alternative is to partition the
elements defining the high-order discretization into several smaller elements that could
then be used to define the linear correction space (cf. [18, 21]). In our context of stan-
dard quadratic finite elements, we could split each quadratic Lagrange triangle into
four linear Lagrange triangles. Although, this would violate our assumption of nested
finite-dimensional subspaces, we would still obtain a good low-order approximation to
the (high-order) correction on the finest level. This is very appealing for high-order
element types, in particular, since this allows us, again, to consider the (high-order)
fine-level problem as a separate minimization process.

5. Numerical results. Here we report on numerical results for some test prob-
lems. First, we study performance of our PML method on a set of nonlinear test
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problems by adding a simple nonlinear term to the Laplace operator, using a coeffi-
cient, α, that allows us to adjust the strength of nonlinearity. We finish this section
by presenting numerical results for our target application, the incompressible Navier–
Stokes equations, with particular focus on the so-called Kovasznay flow.

5.1. Measuring convergence factors. Before we provide numerical results
on some test problems, we first address the issue of how to measure convergence
factors for our method since they play an especially important role in analyzing and
evaluating a multigrid iteration.

Let F(x2lh; g) be the discrete nonlinear functional for a nonlinear PDE written

in FOSLS form, and let x2lh
∗ be the minimizer of F(x2lh; g) on level l. Superscript

2lh does not play an essential role here, but we use it anyway to emphasize that the
operator stems from a discretization on a certain level, l. Taking our cue from the
linear case, we write the functional norm defect of our current approximation as

δ̂2lh
k =

√
F(x2lh

k ; g) −F(x2lh
∗ ; g),(5.1)

where x2lh
k is the approximation to the exact solution, x2lh

∗ , after the kth iteration step.

Note that δ̂2lh
k is a positive real number because x2lh

∗ is the minimizer of F(x2lh; g).
In analogy to computing convergence factors for linear systems (cf. [9, 31]), we define
the convergence factor for the kth iteration step on level l by

ĈF
(l)

k :=
δ̂2lh
k

δ̂2lh
k−1

=

√
F(x2lh

k ; g) −F(x2lh
∗ ; g)

F(x2lh
k−1; g) −F(x2lh

∗ ; g)
.(5.2)

Since F(x2lh
∗ ; g) is unknown, (5.2) cannot be used directly to compute the con-

vergence factor. Thus, instead of considering the defect, δ̂2lh
k , as in (5.1), we take the

approach of defining the defect of two consecutive approximations:

δ2lh
k =

√
F(x2lh

k−1; g) −F(x2lh
k ; g).(5.3)

The attendant convergence factor estimate is then given by

CF
(l)
k :=

δ2lh
k

δ2lh
k−1

=

√√√√ F(x2lh
k−1; g) −F(x2lh

k ; g)

F(x2lh
k−2; g) −F(x2lh

k−1; g)
.(5.4)

Note that this measures requires care with respect to machine precision and numerical

cancellation. For example, if F(x2lh
k−1; g) and F(x2lh

k ; g) in (5.4) are the same up to near
machine precision, then convergence factors can give the impression of degenerating
performance.

5.2. A nonlinear model problem. As a first test for our algorithm, we choose
a Poisson problem with pure Dirichlet boundary conditions on Ω = [0, 1]× [0, 1] that
has been modified by the addition of a nonlinear term, αppx. Parameter α allows us to
vary the strength of the nonlinearity. This model represents a simple nonlinear PDE
with the type of nonlinearity that is the focus of this research. Its FOSLS formulation
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is given as follows:

∇p− u = 0 in Ω,

− 1

α
∇· u + pu1 = f

Ω
in Ω,

1

α
∇× u = 0 in Ω,

p = f
Γ

on ΓΩ,

n × u = n × f
Γ

on ΓΩ.

(5.5)

where ∇p = (u1, u2)
t, n is the unit outward normal on boundary Γ

Ω
, and Ω is the

unit square. For further details on FOSLS formulations of the Poisson problem, see
[10] and [11]. We choose p(x, y) = x2 + y2 as the exact solution and thus obtain
fΩ = −4/α+(2x3 +2xy2) as the right side. For all of our experiments, we use Dirich-
let boundary conditions derived from the exact solution. We enforce the boundary
conditions strongly by imposing them on the finite element space. Note that (5.5)
arises from a more favorable scaling of the first-order system derived from the PDE,
Δp + αppx = f̃Ω . Hence, parameter α allows us to vary the strength of nonlinear
term ppx, and α = 0 reduces it to the linear Poisson problem. Its FOSLS functional
is constructed by taking the L2-norm of each interior equation,

F(p,u; g) = ‖∇p− u‖2

0,Ω
+ ‖ − 1

α
∇· u + pu1 +

4

α
− (2x3 + 2xy2)‖2

0,Ω
+ ‖ 1

α
∇× u‖2

0,Ω
,

(5.6)

where g = (0, f
Ω , 0). The grids are based on a regular triangulation of Ω by 16 ele-

ments and 13 grid points. This coarsest level is denoted by l = 7, with an approximate
mesh size 2lh, where h is the approximate mesh size with respect to the finest level.
Level 6 is formed by taking every element of level 7 and subdividing it into 4 equal
triangles. The midpoints of the coarse-grid element sides are the new fine-grid points.
Successively finer levels are constructed in the same way. This refinement leads to
131,585 nodes (with 3 degrees of freedom per node) and 262,144 elements on level
0. A nested iteration algorithm with 10 V (0, 4)-Gauss–Seidel relaxation sweeps on
each level is used to minimize F(p,u; g) in (5.6) over the space consisting of contin-
uous piecewise-linear functions. Extensive experiments with several problems of this
type lead us to believe that V (0, 4)-cycles achieve nearly the best accuracy-complexity
tradeoffs over other such cycling strategies. Since our exact solution cannot be rep-
resented exactly by our finite element space, the functional cannot converge to zero,
but rather stagnates as the iteration reaches the level of discretization error on each

grid. Table 5.1 depicts the functional norms, F(p2lh
10 ,u2lh

10 ; g)
1
2 , obtained on each level

for the linear Poisson problem and α varying between 1 and 10,000. Table 5.2 reports

on the corresponding final convergence factors, CF
(l)
10 , computed according to (5.4).

Here, we choose to report the convergence factor of the last iteration, since it tends
to be the worst in our numerical tests.

Note that, on each level, we obtain accuracy close to discretization level within 10
V (0, 4)-cycles. We have not used any special technique (e.g., streamline relaxation) to
address the changing character of the operator as α increases. Thus, as expected, the
final convergence factors degrade as the nonlinearity increases in dominance, but they
remain grid-independent. Though one might argue that the convergence factors in the
last column of Table 5.2 (α = 10,000) do not exhibit grid-independent convergence
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Table 5.1

Measured functional norm (5.6), F(p2lh
10 ,u2lh

10 ; g)
1
2 , for different α using a linear finite element

discretization and 10V (0, 4)-cycles with Gauss–Seidel as smoother.

Linear Nonlinearity parameter α
Poisson 1 10 100 1,000 10,000

Level Functional Functional Functional Functional Functional Functional
norm norm norm norm norm norm

7 2.7635e−01 2.7635e−01 2.6843e−01 2.5509e−01 2.5357e−01 2.5342e−01
6 1.4162e−01 1.4207e−01 1.4046e−01 1.3540e−01 1.3460e−01 1.3452e−01
5 7.1749e−02 7.1800e−02 7.1545e−02 7.0292e−02 7.0032e−02 7.0007e−02
4 3.6021e−02 3.6027e−02 3.5992e−02 3.5762e−02 3.5714e−02 3.5710e−02
3 1.8033e−02 1.8033e−02 1.8029e−02 1.8007e−02 1.8032e−02 1.8036e−02
2 9.0197e−03 9.0198e−03 9.0193e−03 9.0259e−03 9.0756e−03 9.0822e−03
1 4.5103e−03 4.5103e−03 4.5103e−03 4.5160e−03 4.5750e−03 4.5833e−03
0 2.2552e−03 2.2552e−03 2.2552e−03 2.2583e−03 2.3232e−03 2.3331e−03

Table 5.2

Convergence factors, CF
(l)
10 , for the same experiments as in Table 5.1.

Linear Nonlinearity parameter α
Level Poisson 1 10 100 1 000 10 000

CF
(l)
10 CF

(l)
10 CF

(l)
10 CF

(l)
10 CF

(l)
10 CF

(l)
10

7 0.031 0.029 0.128 0.258 0.272 0.274
6 0.054 0.063 0.318 0.602 0.632 0.635
5 0.091 0.068 0.443 0.776 0.809 0.812
4 0.108 0.092 0.538 0.825 0.865 0.866
3 0.116 0.098 0.581 0.872 0.891 0.893
2 0.117 0.097 0.595 0.893 0.926 0.928
1 0.117 0.090 0.599 0.908 0.944 0.946
0 0.108 0.096 0.599 0.918 0.955 0.957

factors, it is believed that grid-independent convergence factors are obtained once a
sufficiently small mesh size is reached.

The fact that we reached the level of discretization error is also supported by
the functional reduction factors. For continuous piecewise-linear finite elements for
our problem, standard theory (cf. [12]) establishes asymptotic O(h) H1-error bounds,
so H1 ellipticity of our functional yields an O(h) functional-norm bound. We might,
thus, expect about a factor of 2 in functional-norm reduction from one level to the next
finer one. Let the functional reduction factors as the resolution doubles be defined by

β(l)
n =

√
F(p2l+1h

n ,u2l+1h
n ; g)

F(p2lh
n ,u2lh

n ; g)
, l = 0, . . . , L− 1.(5.7)

Table 5.3 depicts these factors for different levels and strengths of nonlinearity. For all
levels and strengths of nonlinearity, we observe a functional reduction factor of about
2, which is consistent with the use of continuous piecewise-linear finite elements.

Next, we analyze error reduction factors as we step through the different levels.
Consider again the same FOSLS formulation, levels, and number of V-cycles per level
used for the results in Table 5.1. We now compare the numerically obtained solution,

p2lh, with the exact solution, p = x2+y2, for each level and for each α (α = 1, 10, 100,
1,000, and 10,000), measured by the H1- and L2-norms. In Figure 5.1, we depict the
H1-error norm versus the number of elements. The L2-error norm versus the number
of elements is shown in Figure 5.2. Since we use a regular refinement strategy to step
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Table 5.3

Functional reduction factors, β
(l)
10 , based on functional norms reported in Table 5.1.

Linear Nonlinearity parameter α
Poisson 1 10 100 1 000 10 000

Level β
(l)
10 β

(l)
10 β

(l)
10 β

(l)
10 β

(l)
10 β

(l)
10

7 — — — — — —
6 1.95 1.95 1.91 1.88 1.88 1.88
5 1.97 1.98 1.96 1.93 1.92 1.93
4 1.99 1.99 1.99 1.97 1.96 1.96
3 2.00 2.00 2.00 1.99 1.98 1.98
2 2.00 2.00 2.00 2.00 1.99 1.99
1 2.00 2.00 2.00 2.00 1.98 1.98
0 2.00 2.00 2.00 2.00 1.97 1.97

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

Number of Elements

|| 
p 

−
 p

2l h  ||
1,

Ω

Linear Poisson
α = 1
α = 10
α = 100
α = 1000
α = 10000

slope = 1 

Fig. 5.1. H1-error, ‖p−p2lh‖1,Ω , versus the number of elements for the linear Poisson problem
and (5.5) with α = 1, 10, 100, 1,000, and 1,0000.

through the levels (with each refinement, we increase the number of elements by a
factor of 4 and, therefore, halve our mesh size), reporting on the number of elements
is the same as reporting on the mesh size. For both figures, we use a logarithmic scale
for the number of elements (abscissa) and the error-norm (ordinate). For each α, the
H1-error norm (or L2-error norm) is measured for each level and indicated with data
points, which are connected in such a way that each line displays one nested iteration
process for some α. Additionally, we include in Figure 5.1 a supporting line with
slope 1 and in Figure 5.2 two supporting lines with slopes 1 and 2. These supporting
lines should help retrieve an estimate of the error-reduction factors directly from the
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Fig. 5.2. L2-error, ‖p−p2lh‖0,Ω , versus the number of elements for the linear Poisson problem
and (5.5) with α = 1, 10, 100, 1,000, and 10,000.

graph. Note that a slope of s in Figures 5.1 and 5.2 means that

‖p− p2lh‖
‖p− p2l+1h‖

≈
(2l+1h

2lh

)s

= 2s.

Hence, slope s translates to an error-reduction factor of 2s. Analyzing Figure 5.1,
the error-reduction factor from one level to the next is about 2 for every α. This

coincides well with the reported functional reduction factors, β
(l)
10 , in Table 5.3, and

are considered to be optimal for linear finite elements. From the excellent agreement
of the FOSLS functional norm and the H1-error reduction factors, we conclude that
the functional in (5.6) appears to be H1-elliptic. This numerical observation coincides
with the theoretical results of the companion paper [23], where we establish H1 ellip-
ticity of the FOSLS functional based on the Navier–Stokes equations and anticipate
it for other quasi-linear PDEs of that class.

In Figure 5.2, we display the L2-error norms in the same way as the H1-error
in Figure 5.1. We now observe strongly deteriorating L2-error reduction factors with
increasing strength of nonlinearity. One possible explanation for this might involve
the Nitsche Trick (cf. [8]), which relates two different error norms to each other (in
this case, the H1-error norm and the L2-error norm). Its proof is based on the

assumption that the exact solution, x2lh
∗ , is found on each level. With a nested

iteration scheme, we compute on each level only an approximation to x2lh
∗ ; here, for

example, we approximate x2lh
∗ by x2lh

10 . In separate experiments, we have been able
to recover near-optimal L2-error reduction factors by using 100 V-cycles instead of 10
on each level. This shows that better algebraic accuracy is needed on each level to
control the L2-error. This should be expected since greater L2 accuracy is obtained
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from the discretization on each level, so nested iteration should have to work harder
than for H1 accuracy to achieve it. Development of effective criteria for a nested
iteration strategy that efficiently produces small H1 and L2 errors is still an open
problem.

5.3. Kovaszany flow. While system (5.5) provides an important problem to
test the behavior of the algorithm, our ultimate goal is to solve the Navier–Stokes
equations. For concreteness, we focus on the steady-state incompressible Navier–
Stokes equations in velocity-pressure formulation given as follows:

− 1

Re
Δu + u · ∇u + ∇p = 0 in Ω,

∇· u = 0 in Ω.
(5.8)

Velocity vector variable u = (u1, u2)
t and pressure scalar variable p are nondimen-

sionalized. Re denotes the Reynolds number defined as Re = (UrefL)/ν, where L is
a reference length, Uref a reference velocity, and ν the kinematic viscosity (see [19]).
Note that the source terms in this system are all zero. We could easily incorporate
nonzero terms, but choose this simplification instead because our primary focus is on
the algebraic solver and because inhomogeneities are incorporated in the boundary
conditions in any case.

To obtain a first-order system from (5.8), we introduce a new velocity-flux tensor
variable, U = (Ui,j)2×2 = (∂uj/∂xi)2×2 = ∇ut. (See [1] for details on the FOSL-
Sization of (5.8).) We thus obtain the following first-order velocity-flux form of the
Navier–Stokes equations:

∇ut − U = 0 in Ω,

− 1

Re
(∇· U)t + Utu + ∇p = 0 in Ω,

∇· u = 0 in Ω,

2

Re
∇× U = 0 in Ω.

(5.9)

The difference between this system and that proposed in [1] is the factor of 2 in the
last equation and the missing trace term, ∇tr(U). The additional factor is a simple
weighting of this equation that, by our empirical observations, results in slightly
better numerical results. Concerning the trace term, because of the incompressibility
condition expressed by ∂xu1 + ∂yu2 = U11 + U22 = 0, we are able to eliminate one
of the variables by setting U11 = −U22, which in turn enforces ∇tr(U) = 0 and
therefore makes this trace equation unnecessary. Of course, system (5.9) offers but
one approach to reducing the second-order problem to first order. Other choices are
given, for example, in [3] and [19]. In any case, the solution of our first-order system
is the minimizer of the least-squares functional given by

(5.10) F(u,U, p ; g) = ‖∇ut − U‖2

0,Ω
+ ‖ − 1

Re
(∇· U)t + Utu + ∇p‖2

0,Ω

+ ‖∇· u‖2

0,Ω
+

∥∥∥∥ 2

Re
∇× U

∥∥∥∥2

0,Ω

,

where g = (0,0, 0) is the combined right side of the equations in (5.9).
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Table 5.4

Convergence summary for Kovasznay flow with Re = 40, a nested iteration PML approach with
10 V (0, 4)-cycles per level, Gauss–Seidel as smoother, and quadratic finite elements.

Level Nodes/Elements Functional norm Functional CF
(l)
10

l F(x2lh
10 ; g)

1
2 reduction factor β

(l)
10

5 41/16 4.212367e+00 0.713
4 145/64 1.635538e+00 2.57 0.788
3 545/256 4.854122e−01 3.37 0.854
2 2 113/1 024 1.379767e−01 3.51 0.880
1 8 321/4 096 3.760596e−02 3.67 0.892
0 33 025/16 384 9.993762e−03 3.78 0.897

As a model problem for our algorithm applied to the Navier–Stokes equations,
we turn to Kovasznay flow. This particular system is named after L. I. G. Kovasznay,
who derived in [20] an analytic solution for the steady-state incompressible Navier–
Stokes equations for a special laminar flow problem. We choose this problem as a
test case, since it is posed on a rectangular domain, Ω = [−.5, 2.0] × [−.5, 1.5], has a
smooth solution, and exhibits no singularities. Knowledge of the analytical solution
allows us to strongly impose the exact boundary conditions. Actually, for accurate
error estimates, we need not appeal to an exact analytic solution, since the FOSLS
functional itself naturally provides a sharp error measurement. But use of an exact
solution gives a somewhat tighter estimate of any error measure we choose to use.

In Table 5.4, we give the convergence history using continuous piecewise-quadratic
functions for the Kovasznay flow problem with a Reynolds number of 40. For the
cycling strategy, we choose to use quadratic finite elements for the fine-grid corrections
and linear finite element subspaces for the coarse-grid process (see the second approach
of section 4.3). The grids are based on a regular triangulation of Ω by 16 elements and
41 nodes. Again, we use a nested iteration approach to step through the levels. On
each level, we apply 10 V (0, 4)-PML cycles, with Gauss–Seidel as smoother. For each

level, we report on final functional norm values, F(x2lh
10 ; g)

1
2 , the functional reduction

factor, β
(l)
10 , defined as in (5.7), and the final convergence factor, CF

(l)
10 , defined as in

(5.4).
The results in Table 5.4 show that we also obtain approximate grid-independent

convergence factors for the FOSLS formulation of the Navier–Stokes problem and
nearly optimal finite element approximation properties. The fact that the functional

reduction factor, β
(l)
10 , is hovering around 3.7 instead of an optimal factor of 4 for

quadratic Lagrange finite elements is probably due mostly to the approximations not
yet being in the asymptotic range. Note the increase in these factors with decreasing
h. (Our tests that increased the number of V -cycles showed only marginal increase
in the functional reduction factors.)

Though we report here only on results for Re = 40 (the classical setting for the
Kovasznay flow), we have done experiments for much higher Reynolds numbers. We
obtained similar results, although the convergence factors naturally degraded since
the PML scheme was not designed for convection-dominated problems.
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ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS: THEORETICAL

RESULTS∗

THOMAS A. MANTEUFFEL† , STEPHEN F. MCCORMICK† , AND OLIVER RÖHRLE‡

Abstract. In a companion paper [T. A. Manteuffel et al., SIAM J. Numer. Anal., 44 (2006), pp.
120–138], we propose a new multilevel solver for two-dimensional elliptic systems of partial differential
equations with nonlinearity of type u∂v. The approach is based on a multilevel projection method
(PML) [S. F. McCormick, Multilevel Projection Methods for Partial Differential Equations, SIAM,
Philadelphia, 1992] applied to a first-order system least-squares functional that allows us to treat
the nonlinearity directly. While the companion paper focuses on computation, here we concentrate
on developing a theoretical framework that confirms optimal two-level convergence. To do so, we
choose a first-order formulation of the Navier–Stokes equations as a basis of our theory. We establish
continuity and coercivity bounds for the linearized Navier–Stokes equations and the full nonquadratic
least-squares functional, as well as existence and uniqueness of a functional minimizer. This leads to
the immediate result that one cycle of the two-level PML method reduces the functional norm by a
factor that is uniformly less than 1.
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Navier–Stokes

AMS subject classifications. 35J60, 65N12, 65N30, 65N55

DOI. 10.1137/040617704

1. Introduction. Our companion paper [8] introduces a new multilevel solver
for two-dimensional elliptic systems of partial differential equations (PDEs) with non-
linearity of type u∂v. The approach is based on a multilevel projection method (PML)
[9] applied to a first-order system least-squares (FOSLS) functional, where the non-
linearity is treated directly, with no need for linearization anywhere in the algorithm.
While [8] focuses on computation, the key objective of the present paper is to establish
local well-posedness of our functional minimization problem. This result leads to the
immediate conclusion that our two-level solver converges linearly with grid indepen-
dent factors, as observed numerically in [8]. This two-grid result can be extended to
W -cycles in the usual way. However, an important alternative would be to establish
a V-cycle result based on the general theory developed in [11] and [12]. This alter-
native would naturally yield grid-dependent convergence bounds because of the weak
smoothness assumptions on the problem formulation (i.e., only Lipschitz continuity
on the domain boundary).

We base our theory for a two-level PML method on the first-order formulation of
the Navier–Stokes formulation given in (2.1). Although we choose this formulation as
a foundation for our theoretical framework, it is not limited to it: similar results can
be established for other PDEs of this class.
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This paper is organized in the following way. Section 2 provides the first-order
system formulation, with definitions, notation, and description of one two-level PML
cycle step. Section 3 establishes several continuity and coercivity bounds for the
Oseen equations as well as for the full nonquadratic least-squares functional. Section
4 shows existence and uniqueness of a functional minimizer, some characteristics of
coarse-grid correction and relaxation, and two-grid convergence.

2. First-order system formulation, definitions, notation, and other pre-
liminaries. We use c and C throughout as generic constants that may change value
with every occurrence but are independent of mesh size. To keep track of a specific
value for a constant, subindices may be used.

FOSLS formulations for the Navier–Stokes equations are discussed in [1, 2, 3, 6].
In the framework of this paper, we consider the first-order velocity-flux formulation
of the Navier–Stokes equations given in [1] and [2]:

L(x) = g :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ut − U = 0 in Ω,

−(∇· U)t + ∇p + Re Utu = f in Ω,

∇· u = 0 in Ω,

∇× U = 0 in Ω,

∇
(
trU

)
= 0 in Ω,

(2.1)

where Ω is a subset of R
n (n = 2, 3) with Lipschitz continuous boundary ∂Ω and

f ∈ L2(Ω)n. As boundary conditions, without loss of generality, we take u = 0 and
n×U = 0 on ∂Ω, where n is the outward unit normal on ∂Ω. Writing the unknowns as
x = (u,U, p), then the nonquadratic functional is constructed by taking the L2-norm
of each interior equation:

F(x; g) = ‖L(x) − g‖2

0,Ω
, x ∈ VVV,(2.2)

where g = (0, f , 0,0,0)T and the space is defined by

VVV = H1
0 (Ω)n × V0 × (H1(Ω)/R)

with

V0 = {U ∈ H1(Ω)n
2

: n × U = 0 on ∂Ω}.

It is shown in [5] that the Navier–Stokes equations generally have more than one solu-
tion, unless the viscosity and the external forces satisfy very stringent requirements.
However, it can also be shown that in many practical examples, these solutions are
mostly isolated, i.e., there exist a neighborhood in which each solution is unique.
Bifurcation phenomena are rare. We thus assume we are in a closed neighborhood,
B(x∗, r), of an isolated solution, x∗ ∈ VVV, to (2.1), that is, a global minimum of (2.2),
for which F(x∗; g) = 0. The neighborhood is taken to be an H1-ball around x∗ with
radius r > 0 defined as

B(x∗, r) :=
{
x ∈ VVV : ‖x − x∗‖1,Ω < r

}
,

where

‖x‖2

1,Ω
≡ ‖u‖2

1,Ω
+ ‖U‖2

1,Ω
+ ‖p‖2

1,Ω
.
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Its closure is B(x∗, r) =
{
x ∈ VVV : ‖x − x∗‖1,Ω

≤ r
}
. Several places along the way,

we assume that r is so small that certain expansions we develop give us the desired
bounds.

Denote by L′(x)[y] the first Fréchet derivative of operator L at x ∈ VVV in direction
y = (v,V, q) ∈ VVV. Note that the nonlinear term, Re Utu, in (2.1) becomes Re(Vtu+
Utv) in L′(x)[y] and that L′(x)[y] is linear in y. Also, L′(x) is the same operator
as that for the Oseen equations (cf. [7]). L′′(x)[y, z] denotes the second Fréchet
derivative at x in directions y and z = (w,W, t) ∈ VVV. For the linear terms of (2.1),
the second Fréchet derivative is the zero operator. For the nonlinear term, we obtain
Re(Vtw + Wtv), so L′′(x) is independent of x.

Another set definition we use later is the closed line segment connecting points
x, y ∈ VVV: [x,y] := {θx + (1− θ)y : 0 ≤ θ ≤ 1}. This notation should not be confused
with the square brackets used for directional derivatives because the operator always
immediately precedes the direction.

Having defined the first and second Fréchet derivatives for operator L, we are
able to express the first and second Fréchet derivatives of the nonquadratic functional
in (2.2) in terms of L and its derivatives. For x,y ∈ VVV, the first Fréchet derivative of
(2.2) in direction y is

F ′(x; g)[y] = 2〈L(x) − g,L′(x)[y]〉.(2.3)

Its second Fréchet derivative in direction [y,y] (needed later for Taylor expansions)
is

F ′′(x; g)[y,y] = 2 ‖L′(x)[y]‖2

0,Ω
+ 2〈L(x) − g,L′′(x)[y,y]〉.(2.4)

Remark 1. As with all multigrid schemes, relaxation is the basis for our PML
approach. One choice is steepest descent, which involves a gradient direction, d, in VVV
and a step size, s, determined as the smallest nonnegative critical point of F(x−sd; g).
To understand this step, it is useful to examine the polynomial

F(x − sd; g) = F(x; g) − sF ′(x; g)[d] +
s2

2
F ′′(x; g)[d,d]

− s3

6
F ′′′(x; g)[d,d,d] +

s4

24
F (4)(x; g)[d,d,d,d].

From (2.4), we see that F ′′′(x; g)[d,d,d] = 6〈L′(x)[d],L′′(x)[d,d]〉 and
F (4)(x; g)[d,d,d,d] = 6〈L′′(x)[d,d],L′′(x)[d,d]〉. Thus, when F ′′(x; g) > 0, an in-
spection of this polynomial for s > 0 implies that there exists a smallest nonnegative
critical point, s, of F(x− sd; g) and that it must be a local minimum of F(x, g) such
that F(x − sd; g) ≤ F(x; g). (Note that either d = 0 and F(x − sd; g) = F(x; g), so
s = 0, or F(x − sd; g) initially decreases but then tends to +∞ as s goes from 0 to
∞.)

Similar definitions can be made for subspaces of VVV. Consider a quasi-uniform
finite element partition of Ω with approximate mesh size h and let Hh(Ω) be the
corresponding finite element subspace of H1(Ω) consisting of piecewise polynomials:
a function in Hh(Ω) is continuous on Ω and polynomial within each element. Let
Hh

0 (Ω) denote the subspace of Hh(Ω) of functions that are zero on ∂Ω. Then define

Sh = Hh
0 (Ω)n × Vh

0 × (Hh(Ω)/R) ⊂ VVV
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with

Vh
0 = {Uh ∈ Hh(Ω)n

2

: n × Uh = 0 on ∂Ω}.

Suppose also that we have a corresponding coarser 2h level so that the corresponding
discrete space, S2h, forms a subspace of Sh. For this paper, we assume standard
nested finite element spaces, S2h ⊂ Sh ⊂ VVV, that satisfy the approximation property

inf
x2h∈S2h

‖xh − x2h‖2

0,Ω
≤ C1 h

2 ‖xh‖2

1,Ω
(2.5)

and the inverse estimate

‖xh‖2

1,Ω
≤ C2

h2
‖xh‖2

0,Ω
(2.6)

for all xh in Sh, where C1 and C2 are positive constants that do not depend on h (see
[4]). Further, define a discrete H1-ball by Bh(x∗, r) =

{
xh ∈ Sh : ‖xh − x∗‖1,Ω

< r
}

and its closure by Bh
(x∗, r) =

{
xh ∈ Sh : ‖xh−x∗‖1,Ω

≤ r
}
. As we said, we choose r

progressively smaller in several places in what follows. Nowhere does this requirement
depend on h. However, we implicitly assume that no matter how small r becomes, h
is so small that Bh(x∗, r) �= ∅.

Before being able to define the relaxation scheme and two-level PML method,
we introduce the discrete functional and its gradient as well as the operator norm
associated with the second Fréchet derivative of functional F(x; g).

Definition 2.1 (discrete functional and its L2-gradient). Let xh ∈ Bh
(x∗, r)

and define Fh(xh; g) as the restriction of F(xh; g) to space Sh. Now let yh ∈ Sh. By
the definition of the first Fréchet derivative, we have

Fh′(xh; g)[yh] =〈L(xh) − g,L′(xh)[yh]〉,

and, since Sh is finite dimensional, the Riesz representation theorem guarantees the
existence of the discrete L2-gradient, ∇hF(xh; g) ∈ Sh, which satisfies

Fh′(xh; g)[yh] = 〈L′∗(xh)
(
L(xh) − g

)
,yh〉 =: 〈∇hF(xh; g),yh〉.

Note that ∇hF(xh; g) ∈ Sh can be defined weakly by 〈∇hF(xh; g),yh〉 = 〈L(xh) −
g,L′(xh)[yh]〉 for all yh ∈ Sh. Note also that ∇hFh(xh; g) = ∇hFh(xh; gh), where
gh is the L2-orthogonal projection of g onto space L′(xh)Sh.

Remark 2. Denote by xh
∗ the element in Sh that minimizes (2.2) over Bh

(x∗, r).
Such an element exists because this set is compact and F(x; g) is continuous, as we
show in Theorem 3.2. Note that if xh ∈ Bh(x∗, r) (i.e., the interior of the ball), then
xh
∗ is a grid h critical point in the sense that

〈∇hF(xh
∗ ; g),yh〉 = 〈L(xh

∗) − g,L′(xh
∗)[yh]〉 = 0(2.7)

for all yh ∈ Sh, provided F ′′(x; g) is bounded on B(x∗, r), as we show in Theorem
3.1. This follows from a standard argument based on Taylor series and outlined as
follows: if

0 ≤ F
(
xh
∗ − s∇hF(xh

∗ ; g)
)
−F(xh

∗ ; g)

= −s‖∇hF(xh
∗ ; g)‖2

0,Ω
+ s2F ′′(x̃h; g)[∇hF(xh

∗ ; g),∇hF(xh
∗ ; g)];
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and, for small enough but positive s, we could make the last expression negative (a
contradiction) unless ∇hF(xh

∗ ; g) = 0. This standard argument is referred to later in
the proof of Lemma 4.3 to show that the coarse-grid correction step of PML (described
next) is determined by a grid 2h critical point. That x∗ is a critical point of F(x; g)
in B(x∗, r) follows simply from (2.3).

Definition 2.2 (discrete operator norm of the second derivative). Let xh ∈
Bh

(x∗, r) and yh ∈ Sh. Then the discrete operator norm associated with the second
Fréchet derivative of functional F(xh; g) is defined by

‖|F ′′(xh; g)‖|
0,h

= sup
0 �=yh∈Sh

∣∣F ′′(xh; g)[yh,yh]
∣∣

〈yh,yh〉 .

Next, we define one step of relaxation. We consider two types of schemes, both
of which use the discrete gradient as a descent direction. The first scheme reduces to
Richardson for the linear case and the second is optimal steepest descent. The theory
focuses on the Richardson-type scheme because it is simpler to analyze and it sets the
stage for a simple conclusion for steepest descent.

Definition 2.3 (relaxation). One step of Richardson-type relaxation is defined
by

xh ← xh − ω

‖|F ′′(xh; g)‖|
0,h

∇hF(xh; g),(2.8)

where ∇hF(xh; g) is the search direction, 1/‖|F ′′(xh; g)‖|
0,h

the basic step length, and
ω a damping parameter. One step of steepest descent is defined by

xh ← xh − s∇hF(xh; g),(2.9)

where s is chosen as the smallest nonnegative root of

∂F
∂s

((
xh − s∇hF(xh; g)

)
; g
)

= 0.(2.10)

We now have all the ingredients needed to describe the two-level PML method. Its
first step computes the nearest locally optimal coarse-grid correction, which Lemma
4.3 shows must exist uniquely provided we are close enough to x∗. Its second step
is one relaxation sweep given by either (2.8) or (2.9). The method in (2.8) is well
defined because F ′′(xh; g) is nonzero, as Theorem 3.1 shows. The method in (2.9) is
also well defined, as Remark 1 shows.

Step 1. For a given initial guess, xh
0 ∈ Sh, perform the coarse-grid correction step

given by xh
1
2

← xh
0 + x2h

∗ , where x2h
∗ is the local minimizer of F(xh

0 + x2h; g) (e.g., it

is a grid 2h critical point) with minimal H1-norm:

x2h
∗ = argmin

x2h∈S2h

{
‖x2h‖1,Ω : ∇2hF(xh

0 + x2h; g) = 0, F(xh
0 + x2h; g) ≤ F(xh

0 ; g)
}
.

Step 2. Let xh
1 be the result of one relaxation step given by (2.8) or (2.9) applied

to xh
1
2

.

Further iterations of PML are defined in the obvious way, with xh
k taking on the

role of xh
0 and xh

k+1 being the result corresponding to xh
1 for k = 1, 2, . . . .



144 T. A. MANTEUFFEL, S. F. MCCORMICK, AND O. RÖHRLE

3. Continuity and coercivity bounds. In this section, we first establish con-
tinuity and coercivity for the Oseen equations (Lemma 3.3). We then use Lemmas 3.1
and 3.3 to prove continuity and coercivity of F ′′(x; g)[y,y] as a function of y ∈ VVV, for
all x ∈ B(x∗, r) (Theorem 3.1). The results in this section help us later to establish
the key objective of our two-level method: one cycle of two-level PML reduces the
functional norm by a factor that is bounded uniformly below 1 (Theorem 4.1).

Lemma 3.1. There exist a γ0, depending only on Re and Ω, such that

‖L′′(x)[y, z]‖
0,Ω

≤ γ0‖y‖1,Ω‖z‖1,Ω

for all x,y, and z in VVV.
Proof. Recall for x = (u,U, p), y = (v,W, q), and z = (w,W, t) in VVV that the

second Fréchet derivative for the linear terms of (2.1) is the zero operator. For the
nonlinear term, we obtain Re(Vtw+Wtv). Then, the result follows directly from the
Sobolev imbedding theorem about multiplication in Sobolev spaces (Corollary I.1.1
in [5]).

Lemma 3.2. For all x = (u,U, p) ∈ VVV, there exist two positive constants, c̃3 and
C̃3, depending only on Re, x, and Ω, such that

c̃3(x) ‖y‖2

1,Ω
≤ ‖L′(x)[y]‖2

0,Ω
≤ C̃3(x) ‖y‖2

1,Ω

for all y = (v,V, q) ∈ VVV.
Proof. We use the derivation of the regularity estimate, as well as Theorems

3.2, 4.1, and 4.2 in [7], as guidelines for the proof of this lemma. Analogous to the
continuity and coercivity proof for L′((u, p))[(v,V, q)

]
in [7], we start from the Oseen

equations in the following form:

−Δv + Re
[
(∇vt)tu + Utv

]
+ ∇q = f ,
∇· v = g,

(3.1)

where g ∈ L2(Ω). The first equation differs from that in [7] because U is used instead
of ∇ut. We also relax the smoothness assumption by only requiring u and U to be
in H1

0 (Ω)n and V0, respectively. ([7] requires u to be in H2
0 (Ω)n.)

First, we establish an a priori H1-regularity estimate for the equations in (3.1):
if Ω has Lipschitz boundary, then, for f ∈ H−1

0 (Ω)n and g ∈ L2
0(Ω), the weak solution

of (3.1), (v, q) ∈ H1
0 (Ω)n × L2

0(Ω), satisfies the a priori estimate

‖∇vt‖0,Ω + ‖q‖0,Ω ≤ const
(
‖f‖−1,Ω + ‖g‖0,Ω + ‖v‖

δo+δ,Ω

)
(3.2)

for δ ∈ (0, 1
2 ), where δo = 0 for Ω ⊂ R

2 and δo = 1
2 for Ω ⊂ R

3.
To prove this estimate, we first take the pointwise dot product of the first equation

of (3.1) with any ψ ∈ H1
0 (Ω)n and the dot product of the second equation of (3.1)

with any φ ∈ L2(Ω), integrate it over Ω, and use integration by parts. This yields

〈∇vt,∇ψt〉 + Re〈(∇vt)tu + Utv,ψ〉 − 〈q,∇· ψ〉 = 〈f ,ψ〉,
〈∇· v, φ〉 = 〈g, φ〉.(3.3)

Since g ∈ L2(Ω), we can choose an s ∈ H1
0 (Ω)n, according to Lemma 4.1 in [7], such

that

∇· s = g and |s|
1,Ω

≤ C‖g‖
0,Ω

.(3.4)
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Then, setting υυυ = v − s ∈ H1
0 (Ω)n in (3.3), we have

⎧⎪⎨
⎪⎩

〈∇υυυt,∇ψt〉 + Re〈(∇υυυt)tu + Utυυυ,ψ〉 − 〈q,∇· ψ〉 =〈f ,ψ〉 − 〈∇st,∇ψt〉
− Re〈(∇st)tu + Uts,ψ〉,

〈∇· υυυ, φ〉 =〈0, φ〉

(3.5)

for any ψ ∈ H1
0 (Ω)n and φ ∈ L2(Ω). For the first equation in (3.5), by taking ψ = υυυ,

we obtain

‖∇υυυt‖2
0,Ω

= 〈f ,υυυ〉 − 〈∇st,∇υυυt〉 − Re
(
〈(∇υυυt)tu + Utυυυ,υυυ〉 + 〈(∇st)tu + Uts,υυυ〉

)
≤ |〈f ,υυυ〉| + |〈∇st,∇υυυt〉|

+ Re |〈Utυυυ,υυυ〉 + 〈(∇υυυt)tu,υυυ〉 + 〈Uts,υυυ〉 + 〈(∇st)tu,υυυ〉|.

(3.6)

For the first term of the upper bound in (3.6), recall the definition of the H−1(Ω)
norm:

‖f‖−1,Ω := sup
0 �=υυυ∈H1

0 (Ω)

〈f ,υυυ〉
|υυυ|1,Ω

⇒〈f ,υυυ〉
|υυυ|1,Ω

≤ ‖f‖−1,Ω∀υυυ �= 0 ∈ H1
0 (Ω)n.

Hence for all υυυ �= 0 ∈ H1
0 (Ω)n, we have 〈f ,υυυ〉 ≤ ‖f‖−1,Ω

‖∇υυυ‖
0,Ω

. To bound the second
term, we use the Cauchy–Schwarz inequality:

〈∇st,∇υυυt〉 ≤ ‖∇st‖0,Ω‖∇υυυt‖
0,Ω

= |s|
1,Ω‖∇υυυt‖0,Ω

(3.4)

≤ C‖g‖0,Ω‖∇υυυt‖0,Ω .

It remains to derive bounds for the last four terms, which are classified in [5] as
trilinear. In the following, C denotes a generic constant that might depend on Re,
Ω, ‖u‖

1
, and ‖U‖

1
.

According to the Sobolev imbedding theorem I.1.3 in [5], the space H1(Ω) is
continuously embedded in L4(Ω) for n ≤ 4. Then,

|〈Uυυυ,υυυ〉| =

∣∣∣∣∣∣
n∑

i,j=1

∫
Ω

υjUijυi dx

∣∣∣∣∣∣ ≤
n∑

i,j=1

‖υj‖0,Ω
‖Uij‖0,4,Ω

‖υi‖0,4,Ω

≤ C‖υυυ‖0,Ω‖U‖1,Ω‖υυυ‖1,Ω ≤ C‖υυυ‖
δo+δ,Ω

‖U‖1,Ω |υυυ|1,Ω .

(3.7)

The last inequality is a result of the Poincaré–Friedrichs inequality (‖υυυ‖1,Ω ≤ C|υυυ|1,Ω).
Applying the Sobolev imbedding theorem to the second trilinear term leads to

〈(∇υυυt)tu,υυυ〉 ≤ ‖∇υυυt‖0,Ω‖utυυυ‖0,Ω ≤ ‖∇υυυt‖0,Ω‖u‖1,Ω‖υυυ‖δo+δ,Ω
.(3.8)

Similar arguments hold for the remaining two trilinear terms. Hence,

〈Uts,υυυ〉 ≤ C ‖U‖
1,Ω

|s|
1,Ω

‖υυυ‖
1,Ω

≤ C ‖U‖
1,Ω

‖∇υυυt‖
0,Ω

‖g‖
0,Ω

(3.9)

and

〈(∇st)tu,υυυ〉 ≤ C |s|1,Ω‖u‖1,Ω‖υυυ‖1,Ω ≤ C ‖u‖1,Ω‖∇υυυt‖0,Ω‖g‖0,Ω .(3.10)
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Combining the results yields

‖∇υυυt‖2
0,Ω

≤ ‖f‖−1,Ω
‖∇υυυ‖

0,Ω
+ C‖g‖

0,Ω
‖∇υυυ‖

0,Ω
+ C‖U‖

1,Ω
‖υυυ‖

δo+δ,Ω
‖∇υυυ‖

0,Ω

+ C
(
‖U‖

1,Ω
+ ‖u‖

1,Ω

)
‖g‖

0,Ω
‖∇υυυ‖

0,Ω
.

Canceling ‖∇υυυ‖
0,Ω gives

‖∇υυυt‖0,Ω ≤ C(Re, ‖u‖1,Ω , ‖U‖1,Ω ,Ω)
[
‖f‖−1,Ω + ‖g‖0,Ω + ‖υυυ‖

δo+δ,Ω

]
.(3.11)

To bound q, choose ψ ∈ H1
0 (Ω)n according to Lemma 4.1 in [7] such that

∇· ψ = q and |ψ|
1,Ω ≤ C‖q‖0,Ω .(3.12)

Using again the first equation of (3.5), we obtain

‖q‖2
0,Ω

= 〈∇υυυt,∇ψt〉 + Re〈(∇υυυt)tu + Utυυυ,ψ〉
−〈f ,ψ〉 + 〈∇st,∇ψt〉 + Re〈(∇st)tu + Uts,ψ〉

≤ 〈∇υυυt,∇ψt〉 + Re〈(∇υυυt)tu + Utυυυ,ψ〉
+ |〈f ,ψ〉| + 〈∇st,∇ψt〉 + Re〈(∇st)tu + Uts,ψ〉.

We proceed similarly as with the bound ‖∇υυυt‖
0,Ω

. For all ψ �= 0 ∈ H1
0 (Ω)n,

〈f ,ψ〉 ≤ ‖f‖−1,Ω |ψ|
1,Ω

(3.12)

≤ C‖f‖−1,Ω
‖q‖

0,Ω ,(3.13)

〈∇υυυt,∇ψt〉 ≤ ‖∇υυυt‖0,Ω‖∇ψt‖0,Ω = |υυυ|1,Ω |ψ|1,Ω
(3.12)

≤ C|υυυ|1,Ω‖q‖0,Ω ,(3.14)

and

〈∇st,∇ψt〉 ≤ ‖∇st‖
0,Ω‖∇ψt‖

0,Ω
= |s|

1,Ω
|ψ|

1,Ω

(3.12)

≤ C|s|
1,Ω

‖q‖
0,Ω

.(3.15)

The bounds for trilinear terms 〈(∇υυυt)tu,ψ〉 and 〈(∇st)tu,ψ〉 follow directly by ap-
plying Lemma IV.2.1 in [5] and the Poincaré–Friedrichs inequality:

〈(∇υυυt)tu,ψ〉 ≤ C |υυυ|1,Ω‖u‖1,Ω‖ψ‖1,Ω ≤ C ‖u‖1,Ω‖∇υυυt‖0,Ω |ψ|1,Ω(3.16)

and

〈(∇st)tu,ψ〉 ≤ C |s|1,Ω‖u‖1,Ω‖ψ‖1,Ω ≤ C ‖u‖1,Ω |s|1,Ω |ψ|1,Ω .(3.17)

For the remaining trilinear terms, we follow the argument in (3.7):

〈Utυυυ,ψ〉 ≤ C ‖U‖
1,Ω

‖υυυ‖
1,Ω

|ψ|
1,Ω

≤ C ‖U‖
1,Ω

‖∇υυυt‖
0,Ω

|ψ|
1,Ω

(3.18)

and

〈Uts,ψ〉 ≤ C ‖U‖1,Ω‖s‖1,Ω |ψ|1,Ω ≤ C ‖U‖1,Ω |s|1,Ω |ψ|1,Ω .(3.19)

With (3.13)–(3.19), we have

‖q‖2
0,Ω

≤ C‖f‖−1,Ω‖q‖0,Ω + C|υυυ|1,Ω‖q‖0,Ω + C|s|1,Ω‖q‖0,Ω

+ C
(
‖∇υυυt‖0,Ω + |s|1,Ω

)
|ψ|

1,Ω

(3.12)

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
(
‖f‖−1,Ω

+ ‖∇υυυt‖
0,Ω

+ |s|
1,Ω

)
‖q‖

0,Ω

(3.4),(3.11)

≤ C(Re, ‖u‖1,Ω , ‖U‖1,Ω ,Ω)
(
‖f‖−1,Ω + ‖g‖0,Ω + ‖υυυ‖

δo+δ,Ω

)
‖q‖

0,Ω .
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Canceling ‖q‖0,Ω
results in

‖q‖
0,Ω ≤ C(Re, ‖u‖

1,Ω , ‖U‖1,Ω ,Ω)
(
‖f‖−1,Ω

+ ‖g‖
0,Ω

+ ‖υυυ‖
δo+δ,Ω

)
.(3.20)

Recall that we seek an estimate for ‖∇vt‖0,Ω + ‖q‖
0,Ω

in terms of v and q and not
for ‖∇υυυt‖0,Ω + ‖q‖0,Ω in terms of υυυ and q. Earlier, we defined υυυ to be the difference
between v and s. Now, adding s to υυυ leads to estimates for ‖∇vt‖

0,Ω
+‖q‖

0,Ω
in terms

of v and q:

‖∇vt‖
0,Ω

≤ ‖∇υυυt + ∇st‖0,Ω ≤ ‖∇υυυt‖0,Ω + ‖∇st‖0,Ω

(3.11)

≤ C(Re, ‖u‖1,Ω , ‖U‖1,Ω ,Ω)
[
‖f‖−1,Ω + ‖g‖0,Ω + ‖υυυ‖

δo+δ,Ω
+ ‖∇st‖0,Ω

]
≤ C(Re, ‖u‖

1,Ω
, ‖U‖

1,Ω
,Ω)

[
‖f‖−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

+ C|s|
1,Ω

]
(3.4)

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
[
‖f‖−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

+ C‖g‖
0,Ω

]
≤ C(Re, ‖u‖

1,Ω
, ‖U‖

1,Ω
,Ω)

[
‖f‖−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

]
.

Similarly,

‖q‖0,Ω ≤ C(Re, ‖u‖
1,Ω , ‖U‖1,Ω ,Ω)

[
‖f‖−1,Ω + ‖g‖0,Ω + ‖υυυ‖

δo+δ,Ω

]
≤ C(Re, ‖u‖

1,Ω
, ‖U‖

1,Ω
,Ω)

[
‖f‖−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

]
.

Combining the bounds for ‖∇vt‖0,Ω and ‖q‖
0,Ω results in the a priori estimate

‖∇vt‖
0,Ω + ‖q‖0,Ω ≤ C(Re, ‖u‖

1,Ω , ‖U‖1,Ω ,Ω)
[
‖f‖−1,Ω + ‖g‖

0,Ω + ‖v‖
δo+δ,Ω

]
.

(3.21)

Theorem 4.1 in [7] removes the ‖v‖
δo+δ,Ω

term by assuming uniqueness of the solution,

(v,V, q) ∈ VVV. This is a direct consequence of the standard compactness argument.
Since H1

0 (Ω) is compact in Hδo+δ(Ω), where δ ∈ (0, 1
2 ) and δ

o
= 0 or 1

2 depending on
the spatial dimension of the domain, we can apply the standard compactness argument
to (3.21) in a way similar to the estimate ‖∇vt‖0,Ω +‖q‖0,Ω ≤ C(Re,u,Ω)

[
‖f‖−1,Ω +

‖g‖
0,Ω + ‖v‖0,Ω

]
in the proof of Theorem 4.1 of [7]. We also note that the slightly

different constant in (3.21) (compared to the regularity estimate in [7]) has no further
implications in [7] on Theorems 3.2, 4.1, and 4.2 or their proofs. Thus, we obtain
continuity and coercivity for L′(x)[y] under the somewhat weaker assumptions of x
and y being in VVV.

We conclude that there exist two positive constants, c̃3 and C̃3, which depend on
Re, the H1-norm of u and U, and Ω, such that

c̃3(x) ‖y‖2

1,Ω
≤ ‖L′(x)[y]‖2

0,Ω
≤ C̃3(x) ‖y‖2

1,Ω

for all y ∈ VVV.
The next lemma establishes for all x ∈ B(x∗, r) and r sufficiently small a uniform

coercivity and continuity bound on ‖L′(x)[y]‖2

0,Ω
.

Lemma 3.3. Let x∗ be an isolated solution of (2.2) and let c̃3(x∗) and C̃3(x∗)
be the respective coercivity and continuity constants as defined in Lemma 3.2. Then,

c3‖y‖
2

1,Ω
≤ ‖L′(x)[y]‖2

0,Ω
≤ C3‖y‖

2

1,Ω
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for all x = (u,U, p) ∈ B(x∗, r), y = (v,V, q), and z = (w,W, t) ∈ VVV, where c3 :=
c̃3(x∗) − γ0r

2 > 0 provided r <
√
c̃3(x∗)/γ0 and C3 := C̃3(x∗) + γ0r

2 > 0.

Proof. For all x,y ∈ B(x∗, r) and r determined later, Lemma 3.2 implies that

‖L′(x)[y]‖2

0,Ω
= ‖L′(x)[y] − L′(x∗)[y] + L′(x∗)[y]‖2

0,Ω

≤ ‖L′′(x̃)[x − x∗,y]‖2

0,Ω
+ ‖L′(x∗)[y]‖2

0,Ω

≤
(
γ0‖x − x∗‖

2

1,Ω
+ C̃3(x∗)

)
‖y‖2

1,Ω

≤
(
γ0r

2 + C̃3(x∗)
)
‖y‖2

1,Ω
=: C3‖y‖

2

1,Ω

and

‖L′(x)[y]‖2

0,Ω
= ‖L′(x)[y] − L′(x∗)[y] + L′(x∗)[y]‖2

0,Ω

≥ − ‖L′′(x̃)[x − x∗,y]‖2

0,Ω
+ ‖L′(x∗)[y]‖2

0,Ω

≥
(
− γ0‖x − x∗‖

2

1,Ω
+ c̃3(x∗)

)
‖y‖2

1,Ω

≥
(
− γ0r

2 + c̃3(x∗)
)
‖y‖2

1,Ω
=: c3‖y‖

2

1,Ω
.

Constant C3 is obviously positive and r <
√

c̃3(x∗)
γ0

ensures that c3 is positive.

Note that c3 and C3 in Lemma 3.3 depend only on Re, r, and Ω.

Next, we derive continuity and coercivity results for the full nonquadratic func-
tional, F(x; g). First, we establish these results for its second Fréchet derivative.
Then, almost as a direct implication of this, we achieve continuity and coercivity for
the functional norm itself. We restrict ourselves to an r that is small enough to ensure
that all of these results hold uniformly for x ∈ B(x∗, r).

Theorem 3.1. There exists an r > 0 such that for any x ∈ B(x∗, r), the second
Fréchet derivative of F(x; g) in direction [y,y], y ∈ VVV, is positive. Furthermore,
there exist two positive constants, c4 and C4, which depend only on Re, r, and Ω,
such that

F ′′(x; g)[y, z] ≤ C4‖y‖1,Ω‖z‖1,Ω(3.22)

and

c4‖y‖
2

1,Ω
≤ F ′′(x; g)[y,y](3.23)

for any x ∈ B(x∗, r) and all y ∈ VVV.

Proof. First, we show that F ′′(x; g)[y,y] is positive. Let x ∈ B(x∗, r), with

r <
√

c̃3(x∗)
γ0

, as in the proof of Lemma 3.3. Then the Cauchy–Schwarz inequality and

Lemmas 3.1 and 3.3 show that

〈L(x) − g,L′′(x)[y,y]〉 = 〈L′(x̃)[x−x∗],L′′(x)[y,y]〉
≤ ‖L′(x̃)[x−x∗]‖0,Ω · ‖L′′(x)[y,y]‖0,Ω

≤
√
C3γ0 ‖x−x∗‖1,Ω‖y‖

2

1,Ω
,

(3.24)
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where x̃ ∈ [x∗,x] ⊂ B(x∗, r). Then, by (2.4), (3.24), and Lemma 3.3, we have

F ′′(x; g)[y,y] = 2 ‖L′(x)[y]‖2

0,Ω
+ 2〈L(x) − g,L′′(x)[y,y]〉

≥ 2c3‖y‖
2

1,Ω
− 2

√
C3γ0 ‖x − x∗‖1,Ω‖y‖

2

1,Ω

=
(
2c3 − 2

√
C3γ0 ‖x − x∗‖1,Ω

)
‖y‖2

1,Ω

=

(
2c̃3(x∗) − 2γ0r

2 − 2γ0r

√
C̃3(x∗) + γ0r2

)
‖y‖2

1,Ω

=: c4(r) ‖y‖2

1,Ω
.

Since c4(r) is continuous with respect to r and c4(0) = 2c̃3(x∗) > 0, then c4(r) is
positive for small enough r > 0. This r ensures that the second Fréchet derivative of
F(x; g) in direction [y,y] is positive for all x ∈ B(x∗, r).

The upper bound for F ′′(x; g)[y, z] follows by Lemma 3.3, (3.24), and Lemma
3.1:

F ′′(x; g)[y, z] = 2‖L′(x)[y]‖
0,Ω

‖L′(x)[z]‖
0,Ω

+ 2〈L(x) − g,L′′(x)[y, z]〉
≤ 2C3‖y‖1,Ω

‖z‖
1,Ω

+ 2
√
C3γ0‖x − x∗‖1,Ω

‖y‖
1,Ω

‖z‖
1,Ω

≤
(
2C3 + 2

√
C3γ0 r

)
‖y‖1,Ω‖z‖1,Ω

=: C4(r) ‖y‖
1,Ω‖z‖1,Ω .

Remark 3. We henceforth assume that the r of Theorem 3.1 is so small that it is
less than 0.4 c3√

C3 γ0
. This can always be arranged by choosing r small enough.

Remark 4. The results of Lemma 3.1, Lemma 3.3, and Theorem 3.1 still hold

if we restrict ourselves to a subspace of VVV by assuming that x = xh ∈ Bh
(x∗, r),

y = yh ∈ Sh, and z = zh ∈ Sh.
Theorem 3.2. The nonquadratic functional, F(x; g), is coercive and continuous

for all x ∈ B(x∗, r), where r, c3, and C3 are defined as in Theorem 3.1:

1

2
c3‖x−x∗‖

2

1,Ω
≤ F(x; g) ≤ 1

2
C3‖x−x∗‖

2

1,Ω
.(3.25)

Proof. For any x ∈ B(x∗, r) and some x̃ ∈ [x∗,x] ⊂ B(x∗, r), we have

F(x; g) = F(x∗; g) + F ′(x∗; g)[x − x∗] +
1

2
F ′′(x̃; g)[x − x∗,x − x∗].

The result now follows from the fact that F(x∗; g) = F ′(x∗; g)[x − x∗] = 0 (see (2.3)
for the second equality) and Theorem 3.1.

A similar result can be easily established for discrete space Sh.
Theorem 3.3. The functional norm,

√
F(xh; g) −F(xh

∗ ; g), is coercive and con-

tinuous for all xh ∈ Bh
(x∗, r), where r, c3, and C3 are defined as in Theorem 3.1:

1

2
c3‖xh−xh

∗‖
2

1,Ω
≤ F(xh; g) −F(xh

∗ ; g) ≤ 1

2
C3‖xh−xh

∗‖
2

1,Ω
.(3.26)

Proof. For any xh ∈ Bh
(x∗, r) and some x̃ ∈ [x∗,x

h] ⊂ Bh
(x∗, r), we have

F(xh; g) −F(xh
∗ ; g) = F ′(xh

∗ ; g)[xh − xh
∗ ] +

1

2
F ′′(x̃; g)[xh − xh

∗ ,x
h − xh

∗ ].

From Definition 2.1, we know that F ′(xh
∗ ; g)[xh−xh

∗ ] = 〈L(xh
∗)−g,L′(xh

∗)[xh−xh
∗ ]〉 =

0 for all xh − xh
∗ ∈ Sh (see Remark 2). Hence, continuity and coercivity again follow

directly from Theorem 3.1.
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4. Convergence. This section establishes unique minimizers of the functionals

we use in B(x∗, r), B
h
(x∗, r), and B2h

(x∗, r) under the assumption that r and h are
sufficiently small. This is done in Lemmas 4.1, 4.2, and 4.3, respectively. Theorem
4.1 then shows that our coarse-grid correction and relaxation steps remain in a closed
H1-ball about x∗ and it establishes uniform convergence of our two-level PML scheme.

Lemma 4.1. Let x∗ be an isolated solution of (2.2) and r be defined as in Theorem
3.1. Then x∗ is the unique minimizer in B(x∗, r) of F(x; g). It is characterized by
F ′(x∗; g)[y] = 0 for all y ∈ VVV, that is, it is the unique critical point in B(x∗, r).

Proof. The first assertion follows from (3.25). That x∗ is a critical point follows
from (2.3). We thus only need to show that it is the only critical point in B(x∗, r),
that is, that F ′(x; g)[y] = 0 for all y ∈ VVV and x ∈ B(x∗, r) imply x = x∗. Under
these assumptions, for all y ∈ VVV, we have

0 = F ′(x; g)[y] −F ′(x∗; g)[y] = F ′′(x̃; g)[y,x−x∗],

for some x̃ ∈ [x∗,x] ⊂ B(x∗, r). With y = x−x∗ ∈ VVV and Theorem 3.1, we thus
obtain

0 = F ′′(x̃; g)[x−x∗,x−x∗] ≥ c4‖x−x∗‖
2

1,Ω
.

Therefore, x = x∗ and the proof is complete.
Next, we prove the discrete analogue to Lemma 4.1.
Lemma 4.2. Let x∗ be an isolated solution of (2.2). Let r, c4, and C4 be defined

as in Theorem 3.1 and assume that h is sufficiently small. Then there exists a unique

minimizer, xh
∗ , in Bh

(x∗, r) of F(x; g). It is characterized by ∇hF(xh
∗ ; g) = 0, that

is, it is the unique grid h critical point in Bh
(x∗, r).

Proof. For x = xh ∈ Bh
(x∗, r) ⊂ B(x∗, r), Theorem 3.2 yields

1

2
c4‖xh − x∗‖

2

1,Ω
≤ F(xh; g) ≤ 1

2
C4‖xh − x∗‖

2

1,Ω
.(4.1)

We first prove that the minimizer over Bh
(x∗, r), which exists by compactness, is ac-

tually in Bh(x∗, r). To this end, it suffices to show that there exists an xh ∈ Bh(x∗, r)
that has a smaller functional value than the minimum of F(x; g) on ∂Bh(x∗, r). To
prove uniqueness of the minimizer, we then use an argument similar to that in Lemma
4.1.

Any xh
∂ ∈ ∂Bh(x∗, r) must satisfy ‖xh

∂ − x∗‖
2

1,Ω
= r2. Hence, by (4.1), we have

F(xh
∂ ; g) ≥ 1

2
c4‖xh

∂ − x∗‖
2

1,Ω
=

1

2
c4r

2

for all xh
∂ ∈ ∂Bh(x∗, r). Now let r1 =

√
c4/C4 r and assume that h is so small that

Bh
(x∗, r1) is not empty. Again by (4.1), any xh ∈ Bh(x∗, r1) ⊂ Bh(x∗, r) must satisfy

F(xh; g) ≤ 1

2
C4‖xh − x∗‖

2

1,Ω
<

1

2
C4r

2
1 =

1

2
c4r

2 ≤ F(xh
∂ ; g).

Therefore, the minimizer, xh
∗ , of F(xh; g) over Bh

(x∗, r) must actually be in Bh(x∗, r).
Remark 2 confirms that it is a grid h critical point: ∇hF(xh

∗ ; g) = 0.
To prove uniqueness, note that any other minimizer, xh, in Bh(x∗, r) must be a

grid h critical point: ∇hF(xh; g) = 0. It now suffices to show that xh
∗ is the only grid
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h critical point (which also proves the characterization assertion). To this end, note
for all yh ∈ Sh that

0 =〈∇hF(xh; g),yh〉 − 〈∇hF(xh
∗ ; g),yh〉

= F ′(xh; g)[yh] −F ′(xh
∗ ; g)[yh] = F ′′(x̃h; g)[yh,xh−xh

∗ ]

for some x̃h ∈ Bh(x∗, r). Again choosing yh = xh−xh
∗ ∈ Sh ⊂ VVV and using Theorem

3.1 yield

0 = F ′′(x̃h; g)[xh−xh
∗ ,x

h−xh
∗ ] ≥ c4‖xh−xh

∗‖
2

1,Ω
,

which establishes the result.
Lemma 4.3. Let r, c4, and C4 be defined as in Theorem 3.1 and choose any

r1 <
√
c4/C4 r. Then for x ∈ B(x∗, r1), there exists a unique minimizer, x∗

2h =
argminx2h∈S2h,x+x2h∈B(x∗,r)

F(x + x2h; g). If r is small enough, then this minimizer

is characterized by ∇2hF(x + x2h; g) = 0 with x + x2h ∈ B(x∗, r), that is, it is the
unique grid 2h critical point for which x+x2h stays in B(x∗, r). Thus, the result, xh

1
2

,

of Step 1 of PML stays in Bh
(x∗, r) for any initial guess, xh

0 , in Bh
(x∗, r1).

Proof. The minimizer, x2h
∗ , clearly exists by compactness. (Note that

{
x+S2h

}
∩

B(x∗, r) is a nonempty set because it contains x = x + 0.) To prove uniqueness and
the fact that x2h

∗ is a grid 2h critical point, first note that any x∂ ∈ ∂B(x∗, r) must, by

Theorem 3.2, satisfy F(x∂ ; g) ≥ 1
2c4‖x∂ − x∗‖

2

1,Ω
= 1

2c4r
2. Then, with x ∈ B(x∗, r1),

again Theorem 3.2 implies that

F(x; g) ≤ 1

2
C4‖x − x∗‖

2

1,Ω
≤ 1

2
C4r

2
1 < F(x∂ ; g).

Thus, F(x + x∗
2h; g) ≤ F(x; g) < F(x∂ ; g), which implies that x + x∗

2h ∈ B(x∗, r).
Then x2h

∗ must satisfy the gradient condition, which follows by a similar standard
argument similar to that of Remark 2.

Uniqueness and the characterization assertion can be now established as in the
proofs of Lemmas 4.1 and 4.2. To this end, assume that there exists another minimizer,
x + x2h ∈ Bh(x∗, r), so that ∇2hF(x + x2h; g) = 0. It now suffices to show that
this grid 2h critical point condition implies that x2h = x2h

∗ (which also proves the
characterization assertion). To this end, note for all y2h ∈ S2h, that

0 =〈∇2hF(x + x2h; g),y2h〉 − 〈∇2hF(x + x∗
2h; g),y2h〉

= F ′(x + x2h; g)[y2h] −F ′(x + x∗
2h; g)[y2h] = F ′′(x + x̃2h; g)[y2h,x2h−x∗

2h]

for some x + x̃2h ∈ Bh(x∗, r). As before, this leads to

0 = F ′′(x + x̃2h; g)[x2h−x∗
2h,x2h−x∗

2h] ≥ c4‖x2h−x∗
2h‖2

1,Ω
,

which proves uniqueness and the characterization assertion.
The final claim follows simply by choosing x = xh and noting that we can

choose r > 0 so small that the nearest optimally corrected xh must be the one in
B(x∗, r).

Theorem 4.1. Let r and r1 as in Lemma 4.3, define r0 =
√
c4/C4 r1, and choose

h and ω sufficiently small. Then for any xh
0 ∈ B(x∗, r0), the PML iterates based on



152 T. A. MANTEUFFEL, S. F. MCCORMICK, AND O. RÖHRLE

either (2.8) or (2.9) remain in Bh
(x∗, r) and converge linearly with uniformly bounded

factor according to

F(xh
k+1; g) −F(xh

∗ ; g) ≤ κ
(
F(xh

k ; g) −F(xh
∗ ; g)

)
, k = 0, 1, 2, . . . ,

where κ ∈ [0, 1) depends only on Re, r, and Ω.
Proof. We omit this fairly straightforward but somewhat lengthy proof and in-

stead refer the reader to [10] for details.
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REGULARIZING NEWTON–KACZMARZ METHODS FOR
NONLINEAR ILL-POSED PROBLEMS∗

MARTIN BURGER† AND BARBARA KALTENBACHER‡

Abstract. We introduce a class of stabilizing Newton–Kaczmarz methods for nonlinear ill-posed
problems and analyze their convergence and regularization behavior. As usual for iterative methods
for solving nonlinear ill-posed problems, conditions on the nonlinearity (or the derivatives) have to be
imposed in order to obtain convergence. As we shall discuss in general and in some specific examples,
the nonlinearity conditions obtained for the Newton–Kaczmarz methods are less restrictive than those
for previously existing iteration methods and can be verified for several practical applications.

We also discuss the discretization and efficient numerical solution of the linear problems arising
in each step of a Newton–Kaczmarz method, and we carry out numerical experiments for two model
problems.

Key words. Newton–Kaczmarz methods, ill-posed problems, tomography
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1. Introduction. The aim of this paper is to develop and analyze Newton–
Kaczmarz methods for nonlinear inverse problems, focusing in particular on the im-
portant class of identification problems with multiple boundary data. The main idea
of the Kaczmarz method is to split the inverse problem into a finite number of sub-
problems and to approximate its solution by performing a cyclic iteration over the
subproblems.

As a regularized Newton–Kaczmarz method we understand the cyclic iteration
where at each step one iteration of a regularized Newton method is applied to a
subproblem. As we shall discuss in detail in this paper, the benefit from this approach
is twofold:

1. Instead of solving one large problem in each iteration step, we can solve
several smaller subproblems, which might lead to a reduction of the overall
computational effort.

2. Due to the ill-posedness of the problem, conditions on the nonlinearity of
the problem have to be imposed in order to ensure convergence of iterative
methods (cf. [6] for an overview). These conditions are rather restrictive and
cannot be verified for many practical problems, in particular for parameter
identification problems using boundary data related to the solutions of partial
differential equations. As we shall show below for several applications, the
nonlinearity conditions for the Newton–Kaczmarz method are less restrictive
and can be verified in more realistic cases.
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The price which one has to pay is that at least theoretically it turns out that
more a priori information has to be contained in the initial values.

Another motivation for the analysis in this paper is that Kaczmarz-type methods
(also called algebraic reconstruction technique) have been used in several applications
with multiple boundary data (cf. [3, 8, 9, 24, 30]) and performed better than standard
iterative methods. This paper, together with the results of Kowar and Scherzer [24]
on the Landweber–Kaczmarz method, might serve to provide a theoretical basis.

Many inverse problems can be formulated as nonlinear operator equations,

(1.1) F (x) = y,

or as collections of p coupled operator equations,

(1.2) Fi(x) = yi, i = 0, . . . p− 1,

with nonlinear operators Fi mapping between Hilbert spaces X and Yi. We will here
assume that a solution x† of (1.2) exists but need not necessarily be unique.

Note that (1.1) can be seen as a special case of (1.2) with p = 1; on the other
hand, defining

(1.3) F := (F0, . . . , Fp−1), y := (y0, . . . , yp−1),

one can reduce (1.2) to (1.1). However, one potential advantage of (1.2) over (1.1) can
be that it might better reflect the structure of the underlying information
(y0, . . . , yp−1) leading to the coupled system than could a plain concatenation into
one single data element y. The most important feature that we have in mind, how-
ever, is that it enables the definition of Newton-type solution methods and to prove
their convergence for certain relevant problems, for which Newton-type methods ap-
plied to the single equation formulation (1.1) cannot be shown to converge.

In general we assume that we only have noisy data yδi with some noise level δ
bounding the noise of every measurement by

(1.4) ‖yδi − yi‖ ≤ δ,

Note that for p > 1, this assumption on the noise is more restrictive than the frequently
used noise bound

‖yδ − y‖ ≤ δ,

but it reflects the case of multiple measurements, where an individual noise bound is
available for each. If the noise level for each measurement is different, we can make
it equal by using a relative scaling between the operators Fi.

Since we are interested in the situation that (1.2) is ill-posed in the sense that
small perturbations in the data can lead to large deviations in the solution, and since
in practice only noisy data are available, we have to apply suitable regularization
techniques (see, e.g., [11, 13, 23, 25, 28, 29, 33]). Typically, the instability in nonlinear
inverse problems (1.1) corresponds to a smoothing property of the forward operator F
and its linearization F ′(x). In particular, for an ill-posed problem, we cannot expect
that F ′(x) is continuously invertible, and consequently a standard Newton or Gauss–
Newton cannot be used. Modified Newton-type methods for solving (1.1) have been
studied and analyzed in several recent publications, see; e.g., [1, 6, 14, 15, 22, 31].
Regularization is here achieved by replacing the generally unbounded inverse of F ′(x)
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in the definition of the Newton step by a bounded approximation, defined via a
regularizing operator

Gα(F ′(x)) ≈ F ′(x)†.

Here, K† denotes the pseudoinverse of a linear operator K, α > 0 is a small regular-
ization parameter, and Gα satisfies

(1.5) Gα(K)y → K†y as α → 0 ∀y ∈ R(K)

and

(1.6) ‖Gα(K)‖ ≤ Φ(α)

for any linear operator K within some uniformly bounded set. Note that, especially
in view of operators K with unbounded inverses, the constant Φ(α) has to tend to
infinity as α goes to zero; we assume without loss of generality (w.l.o.g.) that Φ(α) is
strictly monotonically decreasing.

Choosing a sequence (αn) of regularization parameters and applying the bounded
operators Gαn

(F ′(xn)) in place of F ′(xn)−1 in Newton’s method results in the itera-
tion

(1.7) xn+1 = xn −Gαn(F ′(xn))(F (xn) − yδ).

If Gα is defined by Tikhonov regularization

(1.8) Gα(K) = (K∗K + αI)−1K∗,

one arrives at the Levenberg–Marquardt method. (See [15]; for Gα given by a con-
jugate gradient iteration, see [14], and further work on this class of methods can be
found in [32].)

A different class of regularized Newton methods emerged from the iteratively
regularized Gauss–Newton method (IRGNM),

xn+1 = x0 −Gαn
(F ′(xn))(F (xn) − yδ − F ′(xn)(xn − x0)),

with (1.8), which was first proposed and analyzed by Bakushinskii in [1] and later
extended to regularization with general regularization operators Gαn

[2]; see also

[19, 22]. Here, αn
n→∞→ 0 is an a priori chosen monotonically decreasing sequence

of regularization parameters. One observes that in the limiting case αn → 0 (i.e.,
Gαn(F ′(xn)) → F ′(x)†) also this formulation is equivalent to the usual Newton
method.

In order to make these Newton-type methods applicable to multiple equations
(1.2), we combine them with a Kaczmarz approach (similar to [24]). Starting from
an initial guess x0,i, we perform a Newton step for the equation Fi(x) = yi, for i
from 0 to p − 1, and repeat this procedure in a cyclic manner. Incorporating the
possibility of different regularization methods Gi for each equation in (1.2), and using
the “overloading” notation

(1.9) x0,n := x0,mod(n,p), Fn := Fmod(n,p), yn := ymod(n,p), Gn
α := Gmod(n,p)

α ,

this can be written as

(1.10) xn+1 = x0,n −Gn
αn

(F ′
n(xn))(Fn(xn) − yδn − F ′

n(xn)(xn − x0,n)).
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A combination of the Levenberg–Marquardt method with a Kaczmarz approach will
be discussed in section 3.

Our convergence analysis will be a local one, i.e., we will work in a neighbor-
hood Bρ(x

†) of the solution, which we assume to be a subset of the domains of the
operators Fi

Bρ(x
†) ⊆ D(Fi), i = 0, . . . p− 1.

The remainder of the paper is organized as follows. In section 2 we discuss con-
ditions on the nonlinearity of the problem and so-called source conditions, which are
abstract smoothness assumptions on the solution. Section 3 contains a convergence
analysis of (1.10) including the case of noisy data and convergence rates under addi-
tional regularity assumptions. In section 4, we derive some approaches for the efficient
implementation of the proposed methods, and section 5 provides numerical results.

2. Nonlinearity and source conditions. In the following we shall discuss
the basic conditions needed for the subsequent analysis in this paper. In particular
we shall introduce conditions on the nonlinearity of the involved operators Fi and
investigate their applicability to tomography-type problems.

2.1. Nonlinearity conditions. To make these methods well defined, we assume
the forward operators Fi to be Fréchet differentiable with derivatives being uniformly
bounded in a neighborhood of the solution. This uniform bound has to be such that
applicability of the respective regularization method can be guaranteed,

(2.1) ‖F ′
i (x)‖ ≤ Ci

S ∀x ∈ Bρ(x
†),

which can always be achieved by a proper scaling. In order to prove convergence of
regularization methods for nonlinear ill-posed problems, one usually needs assump-
tions not only on the smoothness of the forward operator F but also on the type of
nonlinearity it contains. Here we shall mainly consider the condition

(2.2) F ′
i (x̄) = F ′

i (x)Ri(x̄, x) ∀x̄, x ∈ Bρ(x
†),

which means that the range of the Fréchet derivative of each forward operator Fi is
locally invariant around the solution. The linear operators Ri(x̄, x) (which need not
be known explicitly) should satisfy a Lipschitz type estimate

(2.3) ‖Ri(x̄, x) − I‖ = ‖Ri(x̄, x) −Ri(x, x)‖ ≤ CR‖x̄− x‖ .

This corresponds to an analogous assumption in the context of p = 1, i.e., (1.1),

(2.4) F ′(x̄) = F ′(x)R(x̄, x) ∀x̄, x ∈ Bρ(x
†),

as it was used, e.g., in the convergence analysis of [22] and is closely related to the
so-called affine covariant Lipschitz condition in [7]. Condition (2.2) seems to be nat-
ural especially in the context of parameter identification in PDEs from boundary
measurements where the forward operator consists of a (typically invertible) solution
operator for the PDE, composed with a linear operator mapping the PDE solution
to the measured boundary values. In fact, by the additional freedom arising from the
possibility of having different operators Ri for each i, it can be verified for impor-
tant applications of parameter identification, like ultrasound tomography (see below)
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and impedance tomography, for which other nonlinearity conditions used in literature
cannot be proven to hold.

An alternative nonlinearity condition that can be found in the literature on reg-
ularization methods for nonlinear inverse problems (1.1) is

(2.5) F ′(x̄) = R(x̄, x)F ′(x) ∀x̄, x ∈ Bρ(x
†)

with regular operators R(x̄, x), i.e., range invariance of the adjoints of F ′(x), which is
closely related to the tangential cone condition used, e.g., in [14, 15, 17, 21, 22] and
to the Newton–Mysovskii conditions discussed in [6].

We want to mention that the nonlinearity condition (2.2) is less restrictive than
the corresponding nonlinearity condition (2.4) for the operator F defined by (1.3). If
(2.4) holds, we can easily deduce (2.2) by choosing Ri = R for all i. For the alternative
condition

(2.6) F ′
i (x̄) = Ri(x̄, x)F ′

i (x) ∀x̄, x ∈ Bρ(x
†)

and the corresponding condition (2.5) for F defined by (1.3), we obtain sufficiency in
the other direction, since we can choose R to be the diagonal operator consisting of
all Ri to obtain the range invariance of F ′∗ from (2.6).

Finally, we examine a special case of a decomposition of Fi in a linear singular
and a nonlinear regular operator. As we shall see below in several examples, the
operators Fi can often be written as the composition of linear trace-type operators
with nonlinear parameter-to-solution maps for partial differential equations. Thus we
start with a simple observation that allows us to verify the nonlinearity condition for
the parameter-to-solution map only. In this context see section 5 in [18], where a class
of operators satisfying the nonlinearity condition (2.5) is derived.

Lemma 2.1. Let X,Y, Z be Hilbert spaces, and let Li ∈ L(Z, Y ). Moreover, let
Hi : X → Z, i = 0, . . . , p− 1, be continuously Fréchet differentiable operators. Then,

(2.7) Fi = Li ◦Hi

satisfies (2.2), (2.3) if Hi satisfies (2.2), (2.3).

Moreover, if H ′
i(x) is regular for all x ∈ Bρ(x

†) with uniformly bounded inverse,
and the map x 
→ H ′

i(x) is Lipschitz continuous, then the condition (2.2), (2.3) is
satisfied by Hi.

Proof. The first assertion follows from

F ′
i (x̄) = Li ◦H ′

i(x̄) = Li ◦H ′
i(x) ◦Ri(x̄, x) = F ′

i (x) ◦Ri(x̄, x).

Moreover, if H ′
i is regular, we may define

Ri(x̄, x) := H ′
i(x)−1H ′

i(x̄),

which implies (2.2). Due to the regularity of H ′
i(x)−1 and the Lipschitz-continuity of

x 
→ H ′
i(x), we obtain

‖Ri(x̄, x) − I‖ = ‖H ′
i(x)−1(H ′

i(x̄) −H ′
i(x))‖ ≤ C0‖H ′

i(x̄) −H ′
i(x)‖ ≤ CR‖x̄− x‖ ,

i.e., (2.3) holds.
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2.2. Examples. In the following we discuss several examples of inverse problems
satisfying the nonlinearity condition including tomography-type problems for partial
differential equations in the above framework, and we show that they satisfy the
nonlinearity condition (2.2).

Example 1 (reconstruction from the Dirichlet–Neumann map). We start with a
rather simple model problem, namely, the estimation of the coefficient q ≥ 0 in the
partial differential equation

−Δu + qu = 0 in Ω ⊂ R
d

from measurements of the Neumann value g = ∂u
∂ν on ∂Ω for several different Dirichlet

values u = f on ∂Ω.
If we denote the different Dirichlet values by fi, i = 0, . . . , p − 1, and the corre-

sponding measurements by gi, we may rewrite the problem as

Fi(q) = gi, i = 0, . . . , p− 1,

where Fi : D(Fi) ⊆ L2(Ω) → H− 1
2 (∂Ω) is the nonlinear operator mapping q to ∂ui

∂ν ,
where ui ∈ H1(Ω) is the weak solution of

−Δui + qui = 0 in Ω,

ui = fi on ∂Ω,

and D(Fi) is to be specified below.

The decomposition (2.7) is obtained with L : H1(Ω) 
→ H− 1
2 (∂Ω) being the

trace operator that maps a function to its normal derivative on the boundary, and
Hi : q 
→ ui is the parameter-to-solution map.

The derivative vi = H ′
i(q)s is given as the unique weak solution of

−Δvi + qvi + sui = 0 in Ω,

vi = 0 on ∂Ω.

Formally, we can write H ′
i(q) = −(−Δ + q)−1(ui.). It can be shown easily that this

operator is regular between L2(Ω) and H1(Ω) if ui > 0. Due to a standard maximum
principle for second-order elliptic differential equations, this is the case if q ≥ 0 and
fi > 0. Moreover, since embedding operators are continuous and regular, the operator
H ′

i(q) is also regular between a Sobolev space Hβ(Ω), β ≥ 0, and H1(Ω). Thus, if
β > d

2 (i.e., Hβ(Ω) ↪→ C(Ω̄)) and there exists a minimum norm solution q† ∈ Hβ(Ω),
which is positive in Ω̄, then q ∈ Bρ(q

†) is nonnegative for ρ sufficiently small and
due to the above reasoning Lemma 2.1 implies that the nonlinearity condition (2.2),
(2.3) is satisfied for fi > 0, if we consider Fi as an operator from D(Fi) := Bρ(q

†) ⊆
Hβ(Ω) =: X to H− 1

2 (∂Ω) =: Yi.
Example 2 (reconstruction from multiple sources). In some examples, one rather

tries to estimate coefficients in partial differential equations from boundary measure-
ments for different interior sources rather than from different boundary values. We
consider the estimation of the coefficient q ≥ 0 in

−Δu + qu = h in Ω ⊂ R
d

subject to a homogeneous Neumann boundary condition ∂u
∂ν = 0 on ∂Ω, and measure-

ments of the Dirichlet values u = f on ∂Ω for different sources h ∈ H−1(Ω). Problems
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of this kind have been discussed by Lowe and Rundell [26, 27] and in an application
to semiconductor devices by Fang and Ito [12].

Again, we can decompose the corresponding operators Fi into the trace operator
L : H1(Ω) → L2(∂Ω) concatenated with the parameter-to-solution maps Hi : q 
→ ui

defined by the solution of

−Δui + qui = hi in Ω,

∂ui

∂ν
= 0 on ∂Ω.

The derivative H ′
i(q) is almost the same as in the previous example, except for a change

from Dirichlet to Neumann boundary conditions. One can verify the regularity of ui

in the same way as above for hi > 0 (which allows one to apply a maximum principle
for ui) and consequently show that the nonlinearity condition (2.2), (2.3) holds.

Example 3 (SPECT). In the application of single photon emission computed to-
mography (SPECT), one wants to compute the source f and the coefficient a ≥ 0
from

θi · ∇ui + aui = f in Ω ⊂ R
d,

for different values θi on the unit sphere, and the boundary values

ui = 0 on ∂Ω−
i := { x ∈ ∂Ω | ν(x) · θi ≤ 0 },

ui = gi on ∂Ω+
i := { x ∈ ∂Ω | ν(x) · θi ≥ 0 }.

Here, the condition on ∂Ω−
i has to be understood as the boundary condition, while

the values gi on ∂Ω+
i are the measurements. Thus, the operators Fi map (a, f) to gi.

They can be decomposed into the trace operators Li : L2(Ω) → H− 1
2 (∂Ω+

i ) and the
parameter-to-solution maps Hi : D(Fi) ⊆ L2(Ω)2 → L2(Ω), (a, f) 
→ ui.

It can be shown (cf. [30]) that the derivative vi = H ′
i(a, f)(â, f̂) can be determined

as the unique solution of

θi · ∇vi + avi = f̂ − âui in Ω ⊂ R
d,

subject to vi = 0 on ∂Ω−
i . If a > 0, f > 0, a maximum principle applies also to

the first-order equation and one may conclude ui > 0, which subsequently can be
used to verify the nonlinearity condition (2.2), (2.3) in the same way as for the above
examples.

Example 4 (ultrasound tomography). The inverse problem in ultrasound tomog-
raphy consists in finding f ∈ L2(Ω) from boundary measurements gi = ui on ∂Ω for
complex-valued waves ui = eikx·θi + vi, where vi solves the Helmholtz equations

Δvi + k2(1 − f)vi = k2feikx·θi in Ω,

∂vi
∂ν

= Bvi on ∂Ω,

with B being an appropriate operator representing the radiation condition and k a real
parameter controlling the spatial resolution. Again we can decompose the operator
Fi : f 
→ gi into the trace operator L : H1(Ω) → L2(∂Ω) and the parameter-to-
solution map Hi : D(Fi) ⊆ L2(Ω) → H1(Ω), f 
→ ui.
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One can show (cf. [30]) that the derivative wi = H ′
i(f) is defined by the solution

of

Δui + k2(1 − f)wi = k2fui in Ω,

∂wi

∂ν
= Bwi on ∂Ω.

If f , k are such that the operator Δ+k2(1−f) is regular, and if |ui| �= 0, then one can
easily verify the nonlinearity condition in the same way as for the examples above.

Example 5 (nonlinear moment estimation). We finally consider a nonlinear mo-
ment estimation problem, which consists in finding u ∈ L2(Ω), Ω ⊂ R

d a bounded
domain, given

gi :=

∫
Ω

ki(x, u(x)) dx ∈ R
m

for given smooth kernel functions ki : Ω × R → R
m (which could, e.g., arise from

the discretization of an integral kernel, i.e., ki(x, u(x)) = K(x, u(x), yi)). Here the
operator Fi : L2(Ω) → R

m is the concatenation of the linear integration operator
L : L2(Ω)m → R

m, w 
→
∫
Ω
w dx, and the Nemitskij-type operator Hi : L2(Ω) →

L2(Ω), u 
→ ki(., u). The derivative of the nonlinear operator Hi is given by

H ′
i(u)v =

∂ki
∂u

(., u)v.

If ki ∈ C(Ω, C1,1
b (R)) and ∂ki

∂u �= 0, then H ′
i(u) is regular and the map u 
→ H ′

i(u) is
Lipschitz continuous, which implies the nonlinearity condition (2.2), (2.3).

2.3. Source conditions. Convergence of regularization methods for ill-posed
problems is, as a direct consequence of the instability, in general arbitrarily slow. In
order to obtain convergence rates, additional regularity assumptions on the difference
between an exact solution x† and some initial guess x0 used in the regularization
method must be made. These have the form of so-called source wise representation
conditions and in our context read as

(2.8) x† − x0,i = f(F ′
i (x

†)∗F ′
i (x

†))wi, i = 0, . . . , p− 1,

for some wi, where f is some real function and for the positive semidefinite operator
F ′
i (x

†)∗F ′
i (x

†), f(F ′
i (x

†)∗F ′
i (x

†)) is defined via functional calculus (cf., e.g., [11]).
Condition (2.8) expresses the assumed regularity of x†−x0,i in terms of the smoothing
property of F ′(x†) mentioned above. Typical functions f used here are

(2.9) f(λ) := fH
ν (λ) := λν

for some Hölder exponent ν, or the weaker, but for exponentially ill-posed problems
more appropriate logarithmic functions

(2.10) f(λ) := fL
μ (λ) = (− ln(λ))−μ.

Remark 1. Note that under sufficiently strong source conditions, namely, (2.8)
with f(λ) = O(

√
λ), which corresponds to ν ≥ 1

2 in (2.9), the nonlinearity assumptions
on F (see the previous subsection) can be considerably relaxed in case p = 1. In place
of (2.4) or (2.5) one only needs Lipschitz continuity of F ′. This was observed by
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Bakushinskii in [1] for the case ν ≥ 1 and IRGNM (see [21] for the case ν ≥ 1
2 ) and

later extended to several instances of a general Gα (see the monograph by Bakushinskii
and Kokurin [2], as well as [22]) including those methods Gα that are considered in
this paper (see section 3.3). Actually, it can be shown that the same holds true for
the Newton–Kaczmarz method (1.10) for multiple equations.

3. Convergence analysis. In this section we will state a quite general conver-
gence theorem. Its proof is closely related to convergence proofs in [6, 19, 20, 21, 22].
Therefore we shall provide the proof in a somewhat compressed form but highlight the
important ideas for the convenience of the reader. We aim at giving the statements
in a general and comprehensive way so that they might be of interest even for the
special case p = 1, i.e., for (1.1). Especially, according to the authors’ knowledge, the
convergence result with logarithmic source conditions under nonlinearity assumptions
of the type considered here is new also for p = 1.

3.1. Preliminaries and assumptions. To be able to carry out the estimates
in the proof of Theorem 3.1, we have to make some assumptions on the regularization
methods Gi, additional to (1.5), (1.6) in the introduction, i.e.,

(3.1) Gi
α(K)y → K†y as α → 0 ∀y ∈ R(K)

and

(3.2) ‖Gi
α(K)‖ ≤ Φ(α)

for all K ∈ L(X,Yi) with ‖K‖ ≤ Ci
S . In view of the nonlinearity condition (2.2), we

assume that

(3.3) ‖Gi
α(KR)KR−Gi

α(K)K‖ ≤ C̄G‖R− I‖

for all K ∈ L(X,Yi), R ∈ L(X,X) with ‖K‖ , ‖KR‖ ≤ Ci
S , ‖R− I‖ ≤ c < 1, as well

as

(3.4) ‖Gi
α(K)K‖ ≤ CG ∀K ∈ L(X,Yi) : ‖K‖ ≤ Ci

S

with positive real constants C̄G, c, and Ci
S as in (2.1). To yield convergence rates

under additional regularity conditions (2.8), the regularizing operators Gi
α have to

converge to the inverse of K at some rate on the set of solutions satisfying (2.8), i.e.,
a condition of the form

(3.5) ‖(I −Gi
α(K)K)f(K∗K)‖ ≤ ψ(α) ∀K ∈ L(X,Yi) : ‖K‖ ≤ Ci

S

is needed, with a strictly monotone function ψ that decreases to zero as α → 0.
Moreover, the sequence ψ(αn) must not tend to zero too fast, in the sense that

(3.6)
ψ(αn)

ψ(αn+1)
≤ Cψ ∀n ∈ N

for some constant Cψ ∈ R
+.

In the situation of noisy data, convergence of the reconstructions as the noise
level δ tends to zero is only obtained for appropriate choices of the stopping index
N = N(δ) in dependence of the noise level δ. In the general case, convergence can be
achieved if N(δ) is chosen such that

(3.7) N(δ) → ∞ and Φ(αN(δ)) · δ → 0 as δ → 0
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and

(3.8) Φ(αn) · δ ≤ τ ∀n ≤ N(δ)

for some τ > 0 sufficiently small. If additional source conditions (2.8) hold, an
appropriate choice is such that

(3.9) φ(αN(δ)) ≤ δ < φ(αn) ∀n ≤ N(δ),

where

φ(α) =
τψ(α)

Φ(α)

for τ defined in (3.8).

3.2. Main result. Now we shall state and prove the main convergence result of
this paper, a comprehensive convergence theorem for Newton–Kaczmarz methods.

Theorem 3.1. Let xn be defined by the sequence (1.10) with Fréchet differentiable
operators Fi satisfying (2.1), (2.2) with (2.3), data yδ satisfying (1.4), the regulariza-
tion methods Gi

α fulfilling (3.1), (3.2), (3.3), (3.4), for all K ∈ L(X,Yi), R ∈ L(X,X)
with ‖K‖ , ‖KR‖ ≤ Ci

S, ‖R−I‖ ≤ c < 1, and (3.5), as well as a sequence αn tending
to zero and satisfying (3.6). Moreover, let τ and ‖x0,i − x†‖ be sufficiently small and
x0,i − x† ∈ N (F ′

i (x
†)⊥, i = 0, . . . , p− 1.

Then, in the noise-free case (δ = 0), the sequence xn converges to x† as n → ∞.
In case of noisy data and with the choice (3.7), (3.8), xN(δ) converges to x† as δ → 0.

If the source conditions (2.8) and (3.5), (3.6) hold, with ‖wi‖ sufficiently small,
then the convergence rates

‖xn − x†‖ = O(ψ(αn))

in the noise-free situation and, with (3.9),

‖xN(δ) − x†‖ = O(ψ(φ−1(δ)))

in the noisy situation, respectively, hold.
Proof. We will make use of the following lemma, whose proof can be found in

[21].
Lemma 3.2. Let {an} be a sequence satisfying

0 ≤ an ≤ a and lim
n→∞

an = ã ≤ a.

Moreover, we assume that {γn} is a sequence for which the estimate

0 ≤ γn+1 ≤ an + bγn + cγ2
n , n ∈ N0, γ0 ≥ 0,

holds for some b, c ≥ 0. Let γ and γ be defined as

γ :=
2a

1 − b +
√

(1 − b)2 − 4ac
, γ :=

1 − b +
√

(1 − b)2 − 4ac

2c
.

If b + 2
√
ac < 1 and if γ0 ≤ γ, then

γn ≤ max (γ0, γ) , n ∈ N0,
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and if ã < a, then

lim sup
n→∞

γn ≤ 2ã

1 − b +
√

(1 − b)2 − 4ãc
.

To derive a recursive error estimate, we assume that the current iterate xn is in
Bρ(x

†) and that n < N(δ) (= ∞ if δ = 0). Then

(3.10)

xn+1 − x† =
(
I −Gn

αn
(F ′

n(x†))F ′
n(x†)

)
(x0,i − x†)

+
(
Gn

αn
(F ′

n(x†))F ′
n(x†) −Gn

αn
(F ′

n(xn))F ′
n(xn)

)
(x0,i − x†)

−Gn
αn

(F ′
n(xn))(Fn(xn) − Fn(x†) − F ′

n(xn)(xn − x†))

−Gn
αn

(F ′
n(xn))(yn − yδn).

The third term on the right-hand side can be rewritten as

Gn
αn

(F ′
n(xn))F ′

n(xn)

∫ 1

0

(
Ri(x† + θ(xn − x†), xn) − I

)
dθ(xn − x†)

with i = mod(n, p), so

(3.11)

‖xn+1 − x†‖ ≤ ξn

+ C̄GCR‖x0,i − x†‖ ‖xn − x†‖
+ 1

2CGCR‖xn − x†‖2

+ Φ(αn)δ,

where

ξn := ‖
(
I −Gn

αn
(F ′

n(x†))F ′
n(x†)

)
(x0,i − x†)‖ ≤ ψ(αn)‖wi‖ ,

if (2.8) holds and

(3.12) ξn → 0 as n → ∞

also without (2.8). The latter can be seen by (3.1) together with the following
subsequence-subsequence argument.

Let (ξnm
)m∈N be an arbitrary subsequence of (ξn)n∈N. Then there exists an

i ∈ {0, . . . , p− 1} such that the set {m ∈ N | mod(nm, p) = i} has infinite cardinality.
Define by (ml)l∈N a numbering of this set in ascending order; then for (ξnml

)l∈N we
get

ξnml
= ‖

(
I −Gi

αnml
(F ′

i (x
†))F ′

i (x
†)
)
(x0,i − x†)‖ → 0 for l → ∞,

since αnml
→ 0 for l → ∞.

Now we can apply induction together with Lemma 3.2 to the sequence

γn := ‖xn − x†‖ .

The boundedness (3.8) in the stopping rule and our assumption on closeness of x0,i to
x† and on smallness of τ permit us to make the constants a and b sufficiently small so
that the assumptions of the lemma are satisfied, and the bound max{γ0, γ} is smaller
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than ρ, so that we can guarantee that the iterates remain in Bρ(x
†) for all n ≤ N(δ).

Moreover, by (3.12) as well as the asymptotics (3.7) in the stopping rule, we can set
ã = 0 and conclude that xn converges to x† as n → ∞ in the noise-free case and as
δ → 0 in the noisy case, respectively.

To prove convergence rates under source conditions, we consider the sequence

γn :=
‖xn − x†‖
ψ(αn)

,

which satisfies

γn+1 ≤ Cψ

(
‖wi‖ + C̄GCR‖x0,i − x†‖γn +

1

2
CGCRψ(αn)γ2

n +
Φ(αn)

ψ(αn)
δ

)
.

Hence, Lemma 3.2 together with the stopping rule (3.9) imply that xn remains in
Bρ(x

†) for all n ≤ N(δ) and that γn is uniformly bounded, i.e.,

(3.13) ‖xn − x†‖ ≤ Cψ(αn),

for some constant C. This immediately yields the convergence rate result in the
noiseless case. To obtain the error estimate in terms of δ in the noisy case, we make
use of the fact that by (3.9)

δ ≥ φ(αN(δ)),

which, since ψ and φ are strictly monotonically increasing, by (3.13) implies

ψ(φ−1(δ)) ≥ ψ(αN(δ)) ≥
1

C
‖xN(δ) − x†‖ .

The assumption

(3.14) x0,i − x† ∈ N (F ′
i (x

†))⊥, i = 0, . . . , p− 1,

is rather limiting, since the dimensionality of x0 −x† is related to the “smaller” space
N (F ′

i (x
†)⊥. In the special case p = 1, the difference between x0 and an x0-minimum-

norm-solution x† will automatically lie within N (F ′(x†))⊥ under certain nonlinearity
conditions (see Proposition 2.1 in [21]). However, for general p > 1 one gets only

x0 − x† ∈ (
⋂p−1

i=0 N (F ′
i (x

†)))⊥ and not (3.14) with x0,i := x0. Thus, condition (3.14)
requires the choice of appropriate initial guesses x0,i. To see the necessity of condition
(3.14) for convergence, consider the linear case

(3.15) Fix = yi , i = 0, . . . p− 1,

with Fi ∈ L(X,Yi), yi ∈ Yi, i = 0, . . . p− 1, where the sequence xn is defined by

(3.16) xn+1 = x0,n −Gn
αn

(Fn)(Fnx0,n − yδn).

In the case of exact data, the error can be written as

(3.17) xkp+i+1 − x† = (I −Gi
αkp+i

(Fi)Fi)(x0,i − x†)

for n = kp + i, k ∈ N, so by (3.1) and αn → ∞ as n → ∞,

xkp+i+1 − x† → PN (Fi)⊥(x0,i − x†) as k → ∞,

whence convergence of xn to x† as n → ∞ implies (3.14).
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In this sense, Theorem 3.1 means that the regularized Newton–Kaczmarz method
is as least as good as application of Newton’s method separately to each of the p
equations, which might a priori not be evident due to the mixing up of the equations
during the iteration (1.10). Since it takes into account more information, it should
intuitively be even better, which is also reflected in our numerical tests, that showed
convergence without any specific choice of the initial guesses.

Note that in the linear case, subsequent iterates completely decouple, i.e., subse-
quences (xkp+i1)k∈N, (xkp+i2)k∈N are independent of each other for i1 �= i2. Thus it
suffices to have

(3.18) x0,i − x† ∈ N (Fi)
⊥

for one i = ī ∈ {0, . . . , p − 1}, to obtain convergence of the respective subsequence
xkp+ī+1 from standard results for linear regularization methods. The same holds true
for convergence rates. Consequently, in order to get convergence (and convergence
rates) with noisy data, it suffices to have (3.18) (and x0,i − x† ∈ R(f(F ∗

i Fi))) for one
i = ī ∈ {0, . . . , p− 1} only, and to stop the iteration at an index from the respective
subsequence kp + ī + 1 with k∗ = k∗(δ) being determined a priori from (3.7), (3.8),
(3.9) or, alternatively, a posteriori from a discrepancy principle

‖Fixk∗p+ī+1 − yi‖ ≤ τδ < ‖Fixkp+ī+1 − yi‖ , 0 ≤ k < k∗.

Unfortunately this complete decoupling gets lost as soon as the operators Fi are
nonlinear. Moreover, we have to remark that already (3.18) for one i = ī is a very
strong condition in case p > 1, since it means the other equations for i �= ī are not
really required for determining x†.

3.3. Standard regularizing operators. Now we shall apply Theorem 3.1 to
some regularization methods Gi of particular interest. Moreover, in the abstract
source condition (2.8), we insert the most relevant special cases of a Hölder function
f in (2.9) or a logarithmic function f in (2.10).

As important examples from a larger class of regularization methods defined by
real functions gα : R

+ 
→ R
+ approximating λ 
→ 1

λ and

(3.19) Gα(K) := gα(K∗K)K∗

via functional calculus (cf., e.g., [11, 25]), we consider the following.
• Tikhonov–Philips regularization:

(3.20) Gα(K) = (K∗K + αI)−1K∗, I −Gα(K)K = α(K∗K + αI)−1.

In this case, we shall call the arising iterative method the iteratively regular-
ized Gauss–Newton–Kaczmarz (IRGNK) method.

• Iterated Tikhonov regularization:

(3.21)
Gα(K) =

∑k
l=0

∏k
j=l αj(K

∗K + αjI)
−1 1

αl
K∗,

I −Gα(K)K =
∏k

l=0 αl(K
∗K + αlI)

−1,

with the effective regularization parameter

α :=
1∑k

l=0
1
αl

.
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We shall call the arising iterative method the k-iteratively regularized Gauss–
Newton–Kaczmarz (IRGNKk) method. Here we distinguish between the spe-
cial stationary case

(3.22) αl :≡ 1,

i.e., Lardy’s method, and the (due to its faster convergence more attractive,
cf. [16]) nonstationary case of, e.g., geometrically decaying αl

(3.23) αl := Cql

with q ∈ (0, 1).
• Landweber iteration:

(3.24) Gα(K) =

k∑
l=0

(I −K∗K)lK∗, I −Gα(K)K = (I −K∗K)k+1,

α :=
1

k + 1
,

where the scaling is assumed to be done such that ‖I − K∗K‖ ≤ 1, i.e.,
Ci

S =
√

2 in (2.1). For obvious reasons, this method shall be called Newton–
Landweber–Kaczmarz (NLK) method here and below.

These methods are well known to satisfy (3.1), (3.2) with

Φ(α) = C
1√
α
,

as well as (3.4) (cf., e.g., [11, 25, 16]). Moreover, for the Hölder-type source represen-
tation functions (2.9), they satisfy (3.5) with

(3.25) ψ(α) = Cαν

(where ν is restricted to the interval [0, 1] in Tikhonov regularization, and to the
interval [0, k] in iterated Tikhonov regularization), from which one can conclude by
Lemma 4 in [20] that they also satisfy (3.5) for the logarithmic functions (2.10) with

ψ(α) = C(− ln(α))−μ,

where w.l.o.g. both ‖K‖2 and α are restricted to the interval (0, exp(−1)] (i.e., Ci
S =

exp(−1/2) in (2.1)) in order to avoid the singularity of fL
μ at zero. Therewith, a decay

restriction

(3.26)
αn

αn+1
≤ Cα ∀n ∈ N

is sufficient for (3.6).
Corollary 3.3. Let xn be defined by the sequence (1.10) with Fréchet differen-

tiable operators Fi satisfying (2.1), (2.2) with (2.3), data yδ satisfying (1.4) and the
regularization methods Gi

α defined by Tikhonov–Philips regularization, nonstationary
iterated Tikhonov regularization, or Landweber iteration, as well as a sequence αn

tending to zero and satisfying (3.26). Moreover, let τ and ‖x0,i − x†‖ be sufficiently
small and x0,i − x† ∈ N (F ′

i (x
†)⊥, i = 0, . . . , p− 1.
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Then, the assertions of Theorem (3.1) hold. In particular, under a Hölder-type
source condition (2.8) with (2.9), we obtain

‖xN(δ) − x†‖ = O(δ
2ν

2ν+1 )

(where ν is restricted to [0, 1] in case of Tikhonov regularization), and under a loga-
rithmic type source condition (2.8) with (2.10)

‖xN(δ) − x†‖ = O((− ln(δ2))−μ).

Note that the saturation of iterated Tikhonov regularization at ν = k does not
take effect here, since we do not consider k but (

∑k
l=0 α

−1
l )−1 as the regularization

parameter.
Proof. It remains to show that the differences between applications of the regu-

larization methods to two different operators can be estimated according to (3.3).
Tikhonov regularization can make use of estimates presented in [21], as well as
in Hohage’s thesis [19], namely, for arbitrary K ∈ L(X,Yi), R ∈ L(X,X) with
‖R− I‖ ≤ c < 1,

‖Gi
α(KR)KR−Gi

α(K)K‖
= α‖(K∗K + αI)−1 − ((KR)∗KR + αI)−1‖

= α‖((KR)∗KR + αI)−1
(
(KR)∗KR(I −R−1) + (R− I)∗K∗K

)
(K∗K + αI)−1‖

≤ (1 + 1
1−c )‖R− I‖

for f according to (2.9) with ν ≤ 1
2 or f according to (2.10).

For the iterative methods—iterated Tikhonov regularization and Landweber
iteration—we make use of the identity

(3.27)

k∏
l=0

Al −
k∏

l=0

Bl =

k∑
l=0

l−1∏
j=0

Aj(Al −Bl)

k∏
j=l+1

Bj

for linear operators Al, Bl, with the notation
∏−1

l=0 Al = I =
∏k

l=k+1 Bj , and first
consider case (a): to obtain (3.3) for Landweber iteration, we set

(3.28) Al := (I − (KR)∗KR), Bl := (I −K∗K),

and use the fact that

(3.29) Al −Bl = (KR)∗KR(R−1 − I) + (I −R∗)K∗K

to derive

(3.30)

Gi
α(K)K −Gi

α(KR)KR =

k∑
l=0

l−1∏
j=0

Aj(KR)∗KR(R−1 − I)

k∏
j=l+1

Bj

+

k∑
l=0

l−1∏
j=0

Aj(I −R∗)K∗K
k∏

j=l+1

Bj .

To estimate the sums from 0 to k we decompose them into sums from 0 to [k2 ] and

from [k2 ] + 1 to k and use the fact that

(3.31)

∥∥∥∥∥∥
l−1∏
j=0

Aj(KR)∗KR

∥∥∥∥∥∥ ≤ 1

l + 1
,

∥∥∥∥∥∥
k∏

j=l+1

K∗KBl

∥∥∥∥∥∥ ≤ 1

k − l + 1
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as well as

(3.32) (KR)∗KR = I −Al, K∗K = I −Bl

and a telescope sum trick to obtain, for the first sum on the right-hand side of (3.30),∥∥∥∥∥∥
k∑

l=[ k2 ]+1

l−1∏
j=0

Aj(KR)∗KR(R−1 − I)

k∏
j=l+1

Bj

∥∥∥∥∥∥ ≤
k∑

l=[ k2 ]+1

1

l + 1
‖R−1 − I‖ ≤ ‖R−1 − I‖

and ∥∥∥∥∥∥
[ k2 ]∑
l=0

l−1∏
j=0

Aj(KR)∗KR(R−1 − I)

k∏
j=l+1

Bj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
[ k2 ]∑
l=0

l−1∏
j=0

Aj(I −Al)(R
−1 − I)

k∏
j=l+1

Bj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
[ k2 ]∑
l=1

l−1∏
j=0

Aj(R
−1 − I)(I −Bl)

k∏
j=l+1

Bj

+ (R−1 − I)

k∏
j=1

Bj +

[ k2 ]∏
j=0

Aj(R
−1 − I)

k∏
j=[ k2 ]+1

Bj

∥∥∥∥∥∥
≤

⎛
⎝ [ k2 ]∑

l=1

1

k − l + 1
+ 2

⎞
⎠ ‖R−1 − I‖ ≤ 3‖R−1 − I‖

and analogously for the second sum on the right-hand side of (3.30).
For iterated Tikhonov regularization, the estimates can be obtained analogously,

this time with

Al := αl((KR)∗KR + αlI)
−1, Bl := αl(K

∗K + αlI)
−1,

Al −Bl = Al
1

αl

(
(KR)∗KR(R−1 − I) + (I −R∗)K∗K

)
Bl,

(3.33)

Gi
α(K)K −Gi

α(KR)KR =

k∑
l=0

l∏
j=0

Aj(KR)∗KR(R−1 − I)

k∏
j=l

Bj

+

k∑
l=0

l∏
j=0

Aj(I −R∗)K∗K
k∏

j=l

Bj ,

∥∥∥∥∥∥
l∏

j=0

Aj(KR)∗KR

∥∥∥∥∥∥ ≤

⎛
⎝ l∑

j=0

1

αj

⎞
⎠−1

,

∥∥∥∥∥∥
k∏

j=l

K∗KBl

∥∥∥∥∥∥ ≤

⎛
⎝ k∑

j=l

1

αj

⎞
⎠−1

,

and

1

αl
(KR)∗KR Al = I −Al,

1

αl
Bl K

∗K = I −Bl
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in place of (3.28), (3.29), (3.30), (3.31), (3.32), respectively. In the stationary case
(3.22), again cutting of the sum at [k2 ] and the telescope trick must be used, and in
the nonstationary case (3.23), we apply the telescope sum trick to the whole first sum
in (3.33) and leave the second sum unchanged.

We finally want to mention that these results can be extended to the situation
where discretization is applied to any of the standard regularization methods.

3.4. Levenberg–Marquardt–Kaczmarz. An alternative to considering the
regularized Newton–Kaczmarz approach (1.10) is the generalization of a Levenberg–
Marquardt method (cf. [15], (1.7)) to the situation of multiple equations in the fol-
lowing form:

xn+1 = xn − (F ′
n(xn)∗F ′

n(xn) + αnI)
−1F ′

n(xn)∗(Fn(xn) − yδn).

Note that this formally corresponds to the (intuitively optimal) formal choice of x0,n =
xn in (1.10), which, however, is not admissible in view of the convergence analysis
given here, that requires a cyclic repetition of the starting guesses according to x0,n =
x0,mod(n,p).

Under a nonlinearity condition of the type (2.6) and with an appropriate a pos-
teriori choice of the sequence αn, along the lines of the proofs in [15], and similarly
to [24], one can show that the error ‖xn − x†‖ is monotonically decreasing up to an
index n = N(δ) determined by the discrepancy principle, without having to make
assumptions of the type (3.14). Moreover, the norms of the residuals are squared
summable in case of exact data and therewith

(3.34) Fn(xn) − yn → 0 as n → ∞.

This implies that there exists a weakly convergent subsequence of xn. However, the
limit of a weakly convergent subsequence (xnl

)l∈N of (xn)n∈N need not necessarily
be a solution to (1.2), even if the Fi are (weakly) sequentially closed, i.e., for any
sequence (xk)k∈N ⊆ D(Fi) and fi ∈ Yi,

(3.35)
(
xk ⇀ x ∧ Fi(xk) → fi

)
⇒

(
x ∈ D(Fi) ∧ Fi(x) = fi

)
.

Namely, if, e.g., (xnl
)l∈N ⊆ (xmp+ī)m∈N for some ī ∈ {0, . . . , p − 1}, then (3.34) and

(3.35) imply that the weak limit of (xnl
)l∈N is a solution of Fī(x) = yī only but not

necessarily of Fi(x) = yi with i �= ī. Also, strong convergence to x† of xn as n → ∞ in
the case of exact data or of xN(δ) in the noisy situation cannot be proved by methods
like those used in [15], [24], even in the linear case. Still, necessary convergence
conditions on the initial guess can be expected to be less restrictive for (1.7) than
for (1.10) as the linear case with bounded generalized inverses indicates: setting all
regularization parameters αn to zero we arrive at the error recursion

xn+1 − x† = PN(Fn)(xn − x†) = PN(Fn)PN(Fn−1) · · · PN(F0)(x0 − x†),

so that one even obtains termination of the iteration with xn+1 = x† as soon as
PN(Fn−1) · · · PN(F0)(x0 − x†) ∈ N (Fn)⊥ for some n.

4. Numerical solution methods. In the following we discuss some possible
discretization strategies and methods for the solution of the arising finite-dimensional
problems.
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4.1. Primal method. For all the optimization approaches discussed above, one
can use a standard Galerkin discretization strategy by choosing a finite-dimensional
subspace Xh ⊂ X and solving a weak form of the discretized Newton equation for
xh
n+1. For the IRGNK method, we have Gn

αn
= M−1

n F ′
n(xh

n)∗ with the positive definite
operator Mn := F ′

n(xh
n)∗F ′

n(xh
n) + αnI. Using this special form, we can discretize a

step of the IRGNK method via

〈Mn(xh
n+1−xh

0,n), ϕ〉 = −〈(Fn(xh
n)−yδn−F ′

n(xh
n)(xh

n−xh
0,n)), F ′

n(xh
n)ϕ〉 ∀ ϕ ∈ Xh.

By iterating this discretization procedure k times, one obtains a discrete form of the
IRGNKk method. Due to the positive definiteness of Mn, one can solve this prob-
lem iteratively by a preconditioned conjugate gradient method, where all standard
preconditioners for the Tikhonov regularization can be used (cf. [34] for an overview).

In the case of the Newton–Landweber iteration, we obtain the same equation for
each Landweber step finally leading to xh

n+1 but now with Mn = I, which gives a quasi-
explicit form for the next iteration (one only has to invert a mass matrix corresponding
to the identity operator, which does not even change during the iteration).

4.2. Dual method. In the following we shall consider a dual method for the
IRGNK, i.e., the Newton–Kaczmarz method with the choice Gα(K) = (K∗K +
αI)−1K∗. We shall now derive a dual method, which is particularly suitable for
the important case that the output spaces Yi are of lower dimensionality than the
parameter space X (which is the case for the examples considered above).

A first observation is that each iteration step of the IRGNK method is equivalent
to the minimization problem

(4.1)
1

2
‖Fn(xn) + F ′

n(xn)(x− xn) − yn‖2 +
αn

2
‖x− x0,n‖2 → min

x∈X
.

By defining the right-hand side z := yn −Fn(xn)−F ′
n(xn)xn and the linear operator

K := F ′
n(xn), this optimization problem is of the form

(4.2) J1(Kx) + J2(x) → min
x∈X

with (omitting the index n in the regularization parameter αn)

J1(y) =
1

2
‖y − z‖2, J2(x) =

α

2
‖x− x0,n‖2.

Both the functionals J1 and J2 are convex, and therefore standard Fenchel duality
(cf. [10]) implies that the primal problem (4.2) is equivalent to the dual problem

(4.3) J∗
1 (−v) + J∗

2 (K∗v) → min
v∈Yn

,

where J∗
1 and J∗

2 are the conjugate functionals, which are obtained as

J∗
1 (v) = sup

y∈Yn

〈v, y〉 − J1(y) =
1

2
‖v + z‖2 − 1

2
‖z‖2,

J∗
2 (w) = sup

x∈X
〈w, x〉 − J2(x) =

1

2α
‖w + αx0,n‖2 − α

2
‖x0,n‖2.

Moreover, the solution v of the dual problem (4.3) and the solution x of the primal
problem are connected by the optimality condition

K∗v = J ′
2(x) = α(x− x0,n).

Thus, we may compute x = x0,n + 1
αK

∗v once we have solved the dual problem.
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By ignoring the constant terms in the conjugate functionals, we may equivalently
state the dual problem as

(4.4)
1

2
‖ − v + z‖2 +

1

2α
‖K∗v + αx0,n‖2 → min

v∈Yn

,

which can be discretized, e.g., by the Ritz method on a subspace of Yn, i.e., by
minimizing the functional in (4.4) on a finite-dimensional subspace Y h

n ⊂ Yn. This
automatically yields a discretization of the update in the primal space via xh

n−x0,n =
1
αK

∗vh, where vh is the discrete solution of the dual problem.
The main advantage of a dual strategy is the (possible) lower dimensionality of the

spaces Yn, which yields smaller discrete problems and consequently a faster solution.
In many important cases such as the examples presented above, the spaces Yn do not
depend on the iteration index but are the same for each step, such that one does not
have to change the basis over the Kaczmarz sweep.

4.3. Primal-dual methods for PDE-constrained problems. As we have
seen in the examples above, the operator Fi is defined implicitly via the solution of
PDEs in many applications. We formally write the partial differential equation as a
nonlinear operator equation of the form

Ei(ui, q) = 0,

where Ei : U ×X → V is a continuously differentiable nonlinear operator such that
∂Ei

∂u is regular for each u ∈ U . The operator Fi is typically obtained as Fi := Li ◦Hi,
where Hi(q) = ui. We shall derive a primal-dual solution method in this case.

One step of the IRGNK method can be rewritten as the constrained problem

1

2
‖Lnv + Lnun − yn‖2 +

αn

2
‖s + qn − q0,n‖2 → min

(v,s)

subject to the constraint that v = H ′
n(qn)s, which can be expressed using the implicit

function theorem as

∂En+1

∂u
(un, qn)v +

∂En+1

∂q
(un, qn)s = 0,

where un = Hn(qn). Deriving the KKT conditions for this constrained problem, we
obtain an indefinite system for the primal variables v, s, and a dual variable w, given
by ⎛

⎝ L∗
nLn 0 A∗

n

0 αnI B∗
n

An Bn 0

⎞
⎠

⎛
⎝ v

s
w

⎞
⎠ =

⎛
⎝ L∗

nyn − L∗
nLnun

αn(q0,n − qn)
0

⎞
⎠

with the linear operators An := ∂En+1

∂u (un, qn) and Bn := ∂En+1

∂q (un, qn).
This indefinite system can be discretized using a mixed approach, i.e., we look for

a solution (vh, sh, wh) in the finite-dimensional subspaces Uh ×Xh × Vh satisfying

〈Lnv, Lnϕ〉 + 〈Anϕ,w〉 = 〈yn − Lnun, Lnϕ〉,
αn〈s, σ〉 + 〈Bnσ,w〉 = αn〈q0,n − qn, σ〉,
〈Anv, ψ〉 + 〈Bns, ψ〉 = 0

for all (ϕ, σ, ψ) ∈ Vh ×Xh × Uh.
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The resulting indefinite system can be solved by a preconditioned conjugate gradi-
ent method for the Schur complement, or directly by a preconditioned Krylov subspace
method for indefinite systems like GMRES, QMR, or MINRES. We refer to [4, 5] for
the discussion of solution methods for indefinite systems arising from primal-dual
formulations in parameter identification.

5. Numerical examples. In the following we shall present numerical results
for two of the examples introduced above.

5.1. Reconstruction with multiple sources. We start with numerical results
for Example 2 in the one-dimensional domain Ω = (0, 1), using p = 20 localized sources
of the form

hi(x) = 10e−10(x− i+1
p+1 )2 .

The data correspond to the “exact solution” q∗(x) = 5 + 5x(1 − x) and the initial
value is q0 ≡ 5. Note that in general we cannot expect the least-squares minimum
norm solution q† to be equal to q∗, since we use only a finite number of measurements.
However, we shall see below that the resulting limit q† is close to q∗, with a difference
probably caused due to the limited numerical resolution only.

For the numerical solution we use the iteratively regularized Gauss–Newton–
Kaczmarz method, i.e., Tikhonov regularization in H1(Ω) as the linear regulariza-
tion method. The iteration is discretized using a primal-dual method as described
above, with piecewise linear finite elements on a uniform grid of size h = 0.01.

We first test the convergence behavior in the noise-free case. To this end, we
generate the data on the same grid as we later solve the inverse problem and choose
the regularization parameters as

(5.1) αn = α0ζ
−n

with ζ = 1.1 and α0 = 10−5. The convergence behavior is illustrated in Figures 5.1
and 5.2 by the iterates at several different steps. The behavior during the first Kacz-
marz sweep is illustrated in Figure 5.1. In iterations 1 and 4, for which we use sources
localized close to the left boundary x = 0, the convergence is more pronounced close
to the left boundary. Vice versa, for later iterations (20), with sources localized close
to the right boundary x = 1, the reconstruction is better close to the right boundary.
In the medium stage of a Kaczmarz sweep, at iterate 8 with sources localized in the
middle of the interval (0, 1), the iterate appears almost symmetric. In the later stage
of the iteration we plot the iterates qn at n = 50, 60 (i.e., those in the middle and
at the end of a Kaczmarz sweep) in Figure 5.2. One observes convergence of the
algorithm, which turns out to be slightly faster for the iterates in the middle of the
Kaczmarz sweep. The reason for this behavior is mainly the ordering of the sources;
one will of course obtain a different behavior for different ordering. We finally pro-
vide a quantitative basis for the above observations on the behavior of the iterates
in Figure 5.3, where we plot the development of the error ‖q∗ − qn‖ (dashed, on the
left) and of the residual ‖Fn(qn)−yn‖ (on the right). In the left plot we also plot the
error at the end of each Kaczmarz sweep ‖q∗ − qnp‖ (solid) and in the middle of the
Kaczmarz sweep ‖q∗−qnp+n/2‖ (dotted). In this example it turned out that the total
error is not always decreasing, but the error at the same stage of the Kaczmarz sweep
‖q∗ − qnp+j‖ (for 0 ≤ j ≤ p− 1) is decreasing with n. In particular, it seems that the
error at the beginning and end of the sweep is always the maximum one in the sweep,
while the one in the middle of the sweep is always the minimum one. Since all of them
decrease toward zero, we obtain the expected worst-case convergence, but of course



REGULARIZING NEWTON–KACZMARZ METHODS 173

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 1, α = 0.0001

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 4, α = 7.5e−005

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 8, α = 5.1e−005

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 20, α = 1.6e−005

Reconstruction
Exact Solution

Fig. 5.1. Reconstructions in the first example, δ = 0, at iterates 1, 4, 8, and 20.
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Fig. 5.2. Reconstructions in the first example, δ = 0, at iterates 50 and 60.

in practice one should consider suitable orderings of the data yi. The comparison of
the residual at different iterates is even more difficult, since the operators and data
are different in each step. However, we also obtain that ‖Fnp+j(qnp+j) − ynp+j‖ (for
0 ≤ j ≤ p− 1) is decreasing to zero with n.

For the noisy case we generated data on a finer grid of size h = 1
347 in order to

avoid inverse crimes. The resulting data are then perturbed using uniform random
noise in the interval [−δ, δ]. The regularization parameters are chosen again via (5.1)
with ζ = 1.1 and α0 = 10−2.
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Fig. 5.3. Plot of error (left) and residual (right) vs. iteration number in the first example, δ = 0.

We illustrate the reconstructions obtained for different noise levels (close to the
minimum of the error during the iteration) in Figure 5.4. In clockwise order the
plots show the reconstruction for noise level δ = 0.5% (at iteration 90), δ = 1% (at
iteration 50), δ = 3% (at iteration 30), and δ = 5% (at iteration 30). One observes
that the quality of the reconstruction improves with decreasing δ, i.e., the error of
the iterate at the stopping index decreases with δ, thus confirming the convergence
result for the noisy case. A quantitative monitoring of error and residual versus the
iteration number is presented in Figure 5.5 for δ = 1% (top), δ = 3% (middle), and
δ = 5% (bottom). One also sees that the minimal error and residual obtained during
the iteration decreases with δ as expected. As usual for ill-posed problems the error
decreases only until some iteration step and then increases again although the residual
is still decreasing. Note that this statement has to interpreted in a different sense,
namely, for the subsequences np + i, 0 ≤ i ≤ p − 1. Moreover, the variation in the
error and residual during a sweep over the different sources increases with the noise
level, which obviously makes the choice of the stopping index more difficult.

We finally investigate the effect of a different choice of regularization operators
in each iteration step. With the localized sources we use it seems natural to localize
the regularization. For this sake we compute the update from the regularized Newton
equation

(F ′
n(xn)∗F ′

n(xn)+αnA+βnBn)(xn+1−xn) = −F ′
n(xn)∗(F (xn)−yδn)+αnA(x0,n−xn),

where

Av := −Δv + v and Bnv := −div(ωn∇v) + ωn,

with the weight functions ωi := |x − i+1
p+1 |. The rationale behind the approach is

that the additional part involving the operator Bn damps the update away from the
point i+1

p+1 , which can be considered as the location of the ith source. In this way
too-large changes away from the measurement location are avoided, which usually
decrease the quality of the reconstruction. The effect of the localized regularization is
an improved convergence behavior, and the decay of error and residuals becomes less
oscillatory, which is clearly an advantage with respect to the choice of the stopping
index. Moreover, the shape of the reconstruction at different iterates depends less
significantly on the localization of the last measurements used. We illustrate the
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Fig. 5.4. Reconstructions in the first example, for noise levels δ = 0.5% (top left), δ = 1% (top
right), δ = 3% (bottom right), δ = 5% (bottom left).

behavior in Figure 5.6 for 3% noise, in the same setup as above. The additional
parameter βn is chosen as βn = 0.5(1.01)−n. Compared to the same case in Figure
5.5 one observes a much smoother decay of the error and no significant differences in
the behaviour at different steps of the sweep.

5.2. Reconstruction from Dirichlet–Neumann data. Our second numeri-
cal experiment is the solution of Example 1, i.e., the reconstruction of the coefficient
q in

−Δu + qu = 0 in Ω ⊂ R
d

from p = 20 values of the Dirichlet-to-Neumann map. In our numerical example, the
two-dimensional domain is Ω = (0, 1)2, on which the differential equation is discretized
by finite differences on a uniform grid of size h = 0.025.

The applied Dirichlet sources fj are identically zero on three of the boundary
segments and of the form

fj(x1, x2) =

103e−50((x1−j/6)2 for j = 1, . . . , 5, x2 = 0,

103e−50((x1−(j−5)/6)2 for j = 6, . . . , 10, x2 = 1,

103e−50((x2−(j−10)/6)2 for j = 11, . . . , 15, x1 = 0,

103e−50((x2−(j−15)/6)2 for j = 16, . . . , 20, x1 = 1

on the fourth segment, i.e., they approximate Dirac-delta impulses equally distributed
over the boundary.
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Fig. 5.5. Plot of error (left) and residual (right) versus iteration number in the first example,
for noise levels δ = 1% (top), δ = 3% (middle), δ = 5% (bottom).

In this case we use the Levenberg–Marquardt–Kaczmarz method, i.e., a Tikho-
nov-type stabilization in the H1-norm in each step with prior qn. This means that
in each step of the method, the update s = qn+1 − qn is obtained by solving the
minimization problem

1

2

∥∥∥∥∂vn∂ν
− gn

∥∥∥∥2

H−1/2(∂Ω)

+
αn

2
‖s‖2

H1(Ω)

subject to the linear equation

−Δvn + qnvn + sun = 0 in Ω
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Fig. 5.6. Plot of error (left) and residual (right) versus iteration number in the first example
with localized regularization, for noise level δ = 3%.

for vn with homogeneous Dirichlet boundary values on ∂Ω. The norm in H−1/2(∂Ω)
of an element g is realized by

‖g‖H−1/2(∂Ω) := ‖φg‖H1(Ω),

where φg ∈ H1(Ω) is the unique weak solution of∫
Ω

(∇φg · ∇ψ + φgψ) dx =

∫
∂Ω

gψ dσ ∀ ψ ∈ H1(Ω).

This means we have to solve an additional Neumann problem to evaluate the norm.
We use a primal-dual approach to discretize this problem, which means that we

have to find two Lagrange multipliers corresponding to the partial differential equa-
tions for vn and the function φg used to evaluate the norm. A careful investigation of
the optimality system shows that φg can be eliminated in favor of one of the Lagrange
multipliers, and the optimality system in each step becomes after straightforward
transformations

−Δvn + qvn + sun = 0,

−Δλ + qλ = 0,

−Δμ + μ + (1 − q)vn − sun = 0,

−Δs + s +
1

α
unλ = −Δ(q0 − qn) + q0 − qn

in Ω, supplemented by the boundary conditions

vn = 0,

λ− μ = φn − φgn ,

∂μ

∂ν
= 0,

s = 0

on ∂Ω. The functions φn and φgn are the functions used to evaluate the H−1/2-norm
of ∂un

∂ν and gn, respectively, defined in the same way as φg above.
We start with some examples using data generated from the parameter

q̂ = 3 + 5 sin(πx) sin(πy)
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Fig. 5.7. Difference q̂ − qn in the second example at iterates 1, 2, 3, 5, 10, and 100.

and the starting value q0 ≡ 3. Note that again q̂ is not necessarily the minimum norm
solution of the inverse problem with the above measurements, but since we expect
that a successful reconstruction algorithm should at least approximate q̂ and since
we do not know the minimum norm solution, we measure the error as the difference
between q̂ and qn. In order to test the convergence of exact data, we generate data on
the same grid as the one used for solving the inverse problem and then perform the
IRGNK algorithm with αn chosen according to (5.1) with ζ = 1.05 and α0 = 10−8.

The difference between q̂ and qn is shown in Figure 5.7, at the iterates n = 1, 2
(top), n = 3, 5 (middle), and n = 10, 100 (bottom). One observes that the error is
reduced very fast globally, but one also observes a certain local influence of the sources,
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Fig. 5.8. Semilogarithmic plot of error (left) and residual (right) versus iteration number in
the second example, δ = 0.
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Fig. 5.9. Semilogarithmic plot of error (left) and residual (right) versus iteration number in
the second example, δ = 1%.

i.e., the convergence seems faster closer to the support of the boundary sources. The
quantitative development of the error ‖q̂ − qn‖ (left) and the residual ‖F (qn) − gn‖
(right) are shown in a semilogarithmic scale in Figure 5.8.

Moreover, we test the behavior of the algorithm with respect to noise by using
Gaussian random noise of variance δ = 1% and δ = 0.5%. We plot the development
of the error (left) and the residual (right) in a semilogarithmic scale in Figure 5.9 for
δ = 1% and in Figure 5.10 for δ = 0.5%. One observes the expected semiconvergence
in both cases, i.e., the error reaches a minimum around which one should stop the
iteration, and then starts to increase again. As expected, the minimal error appearing
during the iteration decreases with the noise level, one obtains a minimal relative error
0.14 for δ = 1% and 0.11 for δ = 0.5%.

We finally test the behavior for a more complicated exact parameter value

q̂ = 3 + 2 sin(3πx1) sin(2πx2).

In this case we change the initial value α0 to 10−12 due to the lower sensitivity of
the data with respect to this parameter. The development of error and residual are
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Fig. 5.10. Semilogarithmic plot of error (left) and residual (right) versus iteration number in
the second example, δ = 0.5%.
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Fig. 5.11. Semilogarithmic plot of error (left) and residual (right) versus iteration number in
the second example for different exact solution, δ = 0.

shown in semilogarithmic scale in Figure 5.11. One observes that the method seems
to converge in this case, too, although more slowly than in the above example, which
is also caused by the lower sensitivity.

6. Conclusions and open problems. We have derived a detailed convergence
analysis of regularized Newton–Kaczmarz methods for nonlinear ill-posed problems,
which—as usual for ill-posed problems—can be carried out under certain conditions
on the nonlinearity of the operators involved. As we have demonstrated in several
examples from practice, these conditions seem not to be too restrictive in the case
of Newton–Kaczmarz methods. Moreover, we have discussed the numerical solution
of the linear problems arising in each step of the iteration method by three differ-
ent approaches. The numerical experiments we carried out confirm the theoretical
predictions.

So far, we have discussed a priori stopping rules (in the sense of [11]) only, whereas
in practice it seems to be more important to have a posteriori stopping rules, which
depend not only on the noise level δ but also on the actual data yδ. In [24], a stopping
rule is proposed for the Landweber–Kaczmarz method that is based on Morozov’s
discrepancy principle, i.e., a comparison of the residual norm with the noise level. Such
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an approach would probably be appropriate also in our Newton–Kaczmarz context.
However, we expect that a rigorous convergence analysis with such a residual type
stopping criterion would have to be based on a nonlinearity assumption similar to
(2.6) (as done in [24]) rather than the condition (2.2) that we have verified for our
application examples here.

As mentioned in section 3.2, the condition (3.14) on the initial values poses a
severe theoretical restriction that seems to be inevitable for Newton–Kaczmarz meth-
ods of the type (1.10) as the linear case shows. A possible way out might be to define
the iteration by (1.7). Here the methods of proof considered so far for p = 1 (cf. [15])
rely on nonlinearity conditions of the type (2.5) but not on (2.4), in whose extension
to p > 1, (2.2) we are interested here, however. Thus, new ideas would be necessary
for proving convergence, perhaps based on a sweepwise instead of a stepwise analysis.
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A DISCONTINUOUS FINITE VOLUME METHOD FOR THE
STOKES PROBLEMS∗
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Abstract. We develop a new discontinuous finite volume method for solving the Stokes equations
on both triangular and rectangular meshes. An optimal error estimate for the approximation of
velocity is obtained in a mesh-dependent norm. First order L2-error estimates are derived for the
approximations of both velocity and pressure.
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1. Introduction. Like finite element methods and finite difference methods,
finite volume methods are discretization techniques for solving partial differential
equations (PDEs). The integral formulation of finite volume schemes for a PDE is
obtained by integrating the PDE over a control volume. In general, it represents the
conservation of a quantity of interest, such as mass, momentum, or energy in fluid
mechanics. Due to this natural association and its simplicity, finite volume methods
are widely used in computational fluid mechanics and other applications [5, 6, 17].
Recently, Chou, Kwak, and Vassilevski [7, 8, 9, 10] applied finite volume methods
involving nonconforming trial functions for diffusion, diffusion-reaction, and Stokes
problems.

The discontinuous Galerkin method is a very active research field, and much lit-
erature can be found related to it [1, 2, 3, 4, 11, 12, 14, 16, 20, 19]. Discontinuous
Galerkin methods use discontinuous functions as finite element approximation and
enforce the connections of the approximation solutions between elements by adding
some penalty terms. The flexibility of discontinuous functions gives discontinuous
Galerkin methods many advantages, such as high order of accuracy, high paralleliz-
ability, localizability, and easy handling of complicated geometries.

Based on the advantages of using discontinuous functions as approximation in
discontinuous Galerkin methods, it is natural to consider using discontinuous function
as trial functions in the finite volume method, which we called the discontinuous finite
volume method. Such method has the flexibility of the discontinuous Galerkin method
and the simplicity and conservative properties of the finite volume method. In [21], a
new discontinuous finite volume method was developed and analyzed for the second
order elliptic problem. The local properties of the discontinuous finite volume method
also reflect on the size of its control volume, which is less than half the control volume
used in existing finite volume methods.

In this paper, we will extend the ideas developed in [21] to solve the Stokes
equations on both triangular and rectangular meshes. In our methods, velocity is
approximated by discontinuous piecewise linear functions on triangular mesh and by
discontinuous piecewise rotated bilinear functions on rectangular mesh. Piecewise
constant functions are used as the test functions for velocity in the discontinuous
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Fig. 1. Element T ∈ Th for triangular mesh.

finite volume method. Therefore, after multiplying the differential equations by a test
function and integrating by parts, the area integrals in the formulations will disappear,
which gives the simplicity of finite volume method.

One of the advantages of using discontinuous approximation functions is it is easy
to build high order elements. It is natural to consider using high order elements in the
discontinuous finite volume formulations. However, use of higher order trial functions
in finite volume methods may result in raising the order of the test functions. This
implies that the test functions are no longer the piecewise constant that will cost the
simplicity of finite volume methods. Nevertheless, it is worth a future research effort
to investigate the high order discontinuous finite volume method.

Since discontinuous functions are used in the approximation, the number of un-
knowns is greater. However, the small support of the control volume for this method
makes the method suitable for domain decomposition since the information can be
updated triangle by triangle in the primary partition.

We consider the Stokes equations

−νΔu + ∇p = f in Ω,(1)

∇ · u = 0 in Ω,(2)

u = 0 on ∂Ω,(3)

where the symbols Δ, ∇, and ∇· denote the Laplacian, gradient, and divergence
operators, respectively, and f(x) is the external volumetric force acting on the fluid
at x ∈ Ω ⊂ R2. We assume ν = 1.

2. Preliminaries and notations. We will use the standard definitions for the
Sobolev spaces Hs(K) and their associated inner products (·, ·)s,K , norms ‖ · ‖s,K ,
and seminorms | · |s,K , s ≥ 0. The space H0(K) coincides with L2(K), in which case
the norm and inner product are denoted by ‖ · ‖K and (·, ·)K , respectively. If K = Ω,
we drop K. Let L2

0(Ω) to denote the subspace of L2(Ω) consisting of functions with
mean value zero.

Let Rh be a triangular or rectangular partition of Ω with diam(Ω) ≤ h. The
triangles or rectangles in Rh are divided into three or four subtriangles by connecting
the barycenter of the triangle or the center of the rectangles to their corner nodes,
respectively, as shown in Figures 1 and 2. Then we define the dual partition Th of
the primal partition Rh to be the union of the triangles shown in Figures 1 and 2 for
both rectangular and triangular mesh.

Let Pk(T ) consist of all the polynomials with degree less than or equal to k defined
on T . We define the finite dimensional trial function space for velocity on triangular
partition by

Vh = {v ∈ L2(Ω)2 : v|K ∈ P1(K)2 ∀K ∈ Rh}
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e T

Fig. 2. Element T ∈ Th for rectangular mesh.

and on rectangular partition by

Vh = {v ∈ L2(Ω)2 : v|K ∈ Q̂1(K)2 ∀K ∈ Rh},

where Q̂1(K) denotes the space of functions of the form a+ bx1 + cx2 + d(x2
1 −x2

2) on
K. Define the finite dimensional test function space Wh for velocity associated with
the dual partition Th as

Wh = {ξ ∈ L2(Ω)2 : ξ|T ∈ P0(T )2 ∀T ∈ Th}.

Let Qh be the finite dimensional space for pressure

Qh = {q ∈ L2
0(Ω) : q|K ∈ P0(K) ∀K ∈ Rh}.

Multiplying (1) and (2) by ξ ∈ Wh and q ∈ Qh, respectively, we have

−
∑
T∈Th

∫
∂T

∂u

∂n
· ξds +

∑
T∈Th

∫
∂T

pξ · nds = (f , ξ)(4)

and ∑
K∈Rh

∫
K

∇ · uqdx = 0,(5)

where n is the unit outward normal vector on ∂T .
Let Tj ∈ Th (j = 1, . . . , t) be the triangles in K ∈ Rh, where t = 3 for triangular

mesh and t = 4 for rectangular mesh, as shown as Figures 3 and 4. Then we have

∑
T∈Th

∫
∂T

∂u

∂n
· ξds =

∑
K∈Rh

t∑
j=1

∫
∂Tj

∂u

∂n
· ξds(6)

=
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

∂u

∂n
· ξds +

∑
K∈Rh

∫
∂K

∂u

∂n
· ξds,

where At+1 = A1.
For vectors v and n, let v ⊗ n denote the matrix whose ijth component is vinj

as in [13]. For two matrix valued variables σ and τ , we define σ : τ =
∑2

i,j=1 σijτij .
Let e be an interior edge shared by two elements K1 and K2 in Th, and let n1 and n2
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be unit normal vectors on e pointing exterior to K1 and K2, respectively. We define
the average {·} and jump [·] on e for scalar q, vector w and τ , respectively.

{q} =
1

2
(q|∂K1 + q|∂K2), [q] = q|∂K1n1 + q|∂K2n2,

{w} =
1

2
(w|∂K1 + w|∂K2), [w] = w|∂TK

· n1 + w|∂K2 · n2,

and

{τ} =
1

2
(τ |∂K1 + τ |∂K2), [τ ] = τ |∂K1 · n1 + τ |∂K2 · n2.

We also define a matrix valued jump [[·]] for a vector w as [[w]] = w|∂K1⊗n1+w|∂K2⊗n2

on e. If e is a edge on the boundary of Ω, define

{q} = q, [w] = w · n, {τ} = τ, [[w]] = w ⊗ n.

Let Γ denote the union of the boundaries of the rectangles K of Rh and Γ0 := Γ\∂Ω.
A straightforward computation gives

∑
K∈Rh

∫
∂K

qv · nds =
∑
e∈Γ0

∫
e

[q] · {v}ds +
∑
e∈Γ

∫
e

{q}[v]ds,(7)

∑
K∈Rh

∫
∂K

v · τnds =
∑
e∈Γ0

∫
e

[τ ] · {v}ds +
∑
e∈Γ

∫
e

{τ} : [[v]]ds.(8)
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Let
∫
Γ
qds =

∑
e∈Γ

∫
e
qds. Using (6), (8), and the fact that [∇u] = 0 for u ∈

(H1
0 (Ω) ∩H2(Ω))2 on Γ0, (6) becomes

∑
T∈Th

∫
∂T

∂u

∂n
· ξds =

∑
K∈Rh

t∑
j=1

∫
Aj+1CAj

∂u

∂n
· ξds +

∫
Γ

[[ξ]] : {∇u}ds.

Since [p] = 0 for p ∈ H1(Ω) on Γ0, we also have

∑
T∈Th

∫
∂T

pξ · nds =
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

pξ · nds +

∫
Γ

{p}[ξ]ds.

Let

a0(v, ξ) = −
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

∂v

∂n
· ξds−

∫
Γ

[[ξ]] : {∇v}ds,

c(ξ, q) =
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

qξ · nds +

∫
Γ

{q}[ξ]ds,

and

b0(v, q) =
∑

K∈Rh

∫
K

∇ · vqdx.

It is clear that the solutions (u, p) of the Stokes equations (1)–(3) satisfy the following:

a0(u, ξ) + c(ξ, p) = (f , ξ) ∀ξ ∈ Wh,(9)

b0(u, q) = 0 ∀q ∈ Qh.(10)

Let V (h) = Vh + (H2(Ω) ∩H1
0 (Ω))2. Define a mapping γ : V (h) → Wh as shown in

Figure 1 and 2.

γv|T =
1

he

∫
e

v|T ds, T ∈ Th,

where he is the length of the edge e. For v = (v1, v2), γvi (i=1, 2) is defined as

γvi|T =
1

he

∫
e

vi|T ds, T ∈ Th.

Define the following bilinear forms:

A0(v, w) = a0(v, γw) ∀v,w ∈ V (h),

B0(v, q) = b0(v, q) ∀v ∈ V (h), ∀q ∈ L2
0(Ω),

C(v, q) = c(γv, q) ∀v ∈ V (h), ∀q ∈ L2
0(Ω).

Then systems (9)–(10) are equivalent to

A0(u,v) + C(v, p) = (f , γv) ∀v ∈ Vh,(11)

B0(u, q) = 0 ∀q ∈ Qh.(12)
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3. Discontinuous finite volume formulation. In this section we propose two
discontinuous finite volume formulations based on modification of the weak formula-
tion (11)–(12) for the Stokes problem (1)–(3).

Let us introduce the bilinear forms as follows:

A1(v,w) = A0(v,w) + α
∑
e∈Γ

[[γv]]e : [[γw]]e

and

B(v, q) = B0(v, q) −
∫

Γ

{q}[γv]ds,

where α > 0 is a parameter to be determined later. For the exact solution (u, p) of
the Stokes problem, we have

A0(u,v) = A1(u,v) ∀v ∈ Vh,

B0(u, q) = B(u, q) ∀q ∈ Qh.

Therefore, it follows from (11)–(12) that

A1(u,v) + C(v, p) = (f , γv) ∀v ∈ Vh,(13)

B(u, q) = 0 ∀q ∈ Qh.(14)

The corresponding discontinuous finite volume scheme for (1)–(3) seeks (uh, ph) ∈
Vh ×Qh such that

A1(uh,v) + C(v, ph) = (f , γv) ∀v ∈ Vh,(15)

B(uh, q) = 0 ∀q ∈ Qh.(16)

Since the test functions are piecewise constant for velocity, the bilinear forms A1(·, ·)
and C(·, ·) in (15) do not include the area integral terms like

∑
K

∫
K
∇uh : ∇vdx that

normally present in the finite element formulations for the Stokes problem.
Let

A∗(v,w) = −
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

∂v

∂n
· γwds

and

C∗(v, q) =
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

qγv · nds.

Thus

A1(v,w) = A∗(v,w) −
∫

Γ

[[γw]] : {∇v}ds + α
∑
e∈Γ

[[γv]]e : [[γw]]e

and

C(v, q) = C∗(v, q) +

∫
Γ

{q}[γv]ds.
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Let ∇hv and ∇h · v be the functions whose restriction to each element K ∈ Rh

are equal to ∇v and ∇ · v, respectively.
Lemma 3.1. For any v,w ∈ V (h), we have

A∗(v,w) = (∇hv,∇hw) +
∑

K∈Rh

∫
∂K

(γw − w)
∂v

∂n
ds

+
∑

K∈Rh

(Δv,w − γw)K .

Furthermore, if v,w ∈ Vh, then

A∗(v,w) = (∇hv,∇hw).

Proof. Using the divergence theorem on each triangle Tj for v ∈ V (h) and the
fact that γw is a constant on each Tj , we have

A∗(v,w) = −
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

∂v

∂n
· γwds

=
∑

K∈Rh

t∑
j=1

γw ·
∫
AjAj+1

∂v

∂n
ds−

∑
K∈Rh

∑
Tj∈K

(Δv, γw)Tj

=
∑

K∈Rh

∫
∂K

(γw − w) · ∂v
∂n

ds +
∑

K∈Rh

∫
∂K

w · ∂v
∂n

ds−
∑

K∈Rh

(Δv, γw)K

=
∑

K∈Rh

∫
∂K

(γw − w) · ∂v
∂n

ds +
∑

K∈Rh

(∇v,∇w)K +
∑

K∈Rh

(Δv,w)K −
∑

K∈Rh

(Δv, γw)K

= (∇hv,∇hw) +
∑

K∈Rh

∫
∂K

(γw − w) · ∂v
∂n

ds +
∑

K∈Rh

(Δv,w − γw)K .

If v ∈ Vh, we have Δv = 0 on each K ∈ Rh. Then the third term in the above
equation drops out. Since ∂v

∂n is constant for both triangular and rectangular mesh,
by the definition of γ, the second term is zero. This completes the proof.

Lemma 3.2. For any (v, q) ∈ V (h) × L2
0(Ω), we have

C∗(v, q) = −(∇h · v, q) +
∑

K∈Rh

∫
∂K

(v − γv) · nqds

+
∑

K∈Rh

(∇q, γv − v)K .(17)

Furthermore, if q ∈ Qh, then

C∗(v, q) = −(∇h · v, q)(18)
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and

C(v, q) = −B(v, q).(19)

Proof. Using the divergence theorem on each triangle Tj for v ∈ Vh, we have

C∗(v, q) =
∑

K∈Rh

t∑
j=1

∫
Aj+1CAj

γv · nqds

= −
∑

K∈Rh

t∑
j=1

∫
AjAj+1

γv · nqds +
∑

K∈Rh

∑
Tj∈K

(∇q, γv)Tj

=
∑

K∈Rh

∫
∂K

(v − γv) · nqds−
∑

K∈Rh

∫
∂K

v · nqds +
∑

K∈Rh

(∇q, γv)K

=
∑

K∈Rh

∫
∂K

(v − γv) · nqds +
∑

K∈Rh

(∇q, γv)K −
∑

K∈Rh

(∇q,v)K −
∑

K∈Rh

(∇ · v, q)K

= −(∇h · v, q) +
∑

K∈Rh

∫
∂K

(v − γv) · nqds +
∑

K∈Rh

(∇q, γv − v)K .

If q ∈ Qh, the second and third terms in the above equation drop out. This completes
the proof.

We define two norms for V (h) as follows:

|||v|||21 = |v|21,h +
∑
e∈Γ

[[γv]]
2
e,

|||v|||2 = |||v|||21 +
∑

K∈Rh

h2
K |v|22,K ,

where |v|21,h =
∑

K |v|21,K .
The standard inverse inequality implies that there is a constant C such that

|||v||| ≤ C|||v|||1 ∀v ∈ Vh.(20)

Let K be an element with e as an edge. It is well known (see [1]) that there exists
a constant C such that for any function g ∈ H2(K),

‖g‖2
e ≤ C

(
h−1
K ‖g‖2

K + hK |g|21,K
)
,(21) ∥∥∥∥ ∂g∂n

∥∥∥∥2

e

≤ C(h−1
K |g|21,K + hK |g|22,K),(22)

where C depends only on the minimum angle of K.
Lemma 3.3. For v,w ∈ V (h), we have

A1(v,w) ≤ C|||v||||||w|||.(23)

Proof. By Lemma 3.1, the inequalities (21) and (22), and the Cauchy–Schwarz
inequality, we have
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|A∗(v,w)| ≤ |(∇hv,∇hw)| +
∣∣∣∣∣ ∑
K∈Rh

∫
∂K

(w − γw) · ∂v
∂n

ds

∣∣∣∣∣ +

∣∣∣∣∣ ∑
K∈Rh

(Δv,w − γw)K

∣∣∣∣∣
≤ C(|v|1,h|w|1,h +

∑
K∈Rh

(h−1
K ‖w − γw‖2

K + hK |w − γw|21,K)
1
2 (h−1

K |v|21,K + hK |v|22,K)
1
2

+
∑

K∈Rh

h|v|2,K |w|1,K)

≤ C

⎛
⎝|v|1,h|w|1,h +

( ∑
K∈Rh

|w|21,K

) 1
2

⎛
⎝|v|1,h +

( ∑
K∈Rh

h2
K |v|22,K

) 1
2

⎞
⎠

+

( ∑
K∈Rh

h2
K |v|2,K

) 1
2

|w|1,h

⎞
⎠

≤ C|||v||||||w|||.

The definition of A1(v,w) and the inequality above imply that

A1(v,w) = A∗(v,w) −
∫

Γ

[[γw]] : {∇v}ds + α
∑
e∈Γ

[[γv]]e : [[γw]]e

≤ C

⎛
⎝|||v||||||w||| +

( ∑
K∈Rh

(|v|21,K + h2|v|22,K)

) 1
2
(∑

e∈Γ

[[γw]]
2
e

) 1
2

+α

(∑
e∈Γ

[[γv]]
2
e

) 1
2
(∑

e∈Γ

[[γw]]
2
e

) 1
2

⎞
⎠

≤ C|||v||||||w|||.

Similarly we can prove the following lemma.
Lemma 3.4. For (v, q) ∈ V (h) × L2

0(Ω), we have

C(v, q) ≤ C|||v|||

⎛
⎝‖q‖ +

( ∑
K∈Rh

h2
K |q|21,K

) 1
2

⎞
⎠ .(24)

If (v, q) ∈ Vh ×Qh, then

C(v, q) ≤ C|||v|||‖q‖.(25)

We will prove the coercivity of the bilinear form A1(·, ·) in Vh in the following
lemma.

Lemma 3.5. For any v ∈ Vh, there is a constant C independent of h such that
for α large enough

A1(v,v) ≥ C|||v|||2.(26)
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Proof. The trace inequality (22) and the inverse inequality give that for v ∈ Vh∫
Γ

[[γv]] : {∇v}ds ≤ C

(∑
e∈Γ

∫
e

he{∇v}2ds

) 1
2
(∑

e∈Γ

∫
e

h−1
e [[v[]

2
ds

) 1
2

≤ C

( ∑
K∈Rh

(|v|21,K + h2
K |v|22,K)

) 1
2
(∑

e∈Γ

[[γv]]
2
e

) 1
2

≤ C|||v|||1

(∑
e∈Γ

[[γv]]
2
e

) 1
2

.

Using the inequality above, (20), and Lemma 3.1, we have

A1(v,v) = (∇hv,∇hv) + α
∑
e∈Γ

[[γv]]
2
e −

∫
Γ

[[γv]] : {∇v}ds

≥ |v|21,h + α
∑
e∈Γ

[[γv]]
2
e − C|||v|||1

(∑
e∈Γ

[[γv]]
2
e

) 1
2

≥ C|||v|||21 ≥ C|||v|||2.

The last inequality is obtained by using the arithmetic-geometric mean inequality and
choosing α large enough.

The proof of Lemma 3.5 indicates that the value of α depends upon the constant
in the inverse inequality. Therefore, the value of α for which A1(·, ·) is coercive
is mesh dependent. Existing results for saddle-point problems indicate that it is
theoretically and computationally important to have coercivity (26). Therefore, the
mesh-dependence of the parameter α makes the discontinuous finite volume scheme
(15)–(16) less interesting in practical computation.

To overcome the difficulty in the selection of parameter, we introduce a second
discontinuous finite volume scheme which is parameter insensitive. To this end, we
define a bilinear form as follows:

A2(v,w) = A1(v,w) +

∫
Γ

[[γv]] : {∇w}ds.

Similar to the bilinear form A1(·, ·), for the exact solution (u, p) of the Stokes problem
we have

A2(u,v) = A0(u,v) ∀v ∈ Vh.

Consequently, the solution of the Stokes problem satisfies the following variational
equations:

A2(u,v) + C(v, p) = (f , γv) ∀v ∈ Vh,(27)

B(u, q) = 0 ∀q ∈ Wh.(28)

Our second discontinuous finite volume scheme for (1)–(3) seeks (uh, ph) ∈ Vh ×Wh

such that

A2(uh,v) + C(v, ph) = (f , γv) ∀v ∈ Vh,(29)

B(uh, q) = 0 ∀q ∈ Wh.(30)
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To see the coercivity of the bilinear form A2(·, ·), we use its definition to obtain

A2(v,v) = (∇hv,∇hv) + α
∑
e∈Γ

[[v]]
2
eds(31)

= |||v|||21 ≥ C|||v|||2 ∀v ∈ Vh.

Thus, the coercivity (31) holds true for the bilinear form A2(·, ·) with any value of
α > 0. Similarly, we can prove that

A2(w,v) ≤ C|||w||||||v||| ∀w,v ∈ V (h).(32)

Let A(v,w) = A1(v,w) or A(v,w) = A2(v,w). In the rest of the paper, we
assume that the following is true.

A(v,v) ≥ C|||v|||2.(33)

If A(v,w) = A2(v,w), (33) holds for any α > 0. If A(v,w) = A1(v,w), (33) holds
for only α larger enough.

4. Error estimates. We will derive an optimal error estimates for velocity in
the norm |||·||| and for pressure in the L2-norm. A first order error estimate for velocity
in L2-norm will be obtained.

Let e be an interior edge shared by two elements K1 and K2 in Rh. If
∫
e
v|K1ds =∫

e
v|K2ds, we say that v is continuous on e. We say that v is zero at e ∈ ∂Ω if∫

e
vds = 0. Define a subspace V̂h of Vh by

V̂h = {v ∈ L2(Ω)2 : v|K ∈ Q̂1(K)2 ∀K ∈ Rh is continuous at e ∈ Γ0

and is zero at e ∈ ∂Ω}

for rectangular mesh and by

V̂h = {v ∈ L2(Ω)2 : v|K ∈ P1(K)2 ∀K ∈ Rh is continuous at e ∈ Γ0

and is zero at e ∈ ∂Ω}

for triangular mesh.
It has been proved in [18] and [15] that the following discrete inf-sup condition is

satisfied; i.e., there exists a positive constant β0 such that

sup
v∈V̂h

(∇h · v, q)
|v|1,h

≥ β0‖q‖ ∀ q ∈ Qh.(34)

Lemma 4.1. The bilinear form B(·, ·) satisfies the discrete inf-sup condition

sup
v∈Vh

B(v, q)

|||v||| ≥ β‖q‖ ∀ q ∈ Qh,(35)

where β is a positive constant independent of the mesh size h.
Proof. For v ∈ V̂h ⊂ Vh and q ∈ Qh, we have B(v, q) = (∇h · v, q) and |||v|||1 =

|v|1,h. (34) and (20) imply that for any q ∈ Qh

β0‖q‖ ≤ sup
v∈V̂h

(∇h · v, q)
|v|1,h

= sup
v∈V̂h

B(v, q)

|||v|||1
≤ C sup

v∈Vh

B(v, q)

|||v||| .(36)

With β = β0/C, we have proved (35).
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Define an operator πK from H1(K) to Q̂1(K) or P1(K) by requiring that for any
v ∈ H1(K), ∫

ei

πKv ds =

∫
ei

v ds for i = 1, . . . , t,(37)

where ei, i = 1, . . . , t, are the t sides of the element K ∈ Rh. t = 3 if K is a triangle
and t = 4 if K is a rectangle. It was proved in [18] that

|πKv − v|s,K ≤ Ch2−s|v|2,K ∀ v ∈ H2(K), s = 0, 1, 2.(38)

For any v ∈ H1
0 (Ω)2, define Π1v ∈ Vh by

(Π1v)i|K = πKvi ∀K ∈ Rh, i = 1, 2.(39)

Using the definition of Π1 and integration by parts, we can show that

B(v − Π1v, q) = 0 ∀q ∈ Qh.(40)

The Cauchy–Schwarz inequality implies

[[γv]]
2
e =

(
1

h e

∫
e

[[v]]ds

)2

≤
(

1

h e

)2 ∫
e

[[v]]
2
ds

∫
e

ds

=

∫
e

1

h e
[[v]]

2
ds.(41)

(41) and (21) imply that

∑
e∈Γ

[[γ(u − Π1u)]]
2
e ≤

∫
Γ

1

h e
[[u − Π1u]]

2
ds

≤ C

(
|u − Π1u|21,h +

∑
K∈Rh

h−2‖u − Π1u‖2
K

)

≤ Ch2‖u‖2
2.(42)

The definitions of the norm ||| · |||, (42), and (38) give

|||u − Π1u|||2 = |u − Π1u|21,h +
∑
e∈Γ

[[γ(u − Π1u)]]
2
e +

∑
K∈Rh

h2|u − Π1u|22,K

≤ Ch2‖u‖2
2.(43)

Let Π2 be the L2 projection from L2
0(Ω) to the finite element space Qh.

Theorem 4.2. Let (uh, ph) ∈ Vh ×Qh be the solution of (15)–(16) or (29)–(30)
and (u, p) ∈ (H2(Ω) ∩ H1

0 (Ω))2 × L2
0(Ω) ∩ H1(Ω) be the solution of (1)–(3). Then

there exists a constant C independent of h such that

|||u − uh||| + ‖p− ph‖ ≤ Ch(‖u‖2 + ‖p‖1).(44)

Proof. Let

εh = uh − Π1u, ηh = ph − Π2p(45)
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be the error between the finite volume solution (uh, ph) and the projection (Π1u,Π2p)
of the exact solution. Denote by

ε = u − Π1u, η = p− Π2p(46)

the error between the exact solution (u, p) and its projection. Subtracting (15) and
(16) from (13) and (14), respectively, or subtracting (29) and (30) from (27) and (28),
respectively, and using Lemma 3.2 give that with A(·, ·) = A1(·, ·) or A(·, ·) = A2(·, ·)

A(εh,v) −B(v, ηh) = A(ε,v) −B(v, η),(47)

B(εh, q) = B(ε, q) = 0(48)

for any v ∈ Vh and q ∈ Qh.
By letting v = εh in (47) and q = ηh in (48), the sum of (47) and (48) gives

A(εh, εh) = A(ε, εh) −B(εh, η).(49)

Thus, it follows from the coercivity (33), the boundedness (23), (32), and (24) that

|||εh|||2 ≤ C

⎛
⎝|||ε||||||εh||| +

⎛
⎝‖η‖ +

( ∑
K∈Rh

h2
K |η|21,K

) 1
2

⎞
⎠ |||εh|||

⎞
⎠ ,

which implies the following:

|||εh||| ≤ C

⎛
⎝|||ε||| + ‖η‖ +

( ∑
K∈Rh

h2
K |η|21,K

) 1
2

⎞
⎠ .

The above estimate can be rewritten as

|||uh − Π1u||| ≤ C

⎛
⎝|||u − Π1u||| + ‖p− Π2p‖ +

( ∑
K∈Rh

h2|p− Π2p|21,K

) 1
2

⎞
⎠ .

Now using the triangle inequality, (38), the definition of Π2, and the inequality
above, we get

|||u − uh||| ≤ C (|||u − Π1u||| + ‖uh − Π1u‖) ≤ Ch(‖u‖2 + ‖p‖1) ,(50)

which completes the estimate for the velocity approximation.
Discrete inf-sup condition (35), (50), Lemma 3.2, Lemma 3.4, and inverse inequal-

ity give

‖ph − Π2p‖ ≤ 1

β
sup
v∈Vh

B(v, ph − Π2p)

|||v||| ≤ 1

β
sup
v∈Vh

C(v,Π2p− ph)

|||v|||

=
1

β
sup
v∈Vh

C(v, p− ph) + C(v,Π2p− p)

|||v|||

=
1

β
sup
v∈Vh

A(u − uh,v) + C(v,Π2p− p)

|||v|||

≤ C

⎛
⎝|||u − uh||| + ‖p− Π2p‖ +

( ∑
K∈Rh

h2
K |p− Π2p|21,K

) 1
2

⎞
⎠

≤ Ch(‖u‖2 + ‖p‖1).
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x0

x1

x2 x3

K1

K2 K3

Fig. 5. A path.

Using the above inequality and the triangle inequality, we have completed the proof
of (44).

We need the following lemma for the L2 error estimate of velocity.
Lemma 4.3. There exists a constant C independent of h such that the following

is true:

‖w‖ ≤ C|||w||| ∀w ∈ Vh.

Proof. The proof is similar to the proof of Lemma 3.1 in [8]. We prove this lemma
only for the rectangular element. The same argument can be used to prove the lemma
for the triangular element. Let |e| denote the length of edge e.

Let e be an edge shared by two elements K1 and K2 in Rh. Let w = (w1, w2).
Define [w1]∗ = w1|∂K1 −w1|∂K2

. Interchanging K1 and K2 will have no effect on the
procedure. Since [w1]∗ is continuous on ei ∈ Γ, there exists xi ∈ ei such that

[γw1]∗ =
1

|ei|

∫
ei

[w1]∗ds = [w1]∗(xi)(51)

and

[γw1]
2
∗ = [γw1]

2.

If ei is an edge on the boundary, then xi ∈ ei is a point such that
∫
ei
w1ds = w1(xi)|ei|.

For any x = x0 ∈ K ∈ Rh, we can find a path from x0 to xl, a point on the boundary,
by joining a sequence of xi as shown in Figure 5, where xi (i = 1, . . . , l) satisfy (51).
Let C0 be a constant such that lh ≤ C0. Let {Ki}li=1 be the sequence of rectangles
in Rh containing xi (i = 0, . . . , l) as shown in Figure 5.

Define w1(x
1
0) = w1(x0), w1(x

2
1) = w1|K1(x1), and w1(x

1
1) = w1|K2(x1). In

general, w1(x
2
i ) = w1|Ki(xi) and w1(x

1
i ) = w1|Ki+1(xi).

The mean value theorem, the Cauchy–Schwarz inequality, and (51) give

|w1(x)|2 = |w1(x0)|2 =

∣∣∣∣∣
l∑

i=1

(w1(x
1
i−1) − w1(x

2
i )) +

l∑
i=1

[w1]∗(xi)

∣∣∣∣∣
2

(52)

≤ Cl

(
l∑

i=1

∇w1(x̄i)
2(xi−1 − xi)

2 +

l∑
i=1

[γw1]
2
ei

)
,(53)

where x̄i ∈ Ki is a point between xi−1 and xi. As in [8], we have

|∇w1(x̄i)|2h2 ≤ C|∇w1|2Ki
.(54)
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(54) implies

|w1(x)|2 ≤ Cl

(
l∑

i=1

|∇w1|2Ki
+

l∑
i=1

[γw1]
2
ei

)
.(55)

Integrating (55) over K gives

∫
K

|w1(x)|2 ≤ Clh2

(
l∑

i=1

|∇w1|2Ki
+

l∑
i=1

[γw1]
2
ei

)
.(56)

Adding over K in such way that the same Ki appears at most l times and using the
fact that lh ≤ C0, we have

‖w1‖2 =

∫
Ω

|w1(x)|2 ≤ C

(
|w1|21,h +

∑
e∈Γ

[γw1]
2
e

)
.(57)

Similarly, we have (57) hold for w2. Since [[γw]]
2

= [γw1]
2+[γw2]

2, we have completed
the proof.

Theorem 4.4. Let (uh, ph) ∈ Vh ×Qh be the solution of (15)–(16) or (29)–(30)
and (u, p) ∈ (H2(Ω) ∩ H1

0 (Ω))2 × L2
0(Ω) ∩ H1(Ω) be the solution of (1)–(3). Then

there exists a constant C independent of h such that

‖u − uh‖ ≤ Ch(‖u‖2 + ‖p‖1).(58)

Proof. Using Lemma 4.3, (43), and (44), we have

‖uh − Π1u‖ ≤ C|||uh − Π1u||| ≤ C(|||u − uh||| + |||u − Π1u|||)(59)

≤ Ch(‖u‖2 + ‖p‖1).

(59), (38), and the triangle inequality imply (58). We have completed the
proof.
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MULTIGRID ALGORITHMS FOR C0 INTERIOR PENALTY
METHODS∗

SUSANNE C. BRENNER† AND LI-YENG SUNG†

Abstract. Multigrid algorithms for C0 interior penalty methods for fourth order elliptic bound-
ary value problems on polygonal domains are studied in this paper. It is shown that V -cycle, F -cycle
and W -cycle algorithms are contractions if the number of smoothing steps is sufficiently large. The
contraction numbers of these algorithms are bounded by Cm−α, where m is the number of pres-
moothing (and postsmoothing) steps, α is the index of elliptic regularity, and the positive constant
C is mesh-independent. These estimates are established for a smoothing scheme that uses a Poisson
solve as a preconditioner, which can be easily implemented because the C0 finite element spaces
are standard spaces for second order problems. Furthermore the variable V -cycle algorithm is also
shown to be an optimal preconditioner.

Key words. multigrid methods, discontinuous Galerkin methods, fourth order problems
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1. Introduction. C0 interior penalty methods [29, 24] are nonconforming fi-
nite element methods for fourth order problems. Consider the following variational
problem on a bounded polygonal domain in R

2: Find u ∈ H2
0 (Ω) such that

a(u, v) =

∫
Ω

fv dx ∀ v ∈ H2
0 (Ω),(1.1)

where

a(w, v) =

2∑
i,j=1

∫
Ω

∂2w

∂xi∂xj

∂2v

∂xi∂xj
dx +

∫
Ω

b(x)∇w · ∇v dx(1.2)

and f ∈ L2(Ω). The function b(x) in (1.2) belongs to C1(Ω̄) and is nonnegative on
Ω. Since ∂Ω is not smooth, the solution u of (1.1) does not belong to H4(Ω) even if
f ∈ C∞(Ω̄) [31, 37]. In general the shift theorem [28, 4] only holds for f belonging
to the Sobolev space H−2+α(Ω) for some α ∈ ( 1

2 , 1], i.e., u ∈ H2+α(Ω) whenever
f ∈ H−2+α(Ω) and

‖u‖H2+α(Ω) ≤ CΩ‖f‖H−2+α(Ω).(1.3)

(We follow the standard notation of Sobolev spaces [1, 27, 23] in this paper.)
When b = 0, the variational problem defined by (1.1) corresponds to the bihar-

monic problem. When b > 0, it is a scalar analog of the elliptic system that appears
in strain-gradient elasticity theory [30, 41, 44]. Within the framework of finite ele-
ment methods, it can be solved numerically by conforming C1 finite elements [9, 2],
nonconforming finite elements [36, 3, 40, 39] and mixed finite elements [26].
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Let Th be either a simplicial triangulation or a convex quadrilateral triangulation
of Ω. In the C0 interior penalty method approach, the discrete space Vh is either a P�

(� ≥ 2) triangular Lagrange finite element space [27, 23] or a Q� (� ≥ 2) quadrilateral
Lagrange tensor product finite element space [27, 23] associated with Th. The discrete
problem for (1.1) is then given by: Find uh ∈ Vh such that

Ah(uh, v) =

∫
Ω

fv dx ∀ v ∈ Vh,(1.4)

where

Ah(w, v) =
∑
D∈Th

∫
D

⎛
⎝ 2∑

i,j=1

∂2w

∂xi∂xj

∂2v

∂xi∂xj
+ b(x)∇w · ∇v

⎞
⎠ dx

+
∑
e∈Eh

∫
e

({{
∂2w

∂n2

}}[[
∂v

∂n

]]
+

{{
∂2v

∂n2

}}[[
∂w

∂n

]])
ds(1.5)

+
∑
e∈Eh

η

|e|

∫
e

[[
∂w

∂n

]] [[
∂v

∂n

]]
ds,

Eh is the set of all the edges of Th, |e| is the length of the edge e, and η > 0 is a
penalty parameter. The averages {{·}} and jumps [[·]] in (1.5) are defined as follows.

Let e be an interior edge of Th and ne be a unit vector normal to e. Then e is
shared by two elements D± ∈ Th, where ne is pointing from D− to D+, and we define
on e [[

∂v

∂n

]]
=

∂v+

∂ne
− ∂v−

∂ne
and

{{
∂2v

∂n2

}}
=

1

2

(
∂2v+

∂n2
e

+
∂2v−
∂n2

e

)
,(1.6)

where v± = v
∣∣
D±

. For an edge e on ∂Ω, we take ne to be the outer unit normal vector

and define [[
∂v

∂n

]]
= − ∂v

∂ne
and

{{
∂2v

∂n2

}}
=

∂2v

∂n2
e

.

Note that the averages and jumps are independent of the choice of ne in (1.6).

The C0 interior penalty method is consistent, and for η sufficiently large (which
is assumed to be the case) it is also stable. Therefore the error u−uh is quasi-optimal
with respect to appropriate norms [29, 24]. The C0 interior penalty approach has
certain advantages over other finite element methods:

(i) The finite element spaces are much simpler than the C1 finite element spaces;
(ii) The lowest order C0 interior penalty methods (i.e., those based on the P2

or Q2 elements) are as simple as the classical nonconforming finite element
methods, but unlike such methods, the C0 interior penalty methods come in
a natural hierarchy of arbitrary orders;

(iii) Unlike mixed finite element methods, it is straightforward to construct C0

interior penalty methods for more complicated elliptic systems;
(iv) The fact that the finite element spaces in the C0 interior penalty approach are

just standard finite element spaces for second order problems can be exploited
in the design of effective smoothers for multigrid algorithms.
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Remark 1.1. In the absence of hanging nodes, which is the case here, the C0

interior penalty methods involve fewer degrees of freedom than the completely dis-
continuous interior penalty methods introduced in [5] because nodal values are shared
on interelement boundaries.

In this paper we extend the multigrid theory for classical nonconforming finite
elements (cf. [19, 22] and the references therein) to the C0 interior penalty methods.
We will prove the convergence of V -cycle, F -cycle and W -cycle algorithms when the
number of smoothing steps is sufficiently large and also the optimality of the variable
V -cycle algorithm as a preconditioner. In all these multigrid algorithms we use a
preconditioned relaxation scheme that is much more effective than classical smoothers
(such as the Richardson and the Gauss-Seidel iterations) and at the same time can
be easily implemented because the finite element spaces of the C0 interior penalty
methods are the standard spaces for second order problems.

The rest of the paper is organized as follows. We set the notation and state
the multigrid algorithms in section 2, and then we introduce the mesh-dependent
norms and establish some basic estimates in section 3. The analysis of W -cycle and
variable V -cycle algorithms is carried out in section 4. The analysis of V -cycle and F -
cycle algorithms relies on the additive theory developed in [20, 22], which is recalled
in section 5. The convergence results for V -cycle and F -cycle algorithms are then
established in section 6. In section 7 we present the results of numerical experiments.
Appendix A contains some properties of multigrid Poisson solves relevant for the
convergence analysis.

For future reference we state here two elementary inequalities:

2ab ≤ θ2a2 + θ−2b2 for a, b ∈ R and θ ∈ (0, 1),(1.7)

(a + b)2 ≤ (1 + θ2)a2 + (1 + θ−2)b2 for a, b ∈ R and θ ∈ (0, 1).(1.8)

2. Multigrid algorithms. In this section we describe the multigrid algorithms.
In view of their potential for three-dimensional (3D) problems, we will focus on C0

interior penalty methods that are based on quadrilateral elements. Similar results can
of course be obtained for triangular elements.

Let T0 be a triangulation of Ω by convex quadrilaterals and the triangulations
of T1, T2, . . . be obtained from T0 through uniform subdivisions. The mesh sizes
hk = maxD∈Tk

diamD thus satisfy the relation

hk ≈ 2−kh0.(2.1)

Remark 2.1. In order to avoid the proliferation of constants, we will use the
notation A � B (B � A) to represent the relation A ≤ (constant) × B, where the
positive constant is mesh-independent, i.e., it is independent of the mesh size hk and
the grid level k. The notation A ≈ B is equivalent to A � B and B � A.

Let Vk ⊂ H1
0 (Ω) be the Q� (� ≥ 2) finite element space associated with Tk and

denote by Ak the symmetric bilinear form on Vk corresponding to the variational form
(1.5) of the C0 interior penalty method. The kth level discrete problem for the C0

interior penalty method is: Find uk ∈ Vk such that

Ak(uk, v) =

∫
Ω

fv dx ∀ v ∈ Vk.(2.2)

For η sufficiently large, the bilinear form Ak(·, ·) is positive definite on Vk and we
can define the discrete energy norm ‖ · ‖Ak

by

‖v‖Ak
=

√
Ak(v, v) ∀ v ∈ Vk.(2.3)
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Note that Ak(ζ1, ζ2) is well-defined for ζ1, ζ2 ∈ H2+α(Ω) ∩ H2
0 (Ω), where α ∈

(1/2, 1] is the index of elliptic regularity in (1.3). In fact, Ak(ζ1, ζ2) = a(ζ1, ζ2)
because [[∂ζj/∂n]] = 0. In particular, in view of (1.2) and the Poincaré-Friedrichs
inequality [38],

Ak(ζ, ζ) = a(ζ, ζ) ≈ |ζ|2H2(Ω) ∀ ζ ∈ H2+α(Ω) ∩H2
0 (Ω).(2.4)

However, Ak(·, ·) is not positive definite on the space Vk + [H2+α(Ω) ∩ H2
0 (Ω)].

Therefore it is necessary to introduce the following norm ‖ · ‖k for functions in
Vk + [H2+α(Ω) ∩H2

0 (Ω)]:

‖w‖2
k =

∑
D∈Tk

(
|w|2H2(D) + |w|2H1(D)

)
(2.5)

+
∑
e∈Ek

(
|e| ‖{{∂2w/∂n2}}‖2

L2(e)
+ |e|−1‖[[∂w/∂n]]‖2

L2(e)

)
.

From (2.5) it is easy to see that

|Ak(w1, w2)| � ‖w1‖k‖w2‖k ∀w1, w2 ∈ Vk + [H2+α(Ω) ∩H2
0 (Ω)].(2.6)

Furthermore, on Vk itself, we have (cf. (4.18), (4.20) and (4.25) of [24])

|v|H2(Ω,Tk) ≤ ‖v‖k ≈ ‖v‖Ak
� |v|H2(Ω,Tk) ∀ v ∈ Vk,(2.7)

where

|v|2H2(Ω,Tk) =
∑
D∈Tk

|v|2H2(D) +
∑
e∈Ek

|e|−1‖[[∂v/∂n]]‖2
L2(e)

.(2.8)

Let the operator Ak : Vk −→ V ′
k be defined by

〈Akv1, v2〉 = Ak(v1, v2) ∀ v1, v2 ∈ Vk,(2.9)

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual. We can
then rewrite the discrete problem (2.2) as Akuk = φk, where φk ∈ V ′

k is defined by
〈φk, v〉 =

∫
Ω
fv dx ∀ v ∈ Vk.

Multigrid algorithms [32, 35, 11, 17, 43] are iterative methods for the solution of
equations of the form

Akz = ψ,(2.10)

where ψ ∈ V ′
k and z ∈ Vk. In the descriptions of the multigrid algorithms below we

will denote the natural injection from Vk−1 to Vk by Ikk−1 and its transpose from V ′
k

to V ′
k−1 by Ik−1

k , i.e.,

〈φ, Ikk−1v〉 = 〈Ik−1
k φ, v〉 ∀φ ∈ V ′

k and v ∈ Vk−1.(2.11)

We also need an operator Bk : Vk −→ V ′
k in the preconditioned relaxation scheme

used in the smoothing steps of the multigrid algorithms (cf. (2.17) and (2.19) below).
Let Lk : Vk −→ V ′

k be the discrete Laplace operator, i.e.,

〈Lkv1, v2〉 =

∫
Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vk.(2.12)
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Since Vk is a standard finite element space for second order problems, it is natural to
consider L−1

k as a preconditioner for the fourth order discrete differential operator Ak.
In order to maintain the optimal complexity of multigrid algorithms, we use instead
an approximation Bk of Lk with the following properties:

(i) Bk is symmetric positive definite, i.e.,

〈Bkv1, v2〉 = 〈Bkv2, v1〉 ∀ v1, v2 ∈ Vk,(2.13)

〈Bkv, v〉 > 0 ∀ v ∈ Vk \ {0}.(2.14)

(ii) Bk is spectrally equivalent to the discrete Laplace operator in the sense that

〈Lkv, v〉 ≤ 〈Bkv, v〉 � 〈Lkv, v〉 = ‖∇v‖2
L2(Ω) ∀ v ∈ Vk.(2.15)

(iii) Bk approximates Lk in the sense that, for some β ∈ (0, 1/2),

|v −B−1
k Lkv|H1(Ω) � hβ

k‖v‖H1+β(Ω) ∀ v ∈ Vk.(2.16)

(iv) The cost for computing B−1
k v is of order O(nk), where nk is the dimension

of Vk.
Remark 2.2. Let B−1

k : V ′
k −→ Vk be the Poisson solve obtained by a symmetric

V -cycle algorithm, a symmetric W -cycle algorithm or a symmetric variable V -cycle
algorithm. Then Bk satisfies the properties (i), (ii) and (iv). If B−1

k is the Poisson
solve obtained by a symmetric W -cycle algorithm with a sufficiently large number of
smoothing steps or a symmetric variable V -cycle algorithm, then the operator Bk also
satisfies the property (iii). Details can be found in Appendix A.

Algorithm 2.3 (V -cycle Algorithm). MGV (k, ψ, z0,m) is the approximate so-
lution of (2.10) with initial guess z0 obtained as follows. If k = 0, we use a direct
solve to obtain A−1

0 ψ as the output of the V -cycle algorithm. If k ≥ 1, we compute
MGV (k, ψ, z0,m) recursively in three steps.

Presmoothing. For 1 ≤ j ≤ m, compute zj recursively by

zj = zj−1 + γkB
−1
k (ψ −Akzj−1),(2.17)

where γ−1
k dominates the spectral radius of the operator B−1

k Ak : Vk −→ Vk.
Coarse Grid Correction. Compute

zm+1 = zm + Ikk−1MGV (k − 1, �k−1, 0,m),(2.18)

where �k−1 = Ik−1
k (ψ −Akzm) is the transferred residual of zm.

Postsmoothing. For m + 2 ≤ j ≤ 2m + 1, compute zj recursively by

zj = zj−1 + γkB
−1
k (ψ −Akzj−1).(2.19)

The final output of the V -cycle algorithm is

MGV (k, ψ, z0,m) = z2m+1.(2.20)

Algorithm 2.4 (W -cycle Algorithm). If we replace the coarse grid correction
step of Algorithm 2.3 by the following procedure, we have the W -cycle algorithm
whose output will be denoted by MGW (k, ψ, z0,m).

Coarse Grid Correction for the W -cycle. Compute e1, e2 ∈ Vk−1 by

ej = MGW (k − 1, �k−1, ej−1,m) for 1 ≤ j ≤ 2,(2.21)
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where e0 = 0, and set

zm+1 = zm + Ikk−1e2.(2.22)

Algorithm 2.5 (F -cycle Algorithm). If we replace the coarse grid correction
step of Algorithm 2.3 by the following procedure, we have the F -cycle algorithm whose
output will be denoted by MGF (k, ψ, z0,m).

Coarse Grid Correction for the F -cycle. Let e0 = 0 ∈ Vk−1. Compute e1, e2 ∈
Vk−1 by e1 = MGF (k − 1, �k−1, e0,m), e2 = MGV (k − 1, �k−1, e1,m), and set zm+1

by (2.22).
Algorithm 2.6 (Variable V -cycle Algorithm). If the numbers of smoothing

steps in Algorithm 2.3 on different levels are allowed to be different, we have a variable
V -cycle algorithm.

3. Mesh-dependent norms and preliminary estimates. In this section we
introduce mesh-dependent norms and derive some preliminary estimates. First of all,
because of (2.13) and (2.14), we can introduce a discrete inner product [6] related to
the preconditioner in the smoothing steps:

(v1, v2)k = 〈Bkv1, v2〉 ∀ v1, v2 ∈ Vk.(3.1)

It follows from (2.9) and (3.1) that the operator Ak = B−1
k Ak : Vk −→ Vk satisfies

(Akv1, v2)k = Ak(v1, v2) ∀ v1, v2 ∈ Vk.(3.2)

It is clear from (1.5) and (3.2) that Ak is symmetric positive definite with respect to
the inner product (·, ·)k. Furthermore, it follows from (2.3), (2.7), (2.8), (2.15) and
standard inverse estimates [27, 23] that the spectral radius ρ(Ak) of Ak satisfies

ρ(Ak) � h−2
k .(3.3)

Therefore we can take the parameter γk in (2.17) and (2.19) to be Ch2
k (≤ 1/ρ(Ak)),

where the positive constant C is mesh-independent.
Remark 3.1. In terms of the inner product (·, ·)k the smoothing steps in (2.17)

and (2.19) are just Richardson relaxation steps.
Remark 3.2. Using (3.3) it is not difficult to show that, with respect to the

natural nodal basis of the Q� finite element space, the condition number of Ak (in
the energy norm) is of order O(h−2

k ). On the other hand the condition number of the
fourth order discrete differential operator Ak (with respect to the natural nodal basis)
is of order O(h−4

k ). The reduction in the order of the condition number of Ak greatly
improves the performance of the multigrid algorithms (cf. Remark 4.2, Tables 7.1 and
7.4 below).

For s ∈ R, we define the mesh-dependent norm ||| · |||s,k by

|||v|||s,k = (As
kv, v)

1/2
k ∀ v ∈ Vk.(3.4)

It is clear from (2.3), (2.15), (3.1), (3.2) and (3.4) that

|||v|||0,k =
√

(v, v)k =
√
〈Bkv, v〉 ≈ |v|H1(Ω) ∀ v ∈ Vk,(3.5)

|||v|||1,k = ‖v‖Ak
∀ v ∈ Vk.(3.6)
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The following well-known properties [7] of mesh-dependent norms follow immedi-
ately from (3.2)–(3.4) and the Cauchy-Schwarz inequality:

|||v|||s,k � ht−s
k |||v|||t,k ∀ v ∈ Vk and 0 ≤ t ≤ s ≤ 2,(3.7)

|||v|||1+s,k = sup
w∈Vk\0

Ak(v, w)

|||w|||1−s,k
∀ v ∈ Vk and s ∈ R.(3.8)

Our convergence analysis in subsequent sections relies on the elliptic regularity es-
timate (1.3). Therefore a relation between the Sobolev norms and the mesh-dependent
norms is crucial. For conforming methods such a relation is easy to derive. However,
since the C0 interior penalty methods are nonconforming (i.e., Vk �⊂ H2

0 (Ω)), addi-
tional work is required here.

The key ingredient for building a link between Sobolev norms and mesh-dependent
norms is the existence [24] of a C1 finite element which is a relative [18, 19] of the Q�

Lagrange element in the sense that (i) the shape functions of the Q� element are also
shape functions of the C1 element, and (ii) the nodal variables (degrees of freedom)
of the Q� element are also nodal variables of the C1 element. For example, we can
take the C1 elements from the generalized Bogner-Fox-Schmit family (cf. section 6 of
[24]) to be the relatives of the tensor product Lagrange elements, and take the C1

Argyris elements [2, 24] to be the relatives of the triangular Lagrange elements.

Let Ṽk ⊂ H2
0 (Ω) be the finite element space defined by the C1 element. We

can construct a linear map Ek : Vk −→ Ṽk by averaging [24] so that the following
properties hold:

ΠkEkv = v ∀ v ∈ Vk,(3.9)

‖Ekv‖H2(Ω) � ‖v‖Ak
∀ v ∈ Vk,(3.10)

‖Ekv‖H1+s(Ω) ≈ ‖v‖H1+s(Ω) ∀ v ∈ Vk, 0 ≤ s <
1

2
,(3.11)

where Πk : C0(Ω̄) −→ Vk is the nodal interpolation operator.

Remark 3.3. The relation (3.9) and the estimate (3.10) can be found in [24,
equation (3.30) and Lemma 3]. The estimate (3.11) can be proved by the arguments
in Lemma 9 of [24], where the special case s = 1 − α is established.

Note also that the following estimates (cf. (3.16), (3.18) and (5.3) of [24]) hold
for Πk:

‖Πkζ‖Ak
� ‖ζ‖H2(Ω) ∀ ζ ∈ H2

0 (Ω),(3.12)

|ζ − Πkζ|H1(Ω) � hk‖ζ‖H2(Ω) ∀ ζ ∈ H2
0 (Ω),(3.13)

‖ζ − Πkζ‖k � hα
k‖ζ‖H2+α(Ω) ∀ζ ∈ H2+α(Ω),(3.14)

where ‖ · ‖k is the norm defined in (2.5). Furthermore, because the finite elements are
relatives, the following discrete estimate is a consequence of the equivalence of norms
on finite dimensional vector spaces:

|Πkṽ|H1(Ω) � |ṽ|H1(Ω) ∀ v ∈ Ṽk.(3.15)

The following lemma gives useful two-level estimates for the nodal interpolation
operator.
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D̂1 D̂2

D̂3D̂4

ê1

ê2

ê3

ê4

Fig. 3.1. A subdivided referenced square D̂.

Lemma 3.4. The following estimates hold for the nodal interpolation operator :

|v − Πk−1v|H1(Ω) � hk‖v‖Ak
∀ v ∈ Vk,(3.16)

‖v − Πk−1v‖H2−α(Ω) � hα
k‖v‖Ak

∀ v ∈ Vk,(3.17)

‖Πk−1v‖Ak−1
� ‖v‖Ak

∀ v ∈ Vk.(3.18)

Proof. In view of (2.7) and (2.8), the estimate (3.16) is a consequence of

|v − Πk−1v|2H1(D) � (diamD)2

⎛
⎜⎜⎝ ∑

D′∈Tk

D′⊂D

|v|2H2(D′) +
∑
e⊂Ek
e⊂D

|e|−1‖[[∂v/∂n]]‖2
L2(e)

⎞
⎟⎟⎠

(3.19)

for all v ∈ Vk and D ∈ Tk−1. Since the quadrilaterals in Tk for k ≥ 0 are shape
regular, we can establish (3.19) by proving the following estimate on the reference
square D̂:

|v̂ − v̂I |2
H1(D̂)

�
4∑

j=1

|v̂|2
H2(D̂j)

+

4∑
j=1

‖[[∂v̂/∂n]]‖2
L2(êj)

∀ v ∈ V̂ ,(3.20)

where V̂ ⊂ H1(D̂) is the (finite dimensional) space of continuous functions whose
members belong to the polynomial space Q�(D̂j) for each of the four subsquares D̂j

(cf. Figure 3.1), v̂I ∈ Q�(D̂) agrees with v̂ at the nodes of the Q� element on D̂, and
êj for 1 ≤ j ≤ 4 are interfaces of the subsquares. Now the estimate (3.20) follows from
the observation that the square root of the right-hand side of (3.20) defines a norm
on the quotient space V̂ /P1(D̂) while the square root of the left-hand side defines a
seminorm on V̂ /P1(D̂).

The estimate (3.17) follows from (3.16) and the inverse estimate [8]

|v|H1+s(Ω) � h−s
k |v|H1(Ω) ∀ v ∈ Vk,(3.21)

where 0 < s < 1/2.
Finally we derive (3.18) using (2.7), (2.8), (3.18), (3.19), a trace theorem (with

scaling) and a standard inverse estimate [27, 23]:

‖Πk−1v‖2
Ak−1

�
∑

D∈Tk−1

|Πk−1v|2H2(D) +
∑
e∈Ek

|e|−1‖[[∂(Πk−1v)/∂n]]‖2
L2(e)

� ‖Πk−1v‖Ak−1
+

∑
e∈Ek

|e|−1‖[[∂v/∂n]]‖2
L2(e)

+
∑
e∈Ek

|e|−1‖[[∂(v − Πk−1v)/∂n]]‖2
L2(e)
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� ‖v‖2
Ak

+
∑
D∈Tk

(diamD)−2|v − Πk−1v|2H1(D) � ‖v‖2
Ak

∀ v ∈ Vk.

In the other direction we can also construct a map from the Sobolev spaces into
Vk.

Lemma 3.5. There exists a linear map Jk : L2(Ω) −→ Vk with the following
properties :

JkEkv = v ∀ v ∈ Vk,(3.22)

‖Jkv‖Ak
� |v|H2(Ω) ∀ v ∈ H2

0 (Ω),(3.23)

|Jkv|H1(Ω) � |v|H1(Ω) ∀ v ∈ H1
0 (Ω).(3.24)

Proof. We define Jk by

Jkv = ΠkQkv ∀ v ∈ L2(Ω),(3.25)

where Qk : L2(Ω) −→ Ṽk is the L2 orthogonal projection operator. The relation
(3.22) is an obvious consequence of (3.9).

Regarding Qk we have the estimates [16]

‖Qkv‖H2(Ω) � ‖v‖H2(Ω) ∀ v ∈ H2
0 (Ω),(3.26)

‖Qkv‖H1(Ω) � ‖v‖H1(Ω) ∀ v ∈ H1
0 (Ω).(3.27)

The estimates (3.23) and (3.24) follow immediately from (3.12), (3.15) and (3.25)–
(3.27).

Lemma 3.6. It holds that

|||v|||s,k ≈ ‖Ekv‖H1+s(Ω) ∀ v ∈ Vk(3.28)

provided 0 ≤ s ≤ 1 and s �= 1/2.
Proof. From (3.5), (3.6), (3.10) and (3.11) we have

‖Ekv‖H2(Ω) � |||v|||1,k ∀ v ∈ Vk,

‖Ekv‖H1(Ω) � |||v|||0,k ∀ v ∈ Vk,

which implies, by operator interpolation theory for Hilbert scales [42, 33, 11],

‖Ekv‖H1+s(Ω) � |||v|||s,k ∀ v ∈ Vk.(3.29)

On the other hand, from (3.5), (3.6), (3.23), (3.24) and interpolation, we have

|||Jkv|||s,k � ‖v‖H1+s(Ω) ∀ v ∈ H1+s
0 (Ω),(3.30)

which together with (3.22) implies

|||v|||s,k = |||JkEkv|||1+s,k � ‖Ekv‖H1+s(Ω) ∀ v ∈ Vk.(3.31)

Remark 3.7. The norm equivalence (3.28) is also valid for s = 1/2 provided the
norm on the right-hand side is replaced by the norm ‖ · ‖H1+s

00 (Ω) (cf. [34, 42]).

From (3.11) and (3.28) we immediately obtain the following corollary which pro-
vides the link between mesh-dependent norms and Sobolev norms.

Corollary 3.8. It holds that

|||v|||s,k ≈ ‖v‖H1+s(Ω) ∀ v ∈ Vk,(3.32)

provided 0 ≤ s < 1/2.
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Let J∗
k be the adjoint of Jk (restricted to H2

0 (Ω)) with respect to the bilinear
form a(·, ·) for the continuous problem and the bilinear form Ak(·, ·) for the discrete
problem, i.e., J∗

k : Vk −→ H2
0 (Ω) satisfies

a(J∗
kv, w) = Ak(v, Jkw) ∀ v ∈ Vk, w ∈ H2

0 (Ω).(3.33)

The following lemma on J∗
k will be useful in the convergence analysis of V -cycle and

F -cycle algorithms.
Lemma 3.9. Let ζk ∈ Vk and

φ(v) = Ak(ζk, Jkv) ∀ v ∈ H2
0 (Ω).(3.34)

Then φ ∈ H−2+α(Ω),

‖φ‖H−2+α(Ω) � |||ζk|||1+α,k,(3.35)

and

Ak(ζk, v) = φ(Ekv) ∀ v ∈ Vk.(3.36)

Furthermore, ζ = J∗
kζk ∈ H2+α(Ω) ∩H2

0 (Ω),

a(ζ, w) = φ(w) ∀w ∈ H2
0 (Ω),(3.37)

‖ζ‖H2+α(Ω) � |||ζk|||1+α,k,(3.38)

and the following estimates hold :

‖ζ − ζk‖k � hα
k |||ζk|||1+α,k,(3.39)

‖ζ − ζk‖H2−α(Ω) � h2α
k |||ζ|||1+α,k.(3.40)

Proof. From (3.8), (3.30) and (3.34) we have

φ(v) ≤ |||ζk|||1+α,k|||Jkv|||1−α,k � |||ζk|||1+α,k‖v‖H2−α(Ω),(3.41)

which means that φ ∈ H−2+α(Ω) and (3.35) is valid.
Equation (3.37) follows immediately from (3.33) and (3.34). Then ζ = J∗

kζk ∈
H2+α(Ω) by elliptic regularity and (3.38) follows from (1.3) and (3.35).

Finally (3.22) and (3.34) imply (3.36). Therefore ζk is the solution of a modified
C0 interior penalty method for (3.37) studied in [24] and the error estimates (3.39)
and (3.40) follow from (3.35) and Theorems 4 and 6 of [24].

4. Results for W -cycle and variable V -cycle algorithms. In this section
we establish the results for W -cycle and variable V -cycle algorithms. There are two
ingredients in the analysis: the smoothing property and the approximation property.

The effect of one smoothing step in (2.17) and (2.19) is measured by the operator

Rk = Idk − γkAk,(4.1)

where Idk is the identity operator on Vk. The proof of the following result which
describes the effect of the smoothing steps can be found, for example, in [32, 23].

Lemma 4.1. It holds that

|||Rm
k v|||s,k � ht−s

k m(t−s)/2|||v|||t,k ∀ v ∈ Vk and 0 ≤ t ≤ s ≤ 2.
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Remark 4.2. Without the preconditioner B−1
k , the smoothing property becomes

(for appropriately defined mesh-dependent norms)

|||Rm
k v|||s,k � ht−s

k m(t−s)/4|||v|||t,k.

In other words, the effect of m smoothing steps without preconditioning is (roughly)
equivalent to the smoothing effect of

√
m many smoothing steps with precondition-

ing. Therefore the preconditioner greatly enhances the performance of the multigrid
algorithms (cf. Tables 7.1 and 7.4 below).

To measure the effect of coarse grid correction, we first recall the following well-
known relation êk−1 = P k−1

k (z − zm) between the exact solution of the coarse grid

residual equation Ak−1êk−1 = �k−1 and the error z − zm, where the operator P k−1
k :

Vk −→ Vk−1 is defined by

Ak−1(P
k−1
k v, w) = Ak(v, I

k
k−1w) ∀ v ∈ Vk, w ∈ Vk−1.(4.2)

The approximation property in the following result describes the effect of coarse grid
correction.

Lemma 4.3. It holds that

|||(Idk − Ikk−1P
k−1
k )v|||1−α,k � h2α

k |||v|||1+α,k ∀ v ∈ Vk,(4.3)

where α is the index of elliptic regularity in (1.3).

Proof. Let v ∈ Vk be arbitrary. We will establish (4.3) by a duality argument.
Using the norm equivalence in Corollary 3.8 (with s = 1 − α) and duality, we find

|||(Idk − Ikk−1P
k−1
k )v|||1−α,k ≈ ‖(Idk − Ikk−1P

k−1
k )v‖H2−α(Ω)(4.4)

= sup
φ∈H−2+α(Ω)\{0}

φ((Idk − Ikk−1P
k−1
k )v)

‖φ‖H−2+α(Ω)
.

Let φ ∈ H−2+α(Ω) be arbitrary and define ζ ∈ H2
0 (Ω), ζk ∈ Vk and ζk−1 ∈ Vk−1

by

a(ζ, v) = φ(v) ∀ v ∈ H2
0 (Ω),(4.5)

Ak(ζk, v) = φ(v) ∀ v ∈ Vk,(4.6)

Ak−1(ζk−1, v) = φ(v) ∀ v ∈ Vk−1.(4.7)

In other words, ζk and ζk−1 are the approximations of ζ obtained by the C0 interior
penalty method, and the following error estimates (cf. Theorem 5 of [24]) are valid:

‖ζ − ζk‖H2−α(Ω) � h2α
k ‖φ‖H−2+α(Ω),(4.8)

‖ζ − ζk−1‖H2−α(Ω) � h2α
k−1‖φ‖H−2+α(Ω).(4.9)

From (4.6) and (4.7) we have Ak−1(ζk−1, v) = Ak(ζk, I
k
k−1v) for all v ∈ Vk−1,

which implies (cf. (4.2))

ζk−1 = P k−1
k ζk.(4.10)
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We can now estimate the numerator in (4.4) by (2.1), (3.8), Corollary 3.8, (4.2),
(4.6) and (4.8)–(4.10) as follows:

φ((Idk − Ikk−1P
k−1
k )v) = Ak(ζk, v) −Ak(ζk, I

k
k−1P

k−1
k v)

= Ak(ζk, v) −Ak−1(P
k−1
k ζk, P

k−1
k v)

= Ak(ζk, v) −Ak−1(ζk−1, P
k−1
k v)

= Ak(ζk − Ikk−1ζk−1, v)(4.11)

≤ |||ζk − ζk−1|||1−α,k|||v|||1+α,k

� ‖ζk − ζk−1‖H2−α(Ω)|||v|||1+α,k

≤
(
‖ζk − ζ‖H2−α(Ω) + ‖ζ − ζk−1‖H2−α(Ω)

)
|||v|||1+α,k

� h2α
k ‖φ‖H−2+α(Ω)|||v|||1+α,k.

The estimate (4.3) follows from (4.4) and (4.11).

We can now apply the theory developed in [19, Theorem 4.3, Theorem 4.4,
Lemma 4.7 and Theorem 4.8, where the results in [15] for the variable V -cycle is
used] to derive the following results for W -cycle and variable V -cycle algorithms.

Theorem 4.4. The output MGW (k, ψ, z0,m) of the W -cycle algorithm (Algo-
rithm 2.4 ) applied to (2.10) satisfies the following estimate :

‖z −MGW (k, ψ, z0,m)‖Ak
≤ C

mα
‖z − z0‖Ak

,

where the positive constant C is mesh-independent, provided that the number of smooth-
ing steps m is greater than a positive integer m∗ that is also mesh-independent.

Theorem 4.5. The variable V -cycle algorithm (Algorithm 2.6 ) is an optimal pre-
conditioner provided the following relation is satisfied by mk (the number of smoothing
steps on level k) :

β0mk ≤ mk−1 ≤ β1mk,(4.12)

where 1 < β0 ≤ β1.

Remark 4.6. Theorems 4.4 and 4.5 have been obtained for preconditioners that
satisfy (2.13)–(2.15). Therefore they are valid for B−1

k obtained by a symmetric V -
cycle algorithm, a symmetric W -cycle algorithm or a variable V -cycle algorithm (cf.
Remark 2.2 and Appendix A).

Finally we note that (3.7) and (4.3) imply

|||P k−1
k v|||1−α,k ≤ |||v|||1−α,k + |||v − Ikk−1P

k−1
k v|||1−α,k(4.13)

� |||v|||1−α,k + h2α
k |||v|||1+α,k � |||v|||1−α,k ∀ v ∈ Vk.

The estimate (4.13) will be used in the convergence analysis of V -cycle and F -cycle
algorithms.

5. Additive multigrid theory. In this section we briefly review the additive
multigrid theory [20, 22] which will be used in the convergence analysis of V -cycle
and F -cycle algorithms in section 6.

Let Ek,m : Vk −→ Vk be the error propagation operator for the kth level V -cycle
algorithm, i.e., z −MGV (k, ψ, z0,m) = Ek,m(z − z0), where MGV (k, ψ, z0,m) is the
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approximate solution of (2.10) obtained by the V -cycle algorithm with initial guess
z0. The operators Ek satisfy the well-known recurrence relation [32, 35]

Ek,m = Rm
k (Idk − Ikk−1P

k−1
k + Ikk−1Ek−1,mP k−1

k )Rm
k(5.1)

and the initial condition Ek = 0. Iterating (5.1) leads to the following additive
expression [20, 22] for Ek:

Ek,m =

k∑
j=2

Tk,j,mRm
j (Idj − Ijj−1P

j−1
j )Rm

j Tj,k,m,(5.2)

where (for j < k) Tk,j,m is the multilevel operator Rm
k Ikk−1 · · ·Rm

j+1I
j+1
j from Vj into

Vk, Tj,k,m = P j
j+1R

m
j · · ·P k−1

k Rm
k is the adjoint operator of Tk,j,m with respect to

Ak(·, ·), and Tk,k,m = Idk.
A convergence theory for the V -cycle algorithm based on the additive expression

(5.2) was developed in [20, 21] for second order problems. It yields the asymptotic
behavior of the contraction numbers, which when combined with the results from
the multiplicative theory [14, 45, 12, 13] provides a complete generalization of the
classical result of Braess and Hackbusch [10] to the case of less than full elliptic
regularity. This additive theory has been extended to V -cycle and F -cycle algorithms
for classical nonconforming finite elements [22, 46, 47] and to interior penalty methods
for second order problems [25].

Note the operator Rm
j (Idj − Ijj−1P

j−1
j )Rm

j that appears in (5.2) is already con-
trolled by the smoothing property (Lemma 4.1) and the approximation property
(Lemma 4.3). Therefore the key in the additive approach is to control the multi-
level operators Tk,j,m and Tj,k,m. This in turn requires a careful comparison of the
mesh-dependent norms on consecutive levels. In this regard the following assumptions
of the additive theory [20, 22] need to be verified:

|||Ikk−1v|||21,k ≤ (1 + θ2)|||v|||21,k−1 + C1θ
−2h2μ

k |||v|||21+μ,k−1 ∀ v ∈ Vk−1,(5.3)

|||Ikk−1v|||21−τ,k ≤ (1 + θ2)|||v|||21−τ,k−1 + C2θ
−2h2τ

k |||v|||21,k−1 ∀ v ∈ Vk−1,(5.4)

|||P k−1
k v|||21−τ,k ≤ (1 + θ2)|||v|||21−τ,k + C3θ

−2h2τ
k |||v|||21,k ∀ v ∈ Vk,(5.5)

where θ ∈ (0, 1) is arbitrary, μ and τ are two parameters strictly between 0 and 1,
and the positive constants C1, C2 and C3 are independent of the meshes and θ.

Furthermore, we also need the following approximation property which is peculiar
to nonconforming methods where the energy norm is not preserved by the coarse-to-
fine intergrid transfer operator Ikk−1:

|||(Idk−1 − P k−1
k Ikk−1)v|||1−μ,k−1 � hμ

k |||v|||1,k−1 ∀ v ∈ Vk−1.(5.6)

Remark 5.1. The estimates (5.3) and (5.6) together imply that (cf. Lemma 4.2
of [22]), for j ≤ k,

|||Tk,j,mv|||1,k � |||v|||1,j ∀ v ∈ Vj ,(5.7)

provided that m is sufficiently large. We can then use (5.4), (5.5) and (5.7) to derive
(cf. Lemmas 4.4–4.6 of [22]), for j ≤ k, the following crucial estimate in the additive
theory:

|||Tj,k,mTk,j,mv|||1−τ,j � |||v|||1−τ,j ∀ v ∈ Vj ,(5.8)
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provided m is sufficiently large. The convergence of V -cycle algorithm for sufficiently
large m follows from (5.8) and an argument based on a strengthened Cauchy-Schwarz
inequality. The convergence of the F -cycle algorithm can then be established by a
perturbation argument.

Therefore the heart of our convergence analysis of V -cycle and F -cycle algorithms
is the derivation of the estimates (5.3)–(5.6), where there is a lot of freedom in choosing
the parameters μ and τ .

We will prove the estimate (5.6) for μ = α (the index of elliptic regularity in
(1.3)) in this section and take up the estimates (5.3)–(5.5) in section 6. The following
lemma is a stronger version of (5.6).

Lemma 5.2. It holds that

|||(Idk−1 − P k−1
k Ikk−1)v|||1−α,k−1 � h2α

k |||v|||1+α,k−1 ∀ v ∈ Vk−1.(5.9)

Proof. Let v ∈ Vk−1 be arbitrary and define φ ∈ H2
0 (Ω) by

φ(w) = Ak−1(v, Jk−1w) ∀w ∈ H2
0 (Ω),(5.10)

where Jk−1 : L2(Ω) −→ Vk−1 is the map in Lemma 3.5. From Lemma 3.9 we have
φ ∈ H−2+α(Ω) and

‖φ‖H−2+α(Ω) � |||v|||1+α,k−1.(5.11)

Let ζ = J∗
k−1v. Again, from Lemma 3.9 we have ζ ∈ H2+α(Ω) ∩H2

0 (Ω), and

‖ζ − v‖H2−α(Ω) � h2α
k−1|||v|||1+α,k−1.(5.12)

Finally we define ζk ∈ Vk to be the solution of the following variational problem:

Ak(ζk, w) = φ(w) ∀w ∈ Vk,(5.13)

i.e., ζk is the solution of the C0 interior penalty method for (4.5). Therefore we have
the following error estimate (cf. Theorem 5 of [24]):

‖ζ − ζk‖H2−α(Ω) � h2α
k ‖φ‖H−2+α(Ω).(5.14)

Moreover, from Corollary 3.8, (5.11) and (5.13) we have

Ak(ζk, w) ≤ ‖φ‖H−2+α(Ω)‖w‖H2−α(Ω) � |||v|||1+α,k−1|||w|||1−α,k ∀w ∈ Vk,

which together with (3.8) implies that

|||ζk|||1+α,k � |||v|||1+α,k−1.(5.15)

We can now use (2.1), Corollary 3.8, (4.3), (4.13), (5.11), (5.12), (5.14) and (5.15)
to complete the proof of the lemma as follows:

|||(Idk−1 − P k−1
k Ikk−1)v|||1−α,k−1 ≤ |||v − P k−1

k ζk|||1−α,k−1 + |||P k−1
k (ζk − v)|||1−α,k−1

� ‖v − P k−1
k ζk‖H2−α(Ω) + |||ζk − v|||1−α,k

� ‖v − ζk‖H2−α(Ω) + ‖ζk − P k−1
k ζk‖H2−α(Ω)

� ‖v − ζ‖H2−α(Ω) + ‖ζ − ζk‖H2−α(Ω) + |||(Idk − Ikk−1P
k−1
k )ζk|||1−α,k

� h2α
k |||v|||1+α,k−1 + h2α

k |||ζk|||1+α,k � h2α
k |||v|||1+α,k−1.
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The following corollary is an immediate consequence of (3.7) and (5.9).
Corollary 5.3. The estimate (5.6) holds for μ = α.
Finally we prove a useful relation between the mesh-dependent norm ||| · |||0,k and

Sobolev norms that will be used in the derivation of (5.3)–(5.5). We will use C in
the proof of the following lemma (and others in section 6) to denote a generic mesh-
independent positive constant that can take different values at different occurrences.

Lemma 5.4. It holds that

|||v|||20,k ≤ (1 + θ2)|v|2H1(Ω) + C4θ
−2h2β

k ‖v‖2
H1+β(Ω) ∀ v ∈ Vk, 0 < θ < 1,(5.16)

where β is the number in (2.16) and the positive constant C4 is mesh-independent.
Proof. Let θ ∈ (0, 1) and v ∈ Vk be arbitrary. From (1.7), (2.12), (2.16), (3.5)

and Corollary 3.8, we have

|||v|||20,k = 〈Bkv, v〉
= 〈Lkv, v〉 + 〈Bk(Idk −B−1

k Lk)v, v〉
≤ |v|2H1(Ω) + |||(Idk −B−1

k Lk)v|||0,k|||v|||0,k
≤ |v|2H1(Ω) + θ2|||v|||20,k + Cθ−2h2β

k ‖v‖2
H1+β(Ω)

≤ (1 + Cθ2)|v|2H1(Ω) + Cθ−2h2β
k ‖v‖2

H1+β(Ω),

which is equivalent to (5.16) because θ is arbitrary.

6. Results for V -cycle and F -cycle algorithms. In this section we will
complete the convergence analysis of V -cycle and F -cycle algorithms by deriving
the estimates (5.3)–(5.5). We shall take the parameter μ in (5.3) to be α and the
parameter τ in (5.4)–(5.5) to be the number β that appears in (2.16).

First we prove a stronger version of (5.3).
Lemma 6.1. There exists a positive constant C1 independent of the meshes such

that

|||Ikk−1v|||21,k ≤ |||v|||2k−1 + C1h
2α
k |||v|||21+α,k−1 ∀ v ∈ Vk, k ≥ 1.(6.1)

Proof. Let v ∈ Vk−1 and θ ∈ (0, 1) be arbitrary, and ζ = J∗
k−1v. From (1.5) and

(3.6) we have

|||Ikk−1v|||21,k = Ak(v, v) = Ak−1(v, v) + η
∑

e∈Ek−1

|e|−1‖[[∂v/∂n]]‖2
L2(e)

(6.2)

= |||v|||21,k−1 + η
∑

e∈Ek−1

|e|−1‖[[(∂v/∂n) − (∂ζ/∂n)]]‖2
L2(e)

.

Moreover, we have, from (2.5),

η
∑

e∈Ek−1

|e|−1‖[[(∂v/∂n) − (∂ζ/∂n)]]‖2
L2(e)

� ‖ζ − v‖2
k−1.(6.3)

The estimate (6.1) follows from (6.2), (6.3) and Lemma 3.9.
Since 0 < β < 1/2 < α, the estimates (3.7) and (6.1) imply the following corollary.
Corollary 6.2. It holds that

|||Ikk−1v|||21,k ≤ |||v|||21,k−1 + C ′
1θ

−2h2β
k |||v|||21+β,k−1 ∀ v ∈ Vk−1,(6.4)

where the positive constant C ′
1 is mesh-independent.
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Lemma 6.3. The estimate (5.4) holds for τ = β.
Proof. Let θ ∈ (0, 1) be arbitrary. From (2.15), (3.5), Corollary 3.8 and (5.16) we

have

|||Ikk−1v|||20,k ≤ (1 + θ2)|||v|||20,k−1 + C ′
4θ

−2h2β
k |||v|||2β,k−1 ∀ v ∈ Vk−1,(6.5)

where the positive constant C ′
4 is mesh-independent.

Let the inner product ((·, ·))k−1,θ on Vk−1 be defined by

((v1, v2))k−1,θ = (1 + θ2)(v1, v2)k−1 + C2θ
−2h2β

k (Aβ
k−1v1, v2)k−1(6.6)

for all v1, v2 ∈ Vk−1, where C2 = max(C ′
1, C

′
4) is the maximum of the mesh-independent

constants in (6.4) and (6.5). Note that Ak−1 is symmetric positive definite with re-
spect to the inner product ((·, ·))k−1,θ.

In view of (3.4) and (6.6), the estimates (6.4) and (6.5) imply

|||Ikk−1v|||20,k ≤ ((A0
kv, v))k−1,θ ∀ v ∈ Vk−1,(6.7)

|||Ikk−1v|||21,k ≤ ((A1
kv, v))k−1,θ ∀ v ∈ Vk−1.(6.8)

It follows from (3.4), (6.6)–(6.8) and interpolation between Hilbert scales that

|||Ikk−1v|||21−β,k ≤ ((A1−β
k v, v))2k−1,θ = (1 + θ2)|||v|||21−β,k

+ C2θ
−2h2β

k |||v|||21,k−1 ∀ v ∈ Vk−1.

We now turn to the estimate (5.5). First we have to establish certain two-level
estimates for the nodal interpolation operator with respect to the mesh-dependent
norms.

Lemma 6.4. The following estimate holds :

|||Πk−1v|||21,k−1 ≤ (1 + θ2)|||v|||21,k + C�h
2α
k |||v|||21+α,k ∀ v ∈ Vk, θ ∈ (0, 1),(6.9)

where the constant C� is mesh-independent.
Proof. Let v ∈ Vk and θ ∈ (0, 1) be arbitrary. It follows from (1.8), (3.6), (3.18),

and (4.3) that

|||Πk−1v|||21,k−1 ≤ (1 + θ2)|||P k−1
k v|||21,k−1 + Cθ−2|||Πk−1(v − P k−1

k v)|||21,k−1

≤ (1 + θ2)|||P k−1
k v|||21,k−1 + Cθ−2|||v − P k−1

k v|||21,k
≤ (1 + θ2)2|||v|||21,k−1 + Cθ−2|||v − P k−1

k v|||21,k
≤ (1 + θ2)2|||v|||21,k−1 + Cθ−2h2α

k |||v|||21+α,k,

which implies (6.9) because θ ∈ (0, 1) is arbitrary.
Again, since 0 < β < 1/2 < α, the estimates (3.7) and (6.9) imply the following

corollary.
Corollary 6.5. It holds that

|||Πk−1v|||21,k−1 ≤ (1 + θ2)|||v|||21,k + C ′
�h

2β
k |||v|||21+β,k ∀ v ∈ Vk, θ ∈ (0, 1),(6.10)

where the positive constant C ′
� is mesh-independent.

Lemma 6.6. The following estimate holds :

|||Πk−1v|||20,k−1 ≤ (1 + θ2)|||v|||20,k + C	h
2β
k |||v|||2β,k ∀ v ∈ Vk, θ ∈ (0, 1),(6.11)

where the positive constant C	 is mesh-independent.



MULTIGRID FOR C0 INTERIOR PENALTY METHODS 215

Proof. Let θ ∈ (0, 1) and v ∈ Vk be arbitrary. First we observe that, by (2.1),
(3.6), (3.7), (3.16), (3.21) and Corollary 3.8,

|||Πk−1v|||β,k−1 � ‖v‖H1+β(Ω) + ‖v − Πk−1v‖H1+β(Ω)

� |||v|||β,k + h−β
k |v − Πk−1v|H1(Ω)(6.12)

� |||v|||β,k + h1−β
k |||v|||1,k � |||v|||β,k.

The estimate (6.11) follows from (1.8), (2.1), (2.12), (2.15), (3.5), (3.7), (3.16), (5.16)
and (6.12):

|||Πk−1v|||20,k−1 ≤ (1 + θ2)|Πk−1v|2H1(Ω) + Cθ−2h2β
k−1|||Πk−1v|||2β,k−1

≤ (1 + θ2)
(
|v|H1(Ω) + |Πk−1v − v|H1(Ω)

)2
+ Cθ−2h2β

k |||v|||2β,k
≤ (1 + θ2)2|v|2H1(Ω) + Cθ−2h2

k‖v‖2
Ak

+ Cθ−2h2β
k |||v|||2β,k

≤ (1 + θ2)2|||v|||20,k + Cθ−2h2
k|||v|||21,k + Cθ−2h2β

k |||v|||2β,k
≤ (1 + θ2)2|||v|||20,k + Cθ−2h2β

k |||v|||2β,k,

which is equivalent to (6.11) because θ ∈ (0, 1) is arbitrary.
Corollary 6.7. The following estimate holds :

|||Πk−1v|||21−β,k−1 ≤ (1 + θ2)|||v|||21−β,k + C
h
2β
k |||v|||21,k ∀ v ∈ Vk, θ ∈ (0, 1),(6.13)

where the constant C
 is mesh-independent.
Proof. We use the technique in the proof of Lemma 6.3. For any θ ∈ (0, 1), we

define the inner product ((·, ·))k,θ on Vk by

((v1, v2))
2
k,θ = (1 + θ2)(v1, v2)

2
k + C
θ

−2h2β
k (Aβ

kv1, v2)k(6.14)

for all v1, v2 ∈ Vk, where C
 = max(C ′
�, C	). Then Ak is symmetric positive definite

with respect to ((·, ·))k,θ.
In view of (3.4), (6.10), (6.11) and (6.14), we have

|||Πk−1v|||20,k−1 ≤ ((A0
kv, v))k,θ ∀ v ∈ Vk,(6.15)

|||Πk−1v|||21,k−1 ≤ ((A1
kv, v))k,θ ∀ v ∈ Vk.(6.16)

The estimate (6.13) follows from (6.15), (6.16) and interpolation between Hilbert
scales.

We are now ready to verify (5.5).
Lemma 6.8. The estimate (5.5) holds for τ = β.
Proof. Let v ∈ Vk and θ ∈ (0, 1) be arbitrary. From (1.8), (3.6), (3.7), (3.17),

Corollary 3.8, (4.3) and (6.13), we have

|||P k−1
k v|||21−β,k−1 ≤

(
|||Πk−1v|||1−β,k−1 + |||P k−1

k v − Πk−1v|||1−β,k−1

)2
≤ (1 + θ2)|||Πk−1v|||21−β,k−1 + Cθ−2h

2(β−α)
k |||P k−1

k v − Πk−1v|||21−α,k−1

≤ (1 + θ2)|||Πk−1v|||21−β,k−1 + Cθ−2h
2(β−α)
k ‖P k−1

k v − Πk−1v‖2
H2−α(Ω)

≤ (1 + θ2)2|||v|||21−β,k + Cθ−2|||v − Πk−1v|||21−β,k−1

+ Cθ−2h
2(β−α)
k

(
‖P k−1

k v − v‖H2−α(Ω) + ‖v − Πk−1v‖H2−α(Ω)

)2
≤ (1 + θ2)2|||v|||21−β,k + Cθ−2h2β

k |||v|||21,k,

which is equivalent to (5.5) because θ ∈ (0, 1) is arbitrary.
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We have verified the assumptions (5.3)–(5.6) for the additive theory. Therefore
we can apply the results in [22] to obtain the following convergence theorems for the
V -cycle and F -cycle algorithms.

Theorem 6.9. The output MGV (k, ψ, z0,m) of the V -cycle algorithm (Algo-
rithm 2.3) applied to (2.10) satisfies the following estimate :

‖z −MGV (k, ψ, z0,m)‖Ak
≤ C

mα
‖z − z0‖Ak

,

where the positive constant C is mesh-independent, provided that the number of smooth-
ing steps m is greater than a positive integer m∗ that is also mesh-independent.

Theorem 6.10. The output MGF (k, ψ, z0,m) of the F -cycle algorithm (Algo-
rithm 2.5 ) applied to (2.10) satisfies the following estimate :

‖z −MGF (k, ψ, z0,m)‖Ak
≤ C

mα
‖z − z0‖Ak

,

where the positive constant C is mesh-independent, provided that the number of smooth-
ing steps m is greater than a positive integer m∗ that is also mesh-independent.

Remark 6.11. Theorems 6.9 and 6.10 have been obtained for preconditioners that
satisfy (2.13)–(2.16). Therefore they are valid for a Poisson solve B−1

k obtained by a
symmetric W -cycle algorithm with a sufficiently large number of smoothing steps or
a variable V -cycle algorithm (cf. Remark 2.2 and Appendix A). However, in practice
these algorithms behave equally well when the preconditioner is a symmetric V -cycle
algorithm with a few smoothing steps (cf. section 7).

7. Numerical experiments. In this section we report the results of some nu-
merical experiments for the biharmonic problem. The finite element we use is the Q2

rectangular element and the penalty parameter η is taken to be 5.

The first set of experiments involve the biharmonic problem on the unit square,
where we can take the index of elliptic regularity α to be 1. The initial triangulation
T0 consists of one element and we compute the contraction numbers of the V -cycle,
F -cycle and W -cycle algorithms on the kth level (1 ≤ k ≤ 7) with m presmoothing
and m postsmoothing steps. We use the symmetric V -cycle algorithm for the Poisson
problem with three presmoothing and three postsmoothing Richardson relaxation
steps as the preconditioner in (2.17) and (2.19). The results are recorded in Tables 7.1–
7.3. Convergence for the V -cycle, F -cycle and W -cycle algorithms is observed for
m = 5, m = 2 and m = 1, respectively. We also observe that the performance of the
F -cycle algorithm and the W -cycle algorithm are almost identical for m ≥ 6.

Numerical experiments show that for moderate grid levels (k ≤ 7) there is prac-
tically no difference in the performance of the multigrid algorithms whether we use
a symmetric V -cycle or a symmetric W -cycle Poisson solve as the preconditioner in
(2.17) and (2.19).

We also plot the contraction numbers versus the number m of smoothing steps
for the 7th level V -cycle and W -cycle algorithms, where m ranges from 20 to 40.
Figure 7.1 contains the resulting log-log plot. The asymptotic rate of decrease is
observed to be m−1, which agrees with Theorems 4.4 and 6.9.

For comparison we report in Table 7.4 the contraction numbers of the V -cycle
algorithm using the Richardson relaxation scheme without a preconditioner as the
smoother. Convergence is observed only for m ≥ 75.
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Table 7.1

Contraction numbers for the V -cycle algorithm on the unit square.

0.290.310.340.370.42

0.230.250.280.310.340.35

0.190.210.230.260.290.32

0.090.110.130.150.18

0.27

7

6

5

4

3

2

1

m
k

0.44

10

0.290.310.340.360.39

0.270.300.330.350.390.43

0.22

0.011 0.006 0.0032 0.00170.020.04

98765

Table 7.2

Contraction numbers for the F -cycle algorithm on the unit square.

0.240.260.280.310.340.370.42

0.180.190.220.240.270.300.34

0.00170.00320.0060

0.50 0.35 0.27 0.22 0.18 0.15 0.13 0.11 0.09

0.52 0.40

0.22

0.53

0.53

0.230.250.270.29

0.32

0.320.350.380.460.54

0.230.25

0.53 0.43 0.37 0.34 0.31 0.29 0.27 0.25 0.23

0.44 0.38 0.34 0.29 0.27

0.010.020.040.080.150.28

1098765432k
m

1

2

3

4

5

6

7

Table 7.3

Contraction numbers for the W -cycle algorithm on the unit square.

0.26 0.24 0.22 0.19 0.17

0.51 0.41 0.37 0.34 0.31 0.28 0.26 0.24 0.22

0.30

0.002

0.72 0.49 0.24 0.27 0.22 0.18 0.15 0.13 0.11 0.09

0.71 0.51 0.40 0.34

0.53

0.29 0.27 0.25 0.23

0.80

0.76

0.38

0.38

0.42

0.42

0.82

0.83

0.53

0.53 0.32

0.42 0.38 0.34 0.31 0.29 0.26 0.24 0.23

0.34 0.32 0.29 0.26 0.25 0.22

0.34

0.003

4 5 6 7 8 9 10

0.53 0.28 0.15 0.08 0.04 0.02 0.01 0.006

3k
m

1

2

3

4

5

6

7

1 2
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Fig. 7.1. Asymptotic rate of decrease for the contraction numbers of the 7th level V -cycle and
W -cycle algorithms.

Table 7.4

Contraction numbers for the V -cycle algorithm on the unit square without a preconditioner in
the smoothing steps.

0.68

0.63

0.54

0.42

0.46

0.06

0.73

0.70

0.64

0.57

0.64

0.46

0.06

0.760.80

0.06

0.47

0.47

0.60

0.69

0.74

0.78

0.06

0.46

0.42

0.58

0.66

0.72

0.71 0.56

0.56

0.52

0.49

0.63

0.45

0.05

0.61

0.60

0.56

0.51

0.36

0.45

0.050.06

0.46

0.40

0.52

0.61

0.65

0.68

0.05

0.46

0.41

0.50

0.57

0.62

0.65

0.76
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m
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6

In the second set of experiments we study the biharmonic problem on the L-
shaped domain with vertices (−1,−1), (1,−1), (1, 0), (0, 0), (0, 1) and (−1, 1). In
this case we can take the index of elliptic regularity α to be any number < α∗ =
0.5444837368 . . . . The initial triangulation T0 consists of three elements. Again we
use the symmetric V -cycle algorithm for the Poisson problem with three presmoothing
and three postsmoothing steps as the preconditioner. The behavior of the contraction
numbers of the V -cycle, F -cycle and W -cycle algorithms are similar to those observed
for the unit square.

Here we only report the results for the V -cycle algorithm in Table 7.5. From the
results in Tables 7.1 and 7.5 we see that the performance on the L-shaped domain is
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Table 7.5

Contraction numbers for the V -cycle algorithm on the L-shaped domain.

0.320.350.380.45

0.260.280.310.340.370.42

0.210.240.260.290.310.37

0.130.140.160.190.210.27

0.30

7

6

5

4

3

2

1

k
m

0.290.310.340.370.400.46

0.280.310.340.360.400.46

0.27

0.0310.0430.0590.0820.120.16

1098765

slightly worse than the performance on the unit square. But it is much better than
the rate m−α predicted by Theorem 6.9. This is likely the effect of superconvergence
due to the uniform grids used in our computations.

Appendix A. Some properties of multigrid Poisson solves. In this ap-
pendix we consider multigrid Poisson solves as the preconditioner in (2.17) and (2.19).
We will show that properties (i)–(iv) in section 2 are satisfied by such preconditioners.

Consider the discrete Poisson problem: Find z ∈ Vk such that

Lkz = ψ ∀ v ∈ Vk,(A.1)

where Lk is defined in (2.12) and ψ ∈ V ′
k.

Let Sk : V ′
k −→ Vk be the solution operator for (A.1) generated by either a

symmetric V -cycle algorithm, a symmetric W -cycle algorithm or a symmetric variable
V -cycle algorithm (that satisfies (4.12)), with 0 as the initial guess and Richardson
relaxation as the smoother. In terms of Sk the output MG(k, ψ, z0) of the multigrid
method can be written as

MG(k, ψ, z0) = z0 + Sk(ψ − Lkz0),(A.2)

and Idk − SkLk is the error propagation operator.
The operator Sk is symmetric, or equivalently the operator Idk − SkLk is sym-

metric with respect to the bilinear form 〈Lk·, ·〉 (cf. Lemma 7.1 of [17], where Sk is
denoted by Bk). Furthermore (cf. Theorems 5.1, 7.1 and 7.2 of [17]) there exists a
number δ ∈ (0, 1) independent of k such that

0 ≤ 〈Lk(Idk − SkLk)v, v〉 ≤ δ〈Lkv, v〉 ∀ v ∈ Vk.(A.3)

We see from (A.3) that Sk is positive definite. Therefore we can define Bk = S−1
k

and the operator Bk : Vk −→ V ′
k is symmetric positive definite. Moreover (A.3)

implies that the eigenvalues of the operator Idk − B−1
k Lk : Vk −→ Vk lie between 0

and δ. Since Idk −B−1
k Lk is also symmetric with respect to 〈Bk·, ·〉, we deduce that

0 ≤ 〈Bk(Idk −B−1
k Lk)v, v〉 ≤ δ〈Bkv, v〉 ∀ v ∈ Vk.(A.4)

The estimate (2.15) follows from (A.4) immediately.



220 SUSANNE C. BRENNER AND LI-YENG SUNG

Hence the operator Bk satisfies properties (i) and (ii) in section 2. Property (iv),
which states that multigrid algorithms have optimal complexity, is also standard [32].
In particular, Theorem 4.4 and Theorem 4.5 are valid for all three types of multigrid
preconditioners.

On the other hand, the proofs of Theorem 6.9 and Theorem 6.10 require property
(iii). Below we will demonstrate that (2.16) is satisfied by the Bk generated by W -
cycle or variable V -cycle Poisson solves.

Let B−1
k : V ′

k −→ Vk be the preconditioner obtained by a symmetric W -cycle
algorithm with m presmoothing and m postsmoothing steps. We have a well-known
recurrence relation [32]:

Idk −B−1
k Lk =Rm

k (Idk − Ikk−1P
k−1
k )Rm

k(A.5)

+ Rm
k Ikk−1(Idk−1 −B−1

k−1Lk−1)
2P k−1

k Rm
k ,

where Ikk−1 : Vk−1 −→ Vk is the natural injection, P k−1
k : Vk −→ Vk−1 is the adjoint

of Ik−1
k with respect to the bilinear form 〈Lk·, ·〉 and 〈Lk−1·, ·〉, and Rk is the error

reduction operator of one Richardson relaxation step. Of course at the coarsest level
we have B−1

0 = S0 = L−1
0 and hence

Id0 −B−1
0 L0 = 0.(A.6)

Let β be any number in (0, 1/2). The following estimates are valid [20] for k ≥ 1:

|Rm
k (Idk − Ikk−1P

k−1
k )Rm

k v|H1(Ω) � hβ
km

−β/2‖v‖H1+β(Ω) ∀v ∈ Vk,(A.7)

‖P k−1
k v‖H1+β(Ω) � ‖v‖H1+β(Ω) ∀ v ∈ Vk,(A.8)

|(Idk −B−1
k Lk)v|H1(Ω) � m−α∗ |v|H1(Ω) ∀ v ∈ Vk,(A.9)

where α∗ ∈ (1/2, 1] is the index of elliptic regularity for the Poisson problem. Fur-
thermore, we have

|Rm
k v|H1(Ω) ≤ |v|H1(Ω) ∀ v ∈ Vk, and m ≥ 1,(A.10)

‖Rm
k v‖H1+β(Ω) ≤ C‖v‖H1+β(Ω) ∀ v ∈ Vk, and m ≥ 1,(A.11)

where the positive constant C is independent of the meshes.
It follows from (2.1), (A.5), and (A.7)–(A.11) that

|v −B−1
k Lkv|H1(Ω) ≤ C∗h

β
k

[
m−β/2 + σm−α∗

]
‖v‖H1+β(Ω) ∀ v ∈ Vk,(A.12)

where C∗ is a mesh-independent positive constant, provided that

|v −B−1
k−1Lk−1v|H1(Ω) ≤ σhβ

k−1‖v‖H1+β(Ω) ∀ v ∈ Vk−1.

Hence, if m is sufficiently large, we obtain from (A.6), (A.12) and mathematical
induction that

|v −B−1
k Lkv|H1(Ω) ≤ σhβ

k‖v‖H1+β(Ω) ∀ v ∈ Vk, k ≥ 0,(A.13)

if σ is the number defined by σ = C∗m
−β/2/(1 − C∗m

−α∗). Therefore (2.16) is
satisfied by the W -cycle preconditioner provided that m is sufficiently large.



MULTIGRID FOR C0 INTERIOR PENALTY METHODS 221

Now we consider the preconditioner B−1
k obtained from a variable V -cycle algo-

rithm. Given a positive integer k, we assume that the number mj of smoothing steps
on level j satisfies

(1 + ε)mj+1 ≤ mj for 0 ≤ j ≤ k − 1,(A.14)

where ε is a positive number. We have an additive expression for the error propagation
operator:

Idk −B−1
k Lk = Rmk

k (Idk − Ikk−1P
k−1
k )Rmk

k

+ Rmk

k Ikk−1R
mk−1

k−1 (Idk−1 − Ik−1
k−2P

k−2
k−1 )R

mk−1

k−1 P k−1
k Rmk

k(A.15)

+ Rmk

k Ikk−1R
mk−1

k−1 Ik−1
k−2

×R
mk−2

k−2 (Idk−2 − Ik−2
k−3P

k−3
k−2 )R

mk−2

k−2 P k−2
k−1R

mk−1

k−1 P k−1
k Rmk

k

+ · · · .

The following estimates are valid [20] for k ≥ 1, j ≤ k and v ∈ Vk:

‖Rmk

k (Idk − Ikk−1P
k−1
k )Rmk

k v‖H1−β(Ω) � hβ
km

−α∗+(β/2)
k |v|H1(Ω),(A.16)

‖Rmk

k Ikk−1 · · ·R
mj+1

j+1 Ij+1
j v‖H1−β(Ω) � ‖v‖H1−β(Ω),(A.17)

|P j
j+1R

mj+1

j+1 · · ·P k−1
k Rmk

k v|H1(Ω) � |v|H1(Ω).(A.18)

Combining (2.1), (A.6) and (A.15)–(A.18), we find, for any β ∈ (0, 1/2),

|v −B−1
k Lkv|H1−β(Ω) ≤ Cβ |v|H1(Ω)

k∑
j=2

hβ
jm

−α∗+(β/2)
j

≤ Cβ |v|H1(Ω)

k∑
j=2

(2(j−k)hk)
β((1 + ε)(j−k)mk)

−α∗+(β/2)(A.19)

≤ Cβm
−α∗+(β/2)
k hβ

k |v|H1(Ω)

k∑
j=2

[2β(1 + ε)(−α∗+β/2)]j−k,

where Cβ depends on β but not the meshes. It follows from (A.19) that there exists
a positive mesh-independent constant C such that

|v −B−1
k Lkv|H1−β(Ω) ≤ Chβ

k |v|H1(Ω) ∀ v ∈ Vk(A.20)

if we choose β > 0 so that

β < max

(
1

2
,
α∗ ln(1 + ε)

ln(2
√

1 + ε)

)
.

The estimate (2.16) follows from (A.20) and duality. In other words, property (iii) is
satisfied by the variable V -cycle preconditioner under condition (A.14).
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hp-DISCONTINUOUS GALERKIN TIME-STEPPING FOR
VOLTERRA INTEGRODIFFERENTIAL EQUATIONS∗

HERMANN BRUNNER† AND DOMINIK SCHÖTZAU‡

Abstract. We present an hp-error analysis of the discontinuous Galerkin time-stepping method
for Volterra integrodifferential equations with weakly singular kernels. We derive new error bounds
that are explicit in the time-steps, the degrees of the approximating polynomials, and the regularity
properties of the exact solution. It is then shown that start-up singularities can be resolved at
exponential rates of convergence by using geometrically graded time-steps. Our theoretical results
are confirmed in a series of numerical tests.

Key words. Volterra integrodifferential equation, discontinuous Galerkin time-stepping, geo-
metrically refined time-steps, exponential convergence
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1. Introduction. We introduce and analyze the hp-version of the discontinu-
ous Galerkin (DG) time-stepping method for the Volterra integrodifferential equation
(VIDE):

u′(t) + a(t)u(t) +

∫ t

0

kα(t− s)b(s)u(s) ds = f(t), t ∈ [0, T ],

u(0) = u0 ∈ R.

(1.1)

Here, a, b, and f are real functions that are continuous on [0, T ]. Moreover, we assume
that there are constants μ� ≥ μ� > 0 such that

μ� ≤ a(t) ≤ μ�, |b(t)| ≤ μ�, t ∈ [0, T ].(1.2)

The convolution kernel kα is the weakly singular function given by

kα(s) := s−α for α ∈ (0, 1).(1.3)

For any initial datum u0 ∈ R, the VIDE (1.1) has a unique solution u : [0, T ] → R

which is continuously differentiable; see, e.g., [5, 2] and the references cited therein.
More precisely, smooth (analytic) data a, b, and f in (1.1) lead to solutions u that
are smooth (analytic) away from t = 0, but their second derivatives are unbounded
at t = 0 and behave like

|u′′(t)| ≤ Ct−α, t > 0;

see [5, 3, 4] and [2, section 7.1]; compare also Theorem 4.1 below. This loss of
regularity in u at t = 0 has the consequence that on uniform time-steps with length k,
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approximations U generated by standard DG or collocation methods only possess low
convergence order, that is,

‖u− U‖L∞(0,T ) ≤ Ck1−α;

see [4, 2]. This problem can be overcome by using meshes that are suitably refined
near t = 0. We will show that the hp-version of the DG time-stepping method with
geometrically graded time-steps leads to exponential rates of convergence.

The discontinuous Galerkin method was first proposed in [11] as a nonstandard
finite element method for the numerical solution of neutron transport problems. Ap-
plied to initial-value ODEs, it can be viewed as an implicit single-step scheme that
allows for arbitrary variation in the time-steps and the degrees of the approximating
polynomials. It has been shown in [11] that despite the underlying Galerkin struc-
ture, the discontinuous Galerkin time-stepping method corresponds to certain implicit
schemes of Runge–Kutta type. Subsequently, several important issues concerning the
a priori and a posteriori error analyses of these schemes have been addressed; see,
e.g., [7, 9, 8, 1] and the references therein. DG time-stepping has also been applied
successfully to partial differential equations, and, in the context of parabolic prob-
lems, a large body of literature exists; we refer here only to the recent monograph [18]
and the references cited therein. An error analysis of the DG time-stepping method
applied to a parabolic integrodifferential equation was recently presented in [10].

All the works mentioned above are concerned with the h-version of the DG time-
stepping method where convergence is achieved on successively refined time-steps us-
ing a fixed, typically low approximation order. This is in contrast to the so-called p-
and hp-versions, where approximating polynomials of high degree are employed. The
hp-approach is particularly beneficial for piecewise analytic solutions as its judicious
combination of h- and p-refinement results in exponential rates of convergence. The
time discretization of linear parabolic problems by the hp-DG time-stepping method
was recently analyzed in [15, 19]. (See also [16] for extensions to problems whose
spatial operators are not self-adjoint.) In particular, it has been shown that temporal
start-up singularities induced by incompatible initial data can be resolved at expo-
nential rates of convergence. Furthermore, in [14], a complete hp-error analysis of the
DG time-stepping method has been carried out for nonlinear initial value problems
in R

d.
In the present work, we derive new hp-error bounds in L2(0, T ) and L∞(0, T )

for the DG time-stepping method applied to the VIDE (1.1). The L2-framework will
be particularly important in the extension of the present results to partial VIDEs.
Our estimates are completely explicit in the time-steps, the polynomial degrees, and
the regularity properties of the exact solution. While these estimates give optimal
convergence rates in the time-steps, they also show that the DG method converges
if the polynomial degrees are increased at fixed time-steps. In particular, we prove
that the p-version DG approach gives spectral accuracy for solutions with smooth
time dependence, i.e., the convergence rates are of arbitrarily high algebraic order.
In order to resolve start-up singularities induced by the weakly singular kernel kα in
(1.3), we employ time-steps that are geometrically refined toward t = 0, combined
with polynomial degrees that are linearly increasing. We show that this hp-version
approach leads to exponential rates of convergence for analytic data a, b, and f ,
despite the unboundedness of the second derivative of u near t = 0. We present a
series of numerical experiments that confirm our theoretical results.

Finally, we observe that since the main purpose of this paper is to obtain insight
into the basic hp-error analysis of DG methods on geometrically graded time-steps
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for partial VIDEs, there will be no loss of generality by using the model problem
given by (1.1)–(1.3). In a sequel to this paper we shall use this insight as the key
to obtain an analogous estimate for partial VIDEs; we will then also describe typical
applications of such VIDEs.

The outline of the paper is as follows. In section 2, we introduce the DG time-
stepping method for the VIDE (1.1) and prove existence and uniqueness of approx-
imate solutions. In section 3 we carry out a complete hp-error analysis of the DG
method. In section 4 we show that on the basis of precise regularity results, the
solutions of (1.1) can be approximated exponentially fast on time-steps that are geo-
metrically graded toward t = 0. Our theoretical results are verified in the numerical
tests in section 5. Finally, we end our presentation in section 6 with concluding
remarks pointing to future work and open problems.

Throughout, standard notations and conventions are used. For an interval I, we
write Lp(I), 1 ≤ p ≤ ∞, for the Lebesgue space of p-integrable functions, endowed
with the norm ‖ · ‖Lp(I). We write W k,p(I) for the Sobolev space of order k ∈ N0

equipped with the usual norm ‖ ·‖Wk,p(I). For a noninteger exponent s ≥ 0, the space
W s,p(I) is defined by the K-method of interpolation. We set Hs(I) = W s,2(I). We
write Pr(I) for the space of all polynomials of degree ≤ r. We denote by C generic
constants not necessarily identical at different places but always independent of the
discretization parameters of interest (such as time-steps and polynomial degrees).

2. Discontinuous Galerkin time-stepping. In this section, we introduce the
discontinuous Galerkin time-stepping method for the numerical approximation of the
VIDE (1.1). We then show the existence and uniqueness of the approximate solutions.

2.1. Discontinuous Galerkin discretization. Let M be a partition of (0, T )

into intervals {Im}Mm=1 given by Im := (tm−1, tm) with nodes

0 =: t0 < t1 < · · · < tM−1 < tM := T.

The length of Im is km := tm − tm−1. As usual, we set k := maxM
m=1 km. The

partition M is called quasi-uniform if there is a constant C > 0 such that k ≤ Ckm
for all 1 ≤ m ≤ M .

We assign to each interval Im a polynomial degree rm ≥ 0 and introduce the
degree vector r = {rm}Mm=1. We define |r| := maxM

m=1 rm. The tuple (M, r) is called
an hp-discretization of (0, T ). If rm = r for all 1 ≤ m ≤ M , we simply write (M, r).

Let ϕ : (0, T ) → R be a function that is piecewise continuous with respect to the
partition M. At the nodes the left- and right-sided limits of ϕ are defined by

+
m = lim

s→0, s>0
ϕ(tm + s), 0 ≤ m ≤ M − 1,

ϕ−
m = lim

s→0, s>0
ϕ(tm − s), 1 ≤ m ≤ M.

The jumps across interior nodes are given by [[ϕ]]m = ϕ+
m − ϕ−

m, 1 ≤ m ≤ M − 1.
For a given hp-discretization (M, r) of (0, T ), we introduce the discrete space

V(M, r) :=
{
ϕ ∈ L2(0, T ) : ϕ|Im ∈ Prm(Im), 1 ≤ m ≤ M

}
.(2.1)

Note that functions in V(M, r) can be discontinuous across the nodes {tm}.
We consider the following discontinuous Galerkin approximation of the VIDE

in (1.1): find U ∈ V(M, r) such that

BDG(U, V ) = FDG(V )(2.2)

for all V ∈ V(M, r).
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The forms BDG and FDG are given by

BDG(U, V ) :=

M∑
m=1

∫
Im

(
U ′(t) + a(t)U(t)

)
V (t) dt

+

M∑
m=1

∫
Im

(∫ t

0

kα(t− s)b(s)U(s) ds

)
V (t) dt

+

M−1∑
m=1

[[U ]]mV +
m + U+

0 V +
0 ,

FDG(V ) := u0V
+
0 +

M∑
m=1

∫
Im

f(t)V (t) dt.

Note that the exact solution u of problem (1.1) satisfies BDG(u, V ) = FDG(V )
for all V ∈ V(M, r). Hence, we have the Galerkin orthogonality property

BDG(u− U, V ) = 0(2.3)

for all V ∈ V(M, r).
Remark 2.1. The discontinuous Galerkin discretization in (2.2) is a time-stepping

scheme: if U is given on In, 1 ≤ n ≤ m− 1, we find U |Im ∈ Prm(Im) by solving∫
Im

(
U ′(t) + a(t)U(t)

)
V (t) dt +

∫
Im

(∫ t

tm−1

kα(t− s)b(s)U(s) ds

)
V (t) dt + U+

m−1V
+
m−1

= U−
m−1V

+
m−1 +

∫
Im

f(t)V (t) dt−
∫
Im

(∫ tm−1

0

kα(t− s)b(s)U(s) ds

)
V (t) dt

for all V ∈ Prm(Im). Here, we set U−
0 = u0.

2.2. Existence and uniqueness of discrete solutions. To show that the DG
time-stepping method (2.2) defines a unique approximate solution U ∈ V(M, r), we
make use of the discrete Gronwall inequality from [10, Lemma 6.4].

Lemma 2.2. Let M = {Im}Mm=1 be a partition of (0, T ) with k = maxM
m=1{km}.

Let {am}Mm=1 and {bm}Mm=1 be sequences of numbers with 0 ≤ b1 ≤ b2 ≤ · · · ≤ bM .
Assume that there is a constant K ≥ 0 such that

a1 ≤ b1, am ≤ bm + K

m∑
n=1

wm,n(α)an, m = 2, . . . ,M,

where wm,n(α) =
∫
In

(tm − t)−α dt. Assume further that δ = Kk1−α

1−α < 1. Then we
have

am ≤ Cbm, m = 1, . . . ,M,

with a constant C > 0 that solely depends on δ, K, α, and T .
Furthermore, we recall the following technical result from [10, Lemma 6.3].
Lemma 2.3. For f ∈ L2(0, τ) and α ∈ (0, 1) there holds∫ τ

0

(∫ t

0

(t− s)−αf(s) ds

)2

dt ≤ τ1−α

(1 − α)

∫ τ

0

(τ − t)−α

(∫ t

0

f(s)2 ds

)
dt.

We now address the existence and uniqueness of discrete solutions.
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Proposition 2.4. Let (M, r) be an hp-discretization of (0, T ) with

(μ�/μ�)
2 (Tk)(1−α)

(1 − α)2
< 1.(2.4)

Then the discrete problem (2.2) has a unique solution U ∈ V(M, r).
Remark 2.5. Note that condition (2.4) is independent of the degree vector r.

Proof. We first show the uniqueness of DG solutions. To this end, let U and Ũ
be two solutions of (2.2). The difference E = U − Ũ then satisfies∫

Im

(
E′ + aE

)
V dt + E+

m−1V
+
m−1

= E−
m−1V

+
m−1 −

∫
Im

(∫ t

0

kα(t− s)b(s)E(s) ds

)
V (t) dt

for any V ∈ Prm(Im), m = 1, . . . ,M . Selecting V = E yields

1

2

(
E−

m

)2
+

1

2

(
E+

m−1

)2
+

∫
Im

aE2 dt

= E−
m−1E

+
m−1 −

∫
Im

(∫ t

0

kα(t− s)b(s)E(s) ds

)
E(t) dt.

Since

E−
m−1E

+
m−1 ≤ 1

2

(
E−

m−1

)2
+

1

2

(
E+

m−1

)2
,

we have

1

2

(
E−

m

)2
+

∫
Im

aE2 dt ≤ 1

2

(
E−

m−1

)2
+

∫
Im

(∫ t

0

kα(t− s)|b(s)E(s)| ds
)

|E(t)| dt.

In view of E−
0 = 0, iterating the above estimate yields

1

2

(
E−

m

)2
+

∫ tm

0

aE2 dt ≤
∫ tm

0

(∫ t

0

kα(t− s)|b(s)E(s)| ds
)

|E(t)| dt =: Sm(2.5)

for 1 ≤ m ≤ M . By invoking the bounds for a and b in (1.2), the Cauchy–Schwarz
inequality, and Lemma 2.3, the integral Sm in (2.5) can be bounded by

Sm ≤ μ�μ
−1/2
�

(∫ tm

0

(∫ t

0

kα(t− s)|E(s)| ds
)2

dt

) 1
2 (∫ tm

0

aE2 dt

) 1
2

≤ 1

2
(μ�)2μ−1

�

t
(1−α)
m

(1 − α)

∫ tm

0

(tm − t)−α

(∫ t

0

E(s)2 ds

)
dt +

1

2

∫ tm

0

aE2 dt

≤ 1

2
(μ�/μ�)

2 t
(1−α)
m

(1 − α)

∫ tm

0

(tm − t)−α

(∫ t

0

a(s)E(s)2 ds

)
dt +

1

2

∫ tm

0

aE2 dt.

Hence, we obtain

1

2

∫ tm

0

aE2 dt ≤ 1

2
(μ�/μ�)

2 T (1−α)

(1 − α)

m∑
n=1

(∫
In

(tm − t)−α dt

)(∫ tn

0

aE2 ds

)
.
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Setting am =

∫ tm

0

aE2 dt and bm = 0, the Gronwall inequality in Lemma 2.2 gives

∫ tm

0

aE2 dt = 0, m = 1, . . . ,M,

provided that (2.4) is satisfied. The boundedness of a thus shows that E ≡ 0 and

U ≡ Ũ .
As problem (2.2) is linear and finite dimensional, the existence of solutions follows

from their uniqueness. This completes the proof.

3. Error analysis. In this section, we derive hp-version error bounds for the
DG time-stepping method in (2.2).

3.1. Abstract error bounds. We start be showing abstract error bounds. To
this end, for a continuous function u : [0, T ] → R, we define the interpolant Iu ∈
V(M, r) by

(Iu)−m = u−
m, 1 ≤ m ≤ M,(3.1) ∫

Im

Iu(t)V ′(t) dt =

∫
Im

u(t)V ′(t) dt, V ∈ Prm(Im), 1 ≤ m ≤ M.(3.2)

Remark 3.1. The same interpolant has been used in the h-version analysis in [10];
we also refer to [18] and the references cited therein in the context of parabolic prob-
lems. The hp-approximation properties of I have been thoroughly investigated in
[14, 15] and will be used in section 3.2.

Let now u be the exact solution of (1.1) and U ∈ V(M, r) the DG approximation
in (2.2). We split the error e = u−U into e = η+θ with η := u−Iu and θ := Iu−U .
Using Galerkin orthogonality in (2.3) and the construction of Iu, the function θ
satisfies

(3.3)∫
Im

(
θ′ + aθ

)
V dt + θ+

m−1V
+
m−1 = θ−m−1V

+
m−1 −

∫
Im

aηV dt

−
∫
Im

(∫ t

0

kα(t− s)b(s)η(s) ds

)
V (t) dt−

∫
Im

(∫ t

0

kα(t− s)b(s)θ(s) ds

)
V (t) dt

for any V ∈ Prm(Im) and m = 1, . . . ,M .
Our first result establishes an L2-control of θ in terms of η.
Lemma 3.2. Let (M, r) be an hp-discretization of (0, T ) with

δ = 3(μ�/μ�)
2 (Tk)(1−α)

(1 − α)2
< 1.(3.4)

Then we have

1

2

∫ tm

0

aθ2 dt +
1

2

(
θ−m

)2 ≤ C

∫ tm

0

aη2 dt, m = 1, . . .M,

with a constant C > 0 that solely depends on μ�, μ
�, α, T , and δ in (3.4).

Remark 3.3. Note that assumption (3.4) is slightly stronger than that in (2.4)
and thus implies the existence and uniqueness of discrete solutions.
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Proof. We select V = θ in (3.3). This yields

1

2

(
θ−m

)2
+

1

2

(
θ+
m−1

)2
+

∫
Im

aθ2 dt = θ−m−1θ
+
m−1 −

∫
Im

aηθ dt

−
∫
Im

(∫ t

0

kα(t− s)b(s)η(s) ds

)
θ(t) dt−

∫
Im

(∫ t

0

kα(t− s)b(s)θ(s) ds

)
θ(t) dt.

Since

θ−m−1θ
+
m−1 ≤ 1

2

(
θ−m−1

)2
+

1

2

(
θ+
m−1

)2
,

we obtain

1

2

(
θ−m

)2
+

∫
Im

aθ2 dt ≤ 1

2

(
θ−m−1

)2
+

∫
Im

a|ηθ| dt

+

∫
Im

(∫ t

0

kα(t− s)|b(s)η(s)| ds
)

|θ(t)| dt

+

∫
Im

(∫ t

0

kα(t− s)|b(s)θ(s)| ds
)

|θ(t)| dt.

Iterating this estimate gives

1

2

(
θ−m

)2
+

∫ tm

0

aθ2 dt ≤ T1 + T2 + T3,

where

T1 =

∫ tm

0

a|ηθ| dt,

T2 =

∫ tm

0

(∫ t

0

kα(t− s)|b(s)η(s)| ds
)

|θ(t)| dt,

T3 =

∫ tm

0

(∫ t

0

kα(t− s)|b(s)θ(s)| ds
)

|θ(t)| dt.

We estimate each of the above terms separately.
First, we note that

T1 ≤ 3

2

∫ tm

0

aη2 dt +
1

6

∫ tm

0

aθ2 dt.

Next, using the bounds for a and b in (1.2), the Cauchy–Schwarz inequality, and
Lemma 2.3, we have

T2 ≤ μ�μ
−1/2
�

(∫ tm

0

(∫ t

0

kα(t− s)|η(s)| ds
)2

dt

) 1
2 (∫ tm

0

aθ2 dt

) 1
2

≤ 3

2
(μ�/μ�)

2 T 1−α

(1 − α)

∫ tm

0

(tm − t)−α

(∫ t

0

a(s)η(s)2 ds

)
dt +

1

6

∫ tm

0

aθ2 dt

≤ 3

2
(μ�/μ�)

2 T 2(1−α)

(1 − α)2

∫ tm

0

aη2 ds +
1

6

∫ tm

0

aθ2 dt.
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Analogously, we obtain

T3 ≤ 3

2
(μ�/μ�)

2 T 1−α

(1 − α)

∫ tm

0

(tm − t)−α

(∫ t

0

a(s)θ2(s)

)
ds dt +

1

6

∫ tm

0

aθ2 dt

≤ 3

2
(μ�/μ�)

2 T 1−α

(1 − α)

m∑
n=1

(∫
In

(tm − t)−α dt

)(∫ tn

0

aθ2 ds

)
+

1

6

∫ tm

0

aθ2 dt.

Combining the above estimates results in

1

2

(
θ−m

)2
+

1

2

∫ tm

0

aθ2 dt ≤ max

{
3

2
,
3

2
(μ�/μ�)

2 T 2(1−α)

(1 − α)2

}∫ tm

0

aη2 dt

+
3

2
(μ�/μ�)

2 T 1−α

(1 − α)

m∑
n=1

(∫
In

(tm − t)−α dt

)(∫ tn

0

aθ2 ds

)
.

Setting

am =

∫ tm

0

aθ2 dt,

bm = max

{
3, 3(μ�/μ�)

2 T 2(1−α)

(1 − α)2

}∫ tm

0

aη2 dt,

the assertion follows from Lemma 2.2.
Next, we bound the derivative of θ as follows.
Lemma 3.4. We have∫

Im

|θ′|2(t− tm−1) dt ≤ Ckm

∫ tm

0

a(θ2 + η2) dt, m = 1, . . .M,

with a constant C > 0 that solely depends on μ�, μ
�, α, and T .

Proof. We choose V (t) = θ′(t)(t− tm−1) in (3.3) and obtain∫
Im

|θ′|2(t− tm−1) dt ≤ T1 + T2 + T3 + T4,

where

T1 =

∫
Im

a|θθ′(t− tm−1)| dt,

T2 =

∫
Im

a|ηθ′(t− tm−1)| dt,

T3 =

∫
Im

(∫ t

0

kα(t− s)|b(s)η(s)| ds
)
|θ′(t− tm−1)| dt,

T4 =

∫
Im

(∫ t

0

kα(t− s)|b(s)θ(s)| ds
)
|θ′(t− tm−1)| dt.

Clearly, using the bounds for a in (1.2),

T1 ≤ (μ�)1/2
(∫

Im

aθ2 dt

) 1
2

k
1
2
m

(∫
Im

|θ′|2(t− tm−1) ds

) 1
2

,

T2 ≤ (μ�)1/2
(∫

Im

aη2 dt

) 1
2

k
1
2
m

(∫
Im

|θ′|2(t− tm−1) ds

) 1
2

.
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Furthermore, by Lemma 2.3,

T3 ≤ μ�

(∫
Im

(∫ t

0

(t− s)α|η(s)| ds
)2

dt

) 1
2

k
1
2
m

(∫
Im

|θ′|2(t− tm−1) ds

) 1
2

≤ μ�μ
−1/2
�

T 1−α

1 − α

(∫ tm

0

aη2 dt

) 1
2

k
1
2
m

(∫
Im

|θ′|2(t− tm−1) ds

) 1
2

.

Analogously, we obtain

T4 ≤ μ�μ
−1/2
�

T 1−α

1 − α

(∫ tm

0

aθ2 dt

) 1
2

k
1
2
m

(∫
Im

|θ′|2(t− tm−1) ds

) 1
2

.

Combining these estimates results in∫
Im

|θ′|2(t− tm−1) dt ≤ Ckm

∫ tm

0

a(θ2 + η2) dt.

This completes the proof.
To control the L∞-norm of θ in terms of the interpolation error η, we make use

of the following inverse inequality from [14, Lemma 3.1].
Lemma 3.5. On each interval Im there holds

‖ϕ‖2
L∞(Im) ≤ C

(
log (max {rm, 2})

∫
Im

|ϕ′(t)|2(t− tm−1) dt +
(
ϕ−
m

)2)
,

for any ϕ ∈ Prm(Im), rm ≥ 0. The constant C > 0 is independent of km and rm.
Furthermore, the estimate cannot be improved asymptotically as rm → ∞.

The following result states an abstract error bound.
Theorem 3.6. Let (M, r) be an hp-discretization of (0, T ) satisfying (3.4). Then

the error u− U between the exact solution u and the DG approximation U satisfies

‖u− U‖L2(0,T ) ≤ C‖u− Iu‖L2(0,T )

and

‖u− U‖L∞(0,T ) ≤ C log
1
2 (max {|r|, 2}) ‖u− Iu‖L∞(0,T )

with a constant C > 0 that solely depends on μ�, μ
�, α, T , and δ in (3.4).

Proof. As before, we split the error into u−U = η+ θ. Lemmas 3.2 and 3.4 yield

(
θ−m

)2
+

∫ tm

0

aθ2 dt +

∫ tm

0

|θ′|2(t− tm−1) dt ≤ C

∫ tm

0

aη2 dt.

In view of the boundedness of a in (1.2), we obtain ‖θ‖L2(0,T ) ≤ C‖η‖L2(0,T ). Fur-
thermore, by Lemma 3.5,

‖θ‖2
L∞(Im) ≤ C log (max {|r|, 2}) ‖η‖2

L2(0,T ) ≤ C log (max {|r|, 2}) ‖η‖2
L∞(0,T )

for 1 ≤ m ≤ M . The error bounds follow from the triangle inequality.
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3.2. Error bounds. In this section, we employ the hp-version approximation
properties of the interpolant I to make explicit the error bounds in Theorem 3.6.

We first recall the following results from [15, Theorem 3.10] and [14, Corol-
lary 3.10]. We denote by Γ the Gamma function.

Theorem 3.7. Let u|Im ∈ Hsm+1(Im) for sm ≥ 0. Then

‖u− Iu‖2
L2(Im) ≤ C

(
km
2

)2tm+2
1

max{1, r2
m}

Γ(rm + 1 − tm)

Γ(rm + 1 + tm)
‖u‖2

Htm+1(Im)

for any real 0 ≤ tm ≤ min{rm, sm}. The constant C > 0 is independent of km, rm,
tm, and sm. Moreover, if u|Im ∈ W sm+1,∞(Im) for sm ≥ 0, then

‖u− Iu‖2
L∞(Im) ≤ C

(
km
2

)2tm+2
Γ(rm + 1 − tm)

Γ(rm + 1 + tm)
‖u‖2

W tm+1,∞(Im)

for any real 0 ≤ tm ≤ min{rm, sm}.
From Theorems 3.6 and 3.7 we obtain the following hp-error estimates.
Theorem 3.8. Let (M, r) be an hp-discretization of (0, T ) satisfying (3.4), and

let U ∈ V(M, r) be the DG approximation (2.2). Let the exact solution u of (1.1)
satisfy

u|Im ∈ Hsm+1(Im), sm ≥ 0, m = 1, . . . ,M.

Then we have the L2-error bound

‖u− U‖2
L2(0,T ) ≤ C

M∑
m=1

((
km
2

)2tm+2
1

max{1, r2
m}

Γ(rm + 1 − tm)

Γ(rm + 1 + tm)
‖u‖2

Htm+1(Im)

)

for any real 0 ≤ tm ≤ min{sm, rm}, 1 ≤ m ≤ M . Moreover, if

u|Im ∈ W sm+1,∞(Im), sm ≥ 0, m = 1, . . . ,M,

then we have the L∞-error bound

‖u− U‖2
L∞(0,T ) ≤ C log (max {|r|, 2})

· M
max
m=1

{(
km
2

)2tm+2
Γ(rm + 1 − tm)

Γ(rm + 1 + tm)
‖u‖2

W tm+1,∞(Im)

}

for any real 0 ≤ tm ≤ min{sm, rm}, 1 ≤ m ≤ M .
The constants C > 0 solely depend on μ�, μ

�, T , α, and δ in (3.4).
We remark that the estimates in Theorem 3.8 are explicit in the time-steps km,

the polynomial degrees rm, and the regularity exponents sm of the exact solution.
From the bounds in Theorem 3.8, the following convergence rates can be deduced for
the h- and p-version of the DG time-stepping method.

Corollary 3.9. Let (M, r) be an hp-discretization of (0, T ) satisfying (3.4)
with uniform polynomial degree r ≥ 0. Let u be the exact solution of (1.1) and U the
discontinuous Galerkin approximation (2.2). If u ∈ Hs+1(0, T ) for s ≥ 0, we have the
L2-error bound

‖u− U‖L2(0,T ) ≤ C
kmin(s,r)+1

rs+1
‖u‖Hs+1(0,T ).
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Additionally, if u ∈ W s+1,∞(0, T ) for s ≥ 0, we have the L∞-error bound

‖u− U‖L∞(0,T ) ≤ C log (max {r, 2}) k
min(s,r)+1

rs
‖u‖W s+1,∞(0,T ).

The constants C > 0 solely depend on μ�, μ�, T , α, δ, in (3.4) and the regularity
exponent s.

Proof. The proof follows from Theorem 3.8 and Stirling’s formula; cf. [17].
The estimates in Corollary 3.9 show that the DG time-stepping method converges

either as the time-steps are decreased (k → 0) or as r is increased (r → ∞). Both
estimates are optimal in k. However, while the L2-estimate is also optimal in the
polynomial degree r, the L∞-estimate is one power of r short from being optimal; this
is due to the slightly suboptimal L∞-approximation properties of the interpolant I
in Theorem 3.7; see also [14].

It can be seen from Corollary 3.9 that for solutions u for which s is large it is
more advantageous to increase r rather than to reduce k at fixed, low r. Indeed, if
u is smooth on [0, T ], arbitrarily high algebraic convergence rates are possible if the
polynomial degree r is raised. This is referred to as spectral convergence. Moreover,
the p-version of the DG time-stepping method converges exponentially if the solution
u is analytic on [0, T ]. To see this, we first recall the following result.

Lemma 3.10. On each interval Im there holds

‖u− Iu‖L2(Im) ≤ C inf
q∈Prm (Im)

‖u− q‖H1(Im),

‖u− Iu‖L∞(Im) ≤ Crm inf
q∈Prm (Im)

‖u− q‖W 1,∞(Im)

with a constant C > 0 independent of Im, rm, and u.
Proof. The first estimate follows from [16, Lemma 3.6] and a scaling argument.

The second estimate follows similarly from [14, Lemma 3.8].
Theorem 3.11. Let (M, r) be an hp-discretization of (0, T ) satisfying (3.4), with

polynomial degree r ≥ 0. Let the exact solution u of (1.1) be analytic on [0, T ]. For
the DG approximation (2.2), we then have the error bound

‖u− U‖Lp(0,T ) ≤ C exp(−br), p = 2 or p = ∞,

with constants C, b > 0 that are independent of r.
Proof. The assertion follows from Theorem 3.6, the results in Lemma 3.10, and

standard approximation theory for analytic functions.

4. Exponential convergence for analytic data. The exponential conver-
gence result in Theorem 3.11 is valid for solutions that are analytic in [0, T ]. How-
ever, this regularity assumption is unrealistic since, as discussed previously, solutions
of (1.1) with analytic data have strong start-up singularities, due to the presence of
the weakly singular kernel kα, and are analytic only away from t = 0. In this section
we show that despite this singular behavior, the hp-version of the DG method with
geometrically graded time-steps near t = 0 yields exponential rates of convergence.

4.1. Analyticity of solutions. Let A(0, T ) denote the space of the functions
which are analytic on [0, T ]. A function g in A(0, T ) can be characterized by analyt-
icity constants Cg, dg > 0 and the growth conditions

|g(s)(t)| ≤ Cgd
s
gΓ(s + 1), t ∈ [0, T ], s ≥ 0.

(See [17, pp. 78–79] for details.)
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We assume the data a, b, and f to satisfy

a, b ∈ A(0, T ),(4.1)

f(t) = f1(t) + tβf2(t), fi ∈ A(0, T ), i = 1, 2, β > 0, β 	∈ N.(4.2)

The following result describes the analyticity properties of the exact solution u.
Theorem 4.1. Assume (4.1)–(4.2) and let θ = min{2 − α, 1 + β}. Then there

exist constants C, d > 0 depending only on the analyticity constants of a, b, f1, and f2,
such that the solution u of (1.1) satisfies

|u(s)(t)| ≤ CdsΓ(s + 1)tθ−s, t ∈ (0, T ], s ∈ N.

Proof. This regularity result slightly generalizes earlier results in [4]; see also [12, 3]
and [2]. We give a brief sketch of the proof; additional details can be found in [2,
section 7.1].

The initial-value problem for the given VIDE (1.1) is equivalent to the second-kind
Volterra integral equation

u(t) = g(t) +

∫ t

0

hα(t, s)b(s)u(s) ds, t ∈ [0, T ],(4.3)

with

g(t) := u0 +

∫ t

0

(f1(s) + sβf2(s)) ds,

hα(t, s) = −a(s) −
∫ t

s

kα(v − s)dv.

In particular, if a(t) = a > 0, b(t) = λ > 0, fi(t) = fi = const for t ∈ [0, T ], then we
have

g(t) = u0 + f1t +
f2

1 + β
t1+β ,

hα(t, s) = −a− λ

1 − α
(t− s)1−α.

The resolvent kernel Rα(t, s) associated with the kernel

Kα(t, s) := hα(t− s)b(s) (t, s) ∈ D := {(t, s) : 0 ≤ s ≤ t ≤ T}
has the form

Rα(t, s) = (t− s)1−αQα(t, s), (t, s) ∈ D.

Here,

Qα(t, s) :=

∞∑
n=1

(t− s)(n−1)(2−α)Φn(t, s;α),

where the series is uniformly convergent on D for all α ∈ (0, 1). If the given data a
and b are in A(0, T ), then we have Φn(·, ·;α) ∈ A(D) (n ≥ 1) for all α ∈ (0, 1). Here,
A(D) denotes the space of the functions that are analytic on D.

Since the (unique) solution of the VIDE (4.3) is given by

u(t) = g(t) +

∫ t

0

Rα(t, s)g(s) ds, t ∈ [0, T ],(4.4)

the regularity properties of the nonhomogeneous term g imply the asserted bounds
for u(s)(t) on (0, T ].
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J J J J J
1 2 3 4 50 T

Fig. 4.1. Example of a geometric partition Mn,σ of (0, T ). The intervals {Jk}5
k=1 form the

coarse partition while J1 is geometrically refined toward t = 0. Here, n = 5 and σ = 0.5.

4.2. Exponential convergence for analytic data. In this section, we show
that under the analyticity assumption in (4.1)–(4.2), the hp-version of the DG time-
stepping method leads to exponential rates of convergence.

We start with the following definition.
Definition 4.2. The basic geometric partition M̂n,σ = {Im}n+1

m=1 of Ĵ = (0, 1)
with grading factor σ ∈ (0, 1) and n levels of refinement is given by

t0 = 0, tm = σn−m+1, 1 ≤ m ≤ n + 1.

Away from t = 0, i.e., for 2 ≤ m ≤ n + 1, the intervals Im ∈ M̂n,σ satisfy

km = tm − tm−1 = λtm−1, λ := σ−1(1 − σ).(4.5)

Definition 4.3. A geometric partition Mn,σ of (0, T ) with grading factor σ ∈
(0, 1) and n levels of refinement is obtained by first quasi-uniformly partitioning (0, T )
into intervals {Jk}Kk=1. The first interval J1 = (0, t1) near t = 0 is then further
subdivided into n + 1 subintervals {Im}n+1

m=1 by linearly mapping to basic geometric

mesh M̂n,σ in Definition 4.2 onto J1.
An illustration of a geometric partition Mn,σ is given in Figure 4.1. We point

out that the coarse intervals {Jk}Kk=2 will be kept fixed; convergence will be achieved
there by increasing the polynomial degrees.

Lemma 4.4. Assume (4.1)–(4.2) and set θ = min{2 − α, 1 + β}. Let Mn,σ

be a geometric mesh of (0, T ) with {Jk}Kk=1 denoting the underlying quasi-uniform
partition of (0, T ) and {Im}n+1

m=1 the geometric refinement of J1. Then the solution u
of (1.1) satisfies

‖u‖2
W 1,∞(I1)

≤ C

and

‖u‖2
W s+1,∞(Im) ≤ Cd2sΓ(2s + 1)σ2(n−m+2)(θ−s−1), 2 ≤ m ≤ n + 1,

‖u‖2
W s+1,∞(Ik) ≤ Cd2sΓ(2s + 1), 2 ≤ k ≤ K,

for s ≥ 0. The constants C, d > 0 are independent of m, n, and s.
Remark 4.5. We point out that the constants C and d in Lemma 4.4 depend on

the underlying quasi-uniform partition {Jk}Kk=1 of Mn,σ.
Proof. This is a simple consequence of Theorem 4.1, Definition 4.2, Definition 4.3,

and properties of the Gamma function.
Definition 4.6. Let Mn,σ be a geometric mesh of (0, T ) with {Jk}Kk=1 denoting

the underlying quasi-uniform partition of (0, T ) and {Im}n+1
m=1 the geometric refine-

ment of J1. A degree vector r on Mn,σ is called linear with slope μ > 0 if rm = 
μm�
on the geometrically refined elements {Im}n+1

m=1 and if rk = 
μ(n + 1)� on the coarse
elements Jk, 2 ≤ k ≤ K, away from t = 0.

Our next result establishes exponential rates of convergence under the analyticity
assumptions in (4.1) and (4.2).
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Theorem 4.7. Assume (4.1)–(4.2). Let Mn,σ be a geometric partition of (0, T )
satisfying (3.4). Then there exists a slope μ0 > 0 solely depending on σ, α, β, and the
constants C and d in Lemma 4.4 such that for all linear polynomial degree vectors r
with slope μ ≥ μ0 the DG approximation U ∈ V(Mn,σ, r) satisfies the error estimate

‖u− U‖Lp(0,T ) ≤ C exp(−bN
1
2 ), p = 2 or p = ∞,

with constants C, b > 0 that are independent of N = dim(V(Mn,σ, r)).
Proof. We first note that

‖u− U‖L2(0,T ) ≤
√
T‖u− U‖L∞(0,T ).

In view of this inequality, we only need to prove the bound for the L∞-error. To do so,
we denote by {Jk}Kk=1 underlying quasi-uniform partition of Mn,σ and by {Im}n+1

m=1

the geometric refinement of the first time-step J1 near t = 0. From Theorem 3.8 and
Lemma 3.10, we find

‖u− U‖2
L∞(0,T ) ≤ C log

(
max {
μ(n + 1)�, 2}

)
max

{
n+1
max
m=1

em,
K

max
k=2

ek

}
with

em =

(
km
2

)2tm+2
Γ(rm + 1 − tm)

Γ(rm + 1 + tm)
‖u‖2

W tm+1,∞(Im), 1 ≤ m ≤ n + 1,

ek = inf
q∈Prk (Ik)

‖u− q‖2
W 1,∞(Ik), 2 ≤ k ≤ K,

and 0 ≤ tm ≤ min(sm, rm). Due to Theorem 4.1, u is analytic away from t = 0 and,
hence, the regularity exponents sm can be chosen arbitrarily large for m = 2, . . . , n+1.

We first bound the errors {em} on the geometrically refined intervals {Im}n+1
m=1.

On the first element I1 near t = 0, we select s1 = t1 = 0 and have from Lemma 4.4

e1 ≤ Ck2
1 = Cσ2n.

Next, fix an element Im, 2 ≤ m ≤ n + 1, away from t = 0. From Lemma 4.4 and the
definition of λ in (4.5), we obtain

em ≤ C

(
λσn−m+2

2

)2tm+2

· Γ(rm + 1 − tm)

Γ(rm + 1 + tm)

(
σn−m+2

)2(θ−tm−1)
d2tmΓ(2tm + 1)

= C σ(n−m+2)2θ

(
(λd)2tm

Γ(rm + 1 − tm)

Γ(rm + 1 + tm)
Γ(2tm + 1)

)
.

Taking tm = γmrm with γm ∈ (0, 1), Stirling’s formula leads to

em ≤ Cσ(n−m+2)2θr1/2
m

(
(λd)2γm

(
(1 − γm)1−γm

(1 + γm)1+γm

))rm

.

The function fλ,d(γ) = (λd)2γ (1−γ)1−γ

(1+γ)1+γ satisfies

0 < inf
0<γ<1

fλ,d(γ) =: fλ,d(γmin) < 1 with γmin =
1√

1 + λ2d2
.



238 HERMANN BRUNNER AND DOMINIK SCHÖTZAU

Set fmin = fmin(λ, d) =: fλ,d(γmin) and select γm = γmin for 2 ≤ m ≤ n + 1. Hence,
for rm = 
μm�, we have

em ≤ Cσ(n−m+2)2θr
1
2
mfrm

min ≤ Cσ(n−m+2)2θ(μm)
1
2 fμm

min

≤ Cσ2θn
(
μ(n + 1)

) 1
2
(
σ(−m+2)2θfμm

min

)
.

Let

μ ≥ max

{
2θ log(σ)

log(fmin)
, 1

}
.(4.6)

Then, fμm
min ≤ σ2θm and, consequently,

em ≤ Cσ2θn
(
μ(n + 1)

) 1
2

(σ4θ) ≤ Cσ2θn
(
μ(n + 1)

) 1
2

, m ≥ 2.

Thus, we obtain for 1 ≤ m ≤ n + 1 the bound

em ≤ C max

{
σ2n, σ2θn

(
μ(n + 1)

) 1
2

}
.(4.7)

Further, from standard approximation properties for analytic functions, we can
bound the errors {ek} on the elements {Jk}Kk=2 away from t = 0 as

ek ≤ Ce−brk = Ce−b�μ(n+1)�, 2 ≤ k ≤ K,(4.8)

with constants C and b that solely depend on the constants C and d in Lemma 4.4.
Combining the estimates in (4.7) and (4.8) yields

‖u−U‖2
L∞(0,T ) ≤ C log

(
max{μ(n+1), 2}

)
max

{
σ2n, σ2nθ

(
μ(n+1)

) 1
2 , e−b�μ(n+1)�

}
.

Since we have

log
(
max{μ(n + 1), 2}

)
max

{
σ2n, σ2nθ

(
μ(n + 1)

) 1
2 , (e)−b�μ(n+1)�

}
≤ C exp(−bn),

as n → ∞, and N = dim(V(Mn,σ, r) ≤ Cn2, the L∞-error bound follows.
Remark 4.8. From a practical point of view, it may be more convenient to use

a fixed polynomial degree r on a geometric partition Mn,σ. In this case, exponential
convergence results for all σ ∈ (0, 1) provided that r is proportional to the number of
refinements, i.e., r = 
μ(n+ 1)� with the slope parameter μ. Indeed, we see from the
proof of Theorem 4.7 that

‖u− U‖L∞(0,T ) ≤ C max(σ2n, r
1
2 fr

min) ≤ C exp(−br) ≤ C exp(−bN1/2).

Note that condition (4.6) on the slope is not necessary in this case.

5. Numerical experiments. In this section, we present a set of numerical ex-
periments that confirm our theoretical error bounds. Throughout, we consider prob-
lem (1.1)–(1.3) with T = 1 and

a(t) = 1, b(t) = exp(t), u0 = 0.

We choose the right-hand side f such that the solution u of (1.1) is given by

u(t) = t2−α exp(−t).(5.1)

Notice that this solution is analytic away from t = 0 and that for α ∈ (0, 1), the
second derivative u′′ is unbounded near t = 0. Thus, the solution (5.1) is ideally
suited to test the performance of the hp-version DG method.
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Fig. 5.1. h-version: solution with α = −1.

Table 5.1

h-version: solution with α = −1.

degree r Mi error order κi

7 1.03e-05 1.9982
1 8 2.57e-06 1.9992

9 6.41e-07 1.9996
7 4.69e-08 2.9762

2 8 5.91e-09 2.9881
9 7.42e-10 2.9941
7 1.05e-10 3.9852

3 8 6.62e-12 3.9925
9 4.15e-13 3.9963
6 3.64e-12 4.9761

4 7 1.15e-13 4.9882
8 3.59e-15 4.9940
4 2.03e-11 5.9170

5 5 3.27e-13 5.9585
6 5.17e-15 5.9793

5.1. Smooth solution. We start by considering the case α = −1 so that u
in (5.1) is analytic on [0, 1].

In Figure 5.1, we show the errors in L∞(0, 1) that have been obtained for the
h-version DG method on a sequence {Mi}9

i=1 of equidistant time partitions with
fixed polynomial degree r = 1, . . . , 5. The partition Mi consists of 2i intervals of
length 2−i. Hence, the straight error curves correspond to algebraic convergence in
the time-step k, for each polynomial degree. To illustrate this, we compute in Table 5.1
the numerical rates of convergence {κi} given by

κi = log

(
e(Mi)

e(Mi−1)

)
/ log(0.5)

with e(Mi) denoting the error on the partition Mi measured in the L∞-norm. The
convergence rates of order r+1 are clearly visible, which confirms the h-version result
in Corollary 3.9 for a smooth solution.
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Fig. 5.2. p-version: solution with α = −1.
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Fig. 5.3. h-version: solution with α = 0.5.

Next, let us consider the p-version of the DG time-stepping method. To that end,
we increase the polynomial degree from r = 1 to r = 50 for fixed partitions with time-
step length k = 1, k = 0.5, k = 0.25, and k = 0.1, respectively. The performance of
the p-version method is displayed in Figure 5.2. For each of the fixed time partitions
the results show that exponential rates of convergence are achieved, in agreement with
the theoretical findings in Theorem 3.11. (Remember that for α = −1 the solution
u is analytic in [0, 1].) As expected, the smaller the underlying fixed time-step the
smaller the errors that are actually obtained.

5.2. Nonsmooth solution. Next, we consider the case where α = 0.5 so that
the solution u in (5.1) has a singularity at t = 0. In fact, we have that u ∈ W 1.5,∞(0, 1)
while the second derivative of u is unbounded near t = 0. In Figure 5.3, we show
the performance of the h-version DG method on the uniform partitions Mi from
section 5.1. The optimal order r + 1 is not obtained anymore, due to the loss of
smoothness of u near the origin. Instead, the same asymptotic rate of convergence is
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Table 5.2

h-version: solution with α = 0.5.

degree r i error order κi

7 1.3563e-04 1.4738
1 8 4.8388e-05 1.4870

9 1.7185e-05 1.4935
7 1.9960e-05 1.5169

2 8 7.0142e-06 1.5088
9 2.4723e-06 1.5044
7 6.5853e-06 1.5048

3 8 2.3244e-06 1.5024
9 8.2115e-07 1.5011
7 2.9812e-06 1.5023

4 8 1.0532e-06 1.5011
9 3.7221e-07 1.5006
7 1.5981e-06 1.5014

5 8 5.6473e-07 1.5007
9 1.9961e-07 1.5004
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Fig. 5.4. p-version: solution with α = 0.5.

observed for all polynomial degrees r ≥ 1. This rate is computed in Table 5.2. It is of
the order of 1.5 for all r ≥ 1, thereby confirming the sharpness of the h-version result
in Corollary 3.9.

Since for α = 0.5 the solution u in (5.1) has a singularity at t = 0, the p-version
of the DG method can only be expected to yield algebraic rates of convergence, in
contrast to the test in section 5.1. Algebraic convergence behavior is indeed observed
in Figure 5.4, where we increase the polynomial degree r on the same time partitions
as above. The numerical convergence rates are shown in Table 5.3. In the context of
the p-version DG methods, these rates are defined as

κr = − log

(
e(r)

e(r − 1

)
/ log

(
r

r − 1

)
,

where e(r) denotes the L∞-error that is obtained for order r (on a fixed partition of
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Table 5.3

p-version: solution with α = 0.5.

r k = 1 k = 0.5 k = 0.25 k = 0.1
error κr error κr error κr error κr

41 5.2e-06 2.98 1.9e-06 2.98 6.5e-07 2.98 1.e-07 2.98
42 4.9e-06 2.99 1.7e-06 2.98 6.1e-07 2.98 1.5e-07 2.98
43 4.6e-06 2.98 1.6e-06 2.98 5.7e-07 2.98 1.4e-07 2.98
44 4.2e-06 2.98 1.5e-06 2.98 5.4e-07 2.98 1.4e-07 2.98
45 3.9e-06 2.99 1.4e-06 2.99 5.0e-07 2.98 1.3e-07 2.98
46 3.7e-06 2.99 1.3e-06 2.99 4.6e-07 2.98 1.2e-07 2.99
47 3.5e-06 2.99 1.2e-06 2.99 4.4e-07 2.99 1.1e-07 2.99
48 3.3e-06 2.99 1.2e-06 2.99 4.1e-07 2.99 1.0e-07 2.99
49 3.1e-06 2.99 1.1e-06 2.99 3.8e-07 2.99 9.7e-08 2.99
50 2.9e-06 2.99 1.0e-06 2.99 3.6e-07 2.99 9.2e-08 2.99
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Fig. 5.5. hp-version: solution with α = 0.5.

(0, 1)). We note that Corollary 3.9 ensures at least the order 0.5. However, rates of
order 3 are observed in Table 5.3. This indicates that the estimate in Corollary 3.9
is slightly suboptimal in the polynomial degree, as remarked in the discussion after
Corollary 3.9. In fact, we observe twice the rate that would correspond to the regu-
larity exponent 1.5 of the exact solution. This doubling phenomena is well-known in
p-version finite element methods for second-order boundary-value problems; see [17]
and the references therein. In our context, a theoretical explanation of this observation
remains an open problem.

Next, we consider the performance of the hp-version time-stepping method on the
basic geometric partitions M̂n,σ = {Im}n+1

m=1 of (0, 1) introduced in Definition 4.2. In
addition, we use linearly increasing polynomial degrees as described in Definition 4.6:
on time-step Im we set rm = 
μm� with a slope μ > 0. In Figure 5.5, we display the
errors against the square root of the number of degrees of freedom in the underlying
discretization space, for μ = 1 and various values of the grading factor σ. The straight
curves indicate exponential convergence for each grading factor σ, as predicted by
Theorem 4.7. It can further be seen that the grading σ = 0.3 gives the best results;
for example, they are several orders of magnitude better than those for σ = 0.5.
This is in contrast to the case of elliptic boundary-value problems, where the optimal



TIME-STEPPING FOR VOLTERRA EQUATIONS 243

2 4 6 8 10 12 14
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

dofs1/2

hp−version: α=0.5

er
ro

r 
in

 L
∞

(0
,1

)

μ=0.5
μ=1
μ=1.5
μ=2

Fig. 5.6. hp-version: solution with α = 0.5.

Table 5.4

h-version: solution with α = 0.99.

dofs error in L∞(0, 1)
5 1.2685e-02
9 1.1820e-03
14 6.9907e-05
20 1.7007e-05
27 9.3099e-06
35 3.1848e-06
44 9.8316e-07

choice of the grading is known to be given by σ ≈ 0.15, independently of the strength
of the singularity; see [17] and the references therein. In Figure 5.6, we show the
convergence curves for σ = 0.3 and several values of the slope parameter μ. The
exponential convergence rates are less sensitive to variations in this parameter and
good results are obtained for μ = 1.

Finally, we test the performance of the hp-version DG method for the prob-
lem (5.1) with α = 0.99. In view of the above discussions, we set σ = 0.3 and μ = 1.
In Table 5.4 it can be seen that with this particular choice, the hp-version gives an
L∞-error smaller than 1e−6 with less than 44 degrees of freedom. To obtain the same
error with the h-version approach on the meshes Mi from above and with r = 2, more
than 10, 000 degrees of freedom are needed. This clearly underlines the suitability of
hp-version approaches for the numerical approximation of the VIDE (1.1).

6. Concluding remarks. We conclude the paper by pointing out some exten-
sions and future work.

In applications it often happens that at least one of the functions f1 and f2

in (4.2) is only piecewise analytic on [0, T ]. According to the proof of Theorem 4.1
(cf. (4.4)) the corresponding solution u of (1.1) inherits this property: it is piecewise
analytic on [0, T ], with its second derivative unbounded at t = 0. If the points
in [0, T ] at which analyticity is lost are denoted by τ1, . . . , τl, it will be necessary to
geometrically grade the time-steps individually near each point τi, 1 ≤ i ≤ l, in order
to obtain exponential convergence.
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We mention in passing a related VIDE for which the above observation is relevant.
Let (1.1) be replaced by

u′(t) + a(t)u(t) +

∫ t

t−τ

kα(t− s)b(s)u(s) ds = f(t), t ∈ [0, T ],

u(t) = φ(t), t ≤ 0,

(6.1)

with delay τ > 0. It is well known (see, e.g., [2, section 7.1]) that, regardless of the
smoothness of the given functions, the solution u of (6.1) exhibits lower regularity at
the so-called primary discontinuity points {κτ}κ∈N0 induced by the delay τ . If φ, a,
b, f1, f2 are analytic on [0, T ], then u will be analytic on each interval (κτ, (κ + 1)τ ]
but only piecewise analytic on [0, T ].

As we mentioned in section 1, we shall study the exponential convergence of
the hp-version of the DG method for time-stepping in a (spatially semidiscretized)
parabolic partial VIDE (see [6]) in a forthcoming paper. Assume that such a partial
VIDE has the form

ut + Lu +

∫ t

0

kα(t− s)Bu(s) ds = f, t ∈ [0, T ], x ∈ Ω ⊂ R
d,(6.2)

where −L denotes a strongly elliptic (spatial) partial differential operator and where
B is given, for example, by B = Δ or by the scalar factor b(s, x). If Lh (= Lh(t)) and
Bh (= Bh(s)) denote discrete representations of L and B corresponding to a spatial
discretization of (6.2) with respect to a mesh Ωh of Ω, then (6.2) is approximated
by a system of ordinary VIDEs analogous to (1.1) in which the roles of a(t) and b(s)
are now assumed by the matrices Lh(t) and Bh(s). This suggests that our “scalar”
convergence analysis can in principle be extended to these systems of VIDEs. The
analysis hinges of course on appropriate regularity results for the solution of (6.2).

The situation becomes rather more difficult if we have L = 0 in (6.2) (see,
e.g., [13]): we note that the convergence properties of the hp-DG method for (1.1)
with a(t) ≡ 0 are not covered by our analysis and remain open.

Acknowledgments. The authors gratefully acknowledge the suggestion by one
of the referees that led to a more general version of Theorem 4.7.
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Abstract. This paper is the first in a series devoted to the approximation theory of the p-version
of the finite element method in three dimensions. In this paper, we introduce the Jacobi-weighted
Besov and Sobolev spaces in a three-dimensional setting and analyze the approximability of functions
in the framework of these spaces. In particular, the Jacobi-weighted Besov and Sobolev spaces with
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elliptic problems in polyhedral domains, where the singularities of three different types occur and
substantially govern the convergence of the finite element solutions.

Key words. p-version, finite element method, Jacobi-weighted Besov and Sobolev spaces, Jacobi
projection, vertex singularity, edge singularity, vertex-edge singularity
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1. Introduction. Since the late 1970s, the p-version of the finite element method
(FEM), which increases the degree of polynomials on a fixed mesh to obtain higher ac-
curacy, has been widely used in engineering computations. There are several commer-
cial and research codes based on the p- and hp-versions of the finite element method,
for example, MSC/PROBE (MacNeal Schwendler), Poly FEM (IBM), MECHANICA
(Rasna Corp.), PHLEX (Computational Mechanics), STRESSCHECK (Engineering
Software Research & Development), and STRIPE (Aeronautical Research Institute
of Sweden).

In 1980 it was shown that the p-version of FEM in two dimensions converges
at least as fast as the traditional h-version with quasi-uniform meshes, and that it
converges twice as fast as the h-version of FEM if the solution has a singularity of
rγ-type. Since then significant progress for the p-version in one and two dimensions
has been made in the past two decades. The estimation of the upper bound of the
approximation error in finite element solutions of the p-version in two dimensions
was analyzed in [5, 6], and a detailed analysis of the p-version in one dimension is
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available in [10]. Very recently, the author and his collaborators further developed
the approximation theory of the p-version of the FEM and the boundary element
method (BEM) in the framework of the Jacobi-weighted Besov and Sobolev spaces
[1, 2, 3, 4, 11, 12]. In this mathematical framework, the lower and upper bounds of
approximation error in FEM solutions of the p-version and in BEM solutions of p- and
hp-versions for problems in polygonal domains were proved, and the optimal rate of
convergence was mathematically established. The spectral method in the framework
of the Jacobi-weighted Sobolev spaces has been studied and was successfully applied
to singular differential equations [8, 13, 14].

In contrast to the p-version in one and two dimensions, the p-version of FEM in
three dimensions is much less developed due to the complexity of three-dimensional
problems. Because of a lack of effective mathematical tools and theory to deal with
the complexities of three-dimensional singularities in the 1980s and 1990s, only a
few results and a little analysis are available in the literature. The upper bounds in
approximation error of the p-version in three dimensions were discussed for problems
with singularities as a conjecture in [9] without proof and were analyzed in [15] for
problems with smooth solutions belonging to Hk(Ω), k > 2.

In this series of papers, we shall precisely characterize singularities and analyze
the approximation to singular functions as well as smooth functions in Hk(Ω), k > 1,
in the framework of the Jacobi-weighted Besov and Sobolev spaces, and we prove the
optimal convergence of the p-version of FEM for problems on polyhedral domains. In
the first paper of the series, we shall introduce the Jacobi-weighted Besov and Sobolev
spaces in three dimensions and derive the approximation results for functions in these
spaces; then we verify that singular functions of different types, which arise from
problems in polyhedral domains, belong to the corresponding Jacobi-weighted Besov
spaces and prove their approximability by high-order polynomials. Since the approx-
imation to functions in the Jacobi-weighted Besov and Sobolev spaces in one and
two dimensions can be generalized to three dimensions without substantial difficulty
and the approximability of singular functions follows from the general approxima-
tion properties for functions in the Jacobi-weighted Besov spaces and verification of
the singularities in appropriate Jacobi-weighted Besov spaces, the crucial part of the
paper is to prove that these singular functions belong to different Jacobi-weighted
Besov spaces which are precisely designed according to the nature of these singular
functions. It is well known that there are singularities of three different types in so-
lutions of problems with piecewise analytic data and on polyhedral domains which
severely govern the convergence of the FEM solution, namely, vertex singularity, edge
singularity, and vertex-edge singularity. Since the vertex-edge singularity occurs in
two directions and is anisotropic, the characterization of the vertex-edge singularity in
the Jacobi-weighted Besov spaces is very different from those for the two-dimensional
setting [1, 2, 3, 4] and for the vertex singularity and the edge singularity, which reflects
the major difficulty as well as significance of the paper. The main theorems of the
paper are Theorems 5.2 and 5.3, i.e., u(x) = ργ sinσ θ χ(ρ) Ψ(θ) Φ(φ) ∈ Bs,β

κ (Q) with
s = 2 + 2 min{σ, γ + (1 + β3)/2} + β1 + β2, the Jacobi weight β = (β1, β2, β3) with
βi > −1 arbitrary, and

κ =

{
0 if σ �= γ + (1 + β3)/2,
1/2 if σ = γ + (1 + β3)/2,

where Q = (−1, 1)3 and (ρ, θ, φ) are the spherical coordinates with respect to the
vertex (−1,−1,−1) and the vertical line L = {x = (x1, x2, x3) | x1 = x2 = −1, x3 ∈
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(−∞,∞)}, χ(ρ), Ψ(θ), and Φ(φ) are the usual C∞ cutoff functions. It follows
immediately from the approximability of functions in the space Bs,β

κ (Q) that

‖u− ψ‖L2(Q) ≤ Cp−(2+2 min{σ,γ+1/2})(1 + log p)κ

and

‖u− ϕ‖H1(R0) ≤ Cp−2 min{σ,γ+1/2} (1 + log p)κ

with

κ =

{
0 if σ �= γ + 1/2,
1/2 if σ = γ + 1/2,

where R0 denotes a conic subregion of Q which is the support of u, and ψ and
ϕ are the Jacobi projections of u on the space Pp(Q) of polynomials of degree ≤ p
associated with the Legendre weight β = (0, 0, 0) and the Chebyshev–Legendre weight
β = (−1/2,−1/2, 0), respectively. It is worth indicating that a logarithmic term
appears in the error estimation if σ = γ+1/2, although the function has no logarithmic
singularity. This unique feature in three dimensions is precisely explored by the
Jacobi-weighted space Bs,β

κ (Q), which is an interpolation space introduced by the
modified K-method. The results of this paper and forthcoming ones will significantly
improve the approximation theory of the p-version of FEM in three dimensions.

The scope of the paper is as follows. In section 2 we introduce the Jacobi-weighted
Besov spaces Bs,β

ν (Q) and Sobolev spaces Hs,β
ν (Q) with Q = (−1, 1)3, s > 0, and

integer ν ≥ 0, and derive error estimation of the Jacobi projections in the Jacobi-
weighted Sobolev norms. In section 3 we characterize the singularity and analyze the
approximability for singular functions of ργ logν ρ-type with γ > 0, ν ≥ 0 in terms
of the space Bs,β

ν∗ (Q). The singularity and approximability of singular functions of

rσ logμ r-type with σ > 0 and μ ≥ 0 in terms of the space Bs,β
μ∗ (Q) are analyzed

in section 4. Section 5 focuses on the characterization of singularities and the best
approximation in L2- and H1-norms for singular functions of the ργ sinσ θ-type and
ργ sinσ θ logν ρ logμ sin θ-type with γ, σ > 0 and integers ν, μ ≥ 0 in terms of the space
Bs,β

κ (Q). Some concluding remarks are given in the last section on the effectiveness of
the Jacobi-weighted Sobolev and Besov spaces by comparing the error estimations of
the h- and p-versions of FEM in terms of Besov and Sobolev spaces with and without
the Jacobi weights.

2. Jacobi-weighted Besov and Sobolev spaces. Let Q = I3 = (−1, 1)3,
and let α = (α1, α2, α3) and β = (β1, β2, β3) with integer αi ≥ 0 and real number
βi > −1, 1 ≤ i ≤ 3. We introduce a weight function

(2.1) wα,β(x) =

3∏
i=1

(
1 − x2

i

)αi+βi
,

which is referred to as the Jacobi weight. Obviously, the Jacobi polynomials and their
derivatives are orthogonal with the weight wα,β(x).

The Jacobi-weighted Sobolev space Hk,β(Q) with integer k is defined as a closure
of C∞ functions in the norm with the Jacobi weight

(2.2) ‖u‖2
Hk,β(Q) =

k∑
|α|=0

∫
Q

|Dαu|2 wα,β(x) dx,
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where Dαu = ux
α1
1 x

α2
2 ,x

α3
3

and |α| = α1 + α2 + α3. By |u|Hk,β(Q) we denote the
seminorm

|u|2Hk,β(Q) =
∑
|α|=k

∫
Q

|Dαu|2 wα,β(x) dx.

Let Bs,β
2,q (Q) be the interpolation spaces defined by the K-method

(H�,β(Q), Hk,β(Q))θ,q,

where 0 < θ < 1, 1 ≤ q ≤ ∞, s = (1 − θ)� + θk, � and k are integers, � < k, and

(2.3a) ‖u‖Bs,β
2,q (Q) =

(∫ ∞

0

t−qθ |K(t, u)|q dt
t

)1/q

, 1 ≤ q < ∞,

(2.3b) ‖u‖Bs,β
2,∞(Q) = sup

t>0
t−θ K(t, u),

where

(2.4) K(t, u) = inf
u=v+w

(
‖v‖H�,β(Q) + t‖w‖Hk,β(Q)

)
.

In particular, we are interested in the cases q = 2 and q = ∞. We shall write for
s ≥ 0 and q = 2

Hs,β(Q) = Bs,β
2,2 (Q) = (H�,β(Q), Hk,β(Q))θ,2

with 0 < θ < 1 and s = (1 − θ)� + θk. This space is called the Jacobi-weighted
Sobolev space with fractional order if s is not an integer. It has been proved that
Bs,β

2,2 (Q) = Hm,β(Q) if s is an integer m in two dimensions [1]; it can be proved
analogously in three dimensions.

For q = ∞, we shall write

Bs,β(Q) = Bs,β
2,∞(Q) = (H�,β(Q), Hk,β(Q))θ,∞,

which is referred to as the Jacobi-weighted Besov space. It is an exact interpolation
space of θ-exponent according to [7].

For the best approximation of the singular functions such as ργ logν ρ, ν > 0, we
need to introduce an interpolation space

Bs,β
ν (Q) = (H�,β(Q), Hk,β(Q))θ,∞,ν

with integer ν > 0 by a modified K-method,

(2.5) ‖u‖Bs,β
ν (Q) = sup

t>0

t−θK(t, u)

(1 + | log t|)ν .

Remark 2.1. The space Bs,β
0 (Q) = Bs,β(Q) is a standard exact interpolation

space of θ-exponent; all important properties of exact interpolation spaces such as
the reiteration theorem stand for Bs,β(Q). It has been shown [1] that the space
Bs,β

ν (Q) with ν > 0 is a uniform interpolation space, but not an exact one. Hence
many important properties of exact interpolation spaces do not hold for the space
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Bs,β
ν (Q) with ν > 0, for instance, the reiteration theorem. Fortunately a partial

reiteration theorem was proved which guarantees

(H�,β(Q), Hk,β(Q))θ,∞,ν = (H�′,β(Q), Hk′,β(Q))θ′,∞,ν

as long as (1 − θ)� + θk = (1 − θ′)�′ + θ′k′ = s. Hence the space Bs,β
ν (Q) is well

defined and does not depend on the individual values of � and k but only on their
combination (1 − θ)� + θk.

For the definition and properties of exact interpolation spaces of exponent θ, we
refer to [7]. For the partial reiteration theorem and various properties of uniform
interpolation space Bs,β

ν (Q) with integer ν > 0, we refer to [3].
Remark 2.2. For β1 = β2 = β3 = 0, the spaces Bs,β

ν (Q) are referred to as the
Legendre-weighted Besov spaces. They are referred to as the Chebyshev–Legendre-
weighted Besov spaces for β1 = β2 = −1/2, β3 = 0 and the Chebyshev-weighted Besov
spaces for β1 = β2 = −1/2, β3 > −1.

We next study the approximation properties for functions in the Jacobi-weighted
Sobolev spaces. Let Pp(Q) be a set of all polynomials of (separate) degree ≤ p. For
u ∈ Hk,β(Q), k ≥ 0, we have the Jacobi–Fourier expansion in H0,β(Q):

u(x) =

∞∑
i,j,k=0

Cijk Pi(x1, β1)Pj(x2, β2)Pk(x3, β3),

where

Pn(xi, βi) =
(1 − x2

i )
−β

2n n!

dn (1 − x2
i )

β+n

dxn

is the Jacobi polynomial of degree n in variable xi, 1 ≤ i ≤ 3. Then

up(x) =

p∑
i,j,k=0

Cijk Pi(x1, β1)Pj(x2, β2)Pk(x3, β3)

is the projection of u(x) on Pp(Q).
Proposition 2.1. Let u ∈ Hk,β(Q), and let up(x) be the projection of u(x)

on Pp(Q) in H0,β(Q). Then, up(x) is the projection on Pp(Q) in H�,β(Q) for all
0 ≤ � ≤ k, and

|up|2H�,β(Q) + |u− up|2H�,β(Q) = |u|2H�,β(Q).

Proof. The proposition was proved in [3] for two dimensions. The proof can be
carried over easily for one and three dimensions.

Due to Proposition 2.1, up is referred to as the Jacobi projection, for which we
have the following approximation property.

Theorem 2.2. Let u ∈ Hk,β(Q) with integer k ≥ 1, βi > −1, 1 ≤ i ≤ 3, and let
up be its H0,β(Q)-projection onto Pp(Q). Then we have for integer � ≤ k ≤ p + 1

(2.6) |u− up|H�,β(Q) ≤ C p−(k−�) |u|Hk,β(Q).

Proof. The proof for one and two dimensions can be carried here for three dimen-
sions; we will not give the details of the proof, but instead refer to [1].
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By a standard argument of interpolation spaces, we are able to generalize Theorem
2.2 to an approximation theorem for functions in the Jacobi-weighted Besov spaces
Bs,β(Q).

Theorem 2.3. Let u ∈ Bs,β(Q), s > 0, with βi > −1, 1 ≤ i ≤ 3, and let up be
the Jacobi projection of u on Pp(Q) with p > s− 1. Then for any real κ ∈ [0, s) there
holds

(2.7) ‖u− up‖Hκ,β(Q) ≤ C p−(s−κ) ‖u‖Bs,β(Q)

with a constant C independent of p.
Theorem 2.4. Let u ∈ Bs,β

ν (Q), s > 0, ν > 0, with βi > −1, 1 ≤ i ≤ 3, and let
up be the Jacobi projection of u on Pp(Q) with p > s−1. Then for any real κ ∈ [0, s),
there holds

(2.8) ‖u− up‖Hκ,β(Q) ≤ C p−(s−κ) (1 + log p)ν‖u‖Bs,β
ν (Q)

with a constant C independent of p.
The proof of Theorems 2.3 and 2.4 for integer κ can be found in [3], and the usual

argument of interpolation spaces leads to the estimations for noninteger κ.

3. Approximability of vertex-singular functions. Let Q = (−1, 1)3, and
let (ρ, θ, φ) be the spherical coordinates with respect to the vertex (−1,−1,−1) and
the vertical line L = {x = (x1, x2, x3) | x1 = x2 = −1, x3 ∈ (−∞,∞)} with ρ =

{
∑3

i=1(xi + 1)2}1/2, θ = arctan r
x3+1 = arctan

{(x1+1)2+(x2+1)2}1/2

x3+1 ∈ (0, π/2), and

φ = arctan x2+1
x1+1 ∈ (0, π/2). We now consider the singular functions with γ > 0,

(3.1) u(x) = ργ χ(ρ) Φ(θ, φ)

and

(3.2) v(x) = ργ logν ρχ(ρ) Φ(θ, φ)

with integer ν ≥ 0, where χ(ρ) and Φ(θ, φ) are C∞ functions such that for 0 < ρ0 < 1

χ(ρ) = 1 for 0 < ρ < ρ0/2, χ(ρ) = 0 for ρ > ρ0,

and

Φ(θ, φ) = 0 for (θ, φ) �∈ Sκ0 .

Hereafter, Sκ0 denotes a subset of the intersection of the unit sphere and Q such
that the angles between the radial A1 − x and the xi-axis are larger than κ0. For
0 < κ0 < π/4, let

R0 = Rρ0,κ0{x ∈ Q | 0 < ρ < ρ0, (θ, φ) ∈ Sκ0}

as shown in Figure 3.1. Then there hold for x ∈ R0

(3.3)

(2 − ρ0)(1 + xi) ≤
(
1 − x2

i

)
≤ 2(1 + xi), 1 ≤ i ≤ 3,

κ1 ≤ 1 + xi

1 + xj
≤ κ2, 1 ≤ i, j ≤ 3,

where κ2 = cotκ0 and κ1 = tanκ0. The functions defined in (3.1) and (3.2) reflect a
typical singularity, referred to as the vertex singularity, which occurs in the solutions
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Fig. 3.1. Cubic domain Q and subregion Rρ0,κ0 .

of problems on polyhedral domains and severely affects the convergence of the finite
element solution. Therefore, finding the best approximation to these singular func-
tions is essential for the error estimates of the finite element solutions for problems
with such singularities. It is worth indicating that the vertex singularity is isotropic,
and hence the most appropriate Jacobi-weighted Besov and Sobolev spaces for their
best approximation shall be isotropic as well.

3.1. Singular functions of ργ-type.
Theorem 3.1. Let u = ργ χ(ρ) Φ(θ, φ) as given in (3.1), and let β = (β1, β2, β3)

with βi > −1, 1 ≤ i ≤ 3, arbitrary. Then u ∈ Bs,β(Q) and u ∈ Hs−ε,β(Q) with

s = 2γ + 3 +
∑3

i=1 βi and ε > 0 arbitrary.
Proof. Let u1 = χδ(ρ)u and u2 = (1 − χδ(ρ))u with χδ(ρ) = χ(ρδ ) for δ ∈ (0, ρ0).

Then u = u1 + u2, u1 ∈ H0,β(Q) and u2 ∈ Hk,β(Q) for any k > 2γ + 3 +
∑3

i=1 βi. It
is easy to see that

(3.4) ‖u1‖2
H0,β(Q) ≤ Cδ2γ+3+

∑3

i=1
βi

and

(3.5) ‖u2‖2
Hk,β(Q) ≤ Cδ2γ+3−k+

∑3

i=1
βi .

Selecting δ = t
2
k , we have for t ∈ (0, 1)

K(t, u) ≤ Cδγ+(3+
∑3

i=1
βi)/2(1 + tδ−k/2)

≤ Cδγ+(3+
∑3

i=1
βi)/2 ≤ Ct

2γ+3+
∑3

i=1
βi

k ,

and for t ≥ 1, it always holds that

K(t, u) ≤ C‖u‖H0,β(Q).

Letting θ =
2γ + 3 +

∑3

i=1
βi

k , we have

sup
t>0

t−θ K(t, u) ≤ C,
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which implies that u ∈ (H0,β(Q), Hk,β(Q))θ,∞ =Bs,β(Q) with s= θk= 2γ + 3 +∑3
i=1 βi.

If θ =
2γ + 3 +

∑3

i=1
βi−ε

k = s−ε
k with ε > 0 arbitrary, then∫ 1

0

t−2θ|K(t, u)|2 dt
t

≤ C

∫ 1

0

t−1+2ε/kdt ≤ C,

which implies that u ∈ (H0,β(Q), Hk,β(Q))θ,2 = Hs−ε,β(Q).
The approximability of the singular function of ργ-type is a consequence of The-

orems 2.3 and 3.1.
Theorem 3.2. For u = ργ χ(ρ) Φ(θ, φ) given in (3.1), there exists ψ ∈ Pp(Q)

with p > 2 + 2γ such that

(3.6) ‖u− ψ‖L2(Q) ≤ Cp−(2γ+3) ‖u‖B2γ+3,β(Q)

with β = (0, 0, 0). Also, there exists ϕ ∈ Pp(Q), p > 1 + 2γ, such that

(3.7) ‖u− ϕ‖H1(R0) ≤ C‖u− ϕ‖H1,β(Q) ≤ Cp−(2γ+1) ‖u‖B2γ+2,β(Q)

with β = (−1/3,−1/3,−1/3).
Proof. By Theorem 3.1 u ∈ Bs,β(Q) with s = 2γ + 3 and β = (0, 0, 0). Due to

Theorem 2.2, the Jacobi projection ψ of u associated with the weight β = (0, 0, 0) on
Pp(Q) with p > 2 + 2γ satisfies

‖u− ψ‖L2(Q) = ‖u− ψ‖H0,β(Q) ≤ C p−(2γ+3) ‖u‖B2γ+3,β(Q).

For β = (−1/3,−1/3,−1/3), by Theorem 3.1, u ∈ Bs,β(Q) with s = 2γ + 2.
Owing to Theorem 2.3, it holds for the Jacobi projection ϕ of u associated with the
weight β = (−1/3,−1/3,−1/3) on Pp(Q) with p > 1 + 2γ that

|u− ϕ|H�,β(Q) ≤ C p−(2γ+2−�)‖u‖B2γ+2,β(Q)

for � = 0, 1. Note that

(3.8) ‖u− ϕ‖L2(Q) ≤ ‖u− ϕ‖H0,β(Q) ≤ Cp−(2γ+2) ‖u‖B2γ+2,β(Q).

Due to (3.3), for α with |α| = 1 and for x ∈ R0, there exist two constants C1 and C2

such that

(3.9) C1 ≤
∏

1≤i≤3

(
1 − x2

i

)αi−1/3 ≤ C2.

Then, we have∫
R0

|Dα(u− ϕ)|2 dx ≤ C

∫
R0

|Dα(u− ϕ)|2
∏

1≤i≤3

(1 − x2
i )

αi−1/3 dx

≤ C

∫
Q

|Dα(u− ϕ)|2
∏

1≤i≤3

(1 − x2
i )

αi−1/3 dx

≤ Cp−2(2γ+1) ‖u‖2
B2γ+2,β(Q),

which together with (3.8) leads to (3.7).
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3.2. Singular functions of ργ logν ρ-type. It can be proved that the singular
function v(x) = ργ logν ρχ(ρ) Φ(θ, φ), given in (3.2), belongs to the space Bs−ε,β(Q)

with s = 2γ + 3 +
∑3

i=1 βi and ε > 0 arbitrary. Consequently, the approximation
error will lose a rate of O(pε). To avoid such a loss, the modified Jacobi-weighted
Besov spaces will be the most appropriate spaces for the vertex-singular functions
with logarithmic terms to describe the nature of singularity and to explore the best
approximation.

Theorem 3.3. Let v(x) = ργ logν ρχ(ρ) Φ(θ, φ) as given in (3.2), and let β =
(β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3, arbitrary. Then v ∈ Hs−ε,β(Q), and v ∈
Bs,β

ν∗ (Q), with s = 2γ + 3 +
∑3

i=1 βi and ε > 0 arbitrary, and

(3.10) ν∗ =

{
max{ν − 1, 0} if γ is an integer,

ν if γ is not an integer.

Proof. Let v1 = χδ(ρ) v and v2 = (1 − χδ(ρ))v with χδ(ρ) = χ(ρδ ) for δ ∈ (0, ρ0).

Then v = v1 + v2, v1 ∈ H0,β(Q) and v2 ∈ Hk,β(Q) for any k > 2γ + 3 +
∑3

i=1 βi. It
is easy to see that

‖v1‖2
H0,β(Q) ≤ Cδ2γ+3+

∑3

i=1
βi | log δ|2ν

and

‖v2‖2
Hk,β(Q) ≤ Cδ2γ+3−k+

∑3

i=1
βi | log δ|2ν .

Selecting δ = t
2
k , we have for t ∈ (0, 1)

K(t, v) ≤ C(‖v1‖H0,β(Q) + t‖v2‖Hk,β(Q))

≤ Cδγ+(3+
∑3

i=1
βi)/2(1 + tδ−k/2)| log δ|ν

≤ Cδγ+(3+
∑3

i=1
βi)/2(1 + | log t|)ν .

For t ≥ 1, there hold

K(t, v) ≤ C‖v‖H0,β(Q)

and

sup
t>1

t−θK(t, v)

(1 + | log t|)ν ≤ C‖v‖H0,β(Q).

Letting θ =
2γ + 3 +

∑3

i=1
βi

k , we have

sup
0<t<1

t−θK(t, v)

(1 + | log t|)ν ≤ C,

which implies that v ∈ (H0,β(Q), Hk,β(Q))θ,∞,ν = Bs,β
ν (Q) with s = θk = 2γ +

3 +
∑3

i=1 βi. Arguing similarly as in the proof of Theorem 3.1, and selecting θ =
2γ + 3 +

∑3

i=1
βi−ε

k = s−ε
k with ε > 0 arbitrary, we have∫ 1

0

t−2θ|K(t, u)|2 dt
t

≤ C

∫ 1

0

t−1+2ε/k(1 + | log t|)νdt ≤ C,
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which implies u ∈ (H0,β(Q), Hk,β(Q))θ,2 = Hs−ε,β(Q).
If γ is an integer and the integer ν ≥ 1, we adopt a different decomposition of

v = v1 + v2 for δ ∈ (0, 1), namely,

v1 = ργ (logν ρ− logν(ρ + δ))χ(ρ) Φ(θ, φ)

and

v2 = ργ logν(ρ + δ)χ(ρ) Φ(θ, φ).

Then v1 ∈ H0,β(Q) and v2 ∈ Hk,β(Q) for any k > 2γ + 3 +
∑3

i=1 βi. Using the
arguments in [1, Theorem 3.9], we have

(3.11) ‖v1‖2
H0,β(Q) ≤ Cδ2γ+3+

∑3

i=1
βi | log δ|2(ν−1)

and

(3.12) ‖v2‖2
Hk,β(Q) ≤ Cδ2γ−k+3+

∑3

i=1
βi | log δ|2(ν−1).

Inequalities (3.11) and (3.12) lead to

K(t, v) ≤ Cδγ+(3+
∑3

i=1
βi)/2(1 + tδ−k/2)| log δ|ν−1

≤ Cδγ+(3+
∑3

i=1
βi)/2| log δ|ν−1

and

sup
0<t<1

t−θK(t, v)

(1 + | log t|)ν−1
≤ C

with δ = t
2
k and θ =

2γ + 3 +
∑3

i=1
βi

k . This implies that v ∈ Bs,β
ν−1(Q) with s =

2γ + 3 +
∑3

i=1 βi.
The precise characterization of singularity for the singular function of ργ logν ρ-

type given by Theorem 3.3 leads to the best approximation to the singular function
of this type. The following theorem is a consequence of Theorems 2.4 and 3.3.

Theorem 3.4. For v = ργ logν ρχ(ρ) Φ(θ, φ) as given in (3.2), there exists
ψ(x) ∈ Pp(Q) with p > 2 + 2γ such that

(3.13) ‖v − ψ‖L2(Q) ≤ Cp−(2γ+3) (1 + log p)ν
∗ ‖u‖B2γ+3,β

ν∗ (Q)

with β = (0, 0, 0). Also, there exists ϕ(x) ∈ Pp(Q) with p > 1 + 2γ such that

(3.14) ‖u− ϕ‖H1(R0) ≤ Cp−(2γ+2) (1 + log p)ν
∗ ‖u‖B2γ+2,β

ν∗ (Q)

with β = (−1/3,−1/3,−1/3). In both (3.13) and (3.14) ν∗ is given in (3.10).

Proof. By Theorem 3.3 v ∈ Bs,β
ν∗ (Q) with s = 2γ + 3 and β = (0, 0, 0). Due to

Theorem 2.2, the Jacobi projection ψ of u on Pp(Q) with p > 2 + 2γ associated with
the weight β = (0, 0, 0) satisfies

‖u− ψ‖L2(Q) = ‖u− ψ‖H0,β(Q) ≤ C p−(2γ+3) (1 + log p)ν
∗ ‖u‖B2γ+3,β

ν∗ (Q).
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For β = (−1/3,−1/3,−1/3), by Theorem 3.1, v ∈ Bs,β
ν∗ (Q) with s = 2 + 2γ.

Owing to Theorem 2.4, there holds for the Jacobi projection ϕ of u on Pp(Q) with
p > 1 + 2γ associated with the weight β = (−1/3,−1/3,−1/3)

(3.15) |u− ϕ|H�,β(Q) ≤ C p−(2γ+2−�) (1 + log p)ν
∗ ‖u‖B2γ+2,β

ν∗ (Q)

for � = 0, 1. Due to (3.9) and Theorem 2.4, we have for |α| = 1∫
R0

|Dα(u− ϕ)|2 dx ≤ C

∫
Q

|Dα(u− ϕ)|2
∏

1≤i≤3

(1 − x2
i )

αi−1/3dx

≤ Cp−2(2γ+2) (1 + log p)2ν
∗ ‖u‖2

B2γ+2,β

ν∗ (Q)
,

which together with (3.15) leads to (3.14).

4. Approximability of edge-singular functions. Let Q = (−1, 1)3, and let
(r, φ, x3) be the cylindrical coordinates with respect to the vertex (−1,−1,−1) and
the vertical line L = {x = (x1, x2, x3) | x1 = x2 = −1, x3 ∈ (−∞,∞)}. Let r =

{
∑2

i=1(xi + 1)2}1/2, and let φ = arctan x2 + 1
x1 + 1 ∈ (0, π/2).

We consider the singular function with σ > 0:

(4.1) u(x) = rσ χ(r) Φ(φ) Ψ(x3)

and

(4.2) v(x) = rσ logμ rχ(r) Φ(φ) Ψ(x3).

Here χ(r),Ψ(x3), and Φ(φ) are C∞ functions such that for 0 < r0 < 1

χ(r) = 1 for 0 < r < r0/2, χ(r) = 0 for r > r0,

and for 0 < φ0 < π/4

Φ(φ) = 0 for φ �∈ (φ0, π/2 − φ0),

and for 0 < z0 < 1/2

Ψ(x3) = 1 for x3 ∈ (−1 + 2z0, 1 − 2z0), Ψ(x3) = 0 for |x3| ≥ 1 − z0.

Obviously, u(x) and v(x) have a support Rr0,z0 = {x ∈ Q | 0 < r < r0, |x3| ≤
1 − z0} ⊂ Q. For 0 < φ0 < π/4, let

R0 = Rr0,φ0,z0 = {x ∈ Q | 0 < r < r0, φ0 ≤ φ ≤ π/2 − φ0, |x3| ≤ 1 − z0},
as shown in Figure 4.1. Then there hold for x ∈ R0

(4.3)

z0(2 − z0) ≤
(
1 − x2

3

)
≤ 1,

(2 − ρ0)(1 + xi) ≤
(
1 − x2

i

)
≤ 2(1 + xi), 1 ≤ i ≤ 2,

tanφ0 ≤ 1 + x2

1 + x1
≤ cotφ0.

The singular functions given in (4.1) and (4.2) reflect another typical singularity
in the solutions of problems in polyhedral domains and are referred to as the edge
singularity. The characterization of edge singularity in appropriate functional spaces
is critical to its approximability and the convergence of the finite element solutions.
Although the characterization and approximability of singular functions of rσ logμ r-
type in Q = (−1, 1)3 are similar to those of vertex singular functions of rγ logμ r-
type in two dimensions, it is worth pointing out that the edge singularity in three
dimensions is anisotropic and the vertex singularity in two dimensions is isotropic.
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Fig. 4.1. Cubic domain Q and subregion Rr0,φ0,z0 .

4.1. Singular functions of rσ-type.
Theorem 4.1. Let u(x) = rσ χ(r) Φ(φ) Ψ(x3) as given in (4.1), and let β =

(β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then u ∈ Bs,β(Q) and u ∈ Hs−ε,β(Q) with
s = 2σ + 2 + β1 + β2 and ε > 0 arbitrary.

Proof. Since u is smooth in the variable x3 and has a support Rr0,z0 in which (4.3)
holds and the factor (1 − x2

3)
α3+β3 is bounded from above and below, the arguments

for the vertex singular functions in two dimensions can be carried over here with a
minor modification. We will not repeat these here; see [1, Theorem 2.5] for details of
the proof.

Theorems 4.1 and 2.3 lead to the best approximation of the singular function u.
Theorem 4.2. For u(x) = rσ χ(r) Φ(φ) Ψ(x3) as given in (4.1), there exists

ψ(x) ∈ Pp(Q) with p > 1 + 2σ such that

(4.4) ‖u− ψ‖L2(Q) ≤ Cp−2(σ+1) ‖u‖B2σ+2,β(Q)

with β1 = β2 = 0 and β3 > −1 arbitrary. Also, there exists ϕ(x) ∈ Pp(Q) with p > 2σ
such that

(4.5) ‖u− ϕ‖H1(R0) ≤ C‖u− ϕ‖H1,β(Q) ≤ Cp−2σ ‖u‖B1+2σ,β(Q)

with β1 = β2 = −1/2 and β3 > −1 arbitrary.
Proof. Due to Theorem 4.1, u ∈ B2+2σ,β(Q) with β1 = β2 = 0 and β3 > −1

arbitrary. By Theorem 2.3, the Jacobi projection ψ of u associated with the weight
β = (−1/2,−1/2, β3) on Pp(Q) with p > 1 + 2σ satisfies (4.4).

For β1 = β2 = −1/2 and β3 > −1 arbitrary, u ∈ B1+2σ,β(Q). By Theorem 2.4 the
Jacobi projection ϕ of u associated with the weight β = (−1/2,−1/2, β3) on Pp(Q)
with p > 2σ satisfies

‖u− ϕ‖H�,β(Q) ≤ Cp−2σ−1+� ‖u‖B1+2σ,β(Q)

with � = 0, 1, which gives

(4.6) p‖u− ϕ‖L2(Q) +

∥∥∥∥∂(u− ϕ)

∂x3

∥∥∥∥
L2(Q)

≤ Cp−2σ ‖u‖B1+2σ,β(Q).
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Due to (4.3), there holds for α with
∑2

i=1 αi = 1 and for x ∈ R0, and there exist two
constants C1 and C2 such that

C1 ≤ (1 − x2
3)

αi+β3

∏
1≤i≤2

(1 − x2
i )

αi−1/2 ≤ C2,

which implies for |α| = 1 with α3 = 0

‖Dα(u− ϕ)‖L2(R0) ≤ C‖u− ϕ‖H1,β(Q) ≤ Cp−2σ ‖u‖B1+2σ,β(Q).

This together with (4.6) leads to (4.5).

4.2. Singular functions of rσ logμ r-type. For singularity with logarithmic
terms we need to use the modified Jacobi-weighted Besov spaces for the best approx-
imation.

Theorem 4.3. Let v(x) = rσ logμ r χ(r) Φ(φ) Ψ(x3) as given in (4.2), and let

β = (β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then v ∈ Bs,β
μ∗ (Q), and v ∈ Hs−ε,β(Q) with

s = 2σ + 2 + β1 + β2 and ε > 0 arbitrary and

(4.7) μ∗ =

{
max{μ− 1, 0} if γ is an integer,

μ if γ is not an integer.

Proof. For the same reason mentioned in the proof of Theorem 4.1, the arguments
for the vertex singular functions with the logarithmic term in two dimensions can be
carried over here; we refer to [1, Theorem 3.8] for noninteger σ and [1, Theorem 3.9]
for integer σ.

Theorem 4.3 gives a precise characterization of the singular function of rγ logμ r-
type, which avoids a loss of O(pε) in the approximation error.

Theorem 4.4. For v(x) = rσ logμ r χ(r) Φ(φ) Ψ(x3) as given in (4.2), there
exists ψ(x) ∈ Pp(Q), p > 1 + 2σ, such that

(4.8) ‖v − ψ‖L2(Q) ≤ Cp−(2σ+2)(1 + log p)μ∗ ‖v‖B2σ+2,β

μ∗ (Q)

with β1 = β2 = 0 and β3 > −1 arbitrary. Also, there exists ϕ(x) ∈ Pp(Q), p > 2σ,
such that

(4.9) ‖v − ϕ‖H1(R0) ≤ C‖v − ϕ‖H1,β(Q) ≤ Cp−2σ(1 + log p)μ
∗ ‖v‖B1+2σ,β

μ∗ (Q)

with β1 = β2 = −1/2 and β3 > −1 arbitrary. In both (4.8) and (4.9) μ∗ is given in
(4.7).

Proof. The approximability of the singular function v is the consequence of The-
orems 2.4 and 4.3. We will not elaborate details of the proof, which are similar to
those of Theorems 3.4 and 4.2.

5. Approximability of vertex-edge singular functions. Let Q = (−1, 1)3,
and let (ρ, θ, φ) be the spherical coordinates with respect to the vertex (−1,−1,−1)
and the vertical line L = {x = (x1, x2, x3) | x1 = x2 = −1, x3 ∈ (−∞,∞)} as in
section 3.

We now consider the singular functions with real γ, σ > 0 and integers ν, μ ≥ 0,

(5.1) u(x) = ργ sinσ θ χ(ρ) Ψ(θ) Φ(φ)



p-VERSION OF FEM IN THREE DIMENSIONS 259

- 1

- 1 X

X

1

3

X2

1

1O

R0

φ

φ

0

0

ρ0

Fig. 5.1. Cubic domain Q and subregion Rρ0,φ0,θ0 .

and

(5.2) v(x) = ργ logν ρ sinσ θ logμ sin θ χ(ρ) Ψ(θ) Φ(φ),

where ρ = {(x1+1)2+(x2+1)2+(x3+1)2}1/2, χ(ρ) and Φ(φ) are C∞ cutoff functions
defined in sections 3 and 4 with 0 < ρ0 < 1, respectively, and Ψ(θ) is a C∞ function
such that for θ0 ∈ (0, π/2)

Ψ(θ) = 1 for 0 ≤ θ ≤ θ0/2, Ψ(θ) = 0 for θ ≥ θ0.

For 0 < φ0 < π/4, let

R0 = Rρ0,θ0,φ0
= {x ∈ Q | 0 < ρ < ρ0, θ ∈ (0, θ0), φ ∈ (φ0, π/2 − φ0)}

as shown in Figure 5.1. Then there hold for x ∈ R0

(5.3)

(2 − ρ0)(1 + xi) ≤ (1 − x2
i ) ≤ 2(1 + xi), 1 ≤ i ≤ 3,

1 + x3

1 + xi
≥ cot θ0, 1 ≤ i ≤ 2,

tanφ0 ≤ 1 + x2

1 + x1
≤ cotφ0.

Obviously, u has a support Rρ0,θ0,φ0 = {x ∈ Q | 0 < ρ < ρ0, θ ∈ (0, θ0)} ⊂ Q.

The singularity of the functions given in (5.1) and (5.2) is the well-known vertex-
edge singularity for problems on polyhedral domains, which reflect the major dif-
ficulties in characterization of the singularity and analysis of the approximability.
They combine the vertex and edge singularities and are anisotropic. The combi-
nation of two types of singularities makes the analysis totally different from those
in a two-dimensional setting and from those in the previous two sections for the
vertex-singularity and the edge-singularity in three dimensions. Designing the Jacobi-
weighted Besov spaces and proving the regularities in these spaces for the best ap-
proximation are extremely difficult and elegant.
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5.1. Singular functions of ργ sinσ φ-type.
Lemma 5.1. Let u(x) = ργ sinσ θ χ(ρ) Ψ(θ) Φ(φ) as given in (5.1). Then u ∈

Hs,β(Q) with βi > −1, 1 ≤ i ≤ 3, for s < 2 + 2 min{γ + (1 + β3)/2, σ} + β1 + β2.
Proof. Note that

(5.4) |Dαu| ≤ Cργ−|α|| sin θ|σ−α1−α2 ,

which implies that for |α| < 2 + 2 min{γ + (1 + β3)/2, σ} + β1 + β2∫
Q

|Dαu|2
3∏

i=1

(
1 − x2

i

)αi+βi
dx

≤ C

∫
R0

ρ2γ−|α|+2+
∑3

i=1
β1 | sin θ|2σ−α1−α2+1+

∑2

i=1
βidρ dθ dφ < ∞.

This proves the lemma for integer s = k. By a typical argument of interpolation
spaces we are able to prove the lemma for noninteger s in general.

Theorem 5.2. Let u(x) = ργ sinσ θ χ(ρ) Ψ(θ) Φ(φ) as given in (5.1), and let
β = (β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then u ∈ Hs−ε,β(Q) and u ∈ Bs,β

κ (Q) with
s = 2 + 2 min{σ, γ + (1 + β3)/2} + β1 + β2, ε > 0 arbitrary, and

(5.5) κ =

{
0 if σ �= γ + (1 + β3)/2,
1/2 if σ = γ + (1 + β3)/2.

Proof. Since r = ρ sin θ = {(1 + x1)
2 + (1 + x2)

2}1/2, we write

u(x) = ργ−σ rσ χ(ρ) Φ(φ) Ψ(θ),

and estimate (5.4) can be written as

(5.6) |Dαu(x)| ≤ Cργ−|α|| sin θ|σ−α1−α2 ≤ C(1 + x3)
γ−σ−α3 rσ−α1−α2 .

By ϕδ(r) we denote a C∞ function such that ϕδ(r) = 1 for r < δ and ϕδ(r) = 0 for
r > 2δ with 0 < δ < ρ0/2. Let u1 = ϕδ(r)u and u2 = (1−ϕδ(r))u. Then u1 ∈ H0,β(Q)
due to Lemma 5.1, and u2 ∈ Hk,β(Q) for any k > 2+2 max{γ+(1+β3)/2, σ}+β1+β2.

Let Rρ0,θ0 be the projection of Rρ0,θ0,φ0 on the r-x3 plane,

Rρ0,θ0 = {(r, x3) | r cot θ0 ≤ (1 + x3) ≤ (ρ2
0 − r2)1/2, 0 ≤ r ≤ ρ0 sin θ0},

and by T1 and T2 we denote the triangular and rectangular regions in the r-x3 plane,
respectively,

T1 = {(r, x3) | r cot θ0 ≤ 1 + x3 ≤ 2δ cot θ0, 0 ≤ r ≤ 2δ}

and

T2 = {(r, x3) | 2δ cot θ0 ≤ 1 + x3 ≤ ρ0, 0 ≤ r ≤ 2δ}

as shown in Figure 5.2. Obviously, Supp.u1 ⊂ T1 ∪ T2.
Due to (5.6) there holds

(5.7)

‖u1‖2
H0,β(Q) =

∫
Rρ0,θ0,φ0,

|ϕδu|2ρ
∑3

i=1
βi | sin θ|β1+β2 dx

≤ C

∫
T1∪T2

(1 + x3)
2(γ−σ)+β3 r2σ+1+β1+β2 dr dx3.
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Fig. 5.2. Regions T1, T2, and Rρ0,θ0 .

Letting x̃3 = x3 + 1, we have by a simple calculation

(5.8)

∫
T1

(1 + x3)
2(γ−σ)+β3 r2σ+1+β1+β2drdx3

≤ C

∫ 2δ cot θ0

0

x̃
2(γ−σ)+β3

3 dx̃3

∫ x̃3tanθ0

0

r2σ+1+
∑2

i=1
βidr

≤ Cδ2γ+
∑3

i=1
βi+3.

We also have for σ �= γ + (1 + β3)/2

(5.9)

∫
T2

(1 + x3)
2(γ−σ)+β3 r2σ+1+β1+β2 dr dx3

≤ C

∫ 2δ

0

r2σ+1+β1+β2 dr

∫ ρ0

2δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

≤ C(δ2γ+3+
∑3

i=1
βi + δ2σ+2+β1+β2),

and for σ = γ + (1 + β3)/2

(5.10)

∫
T2

(1 + x3)
2(γ−σ)+β3 r2σ+1+β1+β2 dr dx3

≤ C

∫ 2δ

0

r2σ+1+β1+β2dr

∫ ρ0−1

2δ cot θ0−1

(1 + x3)
2(γ−σ)+β3 dx3

≤ C(1 + | log δ|)δ2σ+2+β1+β2 ,

which together with (5.7)–(5.10) yields

(5.11) ‖u1‖2
H0,β(Q) ≤ C(1 + | log δ|)2κδ2+2 min{γ+(1+β3)/2,σ}+β1+β2

with κ given in (5.5).
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We next estimate ‖u2‖Hk,β(Q). Note that

∂ku2

∂xk
1

= (1 − ϕδ)
∂ku

∂xk
1

−
k−1∑
l=0

(k
l

) ∂lu

∂xl
1

∂k−lϕδ

∂xk−l
1

,

and for 0 ≤ l ≤ k ∣∣∣∣∂k−lϕδ

∂xk−l
1

∣∣∣∣ ≤ Cδ−(k−l).

Let

T3 = {(r, x3) | r cot θ0 ≤ 1 + x3 ≤ ρ0, δ ≤ r ≤ ρ0 tan θ0}

as shown in Figure 5.3. Obviously, Supp.(1 − ϕδ)
∂ku
∂xk

1

and Supp.∂
k−lϕδ

∂xk−l
1

are contained
in T3 for 0 ≤ l < k. It is seen that∫

Q

∣∣∣∂ku2

∂xk
1

∣∣∣2(1 − x2
1)

k+β1

3∏
i=2

(1 − x2
i )

βidx

≤ C

∫
R0

(∣∣∣∂ku

∂xk
1

∣∣∣2 |1 − ϕδ|2 +

k−1∑
l=0

∣∣∣ ∂lu

∂xl
1

∣∣∣2∣∣∣∂k−lϕδ

∂xk−l
1

∣∣∣2ρk+
∑3

i=1
βi | sin θ|k+β1+β2

)
dx.

Due to (5.6) there hold

(5.12)

∫
R0

∣∣∣∂ku

∂xk
1

∣∣∣2|ϕδ|2ρk+
∑3

i=1
βi | sin θ|k+β1+β2dx

≤ C

∫
T3

(1 + x3)
2(γ−σ)−k+β3 r2σ+1−k+β1+β2 dr dx3

≤ C

∫ ρ0

δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

∫ x̃3 tan θ0

δ

r2σ+1−k+β1+β2 dr

≤ C(1 + | log δ|)2κδ2γ+3−k+
∑3

i=1
βi
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and, for l < k,

(5.13)

∫
R0

∣∣∣∣ ∂lu

∂xl
1

∣∣∣∣2
∣∣∣∣∂k−lϕδ

∂xk−l
1

∣∣∣∣2ρk+
∑3

i=1
βi | sin θ|k+β1+β2dx

≤ Cδ−2(k−l)

∫ 2δ cot θ0

δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

∫ x̃3 tan θ0

δ

r2(σ−l)+1+k+β1+β2dr

≤ Cδ2(σ+1)+β1+β2−k

∫ 2δ cot θ0

δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

≤ C(1 + | log δ|)2κδ2γ+
∑3

i=1
βi+3−k.

A combination of (5.12) and (5.13) leads to

∫
Q

∣∣∣∂ku2

∂xk
1

∣∣∣2(1 − x2
1

)k+β1

2∏
i=1

(
1 − x2

i

)βi
dx ≤ C| log δ|2κδ2γ+

∑3

i=1
βi+3−k.

The estimate on ∂ku2

∂xk
3

can be carried out similarly. Due to (5.6) there hold

∣∣∣∣∂ku2

∂xk
3

∣∣∣∣ =

∣∣∣∣ϕδ
∂ku

∂xk
3

∣∣∣∣ ≤ C(1 + x3)
γ−σ−k rσ

and ∫
Q

∣∣∣∣∂ku2

∂xk
3

∣∣∣∣2 2∏
i=1

(
1 − x2

i

)βi
(
1 − x2

3

)k+β3
dx

≤ C

∫
T3

∣∣∣∂ku

∂xk
3

∣∣∣2ρk+
∑3

i=1
βi | sin θ|β1+β2dx

≤ C

∫ ρ0 tan θ0

δ

r2σ+1+β1+β2dr

∫ ρ0

r cot θ0

x̃
2(γ−σ)−k+β3

3 dx̃3

≤ Cδ2γ+3−k+
∑3

i=1
βi .

We can treat all terms of Dαu2 with |α| ≤ k in a similar way, which gives for
k > 2 max{σ, γ + 1/2 + β3} + 2 + β1 + β2

(5.14) ‖u2‖2
Hk,β(Q) ≤ C(1 + | log δ|)2κδ2γ+

∑3

i=1
βi+3−k.

Therefore, we have by (5.11) and (5.14)

K(t, u) = inf
u=v+w

{‖v‖H0,β(Q) + t ‖w‖Hk,β(Q)}

≤ C(‖u1‖H0,β(Q) + t ‖u2‖Hk,β(Q))

≤ C(1 + | log δ|)κδ1+min{γ+(1+β3)/2,σ}+β1/2+β2/2(1 + t δ−k/2).

Selecting δ = t2/k, we have for 0 < t < 1

K(t, u) ≤ C(1 + | log t|)κt
2+2 min{γ+(1+β3)/2,σ}+β1+β2

k .
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For t ≥ 1, it always holds that

K(t, u) ≤ C‖u‖H0,β(Q).

Choosing θ = 2 + 2 min{γ + (1 + β3)/2,σ}+ β1 + β2

k , we have

sup
t>0

t−θ K(t, u)

(1 + | log t|)κ ≤ C,

which implies that u ∈
(
H0,β(Q), Hk,β(Q)

)
θ,∞,κ

= Bs,β
κ (Q) with s = θk = 2 min{γ +

(1 + β3)/2, σ} + β1 + β2 and κ given in (5.10).

Selecting θ = 2 + 2 min{γ+(1+β3)/2,σ}+β1+β2−ε
k = s−ε

k with ε > 0 arbitrary gives for
either σ = γ + (1 + β3)/2 or σ �= γ + (1 + β3)/2∫ ∞

0

t−2θ|K(t, u)|2 dt
t

≤ C,

which implies that u ∈
(
H0,β(Q), Hk,β(Q)

)
θ,2

= Hs−ε,β(Q).

A combination of Theorems 5.2 and 2.3–2.4 leads to the approximability of the
singular function of ργ sinσ φ-type.

Theorem 5.3. There exists ψ(x) ∈ Pp(Q) with p > 1 + 2 min{σ, γ + 1/2} such
that for β = (0, 0, 0) and s = 2 + 2 min{σ, γ + 1/2}

(5.15) ‖u− ψ‖L2(Q) ≤ Cp−(2+2 min{σ,γ+1/2}) ‖u‖Bs,β(Q)

if σ �= γ + 1/2, and

(5.16) ‖u− ψ‖L2(Q) ≤ Cp−(2+2 min{σ,γ+1/2})(1 + log p)1/2 ‖u‖Bs,β

1/2
(Q).

Also, there exists ϕ(x) ∈ Pp(Q) with p > 2 min{σ, γ + 1/2} such that for β =
(−1/2,−1/2, 0) and s = 1 + 2 min{σ, γ + 1/2}

(5.17) ‖u− ϕ‖H1(R0) ≤ Cp−2 min{σ,γ+1/2} ‖u‖Bs,β(Q)

if σ �= γ + 1/2, and

(5.18) ‖u− ϕ‖H1(R0) ≤ Cp−2σ(1 + log p)1/2 ‖u‖Bs,β

1/2
(Q)

if σ = γ + 1/2.
Proof. For β = (0, 0, 0), Theorem 5.2 indicates that u ∈ Bs,β(Q) if σ �= γ + 1/2

and u ∈ Bs,β
1/2(Q) if σ = γ + 1/2 with s = 2 + 2 min{σ, γ + 1/2}. Due to Theorems

2.3–2.4, the Jacobi projection ψ of u associated with the weight β = (0, 0, 0) on Pp(Q)
with p > 1 + 2 min{σ, γ + 1/2} satisfies (5.14) and (5.15).

Also for β = (−1/2,−1/2, 0), Theorem 5.2 tells us that u ∈ Bs,β(Q) if σ �= γ+1/2

and u ∈ Bs,β
1/2(Q) if σ = γ + 1/2 with s = 1 + 2 min{σ, γ + 1/2}. Due to Theorems

2.3–2.4, the Jacobi projection ϕ of u associated with the weight β = (−1/2,−1/2, 0)
on Pp(Q) with p > 2 min{σ, γ + 1/2} satisfies for � = 0, 1

(5.19) |u− ϕ|H�,β(Q) ≤ Cp−(2 min{σ,γ+1/2}+1−�) ‖u‖Bs,β(Q)

if σ �= γ + 1/2, and

(5.20) |u− ϕ|H�,β(Q) ≤ Cp−(2 min{σ,γ+1/2}+1−�)(1 + log p)1/2 ‖u‖Bs,β

1/2
(Q)
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if σ = γ + 1/2. Note that

(5.21) |u− ϕ|L2(Q) ≤ C|u− ϕ|H0,β(Q).

Due to (5.3), there holds for x ∈ R0 = Rρ0,θ0,φ0 and |α| = 1

(5.22)

2∏
i=1

(1 − x2
i )

αi−1/2
(
1 − x2

3

)α3 ≥ C1,

where the positive constants C1 is independent of x. This implies that for |α| = 1∫
R0

|Dα(u− ϕ)|2 dx

≤ C

∫
R0

|Dα(u− ϕ)|2
2∏

i=1

(
1 − x2

i

)αi−1/2(
1 − x2

3

)α3
dx

≤ C|u− ϕ|2H1,β(Q),

which together with (5.19)–(5.21) leads to (5.17) and (5.18), completing the proof.

5.2. Singular functions of ργ logν ρ sinσ θ logμ sin θ-type. Since the func-
tion given in (5.2) can be written as

v(x) = ργ−σ rσ logν ρ (log ρ− log r)μ χ(ρ) Ψ(θ) Φ(φ)

= ργ−σ rσ logν ρχ(ρ) Ψ(θ) Φ(φ)

μ∑
l=0

(μ
l

)
(−1)μ−l logl ρ logμ−l r,

we need to analyze the functions of this type

w(x) = ργ−σ rσ logν+l ρ logμ−l r χ(ρ) Ψ(θ) Φ(φ)

= ργ−σ rσ logν
′
ρ logμ

′
r χ(ρ) Ψ(θ) Φ(φ)

with ν′, μ′ ≥ 0.
Theorem 5.4. Let β = (β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then w ∈

Hs−ε,β(Q) and w(x) ∈ Bs,β
κ′ (Q) with s = 2+2 min{γ +(1+β3)/2, σ}+β1 +β2, ε > 0

arbitrary, and

(5.23) κ′ =

⎧⎨
⎩
μ′ if σ < γ + (1 + β3)/2,
μ′ + ν′ + 1/2 if σ = γ + (1 + β3)/2,
μ′ + ν′ if σ > γ + (1 + β3)/2.

Proof. We decompose the function into w = w1 + w2 with w1 = ϕδ(r)u and
w2 = (1− ϕδ(r))w, where ϕδ(r) is a C∞ function defined as in the proof of Theorem
5.2. It is easy to verify that w1 ∈ H0,β(Q) and w2 ∈ Hk,β(Q) for any k > 2 +
2 max{γ + (1 + β3)/2, σ} + β1 + β2.

Let Rρ0,θ0 , Ti, 1 ≤ i ≤ 3, be the regions defined as in the previous section and
shown in Figure 5.2–5.3. There holds

(5.24)

‖w1‖2
H0,β(Q) =

∫
Rρ0,θ0,φ0,

|ϕδw|2ρ
∑3

i=1
βi | sin θ|β1+β2dx

≤ C

∫
T1∪T2

(1 + x3)
2(γ−σ)+β3 log2ν′

(1 + x3) r
2σ+1+β1+β2 log2μ′

r dr dx3.
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Letting x̃3 = x3 + 1, as an analogue to estimates (5.7), we have

(5.25)∫
T1

(1 + x3)
2(γ−σ)+β3 log2ν′

(1 + x3) r
2σ+1+β1+β2 log2μ′

r dr dx3

≤ C

∫ 2δ cot θ0

0

x̃
2(γ−σ)+β3

3 log2ν′
x̃3 dx̃3

∫ x̃3 tan θ0

0

r2σ+1+β1+β2 log2μ′
r dr

≤ C

∫ 2δ cot θ0

0

x̃
2γ+2+

∑3

i=1
βi

3 log2(ν′+μ′) x̃3 dx̃3

≤ Cδ2γ+
∑3

i=1
βi+3(1 + | log δ|)2(ν′+μ′).

Analogously to (5.8)–(5.10) we have, for σ �= γ + (1 + β3)/2,

(5.26)

∫
T2

(1 + x3)
2(γ−σ)+β3 log2ν′

(1 + x3) r
2σ+1+β1+β2 log2μ′

r dr dx3

≤ C

∫ 2δ

0

r2σ+1+β1+β2 log2μ′
r dr

∫ ρ0

2δ cot θ0

x̃
2(γ−σ)+β3

3 log2ν′
x̃3 dx̃3

≤ C(1 + δ2(γ−σ)+1+β3 | log δ|2ν′
)δ2σ+2+β1+β2 | log δ|2μ′

≤ C(δ2γ+3+
∑3

i=1
βi | log δ|2(ν′+μ′) + δ2σ+2+β1+β2 | log δ|2μ′

),

and, for σ = γ + (1 + β3)/2,

(5.27)

∫
T2

(1 + x3)
2(γ−σ)+β3 log2ν′

(1 + x3) r
2σ+1+β1+β2 log2μ′

r dr dx3

≤ C

∫ 2δ

0

r2σ+1+β1+β2 log2μ′
r dr

∫ ρ0

2δ cot θ0

x̃−1
3 log2ν′

x̃3 dx̃3

≤ C(1 + | log δ|)2ν′+1)δ2σ+2+β1+β2 | log δ|2μ′

≤ C| log δ|2(ν′+μ′)+1 δ2σ+2+β1+β2 .

Combining (5.25)–(5.27) yields

(5.28) ‖w1‖2
H0,β(Q) ≤ C| log δ|2κ′

δ2+2 min{σ,γ+(1+β3)/2}+β1+β2 .

Similarly we have the following estimate on ‖w2‖2
Hk,β(Q):

(5.29) ‖w2‖2
Hk,β(Q) ≤ C| log δ|2κ′

δ2+2 min{σ,γ+(1+β3)/2}+β1+β2−k.

It follows from (5.28) and (5.29) that

K(t, w) ≤ C| log δ|κ′
δ1+min{σ,γ+(1+β3)/2}+β1/2+β2/2 (1 + tδ−k/2).

Selecting δ = t2/k and θ = 2 + 2 min{γ + (1 + β3)/2,σ}+ β1 + β2

k , we have for 0 < t < 1

t−θK(t, u)

(1 + | log t|)κ′ ≤ C,
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which implies the desired characterization of the singularity of the function w(x) in

the spaces Bs,β
κ′ (Q) with s = 2 + 2 min{γ + (1 + β3)/2, σ} + β1 + β2 and κ′ given in

(5.22).

Selecting θ = 2 + 2 min{γ + (1 + β3)/2,σ}+ β1 + β2−ε
k = s−ε

k with ε > 0 arbitrary, we
have ∫ ∞

0

t−2θ|K(t, u)|2 dt
t

≤ C,

which implies u ∈
(
H0,β(Q), Hk,β(Q)

)
θ,2

= Hs−ε,β(Q).

The following theorem on the characterization of singularity of the function v(x)
is a corollary of Theorem 5.4.

Theorem 5.5. Let v(x) be given as in (5.2), and let βi > −1, 1 ≤ i ≤ 3. Then
w ∈ Hs−ε,β(Q) and v(x) ∈ Bs,β

κ (Q) with s = 2 + 2 min{γ + (1 + β3)/2, σ} + β1 + β2,
ε > 0 arbitrary, and

(5.30) κ =

⎧⎨
⎩
μ if σ < γ + (1 + β3)/2,
μ + ν + 1/2 if σ = γ + (1 + β3)/2,
μ + ν if σ > γ + (1 + β3)/2.

Characterization of singularity of the function v(x) by Theorem 5.5 and the ap-
proximation property described in Theorem 2.4 give the approximability of v(x).

Theorem 5.6. Let v(x) be given in (5.2). Then there exists ψ(x) ∈ Pp(Q) with
p > 1 + 2 min{σ, γ + 1/2} such that for β = (0, 0, 0) and s = 2 + 2 min{σ, γ + 1/2}

(5.31) ‖v − ψ‖L2(Q) ≤ Cp−(2+2 min{σ,γ+1/2})(1 + log p)κ ‖u‖Bs,β
κ (Q).

Also, there exists ϕ(x) ∈ Pp(Q) with p > 2 min{σ, γ + 1/2} such that for β = (−1/2,
−1/2, 0) and s = 1 + 2 min{σ, γ + 1/2}

(5.32) ‖v − ϕ‖H1(R0) ≤ Cp−2 min{σ,γ+1/2}(1 + log p)κ ‖u‖Bs,β
κ (Q).

κ in (5.31) and (5.32) is given in (5.30).

Proof. By Theorem 5.5 v(x) ∈ B
2 min{γ+1/2,σ}+2,β
κ (Q) with κ specified by (5.30),

in particular, for β = (0, 0, 0) and β = (−1/2,−1/2, 0).
Applying Theorem 2.4 with β = (0, 0, 0) leads immediately to (5.31). Applying

Theorem 2.4 with β = (−1/2,−1/2, 0) and arguing as in the proof of Theorem 5.3 we
can easily obtain (5.32). Actually, ψ and ϕ are the Jacobi projection of v associated
with the weight β = (0, 0, 0) on Pp(Q) with p > 1 + 2 min{σ, γ + 1/2} and with the
weight β = (−1/2,−1/2, 0) on Pp(Q) with p > 2 min{σ, γ + 1/2}, respectively.

Remark 5.1. κ given in (5.30) reduces to (5.6) if ν = μ = 0. κ depends on ν and μ,
but also on the relation between γ and σ. When σ = γ + (1 + β3)/2, v(x) ∈ Bs,β

κ (Q)
with κ increased by an extra value of 1/2. Consequently, an extra loss of a factor
(1 + log p)1/2 occurs in the error estimate (5.31) and (5.32), which was mentioned
in [16] for the p-version of BEM. Whether the extra value of 1/2 can be removed or
not is an open question for further investigation. Fortunately, the extra value of 1/2
appears in κ, not in s.

6. Concluding remarks. The singularities of singular functions in three di-
mensions and their approximabilities have been analyzed in the framework of the
Jacobi-weighted Besov and Sobolev spaces. To precisely characterize the singular-
ities and investigate the approximabilities for singular functions of three different
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types, Jacobi-weighted Besov and Sobolev spaces associated with three different Ja-
cobi weights are elegantly designed. The most difficult as well as most significant work
is the characterization of the functions with the singularity of ργ logν ρ sinσ θ logμ sin θ-
type in the Besov space Bs,β

κ (Q) with κ given in (5.30). The singularity of this type
is anisotropic and totally different from the singularity in two dimensions. The key
for success is the decomposition of the singular function with a cutoff function ϕδ(r),
instead of ϕδ(ρ) and ϕδ(θ), although the singularity appears in ρ and θ. After hav-
ing tried various decompositions we are convinced that only this decomposition can
lead to our desired results. For the best approximation of these singular functions
we select different weights, namely, β = (−1/3,−1/3,−1/3), β = (−1/2,−1/2, β3),
β = (−1/2,−1/2, 0), respectively. We are also convinced that only this selection can
give us the best error estimation in L2- and H1-norms. Once the weights are properly
selected the approximation results follow in a natural way. Our approach for error
estimation for singular functions is different from the usual approach, namely, we do
not directly analyze approximation of singular functions, but verify that they belong
to certain Jacobi-weighted Besov spaces.

Table 6.1

The value of k and s in Sobolev, Besov, and Jacobi-weighted Besov spaces for functions of
ργ , rσ , ργ sinσ θ-type.

Space Hk(Q) Hs(Q) Bs(Q) Hk,β(Q) Bs,β(Q)

ργ 3/2 + [γ] 3/2 + γ − ε 3/2 + γ 2 + 2γ − ε 2 + 2γ

rσ 1 + [σ] 1 + σ − ε 1 + σ 1 + 2σ − ε 1 + 2σ

ργ sinσ θ 1 + [λ] 1 + λ− ε 1 + λ 1 + 2λ− ε 1 + 2λ

Table 6.2

Accuracy of approximation in H1-norm to singular functions of ργ , rσ , ργ sinσ θ-type by the h-
and p-versions based on Sobolev, Besov, and Jacobi-weighted Besov spaces.

h-version p-version

Space Hs(Q) Bs(Q) Hs(Q) Bs(Q) Bs,β(Q)

ργ h1/2+γ−ε h1/2+γ+1/2 p−(1/2+γ−ε) p−(γ+1/2) p−(2γ+1)

rσ hσ−ε hσ p−(σ−ε) p−σ p−2σ

ργ sinσ θ hλ−ε hλ p−(λ−ε) p−λ p−2λ

In Tables 6.1 and 6.2 λ = min{γ +1/2, σ}, σ �= γ +1/2, β = (−1/3,−1/3,−1/3),
β = (−1/2,−1/2, β3), β = (−1/2,−1/2, 0) for ργ , rσ, and ργ sinσ θ, respectively.

Although the treatments for singular functions in three dimensions are quite dif-
ferent from and much more difficult than those in one and two dimensions, it is worth
indicating that the structures of Jacobi-weighted spaces are basically the same. The
difference lies only in the selection of Jacobi weights and in the way of proving that
a singular function belongs to the Jacobi-weighted spaces. Hence the mathematical
framework of the Jacobi-weighted Besov and Sobolev spaces is robust and uniform
for problems in one, two, and three dimensions.

The singular functions with singularities of three different types are typical and
appear in the solution of problems with piecewise analytical data on polyhedral do-
mains, which govern the convergence of the finite element solutions of the h-, p-, and
hp-versions (associated with quasi-uniform meshes). The function spaces used for
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characterizing the singularities depend on the nature of singularities as well as the
type of FEMs. Thus, the selection of function spaces is crucial to the best approxi-
mation for the finite element solutions. Tables 6.1 and 6.2 tell us how the functional
spaces used for characterization of singularities and error analysis affect the estima-
tion of approximation error measured in the H1-norm. Hence we can conclude that
the Jacobi-weighted Besov is the best theoretical tool for analyzing approximation
of functions by the p- and hp-versions (associated with quasi-uniform meshes) of the
FEM. Meanwhile, it can be shown that it has no substantial impact on the error
estimation for the classical h-version of the FEM.

Finally, the framework we set up in three dimensions can be used for the spectral
and the boundary element methods, and the analysis and results parallel to those
for the finite element can be established for the spectral and the boundary element
methods without substantial difficulties.
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Abstract. A primal-based penalty preconditioner is presented for a linear set of equations
arising from elliptic saddle point problems. We show that the eigenvalues of the preconditioned
matrix are positive real and demonstrate that a variant of the preconditioner can be combined with
the conjugate gradient algorithm. Our approach is motivated by two basic observations. First,
the solution of a problem with constraints is often similar to the solution of a problem where the
constraints are penalized. Second, certain methods of solution not available for a constrained problem
are possible for its penalized counterpart so motivating a primal-based Schur complement approach.
Numerical examples for elliptic two- and three-dimensional problems are presented that confirm
theoretical results and demonstrate the effectiveness of the preconditioner.
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1. Introduction. We consider linear systems[
A BT

B −C

] [
u
p

]
=

[
b
0

]
(1.1)

arising from finite element discretizations of saddle point problems. The matrix A
is assumed to be symmetric and positive definite on the kernel of B, and C to be
symmetric and positive semidefinite. We denote u ∈ R

n and p ∈ R
m the primal and

dual vectors. For instance, in the case of Stokes flow and incompressible elasticity,
the primal and dual variables are associated with velocity–pressure and displacement–
pressure, respectively.

Several preconditioners have been investigated for specific instances of (1.1). For
example, when the saddle point system represents a discrete Stokes or elasticity sys-
tem, many approaches precondition the dual Schur complement C +BA−1BT with a
matrix spectrally equivalent to the dual mass matrix. Examples include block diago-
nal preconditioners [12, 25, 17], block triangular preconditioners [11, 16], and inexact
Uzawa approaches [6, 9, 4]. A symmetric preconditioner for saddle point systems
similar in form to ours that involves preconditioning of the dual Schur complement
was recently studied in [14]. Reformulation of the saddle point problem in (1.1) as a
symmetric positive definite system was considered in [5] that permits an iterative so-
lution using the conjugate gradient algorithm. See [3, 10] for further information and
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references on saddle point systems and their origin. Overlapping Schwarz precondi-
tioners involving solutions of both local and coarse saddle point problems were inves-
tigated in [15, 22]. More recently, substructuring preconditioners based on balancing
Neumann–Neumann methods [21, 13] and FETI-DP [18] were studied. In contrast to
much previous work, we consider a preconditioner for a generic saddle point system
that satisfies the minimal conditions stated after (1.1) that preconditions the primal
Schur complement.

Our approach builds on the idea of preconditioning indefinite problems using a
regularization approach [1] introduced by Axelsson. Preconditioning based on regu-
larization is motivated by the idea that the solution of a penalized problem is close
to that of the original constrained problem. We present theory and numerical results
that extends [1] to cases where the penalized primal Schur complement A+BT C̃−1B is
preconditioned rather than factored directly. Here, C̃ is a symmetric positive definite
penalty counterpart of C in (1.1).

The primal-based penalty (PBP) preconditioner and accompanying theory are
presented in sections 2 and 3, respectively. The preconditioner presented is indefinite,
but all the eigenvalues of the preconditioned system are real and positive provided that
several mild assumptions are satisfied. A form of the preconditioner suited for con-
jugate gradients is presented in section 4. Numerical examples presented in section 5
confirm the theory and demonstrate the excellent performance of the preconditioner.
Comparisons are also made with other preconditioners for saddle point systems. Some
concluding remarks are made in the final section.

2. Preconditioner. The penalized primal Schur complement SA is defined as

SA = A + BT C̃−1B,(2.1)

where C̃ is symmetric and positive definite. Since A is assumed to be positive definite
on the kernel of B, it follows that SA is positive definite. We consider a preconditioner
M of the form

M =

[
I BT C̃−1

0 −I

][
ŜA 0

0 −C̃

][
I 0

C̃−1B −I

]
,(2.2)

where ŜA is an approximation of SA. The action of the preconditioner on a vector r
(with primal and dual subvectors ru and rp) is

[
zu
zp

]
=

[
I 0

C̃−1B −I

][
Ŝ−1
A 0

0 −C̃−1

][
I BT C̃−1

0 −I

] [
ru

rp

]
,(2.3)

leading to the two step application of M−1r as
1. solve ŜAzu = ru + BT C̃−1rp for zu,

2. solve C̃zp = Bzu − rp for zp.

Each application of the preconditioner requires two solves with C̃ and one solve
with ŜA.

3. Analysis of the preconditioner. We now investigate the eigenvalues ν of
the generalized eigenproblem

Az = νMz,(3.1)
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where A is the coefficient matrix in (1.1). Using a coordinate transformation, these
eigenvalues are identical to those of the generalized eigenproblem

AM−1Hw = νHw,(3.2)

where H is defined as

H =

[
SA − ŜA 0

0 C̃ − C

]
.(3.3)

The following lemma and corollary are needed for the main theorem of our paper.
Lemma 3.1. Suppose that D and E are symmetric positive definite matrices of

order n. If

1 < ρ1 ≤ wTDw

wTEw
≤ ρ2

for all w ∈ R
n, then

ρ1 ≤ wT (DE−1D −D)w

wT (D − E)w
≤ ρ2,(3.4)

ρ1 − 1 ≤wT (D − E)E−1(D − E)w

wT (D − E)w
≤ ρ2 − 1,(3.5)

1 − 1/ρ1 ≤wT (D − E)E−1(D − E)w

wT (DE−1D −D)w
≤ 1 − 1/ρ2 ,(3.6)

1 − 1/ρ1 ≤ wT (E−1 −D−1)w

wTE−1w
≤ 1 − 1/ρ2.(3.7)

Proof. If (x, λ) is the largest eigenpair of the matrix pencil (D,E), then

max
w

wTDw

wTEw
=

xTDx

xTEx
≤ ρ2.

Therefore, if we can show that the upper bounds of (3.4) are maximized with x, then
the upper bounds are true for all w ∈ R

n. Because Dx = Exλ, then (DE−1D−D)x =
Dx(λ− 1) and (D − E)x = Ex(λ− 1) easily follow. If we premultiply these last two
identities by xT , then

xT (DE−1D −D)x =
xTDx

xTEx
xT (D − E)x ≤ ρ2x

T (D − E)x

and the upper bound of (3.4) is established. A similar argument with the minimal
eigenpair (y, σ) of (D,E) establishes the lower bound.

The identity (D − E)x = Ex(λ− 1) implies xT (D − E)E−1(D − E)x = xT (D −
E)x(λ − 1) and so (3.5) is established using a similar argument as used for (3.4).
Likewise, (3.6) follows from the identity xT (D − E)E−1(D − E)x = xT (DE−1D −
D)x(1 − 1/λ).

The identity xTDE−1Dx = xTDD−1Dxλ follows from Dx = Exλ and implies

zT (E−1 −D−1)z = zTD−1z(λ− 1) = zTE−1z

(
λ− 1

λ

)
≤ zTE−1z

(
ρ2 − 1

ρ2

)
,

where z = Dx. The last set of inequalities (3.7) now easily follows.
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Using arguments similar to those for the proof of (3.4) in Lemma (3.1) we also
have the following result.

Corollary 3.2. Suppose that D is symmetric positive semidefinite and E is
symmetric positive definite of order m. If

0 ≤ ρ1 ≤ wTDw

wTEw
≤ ρ2 < 1

for all w ∈ R
m, then

ρ2w
T (D − E)w ≤wT (DE−1D −D)w ≤ ρ1w

T (D − E)w.(3.8)

Theorem 3.3. If α1 > 1, 0 ≤ β1 < β2 < 1, γ1 > 0, and

α1x
T ŜAx ≤ xTSAx ≤ α2x

T ŜAx ∀x ∈ R
n,(3.9)

β1y
T C̃y ≤ yTCy ≤ β2y

T C̃y ∀y ∈ R
m,(3.10)

γ1y
TBŜ−1

A BT y ≤ yT C̃y ≤ γ2y
TBŜ−1

A BT y ∀y ∈ R
m,(3.11)

and

0 < yT C̃y ∀y(�= 0) ∈ R
m,(3.12)

then the eigenvalues of (3.2) satisfy

δ1 ≤ ν ≤ δ2,

where

δ1 = min{σ2(α1/α2), β1 + σ1(1 − β2)(α2γ2)
−1},

δ2 = max{2α2 − σ2, β2 + (1 − β1)(2 − σ1/α2)γ
−1
1 }

and σ1, σ2 are arbitrary positive constants that satisfy σ1 + σ2 = 1.

Proof. A direct calculation gives

AM−1H =

[
SAŜ

−1
A SA − SA (SAŜ

−1
A − I)BTPT

PB(Ŝ−1
A SA − I) F

]
,(3.13)

where I is the identity matrix and

P = I − CC̃−1, F = PBŜ−1
A BTPT + C − CC̃−1C.(3.14)

If zT =
[
xT yT

]
, then the quadratic form zTAM−1Hz contains the terms

xT (SAŜ
−1
A SA −SA)x, yTFy and yTPB(Ŝ−1

A SA − I)x. We first estimate the absolute
value of this last term.
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If σ1 and σ2 are positive constants so that σ1 + σ2 = 1, then

|yTPB(Ŝ−1
A SA − I)x| = |σ1y

TPBS−1
A (SAŜ

−1
A SA − SA)x + σ2y

TPBŜ−1
A (SA − ŜA)x|

≤ σ1|yTPBS−1
A (SAŜ

−1
A SA − SA)1/2(SAŜ

−1
A SA − SA)1/2x|

+ σ2|yTPBŜ
−1/2
A Ŝ

−1/2
A (SA − ŜA)x|

≤ σ1(y
TPB(Ŝ−1

A − S−1
A )BTPT y)1/2(xT (SAŜ

−1
A SA − SA)x)1/2

+ σ2(y
TPBŜ−1

A BTPT y)1/2(xT (SA − ŜA)Ŝ−1
A (SA − ŜA)x)1/2

≤ σ1

2
yTPB(Ŝ−1

A − S−1
A )BTPT y +

σ1

2
xT (SAŜ

−1
A SA − SA)x

+
σ2

2
yTPBŜ−1

A BTPT y +
σ2

2
xT (SA − ŜA)Ŝ−1

A (SA − ŜA)x,

where we used the Cauchy–Schwarz inequality and the arithmetic mean inequality.
Applications of Lemma 3.1, Corollary 3.2, and our hypothesis give

2|yTPB(Ŝ−1
A SA − I)x| ≤ (1 − β1)(γ1α2)

−1(α2 − σ1)y
T (C̃ − C)y

+(α2 − σ2)x
T (SA − ŜA)x,

(3.15)

where we used yTPC̃PT y ≤ (1 − β1)y
T (C̃ − C)y, and

(β1 + (1 − β2)γ
−1
2 )yT (C̃ − C)y ≤ yTFy ≤ (β2 + (1 − β1)γ

−1
1 )yT (C̃ − C)y.

(3.16)

Similarly, we have

−2|yTPB(Ŝ−1
A SA − I)x| ≥ −(1 − β2)γ

−1
2 (σ2 + σ1(1 − 1/α2))y

T (C̃ − C)y

−α1(σ1 + σ2(1 − 1/α2))x
T (SA − ŜA)x.

(3.17)

From (3.15)–(3.17) and Lemma 3.1 we obtain

zTAM−1Hz ≤ xT (SAŜ
−1
A SA − SA)x + 2|yTPB(Ŝ−1

A SA − I)x| + yTFy

≤ (2α2 − σ2)x
T (SA − ŜA)x

+ (β2 + (1 − β1)(2 − σ1/α2)γ
−1
1 )yT (C̃ − C)y

and

zTAM−1Hz ≥ xT (SAŜ
−1
A SA − SA)x− 2|yTPB(Ŝ−1

A SA − I)x| + yTFy

≥ σ2(α1/α2)x
T (SA − ŜA)x

+ (β1 + σ1(1 − β2)(α2γ2)
−1)yT (C̃ − C)y,

where we also used Corollary (3.2). Because z ∈ R
n+m is arbitrary, our theorem is

established.
We now briefly discuss the theorem. If the bounds (3.9)–(3.11) are independent of

the discretization parameters, then bounds on the eigenvalues of the preconditioned
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system are uniform with respect to the discretization. The difference of positive
definite matrices that appears in the leading block of H can be used to define an
inner product and has appeared in [5, 4, 16]. The theory developed here applies to
both continuous and discontinuous interpolation of the dual variable in each element,
but in practice the preconditioner is limited to the discontinuous case. The use of
discontinuous interpolation in the dual variable results in a block diagonal C̃ so that
SA has the same sparsity structure as A.

We conclude this section with a brief discussion of how assumption (3.11) follows
from more familiar bounds, e.g., for Stokes problems, if A is positive definite. Assume

ζ1y
TBA−1BT y ≤ yT C̃y ≤ ζ2y

TBA−1BT y ∀y ∈ R
m,

where ζ1 and ζ2 are mesh independent positive constants. From (2.1) we obtain

BS−1
A BT = BA−1BT −BA−1BT (C̃ + BA−1BT )−1BA−1BT

from which follows the bounds

1/(1 + ζ2)y
T C̃y ≤ yTBS−1

A BT y ≤ 1/(1 + ζ1)y
T C̃y ∀y ∈ R

m.

Thus, C̃ and BS−1
A BT are spectrally equivalent. Assumption (3.11) then follows

from the transitivity of spectral equivalence and (3.9). The constants γ1 and γ2 are
independent of mesh parameters and material properties provided the same is true
for α1 and α2.

4. Preconditioned conjugate gradient algorithm. We now consider a form
of the preconditioner suitable for the conjugate gradient algorithm. The original linear
system (1.1) can be expressed compactly as

Aw = d,

where

w =

[
u
p

]
and d =

[
b
0

]
.

The associated residual r is defined as

r = d−Aw.

We have shown in Theorem 3.3 that HM−1A is symmetric and positive definite.
Furthermore, if the constants in (3.9)–(3.11) are mesh independent, then HM−1A
is spectrally equivalent to H. These facts motivate using the conjugate gradient
algorithm to solve the equivalent linear system

Ãw = d̃,

where

Ã = HM−1A and d̃ = HM−1d

using H as a preconditioner. The preconditioned conjugate gradient algorithm for the
equivalent linear system is summarized as follows:

1. w0 = 0, r0 = d, z0 = M−1r0, r̃0 = HM−1r0, and k = 1.
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2. If the norm of rk−1 is less than a specified value, then exit. Otherwise,
3. βk = (zTk−1r̃k−1)/(z

T
k−2r̃k−2) (β1 = 0).

4. pk = zk−1 + βkpk−1 (p1 = z0).
5. αk = (zk−1r̃k−1)/(p

T
kHM−1Apk).

6. wk = wk−1 + αkpk.
7. rk = rk−1 − αkApk.
8. zk = zk−1 − αkM−1Apk.
9. r̃k = r̃k−1 − αkHM−1Apk.

10. Return to Step 2.
The conjugate gradient algorithm described above is somewhat nonstandard in that
two additional recurrences appear in steps 7 and 8. Application of the algorithm
requires calculations of the form M−1a and HM−1a. For aT =

[
aTu aTp

]
we see

that

M−1a =

[
bu
bp

]
=

[
Ŝ−1
A (au + BT C̃−1ap)

C̃−1(Bbu − ap)

]

and

HM−1a =

[
SAbu − (au + BT C̃−1ap)

Bbu − ap − Cbp

]
.

Notice that no calculations involving ŜA are required. In addition, rk is the residual
of the original linear system at iteration k and can be used to assess convergence.

We remark that Bramble and Pasciak [5] also preconditioned an elliptic saddle
point problem into a symmetric and positive definite system that could then be solved
using the conjugate gradient algorithm. Klawonn [16] also generated a positive definite
preconditioned system using a nonstandard inner product but did not consider a
practical implementation.

5. Numerical examples. In this section, (1.1) is solved to a relative residual
tolerance of 10−6 using both right preconditioned GMRES [24] and preconditioned
conjugate gradients (PCG) for some example incompressible elasticity problems. The
shear modulus G and Lamé parameter λ for an isotropic material are related to the
elastic modulus E and Poisson ratio ν by

G =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
.

For incompressible problems ν = 1/2 and λ is infinite. All the examples in this
section use G = 1 and ν = 1/2. The preconditioner ŜA used for SA is a version of the
balancing domain decomposition by constraints (BDDC) preconditioner described in
[7] and analyzed in [20] that is well suited to nearly incompressible problems [8]. We
note that if the original BDDC preconditioner is used rather than the modified one
in [8], then the performance of the PBP preconditioner is sensitive to small changes
in ν near 1/2 (see Table 5.1). The penalty matrix C̃ is chosen as the negative (2,2)
block of the coefficient matrix in (1.1) for an identical problem with the same shear
modulus but a value of ν less than 1/2.

Regarding assumption (3.9), we note that the substructuring preconditioner used
for SA has the attractive property that α1 ≥ 1 and α2 is mesh independent under
certain additional assumptions [19]. For the conjugate gradient algorithm we scale
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the preconditioned residual associated with the primal Schur complement by 1.01 as
a safeguard to ensure that H is positive definite. Since C̃ is positive definite and
C = 0, (3.10) holds with β2 < 1. Finally, since we use stable finite elements and C̃
is spectrally equivalent to the pressure mass matrix, it follows from the discussion at
the end of section 3 that (3.11) holds as well.

For purposes of comparison, we also present results for block diagonal and block
triangular preconditioners for (1.1). Given the primal and dual residuals ru and rp,
the preconditioned residuals zu and zp for the block diagonal preconditioner are given
by

zu = M−1
A ru and zp = M−1

p rp,

where MA is the BDDC preconditioner for A and Mp is the dual mass matrix. Note
that the shear modulus G was chosen as 1 to obtain proper scaling of zp. Similarly,
the preconditioned residuals for the block triangular preconditioner are given by

zp = −M−1
p rp and zu = M−1

A (ru −BT zp).

We note that the majority of computations for the block preconditioners occur in
forming and applying the BDDC preconditioner for A. Thus, the setup time and
time for each iteration are nearly the same for the PBP preconditioner and the two
block preconditioners.

We also make comparisons with the preconditioning technique of Bramble and
Pasciak [5]. In Remark 2 of [5], Bramble and Pasciak assume that in the case of the
Stokes equation the matrix [

I 0
0 BA−1BT

]
is well conditioned. This is not true in our examples because the dual mass matrix
Mp, which is spectrally equivalent to BA−1BT , is not well conditioned. The poor
conditioning of Mp is a result of using discontinuous linear interpolation of the dual
variable. Let the Cholesky decomposition of Mp be given by RTR. By introducing
the change of variables p = R−1p̃, the matrix above becomes[

I 0
0 R−TBA−1BTR−1

]
,

which is well conditioned. Thus, we make use of the noted change of variables in
our implementation of [5]. As is done for the PBP preconditioner, we scale the
preconditioned residual associated with MA by 1.01 to ensure that assumption (2.2)
of [5] is satisfied.

The first set of examples is for a two-dimensional plane strain problem on a unit
square with all displacement degrees of freedom (dofs) on the boundary constrained to
zero. The entries of the right-hand side vector b were chosen as uniformly distributed
random numbers in the range from 0 to 1. This choice of b ensures that the nodal
forces in the problem have a significant average component without not being overly
smooth. For any given mesh, the same values in b are used irrespective of the pre-
conditioner used. For this simple geometry the finite element mesh consists of stable
Q2 − P1 elements. This element uses biquadratic interpolation of displacement and
discontinuous linear interpolation of pressure. In two dimensions the element has nine
nodes for displacement and three element pressure dofs, while in three dimensions it
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Table 5.1

Iterations needed to solve incompressible two-dimensional plane strain problem using the PBP
preconditioner. Column ν indicates the values of ν used to define C̃. Results are shown for both the
modified and original BDDC preconditioners for SA. Results in parentheses are condition number
estimates from PCG.

ν Modified BDDC Original BDDC

GMRES PCG GMRES PCG

0.3 19 22 (16) 19 22 (16)
0.4 15 17 (7.3) 15 17 (7.3)
0.49 11 12 (3.2) 13 13 (3.7)
0.499 10 10 (3.0) 17 19 (8.6)
0.4999 9 10 (2.9) 24 31 (71)
0.49999 9 10 (2.9) 25 44 (697)

has 27 nodes for displacement and four element pressure dofs. In the final example,
the stable P+

2 −P1 element is used for an unstructured mesh in two dimensions. This
triangular element uses quadratic interpolation of displacement with an added bub-
ble function and discontinuous linear interpolation of pressure. Descriptions of the
Q2 − P1 and P+

2 − P1 discontinuous pressure elements can be found in [2].

Results are shown in Table 5.1 for the PBP preconditioner applied to a problem
discretized by a 32 × 32 arrangement of square elements. Condition number esti-
mates of the preconditioned equations are shown in parentheses for the PCG results.
These eigenvalue estimates were obtained using the connection between conjugate
gradients and the Lanczos method. The BDDC preconditioner is based on a regular
decomposition of the mesh into 16 square substructures. Notice that the results are
insensitive to changes in ν near the incompressible limit of 1/2 for the modified BDDC
preconditioner used in this study.

Table 5.2 shows results for a growing number of substructures with H/h = 4,
where H and h are the substructure and element lengths, respectively. A small
growth in the number of iterations with problem size is evident in the table for all the
preconditioners. Notice that the iterations required by PCG are only slightly larger
than those for GMRES. The primary advantage of PCG over GMRES is the three-
term recurrence that requires less storage. In contrast, GMRES uses a long recurrence
and so has increased storage requirements. The PBP preconditioner is competitive
with the other preconditioners. Similar results for related three-dimensional problems
are shown in Tables 5.3 and 5.4.

The next example is for the unstructured mesh shown in Figure 5.1. The mesh was
generated using the Matlab code described in [23]. The original triangular elements
were then converted to P+

2 − P1 elements by adding midedge and center nodes. All
displacements are constrained to zero on the mesh boundary for this example. The
mesh has 2937 elements and 9046 nodes. Results in Table 5.5 show that the PBP
preconditioner is competitive with the other approaches.

In Table 5.6 we present selected results from Tables 5.2, 5.4, and 5.5, where
the linear systems involving SA or A are solved exactly rather than approximately
using the BDDC preconditioner. In addition, the results are for a relative residual
tolerance reduced to 10−9. Column ν reports the value of Poisson ratio used to define
C̃ in the PBP preconditioner. Notice for values of ν away from 1/2 that the PBP
preconditioner has no clear advantage over the block triangular preconditioner. This
is not the case for ν = 0.49999, where the PBP preconditioner with GMRES iterations
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Table 5.2

Iterations needed to solve incompressible plane strain problems with increasing numbers of sub-
structures (N) and H/h = 4. The value of ν used to define C̃ in the PBP preconditioner is 0.49999.

N PBP Block diagonal Block triangular Bramble–Pasciak

GMRES PCG GMRES GMRES PCG

4 6 7 (2.0) 26 16 20
16 8 9 (2.4) 30 20 24
36 9 10 (2.9) 35 23 26
64 9 10 (3.2) 38 26 29
100 10 11 (3.3) 40 28 30
144 10 11 (3.4) 42 29 32
196 10 12 (3.4) 45 30 35
256 10 12 (3.5) 47 30 35

Table 5.3

Iterations needed to solve incompressible three-dimensional elasticity problem using the PBP
preconditioner. The cube domain is discretized by 512 elements and partitioned into 64 substructures
for the BDDC preconditioner. Results for different values of ν used to define C̃ are shown.

ν GMRES PCG

0.3 21 25 (12)
0.4 15 17 (6.1)
0.49 13 14 (3.8)
0.499 15 16 (5.0)
0.4999 17 19 (6.5)
0.49999 18 21 (6.8)

Table 5.4

Iterations needed to solve three-dimensional incompressible elasticity problems with increasing
numbers of substructures (N) and H/h = 2. The value of ν used to define C̃ in the PBP precondi-
tioner is 0.49.

N PBP Block diagonal Block triangular Bramble–Pasciak

GMRES PCG GMRES GMRES PCG

8 10 11 (3.2) 36 21 23
27 13 14 (3.8) 41 22 26
64 13 14 (3.8) 46 25 30
125 13 14 (3.9) 48 25 30
216 13 14 (3.9) 51 26 32

Table 5.5

Iterations needed to solve two-dimensional incompressible plane strain problem shown in Fig-
ure 5.1. The value of ν used to define C̃ in the PBP preconditioner is 0.49999.

PBP Block diagonal Block triangular Bramble–Pasciak

GMRES PCG GMRES GMRES PCG

11 11 (3.6) 53 35 44

exhibits a tenfold reduction in iterations.

One possible objection to the PBP preconditioner is the need for a user-specified
parameter. For the examples considered here, this parameter is simply the Poisson
ratio used to define C̃. No parameters were needed for the other three preconditioners
because we considered only simple homogeneous problems with a shear modulus equal
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Fig. 5.1. Unstructured mesh and decomposition into four substructures. Thick lines show
boundaries shared by substructures in the preconditioner for SA.

Table 5.6

Iterations for selected problems in Tables 5.2, 5.4, and 5.5 solved to a relative residual tolerance
of 10−9 using direct solvers for the linear systems involving SA or A. The column ν shows the value
of Poisson ratio used to define C̃ in the PBP preconditioner.

Table ν PBP Block diagonal Block triangular Br–Pa

GMRES PCG GMRES GMRES PCG

5.2 0.3 17 16 (4.9) 25 14 20
N = 64 0.4 9 14 (2.5)

0.49999 2 5 (1.2)

5.4 0.3 14 21 (5.2) 41 21 26
N = 64 0.4 11 15 (2.7)

0.49999 2 5 (1.2)

5.5 0.3 16 23 (15) 37 20 31
0.4 12 17 (6.2)

0.49999 3 5 (1.2)

to 1. We note that the mass matrix approximation of the dual Schur complement used
by the other three preconditioners would need to be scaled appropriately to avoid
degraded performance for problems with nonunit or multiple material properties. In
contrast, no such scaling is needed by the present approach.

6. Conclusions. A PBP preconditioner was presented for elliptic saddle point
systems. We demonstrated that the eigenvalues of the preconditioned linear system
are positive and real provided certain assumptions are satisfied. A form of the precon-
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ditioner suited for conjugate gradients was also presented. Numerical results in two
and three dimensions were consistent with the theoretical results and demonstrated
the effectiveness of the preconditioner. Excellent performance of the preconditioner
was also evident when compared with other approaches.

We note that the PBP preconditioner employs a preconditioner for the penalized
primal Schur complement. In contrast, the other three preconditioners considered in
the previous section employ a preconditioner for the dual Schur complement. A basic
difference is that the penalized primal Schur complement is known exactly, whereas
the dual Schur complement is not. Consequently, it is possible to obtain much better
performance from the PBP preconditioner, as shown in Table 5.6. A similar result
would also likely hold for nonsymmetric saddle point systems. For example, the
penalized primal Schur complement would still be known exactly for Navier–Stokes
problems, but a simple mass matrix approximation of the dual Schur complement
is known to degrade for increasing values of Reynolds number. Thus, one level of
approximation would be removed by using the PBP preconditioner.

Acknowledgments. Theorem 3.3 was motivated in large part by related work
in [16] due to Klawonn. The authors also wish to express their thanks to Michele
Benzi for bringing to their attention [1] and [14].
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A FETI-DP PRECONDITIONER WITH A SPECIAL SCALING FOR
MORTAR DISCRETIZATION OF ELLIPTIC PROBLEMS WITH

DISCONTINUOUS COEFFICIENTS∗

N. DOKEVA† , M. DRYJA‡ , AND W. PROSKUROWSKI†

Abstract. We consider two-dimensional elliptic problems with discontinuous coefficients dis-
cretized by the finite element method on geometrically conforming nonmatching triangulations across
the interface using the mortar technique. The resulting discrete problem is solved by a dual-primal
FETI method.

In this paper we introduce and analyze a preconditioner with a special scaling of coefficients
and step parameters and establish convergence bounds. We show that the preconditioner is almost
optimal with constants independent of the jumps of coefficients and step parameters. Extensive
computational evidence is presented that illustrates an almost optimal convergence for a variety of
situations (distribution of subregions, grid assignment, grid ratios, number of subregions) for both
continuous and discontinuous problems.

Key words. domain decomposition, mortar finite element method, dual-primal FETI precon-
ditioner, nonmatching grids, saddle-point problem, elliptic problems with discontinuous coefficients
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1. Introduction. In this paper we discuss a second order elliptic problem with
discontinuous coefficients defined on a polygonal region Ω ⊂ R

2 which is a union of
many polygons Ωi. The problem is discretized by the finite element method (FEM) on
geometrically conforming nonmatching triangulations across Γ = ∪i∂Ωi\∂Ω using the
mortar technique; see [1]. The resulting discrete problem is solved by a dual-primal
FETI (FETI-DP) method; see [5], [6], [7] for the matching triangulation and [3], [4] for
the nonmatching one. The method is discussed under the assumption of continuity of
the solution at vertices of Ωi. We prove that the method is convergent and its rate of
convergence is almost optimal and independent of the jumps of coefficients, provided
that a mortar side is associated with the higher coefficient. Consequently, the method
is well suited for parallel processors.

The presented results are a generalization of results obtained in [4] and [3] for
problems with continuous and discontinuous coefficients, respectively. In [4] a modi-
fied mortar condition at the vertices of substructures is employed using the assumption
that the solution at the vertices is continuous, while in [3] a standard approximation
to the mortar condition is employed. The preconditioner in [3] which does not use
the scaling of the coefficients was tested for the simplest case of four subregions. In
general, however, the experiments show that for discontinuous coefficients the precon-
ditioner without proper scaling of coefficients exhibits poor convergence.
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In this paper we introduce a preconditioner with special scaling of coefficients
and step parameters. The theoretical analysis and experimental results show that the
proposed preconditioner exhibits excellent properties for general cases considered here:
its convergence is almost optimal with respect to the parameters of triangulations (it
depends on a logarithmical factor only) and independent of the jumps of coefficients.
Extensive numerical experiments on many subregions are reported.

The paper is organized as follows. In section 2, the differential and discrete
problems are formulated. In section 3, a matrix form of the discrete problem is given.
The preconditioner is described and analyzed in section 4. The implementation of the
method and numerical experiments are presented in section 5.

2. Differential and discrete problem. We consider the following differential
problems.

Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω),(1)

where

a(u, v) = (ρ(x)∇u,∇u)L2(Ω), f(v) = (f, v)L2(Ω).

We assume that Ω is a polygonal region and Ω = ∪N
i=1Ωi, Ωi are disjoint polygonal

subregions of diameter Hi, ρ(x) = ρi is a positive constant on Ωi, and f ∈ L2(Ω). We
solve (1) by the FEM on nonmatching triangulation across ∂Ωi. To describe a discrete
problem the mortar technique is used; see [1] and [8] and the literature therein.

We impose on Ωi a triangulation with triangular elements and parameter hi.
The resulting triangulation of Ω is nonmatching across ∂Ωi. We assume that the
triangulation on each Ωi is quasi-uniform. Let Xi(Ωi) be a finite element space of
piecewise linear continuous functions defined on the introduced triangulation. We
assume that functions of Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. Let

Xh(Ω) = X1(Ω1) × · · · ×XN (ΩN ).

Note that Xh(Ω) ⊂ L2(Ω) but Xh(Ω) �⊂ H1
0 (Ω). To formulate a discrete problem

for (1) we use the mortar technique for the geometrically conforming case. For that
the following notation is used. Let Γij be a common edge of two substructures Ωi and
Ωj , Γij = ∂Ωi ∩ ∂Ωj . Let Γ = (∪i∂Ωi)\∂Ω. We now select open edges γm ⊂ Γ, called
mortar, such that Γ = ∪γm and γm ∩ γn = 0 for m �= n. Let Γij as an edge of Ωi be
denoted by γm(i) and called mortar (master), and let Γij as an edge of Ωj be denoted
by δm(j) and called nonmortar (slave). The criterion for choosing γm(i) as the mortar
side is that ρi ≥ ρj , the coefficients on Ωi and Ωj , respectively.

Let M(δm(j)) be a subspace of Wj(δm(j)), the restriction of Xj(Ωj) to δm(j),
δm(j) ⊂ ∂Ωj . Functions of M(δm(j)) are constants on elements of the triangulation
on δm(j) which touch ∂δm(j). We say that ui ∈ Xi(Ωi) and uj ∈ Xj(Ωj) on δm ≡
δm(j) = γm(i) = Γij , an edge common to Ωi and Ωj , satisfy the mortar condition if∫

δm

(ui − uj)ψ ds = 0, ψ ∈ M(δm).(2)

Note that for the given ui on γm(i) and uj on ∂δm(j), denoted by Tr uj , we can
compute uj at the interior nodal points of δm(j). Denoting the uj computed in this
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way by πm(ui; Tr uj) we have∫
δm

πm(ui; Tr uj)ψ ds =

∫
δm

uiψ ds, ψ ∈ M(δm),

πm(ui; Tr uj) = Tr uj on ∂δm.

Note that πm(ui; Tr uj) is an element of Xj restricted to δm(j).

We are now in a position to introduce V h, the space for discretization of (1). Let
V h(Ω) be a subspace of Xh(Ω) of functions which satisfy the mortar condition (2) for
each δm ⊂ Γ and which are continuous at common vertices of the substructures. The
discrete problem for (1) in V h is defined as follows.

Find u∗
h ∈ V h such that

aH(u∗
h, vh) = f(vh), vh ∈ V h,(3)

where aH(u, v) =
∑N

i=1 ai(u, v), ai(u, v) = ρi(∇u,∇v)L2(Ωi).
The problem has a unique solution and the error bound is known; see [1]. Using

the basis functions of V h, V h = span {Φk}, the problem (3) is rewritten as

Au∗
h = f.

The form of Φk can be found, for example, in [4]. The matrix A is symmetric positive
definite and cond(A) ≤ C

minh2
i

, where C here depends on the ρi.

3. FETI-DP equation. To derive a FETI-DP method we first rewrite the prob-
lem (3) as a saddle-point problem using Lagrange multipliers; see, for example, [8]
and the literature therein. For u = {ui}Ni=1 ∈ Xh(Ω) and ψ = {ψp}Pp=1 ∈ M(Γ) =∏

m M(δm), the mortar condition (2) can be rewritten as

b(u, ψ) ≡
N∑
i=1

∑
δm(i)⊂∂Ωi

∫
δm(i)

(ui − uj)ψk ds = 0,

where δm(i) = γm(j) = Γij , ψk ∈ M(δm(i)). Let X̃h(Ω) denote a subspace of Xh(Ω) of
functions which are common to the vertices of substructures.

The problem now consists of finding (u∗
h, λ

∗
h) ∈ X̃h(Ω) ×M(Γ) such that

a(u∗
h, vh) + b(vh, λ

∗
h) = f(vh), vh ∈ X̃h(Ω),(4)

b(u∗
h, ψh) = 0, ψh ∈ M(Γ).(5)

It can be proved that u∗
h, the solution of (4)–(5), is the solution of (3) and vice

versa. Therefore the problem (4)–(5) has a unique solution. This can be proved
straightforwardly using the inf-sup condition, including the error bound; see [8] and
the literature therein.

To derive a matrix form of (4)–(5) we first need a matrix formulation of (5).

Using the nodal basis functions ϕ
(l)
δm(i)

∈ Wi(δm(i)), ϕ
(k)
γm(j)

∈ Wj(γm(j)), and ψ
(p)
δm(i)

∈
Mm(δm(i)) (δm(i) = γm(j) = Γij), (5) can be rewritten on δ̄m(i) as

Bδm(i)
uiδm(i)

−Bγm(j)
ujγm(j)

= 0,(6)
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where uiδm(i)
and ujγm(j)

are vectors which represent ui|δm(i)
∈ Wi(δm(i)) and uj |γm(j) ∈

Wj (γm(j)), and (nδ(i) ≡ nδm(i)
and nγ(j)

≡ nγm(j)
):

Bδm(i)
= {(ψ(p)

δm(i)
, ϕ

(k)
δm(i)

)L2(δm(i))}, p = 1, . . . , nδ(i), k = 0, . . . , nδ(i) + 1,

Bγm(j)
= {(ψ(p)

δm(i)
, ϕ

(l)
γm(j)

)L2(γm(j))}, p = 1, . . . , nδ(i), l = 0, . . . , nγ(j)
+ 1.

Here nδ(i), nδ(i) + 2, and nγ(j) + 2 are the dimensions of Mm(δm(i)), Wi(δm(i)), and
Wj(γm(j)), respectively. Note that Bδm(i)

and Bγm(j)
are rectangular matrices. We

split the vectors uiδm(i)
and ujγm(j)

into vectors u
(r)
iδm(i)

, u
(c)
iδm(i)

and u
(r)
jγm(j)

, u
(c)
jγm(j)

,

respectively, where u
(c)
iδm(i)

and u
(c)
jγm(j)

represent values of functions ui and uj at the

end points of δm(i) and γm(j), and u
(r)
iδm(i)

and u
(r)
jγm(j)

represent values of ui and uj at

the interior nodal points of δm(i) and γm(j). Using this notation one can rewrite (6)
as

(B
(r)
δm(i)

u
(r)
iδm(i)

+ B
(c)
δm(i)

u
(c)
iδm(i)

) − (B(r)
γm(j)

u
(r)
jγm(j)

+ B(c)
γm(j)

u
(c)
jγm(j)

) = 0.(7)

Note that

B
(r)
δm(i)

= {(ψ(p)
δm(i)

, ϕ
(k)
δm(i)

)L2(δm(i))}, p, k = 1, . . . , nδ(i)

is a square tridiagonal matrix nδ(i) × nδ(i), symmetric and positive definite and

cond(B
(r)
δm(i)

) ∼ 1, while the remaining matrices B
(c)
δm(i)

, B
(c)
γm(j)

, B
(r)
γm(j)

are rectan-

gular with dimensions nδ(i) × 2, nδ(i) × 2, nδ(i) × nγ(j), respectively.

Let K(l) be the stiffness matrix of al(· , ·). It is represented as

K(l) =

⎛
⎜⎝ K

(l)
ii K

(l)
ic K

(l)
ir

K
(l)
ci K

(l)
cc K

(l)
cr

K
(l)
ri K

(l)
rc K

(l)
rr

⎞
⎟⎠ ,(8)

where the rows correspond to the interior unknowns u
(i)
l of Ωl, u

(l)
c to its vertices and

u
(r)
l to its edges.

Using the above notation and the assumption of continuity of u∗
h at the vertices

of ∂Ωl, (4)–(5) can be rewritten as⎛
⎜⎜⎝

Kii Kic Kir 0

Kci K̃cc Kcr BT
c

Kri Krc Krr BT
r

0 Bc Br 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(i)

u(c)

u(r)

λ̃∗

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f (i)

f (c)

f (r)

0

⎞
⎟⎟⎠ .(9)

Here λ̃∗ = {B(r)
δm(i)

λ∗
δm(i)

}, δm(i) ⊂ Γ, u∗
h is the solution of (4)–(5) and is represented by

the vectors u(i), u(c), and u(r), which are the values of u∗
h at the interior nodal points

of Ωl, the vertices of Ωl, and the remaining nodal points of ∂Ωl\∂Ω, respectively; ma-

trices Kii and Krr are diagonal block-matrices of K
(l)
ii and K

(l)
rr , respectively, while

matrix K̃cc is built from diagonal block matrices K
(l)
cc taking into account that u(c)

are the same at the common vertices of substructures. The remaining K-matrices
represent coupling between the corresponding unknowns. The mortar condition is
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represented by B = (Bc, Br), where these global matrices are represented by the local

ones ((B
(r)
δm(i)

)−1B
(c)
δm(i)

, −(B
(r)
δm(i)

)−1B
(c)
γm(j)

), and (I
(r)
δm(i)

,−(B
(r)
δm(i)

)−1B
(r)
γm(j)

), respec-

tively, and I
(r)
δm(i)

is an identity matrix of nδ(i) × nδ(i). The form of these matrices

follows from (7) after multiplying it by (B
(r)
δm(i)

)−1.

In the system (9) we eliminate the unknowns u(i) and u(c) to obtain(
S̃ B̃T

B̃ S̃cc

)(
u(r)

λ̃∗

)
=

(
f̃r
f̃c

)
,(10)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̃ = Krr − (Kri, Krc)

(
Kii Kic

Kci K̃cc

)−1 (
Kir

Kcr

)
,

f̃r = f (r) − (Kri, Krc)

(
Kii Kic

Kci K̃cc

)−1 (
f (i)

f (c)

)
,

B̃ = Br − (0, Bc)

(
Kii Kic

Kci K̃cc

)−1 (
0
BT

c

)
,

S̃cc = −(0, Bc)

(
Kii Kic

Kci K̃cc

)−1 (
0
BT

c

)
,

f̃c = −(0, Bc)

(
Kii Kic

Kci K̃cc

)−1 (
f (i)

f (c)

)
.

(11)

Note that S̃ is invertible since u∗
h is continuous at the vertices of Ωl and vanishes

on ∂Ω.
We next eliminate the unknown u(r) to get for λ̃∗ ∈ M(Γ)

Fλ̃∗ = d,(12)

where

F = B̃S̃−1B̃T − S̃cc and d = B̃S̃−1f̃r − f̃c.(13)

This is the FETI-DP equation for the Lagrange multipliers. Since F is positive
definite the problem has a unique solution. This problem can be solved by conjugate
gradient iterations with a preconditioner discussed in the next section.

4. FETI-DP preconditioner. In this section we define a preconditioner for
the problem (12). For that let S(l) denote the Schur complement of K(l), see (8),
with respect to unknowns at the nodal points of ∂Ωl. This matrix is represented as

S(l) =

(
S

(l)
rr S

(l)
rc

S
(l)
cr S

(l)
cc

)
,(14)

where the second row corresponds to unknowns at the vertices of ∂Ωl while the first
one corresponds to the remaining unknowns of ∂Ωl. Note that Br is a matrix obtained
from B defined on functions with zero values at the vertices of Ωl and let

S = diag {S(l)}Nl=1, Srr = diag {S(l)
rr }Nl=1,

Scc = diag {S(l)
cc }Nl=1, Scr = (S

(1)
cr , . . . , S

(N)
cr ).

(15)
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The standard preconditioner developed for continuous problems in [4] is defined
as

M̄−1 = BrŜrrBr
T ,(16)

where Ŝrr = diag {Ŝ(i)
rr }Ni=1, Ŝ

(i)
rr = S

(i)
rr for ρi = 1.

We employ a special scaling to generalize M̄ to problems with discontinuous
coefficients. The preconditioner M for (12) is defined as

M−1 = B̂rŜrrB̂
T
r ,(17)

where

B̂r|δm(i)
= (ρ

1/2
i Iδm(i)

,−
hδm(i)

hγm(j)

ρi

ρj
ρ
1/2
i B−1

δm(i)
Bγm(j)

) for δm(i) ⊂ ∂Ωi, i = 1, . . . , N ;

hδm(i)
and hγm(j)

are the step parameters on δm(i) and γm(j), δm(i) = γm(j), re-
spectively.

An ordering of substructures Ωl is called mortar-nonmortar (M-N) ordering if all
sides of a fixed Ωl are mortar while all sides of the neighboring substructures of Ωl

are nonmortar.
Theorem 4.1. Let the mortar side be chosen where the coefficient ρi is larger.

Then for λ ∈ M(Γ) the following holds:

c0

(
1 + log

H

h

)α

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ c1

(
1 + log

H

h

)2

〈Mλ, λ〉,(18)

where α = 0 for M-N ordering of substructures and α = −2 in the general case; c0
and c1 are positive constants independent of hi, Hi, and the jumps of ρi; and h =
mini hi, H = maxi Hi.

Proof. To prove Theorem 4.1 we need some additional facts. We first reformulate
the process of reaching (12) from (9). For that we eliminate u(i) from the system (9).
Using the notation (14) and (15) we get

Srru
(r) + Srcu

(c) + BT
r λ̃

∗ = gr,(19)

Scru
(r) + S̄ccu

(c) + BT
c λ̃

∗ = gc,(20)

Bru
(r) + Bcu

(c) = 0.(21)

Here Srr and Scr (Scr = ST
cr) are defined in (15) while S̄cc is defined by S

(l)
cc (see (14)),

taking into account that u
(c)
l are the same at the common vertices of substructures.

We now eliminate u(r) and u(c) in (19)–(21). This leads to (12) with F and d of
the form

F = Frr + FrcF
−1
cc Fcr, d = dr + FrcF

−1
cc dc.(22)

Here

Frr = BrS
−1
rr BT

r(23)

and

Frc = Bc −BrS
−1
rr Src, Fcc = S̄cc − ScrS

−1
rr Src,

dc = gc − ScrS
−1
rr gr, dr = BrS

−1
rr gr.
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In the proof of Theorem 4.1 we will also need two lemmas.
Lemma 4.2. For w ∈ X1(∂Ω1) × · · · × XN (∂ΩN ) with the same values at the

vertices of Ωi, the following holds:

|B̂T
r Brz|2

Ŝrr
≤ C

(
1 + log

H

h

)2

|w|2S ,(24)

provided that ρi on the mortar side is larger than on the nonmortar side, where z =
w − IHw and IHw is a linear interpolant of w on edges of ∂Ωi with values w at the
end points of the edges.

Proof. A proof of this estimate is a modification of the proof of Lemma 1 from
[4]. We have

|B̂T
r Brz|2

Ŝrr
= 〈ŜrrB̂

T
r Brz, B̂

T
r Brz〉.

Hence

|B̂T
r Brz|2

Ŝrr
=

N∑
i=1

|B̂T
r Brz|2

Ŝ(i)
.(25)

Note that B̂T
r Brz = 0 at the vertices. Using that, we get

|B̂T
r Brz|2

Ŝ(i)
≤ C

⎛
⎝ ∑

δm(i)⊂∂Ωi

|B̂T
r Brz|2

Ŝδm(i)

+
∑

γm(i)⊂∂Ωi

|B̂T
r Brz|2

Ŝγm(i)

⎞
⎠ ,(26)

where Ŝδm(i)
and Ŝγm(i)

are matrix representations of the H
1/2
00 -norm on δm(i) and

γm(i), respectively. From the structure of B̂r follows

|B̂T
r Brz|2

Ŝδm(i)

≤ 2

(
ρi|zi|2

Ŝδm(i)

+ ρi|Bijzj |2
Ŝδm(i)

)
,(27)

where here and below z = {zi}Ni=1 ∈ Xh(Γ), the restriction of Xh(Ω) to Γ,

Bij ≡ (B
(r)
δm(i)

)−1B
(r)
γm(j)

, and δm(i) = γm(j), γm(j) ⊂ ∂Ωj ;

|B̂T
r Brz|2

Ŝγm(i)

≤ 2

(
ρk

(
ρk
ρi

)2

|B̂T
kizk|2Ŝγm(i)

+ ρk

(
ρk
ρi

)2

|BT
kiB̂kizi|2

Ŝγm(i)

)
,(28)

where Bki ≡ (B
(r)
δm(k)

)−1B
(r)
γm(i)

, B̂ki = αkiBki, αki =
hδm(k)

hγm(i)

, γm(i) = δm(k), and

δm(k) ⊂ ∂Ωk. We now estimate each term of (27) and (28).
We estimate the first term of (27) as in [4]:

ρi|zi|2
Ŝδm(i)

≤ Cρi(1 + log H
h )2|wi|2H1/2(∂Ωi)

≤ Cρi(1 + log H
h )2|wi|2

Ŝ(i)
≤ C(1 + log H

h )2|wi|2S(i) .
(29)

To estimate the second term of (27) we use the stability of the mortar projection. Let
πδm(i)

(zj , 0) correspond to Bij(zj|γm(j)
) for zj restricted to γm(j). Using that, we have

ρi|Bijzj |2
Ŝδm(i)

≤ Cρi||πδm(i)
(zj , 0)||2

H
1/2
00 (δm(i))

≤ Cρi||zj ||2
H

1/2
00 (γm(j))

≤ Cρi(1 + log H
h )2|wj |2

Ŝ(j)
≤ C(1 + log H

h )2|wj |2S(j) .
(30)
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We now estimate the terms of (28). It has been shown in [4, proof of Lemma 1
and (28)] that the following holds:

|BT
kizk|2Ŝγm(i)

≤ C|zk|2
Ŝδm(k)

≤ C(1 + log H
h )2|wk|2

Ŝ(k)
,

under the assumption that hδm(k)
∼ hγm(i)

. This assumption can be removed by

introducing the scaling αki =
hδm(k)

hγm(i)

in Bki. Thus, this estimate is valid for αkiBki

without assuming that hδm(k)
∼ hγm(i)

; for details see the proof of Lemma 1 in [4].
Thus, the first term of (28) can be estimated as

α2
kiρk(

ρk

ρi
)2|BT

kizk|2Ŝγm(i)

≤ α2
kiρk|BT

kizk|2Ŝγm(i)

≤ ρk|zk|2
Ŝδm(k)

≤ C(1 + log H
h )2|wk|2S(k) .

(31)

It remains to estimate the second term of (28). It has been shown in [4, proof of
Lemma 1] that the following holds under the assumption that hδm(k)

∼ hγm(i)
:

|BT
kiBkizi|2

Ŝγm(i)

≤ C

(
1 + log

H

h

)2

|wi|2
Ŝ(i)

.

Thus, using the scaling αki in B̂ki we get

α2
kiρk(

ρk

ρi
)2|BT

kiBkizi|2
Ŝγm(i)

≤ α2
kiρk|BT

kiBkizi|2
Ŝγm(i)

≤ Cρk(1 + log H
h )2|wi|2

Ŝ(i)
≤ C(1 + log H

h )2|wi|2S(i) ,
(32)

without the assumption that hδm(k)
∼ hγm(i)

.
Substituting these four estimates (29)–(32) into (27)–(28) and the resulting esti-

mates into (26) gives

|B̂T
r Brz|2

Ŝ(i)
≤ C

(
1 + log

H

h

)2
⎛
⎝|wi|2S(i) +

∑
j

|wj |2S(j)

⎞
⎠ ,

where the sum is taken over ∂Ωj , which intersects ∂Ωi by an edge. Using this in (25)
provides (24). This completes the proof of Lemma 4.2.

Lemma 4.3. For Frr defined in (23) and λ ∈ M(Γ),

C

(
1 + log

H

h

)α

〈Mλ, λ〉 ≤ 〈Frrλ, λ〉,(33)

where α = 0 for a M-N ordering of substructures Ωl and α = −2 in the general case,
and C is independent of h,H, and the jumps of ρi.

Proof. A proof of this estimate is a modification of the proof of Theorems 2 and
3 from [4]. We first prove it for the M-N ordering of substructures. In this case B̂r

can be represented as (see (17))

B̂r = (ÎN ,−B̂M ),(34)

where ÎN and B̂M are block diagonal matrices with blocks ρ
1/2
i Iδm(i)

and

αij
ρi

ρj
ρ
1/2
i (B

(r)
δm(i)

)−1B
(r)
γm(j)

, αij =
hδm(i)

hγm(j)

, corresponding to the N (nonmortar) and
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M (mortar) substructures Ωi, respectively. Matrix Br is decomposed in the same
way. For this ordering we can reorder matrices (15) as

Srr =

(
SN
rr 0
0 SM

rr

)
, Ŝrr =

(
ŜN
rr 0

0 ŜM
rr

)
,(35)

where the first row corresponds to the nonmortar subregions and

SN
rr = diagi∈N{S(i)

rr }, while the second one corresponds to mortar subregions and

SM
rr = diagi∈M{S(i)

rr }. Then using (34) we can write preconditioner M (see (17)) in
the form

M−1 = B̂rŜrrB̂
T
r = SN

rr + B̂M ŜM
rr B̂

T
M .(36)

Note, since both terms are positive definite, that

〈SN
rrλ, λ〉 ≤ 〈M−1λ, λ〉,

and as a consequence

〈Mλ, λ〉 ≤ 〈(SN
rr)

−1λ, λ〉.

Using this and

〈S−1
rr BT

r λ,B
T
r λ〉 = 〈(SN

rr)
−1λ, λ〉 + 〈(SM

rr )−1BT
Mλ,BT

Mλ〉,

we obtain (see (23))

λmin(M−1/2FrrM
−1/2) = min

λ

〈S−1
rr BT

r λ,B
T
r λ〉

〈Mλ, λ〉 ≥ 1,

which completes the proof for the M-N ordering.
In the case of a general ordering (non–M-N) of substructures, we have

B̂r = (Î(n)
r ,−B̂(m)

r ),

where Î
(n)
r and B̂

(m)
r are block diagonal matrices with blocks ρ

1/2
i Iδm(i)

and

αij
ρi

ρj
ρ
1/2
i (B

(r)
δm(i)

)−1B
(r)
γm(j)

corresponding to the nonmortar and mortar sides, respec-

tively. In this general case matrix (15) is not block diagonal and is of the form

Srr =

(
Snn
rr Snm

rr

Smn
rr Smm

rr

)
,(37)

where the first row corresponds to the nonmortar sides and the second to the mortar
sides. We introduce an auxiliary matrix

diag{Srr} =

(
Snn
rr 0
0 Smm

rr

)
.(38)

Using the fact that Srr = ST
rr > 0 we get

±
(

0 Snm
rr

Smn
rr 0

)
≤

(
Snn
rr 0
0 Smm

rr

)
,

from which follows that for w with zero values at the vertices of Ωi we have

〈Srrw,w〉 ≤ 2〈diag{Srr}w,w〉.(39)
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Additionally, the following holds (see Lemma 2 in [4]):

〈diag{Srr}w,w〉 ≤ C

(
1 + log

H

h

)2

〈Srrw,w〉.(40)

The proof of Lemma 4.3 reduces to showing that

λmin(M−1/2FrrM
−1/2) = min

λ

〈S−1
rr BT

r λ,B
T
r λ〉

〈(B̂rŜrrB̂T
r )−1λ, λ〉

≥ C

(1 + log H
h )2

.

(This fact has been proved in Lemma 1 of [4] for ρi = 1; the generalization for ρi �= 1
is straightforward.) We have

λmin(M−1/2FrrM
−1/2) = min

λ

〈Frrλ, λ〉
〈Mλ, λ〉 = min

λ

〈(Srr)
−1BT

r λ,B
T
r λ〉

〈(B̂rŜrrB̂T
r )−1λ, λ〉

.(41)

Using (40) we obtain the following estimate:

〈Snn
rr λ, λ〉 = 〈Ŝnn

rr Î
(n)
r λ, Î(n)

r λ〉 ≤ 〈Ŝnn
rr Î

(n)
r λ, Î(n)

r λ〉 + 〈Ŝmm
rr (B̂(m)

r )Tλ, (B̂(m)
r )Tλ〉

= 〈diag{Ŝrr}B̂T
r λ, B̂

T
r λ〉 ≤ C

(
1 + log

H

h

)2

〈ŜrrB̂
T
r λ, B̂

T
r λ〉,

where Î
(n)
r = ρ

1/2
i Iδm(i)

on δm(i) ⊂ ∂Ωi. Hence,

〈(B̂rŜrrB̂
T
r )−1λ, λ〉 ≤ C

(
1 + log

H

h

)2

〈(Snn
rr )−1λ, λ〉.(42)

On the other hand, by (39)

〈(Snn
rr )−1λ, λ〉 ≤ 〈(Snn

rr )−1λ, λ〉 + 〈(Smm
rr )−1λ, λ〉

= 〈diag{S−1
rr }λ, λ〉 ≤ 2〈S−1

rr λ, λ〉.
(43)

Using (42) and (43) in (41) we get

λmin(M−1/2FrrM
−1/2) ≥ min

λ

〈(Srr)
−1BT

r λ,B
T
r λ〉

C(1 + log H
h )2〈(Snn

rr )−1λ, λ〉

≥ min
λ

〈(Snn
rr )−1λ, λ〉

C(1 + log H
h )2〈(Snn

rr )−1λ, λ〉
=

1

C(1 + log H
h )2

.

This completes the proof of Lemma 4.3.
Proof of Theorem 4.1. To prove the right-hand side (RHS) of Theorem 4.1 we

proceed as follows. For −λ ∈ M(Γ) we compute w = (w(r), w(c)) by solving (19)
and (20) with gr = 0 and gc = 0. Note that this problem has a unique solution under
the assumption that u(c) is continuous at the cross points. Using this we get

〈Fλ, λ〉 = 〈(Frr + FrcF
−1
cc Fcr)λ, λ〉(44)

= 〈(BrS
−1
rr BT

r + (Bc −BrS
−1
rr Src)F

−1
cc Fcr)λ, λ〉 = 〈Brw

(r) + Bcw
(c), λ〉 = 〈Bw, λ〉.
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Let IHw be a linear interpolant of w on edges with values w at the end points of each
edge. Note that

Bw = B(w − IHw) ≡ Brzr

since zr ≡ w − IHw = 0 at the end points of the edges. Using that in (44), we get

〈Fλ, λ〉 = 〈Bw, λ〉 = 〈Brzr, λ〉.(45)

On the other hand, using that Sw = BTλ (see (19) and (20)), we have

〈Bw, λ〉 =
〈Bw, λ〉2
〈Bw, λ〉 =

〈Brzr, λ〉2
〈Sw,w〉

=
〈M1/2λ,M−1/2Brzr〉2

|S1/2w|2 ≤ |M1/2λ|2|M−1/2Brzr|2
|w|2S

.

(46)

Note that by Lemma 4.2 we get

|M−1/2Brzr|2 = 〈B̂rŜrrB̂
T
r Brzr, Brzr〉 = |B̂T

r Brzr|2
Ŝrr

≤ C

(
1 + log

H

h

)2

|w|2S .

Substituting this into (46) we have

〈Bw, λ〉 ≤ C

(
1 + log

H

h

)2

|M1/2λ|2.

Using this in (45) we get the RHS estimate of (18).
To prove the left-hand side (LHS) of Theorem 4.1 we first note that

〈Fλ, λ〉 ≥ 〈Frrλ, λ〉, λ ∈ M(Γ)(47)

since F−1
cc > 0. By Lemma 4.3

〈Frrλ, λ〉 ≥ c0

(
1 + log

H

h

)α

〈Mλ, λ〉,

where α = 0 for M-N ordering of substructures and α = −2 in the general case. Using
this in (47) we get the LHS of (18).

5. Implementation and numerical results. The test example for all our
experiments is the weak formulation, see (1), of

−div(ρ(x)∇u) = f(x) in Ω,(48)

with the homogenous Dirichlet boundary conditions on ∂Ω, where Ω = (0, 1) × (0, 1)
is a union of disjoint square subregions Ωi, i = 1, . . . , N , and ρ(x) = ρi is a positive
constant in each Ωi. The diffusion function ρ(x) is chosen larger on the mortar sides
of the interfaces; see Theorem 4.1.

The region Ω is cut into N regular subregions. Below we indicate the distribution
of 4 coefficients ρi and 4 grids hi in Ωi, i = 1, . . . , 4 with a maximum mesh ratio
8 : 1 used in our tests (for larger number of subregions, this pattern of coefficients is
repeated).
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For the M-N subregion ordering test case we have(
1e6 1
1e2 1e4

)
,

(
h/8 h
h/2 h/4

)
.(49)

For the arbitrary (other than M-N) ordering of subregions test case we have(
1e6 1e4
1e2 1

)
,

(
h/8 h/4
h/2 h

)
.(50)

Additionally, we test a 4 × 4 subregions case (denoted by * in the tables) that
employs coefficients of the following form without a repetitive pattern:⎛

⎜⎜⎝
1e6 1 1 1e3
1e4 1e2 1e6 1
1e2 1e5 1e4 1e2
10 1e3 10 1e6

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

h/8 h h h/4
h/4 h/2 h/8 h
h/2 h/8 h/4 h/2
h h/4 h/2 h/8

⎞
⎟⎟⎠ .(51)

5.1. Implementation. The discrete solution u∗
h of (48) is obtained as follows.

Random solution at the nodal points is expressed as (u(i), u(c), u(r)). Mortar condition
on each side of the interface δm(i) = γm(j) is represented by (7). This gives on δm(i)

u
(r)
iδm(i)

= (B
(r)
δm(i)

)−1(B(r)
γm(j)

u
(r)
jγm(j)

+ B(c)
γm(j)

u
(c)
jγm(j)

−B
(c)
δm(i)

u
(c)
iδm(i)

).(52)

The solution u∗
h is obtained from (u(i), u(c), u(r)) by replacing u(r) on each nonmortar

side by values computed by (52) and taking into account the continuity at the cross

points: u
(c)
iδm(i)

= u
(c)
jγm(j)

. For the given u∗
h the discrete RHS (f (i), f (c), f (r)) is then

computed.
Since Kic = 0 = Kci in the case of triangular elements and a piecewise linear

continuous finite element space, in the numerical experiments we implement somewhat
simplified formulas (11):

S̃ = Krr −KriK
−1
ii Kir −KrcK̃

−1
cc Kcr, f̃r = f (r) −KriK

−1
ii f (i) −KrcK̃

−1
cc f (c),

B̃ = Br −BcK̃
−1
cc Kcr, S̃cc = −BcK̃

−1
cc BT

c , and f̃c = −BcK̃
−1
cc fc.

Computing the RHS of the Schur complement system d = B̃S̃−1f̃r − f̃c (see (13)) is
equivalent to solving N coupled Neumann problems (those with Neumann boundary
conditions at the interfaces and, if a subregion is adjacent to the boundary of Ω, with
zero Dirichlet conditions at ∂Ω) connected through the cross points and with the only
nonzero values at the interfaces:⎛

⎝ Kii 0 Kir

0 K̃cc Kcr

Kri Krc Krr

⎞
⎠

⎛
⎝ vi

vc
vr

⎞
⎠ =

⎛
⎝ 0

0

f̃r

⎞
⎠ .(53)

Note that this step is implemented using the capacitance matrix approach employing
solvers on the subregions only. Note also that computing f̃r requires solving N un-
coupled Dirichlet problems Kiiwi = f (i). The final result is then multiplied by B̃ and
corrected by −f̃c.

The preconditioned conjugate gradient (PCG) iterations to solve (12) are termi-
nated when the norm of the residual has decreased 106 times in the norm generated
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by the inverse of the preconditioner M−1. In each PCG iteration, there are two main
operations:

1. multiplication by F = B̃S̃−1B̃T − S̃cc (see (13)) and

2. multiplication by M−1 = B̂rŜrrB̂
T
r (see (17)).

Their implementation is as follows.

1. Given the search directions pkδ ∈ Rnδ at all nonmortar sides of the interfaces, we

compute rkδ = Fpkδ = (B̃S̃−1B̃T−S̃cc)p
k
δ as follows: we first compute pk = B̃T pkδ ; then

solve for (vi, vc, vr)
T the N coupled Neumann problems connected through the cross

points as in (53) but with the RHS (0, 0, pk)T ; and finally compute rkδ = B̃vr − S̃ccp
k
δ .

2. Given the residual rkδ ∈ Rnδ at all nonmortar sides of the interfaces we compute

zkδ = M−1rkδ = B̂rŜrrB̂
T
r r

k
δ , where Ŝrr = diag {Ŝ(j)

rr }, Ŝ(j)
rr = S

(j)
rr for ρi = 1, S

(j)
rr =

K
(j)
rr − K

(j)
ri (K

(j)
ii )−1K

(j)
ir as follows: we compute z = B̂T

r r
k
δ ; vj = (K

(j)
ii )−1K

(j)
ir zj ,

zj = z|∂Ωj , which is equivalent to solving N uncoupled Dirichlet problems K
(j)
ii vj =

K
(j)
ir zj for vj ; and finally zkδ = B̂rṽ, where ṽ = {ṽj}, ṽj = K

(j)
rr z −K

(j)
ri vj .

After solving (12) for λ̃∗ the final solution is obtained by solving the N coupled
Neumann problems connected through the cross points (see (9))

⎛
⎝ Kii 0 Kir

0 K̃cc Kcr

Kri Krc Krr

⎞
⎠

⎛
⎝ u(i)

u(c)

u(r)

⎞
⎠ =

⎛
⎝ f (i)

f (c) −BT
c λ̃

∗

f (r) −BT
r λ̃

∗

⎞
⎠ .

All the experiments were performed with the complete scaling of the precon-
ditioner as in (17), including the scaling involving step parameters. In the tables,
max H

hi
is the largest number of mesh steps on each subregion interface, “dim” is the

dimension of the reduced (Schur) matrix, “# it” is the number of the PCG iterations,
“κ(Q)” is the condition number estimate of the iteration matrix, and “error” is the
normalized L2 error. In all the examples the max grid ratio is 8 : 1. The criterion for
choosing γm(i) as the mortar side is that ρi ≥ ρj , the coefficients on Ωi and Ωj , and,
if equal, where the grid is finer, hγm(i)

≤ hδm(j)
, unless indicated otherwise.

5.2. Continuous problems. These examples serve as a comparison with the
discontinuous problems investigated in further detail.

Table 1 shows that the preconditioner M of (17) employed for the continuous
problem and grids (49) (with the M-N ordering of substructures) is well scalable
and gives convergence logarithmically dependent on the step sizes. The exhibited
dependence κ(Q) = (1+log(H/hmin))p with about p = 1 is better than the theoretical
value of p = 2.

Table 2 shows the results for the arbitrary ordering on grids (50). Performance
results for M-N ordering (Table 1) and for arbitrary ordering (Table 2) are very
similar. In the latter case the computed value in the logarithmic dependence also is
about p = 1, which is superior to the theoretical estimate of p = 4.

If one violates the above-mentioned recommendation and chooses hδm(i)
< hγm(j)

,
then the rate of convergence deteriorates somewhat; compare Table 3 with the upper
part of Table 2.

It should be noted that results presented in Tables 1 to 3 are significantly better
than those when the standard preconditioner (16) without the scaling involving step
parameters is employed.
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Table 1

Continuous coefficients. Mortar-nonmortar ordering of subregions for grids as in (49).

4 × 4 subregions 8 × 8 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 120 14 5.36 560 15 5.33
64 264 14 5.62 1232 15 5.74
128 552 14 6.27 2576 16 6.50
256 1128 15 7.17 5264 17 7.55

12 × 12 subregions 16 × 16 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 1320 15 5.31 2400 15 5.30
64 2904 15 5.76 5280 15 5.77
128 6072 16 6.54 11040 16 6.55
256 12408 17 7.62 22560 17 7.18

Table 2

Continuous coefficients. Arbitrary ordering of subregions for grids as in (50).

4 × 4 subregions 8 × 8 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 168 13 4.45 784 14 4.70
64 360 13 4.76 1680 14 5.06
128 744 14 5.38 3472 15 5.70
256 1512 14 6.24 7056 16 6.65

12 × 12 subregions 16 × 16 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 1848 13 4.75 3360 13 4.75
64 3960 14 5.12 7200 14 5.15
128 8184 15 5.81 14880 15 5.84
256 16632 16 6.77 30240 16 6.84

Table 3

The effect of choosing sides: hδ < hγ . Continuous coefficients. Arbitrary ordering of subregions
with grids as in (50).

4 × 4 subregions 8 × 8 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 504 15 10.50 2352 18 10.88
64 1032 15 13.97 4816 19 14.71
128 2088 16 18.03 9744 21 19.20
256 4200 17 22.74 19600 23 24.41

5.3. Discontinuous problems. For discontinuous problems the standard pre-
conditioner (16) which does not employ scaling of coefficients exhibits poor conver-
gence, often worse than the conjugate gradient iterations without preconditioning.
Fortunately, this preconditioner allows for a multitude of scalings to be employed.

It should be pointed out that in the simplest case of M-N ordering of 2 × 2
subregions with only two grids and two coefficients ρi : 1 = ρN < ρM investigated in
[3], the standard preconditioner (16) displayed convergence almost independent of the
ratio H/hi (although the condition number and the number of iterations were quite
high).

Several other scalings have been tried and tested. For example, for the M-N
ordering as in (49) the preconditioner M−1 = SN

rr + BM ŜM
rrBM

T gives convergence
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Table 4

Discontinuous coefficients. Mortar-nonmortar ordering of subregions and grids as in (49).

4 × 4 subregions 8 × 8 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 120 3 1.03 560 3 1.03
64 264 3 1.04 1232 3 1.04
128 552 3 1.05 2576 3 1.05
256 1228 3 1.07 5264 3 1.07

12 × 12 subregions 16 × 16 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 1320 3 1.03 2400 3 1.03
64 2904 4 1.04 5280 4 1.04
128 6072 3 1.05 11040 4 1.05
256 12408 3 1.07 22560 3 1.07

Table 5

Discontinuous coefficients. Arbitrary ordering of subregions and grids as in (50).

4 × 4 subregions 8 × 8 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 168 8 3.27 784 9 3.40
64 360 9 4.28 1680 11 4.46
128 744 10 5.45 3472 12 5.65
256 1512 11 6.77 7056 14 7.00

12 × 12 subregions 16 × 16 subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 1848 9 3.38 3360 9 3.38
64 3960 11 4.45 7200 11 4.45
128 8184 12 5.65 14880 12 5.65
256 16632 14 7.00 30240 14 7.00

almost independent of the ratio H/hi and the iteration count is a fraction of that
obtained with preconditioner (16). However, none of these simple preconditioner
scalings is satisfactory in the case of arbitrary (other than M-N) ordering, in which
case a scaling that acts only on the nonmortar sides of the interfaces is required.

The preconditioner M of (17) is one of possible choices of such a scaling, and one
that is exhibiting good convergence properties both in the continuous case and the
discontinuous one, as we shall demonstrate.

Table 4 shows that in the case of M-N ordering of the subregions the precondi-
tioner M gives convergence independent of the step sizes (the ratio H/hi), the jump
of coefficients, and the number of subregions.

Table 5 shows that for arbitrary ordering of subregions convergence is only log-
arithmically dependent of the step size, independent of the jump of coefficients, and
well scalable (independent on the number of subregions). The exhibited logarithmic
dependence κ(Q) = (1 + log(H/hmin))p with p = 1.8 is better than the theoretical
estimate p = 4.

Viewing Tables 1–2 and 4–5 we can compare performances of our preconditioner
for continuous and discontinuous problems. For M-N ordering we observe a much
faster rate of convergence in the discontinuous case over the continuous one, while for
the arbitrary ordering the rates of convergence do not differ significantly.
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Table 6

Discontinuous coefficients. Performance comparison for arbitrary ordering with a repetitive
pattern of grids as in (50) versus that of nonrepetitive grids as in (51) (denoted by *).

4 × 4 subregions 4 × 4∗ subregions

max H
hi

dim # it κ(Q) dim # it κ(Q)

32 168 8 3.27 160 11 4.13
64 360 9 4.28 344 12 4.44
128 744 10 5.45 712 13 4.91
256 1512 11 6.77 1448 14 5.71

Table 7

Discontinuous coefficients. Performance comparison for the random solution versus that of
(54) on arbitrary ordering of subregions 4 × 4* and grids as in (51).

Random solution Solution as in (54)

max H
hi

# it κ(Q) # it κ(Q) Error

32 11 4.13 10 4.16 8.57e-5
64 12 4.41 12 4.42 1.74e-5
128 13 4.91 13 5.33 4.04e-6
256 14 5.71 14 6.33 9.73e-7

Table 6 presents the comparison in performance for arbitrary ordering of 4 × 4
subregions between the case when the pattern of coefficients and grids is repetitive as
in (50) and when it is nonrepetitive as in (51). The differences are not pronounced,
which allows us to conclude that the results of experiments elsewhere in this paper
with larger numbers of subregions give a reasonable representation.

We have also tested problems with extreme variations of coefficients where coef-
ficients, ρi in (49) were replaced by(

1e+6 1e+2
1e−2 1e−6

)
.

The differences in performance were only slight.

For discontinuous problems with large jump of coefficients the question of choos-
ing sides, i.e., hγm(j)

< hδm(i)
versus hδm(i)

< hγm(j)
, has virtually no effect on the

convergence rate, in contrast with the continuous problems.

The variational formulation of the problem with discontinuities at the interfaces
automatically imposes the continuity of the flux condition in the weak sense. The
following solution (that is nonzero at the interfaces) was designed to satisfy this con-
dition in the classical sense:

u(x, y) = v(x)(1 − v(x))v(y)(1 − v(y)),(54)

v(z) = z − sin(2mπz)

2mπ
,

where m = 2k, k = 1 to 4.

Choosing (54) as the exact solution allows us to test the accuracy of our solver.
The results in Table 7 show that the accuracy is clearly O(h2). One needs to stress,
however, that the rate of convergence remains virtually the same as with the random
solution; see Table 7.
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It should be mentioned that a violation of the theoretical requirement that mortar
sides should be chosen where the coefficients are larger leads to a very slow convergence
when preconditioner M of (17) is used.

The largest tests reported here (16 × 16 subregions case in Table 5) were run
with the dimension of the reduced (Schur) matrix of 30,240 and about 5,500,000 grid
points (degrees of freedom) in the whole domain.

6. Conclusions. In this paper we introduced and analyzed a preconditioner
with special scaling involving discontinuous coefficients and step parameters, and
established convergence bounds.

Extensive computational evidence presented illustrates an excellent performance
of the preconditioner: its convergence is almost optimal for a variety of situations
(distribution of subregions, grid assignment, grid ratios, number of subregions) and
independent of the jumps of coefficients and the parameter of triangulation. This
holds for both continuous and discontinuous problems (in the latter case under the
theoretical assumption that a mortar side is associated with the higher coefficient).

The experiments using the proposed preconditioner also show that for discon-
tinuous problems the choice of mortar versus nonmortar sides has little influence on
convergence rate. The scaling involving step parameters removes the assumption
that hδm(k)

∼ hγm(i)
and, for continuous problems, significantly improves the rate of

convergence.
Recent experiments show that the method exhibits almost linear parallel scala-

bility properties; see [2].
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Abstract. The goal of this paper is to provide a theoretical framework allowing one to extend
some general concepts related to the numerical approximation of 1-d conservation laws to the more
general case of first order quasi-linear hyperbolic systems. In particular this framework is intended
to be useful for the design and analysis of well-balanced numerical schemes for solving balance
laws or coupled systems of conservation laws. First, the concept of path-conservative numerical
schemes is introduced, which is a generalization of the concept of conservative schemes for systems
of conservation laws. Then, we introduce the general definition of approximate Riemann solvers and
give the general expression of some well-known families of schemes based on these solvers: Godunov,
Roe, and relaxation methods. Finally, the general form of a high order scheme based on a first order
path-conservative scheme and a reconstruction operator is presented.
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1. Introduction. The motivating question of this paper was the design of nu-
merical schemes for P.D.E. systems that can be written under the form

∂tw + ∂xF (w) = B(w) · ∂xw + S(w)∂xσ,(1)

where the unknown w(x, t) takes values on an open convex set D of R
N ; F is a regular

function from D to R
N ; B is a regular matrix function from D to MN×N (R); S, a

function from D to R
N ; and σ(x), a known function from R to R.

System (1) includes as particular cases: systems of conservation laws (B = 0,
S = 0), systems of conservation laws with source term or balance laws (B = 0), and
coupled system of balance laws as defined in [7].

More precisely, the discretization of the shallow water systems that govern the
flow of one shallow layer or two superposed shallow layers of immiscible homogeneous
fluids was focused (see http://www.damflow.org). The corresponding systems can
be written, respectively, as a balance law or a coupled system of two balance laws.
Systems with similar characteristics also appear in other flow models such as two-
phase flows.

It is well known that standard methods that solve correctly systems of conser-
vation laws can fail in solving systems of balance laws, specially when approaching
equilibria or near to equilibria solutions. Moreover, they can produce unstable meth-
ods when they are applied to coupled systems of conservation or balance laws. In
the context of the numerical analysis of systems and coupled systems of balance laws,
many authors have studied the design of well-balanced schemes, that is, schemes that
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preserve some equilibria: see [2], [3], [5], [7], [10], [11], [12], [17], [18], [23], [24], [27],
[29], [31], [32], [36], [37], [38], [39], . . .

Among the main techniques used in the derivation of well-balanced numerical
schemes, one of them consists of choosing first a standard conservative scheme for
the discretization of the flux terms and then discretizing the source and the coupling
terms in order to obtain a consistent scheme which solves correctly a predetermined
family of equilibria. If this first procedure is followed, the calculation of the correct
discretization of the source and the coupling terms depends both on the specific
problem and the conservative numerical scheme chosen, and it may become rather
cumbersome. In [11] it was shown that the technique of modified equations can be
helpful in this procedure.

Another technique consists of considering (1) as a particular case of one-dimensional
quasi-linear hyperbolic system

∂W

∂t
+ A(W )

∂W

∂x
= 0, x ∈ R, t > 0,(2)

by adding to the system the trivial equation

∂σ

∂t
= 0.

Once the system is rewritten under this form, piecewise constant approximations of
the solutions are considered, then are updated by means of approximate Riemann
solvers at the intercells.

If this second procedure is followed, the main difficulty both from the mathe-
matical and the numerical points of view comes from the presence of nonconservative
products, which makes difficult even the definition of weak solutions. Many papers
have been devoted to the definition and stability of nonconservative products, and its
application to the definition of weak solutions of nonconservative hyperbolic systems;
see [1], [4], [6], [9], [13], [14], [26], [34], [41].

In this article we assume the definition of nonconservative products as Borel
measures given by Dal Maso, LeFloch, and Murat in [14]. This definition, which
depends on the choice of a family of paths in the phases space, allows one to give
a rigorous definition of weak solutions of (2). Together with the definition of weak
solutions, a notion of entropy has to be chosen as the usual Lax’s concept or one
related to an entropy pair. The classical theory of simple waves of hyperbolic systems
of conservation laws and the results concerning the solutions of Riemann problems
can then be extended to systems (2).

The choice of the family of paths may be, in general, a difficult task. The goal
of this article is, once the choice is done, to provide a theoretical framework for the
numerical approximation of the corresponding weak solutions of a strictly hyperbolic
system (2) whose characteristic fields are either genuinely nonlinear or linearly degen-
erate.

The organization of the article is as follows: in section 2, a brief resume of the
theory developed in [14] is presented, together with some remarks concerning the
choice of paths and some properties of weak solutions.

In section 3 we introduce the concept of path-conservative numerical schemes,
which is a generalization of that of conservative schemes for systems of conservation
laws: a scheme will be said to be path-conservative if it conserves to some extent the
Borel measure related to the nonconservative products.
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Section 4 is devoted to the well-balance property: we recall the general definition
of a well-balanced numerical scheme proposed in [29] and show that the well-balance
property of a scheme is strongly related to its ability to approach stationary contact
discontinuities.

In section 5, a general definition of approximate Reimann solvers for (2) is pre-
sented. We verify that the generalizations of the classical methods of Roe [35] and
Godunov [16] presented respectively in [40] and [30] are particular cases of path-
conservative methods based on approximate Riemann solvers fitting this general def-
inition. We give also some guidelines about how to construct relaxation schemes.

Section 6 is devoted to high order methods based on reconstruction techniques.
The general form of a scheme based on a first order path-conservative scheme and a
reconstruction operator is presented. The schemes constructed in [8] are particular
cases in which the first order method is of the Roe type. Some general results con-
cerning the order and well-balance properties of these methods are finally presented.

2. Weak solutions. Consider the problem

∂W

∂t
+ A(W )

∂W

∂x
= 0, x ∈ R, t > 0,(3)

where W (x, t) belongs to Ω, an open convex subset of R
N , and W ∈ Ω �→ A(W ) ∈

MN×N (R) is a smooth locally bounded map. We suppose that system (3) is strictly
hyperbolic, that is, for each W ∈ Ω, A(W ) has N real distinct eigenvalues λ1(W ) <
· · · < λN (W ), with associated eigenvectors R1(W ),. . . ,RN (W ). We also suppose that
for each i = 1, . . . , N , the characteristic field Ri(W ) is either genuinely nonlinear,

∇λi(W ) ·Ri(W ) �= 0, ∀ W ∈ Ω,

or linearly degenerate,

∇λi(W ) ·Ri(W ) = 0, ∀ W ∈ Ω.

The theory developed by Dal Maso, LeFloch, and Murat (see [14]) allows one to
give a rigorous definition of nonconservative products associated with the choice of a
family of paths in Ω.

Definition 2.1. A family of paths in Ω ⊂ R
N is a locally Lipschitz map

Φ: [0, 1] × Ω × Ω �→ Ω,

such that:
• Φ(0;WL,WR) = WL and Φ(1;WL,WR) = WR, for any WL,WR ∈ Ω;
• for every arbitrary bounded set O ⊂ Ω, there exists a constant k such that∣∣∣∣∂Φ

∂s
(s;WL,WR)

∣∣∣∣ ≤ k|WR −WL|,

for any WL,WR ∈ O and almost every s ∈ [0, 1];
• for every bounded set O ⊂ Ω, there exists a constant K such that∣∣∣∣∂Φ

∂s
(s;W 1

L,W
1
R) − ∂Φ

∂s
(s;W 2

L,W
2
R)

∣∣∣∣ ≤ K(|W 1
L −W 2

L| + |W 1
R −W 2

R|),

for any W 1
L,W

1
R,W

2
L,W

2
R ∈ O and almost every s ∈ [0, 1].
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Suppose that a family of paths Φ in Ω has been chosen. Then, for W ∈ (L∞(R×
R

+) ∩ BV (R × R
+))N , the nonconservative product can be interpreted as a Borel

measure denoted by [A(W )Wx]Φ. If the family of segments is chosen, this interpre-
tation is equivalent to the definition of nonconservative product proposed by Volpert
in [41].

Across a discontinuity with speed ξ a weak solution must satisfy the generalized
Rankine–Hugoniot condition∫ 1

0

(
ξI − A(Φ(s;W−,W+))

)∂Φ

∂s
(s;W−,W+) ds = 0,(4)

where I is the identity matrix and W−, W+ are the left and right limits of the solution
at the discontinuity. In the particular case of a system of conservation laws (that is,
if A(W ) is the Jacobian matrix of some flux function F (W )), (4) is independent of
the family of paths and it reduces to the usual Rankine–Hugoniot condition.

As it occurs in the conservative case, not every discontinuity is admissible. There-
fore, a concept of entropic solution has to be assumed, as one of the following defini-
tions.

Definition 2.2. A weak solution is said to be an entropic solution in the Lax
sense if, at each discontinuity, there exists i ∈ {1, . . . , N} such that

λi(W
+) < ξ < λi+1(W

+) and λi−1(W
−) < ξ < λi(W

−)

if the ith characteristic field is genuinely nonlinear or

λi(W
−) = ξ = λi(W

+)

if the ith characteristic field is linearly degenerate.
Definition 2.3. Given an entropy pair (η,G) for (3), i.e., a pair of regular

functions from Ω to R such that

∇G(W ) = ∇η(W ) · A(W ), ∀ W ∈ Ω,

a weak solution is said to be entropic if it satisfies the inequality

∂tη(W ) + ∂xG(W ) ≤ 0,

in the distributions sense.
The choice of the family of paths is important as it determines the speed of

propagation of discontinuities. For scalar balance laws, rigorous justifications of the
choice of the family of paths can be given using different techniques based on weak
limits; see [19], [20]. In general, this choice has to be based on the physical background
(see [25], [33] for instance). In any case, it is natural from the mathematical point of
view to require this family to satisfy some hypotheses concerning the relation of the
paths with the integral curves of the characteristic fields. Following [30], here we will
assume that the family of paths satisfies the following hypotheses:

(H1) Given two states, WL and WR, belonging to the same integral curve γ of a
linearly degenerate field, the path Φ(s;WL,WR) is a parameterization of the arc of γ
linking WL and WR.

(H2) Given two states, WL and WR, belonging to the same integral curve γ of a
genuinely nonlinear field, Ri, such that λi(WL) < λi(WR), the path Φ(s;WL,WR) is
a parameterization of the arc of γ linking WL and WR.
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(H3) Let us denote by RP ⊂ Ω × Ω the set of pairs (WL,WR) such that the
Riemann problem ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+ A(W )

∂W

∂x
= 0,

W (x, 0) =

⎧⎨
⎩

WL if x < 0,

WR if x > 0,

(5)

has a unique self-similar solution W (x, t) = V (x/t;WL,WR) (where the function V is
piecewise regular) composed by at most N simple waves: rarefaction waves, contact
discontinuities, or shocks (i.e., discontinuities satisfying the jump condition (4) and
the entropy condition given by Definition 2.2 or 2.3). These simple waves connect
J + 1 intermediate states

W0 = WL;W1, . . . ,WJ−1;WJ = WR;

with J ≤ N . We assume that, given two states (WL,WR) ∈ RP, the curve described
by the path Φ(s;WL,WR) in Ω is equal to the union of those corresponding to the
paths Φ(s;Wj ,Wj+1), j = 0, . . . , J − 1.

If the definition of weak solutions of (3) is based on a family of paths satisfying
these hypotheses, the following natural properties hold (see [30]).

Proposition 2.4. Let us suppose that the concept of weak solutions of (3) is
defined on the basis of a family of paths satisfying hypotheses (H1)–(H3). Then

(i) Given two states WL and WR belonging to the same integral curve of a lin-
early degenerate field, the contact discontinuity given by

W (x, t) =

{
WL if x < σt,
WR if x > σt,

where σ is the (constant) value of the corresponding eigenvalue through the integral
curve, is a weak solution of (3).

(ii) Let (WL,WR) be a pair belonging to RP and let W be the solution of the
corresponding Riemann problem (5). The following equality holds:〈

[A(W (·, t))Wx(·, t)]Φ , 1

〉
=

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds.

Consequently, the total mass of the Borel measure [A(W (·, t))Wx(·, t)]Φ does not de-
pend on t.

(iii) Let (WL,WR) be a pair belonging to RP and let Wj be any of the intermediate
states appearing in the solution of the Riemann problem (5). Then∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds

=

∫ 1

0

A (Φ(s;WL,Wj))
∂Φ

∂s
(s;WL,Wj) ds

+

∫ 1

0

A (Φ(s;Wj ,WR))
∂Φ

∂s
(s;Wj ,WR) ds.
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Some general guidelines to construct a family of paths satisfying these hypotheses
(at least for pairs (WL,WR) ∈ RP) have been presented in [30].

In the following proposition we establish a property of the solution of a Riemann
problem that will be of importance in the definition of generalized approximate Rie-
mann solvers for (3).

Proposition 2.5. Given (WL,WR) ∈ RP, the solution W (x, t) = V (x/t;WL,WR)
of the Riemann problem (5) satisfies the following equality:∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds

(6)

+

∫ ∞

0

(V (v;WL,WR) −WR) dv +

∫ 0

−∞
(V (v;WL,WR) −WL) dv = 0.

Proof. Let A, T be two positive numbers such that

V (x/T ;WL,WR) = WL, if x < −A,

V (x/T ;WL,WR) = WR, if x > A.

Integrating (3) in [−A,A] × [0, T ], we obtain∫ A

−A

V (x/T ;WL,WR) dx−AWL −AWR +

∫ T

0

〈[A(W (·, t))Wx(·, t)]Φ , 1〉 dt = 0.

Then (6) is easily obtained by taking into account (ii) of Proposition 2.4 and making
the change of variables v = x/T in the integral at the right-hand side.

Remark 1. If the concept of entropic solution is related to an entropy pair (η,G)
with convex η, the following inequality can also be proved for the solution of a Riemann
problem:

G(WR) +

∫ ∞

0

(
η
(
V (v;WL,WR)

)
− η(WR)

)
dv

(7)

≤ G(WL) −
∫ 0

−∞

(
η
(
V (v;WL,WR)

)
− η(WL)

)
dv.

The proof is identical to that corresponding to systems of conservation laws.

3. Path-conservative numerical schemes. The central concept of the theory
developed in this article is that of path-conservative numerical scheme, which is a
generalization of conservative schemes for systems of conservation laws. We recall
that, given a system of conservation laws

∂tW + ∂xF (W ) = 0, x ∈ R, t > 0,(8)

the expression of a conservative numerical scheme is as follows:

Wn+1
i = Wn

i +
Δt

Δx

(
Gi−1/2 −Gi+1/2

)
,(9)

where Δt and Δx are the time step and the space step, which are supposed to be
constant for simplicity; Wn

i represents the approximation of the average of the exact
solution at the ith cell Ii = [xi−1/2, xi+1/2] at time tn = nΔt,

Wn
i
∼=

1

Δx

∫ xi+1/2

xi−1/2

W (x, tn) dx,
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and Gi+1/2 = G(Wn
i−q, . . . ,W

n
i+p) is the numerical flux at the intercell xi+1/2,

Gi+1/2
∼=

1

Δt

∫ tn+1

tn
F (W (xi+1/2, t)) dt.(10)

This expression is usually motivated as follows: a weak solution of (8) satisfies
the equality∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx +

∫ t1

t0

F (W (a, t)) dt−
∫ t1

t0

F (W (b, t)) dt,(11)

for every rectangle [a, b]× [t0, t1] in R× [0,∞), and (9) is the discrete analogue of the
equality (11) corresponding to the rectangle Ii × [tn, tn+1].

Let us give a reinterpretation of (9) in terms of measures in order to motivate its
generalization to nonconservative problems. A weak solution can be understood as a
function that satisfies the equality (8) in the sense of distributions. In the particular
case of a piecewise regular weak solution, given t > 0 the distribution [F (W (·, t))x] is
defined by

〈[F (W (·, t))x], φ〉 =

∫
R

F (W (x, t))xφ(x) dx

(12)
+
∑
l

(
F (W+

l ) − F (W−
l )

)
φ(xl(t)), ∀ φ ∈ D(R)N ,

where the derivative appearing in the integral term has to be understood in the
pointwise sense; the index l of the sum runs in the number of discontinuities appearing
in the solution; xl(t) is the location at time t of the lth discontinuity; W−

l and W+
l the

limits of the solution to the left and right of the lth discontinuity at time t; finally,
D(R) represents the set of functions of class C∞(R) with compact support. The
distribution [F (W (·, t))x] can be interpreted as a Borel measure having the Lebesgue
decompostion μa + μs, where μa is given by

μa(E) =

∫
E

F (W (x, t))x dx,

for every Borel set E, and

μs =
∑
l

(
F (W+

l ) − F (W−
l )

)
δx=xl(t),(13)

being δx=a the Dirac measure placed at x = a. Given a Borel set E, we will denote
its measure by

〈[F (W (·, t))x], 1E〉.

Using this notation, (11) can be rewritten as follows:∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx−
∫ t1

t0

〈
[F (W (·, t))x], 1[a,b]

〉
dt.(14)

If we now define the piecewise constant function Wn whose value at the cell Ii is the
approximation Wn

i , the discrete analogue of (14) would be

Wn+1
i = Wn

i − Δt

Δx
〈[F (Wn)x], 1Ii〉,(15)
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but this equality is not equivalent to (9): notice that the measure [F (Wn)x] consists
only of its singular part ∑

i

(
F (Wn

i+1) − F (Wn
i )

)
δx=xi+1/2

,

and that the cells Ii have been defined as closed intervals. Therefore, in (15) the
punctual mass placed at xi+1/2 contribute both to cells Ii and Ii+1. In this sense,
the conservative numerical scheme (9) can be interpreted as follows: Gi+1/2 can be
considered as an intermediate flux that is used to split the Dirac measures placed at
the intercells(

F (Wn
i+1) − F (Wn

i )
)
δx=xi+1/2

=
(
F (Wn

i+1) −Gi+1/2

)
δx=xi+1/2

+
(
Gi+1/2 − F (Wn

i )
)
δx=xi+1/2

,

and then, the first summand contributes to cell Ii+1 and the second one to Ii, i.e.,

Wn+1
i = Wn

i − Δt

Δx

(
(F (Wn

i ) −Gi−1/2)) + (Gi+1/2 − F (Wn
i )

)
,(16)

which is obviously equivalent to (9).
Let us now come back to nonconservative systems (3) and suppose that a family of

paths Φ has been chosen to define the weak solutions. If W is again a piecewise regular
weak solution, for a given time t the Borel measure related to the nonconservative
product is defined as follows:

〈[A(W (·, t))Wx(·, t)]Φ, φ〉 =

∫
R

A(W (x, t))Wx(x, t)φ(x) dx

+
∑
l

(∫ 1

0

A(Φ(s;W−
l ,W+

l ))
∂Φ

∂s
(s;W−

l ,W+
l ) ds

)
φ(xl(t)),(17)

∀φ ∈ C0(R),

which is obviously a generalization of (12). In the above equality, the expression Wx

appearing in the first integral represents again the pointwise derivative of W (·, t);
xl(t), W

−
l , W+

l are like in (12); and C0(R) is the set of continuous maps with compact
support.

Notice that again this measure can be decomposed as a sum μΦ
a + μΦ

s where

μΦ
a (E) =

∫
E

A(W (x, t))Wx(x, t) dx

for every Borel set E, and:

μΦ
s =

∑
l

(∫ 1

0

A(Φ(s;W−
l ,W+

l ))
∂Φ

∂s
(s;W−

l ,W+
l ) ds

)
δx=xl(t).(18)

Given a rectangle [a, b]× [t0, t1] in R × [0,∞), a weak solution of (3) satisfies the
equality∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx−
∫ t1

t0

〈[A(W (·, t))Wx(·, t)]Φ , 1[a,b]〉 dt(19)

that generalizes (11).
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The discrete analogue of (19) is now

Wn+1
i = Wn

i − Δt

Δx
〈[A(Wn)Wn

x ]Φ , 1Ii〉,(20)

where, again, Wn is the piecewise constant function taking the value Wn
i at cell Ii.

Newly, the measure [A(Wn)Wn
x ]Φ consists only of its singular part,

∑
i

(∫ 1

0

A(Φ(s;Wn
i ,W

n
i+1))

∂Φ

∂s
(s;Wn

i ,W
n
i+1) ds

)
δx=xi+1/2

.

Therefore, the punctual masses placed at the intercells have to be decomposed into
two terms D±

i+1/2, one contributing to the cell Ii and the other to the cell Ii+1. This

idea leads to the following definition.
Definition 3.1. Given a family of paths Ψ, a numerical scheme is said to be

Ψ-conservative if it can be written under the form

Wn+1
i = Wn

i − Δt

Δx

(
D+

i−1/2 + D−
i+1/2

)
,(21)

where

D±
i+1/2 = D±(Wn

i−q, . . . ,W
n
i+p),

D− and D+ being two continuous functions from Ωp+q+1 to Ω satisfying:

D±(W, . . . ,W ) = 0, ∀ W ∈ Ω,(22)

and

D−(W−q, . . . ,Wp) + D+(W−q, . . . ,Wp)
(23)

=

∫ 1

0

A(Ψ(s;W0,W1))
∂Ψ

∂s
(s;W0,W1) ds,

for every Wi ∈ Ω, i = −q, . . . , p.
This definition generalizes the usual concept of a conservative numerical scheme

for a system of conservation laws:
Proposition 3.2. Let us suppose that (3) is a system of conservation laws, i.e.,

A is the Jacobian of a flux function F . Then, every numerical scheme which is Ψ-
conservative for some family of paths Ψ is consistent and conservative in the usual
sense. Conversely, a consistent conservative numerical scheme is Ψ-conservative for
every family of paths Ψ.

Proof. Observe first that, in the case of a conservative system, (23) reduces to

D−(W−q, . . . ,Wp) + D+(W−q, . . . ,Wp) = F (W1) − F (W0).

Therefore, given a Ψ-conservative numerical scheme (21) we can define a numerical
flux function G as follows:

G(W−q, . . . ,Wp) = D−(W−q, . . . ,Wp) + F (W0)
(24)

= −D+(W−q, . . . ,Wp) + F (W1).
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Then, (21) is equivalent to the conservative scheme (9) corresponding to the numerical
flux G. Moreover, from (22) we easily deduce

G(W, . . . ,W ) = F (W ).

Conversely, given a consistent conservative numerical scheme with numerical flux
function G, it can be written under the form (21) by defining

D−(W−q, . . . ,Wp) = G(W−q, . . . ,Wp) − F (W0),
D+(W−q, . . . ,Wp) = −G(W−q, . . . ,Wp) + F (W1).

It can be easily verified that (22) and (23) are satisfied for every family of paths
Ψ.

Remark 2. According to Proposition 3.2, a path-conservative numerical scheme
applied to a conservative problem is just a conservative scheme formulated in the so-
called wave propagation form (see [28]). It is important to notice that, in despite of its
form, a path-conservative numerical scheme (21) is not a nonconservative numerical
scheme in the usual sense: a numerical scheme for solving a conservative problem is
said to be nonconservative if it cannot be written under the form (9).

Notice that condition (23) plays a double role. On the one hand, it is used to
approximate the punctual masses associated to discontinuities. On the other hand,
together with (22), it is a consistency requirement for regular solutions and smooth
data. In effect, if W is a regular enough solution and A(W ), D±(W−q, . . . ,Wp) are
also regular, from (22) and (23) it can be deduced that

1

Δx

(
D+(W (xi−q−1, t), . . . ,W (xi+p−1, t)) + D−(W (xi−q, t), . . . ,W (xi+p, t))

)
= A(W (xi, t))Wx(xi, t) + O(Δx).

Path-conservative numerical schemes satisfy a certain conservation property. In
effect, let W be a weak solution of (3) corresponding to an initial condition W0 such
that

W0(x) = WL, ∀ x < −A; W0(x) = WR, ∀ x > A;(25)

for some A > 0. Given 0 ≤ t0 < t1 < ∞, W satisfies∫
R

(
W (x, t1) −W (x, t0)

)
dx = −

∫ t1

t0

〈[A(W (·, t))Wx(·, t)]Φ, 1〉 dt.(26)

Let us suppose now that a Ψ-conservative scheme is applied to approach this
solution and let Wn be the piecewise constant function whose value at the cell Ii
is Wn

i . Summing up in (21) and taking into account (17) and (23), we deduce the
equality ∫

R

(
Wn+1(x) −Wn(x)

)
dx = −Δt 〈[A(Wn)Wn

x ]Ψ , 1〉 ,(27)

which is clearly an approximation of (26).
As it was remarked in [29] in the context of Roe schemes, the best choice of

the family of paths Ψ appearing in Definition 3.1 is the family Φ selected for the
definition of weak solutions: in this case, (26) and (27) makes reference to the same
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Borel measure and the jump conditions of weak solutions and numerical solutions are
consistent.

In fact, a Lax–Wendroff theorem can be conjectured: if the numerical solutions
obtained with a Ψ-conservative converge in an adequate sense, its limit has to be a
weak solution whose definition is also related to the family of paths Ψ.

We stress that such a theorem would not be in contradiction with the negative
results shown in [22] or [15]; in these works the failure of the convergence of noncon-
servative schemes to weak solutions of conservative problems was studied. But in our
case, if the system is conservative, a path-conservative numerical scheme is not a non-
conservative scheme (see Remark 2). Nevertheless, this kind of negative results are
also expectable if a path-conservative numerical scheme based on a family Ψ is used
to approach weak solutions based on a different family of paths Φ: in that case, the
consistency for smooth solutions is still provided by (22) and (23) but discontinuities
can be incorrectly treated. In fact, a negative result of this type was observed in [29]
in the context of the approximation of shallow water systems with source term.

Unfortunately, the construction of Φ-conservative schemes can be difficult or very
costly in practice. In this case, a simpler family of paths Ψ has to be chosen, as the
family of segments:

Ψ(s;WL,WR) = WL + s(WR −WL).(28)

4. Well-balancing. Well-balancing is related to the numerical approximation of
equilibria, i.e., steady state solutions. Notice that system (3) can only have nontrivial
steady state solutions if it has some linearly degenerate fields; let W (x) be a regular
steady state solution

A(W (x)) ·W ′(x) = 0 ∀ x ∈ R.

If W ′(x) �= 0, then 0 is an eigenvalue of A(W (x)) and W ′(x) is an associated eigen-
vector. Therefore, x �→ W (x) can be interpreted as a parameterization of an integral
curve of a linearly degenerate characteristic field whose corresponding eigenvalue takes
the value 0 through the curve. In order to define the concept of well-balancing, let us
introduce the set Γ of all the integral curves γ of a linearly degenerate field of A(W )
such that the corresponding eigenvalue vanishes on Γ. According to [29] we introduce
the following definitions.

Definition 4.1. Given a curve γ ∈ Γ, a numerical scheme for solving (3)

Wn+1
j = Wn

j +
Δt

Δx
H(Wn

j−q, . . . ,W
n
j+p)(29)

is said to be exactly well-balanced for γ if, given any C1 function x ∈ (α, β) ⊂ R �→
W (x) ∈ Ω such that

W (x) ∈ γ, ∀ x ∈ (α, β),(30)

and p + q + 1 points in (α, β) x−q, . . . , xp such that

x−q < · · · < xp; xi+1 − xi = Δx, i = −q, . . . , p− 1,(31)

then

H(W (x−q), . . . ,W (xp)) = 0.(32)
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The scheme is said to be well-balanced with order k for γ if, given any Ck+1 function
W and any set of points {x−q, . . . , xp} satisfying (30), (31), then

|H(W (x−q), . . . ,W (xp))| = O
(
Δxk+1

)
.(33)

Finally, the scheme is said to be exactly well-balanced or well-balanced with order k if
these properties are satisfied for any curve of Γ.

We have only considered 1-level schemes and uniform meshes in order to avoid an
excess of notation, but the definition can be easily extended to more general schemes.

The well-balance property of a scheme is strongly related to its ability to ap-
proximate stationary contact discontinuities. We can state for instance the following
proposition.

Proposition 4.2. Given a numerical scheme of the form (21) with q = 0 and
p = 1 and a curve γ of Γ, the numerical scheme is exactly well-balanced for γ if
and only if it solves exactly every stationary contact discontinuity linking two states
belonging to γ.

Proof. Both properties are satisfied if and only if

D±(W0,W1) = 0, ∀ W0,W1 ∈ γ.

Remark 3. For numerical schemes with arbitrary values of p and q the direct
implication of the proposition is also valid. To see this, observe first that a numerical
scheme is exactly well-balanced for γ if and only if

H(W−q, . . . ,Wp) = 0,

for any given ordered set of states {W−q, . . . ,Wp} of γ, where some of the states can
be repeated. Then it can be easily shown that this property implies that the numerical
scheme solves exactly stationary contact discontinuities linking two states belonging
to γ.

5. Approximate Riemann solvers. This section is devoted to generalize the
notion of approximate Riemann solvers introduced in [21] for conservative systems (8)
and extended in [5] for balance laws. The organization of this section closely follows
Bouchut’s book.

Definition 5.1. Given a family of paths Ψ, a Ψ-approximate Riemann solver
for (3) is a function Ṽ : R × Ω × Ω �→ Ω satisfying the following:

(i) for every W ∈ Ω,

Ṽ (v;W,W ) = W ∀ v ∈ R;(34)

(ii) for every WL, WR ∈ Ω there exist λmin(WL,WR), λmax(WL,WR) in R such
that,

Ṽ (v;WL,WR) = WL, if v < λmin(WL,WR),

Ṽ (v;WL,WR) = WR, if v > λmax(WL,WR);

(iii) for every WL,WR ∈ Ω,∫ 1

0

A (Ψ(s;WL,WR))
∂Ψ

∂s
(s;WL,WR) ds

+

∫ ∞

0

(
Ṽ (v;WL,WR) −WR

)
dv(35)

+

∫ 0

−∞

(
Ṽ (v;WL,WR) −WL

)
dv = 0.
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Notice that (35) is a generalization of the property (6) satisfied by the exact
solution of a Riemann problem (5).

Given a Ψ-approximate Riemann solver for (3) a numerical scheme can be con-
structed as follows:

Wn+1
i =

1

Δx

(∫ xi

xi−1/2

Ṽ

(
x− xi−1/2

Δt
;Wn

i−1,W
n
i

)
dx

(36)

+

∫ xi+1/2

xi

Ṽ

(
x− xi+1/2

Δt
;Wn

i ,W
n
i+1

)
dx

)
.

Under a CFL condition 1/2, the numerical scheme can also be written under the
form (21) with

D−
i+1/2 = −

∫ 0

−∞

(
Ṽ (v;Wn

i ,W
n
i+1) −Wn

i

)
dv,(37)

D+
i+1/2 = −

∫ ∞

0

(
Ṽ (v;Wn

i ,W
n
i+1) −Wn

i+1

)
dv.(38)

Proposition 5.2. A numerical scheme (21) based on a Ψ-approximate Riemann
solver is Ψ-conservative.

Proof. The proof is straightforward from (37), (38), and Definition 5.1.
Remark 4. If the numerical scheme is intended to solve only weak solutions with

small discontinuities, i.e., discontinuities linking pairs of states (WL,WR) belonging

to RP, then it is enough for the approximate Riemann solver Ṽ to be defined in
R ×RP.

A numerical scheme (21) based on a Ψ-approximate Riemann solver is well-
balanced for a curve γ of the set Γ, if and only if, given two states WL and WR

in γ the following equalities hold:∫ 0

−∞

(
Ṽ (v;WL,WR) −WL

)
dv = 0,∫ ∞

0

(
Ṽ (v;WL,WR) −WR

)
dv = 0.

These equalities are trivially satisfied if

Ṽ (v;WL,WR) =

{
WL if v < 0,
WR if v > 0,

i.e., if the approximate Riemann solver is exact for pairs of states (WL,WR) belonging
to γ.

We recall hereafter some classical choices of approximate Riemann solvers.

5.1. Godunov methods. Godunov methods correspond to the choice of the
exact Riemann solver, i.e.,

Ṽ (v;WL,WR) = V (v;WL,WR),

being V (x/t;WL,WR) the exact solution of the Riemann problem (5). This is clearly
a Φ-approximate Riemann solver. Moreover, if the concept of entropic solution is
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related to an entropy pair (η,G) with convex η, according to Remark 1 it is dissipative
for this pair (see [5]).

In [30] it has been shown that if the family of paths satisfies the hypotheses
(H1)–(H3) stated in section 2, Godunov methods can be written under the form (21)
with

D−
i+1/2 =

∫ 1

0

A
(
Φ(s;Wn

i ,W
n
i+1/2)

) ∂Φ

∂s
(s;Wn

i ,W
n
i+1/2) ds,

D+
i+1/2 =

∫ 1

0

A
(
Φ(s,Wn

i+1/2,W
n
i+1)

) ∂Φ

∂s
(s;Wn

i+1/2,W
n
i+1) ds,

where Wn
i+1/2 is the (constant) value at x = xi+1/2 of the solution of the Riemann

problem related to the states Wn
i and Wn

i+1. If the solution is discontinuous at
x = xi+1/2 the limit to the left or the right can be chosen indifferently.

Godunov methods are exactly well-balanced (see [30]).

5.2. Roe methods. Approximate Riemann solvers are often constructed as fol-
lows: Ṽ (x/t;WL,WR) is the solution of a linear Riemann problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂U

∂t
+ A(WL,WR)

∂U

∂x
= 0,

U(x, 0) =

{
WL if x < 0,
WR if x > 0,

(39)

where A(WL,WR) is a linearization of A(W ). It can be easily shown that this is a
Ψ-approximate Riemann solver, if and only if, A(WL,WR) is a Roe linearization in
the sense defined by Toumi in [40].

Definition 5.3. Given a family of paths Ψ, a function AΨ: Ω×Ω �→ MN×N (R)
is called a Roe linearization if it verifies the following properties:

1. for each WL,WR ∈ Ω, AΨ(WL,WR) has N distinct real eigenvalues,
2. AΨ(W,W ) = A(W ), for every W ∈ Ω,
3. for any WL,WR ∈ Ω,

AΨ(WL,WR)(WR −WL) =

∫ 1

0

A(Ψ(s;WL,WR))
∂Ψ

∂s
(s;WL,WR) ds.(40)

Once a Roe linearization AΨ has been chosen, some straightforward calculations
allow one to show that, under a CFL condition 1/2, the numerical scheme can be
written under the form (21) with

D−
i+1/2 = A−

i+1/2(W
n
i+1 −Wn

i ),

D+
i+1/2 = A+

i+1/2(W
n
i+1 −Wn

i ),

where

Ai+1/2 = AΨ(Wn
i ,W

n
i+1),

and, as usual,

L±
i+1/2 =

⎡
⎢⎢⎣

(λ
i+1/2
1 )± 0

. . .

0 (λ
i+1/2
N )±

⎤
⎥⎥⎦ , A±

i+1/2 = Ki+1/2L±
i+1/2K

−1
i+1/2(41)
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being Li+1/2 the diagonal matrix whose coefficients are the eigenvalues of Ai+1/2

λ
i+1/2
1 < λ

i+1/2
2 < · · · < λ

i+1/2
N ,

and Ki+1/2 is a N ×N matrix whose columns are associated eigenvectors.
As in the case of systems of conservation laws, a CFL condition 1 is used in

practice, as this condition ensures the linear stability of the method. An entropy-fix
technique also has to be added to the numerical scheme.

In [29] it has been shown that a Roe scheme based on a family of paths Ψ is
exactly well-balanced for a curve γ ∈ Γ if, given two states WL and WR in γ, the path
Ψ(s;WL,WR) is a parameterization of the arc of γ linking these states. In particular,
if the family of path Ψ coincides with the family Φ used in the definition of weak
solutions, the numerical scheme is exactly well-balanced. The numerical scheme is
well-balanced with order k if Ψ(s;WL,WR) approximates with order k + 1 a regular
parameterization of the arc of γ linking the states. In particular, a Roe scheme based
on the family of segments (28) is always well-balanced with order 2. Moreover, it is
exactly well-balanced for curves of Γ that are straight lines (see [29] for details).

The construction of Roe methods for systems of the form (1) has been studied
in [29].

5.3. Relaxation methods. The goal of this paragraph is to give some guide-
lines about the construction of approximate Riemann solvers for nonconservative sys-
tems based on the relaxation technique. This has been done for balance laws in [5].

The idea is as follows. First of all, a new nonconservative hyperbolic system is
considered,

∂W̃

∂t
+ B(W̃ )

∂W̃

∂x
= 0, x ∈ R, t > 0,(42)

where W̃ now takes values in an open convex Ω̃ of R
Ñ , with Ñ > N . Again, B is a

smooth locally bounded map from Ω̃ to M
Ñ×Ñ

(R).

Let us suppose that there exist two linear operators L : Ω̃ �→ Ω and M : Ω �→ Ω̃
such that

LM(W ) = W ∀ W ∈ Ω.

In practice, system (42) has to be chosen in such a way that it is possible to
easily construct an approximate Riemann solver with good properties (this is the
case, for instance, if Riemann problems related to (42) are easy to solve). Then, an
approximate Riemann solver for (3) is deduced.

The main difference with the conservative case comes from the fact that, in this
case, together with system (42) a family of paths in Ω̃ also has to be chosen in order
to define the approximate Riemann solver for this system.

The following lemma, whose demonstration is straightforward, gives a sufficient
condition to obtain a Ψ-approximate Reimann solver for (3) from a Ψ̃-approximate
Reimann solver for (42).

Lemma 5.4. Let Ψ and Ψ̃ be two families of paths in Ω and Ω̃, respectively, such
that ∫ 1

0

LB
(
Ψ̃(s;M(WL),M(WR))

)∂Ψ̃

∂s
(s;M(WL),M(WR)) ds

(43)

=

∫ 1

0

A
(
Ψ(s;WL,WR)

)∂Ψ

∂s
(s;WL,WR) ds.
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Then, if R(v; W̃L, W̃R) is a Ψ̃-approximate Reimann solver for (42), the function

Ṽ (v;WL,WR) = LR(v;M(WL),M(WR)),

gives a Ψ-approximate Reimann solver for (3).
Remark 5. It can also be easily shown that, if (η,G) is an entropy pair for (3)

and (η̃, G̃) is an entropy extension to (42) (see [5]), and both η and η̃ are convex

functions, then, if R is dissipative for (η̃, G̃), Ṽ is dissipative for (η,G).

6. High order schemes based on reconstruction of states. The goal of this
section is to obtain a high order scheme for (3) based on a first order path-conservative
numerical scheme (21) with q = 0 and p = 1, that is,

D±
i+1/2 = D±(Wn

i ,W
n
i+1),

and a reconstruction operator of order s, i.e., an operator that associates to a given
sequence {Wi} two new sequences {W−

i+1/2}, {W
+
i+1/2} in such a way that, whenever

Wi =
1

Δx

∫
Ii

W (x) dx, ∀ i ∈ Z,

for some smooth function W , then

W±
i+1/2 = W (xi+1/2) + O (Δxs) , ∀ i ∈ Z.

In the case of a system of conservation laws (8), high order methods based on the
reconstruction of states can be built using the following procedure: a first order con-
servative scheme with numerical flux function G(U, V ) and a reconstruction operator
of order s are first chosen. Next, the method of lines is used: the system is discretized
only in space, leaving the problem continuous in time. Let us denote by W i(t) the
cell average of solution W of (3) over the cell Ii at time t,

W i(t) =
1

Δx

∫ xi+1/2

xi−1/2

W (x, t) dx.

The following equation can be easily obtained from (8):

W
′
i(t) =

1

Δx

(
F (W (xi−1/2, t)) − F (W (xi+1/2, t))

)
.(44)

Now, (44) is approached as follows:

W ′
i (t) =

1

Δx

(
G̃i−1/2 − G̃i+1/2

)
,(45)

with

G̃i+1/2 = G(W−
i+1/2(t),W

+
i+1/2(t)),(46)

Wi(t) being the approximation to W i(t), and {W±
i+1/2(t)} the reconstructions asso-

ciated to the sequence {Wi(t)}. It can be shown that (45)–(46) give a semidiscrete
method of order s for (8).
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Notice that (45) is a system of ordinary differential equations which is solved
using a standard numerical method.

Let us introduce an interpretation of (45) in terms of measures, as it was done in
section 2, in order to generalize it to nonconservative systems. First, notice that (44)
can also be written under the form

W
′
i(t) = − 1

Δx
〈[F (W (·, t))x], 1Ii〉 .(47)

Next, let us choose at every cell Ii and at every time t > 0 a regular function P t
i such

that

lim
x→x+

i−1/2

P t
i (x) = W+

i−1/2(t), lim
x→x−

i+1/2

P t
i (x) = W−

i+1/2(t).(48)

If we consider now the approximation of W (·, t) given by the piecewise regular function
Wt whose restriction to Ii is P t

i , the discrete analogue of (47) would be

W ′
i = − 1

Δx

〈
[F (Wt)x], 1Ii

〉
,(49)

but, again, (49) is not equivalent to (45). In this case, [F (Wt)x] is the sum of a
regular measure, whose Radon–Nykodim derivative at the cell Ii is F (P t

i )x, and the
singular measure ∑

i

(
F (W+

i+1/2(t)) − F (W−
i+1/2(t))

)
δx=xi+1/2

.

If, again, the numerical flux of the first order scheme is used to split the Dirac measures
placed at the intercells(

F (W+
i+1/2(t)) − F (W−

i+1/2(t))
)
δx=xi+1/2

=
(
F (W+

i+1/2(t)) − G̃i+1/2

)
δx=xi+1/2

+
(
G̃i+1/2 − F (W−

i+1/2(t))
)
δx=xi+1/2

,

and the first and second summands are assigned, respectively, to the cells Ii+1 and
Ii, we obtain from (49),

W ′
i = − 1

Δx

(
F (W+

i−1/2(t)) − G̃i−1/2 + G̃i+1/2 − F (W−
i+1/2(t))

(50)

+

∫ xi+1/2

xi−1/2

F (P t
i (x))x dx

)
,

which is obviously equivalent to (45).
We go now to the general case (3). In this case, the equation for the cell averages

is the following:

W
′
i = − 1

Δx
〈[A(W (·, t))W (·, t)x]Φ , 1Ii〉.(51)

The natural extension of (50) is then

W ′
i = − 1

Δx

(
D̃+

i−1/2 + D̃−
i+1/2 +

∫ xi+1/2

xi−1/2

A[P t
i (x)]

dP t
i

dx
(x) dx

)
,(52)
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with

D̃±
i+1/2 = D±(W−

i+1/2(t),W
+
i+1/2(t)).(53)

In (52) the integral terms are approximations of the regular measure of the

Lebesgue decomposition of [A(W (·, t))Wx(·, t)]Φ while the terms D̃±
i−1/2 are related

to its singular part.
Notice that there is an important difference between the conservative and non-

conservative case: while in the conservative case the numerical scheme is independent
of the functions P t

i chosen at the cells (only the property (48) is important), this
is not the case for nonconservative systems. As a consequence, while the numerical
scheme (45) has order s, in the case of the scheme (52) the order will depend on the
choice of the functions P t

i .
In practice, the definition of the reconstruction operator gives the natural choice

of the functions P t
i , as the usual procedure is the following: given a sequence {Wi} of

values at the cells, an approximation function is calculated at every cell Ii using the
values Wj at a stencil,

Pi(x;Wi−l, . . . ,Wi+r),

with l, r being two natural numbers. The reconstructions W±
i+1/2 are then calculated

by taking the limits of these functions at the intercells. These approximations func-
tions are usually calculated by means of interpolation or approximation techniques.
The natural choice of P t

i is thus

P t
i (x) = Pi(x;Wi−l(t), . . . ,Wi+r(t)).

Let us now investigate the order of the numerical scheme (52). Notice first that,
for regular solutions W , the differential equation (51) can be written as follows:

W
′
i(t) = − 1

Δx

∫ xi+1/2

xi−1/2

A(W (x, t))Wx(x, t) dx.(54)

Theorem 6.1. Let us suppose that A, D± are regular and with bounded deriva-
tives. Let us suppose also that the reconstruction operator is of order s and that, given
the sequence defined by

Wi =
1

Δx

∫
Ii

W (x) dx,

for any smooth function W , the following approximation properties are satisfied:

Pi(x;Wi−l, . . . ,Wi+r) = W (x) + O (Δxs1) ∀x ∈ Ii,

d

dx
Pi(x;Wi−l, . . . ,Wi+r) = W ′(x) + O (Δxs2) ∀x ∈ Ii.

Then (52) is an approximation of order at least s̄ = min(s, s1 +1, s2 +1) to the system
(54) in the following sense:

D̃+
i−1/2 − D̃−

i+1/2 +

∫ xi+1/2

xi−1/2

A(P t
i (x))

dP t
i

dx
(x) dx

(55)

=

∫ xi+1/2

xi−1/2

A(W (x, t))Wx(x, t) dx + O
(
Δxs̄

)
,
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for every smooth enough solution W , being {W±
i+1/2(t)} the reconstructions corre-

sponding to the sequence {W i(t)} and P t
i the functions defined by

P t
i (x) = Pi(x;W i−l(t), . . . ,W i+r(t)).

The proof is identical to that of the particular case studied in [8], where general
high order numerical schemes based on first order Roe methods were introduced.

Remark 6. For the usual reconstruction techniques one has s2 ≤ s1 < s and
the order of (52) is thus s2 + 1 for nonconservative systems and s for systems of
conservation laws. Therefore a loss of accuracy can be observed when a technique of
reconstruction is applied to a nonconservative problem. This effect has been detected
and verified numerically for WENO-Roe methods in [8].

Notice that (52) can also be written under a form similar to (21),

W ′
i = − 1

Δx

(
E+

i−1/2 + E−
i+1/2

)
,(56)

with

E+
i+1/2 = D̃+

i+1/2 +

∫ xi+1

xi+1/2

A(P t
i+1(x))

dP t
i+1

dx
(x) dx,

(57)

E−
i+1/2 = D̃−

i+1/2 +

∫ xi+1/2

xi

A(P t
i (x))

dP t
i

dx
(x) dx.

Using this notation, the following equality holds:

E+
i+1/2 + E−

i+1/2 =

∫ xi+1/2

xi

A(P t
i (x))

dP t
i

dx
(x) dx

+

∫ 1

0

A(Ψ(s;W−
i+1/2,W

+
i+1/2))

∂Ψ

∂s
(s;W−

i+1/2,W
+
i+1/2) ds(58)

+

∫ xi+1

xi+1/2

A(P t
i+1(x))

dP t
i+1

dx
(x) dx,

with Ψ being the family of paths for which the first order numerical scheme is path-
conservative.

This latter equality can be understood as a path-conservation property similar
to (23), where now the path linking Wi(t) and Wi+1(t) is the composition of three
paths:

x ∈ [xi, xi+1/2] �→ P t
i (x),(59)

linking Wi(t) and W−
i+1/2(t);

s ∈ [0, 1] �→ Ψ(s;W−
i+1/2(t),W

+
i+1/2(t)),(60)

linking W−
i+1/2(t) and W+

i+1/2(t); and finally,

x ∈ [xi+1/2, xi+1] �→ P t
i+1(x),(61)
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linking W+
i+1/2(t) and Wi+1(t). Nevertheless, this family of paths does not depend

only on the states Wi(t) and Wi+1(t) (as was the case in Definition 3.1) but on the
values at the stencil

Wi−l(t), . . . ,Wi+r(t).

The definition of a well-balanced scheme can be easily extended for semidiscrete
methods (see [8]).

Definition 6.2. Let us consider a semidiscrete method for solving (3):⎧⎨
⎩

W ′
i = 1

ΔxH(W(t); i), i ∈ Z,

W(0) = W0,
(62)

where W(t) = {Wi(t)} represents the vector of approximations to the cell averages of
the exact solution, and W0 = {W 0

i } is the vector of initial data. Let γ be a curve
of Γ. The numerical method (62) is said to be exactly well-balanced for γ if, given a
regular stationary solution W , such that

W (x) ∈ γ ∀ x ∈ R,

the vector W = {W (xi)}, where xi denotes the center of the cell Ii, is a critical point
for the system of differential equations (62), i.e.,

H(W; i) = 0 ∀ i,

and it is said to be well-balanced with order k if:

H(W; i) = O
(
Δxk

)
∀ i.

Finally, the semidiscrete method (62) is said to be exactly well-balanced or well-
balanced with order k if these properties are satisfied for every curve γ of the set
Γ.

We give hereafter two results concerning the well-balanced property of this scheme
generalizing those presented in [8] for the particular case of Roe-based reconstruction
methods, but before then we introduce a new definition.

Definition 6.3. The reconstruction operator is said to be exactly well-balanced
for a curve γ ∈ Γ if, given a sequence {Wi} in γ, the approximation functions satisfy

Pi(x;Wi−l, . . . ,Wi+r) ∈ γ ∀x ∈ [xi−1/2, xi+1/2],(63)

for every i.

Theorem 6.4. Let γ belong to Γ. Let us suppose that both the first order scheme
and the reconstruction operator are exactly well-balanced for γ. Then, the numerical
scheme (52) is also exactly well-balanced for γ.

Theorem 6.5. Under the hypothesis of Theorem 6.1, the scheme (52) is well-
balanced with an order of at least s̄ = min(s, s1 + 1, s2 + 1).

The proofs of these results are identical to the corresponding theorems stated in
[8].
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[10] T. Chacón, A. Doḿınguez, and E. D. Fernández, A family of stable numerical solvers
for shallow water equations with source terms, Comput. Methods Appl. Mech. Eng., 192
(2003), pp. 203–225.
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Abstract. This work concerns the development of stabilized finite element methods for the
Stokes problem considering nonstable different (or equal) order of velocity and pressure interpola-
tions. The approach is based on the enrichment of the standard polynomial space for the velocity
component with multiscale functions which no longer vanish on the element boundary. On the other
hand, since the test function space is enriched with bubble-like functions, a Petrov–Galerkin approach
is employed. We use such a strategy to propose stable variational formulations for continuous piece-
wise linear in velocity and pressure and for piecewise linear/piecewise constant interpolation pairs.
Optimal order convergence results are derived and numerical tests validate the proposed methods.
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1. Introduction. Finite element solution of the Stokes problem poses the basic
problem of satisfying the discrete Babuska–Brezzi (or inf-sup) condition (see [24]
and the references therein). This is indeed a restriction from the point of view of
implementation since equal order velocity and pressure spaces do not satisfy this
condition. On the other hand, the minimal space to imagine, namely continuous
piecewise linear polynomials for the velocity and piecewise constant polynomials for
the pressure, does not satisfy this condition either.

Several solutions have been proposed to overcome this restriction, starting with
that in [11] and the first consistent method in [28]. Moreover, in [23, 27, 29, 34] the
possibility of considering discontinuous spaces for the pressure was considered and
justified. On the other hand, in [14, 13], the idea from [16] has been used to propose a
new kind of stabilized finite element methods, with stabilizing terms now containing
only jump terms across the interelement boundaries. For an overview of stabilized
finite element methods for the Stokes problem, see [19] and [5].

On the other hand, the theoretical justification of stabilized methods has become a
subject of interest in the last decade. In [2, 3, 4, 31], the connection between stabilized
finite element methods and Galerkin methods enriched with bubble functions has been
used to propose new stabilized finite element methods for Stokes-like and linearized
Navier–Stokes problems. Also, in [22] macro bubbles were used to derive a method
analogous to the locally stabilized method from [29] containing jump terms across the
interelement boundaries of the macroelements. In the resulting method, the stabilizing
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stay of the first and second authors at LNCC, Petrópolis, Brazil, in the framework of the joint Chile
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terms are defined over the macroelements, and there is no error analysis or numerical
validation of the method. All these works used the so-called bubble condensation
procedure, i.e., eliminating the bubble function at the element level and writing the
method as the Galerkin part, plus a term derived from the influence of the bubble
functions on the formulation. A particular kind of bubble enrichment of the velocity
space is the so-called residual-free bubble (RFB) method (cf. [7, 8, 12]), in which
the bubble function is now the solution of a problem containing the residual of the
continuous equation at the element level (see [9, 10, 32] for the a priori error analysis).
This bubble part may be analytically condensed or numerically computed. In the
latter case this procedure leads to the two-level finite element method.

The imposition of a zero boundary condition on the element boundary for the RFB
has led to some numerical problems. Solutions for these problems have been proposed
by relaxing the zero boundary condition, such as the discontinuous enrichment method
[18] (for the Helmholtz equation), and, more recently, the multiscale finite element
method; see [21], where the main idea may be found, and [20], where the a priori
error analysis is performed (for the reaction-diffusion equation, an a posteriori error
estimator based on this idea has been proposed and analyzed in [1]). A particularity
of such methods is that a Petrov–Galerkin strategy is proposed, in which the test
function space is enriched with bubble functions in order to have a local problem
containing the residual of the momentum equation on the right-hand side. A special
boundary condition (related to the one used in [25, 26, 15]) is imposed in order to
solve these local problems analytically. The resulting method is of Petrov–Galerkin
type, in which the trial function space is generated by a basis formed by the addition
of usual polynomial basis functions and enrichment functions from the solution of
the differential problem in each element (which are now, unlike the RFB, known
analytically, and hence the method is not of a two-level finite element method type),
and in which the test function space is the standard polynomial space.

The purpose of this work is to use the multiscale approach from [21, 20], combined
with the static condensation procedure, in order to propose new stabilized finite ele-
ment methods for the Stokes problem. We proceed as in [21], defining an enrichment
function for the trial space for the velocity that no longer vanishes on the element
boundary (and hence it is not a bubble function), and then we split it into a bubble
part and a function being a harmonic extension of the boundary condition. This
boundary condition comes from the solution of an elliptic ODE containing a part of
the differential operator at the boundary, and a jump term as the right-hand side.
Depending on the jump term chosen, this procedure will lead to different methods.
Both functions are condensed, and hence we obtain a method which includes the usual
Galerkin-Least-Squares (GLS) stabilizing terms at the element level, plus a positive
jump term on the interelement boundaries, each one with a proper stabilization pa-
rameter. One special feature of these new methods is that the previously mentioned
ODE at the element boundary may be solved analytically, and hence the stabilization
parameter associated with the jump terms is known exactly.

The plan of the paper is as follows. In section 2 we present the general framework
and derive a general form of the method. In sections 3 and 4 this framework is applied
to derive concrete stabilized finite element methods for two families of interpolation
spaces, namely P

1/P
0 and continuous P

1/P
1 elements. For both cases optimal order

a priori error estimates are derived for the natural norms of the unknowns, plus some
extra control on the norm of the jumps appearing in the formulation. As we already
mentioned, if we change the right-hand side on the boundary condition, we can derive
a new method. This is done in section 5, where we give an alternative enrichment
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strategy leading to another family of methods, whose analysis is analogous to that
of sections 3 and 4, and which contains a boundary term containing the residual
of the Cauchy stress tensor on the internal edges of the triangulation. Numerical
experiments confirming the theoretical results and comparing the performance of all
the methods are presented in section 6, and some final remarks and conclusions are
given in section 7.

2. The model problem and the general framework. Let Ω be an open
bounded domain in R

2 with polygonal boundary, f ∈ L2(Ω)2 and consider the fol-
lowing Stokes problem:

−ν Δu + ∇p = f , ∇·u = 0 in Ω ,(1)

u = 0 on ∂Ω ,

where ν ∈ R
+ is the fluid viscosity.

Now let {Th}h>0 be a family of regular triangulations of Ω, built up using triangles
K with boundary ∂K. Let also Eh be the set of internal edges of the triangulation,
hK := diam(K) and h := max{hK : K ∈ Th}. Let Vh be the usual finite element
space of continuous piecewise polynomials of degree k, 1 ≤ k ≤ 2 with zero trace
on ∂Ω. Let also Qh be a space of piecewise polynomials of degree l, 0 ≤ l ≤ 1,
which may be continuous or discontinuous in Ω and which belong to L2

0(Ω). Let
Hm(Th) and Hm

0 (Th) (m ≥ 1) be the spaces of functions whose restriction to K ∈ Th
belongs to Hm(K) and Hm

0 (K), respectively. Furthermore, (· , · )D stands for the
inner product in L2(D) (or in L2(D)2 or L2(D)2×2, when necessary), and we denote
by ‖· ‖s,D (|· |s,D) the norm (seminorm) in Hs(D) (or Hs(D)2, if necessary). As usual,
H0(D) = L2(D), and |· |0,D = ‖· ‖0,D.

In order to propose a Petrov–Galerkin method for the Stokes problem (1), let
Eh ⊂ H1

0 (Ω) be a finite-dimensional space, called a multiscale space, such that Vh ∩
Eh = {0}. Then, we propose the following Petrov–Galerkin scheme for (1): Find
u1 + ue ∈ [Vh ⊕ Eh]2 and p ∈ Qh such that

ν(∇(u1 + ue),∇vh)Ω − (p,∇·vh)Ω + (q,∇· (u1 + ue))Ω = (f ,vh)Ω

for all vh ∈ [Vh ⊕ H1
0 (Th)]2 and all q ∈ Qh. Now, this Petrov–Galerkin scheme is

equivalent to the following system:

ν(∇(u1 + ue),∇v1)Ω − (p,∇·v1)Ω + (q,∇· (u1 + ue))Ω(2)

= (f ,v1)Ω ∀(v1, q) ∈ V 2
h ×Qh,

ν(∇(u1 + ue),∇vb)K − (p,∇·vb)K = (f ,vb)K ∀vb ∈ H1
0 (K)2 ∀K ∈ Th .(3)

Equation (3) above is equivalent to

(−νΔue,vb)K = (f + νΔu1 −∇p,vb)K ∀vb ∈ H1
0 (K)2,

which, in strong form, may be written as

−νΔue = f + νΔu1 −∇p in K.(4)

Now, this differential problem must be completed with boundary conditions. For
reasons that will become clear in what follows, we will impose the following boundary
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condition on ue:

ue = ge on each Z ⊂ ∂K ,(5)

where ge = 0 if Z ⊂ ∂Ω, and ge is the solution of

−ν ∂ssge =
1

hZ
[[ν∂nu1 + pI·n]] in Z ,(6)

ge = 0 at the nodes ,

on the internal edges, where hZ = |Z|, n is the normal outward vector on ∂K, ∂s,
and ∂n are the tangential and normal derivative operators, respectively, [[v]] stands
for the jump of v across Z, and I is the R

2×2 identity matrix.
Remark 2.1. Both the shape of the jump term and the h−1

Z coefficient on the
boundary condition have been suggested by the error analysis. On the other hand, if
we impose as the right-hand side in (6) the residual of the Cauchy stress tensor on
∂K, we have another class of methods. This alternative will be analyzed in section 5.

Now, on each K ∈ Th, we can write ue|K = uK
e + u∂K

e , where

−νΔuK
e = f + νΔu1 −∇p in K ,(7)

uK
e = 0 on ∂K ,

and

−νΔu∂K
e = 0 in K ,(8)

u∂K
e = ge on ∂K ,

where ge is the solution of (6). Such differential problems are well posed, and (3) is
immediately satisfied.

In this way, we can define two operators MK : L2(K)2 → H1
0 (K)2 and BK :

L2(∂K)2 → H1(K)2 such that

uK
e =

1

ν
MK(f + νΔu1 −∇p) ∀K ∈ Th(9)

and

u∂K
e =

1

ν
BK ([[ν ∂nu1 + pI·n]]) ∀K ∈ Th .(10)

Next, since the enriched part ue is fully identified through (9)–(10) (or, equiva-
lently, by (7)–(8)), we can perform statical condensation to derive a stabilized finite
element method for our problem (1). First, integrating by parts, we have, on each
K ∈ Th,

ν(∇ue,∇v1)K = −ν(ue,Δv1)K + (ue, ν∂nv1)∂K ,

(q,∇·ue)K = −(ue,∇q)K + (ue, qI·n)∂K .

Using these identities we can rewrite (2) in the following way:

ν(∇u1,∇v1)Ω +
∑

K∈Th

[
− (ue, νΔv1)K + (ue, ν∂nv1)∂K

]
− (p,∇·v1)Ω

+(q,∇·u1)Ω +
∑

K∈Th

[
− (ue,∇q)K + (ue, qI·n)∂K

]
= (f ,v1)Ω,(11)
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which implies

ν(∇u1,∇v1)Ω − (p,∇·v1)Ω + (q,∇·u1)Ω

+
∑

K∈Th

[
− (ue, νΔv1 + ∇q)K + (u∂K

e , ν∂nv1 + qI·n)∂K

]
= (f ,v1)Ω,(12)

which, applying characterizations (9)–(10), becomes

ν(∇u1,∇v1)Ω − (p,∇·v1)Ω + (q,∇·u1)Ω

+
∑

K∈Th

[1

ν
(MK(−νΔu1 + ∇p) − BK([[ν∂nu1 + pI·n]]), νΔv1 + ∇q)K(13)

+
1

ν
(BK ([[ν ∂nu1 + pI·n]]) , ν∂nv1 + qI·n)∂K

]
= (f ,v1)Ω +

∑
K∈Th

1

ν
(MK(f), νΔv1 + ∇q)K .

Using this form, in the next sections we will present concrete stabilized finite
element methods for both the simplest possible pair (P1/P

0 elements) and equal order
P

1/P
1 continuous finite elements.

3. The simplest element P
1/P

0.

3.1. The method. For this case, the finite element spaces are given by

Vh := {v ∈ C0(Ω)2 : v|K ∈ P
1(K)2 ∀K ∈ Th } ∩ H1

0 (Ω)2

for the velocity, and

Q0
h := {q ∈ L2

0(Ω) : q|K ∈ P
0(K)∀K ∈ Th }

for the pressure. Using these spaces, we propose the following stabilized method: Find
(u1, p0) ∈ Vh ×Q0

h such that

B0

(
(u1, p0), (v1, q0)

)
= F0

(
v1, q0

)
∀ (v1, q0) ∈ Vh ×Q0

h,(14)

where

B0

(
(u1, p0), (v1, q0)

)
:= ν(∇u1,∇v1)Ω − (p0,∇·v1)Ω + (q0,∇·u1)Ω

+
∑
Z∈Eh

τZ ([[ν∂nu1 + p0I·n]], [[ν∂nv1 + q0I·n]])Z ,(15)

F0

(
v1, q0

)
:= (f ,v1)Ω,(16)

and τZ is given by

τZ :=
hZ

12ν
.(17)

Remark 3.1. This method differs somewhat from other existing stabilized finite
element methods with discontinuous pressure spaces (see, for example, [23, 29, 34, 14]).



STABILIZED FINITE ELEMENT METHODS FOR THE STOKES PROBLEM 327

First, since τZ is known exactly, we have no free constants to set. To the authors’
knowledge, this is the first time that the stabilization parameter corresponding to jump
terms is known exactly. Furthermore, and in contrast to [22], the jump terms are
derived without the use of a macroelement technique. Finally, another difference is
the nature of the jump terms, not only containing pressure jumps, but also the jump
on the normal derivative of u.

Remark 3.2. One of the drawbacks of the RFB method for the Stokes problem
is that, due to the zero boundary condition on the element boundary, there is not a
bubble-based enrichment that makes stable the P

1/P
0 element (see [6] for a discussion),

and hence, the use of a different boundary condition makes it possible to stabilize the
P

1/P
0 element.

3.1.1. Derivation of the method. First we note that, using spaces Vh and
Q0

h, (13) reduces to the following: Find (u1, p0) ∈ Vh ×Q0
h such that

ν(∇u1,∇v1)Ω − (p0,∇·v1)Ω + (q0,∇·u1)Ω

+
∑
Z∈Eh

1

ν
(BK ([[ν∂nu1 + p0I·n]]) , [[ν∂nv1 + q0I·n]])Z = (f ,v1)Ω(18)

for all (v1, q0) ∈ Vh ×Q0
h.

Remark 3.3. Since BK is the inverse of an elliptic operator, by denoting v =
BK(g), we have, for all g ∈ L2(∂K)2,

(BK(g), g)∂K = − (v, ∂ssv)∂K = (∂sv, ∂sv)∂K ≥ 0 ,

and hence we are adding a positive term to the formulation.
Next we exploit the fact that [[∂nu1 + p0I·n]]|Z is a constant function. To do

so, we define the (matrix) function bu
K := (BK(e1)|BK(e2)), where e1, e2 are the

canonical vectors in R
2, and we remark that, from its definition, bu

K = buKI, where buK
is the solution of

−ΔbuK = 0 in K, buK = g(s) on each Z ⊂ ∂K,(19)

where g = 0 if Z ⊂ ∂Ω, and g satisfies

− ∂ssg(s) =
1

hZ
inZ , g = 0 at the nodes ,(20)

in the internal edges.
Remark 3.4. The solution of (20) may be calculated explicitly and it is not

difficult to realize that

(buK , 1)Z
|Z| =

hZ

12
.(21)

Finally, since [[∂nu1 + p0I·n]]|Z is a constant function we obtain

(BK([[ν∂nu1 + p0I·n]]), [[ν∂nv1 + q0I·n]])Z

=

[∫
Z

bu
K

]
[[ν∂nu1 + p0I·n]]

∣∣∣
Z
· [[ν∂nv1 + q0I·n]]

∣∣∣
Z

=
(buK , 1)Z

|Z| ([[ν∂nu1 + p0I·n]], [[ν∂nv1 + q0I·n]])Z ,
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and hence replacing this in (18) and using the previous remark, we obtain method
(14).

3.2. Error analysis. From now on, C will denote a positive constant indepen-
dent of h and ν, and that may change its value whenever it is written in two different
places.

The next result states the consistency of the proposed method.
Lemma 3.5. Let (u, p) ∈ [H2(Ω)∩H1

0 (Ω)]2×[H1(Ω)∩L2
0(Ω)] be the weak solution

of (1) and (u1, p0) the solution of (14). Then,

B0

(
(u − u1, p− p0), (v1, q0)

)
= 0 ∀ (v1, q0) ∈ Vh ×Q0

h.(22)

Proof. The results follows by noting that [[ν∂nu + pI·n]] = 0 a.e. across all the
internal edges.

Moreover, defining the mesh-dependent norm

‖(v, q)‖h :=

[
ν |v|21,Ω +

∑
Z∈Eh

τZ‖[[ν∂nv + qI·n]]‖2
0,Z

] 1
2

,(23)

we have the following continuity and coercivity results.
Lemma 3.6. Let be (v, q), (w, r) ∈ [H2(Th)∩H1

0 (Ω)]2 × [H1(Th)∩L2
0(Ω)]. Then,

bilinear form B0 satisfies

B0

(
(v, q), (w, r)

)
≤ ‖(v, q)‖h‖(w, r)‖h + (∇·v, r)Ω − (q,∇·w)Ω ,(24)

B0

(
(v, q), (v, q)

)
= ‖(v, q)‖2

h .(25)

Proof. The result follows immediately from the definition of B0.
In order to perform the numerical analysis of this method, we will consider the

Lagrange interpolation operator Ih : C0(Ω) → Vh (if v = (v1, v2) ∈ C0(Ω)2, we denote
Ih(v) = (Ih(v1), Ih(v2))) to approximate the velocity. Then, it is well known (cf. [17])
that

|v − Ih(v)|m,K ≤ C h2−m
K |v|2,K ∀v ∈ H2(K),(26)

|v − Ih(v)|t,Z ≤ C h
2−t−1/2
Z |v|2,ωZ

∀v ∈ H2(ωZ)(27)

for all K ∈ Th, Z ∈ Eh, where ωZ := ∪{K ∈ Th : Z ⊂ ∂K}, and m = 0, 1, 2, t = 0, 1.
Let us remark that to obtain the second estimate above, we used the following local
trace theorem (for a proof, see [33]): There exists C > 0, independent of h, such that

‖v‖2
0,∂K ≤ C

(
1

hK
‖v‖2

0,K + hK |v|21,K
)

(28)

for all v ∈ H1(K).
In order to approximate the pressure we will consider Πh : L2(Ω) → Q0

h as the
L2(Ω)-projection onto Q0

h. This projection satisfies (cf. [17])

‖q − Πh(q)‖0,Ω ≤ C h |q|1,Ω(29)
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if q ∈ H1(Ω), and hence, using the local trace theorem (28), we obtain

[ ∑
Z∈Eh

hZ ‖[[q − Πh(q)]]‖2
0,Z

] 1
2

≤ C h |q|1,Ω(30)

for all q ∈ H1(Ω).
Lemma 3.7. Suppose (v, q) ∈ H2(Ω)2 ×H1(Ω). Then,

‖(v − Ih(v), q − Πh(q))‖h ≤ Ch

(√
ν |v|2,Ω +

1√
ν
|q|1,Ω

)
.(31)

Proof. The result follows immediately from the norm definition and (26), (27),
(30).

Using previous results we can establish the following convergence result.
Theorem 3.8. Let (u, p) ∈ [H2(Ω) ∩H1

0 (Ω)]2 × [H1(Ω) ∩ L2
0(Ω)] be the solution

of (1) and (u1, p0) the solution of (14). Then, the following error estimate holds:

‖(u − u1, p− p0)‖h ≤ Ch

(√
ν |u|2,Ω +

1√
ν
|p|1,Ω

)
.(32)

Proof. Let (ũh, p̃h) := (Ih(u),Πh(p)) ∈ Vh ×Q0
h. From Lemmas 3.5 and 3.6 we

know that

‖(u − u1, p− p0)‖2
h = B0

(
(u − u1, p− p0), (u − u1, p− p0)

)
= B0

(
(u − u1, p− p0), (u − ũh, p− p̃h)

)
≤ C ‖(u − u1, p− p0)‖h ‖(u − ũh, p− p̃h)‖h

+ (∇· (u − u1), p− p̃h)Ω − (∇· (u − ũh), p− p0)Ω .

Now,

(∇· (u − u1), p− p̃h)Ω = − (∇·u1, p− p̃h)Ω = 0(33)

since u is a solenoidal field and ∇·u1 ∈ Q0
h. On the other hand,

(∇· (u − ũh), p− p0)Ω =
∑

K∈Th

[
− (∇p,u − ũh)K + (p− p0, (u − ũh)·n)∂K

]
= − (∇p,u − ũh)Ω +

∑
K∈Th

((p− p0)I·n,u − ũh)∂K

≤ |p|1,Ω‖u − ũh‖0,Ω +
∑
Z∈Eh

([[(p− p0)I·n]],u − ũh)Z

≤ Ch2 |p|1,Ω|u|2,Ω + C
∑
Z∈Eh

h
3
2

Z√
ν
‖[[(p− p0)I·n]]‖0,Z

√
ν |u|2,ωZ

≤ Ch2 |p|1,Ω|u|2,Ω +
1

γ

∑
Z∈Eh

hZ

ν
‖[[(p− p0)I·n]]‖2

0,Z + Cγ
∑
Z∈Eh

h2ν |u|22,ωZ

≤ Ch2

(
(1 + γ) ν |u|22,Ω +

1

ν
|p|21,Ω

)
+

1

γ

∑
Z∈Eh

hZ

ν
‖[[(p− p0)I·n]]‖2

0,Z ,
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where γ > 0. Now, using the local trace theorem (28) and the fact that Vh is
constituted by linear polynomials we arrive at

∑
Z∈Eh

hZ

ν
‖[[(p− p0)I·n]]‖2

0,Z

≤ 2
∑
Z∈Eh

hZ

ν

(
‖[[ν ∂n(u − u1) + (p− p0)I·n]]‖2

0,Z + ‖[[ν ∂n(u − u1)]]‖2
0,Z

)

≤ C

( ∑
Z∈Eh

[hZ

ν
‖[[∂n(u − u1) + (p− p0)I·n]]‖2

0,Z

]
+ ν |u − u1|21,Ω + ν h2 |u|22,Ω

)

≤ C̃ ‖(u − u1, p− p0)‖2
h + C ν h2 |u|22,Ω .

Hence, choosing γ = 2C̃ we obtain

1

2
‖(u − u1, p− p0)‖2

h ≤ Ch2

(
ν |u|22,Ω +

1

ν
|p|21,Ω

)
,(34)

and the result follows by extracting the square root.
Remark 3.9. The last result gives a convergence result for the velocity, plus

a convergence result for the jump terms. More precisely, this result implies |u −
u1|1,Ω ≤ C h and

[∑
Z∈Eh

hZ‖[[∂n(u − u1) + (p− p0)I·n]]‖2
0,Z

] 1
2 ≤ C h, which are

both optimal in order and regularity.

3.2.1. A convergence result for the pressure. The last result of the previous
section does not give convergence on the natural norm of the pressure. That is why
a convergence result for the pressure in the L2(Ω) norm is now given.

In the proof of the next result we will use the Clément interpolation operator (cf.
[17, 24]), Ch : H1(Ω) → Vh. This operator satisfies

|v − Ch(v)|m,Ω ≤ C h1−m|v|1,Ω ∀v ∈ H1(Ω)(35)

for m = 0, 1, with the obvious extension to vector-valued functions.
Theorem 3.10. Let (u, p) ∈ [H2(Ω)∩H1

0 (Ω)]2 × [H1(Ω)∩L2
0(Ω)] be the solution

of (1) and (u1, p0) the solution of (14). Then, the following error estimate holds:

‖p− p0‖0,Ω ≤ C h
[
ν |u|2,Ω + |p|1,Ω

]
.(36)

Proof. From the continuous inf-sup condition (see [24]), there exists w ∈ H1
0 (Ω)2

such that ∇·w = p − p0 in Ω and |w|1,Ω ≤ C ‖p − p0‖0,Ω. Let wh = Ch(w). Then,



STABILIZED FINITE ELEMENT METHODS FOR THE STOKES PROBLEM 331

applying the consistency of the method we obtain

‖p− p0‖2
0,Ω = (∇·w, p− p0)Ω

= (∇· (w − wh), p− p0)Ω + (∇·wh, p− p0)Ω

=
∑

K∈Th

[−(w − wh,∇p)K + (w − wh, (p− p0)I·n)∂K ]

+ ν (∇(u − u1),∇wh)Ω +
∑
Z∈Eh

τZ ([[ν∂n(u − u1) + (p− p0)I·n]], [[ν∂nwh]])Z

≤
[ ∑
K∈Th

h2
K

ν
|p|21,K +

∑
Z∈Eh

τZ‖[[(p− p0)I·n]]‖2
0,Z + ν|u − u1|21,Ω

+
∑
Z∈Eh

τZ ‖[[ν∂n(u − u1) + (p− p0)I·n]]‖2
0,Z

] 1
2

·
[ ∑
K∈Th

ν

h2
K

‖w − wh‖2
0,K +

∑
Z∈Eh

τ−1
Z ‖w − wh‖2

0,Z

+ ν |wh|21,Ω +
∑
Z∈Eh

τZ ‖[[ν∂nwh]]‖2
0,Z

] 1
2

.

Now, using the local trace theorem (28) and (35) we easily obtain[ ∑
K∈Th

ν

h2
K

‖w − wh‖2
0,K +

∑
Z∈Eh

τ−1
Z ‖w − wh‖2

0,Z + ν|wh|21,Ω +
∑
Z∈Eh

τZ‖[[ν∂nwh]]‖2
0,Z

] 1
2

≤ C
√
ν |w|1,Ω ≤ C

√
ν ‖p− p0‖0,Ω .

Hence, dividing by ‖p− p0‖0,Ω and using (28) again we have

‖p− p0‖0,Ω

≤ C
√
ν

[ ∑
K∈Th

h2
K

ν
|p|21,K + ν |u − u1|21,Ω

+
∑
Z∈Eh

τZ ‖[[ν∂n(u − u1) + (p− p0)I·n]]‖2
0,Z + τZ ‖[[ν∂n(u − u1)]]‖2

0,Z

] 1
2

≤ C
√
ν

[
h2

ν
|p|21,Ω + ‖(u − u1, p− p0)‖2

h + νh2|u|22,Ω
] 1

2

≤ C
√
ν

[
h2

ν
|p|21,Ω + νh2|u|22,Ω

] 1
2

,

and the result follows.

3.2.2. An error estimate for ‖u − u1‖0,Ω. Throughout this section we will
assume that the solution of the following problem, where (u1, p0) is the solution of
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(14), belongs to [H2(Ω) ∩H1
0 (Ω)]2 × [H1(Ω) ∩ L2

0(Ω)]: Find (ϕ, π) such that

−ν Δ ϕ − ∇π = u − u1, ∇·ϕ = 0 in Ω ,(37)

ϕ = 0 on ∂Ω.

We also assume that the following estimate holds:

ν ‖ϕ‖2,Ω + ‖π‖1,Ω ≤ C ‖u − u1‖0,Ω .(38)

Theorem 3.11. Let (u, p) ∈ [H2(Ω)∩H1
0 (Ω)]2 × [H1(Ω)∩L2

0(Ω)] be the solution
of (1) and (u1, p0) the solution of (14). Then, the following error estimate holds:

‖u − u1‖0,Ω ≤ C h2

(
|u|2,Ω +

1

ν
|p|1,Ω

)
.

Proof. Let (ϕh, πh) := (Ih(ϕ),Πh(π)) ∈ Vh × Q0
h. Then, multiplying the first

equation in (37) by u−u1 and the second by −(p−p0), from the definition of bilinear
form B0, the regularity of (ϕ, π) and the consistency of the method and Lemma 3.6,
we obtain

‖u − u1‖2
0,Ω = ν (∇ϕ,∇(u − u1))Ω + (π,∇· (u − u1))Ω − (p− p0,∇·ϕ)Ω

= B0((u − u1, p− p0), (ϕ, π))

= B0((u − u1, p− p0), (ϕ − ϕh, π − πh))

≤ ‖(u − u1, p− p0)‖h‖(ϕ − ϕh, π − πh)‖h
− (p− p0,∇· (ϕ − ϕh))Ω + (π − πh,∇· (u − u1))Ω .

Now, using (33) we see that (π−πh,∇· (u−u1))Ω = 0, and hence, using interpolation
inequalities (26), Lemma 3.7 and Theorems 3.8 and 3.10, we arrive at

‖u − u1‖2
0,Ω

≤ ‖(u − u1, p− p0)‖h‖(ϕ − ϕh, π − πh)‖h + ‖p− p0‖0,Ω‖∇· (ϕ − ϕh)‖0,Ω

≤
[
‖(u − u1, p− p0)‖2

h +
1

ν
‖p− p0‖2

0,Ω

]1
2[
‖(ϕ − ϕh, π − πh)‖2

h +ν‖∇· (ϕ − ϕh)‖2
0,Ω

]1
2

≤ Ch2

[
ν |u|22,Ω +

1

ν
|p|21,Ω

] 1
2
[
ν |ϕ|22,Ω +

1

ν
|π|21,Ω

] 1
2

≤ C
1√
ν
h2

(√
ν |u|2,Ω +

1√
ν
|p|1,Ω

)
‖u − u1‖0,Ω ,

and the result follows.

4. The method using P
1/P

1 continuous elements.

4.1. The method. For this case, the finite element space for the velocity is the
same as in previous section, but the pressure space is now given by

Q1
h := {q ∈ C0(Ω) : q|K ∈ P

1(K)∀K ∈ Th } ∩ L2
0(Ω) .

As we will see in next section, the method coming directly from (13) is given by the
following: Find (ũ1, p̃1) ∈ Vh ×Q1

h such that

B1((ũ1, p̃1), (v1, q1)) = F(v1, q1) ∀ (v1, q1) ∈ Vh ×Q1
h ,(39)
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where

B1((u1, p1), (v1, q1)) := B((u1, p1), (v1, q1)) −
∑

K∈Th

1

ν
(BK([[ν∂nu1]]),∇q1)K ,(40)

with

B
(
(u1, p1), (v1, q1)

)
:= ν(∇u1,∇v1)Ω − (p1,∇·v1)Ω + (q1,∇·u1)Ω

+
∑

K∈Th

τK (−νΔu1 + ∇p1, νΔv1 + ∇q1)K +
∑
Z∈Eh

τZ ([[ν∂nu1]], [[ν∂nv1]])Z ,(41)

F
(
v1, q1

)
:= (f ,v1)Ω +

∑
K∈Th

τK (f , νΔv1 + ∇q1)K ,(42)

τK := C1
h2
K

ν
,(43)

where τZ is given by (17) and C1 = 1
8 . The value C1 = 1

8 has been suggested by the
error analysis of original method (39) (see Appendix A).

Now, for reasons that we will justify later (see Theorem 4.3 below), we will drop
the term

−
∑

K∈Th

(
1

ν
BK([[ν∂nu1]]),∇q1

)
K

and analyze (and implement) the following simplified version of (39): Find (u1, p1) ∈
Vh ×Q1

h such that

B((u1, p1), (v1, q1)) = F(v1, q1) ∀ (v1, q1) ∈ Vh ×Q1
h .(44)

Remark 4.1. We see that method (44) has the form of a stabilized method of the
GLS class, plus a nonstandard jump term formed by the residual of the Cauchy stress
tensor on the edges of the triangulation. This will give us control of this residual,
which is exclusive to continuous pressure spaces, since in that case pressure jumps
vanish.

Remark 4.2. The method is written as the restriction of a consistent method to
P

1/P
1 elements simply to avoid some technical difficulties. A nonconsistent presen-

tation may be given and in that case we can prove that the consistency error does not
imply a loss of precision.

As we said before, we will perform the error analysis of method (44). This is due
to the fact that the error of method (39) is bounded by that of (44), as stated in the
following result, whose proof may be found in Appendix A.

Theorem 4.3. Let (u, p) ∈ H2(Ω)2 × H1(Ω) be the solution of (1). Then,
method (39) is consistent. Moreover, (39) has a unique solution (ũ1, p̃1) ∈ Vh ×Q1

h,
and the following error estimate holds:

|||u − ũ1|||2h + ‖p− p̃1‖2
h ≤ C (|||u − u1|||2h + ‖p− p1‖2

h) ,

where (u1, p1) ∈ Vh × Q1
h is the solution of (44), and the norms are defined as in

(49)–(50) below.
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4.1.1. Derivation of the method. Using spaces Vh and Q1
h, (13) reduces to

the following: Find (u1, p1) ∈ Vh ×Q1
h such that

ν(∇u1,∇v1)Ω − (p1,∇·v1)Ω + (q1,∇·u1)Ω

+
∑

K∈Th

1

ν
(MK(∇p1) − BK([[ν∂nu1]]),∇q1)K

+
∑
Z∈Eh

1

ν
(BK ([[ν∂nu1]]) , [[ν∂nv1]])Z = (f ,v1)Ω +

∑
K∈Th

1

ν
(MK(f),∇q1)K(45)

for all (v1, q1) ∈ Vh ×Q1
h. Since ∇p1|K ∈ R

2, we have

MK(∇p1) = (MK(e1),MK(e2))∇p1 =: bp
K ∇p1.

As in the previous section, we see that bp
K = bpKI, where bpK is the solution of

−ΔbpK = 1 in K, bpK = 0 on ∂K .(46)

Hence

(MK(∇p1),∇q1)K =

[∫
K

bpK

]
∇p1

∣∣∣
K
· ∇q1

∣∣∣
K

=
(bpK , 1)K

|K| (∇p1,∇q1)K .

On the other hand, from the previous section we know that

(BK([[ν∂nu1]]), [[ν∂nv1]])Z = τZ ([[ν∂nu1]], [[ν∂nv1]])Z ,

where τZ has been defined in (17). Moreover, if we suppose that f is piecewise
constant, we have MK(f) = bpK f , and hence, in the same way as before,

(MK(f),∇q1)K =
(bpK , 1)K

|K| (f ,∇q1)K .

Summing all this up, we arrive at the following expression for (45): Find (u1, p1) ∈
Vh ×Q1

h such that

ν(∇u1,∇v1)Ω − (p1,∇·v1)Ω + (q1,∇·u1)Ω +
∑

K∈Th

(bpK , 1)K
|K|ν (∇p1,∇q1)K

−
∑

K∈Th

1

ν
(BK([[ν∂nu1]]),∇q1)K +

∑
Z∈Eh

(buK , 1)Z
|Z|ν ([[ν∂nu1]], [[ν∂nv1]])Z

= (f ,v1)Ω +
∑

K∈Th

(bpK , 1)K
|K|ν (f ,∇q1)K(47)

for all (v1, q1) ∈ Vh × Q1
h. Finally, since the mesh is regular by a scaling argument

(cf. [31]) we have that

1

|K| (b
p
K , 1)K ∼ C1 h

2
K ,(48)

where C1 is a positive constant independent of h and ν. Hence, replacing (48) in (47)
and defining τK appropriately, we obtain method (39).

Remark 4.4. The assumption of the piecewise constant f on the right-hand
side is made simply to derive the method, but it does not affect the precision of it.
Indeed, if we consider a general f ∈ H1(Ω)2 and take its projection onto the space
of piecewise constant functions, we keep the same order of convergence of the method
(see Appendix B).
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4.2. Error analysis. Let us consider the mesh-dependent norms

|||v|||2h := ν |v|21,Ω +
∑
Z∈Eh

τZ‖[[ν∂nv]]‖2
0,Z ,(49)

‖q‖2
h :=

∑
K∈Th

τK |q|21,K .(50)

The first results concern the consistency and well-posedness of stabilized method (44).
Lemma 4.5. Let (u, p) ∈ [H2(Ω) ∩H1

0 (Ω)]2 × [H1(Ω) ∩ L2
0(Ω)] be the solution of

(1) and (u1, p1) the solution of (44). Then,

B
(
(u − u1, p− p1), (v1, q1)

)
= 0 ∀ (v1, q1) ∈ Vh ×Q1

h.

Proof. The result follows from the definition of B and the fact that [[ν∂nu]] = 0
a.e. on the internal edges.

Lemma 4.6. Let be (v1, q1) ∈ Vh ×Q1
h. Then

B
(
(v1, q1), (v1, q1)

)
= |||v1|||2h + ‖q1‖2

h.

Proof. The result follows from the definition of B and the fact that Δv1 = 0 in
each K ∈ Th.

Now, in order to approximate the velocity we will consider the Lagrange interpo-
lation operator as in the previous section and for the pressure interpolation we will
use the Clément interpolation operator Ch satisfying (35).

The following approximation result will be useful in what follows.
Lemma 4.7. Let (v, q) ∈ [H2(Ω)∩H1

0 (Ω)]2 × [H1(Ω)∩L2
0(Ω)] and q̃h := Ch(q)−

(Ch(q),1)Ω
|Ω| . Then,

|||v − Ih(v)|||2h +
∑

K∈Th

[
τ−1
K ‖v − Ih(v)‖2

0,K + νh2
K‖Δ(v − Ih(v))‖2

0,K

]
≤ Ch2 ν |v|22,Ω,

(51)

‖q − q̃h‖h +
1√
ν
‖q − q̃h‖0,Ω ≤ C

h√
ν
|q|1,Ω.(52)

Proof. The result follows from the norm definition and using ‖q − q̃h‖0,Ω ≤
‖q − Ch(q)‖0,Ω combined with (26), (27), and (35).

Using Lemmas 4.5–4.7 we can establish the following convergence result.
Theorem 4.8. Let (u, p) ∈ [H2(Ω) ∩H1

0 (Ω)]2 × [H1(Ω) ∩ L2
0(Ω)] be the solution

of (1) and (u1, p1) the solution of (44). Then, the following error estimate holds:

|||u − u1|||h + ‖p− p1‖h ≤ C h

[√
ν |u|2,Ω +

1√
ν
|p|1,Ω

]
.(53)

Proof. Let ũh := Ih(u), p̃h := Ch(p) − (Ch(p),1)Ω
|Ω| and (ηu, ηp) := (u − ũh, p− p̃h).

Applying Lemma 4.6 and the consistency of the method, and integrating by parts we
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have

|||u1 − ũh|||2h + ‖p1 − p̃h‖2
h = B((u1 − ũh, p1 − p̃h), (u1 − ũh, p1 − p̃h))

= B((ηu, ηp), (u1 − ũh, p1 − p̃h))

= ν (∇ηu,∇(u1 − ũh))Ω − (ηp,∇· (u1 − ũh))Ω − (ηu,∇(p1 − p̃h))Ω

+
∑

K∈Th

τK (−νΔηu,∇(p1 − p̃h))K +
∑

K∈Th

τK (∇ηp,∇(p1 − p̃h))K

+
∑
Z∈Eh

τZ ([[ν∂nη
u]], [[ν∂n(u1 − ũh)]])Z

≤
[
ν |ηu|21,Ω +

1

ν
‖ηp‖2

0,Ω +
∑

K∈Th

( τ−1
K ‖ηu‖2

0,K + ν2τK ‖Δηu‖2
0,K )

+ ‖ηp‖2
h +

∑
Z∈Eh

τZ ‖[[ν∂nη
u]]‖2

0,Z

] 1
2

·
[
3ν |u1 − ũh|21,Ω + 3

∑
K∈Th

τK ‖∇(p1 − p̃h)‖2
0,K +

∑
Z∈Eh

τZ ‖[[ν∂n(u1 − ũh)]]‖2
0,Z

]1
2

≤
√

3

[
|||ηu|||2h +

∑
K∈Th

[τ−1
K ‖ηu‖2

0,K + νh2
K‖Δηu‖2

0,K ] + ‖ηp‖2
h +

1

ν
‖ηp‖2

0,Ω

] 1
2

·
[
|||u1 − ũh|||2h + ‖p1 − p̃h‖2

h

] 1
2

.

Hence, dividing by the last term and applying Lemma 4.7 we arrive at

|||u1 − ũh|||h + ‖p1 − p̃h‖h ≤ C

[
νh2 |u|22,Ω +

h2

ν
|p|21,Ω

] 1
2

.(54)

The result follows using triangular inequality and Lemma 4.7 once more.
Remark 4.9. In particular, from the previous theorem we have an O(h) conver-

gence for |u−u1|1,Ω and
[∑

Z∈Eh
hZ ‖[[∂n(u − u1)]]‖2

0,Z

] 1
2 , which are both optimal in

order and regularity.

4.2.1. A convergence result for the pressure. In the last result of the pre-
vious section we had an error estimate in the velocity, but, due to the norm definition,
we did not guarantee the convergence of the pressure. The next result shows that we
have an optimal error estimate in the natural norm of the pressure, which is indepen-
dent of ν.

Theorem 4.10. Let (u, p) ∈ [H2(Ω)∩H1
0 (Ω)]2 × [H1(Ω)∩L2

0(Ω)] be the solution
of (1) and (u1, p1) the solution of (44). Then, the following error estimate holds:

‖p− p1‖0,Ω ≤ C h
[
ν |u|2,Ω + |p|1,Ω

]
.(55)

Proof. From the continuous inf-sup condition (see [24]), there exists w ∈ H1
0 (Ω)2

such that ∇·w = p − p1 in Ω and |w|1,Ω ≤ C ‖p − p1‖0,Ω. Let wh = Ch(w) ∈ Vh.
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Then, applying the consistency of the method, (35), and previous theorem, we obtain

‖p− p1‖2
0,Ω = (∇·w, p− p1)Ω = (∇· (w − wh), p− p1)Ω + (∇·wh, p− p1)Ω

= −
∑

K∈Th

(w − wh,∇(p− p1))K + ν (∇(u − u1),∇wh)Ω

+
∑
Z∈Eh

τZ ([[ν∂n(u − u1)]], [[ν∂nwh]])Z

≤
∑

K∈Th

‖w − wh‖0,K |p− p1|1,K + ν |u − u1|1,Ω|wh|1,Ω

+
∑
Z∈Eh

τZ ‖[[ν∂n(u − u1)]]‖0,Z‖[[ν∂nwh]]‖0,Z

≤
[ ∑
K∈Th

τK |p− p1|21,K + ν |u − u1|21,Ω +
∑
Z∈Eh

τZ ‖[[ν∂n(u − u1)]]‖2
0,Z

] 1
2

·
[ ∑
K∈Th

τ−1
K ‖w − wh‖2

0,K + ν |wh|21,Ω +
∑
Z∈Eh

τZ‖[[ν∂nwh]]‖2
0,Z

] 1
2

≤ C
√
ν
[
|||u − u1|||h + ‖p− p1‖h

] [
|w|21,Ω + |wh|21,Ω

] 1
2

≤ C
√
νh

(√
ν |u|2,Ω +

1√
ν
|p|1,Ω

)
‖p− p1‖0,Ω ,

where, in order to bound the term
∑

Z∈Eh
τZ‖[[ν∂nwh]]‖2

0,Z we have used the local

trace result (28) and wh|K ∈ P
1(K)2. The result follows then by dividing by the last

term.

4.2.2. An error estimate for ‖u − u1‖0,Ω. Throughout this section we will
assume that the solution of the following problem, where (u1, p1) is the solution of
(44), belongs to [H2(Ω) ∩H1

0 (Ω)]2 × [H1(Ω) ∩ L2
0(Ω)]: Find (ϕ, π) such that

−ν Δ ϕ − ∇π = u − u1, ∇·ϕ = 0 in Ω ,(56)

ϕ = 0 on ∂Ω .

We also assume that the following estimate holds:

ν ‖ϕ‖2,Ω + ‖π‖1,Ω ≤ C ‖u − u1‖0,Ω .(57)

Theorem 4.11. Under the hypothesis of Theorem 4.10 the following error esti-
mate holds:

‖u − u1‖0,Ω ≤ C h2

(
|u|2,Ω +

1

ν
|p|1,Ω

)
.

Proof. Let (ϕh, πh) := (Ih(ϕ), Ch(π) − (Ch(π),1)Ω
|Ω| ) ∈ Vh ×Q1

h. Then, multiplying

the first equation in (56) by u− u1 and the second by −(p− p1), from the definition
of bilinear form B, the consistency of the method, the fact that [[∂nϕ]] = 0 a.e. on
the internal edges, interpolation inequalities (26), (27), and (35), and Theorems 4.8
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and 4.10, we obtain

‖u − u1‖2
0,Ω

= ν (∇ϕ,∇(u − u1))Ω + (π,∇· (u − u1))Ω − (p− p1,∇·ϕ)Ω

= B((u − u1, p− p1), (ϕ, π)) −
∑

K∈Th

τK (−νΔ(u − u1) + ∇(p− p1), νΔϕ + ∇π)K

= B((u − u1, p− p1), (ϕ − ϕh, π − πh))

−
∑

K∈Th

τK (−νΔ(u − u1) + ∇(p− p1), νΔϕ + ∇π)K

≤
[
ν |u − u1|21,Ω + ν ‖∇· (u − u1)‖2

0,Ω +
1

ν
‖p− p1‖2

0,Ω

+
∑
Z∈Eh

τZ ‖[[ν∂n(u − u1)]]‖2
0,Z + 2

∑
K∈Th

τK‖ − νΔu + ∇(p− p1)‖2
0,K

] 1
2

·

[
ν |ϕ − ϕh|21,Ω +

1

ν
‖π − πh‖2

0,Ω + ν ‖∇· (ϕ − ϕh)‖2
0,Ω +

∑
K∈Th

τK‖∇(π − πh)‖2
0,K

+
∑
Z∈Eh

τZ ‖[[ν∂n(ϕ − ϕh)]]‖2
0,Z +

∑
K∈Th

τK‖νΔϕ + ∇π‖2
0,K

] 1
2

≤ C

[
|||u − u1|||2h + νh2|u|22,Ω + ‖p− p1‖2

h +
1

ν
‖p− p1‖2

0,Ω

] 1
2
[
νh2|ϕ|22,Ω +

h2

ν
|π|21,Ω

] 1
2

≤ C
1√
ν
h2

(√
ν |u|2,Ω +

1√
ν
|p|1,Ω

)
‖u − u1‖0,Ω ,

and the result follows.
Remark 4.12. As we claimed before, the error analysis is independent of the na-

ture of the f on the right-hand side, and hence, we have actually justified method (44)
for a general f ∈ L2(Ω)2. In Appendix B we will show that if f ∈ H1(Ω)2, then the dif-
ference between implementing method (44) and (f ,v1)Ω+

∑
K∈Th

ν−1(MK(f), νΔv1+
∇q)K on the right-hand side is smaller than the order of the method. On the other
hand, method (44) has been justified for any constant C1 > 0, even if it has been
presented with C1 = 1

8 .

5. An alternative formulation including the residual on the boundary.
In this section we propose another class of methods arising from a different choice
of enrichment functions. We will denote by Rh the pressure space according to the
choice of elements, i.e., Rh = Q1

h for P
1/P

1 elements and Rh = Q0
h for P

1/P
0 elements.

The proposed method reads as follows: Find (ur, pr) ∈ Vh ×Rh such that

Br((u
r, pr), (v1, q)) = F(v1, q) ∀ (v1, q) ∈ Vh ×Rh ,(58)

where

Br((u1, p), (v1, q)) = ν(∇u1,∇v1)Ω − (p,∇·v1)Ω + (q,∇·u1)Ω(59)

+
∑

K∈Th

τK(−νΔu1 + ∇p, νΔv1 + ∇q)K

+
∑
Z∈Eh

τ̃Z ([[−ν∂nu1 + pI·n]], [[ν∂nv1 + qI·n]])Z ,



STABILIZED FINITE ELEMENT METHODS FOR THE STOKES PROBLEM 339

F is given by (42), τK by (43), and

τ̃Z :=
hZ

12αν
,(60)

where α > 0 will be fixed in order to have a well-posed problem.
This method may be obtained in the same way as method (14) and (44) by taking

the enrichment function ue to be the solution of (4), together with the boundary
conditions

−ν∂ssue =
1

αhZ
[[−ν∂nur

1 + prI·n]] on each Z ⊂ ∂K, ue = 0 at the nodes ,

(61)

on the internal edges, and ue = 0 on ∂K∩∂Ω. In fact, using this choice of enrichment
we can perform the same derivation from sections 3 and 4, neglecting once more a
cross term appearing in P

1/P
1 discretization.

Remark 5.1. This method is different from (14) and (44) from two viewpoints.
First, the boundary term contains the residual of the Cauchy stress tensor on the trial
function. This fact comes from the choice of the enriched part as being a corrector
for the residual inside the element and on the boundary. The other difference is the
stabilization parameter on the edges. Now, this parameter contains a constant to set.

Now, let |||.|||h be the mesh-dependent norm defined by:

|||(v1, q)|||h :=

[
ν |v1|21,Ω +

∑
K∈Th

τK |q|21,K +
∑
Z∈Eh

τ̃Z ‖[[q]]‖2
0,Z

] 1
2

.(62)

Then, we have the following coercivity result.
Lemma 5.2. Let us suppose that α > Ct/3, where Ct > 0 is the constant from

local trace result (28). Then, for all (v1, q) ∈ Vh ×Rh there holds

Br((v1, q), (v1, q)) ≥ 1

2
|||(v1, q)|||2h .

Proof. Let (v1, q) ∈ Vh × Rh. Then, since Δv1 = 0 on each K ∈ Th, applying
local trace result (28) and the definition of τ̃Z we obtain

Br((v1, q), (v1, q)) = ν|v1|21,Ω
+

∑
K∈Th

τK‖∇q‖2
0,K +

∑
Z∈Eh

τ̃Z(−ν2‖[[∂nv1]]‖2
0,Z + ‖[[q]]‖2

0,Z)

≥ ν |v1|21,Ω − Ct

6α
ν

∑
K∈Th

|v1|21,K +
∑

K∈Th

τK |q|21,K +
∑
Z∈Eh

τ̃Z‖[[q]]‖2
0,Z

≥ 1

2
|||(v1, q)|||2h ,

an the result follows.
Once this method has been proved to be stable, following a procedure absolutely

analogous to those from sections 3 and 4 we can prove the consistency of (58) and
perform a complete error analysis of (58), obtaining the same results as in previous
sections.
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6. Numerical validations.

6.1. An analytical solution: Convergence validation. For this test case,
the domain is taken as the square Ω = (0, 1) × (0, 1), ν = 1, and f is set such that
the exact solution of our Stokes problem is given by

u1(x, y) = −256x2(x− 1)2y(y − 1)(2y − 1) ,

u2(x, y) = −u1(y, x) ,

p(x, y) = 150(x− 0.5)(y − 0.5) .

We perform convergence analysis for methods (14), (44), and (58) using continu-
ous P

1/P
1 and P

1/P
0 elements.

6.1.1. The P
1/P

1 case. For this case we first depict in Figures 1–2 the conver-
gence history for method (44). The results reproduce our theoretical results showing
an O(h) order of convergence for |u − u1|1,Ω,

|[[∂n(u − u1)]]|h :=

[ ∑
Z∈Eh

hZ‖[[∂n(u − u1)]]‖2
0,Z

] 1
2

and ‖p− p1‖0,Ω, and an O(h2) convergence for ‖u − u1‖0,Ω.

Fig. 1. Method (44): convergence history for ‖p− p1‖0,Ω and |u − u1|1,Ω.

Fig. 2. Method (44): convergence history for ‖u − u1‖0,Ω and |[[∂n(u − u1)]]|h.
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Fig. 3. Method (58): convergence history for ‖p− p1‖0,Ω and |u − u1|1,Ω.

Fig. 4. Method (58): convergence history for ‖u−u1‖0,Ω, and sensitivity of (58) with respect
to α.

Method (58) is tested next. The results are depicted in Figures 3–4 using α = 1,
where the results are in perfect accordance with the theoretical results. The justifi-
cation of this choice for α may be found in Figure 4 (on the right) where we have
depicted the behavior of the error in terms of α (using a mesh of around 2500 ele-
ments) and we see that for α ≥ 1 the error is almost independent of α, showing that
the restriction of Lemma 5.2 is not only theoretical, but at the same time showing
that, once we are inside the region predicted by the theory, the performance of the
method is independent of α.

6.1.2. The P
1/P

0 case. For this case we first depict in Figures 5–6 the conver-
gence history for method (14). The results reproduce our theoretical results showing
an O(h) order of convergence for |u−u1|1,Ω, |[[∂n(u−u1)+(p−p0)n]]|h and ‖p−p0‖0,Ω,
and an O(h2) convergence for ‖u − u1‖0,Ω.

Method (58) is tested next. The results are depicted in Figures 7–8 using α = 1,
where the results are in perfect accordance with the theoretical results, giving an
O(h) for |u − u1|1,Ω, |[[p − p0]]|h, and ‖p − p0‖0,Ω, and an O(h2) convergence for
‖u − u1‖0,Ω. Concerning the choice of α, the situation now is quite different from
that in the previous section. As a matter of fact, since we only control the pressure
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Fig. 5. Method (14): convergence history for ‖p− p0‖0,Ω and |u − u1|1,Ω.

Fig. 6. Method (14): convergence history for ‖u − u1‖0,Ω and |[[∂n(u − u1) + (p− p0)n]]|h.

via the jump terms governed by α, we can expect the error to grow as α grows, as it is
shown in Figure 9 (for a mesh of 2500 elements) where we see that all the errors attain
a minimum at α = 1 (i.e., using τ̃Z = τZ), and then they present a growing behavior.
Values larger than 10 have been tested and the behavior is growing in all the errors.
Related experiments have been performed using the GLS method (cf. [27]), obtaining
similar results.

6.2. The lid-driven cavity problem. For this case we use the same domain
as in the previous section, we set f = 0, and the boundary conditions u = 0 on
[{0} × (0, 1)] ∪ [(0, 1) × {0}] ∪ [{1} × (0, 1)] and u = (1, 0)t on (0, 1) × {1}. In Figure
10 we depict the pressure isovalues for both P

1/P
0 and P

1/P
1 approximations (using

a mesh of around 1000 elements) showing, in both cases, the absence of oscillations.

7. Concluding remarks. In this paper we have analyzed and tested new sta-
bilized finite element methods for the Stokes problem. These new methods arise
from multiscale enrichment of the trial space for the velocity coupled with a Petrov–
Galerkin strategy. This Petrov–Galerkin strategy makes it possible to perform statical
condensation both at the element level and at the interelement boundary level, making
the method take the form of a classical stabilized finite element method, containing
jump terms on the interior edges of the triangulation, and with the corresponding
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Fig. 7. Method (58): convergence history for ‖p− p0‖0,Ω and |u − u1|1,Ω.

Fig. 8. Method (58): convergence history for ‖u − u1‖0,Ω and ‖p− p0‖0,Ω.

Fig. 9. Sensitivity of method (58) to α.
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Fig. 10. Pressure isovalues for P
1/P

0 (left) and P
1/P

1 (right) approximations.

stabilization parameter known exactly. Optimal order error estimates were derived
using the natural norms, results that were confirmed by the numerical experiments.

Our belief is that our general methodology may be applied to other mixed prob-
lems, namely the Darcy and Brinkman flow problems, and to the advection-diffusion
equation. This will be the subject of future works.

Appendix A. Proof of Theorem 4.3.
The consistency of the method is immediate from the fact that [[ν∂nu]] = 0 a.e.

on ∂K. To prove the well-posedness of (39), we prove that B1 is an elliptic bilinear
form. Let (v1, q1) ∈ Vh ×Q1

h; then from Lemma 4.6 we have that

B1((v1, q1), (v1, q1)) = |||v1|||2h + ‖q1‖2
h −

∑
K∈Th

1

ν
(BK([[ν∂nv1]]),∇q1)K .

Now, in order to treat the last term above, let us denote by Z1, Z2, Z3 the sides of K,
and let, for i = 1, 2, 3, bZi

K be the solution of

−ΔbZi

K = 0 in K, bZi

K = gi on each Z ⊂ ∂K ,

where gi = 0 if Zi ⊆ ∂Ω, and gi is the solution of

−∂ss gi =
1

hZi

in Zi, gi = 0 on ∂K − Zi ,

otherwise. First, we remark that from the maximum principle, we have that 0 ≤ bZi

K ≤
hZi

8 in K. On the other hand, it is easy to see that BK([[ν∂nv1]]) =
∑3

i=1 b
Zi

K [[ν∂nv1]]|Zi
,

and then, using that |K| ≤ h2
K

2 and the inequality ab ≤ γ−1 a2

4 +γb2 (γ > 0) (denoting
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‖· ‖R2 the Euclidean norm on R
2) we arrive at

∑
K∈Th

1

ν
(BK([[ν∂nv1]]),∇q1)K =

∑
K∈Th

3∑
i=1

1

ν
(bZi

K [[ν∂nv1]]|Zi
,∇q1)K

=
∑
Z∈Eh

∑
K⊂ωZ

(bZK , 1)K
ν

[[ν∂nv1]]|Z · ∇q1|K

≤
∑
Z∈Eh

∑
K⊂ωZ

hZ |K|
8ν

‖[[ν∂nv1]]|Z‖R2‖∇q1|K‖R2

≤ γ−1
∑
Z∈Eh

∑
K⊂ωZ

|Z| ‖[[ν∂nv1]]‖2
0,Z

32ν
+ γ

∑
Z∈Eh

∑
K⊂ωZ

|K|‖∇q1‖2
0,K

8ν

≤ γ−1
∑
Z∈Eh

hZ ‖[[ν∂nv1]]‖2
0,Z

16ν
+ γ

∑
K∈Th

h2
K‖∇q1‖2

0,K

8ν
.(63)

Hence, choosing γ = 14
16 < 1 we arrive at

B1((v1, q1), (v1, q1)) ≥ |||v1|||2h + ‖q1‖2
h −

∑
Z∈Eh

hZ

14ν
‖[[ν∂nv1]]‖2

0,Z − γ
∑

K∈Th

h2
K

8ν
|q1|21,K

≥ C∗(|||v1|||2h + ‖q1‖2
h) ,

where C∗ is a positive constant not depending on h or ν. Now, for the error estimate,
applying the coercivity result and the consistency of the method we arrive at

C∗ (|||u1 − ũ1|||2h + ‖p1 − p̃1‖2
h) ≤ B1((u1 − ũ1, p1 − p̃1), (u1 − ũ1, p1 − p̃1))

= B1((u1 − u, p1 − p), (u1 − ũ1, p1 − p̃1))

= −
∑

K∈Th

(BK([[ν∂n(u1 − u)]]),∇(p1 − p̃1))K .(64)

Finally, proceeding as in (63) it is not difficult to see that∑
K∈Th

(BK([[ν∂n(u1 − u)]]),∇(p1 − p̃1))K

≤ C
∑
Z∈Eh

τZ ‖[[ν∂n(u1 − u)]]‖2
0,Z +

C∗
2

∑
K∈Th

τK |p1 − p̃1|21,K

≤ C (|||u − u1|||2h + ‖p− p1‖2
h) +

C∗
2

(|||u1 − ũ1|||2h + ‖p1 − p̃1‖2
h) ,

and hence, there exists C > 0, independent of h and ν, such that

|||u1 − ũ1|||2h + ‖p1 − p̃1‖2
h ≤ C (|||u − u1|||2h + ‖p− p1‖2

h) ,

and the result follows by triangular inequality.
Remark A.1. We have proved that the error of method (39) is bounded by the

error of method (44). The same analysis of Theorems 4.10 and 4.11 may be carried
out to prove error estimates on ‖p− p̃1‖0,Ω and ‖u − ũ1‖0,Ω.

Appendix B. The error if f is not piecewise constant. As we claimed
before, we have assumed that f is piecewise constant in order to derive (44), but this
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assumption does not affect the convergence of the method, and hence (44) may be
implemented as it is presented for a general function f ∈ L2(Ω)2. Now, if we do not
suppose that f is piecewise constant in the derivation, then method (44) becomes the
following: Find (uh, ph) ∈ Vh ×Q1

h such that

B((uh, ph), (v1, q1)) = Fh(v1, q1)(65)

for all (v1, q1) ∈ Vh ×Q1
h, where B is defined in (41) and Fh is given by

Fh(v1, q1) := (f ,v1)Ω +
∑

K∈Th

1

ν
(MK(f),∇q1)K .(66)

Clearly, (65) has a unique solution (uh, ph) ∈ Vh×Q1
h. Moreover, the following result

holds.
Theorem B.1. Let us suppose that f ∈ H1(Ω)2. Then, under the hypothesis of

Theorems 4.8, 4.10, and 4.11, the following error estimate holds:

|||u − uh|||h + ‖p− ph‖h ≤ Ch

(√
ν |u|2,Ω +

1√
ν
|p|1,Ω +

1√
ν
‖f‖1,Ω

)
,(67)

‖p− ph‖0,Ω ≤ Ch (ν |u|2,Ω + |p|1,Ω + ‖f‖1,Ω) ,(68)

‖u − uh‖0,Ω ≤ Ch2

(
|u|2,Ω +

1

ν
|p|1,Ω +

1

ν
‖f‖1,Ω

)
.(69)

Proof. Let (u1, p1) be the solution of (44). First, applying [30, Lem. 5.3.1], we
see that

|||u1 − uh|||h + ‖p1 − ph‖h ≤ sup
(v1,q1)∈Vh×Q1

h−{θ}

F(v1, q1) − Fh(v1, q1)

‖v1‖h + ‖q1‖h

= sup
(v1,q1)∈Vh×Q1

h−{θ}

∑
K∈Th

(τKf − 1
νMK(f),∇q1)K

‖v1‖h + ‖q1‖h

≤ sup
(v1,q1)∈Vh×Q1

h−{θ}

∑
K∈Th

‖τKf − 1
νMK(f)‖0,K |q1|1,K

‖v1‖h + ‖q1‖h
.(70)

Now, let fh be the piecewise constant function given by

fh

∣∣∣
K

=
1

|K|

∫
K

f .

This function, which is the (local) projection on the space of piecewise constant func-
tions, satisfies (cf. [17]) ‖f − fh‖0,K ≤ C hK |f |1,K . Then, applying triangular
inequality we arrive at

‖τKf −MK(f)‖0,K ≤ ‖τK(f − fh)‖0,K + ‖τKfh − 1

ν
MK(fh)‖0,K

+
1

ν
‖MK(fh − f)‖0,K .(71)

The first term is easily bounded using the approximation properties of fh and the
definition of τK . Next, since MK(fh) = bpKfh in each K ∈ Th, the second term is
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bounded in the following way:

‖τKfh − 1

ν
MK(fh)‖0,K ≤ |τK |‖fh‖0,K +

‖bpK‖0,K

ν
‖fh‖R2

≤ |τK |‖fh‖0,K +
CK |bpK |1,K
ν |K| 12

‖fh‖0,K ,

where CK > 0 is the constant such that ‖v‖0,K ≤ CK |v|1,K for all v ∈ H1
0 (K).

Furthermore, looking carefully at the behavior of the Poincaré constant CK we can
see (cf. [30, Thm. 1.2.5]) that CK ≤ hK . On the other hand, from the definition of
bpK we have |bpK |21,K = (bpK , 1)K , and then, applying (48) we arrive at

CK |bpK |1,K
ν |K| 12

‖fh‖0,K ≤ hK

√
(bpK , 1)K

ν |K| 12
‖fh‖0,K ≤ C

h2
K

ν
‖fh‖0,K .(72)

To bound the third term in (71) we remark that function e := MK(f − fh) satisfies
−Δe = f − fh in K, e = 0 on ∂K, and hence

‖e‖0,K ≤ C2
K ‖f − fh‖0,K ≤ h2

K ‖f − fh‖0,K ≤ C h3
K |f |1,K .(73)

Hence, applying (70)–(73) (and assuming h ≤ 1), we arrive at

|||u1 − uh|||h + ‖p1 − ph‖h ≤ C sup
(v1,q1)∈Vh×Q1

h−{θ}

∑
K∈Th

h2
K

ν ‖f‖1,K |q1|1,K
‖v1‖h + ‖q1‖h

≤ C
h√
ν
‖f‖1,Ω ,

and hence (67) follows by triangular inequality and Theorem 4.8. Estimates (68) and
(69) are proved as in Theorems 4.10 and 4.11 and by using (67).
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residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal., 36 (1999),
pp. 1933–1948.



348 R. ARAYA, G. R. BARRENECHEA, AND F. VALENTIN
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Abstract. The classical discontinuous Galerkin method for a general parabolic equation is ana-
lyzed. Symmetric error estimates for schemes of arbitrary order are presented. The ideas developed
below relax many assumptions required in previous work. For example, different discrete spaces
may be used at each time step, and the spatial operator need not be self-adjoint or independent of
time. Our error estimates are posed in terms of projections of the exact solution onto the discrete
spaces and are valid under the minimal regularity guaranteed by the natural energy estimate. These
projections are local and enjoy optimal approximation properties when the solution is sufficiently
regular.
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1. Introduction. We consider the parabolic PDE of the form

ut + A(t)u = F (t), u(0) = u0.(1.1)

The operators act on Hilbert spaces related through the standard pivot construc-
tion, U ↪→ H � H ′ ↪→ U ′, where each embedding is continuous and dense. Then,
A(.) : U → U ′ is a linear map and F (.) ∈ U ′. Our goal is to analyze the classical
discontinuous Galerkin (DG) scheme and derive fully discrete error estimates under
minimal regularity assumptions. The class of DG schemes considered are classical in
the sense that the discrete solutions may be discontinuous in time but are conforming
in space; i.e., solutions are in (a subspace of) U at each time.

Our techniques also apply to the more general implicit evolution equation [21, 22]

(M(t)u)t + A(t)u = F (t), u(0) = u0,(1.2)

where M(.) : H → H is a self-adjoint positive definite operator. The extension of our
analysis to this equation will be taken up separately. The analysis below addresses
the following issues, which have not yet been adequately considered in the literature:

• The operator A(.) may depend upon time and is not required to be self-
adjoint. To date the sharpest estimates for DG approximations exploit clas-
sical spectral theory for self-adjoint positive definite operators, and so require
A to be such an operator and to be independent of time. When A(.) is not
self-adjoint, multiplying (1.1) by ut does not give an estimate for the time
derivative.
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• The subspaces of U used for the DG approximations may be different on each
time interval (tn−1, tn]. This adds a significant complication to the analysis,
which is present even when A = 0. Indeed, the first step in our analysis is to
consider the DG scheme for an auxiliary parabolic equation which reduces to
an ODE in the Hilbert space H when the coercivity constant vanishes.
Different subspaces are essential ingredients of adaptive strategies, used in
conjunction with a posteriori error estimates to give guaranteed error bounds.
Retriangulation is also necessary for many algorithms based upon a La-
grangian coordinate system; an example is presented below.

• DG approximations of equations of the form (1.2) have not been considered
in the past. The example below shows that equations of this form arise when
Lagrangian schemes are constructed for the convection diffusion equation [5,
6, 7].

• The operator A(.) is not required to be strictly coercive; only semicoercivity
of the form 〈A(.)u, u〉 ≥ c|u|2U − C‖u‖2

H is required. Here |.|U is a seminorm
such that ‖.‖2

U = |.|2U +‖.‖2
H . This causes significant problems in the analysis

of DG schemes since the classical Gronwall argument, used for the continuous
problem, fails in the discrete setting. This failure is due to the elementary
observation that functions of the form χ[0,t̂)u are not polynomial in time

unless t̂ is a partition point, and thus they are not available as test functions
in the discrete setting.1 In the past this problem has been circumvented
by bounding temporal derivatives of the solution [4, 23] so that the solution
between the partition points can be controlled by the values at these points.
This line of argument fails for solutions having minimal regularity. These
issues are circumvented here by constructing polynomial approximations to
the characteristic functions χ[0,t̂).

As stated above, our analysis does not require any regularity beyond the natural
bounds that follow from the usual energy estimate. This is essential for control prob-
lems, where solutions of the dual problem typically will not enjoy any additional
regularity. Our estimates show that the error can be bounded by local projection
errors of the solution projected onto the discrete subspaces. This error can also be
viewed as a “local truncation error” of the ODE obtained by setting A = 0. Care is
taken to keep track of how the various constants depend upon the coercivity constant
of A(.). This is important for the analysis of problems like the convection diffusion
equation, where the coercivity constant is small.

The following equation can be analyzed within the general framework developed
here but falls outside of the theory developed, for example, in Thomée’s text [23].

Convection diffusion equation. The classical convection diffusion equation is

ūt + V.∇ū− εΔū = 0,

and the problems that arise when ε is small are notorious. To address these problems
this equation is sometimes considered in a Lagrangian variable. Specifically, let Ṽ
be a (numerical) approximation of V, and let x = χ(t,X) be the change of variables
defined by the flow map associated with Ṽ; i.e.,

ẋ(t,X) = Ṽ(t, x(t,X)), x(0, X) = X.

1Here χ[0,t̂) is the characteristic function equal to 1 on [0, t̂) and zero otherwise.



DG FOR PARABOLIC EQUATIONS 351

If u(t,X) = ū(t, x(t,X)), then

ut + (V − Ṽ) · (F−T∇Xu) − ε

(
1

J

)
divX

(
JF−1F−T∇Xu

)
= 0,

where Fij = ∂xi/∂Xj is the Jacobian of the mapping and J = det(F ). The natural
weak problem for this equation is∫

Ω

((
ut + (V − Ṽ) · (F−T∇Xu)

)
v + ε(F−T∇Xu).(F−T∇Xv)

)
J = 0.

Using the properties of determinants, we find

utJ = (Ju)t − J̇u = (Ju)t − J div(Ṽ)u.

If div(Ṽ) = 0, then J is constant and the transformed problem takes the form of
(1.1); otherwise, it takes the form of (1.2) with M(.)u = Ju, and

A(.)u = −div(Ṽ)uJ + (V − Ṽ).(F−T∇Xu)J − εdivX

(
JF−1F−T∇Xu

)
.

This statement of the problem generalizes the idea behind the “characteristic Galerkin”
scheme introduced by Douglas and Russell in [5] and Dupont in [6].

This change of variables reduces the effective Peclet number from |V|/ε to |V −
Ṽ|/ε, which will be O(1) if Ṽ is a sufficiently accurate approximation of V. This
eliminates many of the numerical difficulties encountered by algorithms based upon
the classical statement; however, other problems arise. While the Jacobian of the
transformation satisfies F (0, X) = I, its condition number grows exponentially if Ṽ is
anything other than a rigid motion. In the context of a numerical scheme this problem
is circumvented by reinitializing the transformation at each (or every few) time step(s).
This reinitialization corresponds to changing the subspace for the numerical solution
every (few) time step(s). In essence, a triangular mesh in the X coordinate system
will be a distorted mesh in the x coordinate system, and reinitializing the transform
corresponds to projecting the solution onto a (straight sided) triangular mesh in the
x coordinates. This gives rise to different subspaces at each time step.

1.1. Related results. The discontinuous Galerkin method was first introduced
to model and simulate neutron transport by Lasaint and Raviart in [13]. There
is an abundant literature concerning applications of the DG scheme for hyperbolic
problems; see, e.g., [3, 12, 24] and references within. The DG method for ODEs was
considered by Delfour, Hager, and Trochu in [4]. They showed that the DG scheme
was superconvergent at the partition points (order 2k + 2 for polynomials of degree
k). The superconvergence results (and better rates in the H norm) use a duality
argument, and space considerations do not permit us to develop the corresponding
estimates in the current setting.

In the context of parabolic equations, DG schemes were first analyzed for linear
parabolic problems by Jamet in [11], where O(τk) results were proved, and by Eriks-
son, Johnson, and Thomée in [10], where O(τ2k−1) results were proved for “smooth”
initial data among others (τ being the time step size). An excellent exposition of their
results and, more generally, the DG method for parabolic equations can be found in
Thomée’s book [23]. In [23] nodal and interior estimates are presented in various
norms. One may also consult [16] for the analysis of a related formulation based
on the backward Euler scheme. The relation between the DG scheme and adaptive
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techniques was studied in [8] and [9]. Finally, some results concerning the analysis of
parabolic integro-differential equations by the DG method are presented in [14] (see
also references therein).

In [7] Dupont and Liu introduced the concept of “symmetric error estimates” for
parabolic problems. They define such an error estimate to be one of the form

|||u− uh||| ≤ C inf
wh∈Uh

|||u− wh|||,

where u and uh are the exact and approximate solutions, respectively; |||.||| is an
appropriate norm; and Uh is the discrete subspace in which approximation solutions
are sought. While estimates of this form are standard for elliptic problems, this
is not the case for evolution problems. For example, error estimates for evolution
problems approximated by the implicit Euler scheme frequently involve terms of the
form ‖utt‖L2(Ω). Symmetric error estimates are useful for problems where the solution
u may not be very regular, such as control problems, and are used to develop a
posteriori error estimates for adaptive schemes. Symmetric error estimates for moving
mesh finite element methods were studied in [7, 15] (see also the references therein).
Mesh modification techniques for finite elements were introduced in [17] and [18].
For some earlier work on convection-dominated problems based on the methods of
characteristics and mesh modification one may consult [5] and [6], respectively.

An alternative to the symmetric error estimates are estimates of the form

|||u− uh||| ≤ C|||u− Phu|||,(1.3)

where Ph : U → Uh is a projection which exhibits optimal interpolation properties
if u is sufficiently smooth. Estimates of this form enjoy the same advantages found
for those proposed by Dupont and Liu. Below, estimates of the form (1.3) are devel-
oped for parabolic equations of the form (1.1), where the projection Phu is nonlocal.
However,

|||u− Phu||| ≤ |||u− P
loc
h u||| + |||Phu− P

loc
h u|||,

where P
loc
h is a local projection, so the first term can be estimated using classical

interpolation theory. The second term |||Phu− P
loc
h u||| vanishes if the same subspace

of U is used in each partition (tn−1, tn); otherwise, it depends solely upon the jump in
the interpolant of the exact solution at the partition points {tn}Nn=0. The size of the
constant C in (1.3), and its dependence on various constants, plays an important role;
we are careful throughout to state the dependence of the constant upon the various
coercivity constants and bounds assumed for the operator A.

Error estimates for Lagrange–Galerkin approximations of convection-dominated
problems for divergence-free velocity fields vanishing on the boundary are presented
in [2]. Issues related to the stability of Lagrange–Galerkin approximations are also
discussed in [19]. Recently there has been a lot of work on the development and anal-
ysis of DG methods for elliptic problems. A comprehensive survey and comparison of
this work can be found in [1], which contains many references related to this approach.

1.2. Outline. In section 2, the DG scheme is formulated and analyzed for an
auxiliary parabolic equation. This section focuses upon the difficulties that arise when
different subspaces of U may be used at every time step and when the coercivity
constant may be small. Error estimates are first derived at times corresponding to
the partition points. Additional arguments using “discrete characteristic functions”
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are developed to estimate the error at times in between the partition points. The
latter arguments appear to be new.

A priori estimates for the DG approximations of (1.1) are developed in section
3. Estimates are derived in the natural norms associated with the parabolic problem;
by “natural” we mean norms that arise in the natural energy estimates obtained by
multiplying (1.1) by u. The results of section 2 are used in an essential fashion.
Indeed, the difficulties associated with different subspaces of U at each time step are
circumvented by comparing the discrete solution of the parabolic equation with an
appropriate solution of the auxiliary equation. By using the “discrete characteristic
functions” developed in section 2, the self-adjoint assumptions typically imposed upon
A(.) may be avoided.

Remark 1. When the same discrete subspace of U is used for each time step, our
techniques generalize, and to some extent simplify, the classical analysis. The reader
interested in this case needs to read only sections 2.3 on the construction of discrete
characteristic functions, and Definition 2.1 for P

loc
h , before proceeding to section 3.

Remark 4 in section 3 amplifies upon this.

1.3. Notation. It is assumed throughout that the evolution of the solution to
(1.1) takes place in a Hilbert space H and that the operators A(.) are defined on
another Hilbert space U with U ↪→ H � H ′ ↪→ U ′, where each of the embeddings
are dense and continuous. The inner product on H is denoted by (., .), and the
induced duality pairing between U and U ′ is denoted by 〈., .〉. The norm on H is
often denoted by |.| ≡ ‖.‖H , and it is assumed that the norm on U can be written
as ‖.‖2

U = |.|2U + ‖.‖2
H , where |.|U is a seminorm on U (the “principle” part) and is

often denoted by ‖.‖; ‖.‖2
U = ‖.‖2 + |.|2. Standard notation of the form L2[0, T ;U ],

H1[0, T ;U ′], etc. is used to indicate the temporal regularity of functions with values
in U , U ′, etc.

Approximations of (1.1) will be constructed on a partition 0 = t0 < t1 < · · · <
tN = T of [0, T ]; the step sizes are denoted as τn = tn − tn−1, and τ = maxn τ

n.
On each interval of the form (tn−1, tn] a subspace Un

h of U is specified, and the
approximate solutions will lie in the space

Uh = {uh ∈ L2[0, T ;U ] | uh|(tn−1,tn] ∈ Pk(t
n−1, tn;Un

h )}.

Here Pk(t
n−1, tn;Un

h ) is the space of polynomials of degree k or less having values
in Un

h . Notice that, by convention, functions in Uh are left continuous with right
limits. We will write un for uh(tn) = uh(tn−) and let un

+ denote uh(tn+). This notation
is also used with functions like the error e = u − uh. It is assumed that the exact
solution, u, is in C[0, T ;H], so that the jump in the error at tn, denoted by [en], is
[en] = [un] = un

+ − un.

2. DG scheme for an auxiliary equation.

2.1. Background. This section addresses issues that arise when different dis-
crete subspaces are used for each time step of the DG scheme. Schemes for the
simplest (heat-type) parabolic equation are considered, which allows issues associated
with different spaces at each step and the role of the coercivity constant to be iso-
lated. In the next section the error estimates for the more general equation (1.1) will
be obtained by comparing the solutions of the two equations.

Let (., .)U be the inner product on U , and let B : U → U ′ be the associated
Riesz map: (u, v)U = 〈Bu, v〉. We consider the problem of recovering a function
u ∈ L2[0, T ;U ] ∩ H1[0, T ;U ′], given the initial value u(0) and f = ut + ηBu, where



354 K. CHRYSAFINOS AND NOEL J. WALKINGTON

η ≥ 0. Specifically, consider DG finite element approximations of the initial value
problem

ut + ηBu = f, u(0) = u0.(2.1)

In this situation there exists a unique u ∈ L2[0, T ;U ] ∩ H1[0, T ;U ′] ↪→ C[0, T ;H],
which is the solution of the weak problem

(u(T ), v(T )) −
∫ T

0

〈u, vt〉 + η(u, v)U = (u0, v(0)) +

∫ T

0

〈f, v〉(2.2)

∀ v ∈ L2[0, T ;U ] ∩H1[0, T ;U ′].

To approximate the solution of (2.2) we introduce a partition 0 = t0 < t1 <
· · · < tN = T of [0, T ] and a collection {Un

h }Nn=0 of subspaces of U . The DG method
constructs an approximate solution

uh ∈ Uh ≡ {u ∈ L2[0, T ;U ] | u|(tn−1,tn] ∈ Pk(t
n−1, tn;Un

h )}

such that

(un, vn) −
∫ tn

tn−1

(uh, vht) + η(uh, vh)U − (un−1, vn−1
+ ) =

∫ tn

tn−1

〈f, vh〉(2.3)

for all vh ∈ Uh and each n = 1, 2, . . . , N . Recall that un ≡ uh(tn) = uh(tn−), and
use standard notation, un

+, u
n
−, for the traces from above and below, respectively.

Integration by parts gives the following alternative form of (2.3):∫ tn

tn−1

(uht, vh) + η(u, v)U + (un−1
+ − un−1, vn−1

+ ) =

∫ tn

tn−1

〈f, vh〉.(2.4)

2.2. Error estimate at partition points. In this elementary context it is
possible to estimate the error at each partition point tn using the ideas from [9]. We
will need the following projection operators P

loc
n introduced in [10].

Definition 2.1. (1) The projection P
loc
n : C[tn−1, tn;H] → Pk(t

n−1, tn;Un
h )

satisfies (Ploc
n u)n = Pnu(tn), and∫ tn

tn−1

(u− P
loc
n u, vh) = 0 ∀ vh ∈ Pk−1(t

n−1, tn;Un
h ).

Here we have used the convention (Ploc
n u)n ≡ (Ploc

n u)(tn) and Pn : H → Un
h is the

orthogonal projection operator onto Un
h ⊂ H.

(2) The projection P
loc
h : C[0, T ;H] → Uh satisfies

P
loc
h u ∈ Uh and (Ploc

h u)|(tn−1,tn] = P
loc
n (u|[tn−1,tn]).

This projection satisfies the standard approximation properties [23, Theorem 12.1]
and can be viewed as the one step DG approximation of ut = f on the interval
(tn−1, tn], with exact initial data u(tn−1) and f = ut specified. For the parabolic
problem we will use the analogous global projection (Ph below), which is the DG
solution of the auxiliary equation with initial data u(0) and f = ut + Bu specified.

The following theorem provides a decomposition of the error into the errors due
to the changing of the spaces and the projection errors. The former depend upon the
size of the coercivity constant η.
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Theorem 2.2. Let uh ∈ Uh be the approximate solution of (2.1) computed using
the discontinuous Galerkin scheme (2.3), and write ê = P

loc
h u− uh. Then there exists

a constant Ck > 0 depending only upon k such that

|ên|2 +
η

2

∫ tn

0

‖ê‖2
U +

1

2

n−1∑
i=0

|êi − êi+|2 ≤ |ê0|2 +

∫ tn

0

η‖(I − P
loc
h )u‖2

U(2.5)

+

n−1∑
i=0

2 min

(
|(I − Pi)u(ti)|2, C2

k

τ i+1η
‖Pi+1(I − Pi)u(ti)‖2

U ′

)
.

Remark 2. Since Pi(I − Pi−1) = 0 when U i
h ⊂ U i−1

h , the error estimate reduces
to the usual projection errors when the same discrete subspace is used at each time.

Proof. Let e = u−uh be the total error, and note that the Galerkin orthogonality
gives

(en, vn) −
∫ tn

tn−1

(e, vht) + η(e, vh)U − (en−1, vn−1
+ ) = 0.(2.6)

Letting ê = P
loc
n u− uh = e− (I − P

loc
n )u and using the properties of P

loc
n gives

(ên, vn) −
∫ tn

tn−1

(ê, vht) + η(ê, vh)U − (ên−1, vn−1
+ )

= ((I − Pn−1)u(tn−1), vn−1
+ ) −

∫ tn

tn−1

η((I − P
loc
n )u, vh)U .(2.7)

Setting vh = ê shows

1

2
|ên|2 +

∫ tn

tn−1

η‖ê‖2
U +

1

2
|ên−1 − ên−1

+ |2 − 1

2
|ên−1|2

= ((I − Pn−1)u(tn−1), ên−1
+ ) −

∫ tn

tn−1

η((I − P
loc
n )u, ê)U .

The second term on the right-hand side is bounded using the Cauchy–Schwarz in-
equality, and the first term is bounded two different ways. Since ên−1 ∈ Un−1

h , an
estimate independent of η is computed as

((I − Pn−1)u(tn−1), ên−1
+ ) = ((I − Pn−1)u(tn−1), ên−1

+ − ên−1)

≤ |(I − Pn−1)u(tn−1)|2 +
1

4
|ên−1

+ − ên−1|2.

An alternative estimate is obtained upon writing

((I − Pn−1)u(tn−1), ên−1
+ ) = (Pn(I − Pn−1)u(tn−1), ên−1

+ )

≤ ‖Pn(I − Pn−1)u(tn−1)‖U ′‖ên−1
+ ‖U .

We next appeal to the following “inverse” estimate for functions in P(tn−1, tn, Un):

‖ên−1
+ ‖2

U ≤ C2
k

τn

∫ tn

tn−1

‖ê‖2
U .
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The finite dimensionality of Pk(t
n−1, tn) shows that such an estimate holds, and a

scaling argument shows that the constant takes the form C2
k/τ

n, where Ck depends
only upon k when τn = tn − tn−1. It follows that

((I − Pn−1)u(tn−1), ên−1
+ ) ≤ C2

k

τnη
‖Pn(I − Pn−1)u(tn−1)‖2

U ′ +
η

4

∫ tn

tn−1

‖ê‖2
U .

Substituting these estimates into (2.8) and summing completes the proof.

2.3. Discrete characteristic functions. To compute the error at arbitrary
times t ∈ [tn−1, tn) we would like to substitute vh = χ[tn−1,t)uh into (2.4), where
χ[tn−1,t) is the characteristic function on [tn−1, t). Clearly this function is not in
Uh, so in this section discrete approximations of such characteristic functions are
constructed to circumvent this problem.

The construction of the discrete characteristic functions is invariant under trans-
lation, so it is convenient to work on the interval [0, τ) with τ = tn − tn−1. Consider
first polynomials p ∈ Pk(0, τ). A discrete approximation of χ[0,t)p is the polynomial
p̃ ∈ {p̃ ∈ Pk(0, τ)|p̃(0) = p(0)} satisfying∫ τ

0

p̃q =

∫ t

0

pq ∀ q ∈ Pk−1(0, τ).

The above construction is motivated by the fact that setting q = p′ gives
∫ τ

0
p′p̃ =∫ t

0
pp′ = (1/2)(p2(t) − p2(0)).
This elementary construction can be extended to approximations of χ[0,t)v for

v ∈ Pk(0, τ ;V ), where V is a linear space. If v ∈ Pk(0, τ ;V ), write v =
∑k

i=0 pi(t)vi,
where {pi} ⊂ Pk(0, τ) and {vi} ⊂ V . Then the discrete approximation of χ[0,t)v in

Pk(0, τ ;V ) is defined to be ṽ =
∑k

i=0 p̃i(t)vi. If V is a semi-inner product space, it is
clear that

ṽ(0) = v(0) and

∫ τ

0

(ṽ, w)V =

∫ t

0

(v, w)V ∀w ∈ Pk−1(0, τ ;V ).(2.8)

The function ṽ could have been characterized directly by this equation instead of
using the two stage construction given here. However, it is useful to observe that v is
independent of the choice of the specific space V or the inner product (., .)V .

2.3.1. Estimates for discrete characteristic functions. The construction
of the discrete characteristic functions was purely algebraic. The next two lemmas
bound the map v �→ ṽ.

Lemma 2.3. The mapping p �→ p̃ on Pk(0, τ) is linear and continuous, and there
exists a constant Ĉk depending only upon k such that ‖p̃ − p‖L2(0,τ) ≤ Ĉk‖p‖L2(t,τ).
Moreover,

‖p̃− χ[0,t)p‖L2(0,τ) ≤ ‖p̃− p‖L2(0,τ) + ‖p− χ[0,t)p‖L2(0,τ) ≤ (1 + Ĉk)‖p‖L2(t,τ)

and ‖p̃‖L2(0,τ) ≤ (1 + Ĉk)‖p‖L2(0,τ).
Proof. Since p̃(0) = p(0), the difference may be factored as p̃ − p = tp̄ with

p̄ ∈ Pk−1(0, τ). The definition of p̃ shows that∫ τ

0

tp̄q =

∫ τ

0

(p̃− p)q = −
∫ τ

t

pq ∀ q ∈ Pk−1(0, τ).
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Setting q = p̄ gives

ckτ

∫ τ

0

p̄2 ≤
∫ τ

0

tp̄2 = −
∫ τ

t

pp̄,

where the equivalence of norms on Pk was used and the scaling was chosen to make
ck independent of τ . The Cauchy–Schwarz inequality then gives

(ckτ)2
∫ τ

0

p̄2 ≤
∫ τ

t

p2,

which implies

c2k

∫ τ

0

(p̃− p)2 = c2k

∫ τ

0

t2p̄2 ≤ c2kτ
2

∫ τ

0

p̄2 ≤
∫ τ

t

p2.

The next lemma bounds the map v �→ ṽ on Pk(0, τ ;V ), where V is any (semi-)
inner product space.

Lemma 2.4. Let V be a semi-inner product space; then the mapping
∑k

i=0 pi(t)vi �→∑k
i=0 p̃i(t)vi on Pk(0, τ ;V ) is continuous in ‖ · ‖L2[0,τ ;V ]. In particular,

‖ṽ‖L2[0,τ ;V ] ≤ Ck‖v‖L2[0,τ ;V ]

and

‖ṽ − χ[0,t)v‖L2[0,τ ;V ] ≤ Ck‖v‖L2[0,τ ;V ],

where Ck = (k + 1)1/2(1 + Ĉk).

Proof. Without loss of generality write v =
∑k

i=0 pi(t)vi, where {pi} form an

orthonormal basis of Pk(0, τ) in L2(0, τ), so that ‖v‖2
L2[0,τ ;V ] =

∑k
i=0 ‖vi‖2

V . The
lemma then follows by direct computation:

∫ τ

0

‖ṽ‖2
V =

∫ τ

0

k∑
i,j=0

p̃i(t)p̃j(t)(vi, vj)V

≤
k∑

i,j=0

‖p̃i‖L2(0,τ)‖p̃j‖L2(0,τ)‖vi‖V ‖vj‖V

≤ (1 + Ĉk)
2

k∑
i,j=0

‖vi‖V ‖vj‖V

≤ (1 + Ĉk)
2(k + 1)

(
k∑

i=0

‖vi‖2
V

)

≤ (1 + Ĉk)
2(k + 1)

∫ τ

0

‖v‖2
V .

The second estimate follows similarly.

2.4. Error estimates at arbitrary times. We are now ready to prove the
main result of this section which shows that the error estimate of Theorem 2.2, which
held at discrete times, holds for every time.



358 K. CHRYSAFINOS AND NOEL J. WALKINGTON

Theorem 2.5. Let uh ∈ Uh be the approximate solution of (2.1) computed using
the DG scheme (2.3). Let ê = P

loc
h u − uh, where P

loc
h is the projection defined in

Definition 2.1. Then there exists a constant C̃k depending only upon k such that

sup
tn−1≤t≤tn

|ê(t)|2 + η

∫ tn

0

‖ê‖2
U +

n−1∑
i=0

|êi − êi+|2 ≤ C̃k

(
|ê0|2 + η

∫ tn

0

‖(I − P
loc
h )u‖2

U

+

n−1∑
i=0

min

(
|(I − Pi)u(ti)|2, C2

k

τ i+1η
‖Pi+1(I − Pi)u(ti)‖2

U ′

))
,

where Ck is the constant appearing in Theorem 2.2.
Proof. Given Theorem 2.2, it suffices to estimate suptn−1≤t≤tn |ê(t)|2. To bound

this term, fix t ∈ [tn−1, tn) and substitute vh = ẽ into (2.7), where ẽ is the discrete
approximation of χ[tn−1,t)ê constructed above, to get

1

2
|ê(t)|2 +

1

2
|ên−1 − ên−1

+ |2 − 1

2
|ên−1|2

= ((I − Pn−1)u(tn−1), en−1
+ ) − η

∫ tn

tn−1

((I − P
loc
n )u, ẽ)U + (ê, ẽ)U

= ((I − Pn−1)u(tn−1), en−1
+ ) + η

∫ tn

tn−1

1

2
‖(I − P

loc
n )u‖2

U +
1

2
‖ẽ‖2 + ‖ê‖U‖ẽ‖U

= ((I − Pn−1)u(tn−1), en−1
+ ) + η

∫ tn

tn−1

1

2
‖(I − P

loc
n )u‖2

U +

(
Ck

2
+ 1

)
Ck‖ê‖2

U .

Here Ck is the constant in the statement of Lemma 2.4. As in the proof of Theorem
2.2, the first term on the right-hand side may be bounded by

|(I − Pn−1)u(tn−1)|2 +
1

4
|ên−1

+ − ên−1|2 or

C2
k

τnη
‖Pn(I − Pn−1)u(tn−1)‖2

U ′ +
η

4

∫ tn

tn−1

‖ê‖2
U .

It follows that

|ê(t)|2 ≤ |ên−1|2 + η

∫ tn

tn−1

C(k)‖ê‖2
U + ‖(I − P

loc
n )u‖2

U

+ 2 min

(
|(I − Pn−1)u(tn−1)|2, C2

k

τnη
‖Pn(I − Pn−1)u(tn−1)‖2

U ′

)
,

where C(k) is a constant depending upon k. The proof follows upon using Theorem
2.2 to bound the first two terms on the right-hand side.

The following definition facilitates an interpretation of the above result, which is
useful for the analysis of the parabolic problem in the next section.

Definition 2.6. The projection Ph : L2[0, T ;U ] ∩H1[0, T ;U ′] → Uh is the DG
approximation of the function reconstructed from f = u′ + ηBu and the initial data
u(0). That is, uh = Phu is the solution of (2.3), where f = u′ + ηBu.

The previous theorem can then be interpreted as an estimate of the difference
Phu − P

loc
h u between the global and local projections. Bounds on P

loc
h u − u follow

directly from interpolation estimates [23].
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We finish this section with some comments on the optimality of these estimates
in the typical situation where H = L2(Ω), U ⊂ H1(Ω), and classical finite element
piecewise polynomials of degree � are used to construct the subspaces {Un

h }Nn=0. As-
suming u0 = P0(u(0)), η = O(1), and τ ∼ h, where h is the usual mesh parameter,
the error term may be estimated as

η

∫ tN

0

‖(I − P
loc
h )u‖2 +

N−1∑
i=0

min

(
|(I − Pi)u(ti)|2, C

2
k

τη
‖Pi+1(I − Pi)u(ti)‖2

U ′

)

∼ h2�

∫ T

0

‖D�+1u‖2
L2(Ω) + h2� sup

0≤t≤T
‖D�u‖2

L2(Ω).

Here the second term in the min(., .) is used, and the regularity assumed matches the
expected regularity parabolic equations:

sup
0≤t≤T

‖D�u‖2
L2(Ω) +

∫ T

0

‖D�+1u‖2
L2(Ω) ≤ C

(
‖D�u(0)‖2

L2(Ω) +

∫ T

0

‖D�−1f‖2
L2(Ω)

)
.

If the solution u is smooth, the error estimate is still useful when η is small, since
if τ ∼ h, then

η

∫ tN

0

‖(I − P
loc
h )u‖2 +

N−1∑
i=0

min

(
|(I − Pi)u(ti)|2, C

2
k

τη
‖Pi+1(I − Pi)u(ti)‖2

U ′

)

∼ ηh2�

∫ T

0

‖D�+1u‖2
L2(Ω) + min

(
h2�+1,

h2(�+1)

η

)
sup

0≤t≤T
‖D�+1u‖2

L2(Ω).

For η � h a rate of O(h�+1/2) will be observed. This is typical of the rate attained by
the discontinuous method for hyperbolic equations [20], and when η = 0 is sub-optimal
by a factor of h1/2.

The above rates are guaranteed to hold independently of how the mesh is chosen
at each time step. If the same mesh is used at each step, then Pi+1(I − Pi) =
Pi(I − Pi) = 0, so the second term in the above estimates vanishes. Adaptive mesh
refinement and coarsening strategies can be employed to control this term.

3. DG scheme for parabolic PDEs.

3.1. Formulation of the DG scheme.. We now consider approximations of
(1.1) using the DG scheme. Optimal error estimates are derived by extending the
ideas introduced in section 2. Let a(·, ·) denote the natural bilinear form associated
with A(·). The following continuity and coercivity conditions will be assumed for
a(., .).

Assumption 1. There exist nonnegative constants Ca, Cα, ca, cα with ca ≤ Ca

such that we have
1. continuity of the bilinear form and data:

|a(t;u, v)| ≤
(
ca‖u‖2 + Ca|u|2

) 1
2
(
ca‖v‖2 + Ca|v|2

) 1
2

and

|〈F, v〉| ≤ ‖F‖∗
(
ca‖v‖2 + Ca|v|2

) 1
2 ,
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2. coercivity of the bilinear form:

a(t;u, u) ≥ cα‖u‖2 − Cα|u|2.

Remark 3.

(1) The condition ca ≤ Ca is not essential and is made to simplify some of the
formula below.

(2) The coercivity constant will enter the estimates through the ratio ca/cα. The
change to Lagrangian variables in the convection diffusion example presented in the
introduction enables this ratio to be bounded independently of the diffusion parameter
ε > 0.

(3) The norm ‖.‖∗ is a dual norm equivalent to ‖.‖U ′ ; however, the constants
relating them depend upon 1/ca, which may be large.

In this context the natural weak formulation of (1.1) is to find u ∈ U ≡ L2[0, T ;U ]∩
H1[0, T ;U ′] such that

(u(T ), v(T )) +

∫ T

0

(〈−u, vt〉 + a(t, u, v)) = (u0, v(0)) +

∫ T

0

〈F, v〉(3.1)

for all v ∈ U . To approximate the solution of this weak formulation let 0 = t0 <
t1 < · · · < tN = T be a partition of [0, T ], and let {Un

h }Nn=0 ⊂ U be closed sub-
spaces. The DG method constructs an approximate solution satisfying uh|(tn−1,tn] ∈
Pk(t

n−1, tn;Un
h ) and

(un, vn) +

∫ tn

tn−1

(
− 〈uh, vht〉 + a(·;uh, vh)

)
(3.2)

= (un−1, vn−1
+ ) +

∫ tn

tn−1

〈F, vh〉 ∀ vh ∈ Pk(t
n−1, tn;Un

h ).

Integration of the temporal term by parts yields the alternative representation∫ tn

tn−1

(
〈uht, vh〉 + a(·;uh, vh)

)
+ (un−1

+ − un−1, vn−1
+ )(3.3)

=

∫ tn

tn−1

〈F, vh〉 ∀ vh ∈ Pk(t
n−1, tn;Un

h ).

3.2. Preliminary estimates. Classical bounds for the parabolic equation (3.2)
are obtained upon selecting u = v in (3.1); the discrete analogue would be to set
vh = uh in (3.3). Upon observing that∫ tn

tn−1

〈uht, uh〉 + (un−1
+ − un−1, un−1

+ ) =
1

2
|un|2 − 1

2
|un−1|2 +

1

2
|un−1

+ − un−1|2,

standard energy arguments and the continuity and coercivity hypotheses in Assump-
tion 1 lead to the inequality

|un|2 + cα

∫ tn

tn−1

‖uh‖2 + |un−1 − un−1
+ |2(3.4)

≤ |un−1|2 +

∫ tn

tn−1

((
1 +

ca
cα

)
‖F‖2

∗ + (2Cα + Ca)|uh|2
)
.
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When uh ∈ Pk(t
n−1, tn;Un

h ) with k ≥ 2, this inequality does not control |uh(s)|
for s ∈ (tn−1, tn). When uh is piecewise constant or linear in time (k = 0 or 1),
the terms on the left-hand side will dominate the last term on the right-hand side
for sufficiently small time steps [23, Theorem 12.4]. The case k > 2 has not been
completely addressed previously; typically strict coercivity is assumed so that Cα ≤ 0.
In this situation it is possible to write∫ tn

tn−1

〈F, uh〉 ≤
∫ tn

tn−1

1

2ε
‖F‖2

∗ +
ε

2
(|uh|2 + ‖uh‖2)

and use a Poincaré inequality to control the last term. However, this requires ε ∼ cα
and thus the term 1/2ε is large when cα is small.

Similar difficulties are encountered with error estimates when k ≥ 2. Letting
e = u− uh, the orthogonality condition becomes

(en, vn) +

∫ tn

tn−1

(−〈e, vht〉 + a(·; e, vh)) = (en−1, vn−1
+ )

for all vh ∈ Pk(t
n−1, tn;Un

h ). Writing

e = u− uh = (u− Phu) + (Phu− uh) ≡ ep + eh,

where Ph is the projection defined in Definition 2.6, a computation shows that

(enh, v
n) +

∫ tn

tn−1

(−〈eh, vht〉 + a(·; eh, vh)) − (en−1
h , vn−1

+ )

= −(enp , v
n) +

∫ tn

tn−1

〈ep, vht〉 + (en−1
p , vn−1

+ ) −
∫ tn

tn−1

a(·; ep, vh).

Since Phu is the DG approximation of (2.1), it follows that ep = u − Phu satisfies
the orthogonality condition (2.6). The first three terms on the right-hand side then

simplify to −η
∫ tn

tn−1(ep, vh)U . When η = ca this gives

(enh, v
n) +

∫ tn

tn−1

(〈−eh, vht〉 + a(·; eh, vh)) − (en−1
h , vn−1

+ )(3.5)

= −
∫ tn

tn−1

a(·; ep, vh) + ca(ep, vh)U .

This expression is identical in form to the original scheme (3.2) for uh with F (.) =
−a(ep, .) − η(ep, .)U . Setting vh = eh gives the analogue of (3.4),

|enh|2 + cα

∫ tn

tn−1

‖eh‖2 + |en−1
h − en−1

h+ |2 − |en−1
h |2(3.6)

≤
∫ tn

tn−1

((
1 +

4ca
cα

)(
ca‖ep‖2 + Ca|ep|2

)
+ (2Cα + ca)|eh|2

)
.

Again the natural energy arguments for the DG scheme fail to control eh(t) for t ∈
(tn−1, tn) when cα is small.

Remark 4. The projection Ph constructed using the discrete solution of an aux-
iliary equation is necessary when different subspaces are used for each time step, i.e.,
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Un
h �= Un−1

h . Using the “standard” projection, P
loc
h u in place of Ph (as in [23]) gives

(enh, v
n) +

∫ tn

tn−1

(
〈−eh, vht〉 + a(·; eh, vh)

)
= (en−1

h , vn−1
+ ) −

∫ tn

tn−1

a(·; en−1
p , vh) + (en−1

p , vn−1
+ )

with ep = u− P
loc
h u. Note that the last term is equal to (en−1

p , vn−1
+ − w−) for every

w− ∈ Un−1, and when Un
h = Un−1

h we may select w− = vn−1
+ to get (3.5) (without

the last term on the right, which is not present if η is taken to be 0 instead of ca).

3.3. Stability and error estimates. In this section we show how the estimates
in (3.4) and (3.6) can be augmented to provide bounds on the solution and the error
for all times, particularly, for the intermediate times t ∈ (tn−1, tn). To do this the
discrete characteristic functions developed in section 2.3 will be used. Since (3.2) for
uh and (3.5) for eh are identical in form, the same line of argument can be applied to
obtain bounds or an error estimate, respectively.

Theorem 3.1. Let U ↪→ H ↪→ U ′ be a dense embedding of Hilbert spaces and
Uh be the subspace of L2[0, T ;U ] defined in section 2.1, and, let the bilinear form
a : U×U → R and linear form F : U → R satisfy Assumption 1. Let u ∈ L2[0, T ;U ]∩
H1[0, T ;U ′] be the solution of (3.1) and uh ∈ Uh be the approximate solution computed
using the DG scheme (3.2) on the partition 0 = t0 < t1 < · · · < tN = T , and set
τ ≡ maxn t

n − tn−1.
Then there exists a constant C > 0 depending only on k (through the constant Ck

of Lemma 2.4), the constants Ca, Cα, and the ratio ca/cα such that

(1 − λ)|un|2 + λ sup
tn−1≤s≤tn

|uh(s)|2 +

n−1∑
i=0

eC(tn−1−ti)|ui − ui
+|2

+ (1 − λ)
cα
2

∫ tn

0

eC(tn−s)‖uh(s)‖2ds

≤
(
1 + TO(τ)

)(
eCtn |u0

h|2 + Cλ

∫ tn

0

eC(tn−s)‖F (s)‖2
∗ ds

)

and

(1 − λ)|enh|2 + λ sup
tn−1≤s≤tn

|eh(s)|2 +

n−1∑
i=0

eC(tn−1−ti)|eih − eih+|2

+ (1 − λ)
cα
2

∫ tn

0

eC(tn−s)‖eh(s)‖2ds

≤
(
1 + TO(τ)

)(
eCtn |e0

h|2 + Cλ

∫ tn

0

eC(tn−s)
(
ca‖ep(s)‖2 + Ca|ep(s)|2

)
ds

)
,

provided Cτ < 1. Here λ = 1/(2Ck + 4Ckca/cα + 1) ∈ (0, 1), and ep = u − Phu and
eh = Phu− uh, where Ph : L2[0, T ;U ]∩H1[0, T ;U ′] → Uh is the projection defined in
Definition 2.6 (with parameter η = ca).

Proof. Since the line of argument to prove each inequality is identical, we prove
only the second.
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Fix t ∈ (tn−1, tn), and let ẽh ∈ Pk(t
n−1, tn;Un

h ) be the discrete approximation of
χ[tn,t)eh constructed in Lemma 2.4. Setting vh = ẽh in (3.5) and moving the term
a(.; eh, ẽh) to the right-hand side gives

1

2
|eh(t)|2+

1

2
|en−1

h −en−1
h+ |2 =

1

2
|en−1

h |2−
∫ tn

tn−1

(a(.; ep, ẽh) + ca(ep, ẽh)U + a(·; eh, ẽh)) .

The last three terms are estimated separately:∫ tn

tn−1

a(.; eh, ẽh) ≤
∫ tn

tn−1

(ca‖eh‖2 + Ca|eh|2)1/2(ca‖ẽh‖2 + Ca|ẽh|2)1/2

≤
(∫ tn

tn−1

ca‖eh‖2 + Ca|eh|2
)1/2 (∫ tn

tn−1

ca‖ẽh‖2 + Ca|ẽh|2
)1/2

≤ Ck

∫ tn

tn−1

(
ca‖eh‖2 + Ca|eh|2

)
.

Lemma 2.4 was used to bound ẽh in terms of eh in the last line. A similar computation
shows∫ tn

tn−1

a(.; ep, ẽh) + ca(ep, ẽh)U

≤ Ck

2

∫ tn

tn−1

((
ca
cα

+ 1

)
(ca‖ep‖2 + Ca|ep|2) + cα‖eh‖2 + Ca|eh|2

)
.

Combining the above gives

|eh(t)|2 + |en−1
h − en−1

h+ |2 ≤ |en−1
h |2

+Ck

∫ tn

tn−1

((
1 +

ca
cα

)
(ca‖ep‖2 + Ca|ep|2) + cα

(
1 +

2ca
cα

)
‖eh‖2 + 3Ca|eh|2

)
.(3.7)

Now form the convex combination of (1 − λ) for (3.6) and λ for (3.7). The
coefficient λ is chosen so that the term involving ‖eh‖2 on the right-hand side of (3.7)
is dominated by the corresponding term on the left-hand side of (3.6). Specifically,
let

λCk

(
1 +

2ca
cα

)
=

1

2
(1 − λ) or λ =

1

(2Ck + 4Ckca/cα + 1)
.

This gives an estimate of the form

(1 − λ)|enh|2 + λ|eh(t)|2 + (1 − λ)
cα
2

∫ tn

tn−1

‖eh‖2 + |en−1
h − en−1

h+ |2(3.8)

≤ |en−1
h |2 + Cλ

∫ tn

tn−1

(
ca‖ep‖2 + Ca|ep|2 + |eh|2

)
,

where the dependence of C upon the coercivity constants cα and ca is only through
the ratio ca/cα. Bound the first and last terms on the right-hand side by

|en−1
h |2 ≤ (1 − λ)|en−1

h |2 + λ sup
tn−2<s≤tn−1

|eh(s)|2
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and ∫ tn

tn−1

|eh|2 ≤ τn sup
tn−1<s≤tn

|eh(s)|2, τn ≡ tn − tn−1,

respectively, and select the time t on the left-hand side so that |eh(t)| = suptn−1<s≤tn

|eh(s)|, to get

(1 − λ)|enh|2 + λ(1 − Cτn) sup
tn−1<s≤tn

|eh(s)|2 + (1 − λ)
cα
2

∫ tn

tn−1

‖eh‖2 + |en−1
h − en−1

h+ |2

≤ (1 − λ)|en−1
h |2 + λ sup

tn−2<s≤tn−1

|eh(s)|2 + Cλ

∫ tn

tn−1

(ca‖ep‖2 + Ca|ep|2).

Upon introducing a factor (1 − Cτn) in front of the first term, this inequality takes
the form

(1 − Cτn)αn + βn ≤ αn−1 + fn,

and the theorem follows from the discrete Gronwall inequality.

If the norms |||.|||∞, |||.|||2 and jump term JN (e) are defined by

|||v|||2∞ = sup
0≤s≤T

|v(s)|2 + cα

∫ T

0

eC(T−s)‖v(s)‖2 ds,

|||v|||22 =

∫ T

0

eC(T−s)|v(s)|2 ds + ca

∫ T

0

eC(T−s)‖v(s)‖2 ds,

and

J2
N (v) =

N−1∑
i=0

eC(T−ti)|vi − vi+|2,

then Theorem 3.1 states

|||Phu− uh|||2∞ + J2
N (Phu− uh) ≤ C(T )

(
|P0u(0) − u0|2 + |||u− Phu|||22

)
.

Since
∫ T

0
eC(T−s)|ep(s)|2 ≤ eCT sup0≤s≤T |ep(s)|2, various symmetric error estimates

follow. For example, setting u0 = P0u(0) and using the triangle inequality gives

|||u− uh|||2 ≤ C(T )|||u− Phu|||2 and |||u− uh|||∞ ≤ C(T )|||u− Phu|||∞.

Since Phu is not a local projection, classical interpolation theory does not immediately
yield rates of convergence for a specific problem. However, the results of section 2.4
may be used to estimate the right-hand sides of the above in terms of the local
projection P

loc
h u.

Theorem 3.2. Under the assumptions in Theorem 3.1 there exists a positive
constant C(T ) depending only on k (through the constant Ck of Lemma 2.4), the con-
stants C, λ,Ca, Cα, and the ratio ca/cα, and the final time T such that the following
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estimate holds:

|||u− uh|||2∞ ≤ C(T )
(
|e0

h|2 + |||u− P
loc
h u|||22 + |||Phu− P

loc
h u|||2∞

)
≤ C(T )

(
|e0

h|2 + |||u− P
loc
h u|||2∞ + ca

∫ tn

0

‖(I − P
loc
h )u‖2

U

+

n−1∑
i=0

min

(
|(I − Pi)u(ti)|2, C2

k

τ i+1ca
‖Pi+1(I − Pi)u(ti)‖2

U ′

))
,

where e0
h = P0u(0) − u0, P

loc
h u is the local projection defined in Definition 2.1, and

Pn : H → Un
h is the orthogonal projection.

Remark 5. Estimates for the jump terms JN (u − uh) can also be obtained. An
application of the triangle inequality gives

JN (u− uh) ≤ JN (u− P
loc
h u) + JN (Ploc

h u− Phu) + JN (Phu− uh).

Bounding the last term using Theorem 3.1 shows

J2
N (u− uh) ≤ C(T )

(
JN (u− P

loc
h u)2 + J2

N (Ploc
h u− Phu) + |e0

n|2 + |||u− Phu|||22
)

≤ C(T )
(
|e0

n|2 + JN (u− P
loc
h u)2 + |||u− P

loc
h u|||22

+ J2
N (Ploc

h u− Phu) + |||Phu− P
loc
n u|||22

)
.

The last two terms may be estimated using Theorem 2.5 to give

J2
N (u− uh) ≤ C(T )

(
|e0

n|2 + JN (u− P
loc
h u)2 + |||u− P

loc
h u|||22 + ca

∫ tn

0

‖(I − P
loc
h )u‖2

U

+

n−1∑
i=0

min

(
|(I − Pi)u(ti)|2, C2

k

τ i+1ca
‖Pi+1(I − Pi)u(ti)‖2

U ′

))
.

When the solution is smooth, the second term, JN (u−P
loc
h u), will typically dominate

the other terms.

Appendix A. Discrete Gronwall inequality. If (1−Cτn)an+bn ≤ an−1+fn,
the discrete Gronwall inequality states that if maxn Cτn < 1, then

aN +

N∑
n=1

bn∏N
i=n(1 − Cτ i)

≤ a0∏N
i=1(1 − Cτ i)

+

N∑
n=1

fn∏N
i=n(1 − Cτ i)

.

Since

exp

(
N∑
i=n

Cτ i

)
≤ 1∏N

i=n(1 − Cτ i)
≤

(
1 −

N∑
i=n

(Cτ i)2

)−1

exp

(
N∑
i=n

Cτ i

)

and (1 −
∑N

i=n(Cτ i)2) ≥ 1 − C2Tτ , where τ = maxn τ
n, we may write

aN +

N∑
n=1

eC(tN−tn)bn ≤
(
1 + TO(τ)

)(
eCtNa0 +

N∑
n=1

eC(tN−tn)fn

)
,

where tn =
∑n

i=1 τ
n.
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Abstract. In this paper we present a new approach in the study of aorto-coronaric bypass
anastomoses configurations based on small perturbation theory. The theory of optimal control based
on adjoint formulation is applied in order to optimize the shape of the zone of the incoming branch
of the bypass (the toe) into the coronary (see Figure 2.1). The aim is to provide design indications
in the perspective of future development for prosthetic bypasses.
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1. Introduction. We consider the application of optimal control approaches to
shape optimization of aorto-coronaric bypass anastomoses [22]. We analyze the “first
correction” method which is derived by applying a perturbation method to the initial
problem in a domain Ω ⊂ R

2 whose boundary ∂Ω is parameterized by a suitable
function f . Then we propose numerical methods for its solution.

The surgical realization of a bypass to overcome a critically stenosed artery is a
very common practice in an everyday cardiovascular clinic.

Improvement in the understanding of the genesis of coronary diseases is very
important as it allows the reduction of surgical and postsurgical failures. It may also
suggest new means in bypass surgical procedures with less invasive methods and the
creation of a new shape in bypass configuration [19].

Generally speaking, mathematical modelling and numerical simulation can allow
better understanding of phenomena involved in vascular diseases [6, 23, 24].

When a coronary artery is affected by a stenosis, the heart muscle can’t be prop-
erly oxygenated through blood. Aorto-coronaric anastomosis restores the oxygen
amount through a bypass surgery downstream of an occlusion.

At present, different kinds and shapes for aorto-coronaric bypass anastomoses are
available and consequently different surgery procedures are used to set up a bypass.
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Lausanne, Station 8, CH-1015, Lausanne, Switzerland (Gianluigi.Rozza@epfl.ch). The third au-
thor acknowledges financial support provided through the European Community’s Human Potential
Programme under contract HPRN-CT-2002-00270 HaeMOdel.

367



368 V. AGOSHKOV, A. QUARTERONI, AND G. ROZZA

A bypass can be made up either by organic material (e.g., the saphena vein taken
from patient’s legs or the mammary artery) or by prosthetic material. The current
saphenous bypass solution requires the extraction of the saphena vein with possible
complications. In this respect, prosthetic bypasses are less invasive. They may feature
very different shapes for bypass anastomoses, such as, e.g., cuffed arteriovenous access
grafts. Different cuffed models are used such as Taylor Patch [2] and Miller Cuff
Bypass [4] but also standard end-to-side anastomoses at different graft angles [3]
or other shaped carbon-fiber prostheses. In the cardiovascular system, altered flow
conditions such as separation, flow reversal, low and oscillatory shear stress areas,
and abnormal pulse patterns are all recognized as potentially important factors in
the development of arterial diseases (see [15, 18]). For all these different aspects
the design of artificial arterial bypass is a very complex problem. Carbon fiber and
collagen cuffed grafts instead of natural saphenous vein can be used for studying new
shape design without needing “in loco” reconstruction. In this framework, optimal
control (see Lions [12]) by perturbation theory (see Van Dyke [31]) provides a new
approach to the problem, with the goal of improving arterial bypass graft on the basis
of a better understanding of fluid dynamics aspects involved in the bypass studying.

2. Notation and problem statement. Let Ω be a bounded domain of R
2,

Γ ≡ ∂Ω is the boundary of Ω, Ω = Ω ∪ ∂Ω, x := (x, y) is a point of Ω. For every
scalar function φ and a vector function v whose components are u, v, we recall the
definition of the following operators:

∇φ =

(
∂φ

∂x
,
∂φ

∂y

)
, ∇ · v := div(v) := D(v) =

∂u

∂x
+

∂v

∂y
,

∇× v := rot(v) =
∂v

∂x
− ∂u

∂y
, rot(φ) =

(
∂φ

∂y
,−∂φ

∂x

)
.

We then recall

rot(∇× v) = −Δv + ∇(∇ · v), Δφ = ∇ · (∇φ).

In what follows, vectors are marked with an underlined notation v, aggregation of
vector quantities v with scalar quantities p are indicated with Q (Q = (v, p)), Φ or Φ̂.

Consider an idealized, two-dimensional bypass bridge configuration of Figure 2.1
and the domain on Figure 2.2, where the dotted line represents the geometry of
the complete anastomosis; Γw2

is the section of the original artery, Γin is the new
anastomosis inflow after bypass surgery, and Γout is the anastomosis outflow. We
consider the following boundary value problem for the Stokes equations [33], used to
model low Reynolds blood flow in this study. For mathematical aspects related with
fluid mechanics, see, for example, [14]. The problem reads: find v, p s.t.⎧⎪⎪⎨

⎪⎪⎩
−νΔv + ∇p = F in Ω,
∇ · v = 0 in Ω,
v = vin on Γin, v = 0 on Γw1 ∪ Γw3 ,

−p · n + ν
∂v
∂n = g

out
on Γout ∪ Γw2

,

(2.1)

where n = (n1, n2) is the outward unit normal vector on Γ, F = F (x, y), vin =
vin(x, y), g

out
= g

out
(x, y) are given vector functions, ν = const > 0 and vf = {vin

on Γin; 0 on Γw1 ∪ Γw3}. In the following we may need to impose some additional
restriction on p (for example,

∫
Ω
pdΩ=0 if Γin = Γ).
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Fig. 2.1. Idealized, 2-D bypass bridge configuration (left) and details of the sensible part for
the optimization process (right). The dotted curve represents a possible shape variation.
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Fig. 2.2. Ω = Ω1 ∪ Ω2,Γw = Γw1 ∪ Γw2 ∪ Γw3 ,Γ0 = ∂Ω1 ∩ ∂Ω2.

The subset Γc,ε of Γw1 is parametrized by a function f(x, ε) of x ∈ [x1, x2] and
of small parameter ε ∈ [−ε0, ε0], ε0 = const. More precisely, we assume that f(x, ε)
can be developed as follows:

f(x, ε) = f0(x) + εf1(x) + ε2f2(x) + . . . ,(2.2)

where fk ∈ W
1,∞(x1, x2), for k = 0 (we recall that W

1,∞(x1, x2) is the space of
functions fk ∈ L

∞(x1, x2) such that all the distribution derivatives of the first order
of fk are functions of L

∞(x1, x2)), and fk ∈ W
1,∞
0 (x1, x2), for k ≥ 1, so that fk(x1) =

fk(x2) = 0, k ≥ 1. Here the function f0(x) > 0 describes the original subset Γc,0 of
the boundary of “unperturbed domain. . . ,” Γw0 ≡ ∂Ω0 of the domain Ω0 (see Figure
2.3 (left)), while fk(x), k ≥ 1 could be unknown when dealing with a control problem
(see section 4).

The weak statement of (2.1) reads: find v ∈ (H1(Ω))2, p ∈ L
2(Ω) s.t.⎧⎨

⎩
a(v, v̂) = b(p, v̂) + G(v̂) ∀ v̂ ∈ X,
b(p̂, v) = 0 ∀ p̂ ∈ L

2(Ω),
v = vf on Γin ∪ Γw1 ∪ Γw3 ,

(2.3)
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Fig. 2.3. “Unperturbed domain” Ω0, Ω0 = Ω1,0 ∪ Ω2,0 (left). The “simple” domain Ω̃ (right).

where with v̂ we indicate test functions and

a(v, v̂) =

∫
Ω

ν∇v · ∇v̂dΩ

b(p, v̂) =

∫
Ω

p∇ · v̂dΩ, G(v̂) =

∫
Ω

F · v̂dΩ +

∫
Γout∪Γw2

g
out

· v̂dΓ,

X := {v̂ : v̂ ∈ (H1(Ω))2, v̂ = 0 on Γin ∪ Γw1 ∪ Γw3}.

Although a(., .), b(., .), and G(.), depend on the parametrization f of the part Γc,ε,
this dependence will be understood for simplicity of notations.

3. The problem for the perturbation functions. Let us introduce the ref-
erence (simple-shaded) domains Ω̃1 = {0 < x̃ < A, 0 < ỹ < β1 ≡ β}, Ω̃2 = {0 < x̃ <

A,−β2 < ỹ < 0}, and Ω̃ = Ω̃1 ∪ Ω̃2 (see Figure 2.3 (right)). Then we assume that
f(x, ε) > 0 and consider the following variables transformation:

Tf : Ω1 ∪ Ω2 → Ω̃, x̃ = Tf (x),

such as Tf is the identity in Ω2, while Tf (x, y) = (x, β
f(x,y)y) in Ω1. We set x̃ = (x̃, ỹ)

and define

ṽ(x̃) := v ◦ T−1
f (x̃) = v(x̃, ỹf(x̃, ε)/β),

where ṽ = (ũ, ṽ). Then,

dxdy =
f(x̃, ε)

β
dx̃dỹ

and the following relations hold:⎧⎪⎨
⎪⎩

∂φ
∂y (x̃) = β

f(x̃,ε)
∂φ̃(x̃)
∂ỹ ,

∂φ
∂x (x̃) =

∂φ̃(x̃)
∂x̃ − ỹ fx(x̃,ε)

f(x̃,ε)
∂φ̃(x̃)
∂ỹ

(
with fx := df

dx

)
,

(3.1)

⎧⎨
⎩

D̃(f)ṽ(x̃) := ((∇ · v) ◦ T−1
f )(x̃) = ∂ũ

∂x̃ − ỹ fx(x̃,ε)
f(x̃,ε)

∂ũ
∂ỹ + β

f(x̃,ε)
∂ṽ
∂ỹ ,

R̃(f)ṽ(x̃) := ((∇× v) ◦ T−1
f )(x̃) = ∂ṽ

∂x̃ − ỹ fx(x̃,ε)
f(x̃,ε)

∂ṽ
∂ỹ − β

f(x̃,ε)
∂ũ
∂ỹ .

(3.2)

Then in Ω̃ we have

D̃(f)ṽ = m2∇̃ · ṽ + m1D̃(f)ṽ, R̃(f)ṽ = m2∇̃ × ṽ + m1R̃(f)ṽ,
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where ∇̃φ :=
(
∂φ
∂x̃ ,

∂φ
∂ỹ

)
, while ms is the characteristic function of Ωs (s = 1, 2). To

simplify the notations, from now on we will set (unless otherwise specified)

x̃ = x, ṽ(x̃, ỹ) := v(x, y), ũ = u, ṽ = v, . . . , D̃ = D, R̃ = R, Ω̃ ≡ Ω, Γ̃wk
≡ Γwk

.

Then problem (2.3) in the new variables reads as follows:⎧⎪⎨
⎪⎩

a(f ; v, v̂) = b(f ; p, v̂) + G(f ; v̂) ∀ v̂ ∈ X,

b(f ; p̂, v) = 0 ∀ p̂ ∈ L
2(Ω),

v = vf on Γin ∪ Γw1 ∪ Γw3 .

(3.3)

We have emphasized the dependence of a(f ; ., .), b(f ; ., .), and G(f ; .) on f . Therefore,
(with Ω1 ≡ Ω̃1,Ω2 ≡ Ω̃2):

a(f ; v, v̂) = a1(f ; v, v̂) + a2(v, v̂),

a1(f ; v, v̂) =

∫
Ω1

fν

β

((
∂v

∂x
− yfx

f

∂v

∂y

)
·
(
∂v̂

∂x
− yfx

f

∂v̂

∂y

)
+

β2

f2

∂v

partialy
· ∂v̂
∂y

)
dxdy

a2(v, v̂) =

∫
Ω2

ν

(
∂v

∂x
· ∂v̂
∂x

+
∂v

∂y
· ∂v̂
∂y

)
dxdy,

b(f ; p, v̂) = b1(f ; p, v̂) + b2(p, v̂),

b1(f ; p, v̂) =

∫
Ω1

f

β
pD(f)v̂dxdy, b2(p, v̂) =

∫
Ω2

p∇ · v̂dxdy,

G(f ; v̂) = G1(f ; v̂) + G2(v̂),

G1(f ; v̂) =

∫
Ω1

f

β
F · v̂dxdy +

∫
(Γout∪Γw2)∩∂Ω1

g
out

· v̂dΓ,

G2(v̂) =

∫
Ω2

F · v̂dxdy +

∫
(Γout∪Γw2)∩∂Ω2

g
out

· v̂dΓ.

Note that the functions v̂, p̂ on (3.3) can be assumed to be independent of ε in what
follows.

Assume that the problem (3.3) has a solution v, p that is infinitely differentiable
with respect to ε: {

v = v0 + εv1 + ε2v2 + . . .

p = p0 + εp1 + ε2p2 + . . . ,
(3.4)

where pk ∈ L
2, vk ∈ X, k ≥ 1. Using (2.2), (3.4), and small perturbation techniques

we can derive the equations for vk, pk, k ≥ 0. In particular, k = 0 v0 and p0 satisfy⎧⎪⎨
⎪⎩

a(f0; v0, v̂) = b(f0; p0, v̂) + G(f0; v̂) ∀ v̂ ∈ X,

b(f0; p̂, v0) = 0 ∀ p̂ ∈ L
2(Ω),

v0 = vf on Γin ∪ Γw1 ∪ Γw3 .

(3.5)

Correspondingly, we define

Robs,0 := R(f0)v0.(3.6)
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For k = 1 the functions v1 and p1 are the solution of the equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(f0; v1, v̂) = b(f0; p1, v̂) + ∂
∂εb(f ; p0, v̂)|ε=0+

+ ∂
∂εG(f ; v̂)|ε=0 − ∂

∂εa(f ; v0, v̂)|ε=0 ∀ v̂ ∈ X,

b(f0; p̂, v1) + ∂
∂εb(f ; p̂, v0)|ε=0 = 0 ∀ p̂ ∈ L

2(Ω),
v1 = 0 on Γin ∪ Γw1 ∪ Γw3 ,

(3.7)

where

∂

∂ε
b(f ; p0, v̂)|ε=0 := ybf (f1, p0, v̂) =

∫
Ω1

f1

β
p0D(f0)v̂dxdy +

∫
Ω1

f0

β
p0Df (f1, v̂)dxdy,

Df (f1, v̂) :=
∂

∂ε
D(f)v̂|ε=0 = −

[
y

(
f1,xf0 − f0,xf1

f2
0

)
∂û

∂y
+

βf1

f2
0

∂v̂

∂y

]
,

Df (f1, v0) :=
∂

∂ε
D(f)v0|ε=0(:= Dff1 in what follows),

∂

∂ε
G(f ; v̂)|ε=0 := G1(f1; v̂) =

∫
Ω1

f1

β
F · v̂dxdy,

∂

∂ε
a(f ; v0, v̂)|ε=0 := af (f1; v0, v̂)

=

∫
Ω1

f1ν

β

((
∂v0

∂x
− yf0,x

f0

∂v0

∂y

)
·
(
∂v̂

∂x
− yf0,x

f0

∂v̂

∂y

)

+
β2

f2
0

∂v0

∂y
· ∂v̂
∂y

)
dxdy +

−
∫

Ω1

f0ν

β
y
(f1,xf0 − f0,xf1)

f2
0

(
∂v0

∂y
·
(
∂v̂

∂x
− yf0,x

f0

∂v̂

∂y

)

+

(
∂v0

∂x
− yf0,x

f0

∂v0

∂y

)
· ∂v̂
∂y

)
dxdy+

−
∫

Ω1

f0ν

β

(
2β2f1

f3
0

)
∂v0

∂y
· ∂v̂
∂y

dxdy.

So the problem for v1, p1 reads as follows: find v1 ∈ X, p1 ∈ L
2(Ω) s.t.

{
a(f0; v1, v̂) − b(f0; p1, v̂) = bf (f1; p0, v̂) + G1(f1; v̂) − af (f1; v0, v̂) ∀ v̂ ∈ X,

b(f0; p̂, v1) + bf (f1; p̂, v0) = 0 ∀ p̂ ∈ L
2(Ω),

(3.8)

This is a generalized Stokes problem [7]. By a similar technique we can derive the
equations for vk, pk with k ≥ 2. However, we will not carry on this development
further in this work.

4. The shape optimization problem. Suppose now that the function f1(x) in
(3.7) is unknown as well as v1, p1. To complete problem (3.7) we will have to formulate
some “additional equations”; otherwise, we should require that f1 be determined by
minimizing a suitable “cost functional. . . .”

Problem (2.3) can be supplemented by the “additional equations”:

C(f, v, p) = 0,(4.1)



BYPASS SHAPE DESIGN USING PERTURBATION THEORY 373

where C is an operator (linear or nonlinear) defined on H
1
0(x1, x2) × X × L

2(Ω). (We
now consider f ∈ H

1
0 for convenience.) We assume C to be smooth with respect to its

variables f, v, p. Using the representations (2.2) and (3.4), we derive from (4.1) the
following equation:

C(f, v, p) = C(f0, v0, p0) + εC1(f1, v1, p1) + O(ε2) = 0 ∀ ε ∈ [−ε0, ε0],(4.2)

where

C1(f1, v1, p1) :=
∂C
∂ε

(f, v, p)|ε=0.(4.3)

If we assume that the data of our problems are such that C(f0, v0, p0) = 0, then we
can use

C1(f1, v1, p1) = 0(4.4)

as an additional equation to complete (3.7). An alternative approach would consist
of replacing the exact controllability equation (4.4) by the following minimization
problem:

inf
f1

∫
Ω

f0

β
|C1(f1, v1, p1)|2dxdy,(4.5)

where we assume that C1 has image in L
2(Ω). Note that (4.5) is a weak statement of

(4.4).
In the next sections we apply the approach described above for the completion of

(3.7) and will use the following special choice of (4.1):

C(f, v) := ((∇× v) ◦ T−1
f )(x, y) −Robs,ε(x, y) in Ωwd ⊆ Ω,(4.6)

where Ωwd is a suitable subset of Ω in which we want our additional equation (or our
“control”) to take place. Moreover,

Robs,ε = Robs,0 + εRobs,1 + ε2Robs,2 + . . . , Robs,0 := ((∇× v0) ◦ T−1
f0

).(4.7)

Then we have: C(f0, v0) = 0, while (4.4) reads

C(f1, v1) = R(f0)v1 + m1Rff1 −Robs,1 = 0 in Ωwd,(4.8)

where

R(f0)v1 = (∇× v1) ◦ T−1
f0

(x, y) =
∂v1

∂x
− yf0,x

f0

∂v1

∂y
− β

f0

∂u1

∂y
,

Rff1 := Rf (f1, v0) = −y
(f1,xf0 − f0,xf1)

f2
0

∂v0

∂y
+

βf1

f2
0

∂u0

∂y
.

Therefore we have the problem: find v1 ∈ X, p1 ∈ L
2(Ω), f1 ∈ H

1
0(x1, x2) s.t.

⎧⎪⎨
⎪⎩

a(f0; v1, v̂) = b(f0; p1, v̂) + bf (f1; p0, v̂) + G1(f1; v̂) − af (f1; v0, v̂) ∀ v̂ ∈ X,

b(f0; p̂, v1) + bf (f1; p̂, v0) = 0 ∀ p̂ ∈ L
2(Ω),

R(f0)v1 + m1Rff1 −Robs,1 = 0 in Ωwd,

(4.9)
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where Robs,1 is a given function. Problem (4.9) is an “exact controllability problem.”
These problems have solutions in some particular cases only. For this reason we
replace (4.9) by the following optimal control problem: find v1 ∈ X, p1 ∈ L

2(Ω),
f1 ∈ H

1
0(x1, x2) s.t.

⎧⎪⎨
⎪⎩

a(f0; v1, v̂) − b(f0; p1, v̂) = bf (f1; p0, v̂) + G1(f1; v̂) − af (f1; v0, v̂) ∀ v̂ ∈ X,

b(f0; p̂, v1) + bf (f1; p̂, v0) = 0 ∀ p̂ ∈ L
2(Ω),

inff1
= α

2 ||f1||2H1
0(x1,x2)

+ γ1J1(f1, v1),

(4.10)

where

J1(f1, v1) =
1

2

∫
Ω

mwd
f0

β
(R(f0)v1 + m1Rff1 −Robs,1)

2dxdy,

α = const ≥ 0 is a small regularization parameter, γ1 > 0 is a weight coefficient, and
mwd is the characteristic function of Ωwd.

Note that the third equation from (4.9) is considered in (4.10) in the least square
sense; then (4.10) for α = 0 provides the weak statement of problem (4.9). Otherwise
the solution v1 = v1(α), p1 = p1(α), f1 = f1(α) of (4.10) represents an approximate
(regularized) solution of (4.9).

We will also consider a generalized optimal control problem still given by (4.10);
however, instead of J1 we now use

J(f1, v1, p1) = γ1J1(f1, v1) + γ2J2(f1, v1, p1).

Here γ2 = const ≥ 0 is a weight coefficient, while J2(f1, v1, p1) is an additional
functional assumed to be quadratic. An example of J2(f1, v1, p1) follows.

Example 1.

J2(f1, v1, p1) := J2(v1, p1) =
1

2

(
||p1 − pout,1||2L2(Γout)

+

∫
Γout

|v1 − vout,1|2dΓ
)
,

(4.11)

where pout, vout are given.

5. The variational equations of the optimal control problem. While con-
sidering (4.10) we can still consider the simple domain Ω of Figure 2.3(right). Another
possibility consists of using the new variable transformation

T−1
f0

(x̃) = x, x̃ ∈ Ω, x ∈ Ω0,(5.1)

which is the identity in Ω̃2, while T−1
f0

(x̃, ỹ) = (x̃, f0(x̃)
β ỹ) in Ω̃1. After applying (5.1)

we will work in the “unperturbed” domain Ω0 (see Figure 5.1) where the expressions
for the bilinear forms in (4.10) become simpler. Let us use the variable transformation
(5.1). Indeed problem (4.10) reads upon its reformulation in Ω0: find v := v1, p :=
p1,f := f1

1 s.t.⎧⎪⎨
⎪⎩

a0(v, v̂) − b0(p, v̂) = bf (f ; p0, v̂) + G1(f ; v̂) − af (f ; v0, v̂) ∀ v̂ ∈ X

b0(p̂, v) + bf (f ; p̂, v0) = 0 ∀ p̂ ∈ L
2(Ω),

inff = α
2 ||f ||2H1

0(x1,x2)
+ J(f, v, p),

(5.2)

1From now on we denote v1 = v, p1 = p, f1 = f ; however, we should keep in mind that now
v, p, f represents the “first corrections” of v0, p0, f0 on the unperturbed domain.
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Fig. 5.1. “Simple” domain Ω → Ω0.

where

a0(v, v̂) =

∫
Ω0

ν

(
∂v

∂x
· ∂v̂
∂x

+
∂v

∂y
· ∂v̂
∂y

)
dxdy,

b0(p, v̂) =

∫
Ω0

p∇ · v̂dxdy,

bf (f, p0, v̂) =

∫
Ω0,1

p0Df (f, v̂)dxdy +

∫
Ω0,1

f

f0
p0∇ · v̂dxdy,

Df (f, v̂) = −
[
y

(
fxf0 − f0,xf

f2
0

)
∂û

∂y
+

f

f0

∂v̂

∂y

]
,

Df (f, v0) := Dff,

G1(f ; v̂) =

∫
Ω0,1

f

f0
F · v̂dxdy,

af (f ; v0, v̂) =

∫
Ω0,1

fν

f0
∇v0 · ∇v̂dxdy+

−
∫

Ω0,1

νy
(fxf0 − f0,xf)

f2
0

(
∂v0

∂y
· ∂v̂
∂x

+
∂v0

∂x
· ∂v̂
∂y

)
dxdy+

−
∫

Ω0,1

2fν

f0

∂v0

∂y
· ∂v̂
∂y

dxdy,

J(f, v, p) = γ1J1(f, v) + γ2J2(f, v, p),

J1(f, v) =
1

2

∫
Ω0

mwd|∇ × v + m1Rff −Robs,1|2dxdy,

Rff := Rf (f, v0) = −y
(fxf0 − f0,xf)

f2
0

∂v0

∂y
+

f

f0

∂u0

∂y
,

∇× v =
∂v

∂x
− ∂u

∂y
, ∇ · v =

∂u

∂x
+

∂v

∂y

and J2(f, v, p) are given by corresponding expressions. In order to derive the operator
form of problem (5.2) we introduce the following real spaces:

X ⊆ (L2(Ω))2 ⊆ X
∗,Hp ⊆ L

2(Ω) ⊆ H
p∗,

Hf ⊆ L
2(x1, x2) ⊆ H

∗
f ,

W := X × H
p ⊆ H0 := (L2(Ω))2 × L

2(Ω) ⊆ W
∗.
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Let us reformulate (5.2) in the following form: find Φ := (v, p) ∈ W = (X × H
p),

f ∈ H
f , s.t {

L(Φ, Φ̂) = B(f, Φ̂) ∀ Φ̂ = (v̂, p̂) ∈ W,

inff∈Hf
= α

2 ||f ||2H1 + J(f,Φ),
(5.3)

where

L(Φ, Φ̂) := a0(v, v̂) − b0(p, v̂) + b0(p̂, v),

B(f, Φ̂) := bf (f, p0, v̂) + G1(f, v̂) − af (f, v0, v̂) − bf (f, p̂, v0).

Should Φ be a solution of (5.3), then

α(f, f̂)Hf
+ 〈J ′

Φ(f,Φ),Φf̂ 〉 + 〈J ′
f (f,Φ), f̂〉 = 0,(5.4)

for any f̂ ∈ Hf (f̂ is the independent variation), where Φf̂ ∈ W satisfies the following
equation:

L(Φf̂ , Φ̂) = B(f̂ , Φ̂) ∀ Φ̂ ∈ W.(5.5)

In (5.4), J ′
Φ = ∂J

∂Φ and J ′
f = ∂J

∂f are partial derivatives of J , while 〈Q,Φ〉 is the

duality between W and W
∗ and 〈g, f〉 the duality between Hf and H

∗
f . Then we can

rewrite (5.3) as a system of “optimality conditions”:{
L(Φ, Φ̂) = B(f, Φ̂) ∀ Φ̂ ∈ W,

α(f, f̂)Hf + 〈J ′
Φ(f,Φ),Φf̂ 〉 + 〈J ′

f (f,Φ), f̂〉 = 0 ∀ f̂ ∈ Hf .
(5.6)

The element Φf̂ can be eliminated from (5.6) by introducing the adjoint problem:

find Q := (q, σ) ∈ W s.t.

L∗(Q, Ŵ ) := L(Ŵ ,Q) = 〈J ′
Φ(f,Φ), Ŵ 〉 ∀ Ŵ ∈ W.(5.7)

Since Φf̂ ∈ W we can choose Ŵ = Φf̂ in (5.7), yielding

〈J ′
Φ(f,Φ),Φf̂ 〉 = L(Φf̂ , Q) = B(f̂ , Q)(5.8)

and the system of variational equations (5.6) now reads as follows:⎧⎪⎨
⎪⎩

L(Φ, Φ̂) = B(f, Φ̂) ∀ Φ̂ ∈ W,

L∗(Q, Ŵ ) = 〈J ′
Φ(f,Φ), Ŵ 〉 ∀ Ŵ ∈ W,

α(f, f̂)Hf
+ B(f̂ , Q) + 〈J ′

f (f,Φ), f̂〉 = 0 ∀ f̂ ∈ Hf .

(5.9)

The first equation is the state equation. Let us define the following operators (see
[1, 12, 13]):

L : W → W
∗, (LΦ, Φ̂)H0

:= L(Φ, Φ̂) ∀ Φ, Φ̂ ∈ W,

L∗ : W → W
∗, (Ŵ , L∗Q)H0 = (LŴ ,Q)H0 ∀ Q, Ŵ ∈ W,

B : Hf → W
∗, (Bf,Φ)H0

= B(f,Φ) ∀ f,Φ,

Λw : W
∗ → W

∗, (ΛwJΦ(f,Φ), Ŵ )H0 := 〈J ′
Φ(f,Φ), Ŵ 〉,

Λf : H
∗
f → H

∗
f , (ΛfJf (f,Φ), f̂)L2(x1,x2) = 〈J ′

f (f,Φ), f̂〉.
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Now the system (5.9) can be written in operator form as follows:⎧⎨
⎩

LΦ = Bf (in W
∗),

L∗Q = ΛwJΦ(f,Φ) (in W
∗),

αΛcf + B∗Q + ΛfJf (f,Φ) = 0 (in (Hf )∗),
(5.10)

where Λc is the extension to Hf of the following operator Λc,0:

Λc,0f := −fxx + f, D(Λc,0) = H
2 ∩ Hf .

Remark 1. The system (5.10) with a cost functional J = ‖CΦ − Ψ‖2
Hob

, where
C : W → Hob is a given operator and Ψ ∈ Hob a given observation function has been
analyzed in [1]. In this case J ′

f = 0 and ΛwJ
′
Φ(f,Φ) = C∗(CΦ − Ψ).

6. Uniqueness and existence results. We analyze the particular case where
the cost functional J is chosen as outlined by Example 1 of section 4.

Let J be the functional J2 in Example 1. Then

J(f,Φ) = J(f, v, p) =
γ1

2

∫
Ω0

mwd|∇ × v + m1Rff −Robs,1|2dΩ +(6.1)

+
γ2

2

∫
Γout

(
|p− pout|2 + |v − vout|2

)
dΓ.

To study the problem in this case we assume that Ωwd = Ω0 and we put here:

X := {v : v ∈ (H2(Ω))2, v = 0 on Γin ∪ Γw1
∪ Γw3

},

H
p := H

1(Ω0), Hf := H
2(x1, x2) ∩ H

1
0(x1, x2).

Here we consider H
2(Ω0) for velocity in order to use the uniqueness continuation

theorem. The derivatives J ′
Φ(f,Φ) and J ′

f (f,Φ) become

〈J ′
Φ(f,Φ), Φ̂〉 = γ1

∫
Ω0

mwd(∇× v + m1Rff −Robs,1) · (∇× v̂)dΩ+

+γ2

∫
Γout

(p− pout)p̂dΓ + γ2

∫
Γout

(v − vout) · v̂dΓ,

〈J ′
f (f,Φ), f̂〉 = γ1

∫
Ω0

mwd(∇× v + m1Rff −Robs,1)Rf f̂dΩ,

∀ Φ̂ = (v̂, p̂) and ∀ f̂ .

The system of variational equations (5.6) reads: find vf ∈ X, pf ∈ H
p

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0(vf , v̂) = b0(pf , v̂) + F (f, v̂) ∀ v̂ ∈ X,

b0(p̂, vf ) + bf (f ; p̂, v0) = 0 ∀ p̂ ∈ H
p(Ω),

α(f, f̂)Hf
+ γ1

∫
Ω0

mwd(∇× vf + m1Rff −Robs,1) · (∇× vf̂ + m1Rf f̂)dΩ+

+γ2

∫
Γout

((pf − pout)pf̂ + (vf − vout) · vf̂ )dΓ = 0 ∀ f̂ ∈ Hf ,

(6.2)

where

F (f, v̂) := bf (f, p0, v̂) + G1(f, v̂) − af (f, v0, v̂),
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and for every f̂ , vf̂ = vf (f̂), pf̂ = pf (f̂) denote the solution of the system given by

the first and second equations in (6.2) corresponding to a right-hand side f = f̂ . The
system (5.9) is: find vf ∈ X, pf ∈ H

p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0(vf , v̂) = b0(pf , v̂) + F (f, v̂) ∀ v̂ ∈ X,

b0(p̂, vf ) + bf (f ; p̂, v0) = 0 ∀ p̂ ∈ H
p(Ω),

a0(q̂, q) = −b0(σ, q̂) + γ1

∫
Ω0

mwd(∇× vf + m1Rff −Robs,1) · (∇× q̂)dΩ+

+γ2

∫
Γout

(vf − vout) · q̂dΓ ∀ q̂ ∈ X,

−b0(σ̂, q) = γ2

∫
Γout

(pf − pout)σ̂dΓ ∀ σ̂ ∈ H
p,

α(f, f̂)Hf
+ F (f̂ , q) − bf (f̂ ;σ, v0)+

+γ1

∫
Ω0

mwd(∇× vf + m1Rff −Robs,1)m1Rf f̂dΩ = 0 ∀ f̂ ∈ Hf .

(6.3)

In what follows we assume that the generalized Stokes problem (3.7) (see [7]) has
a unique solution for any given v0, p0 (the solution in the unperturbed domain Ω0)
and for each f ∈ Hf (see [8]).

Now consider the problem (6.3) for α > 0.
Proposition 6.1. For any α > 0, problem (6.3) has a unique solution for each

given Robs,1.
Proof. Following [1], we formally invert L and L∗ in the first and second equations

of (5.10), then we substitute Φ, Q into the third equation and obtain the following
weak problem: f ∈ Hf satisfies

α(f, f̂)Hf
+ (Af,Af̂)L2(x1,x2) = (G,Af̂)L2(x1,x2) ∀ f̂ ∈ Hf ,(6.4)

where A is a linear operator, which depends on previous operators from variational
equations, while G will depend on the data more precisely from (6.2) we obtain:

(f, f̂)Hf
= (Λff, f̂)L2(x1,x2),

(Af,Af̂)L2(x1,x2) = γ1

∫
Ω

mwd(∇× v + m1Rff) · (∇× vf̂ + m1Rf f̂)dΩ+

+ γ2

∫
Γout

(ppf̂ + v · vf̂ )dΓ,

(G,Af̂)L2(x1,x2) = γ1

∫
Ω

mwdRobs,1 · (∇× vf̂ + m1Rf f̂)dΩ+

+ γ2

∫
Γout

(poutpf̂ + vout · vf̂ )dΓ,

where Φ = (v, p) = L−1Bf , Φf̂ = (vf̂ , pf̂ ) = L−1Bf̂ ∀ f̂ ∈ Hf .

We see that if α > 0, then the problem (6.4) has a unique solution which satisfies
and: ‖f‖2

Hf
≤ ‖G‖2/(2α) < ∞. Correspondingly, we can construct v, p, q, σ, which

jointly with f provides the unique solution of (6.3).
Now consider the problem (6.3) with α = 0.
Proposition 6.2. Assume that: (i) The solution of the generalized Stokes prob-

lem satisfies
(
∂v0

∂y

)2
+

(
∂u0

∂y

)2
> 0 at y = 0, x ∈ (x1, x2) (ii) problem (6.3) has a

solution. Then this solution is unique in the class (H2(Ω))2 ×H
1(Ω)×W

1,∞(x1, x2).
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Proof. Let (v1, . . . , f1) and (v2, . . . , f2) be two solutions of (6.3). Then for v =
v1 − v2, . . . , f = f1 − f2 from (6.2) we obtain:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a0(v, v̂) = b0(p, v̂) + F (f, v̂) ∀ v̂ ∈ X,

b0(p̂, v) + bf (f ; p̂, v0) = 0 ∀ p̂ ∈ H
p(Ω),

∇× v + m1Rff = 0 in Ω,

p = 0, v = 0 on Γout.

(6.5)

Consider the second and third equation from (6.5) in Ω2,0,

∇ · v = 0, ∇× v = 0 in Ω2,0.

Then Δv = 0 in Ω2,0. Considering v̂ with supp(v̂) ⊆ Ω2,0 from the first equation of

(6.5) we find ∇p = 0, then p = const in Ω2,0 and −p · n + ν
∂v
∂n = 0 on Γout. Since

p = 0 on Γout, then p = 0 in Ω2,0 and ν
∂v
∂n = 0 on Γout, too. Consequently, v satisfies

Δv = 0 in Ω2,0, v = ν
∂v

∂n
= 0 on Γout.

This problem has only the trivial solution v = 0 in Ω2,0. Since v ∈ (H2(Ω))2, then

v =
∂v

∂n
= 0 on Γ0 := {(x, y) : y = 0, x1 < x < x2}.

Now consider the second and third equations from (6.5) in Ω1,0:⎧⎨
⎩

∇ · v −
[
y
( fxf0−f0,xf

f2
0

)
∂u0

∂y + f
f0

∂v0

∂y

]
= 0 in Ω1,0,

∇× v −
[
y
( fxf0−f0,xf

f2
0

)
∂v0

∂y − f
f0

∂u0

∂y

]
= 0 in Ω1,0.

(6.6)

On Γ0 we have

∇ · v − f

f0

∂v0

∂y
= 0, ∇× v +

f

f0

∂u0

∂y
= 0,

|f(x)| = f0

[
(∇ · v)2 + (∇× v)2

]1/2

[(
∂v0

∂y

)2

+
(

∂u0

∂y

)2]1/2
on Γ0

(the dependence of the right-hand side on x and y is understood). Since v =
∂v
∂n =

∂v
∂y = 0 on Γ0, then

∇ · v|y=0 =
∂u

∂x
+

∂v

∂y
|y=0 = 0, ∇× v|y=0 =

∂v

∂y
− ∂u

∂x
|y=0 = 0, x ∈ (x1, x2),

i.e., f(x) = 0. Therefore, v = 0, p = 0, too.
Let us once more note that if γ2 > 0 and we introduce into considerations the cost

functional J2, then we overdeterminate the problem (4.4) for α = 0 and the initial
problem. Therefore in this case we usually have uniqueness results; however, not exis-
tence results generally. But in some physical problems the above overdeterminations
(and the term α‖f‖2

Hf
also) are reasonable and have a physical sense, therefore in

these cases we can consider the optimal control problems like (4.5) as the problems
to be independent of the initial problem (where we have only J1). Here, we also
have existence results and can name these optimal control problems as the “optimal
shape design problems. . . .” Nevertheless, it is interesting to study solvability results
of above variational problems as α = γ2 = 0.



380 V. AGOSHKOV, A. QUARTERONI, AND G. ROZZA

7. Iterative processes. In this section we propose some iterative processes
which are well suited for solving the variational equations obtained in the previous
sections.

Consider the problem (5.10); if for k = 0, 1, . . . , f (k) is known, then f (k+1) can be
determinate by solving the following equations [1]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LΦ(k) = Bf (k),

L∗Q(k) = ΛwJΦ(f (k),Φ(k)),

Λcw
(k) = B∗Q(k) + ΛfJf (f (k),Φ(k)),

f (k+1) = f (k) − τk(αf
(k) + w(k)),

(7.1)

where {τk} is a family of parameters whose determination follows from the theory
of extremal problems [32], the general theory of iterative processes [16, 25, 27], and
the ill-posed problems theory [28, 30]. The step (7.1) would read as follows for the
variational form (5.9) of problem (5.10):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(Φ(k), Φ̂) = B(f (k), Φ̂) ∀ Φ̂ ∈ W,

L(Ŵ ,Q(k)) = 〈J ′
Φ(f (k),Φ(k)), Ŵ 〉 ∀ Ŵ ∈ W,

(w(k), f̂)Hf
= B(f̂ , Q(k)) + 〈J ′

f (f (k),Φ(k)), f̂〉 ∀ f̂ ∈ Hf ,

f (k+1) = f (k) − τk(αf
(k) + w(k)).

(7.2)

Consider now problem (6.2) (with Ωwd ⊆ Ω). The iterative process (7.2) for this
problem reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0(v
(k), v̂) = b0(p

(k), v̂) + F (f (k), v̂) ∀ v̂ ∈ X,

b0(p̂, v
(k)) + bf (f (k); p̂, v0) = 0 ∀ p̂ ∈ H

p(Ω),

a0(q̂, q
(k)) = −b0(σ

(k), q̂) + γ1

∫
Ω0

mwd(∇× v(k) + m1Rff
(k) −Robs,1)·

·(∇× q̂)dΩ + γ2

∫
Γout

(v(k) − vout) · q̂dΓ ∀ q̂ ∈ X,

−b0(σ̂, q
(k)) = γ2

∫
Γout

(p(k) − pout)σ̂dΓ ∀ σ̂ ∈ H
p,

(w(k), f̂)Hf
= F (f̂ , q̂) − bf (f̂ ; σ̂(k), v0)+

+ γ1

∫
Ω0

mwd(∇× v(k) + m1Rff
(k) −Robs,1)m1Rf f̂dΩ ∀ f̂ ∈ Hf ,

f (k+1) = f (k) − τk(αf
(k) + w(k)), k = 0, 1, . . . .

(7.3)

Consider now the finite dimensional case in which the function f, {f (k)}, f̂ are all
sought after in a finite-dimensional subspace Hf,N ⊂ Hf of dimension N < ∞, whose
basis ϕi ∈ W

1,∞(x1, x2), i = 1, 2, . . . , N . Then the following theorem holds true.

Theorem 7.1. Assume that Ωwd = Ω, (∂v0

∂y )2 +(∂u0

∂y )2 > 0 at y = 0, x ∈ (x1, x2).
Then:

1. the problem (6.2) is correctly solvable for α ≥ 0 and all N < ∞;
2. the iterative process (7.3) is convergent for any α > 0, N < ∞ and provided

the parameters τk > 0, k = 0, 1, 2, . . . . are small enough;
3. if α is sufficiently small while k is sufficiently large, then {v(k), p(k), f (k)} can

be taken as an approximate solution of problem (6.2).
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Proof.
1. The existence of the solution for α > 0 has been proved early. Let us consider

the case α = 0. Since f = ΣN
i=1aiϕi ∈ Hf,N , then in the form (6.4) with α = 0

we conclude that this equation is correctly solvable (because the problem
(6.2) can only have a unique solution in X × H

p × Hf ; see Proposition 6.2).
We assume the generalized Stokes problem to be correctly solvable for given
f ∈ Hf . Hence the problem (6.2) is correctly solvable too.

2. If α > 0, then the bilinear form on the left-hand side of (6.4) is coercive and

continuous with respect to the norm ‖f‖A,α =
√
α‖f‖2

Hf
+ ‖Af‖2

L2(x1,x2)
.

Then according to the general theory of iterative algorithm the process given
by

(f (k+1), f̂)Hf
= (f (k), f̂)Hf

− τ(α(f (k), f̂)Hf
+ (Af (k), Af̂)L2(x1,x2))−

−(G,Af̂)L2(x1,x2), k = 0, 1, . . .

is convergent for small τ > 0. Hence the process (7.3) is convergent also and

‖v(k) − v‖X + ‖p(k) − p‖Hp + ‖f − f (k)‖Hf
→ 0, k → ∞.(7.4)

If Λ−1
C A∗A ∈ [C1, C2], C1, C2 = const, and τk = 2/(2α+C1 +C2), then (7.4)

becomes (see [1]):

‖v(k) − v‖X + ‖p(k) − p‖Hp + ‖f − f (k)‖Hf
≤ C

( C2 − C1

2α + C1 + C2

)k

→ 0, k → ∞.

(7.5)

3. Let v0, p0, f0 be a solution of (6.2) when α = 0. According to the theory of
ill-posed problem ([28] and [30]) we have: ‖f0−fα‖Hp → 0 as α → +0, where
(fα, vα, pα) is the solution of (6.2) for α > 0. Hence

‖v0 − vα‖X + ‖p0 − pα‖Hp → 0, as α → +0.

Then owing to (7.4) we conclude that the statement of Theorem 7.1 holds true
also.

The simple schemes in Figure 7.1 can be considered as examples of the above
problems when f ∈ Hf,N for small N (the dimension of Hf,N ).
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1
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Ω
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Ω
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1 2
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Fig. 7.1. Domain Ω with N shape functions: (a) N = 1, f = β1 + aϕ0(x), ϕ0 = x(x2 − x); (b)
N = 3, f = β1 + Σ3

i=1aiϕi.
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Fig. 8.1. Idealized two-dimensional bypass configuration before optimal shape design process:
Iso-velocity [cms−1].
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Fig. 8.2. Bypass configuration at the end of shape optimization using first corrections: Iso-
velocity [cms−1].

8. Test problem and numerical results. To test our method we consider
some test problems on simplified configurations. Numerical simulations have been car-
ried out using Bamg [11], a Bi-dimensional Anisotropic Mesh Generator and FreeFem,
a finite element Library developed at INRIA [10], the French National Institute for
Research in Computer Science and Control, with the development of algorithms based
on control theory and adjoint formulation for generalized Stokes problem. For appli-
cation of finite element method to incompressible flow, see [9]. In this section we
present numerical results using as cost functional the L

2 norm of the vorticity in the
downfield zone of the new incoming branch of the bypass.

Wall curvature was considered only in the zone of the incoming branch of the
bypass where we set f0 = sin(x); in other parts we used piecewise constant function.
The graft angle of the bypass incoming branch (which influences vorticity) is equal to
zero (between the artery and the new incoming branch there isn’t a relative angle).

Velocity values vin at the inflow are chosen in such a way that the Reynolds
number Re = v̄·D

ν has order 103. Blood kinematic viscosity ν = μ
ρ is equal to

4 · 10−6 m2 s−1, blood density ρ = 1 g cm−3 and dynamic viscosity μ = 4 ·
10−2 g cm−1s−1; v̄ is a mean inflow velocity related with vin, while D is the ar-
terial diameter (3.5 mm) [23].

Figures 8.1–8.3 provide a preliminary account of numerical results and show how
the shape of the bypass using generalized steady Stokes equations in an optimal control
problem is smoothed out at the corner. Figure 8.1 refers to the original configuration;
whereas Figure 8.2 refers to the configuration obtained after 25 iterations of the
optimization algorithm (the vorticity has been reduced by about 30%).
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Fig. 8.3. Adjoint solution q in Bypass configuration in the reference domain.

9. Future developments. The development of tools for geometry reconstruc-
tion from medical data (medical imaging and other noninvasive means) and their
integration with numerical simulation could provide improvements in disease diagno-
sis procedures.

In this study we have focused on the problem of determining the first corrections
for the shape design of simplified two-dimensional bypass configurations.

Using the numerical method developed in this paper it is possible to realize the
iterative process for solving initial nonlinear problems. For that it is sufficient to
consider f = f0 + εf1, where f0 is the initial configuration and f1 the computed first
correction as the new f0, then to calculate a new first correction and so on.

Optimal control and shape optimization applied to fully unsteady incompressible
Stokes and Navier–Stokes equations and possibly the coupled fluid-structure problem
and the setting of the problem in a three-dimensional geometry will provide more
realistic design indications concerning surgical prosthesis realizations.

A further development will be devoted to build domain decomposition meth-
ods [26] based on optimal control approaches and efficient schemes for reduced-basis
methodology approximations (see, for example, [20] and [21]) which could be more ef-
ficient for use in a repetitive design environment as optimal shape design methodology
requires; see [29] for the state of the art of the problem.

Acknowledgments. Bernoulli Center of EPFL is acknowledged for the support
of the authors during the special semester on the “Mathematical Modelling of the
Cardiovascular System.”
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Abstract. Cyclic nets are a special case of digital nets and were recently introduced by Nieder-
reiter. Here we present a construction algorithm for such nets, where we use the root mean square
worst-case error of a randomly digitally shifted point set in a weighted Sobolev space as a selection
criterion. This yields a feasible construction algorithm since for a cyclic net with qm points (with
fixed bijections and fixed ground field) there are qm possible choices.

Our results here match the convergence rate and strong tractability results for polynomial lattice
rules, hence providing us with an alternative construction algorithm. Further, we improve upon
previous results by including constructions over arbitrary finite fields and an arbitrary choice of
bijections.
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1. Introduction. In quasi Monte Carlo (QMC) one considers the approximation
of an integral

∫
[0,1]s

f(x) dx by the average of f(xh) for sample points x0, . . . ,xN−1.

This approach might appear simple at first, but for high dimensions the question of
how to choose a good point set {x0, . . . ,xN−1} becomes a truly challenging problem,
with many questions yet to be answered (see, for example, [5, 13]). Generally speaking
one wants the points {x0, . . . ,xN−1} to be evenly spread over the unit cube. To assess
the quality of a point set {x0, . . . ,xN−1}, in other words, to measure the distribution
properties of P = {x0, . . . ,xN−1}, one often uses a norm of the discrepancy function.
The discrepancy function is given by

Δ(P,z) =
AN (P, [0,z))

N
− |z|,

where z = (z1, . . . , zs) ∈ [0, 1]s, AN (P, [0,z)) is the number of points of P in [0,z) :=∏s
j=1[0, zj) and |z| = z1 · · · zs. By taking a norm of this function we obtain a quality

measure of the point set P . In this paper we consider the so-called L2-discrepancy.
In the classical case this corresponds to the 2-norm of the discrepancy function. Ever
since the paper [20] by Sloan and Woźniakowski it has become popular to consider
weighted discrepancies; specifically in our case this means we consider the weighted
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L2,γ-discrepancy, which is given by

(1.1) L2
2,γ(P ) =

∑
u⊆{1,...,s}

u�=∅

∏
j∈u

γj

∫
[0,1]|u|

|Δ(P, (zu, 1))|2 dzu,

where zu denotes the vector from [0, 1]|u| containing the components of z whose
indices are in u and (zu, 1) is the vector z from [0, 1]s with all components whose
indices are not in u replaced by 1. Here γ = (γ1, γ2, . . . ) is a sequence of nonnegative
real numbers γj , j ≥ 1, the so-called weights. As is apparent from (1.1) the weights
can be used to modify the importance of lower dimensional projections. We remark
that in this paper we consider only product weights and not general weights.

In [20] it was also shown that the L2-discrepancy coincides with the worst-case
error in certain weighted Sobolev spaces. Later on in the paper we prefer to state our
results in terms of this worst-case error, as is usually done (for details see section 3).
On the other hand it also seems enlightening to understand the geometrical meaning
of this worst-case error, hence we also described the measure in terms of the L2-
discrepancy rather than the worst-case error.

With this measure at hand we are able to compare the distribution properties
of point sets in the unit cube. The point sets which we consider here are so-called
(t,m, s)-nets and were introduced by Niederreiter [10]. A special construction scheme
of such nets goes by the name of digital nets. In order to construct a digital net
over some finite field, one needs to find m×m matrices C1, . . . , Cs with elements in
the finite field Fq. This provides us with a point set of qm points. But the number

of possible choices of generating matrices is qsm
2

, where s denotes the dimension.
Hence using computer search to choose the best one is not feasible for a practically
useful number of points. Niederreiter [12] also introduced a special subclass of digital
nets, namely, polynomial lattices. Thereby the number of choices is reduced to qms.
Moreover, it was shown in [4] that it is sufficient to search with a special algorithm
(component-by-component), which further reduces the number of polynomial lattices
considered to sqm.

An alternative to polynomial lattices are cyclic nets, which were introduced by
Niederreiter in 2004 [14]. In this paper we show how we can also construct cyclic nets
using algorithms similar to [4]. Indeed, the construction algorithm used for cyclic nets
matches the Korobov-type construction of polynomial lattice rules. Both of these have
a search space of size at most qm. Subsequently we also generalize the notion of cyclic
nets whereby we succeed in introducing an analogue to the component-by-component
algorithm of polynomial lattice rules. In the following we will call this construction
scheme hyperplane nets.

The upper bounds presented here are comparable, although they are more general
in the sense that we now also allow arbitrary finite fields. (Formerly we considered
only finite fields of prime order.) In this situation one also needs bijections between
the finite field and the digits {0, 1, . . . , q − 1}. The results presented here show that
cyclic nets perform just as well as polynomial lattices, also achieving the best possible
convergence rate and strong tractability results under appropriate conditions on the
weights. Similar results have also been obtained for lattice rules; see [6, 18].

The paper is organized as follows. In the subsequent section we state the definition
of (t,m, s)-nets, cyclic nets, hyperplane nets, and Walsh functions. Walsh functions
are characters over the group of digital nets and are hence very useful for analyzing
digital nets (see [3] for more information). Section 3 is concerned with construction
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algorithms for cyclic nets and hyperplane nets. In that section we also prove upper
bounds on the L2-discrepancy (or worst-case error), whereby the good performance
of our construction algorithm is ensured. Finally, in an appendix we generalize the
results in the appendix of [3], allowing now more general bijections which in turn allows
us to obtain results for constructions of cyclic and hyperplane nets over arbitrary finite
fields.

2. (t, m, s)-nets in base b. In this section we recall the definition of (digital)
(t,m, s)-nets in base b and a special construction of such nets due to Niederreiter.

A detailed theory of (t,m, s)-nets was developed in [10]. (See also [11, Chapter
4] for a survey of this theory.) Those (t,m, s)-nets in a base b provide sets of bm

points in the s-dimensional unit cube [0, 1)s, which are extremely well distributed if
the quality parameter t is small.

Definition 2.1 ((t,m, s)-nets). Let b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m be integers.
Then a point set P consisting of bm points in [0, 1)s forms a (t,m, s)-net in base b if
every subinterval J =

∏s
j=1[aj b

−dj , (aj + 1) b−dj ) of [0, 1)s, with integers dj ≥ 0 and

integers 0 ≤ aj < bdj for 1 ≤ j ≤ s and of volume bt−m, contains exactly bt points
of P .

In practice, all concrete constructions of (t,m, s)-nets in base b are based on the
general construction scheme of digital nets. To avoid too many technical notions—and
since we only deal with this case—in the following we restrict ourselves to digital nets
defined over the finite field Fq of prime-power order q. For a more general definition
(over arbitrary finite, commutative rings) see, for example, Niederreiter [11], Larcher
[7], or Larcher, Niederreiter, and Schmid [8].

Definition 2.2 (digital (t,m, s)-nets). Let q be a prime-power and let s ≥ 1 and
m ≥ 1 be integers. Let C1, . . . , Cs be m×m matrices over Fq. Now we construct qm

points in [0, 1)s: for 0 ≤ h ≤ qm − 1 let h = h0 + h1q + · · ·+ hm−1q
m−1 be the q-adic

expansion of h. Consider an arbitrary but fixed bijection ϕ : {0, 1, . . . , q − 1} −→ Fq.

Identify h with the vector �h = (ϕ(h0), . . . , ϕ(hm−1))
� ∈ F

m
q , where � means the

transpose of the vector. For 1 ≤ j ≤ s multiply the matrix Cj by �h, i.e.,

Cj
�h =: (yj,1(h), . . . , yj,m(h))� ∈ F

m
q ,

and set

xh,j :=
ϕ−1(yj,1(h))

q
+ · · · + ϕ−1(yj,m(h))

qm
.

If for some integer t with 0 ≤ t ≤ m the point set consisting of the points

xh = (xh,1, . . . , xh,s)

for 0 ≤ h < qm is a (t,m, s)-net in base q, then it is called a digital (t,m, s)-net over
Fq or, in brief, a digital net (over Fq). The Cj are called its generating matrices.

Concerning the determination of the quality parameter t of digital nets we refer
to Niederreiter [11, Theorem 4.28]; see also [17].

An essential tool for the investigation of digital nets is Walsh functions. A very
general definition, corresponding to the most general construction of digital nets over
finite rings, was given in [8]. There, Walsh functions over a finite abelian group
G, using some bijection ϕ, were defined. Here we restrict ourselves to the case of
G = Fpr , p prime. We restate the definitions for this special case here for the sake of
convenience.
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Definition 2.3 (Walsh functions). Let q = pr, p prime, r ∈ N0, and let Fq be
the finite field with q elements. Let Zq = {0, 1, . . . , q − 1} ⊂ Z with ring operations
modulo q and let ϕ : Zq −→ Fq be a bijection such that ϕ(0) = 0, the neutral element of
addition in Fq. Moreover denote by ψ the isomorphism of additive groups ψ : Fq −→
Z
r
p and define η := ψ ◦ ϕ. For 1 ≤ i ≤ r denote by πi the projection πi : Z

r
p −→ Zp,

πi(x1, . . . , xr) = xi.

Zq
ϕ ��

η
���

��
��

��
Fq

ψ

��
Z
r
p

πi �� Zp

Let now k ∈ N0 with base q representation k = κ0 + κ1q + · · · + κm−1q
m−1 where

κl ∈ Zq and let x ∈ [0, 1) with base q representation x = x1/q+x2/q
2 + · · · . Then the

kth Walsh function over the finite field Fq with respect to the bijection ϕ is defined by

Fq,ϕwalk(x) :=

m−1∏
l=0

r∏
i=1

exp

(
2πi

(πi ◦ η)(κl)(πi ◦ η)(xl)

p

)
.

For convenience, in the rest of the paper we will omit the subscript and simply write
walk if there is no ambiguity.

Multivariate Walsh functions are defined by multiplication of the univariate com-
ponents, i.e., for x = (x1, . . . , xs) ∈ [0, 1)s,k = (k1, . . . , ks) ∈ N

s
0, s > 1, we set

walk(x) =

s∏
j=1

walkj (xj).

We summarize some important properties of Walsh functions over finite fields
which will be used throughout the paper. The proofs of the subsequent results can
be found, e.g., in [9, 15].

Proposition 2.4. Let p, q, Fq, and ϕ be as in Definition 2.3. For x, y with q-adic
representations x =

∑∞
i=w xiq

−i and y =
∑∞

i=w yiq
−i, w ∈ Z (hence the following

operations are also defined for integers), define x ⊕ϕ y :=
∑∞

i=w ziq
−i where zi :=

ϕ−1(ϕ(xi) + ϕ(yi)) and 
ϕx :=
∑∞

i=w viq
−i where vi := ϕ−1(−ϕ(xi)). Further we

set x
ϕ y := x⊕ϕ (
ϕy). For vectors x,y we define the operations componentwise.
Then we have the following:

1. For all k, l ∈ N0 and all x, y ∈ [0, 1) we have

walk(x) · wall(x) = walk⊕ϕl(x), walk(x) · walk(y) = walk(x⊕ϕ y)

and

walk(x) · wall(x) = walk�ϕl(x), walk(x) · walk(y) = walk(x
ϕ y).

2. We have

q−1∑
k=0

wall(k/q) =

{
0 if l �= 0,

q if l = 0.

3. We have ∫ 1

0

wal0(x) dx = 1 and

∫ 1

0

walk(x) dx = 0 if k > 0.
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4. For all k, l ∈ N
s
0 we have the following orthogonality properties:∫

[0,1)s
walk(x)wall(x) dx =

{
1 if k = l,

0 otherwise.

5. For any f ∈ L2([0, 1)s) and any σ ∈ [0, 1)s we have∫
[0,1)s

f(x) dx =

∫
[0,1)s

f(x ⊕ϕ σ) dx.

6. For any integer s ≥ 1 the system {walk : k ∈ N
s
0} is a complete orthonormal

system in L2([0, 1)s).
Let Fq = Zp[θ] such that {1, θ, . . . , θr−1} is a basis of Fq over Zp as a vector space.

Then the isomorphism ψ between Fq and Z
r
p shall be given by

ψ(x) = (x1, . . . , xr)
� for x =

r∑
i=1

xiθ
i−1, xi ∈ Zp.

Let ψ be extended to vectors over Fq, i.e., such that for arbitrary m, vectors in F
m
q

get mapped to vectors in Z
rm
p .

Also let ϕ be extended to nonnegative integers by setting

ϕ(k) := (ϕ(κ0), . . . , ϕ(κm−1))
� for k =

m−1∑
i=0

κiq
i, ki ∈ {0, . . . , q − 1}.

We will also use the concatenation η(k) := ψ(ϕ(k)). We have the following commu-
tative diagram:

Zqm
ϕ ��

η
����

��
��

��
F
m
q

ψ,Ψ

��
Z
rm
p

We now define a map Ψ of the linear transformations over Fq into the linear
transformations over Zp. Let the representation of the element θr in Fq be given by
θr = θ0 + θ1θ + · · · + θr−1θ

r−1, θi ∈ Zp, i = 0, . . . , r − 1. By Θ we denote the matrix

Θ :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · θ0

1 0 0 · · · θ1

0 1 0 · · · θ2

...
. . .

...
0 · · · 0 1 θr−1

⎞
⎟⎟⎟⎟⎟⎠ .

It is easy to see that Θ acts on a vector (x1, . . . , xr) ∈ Z
r
p in the same way as the linear

transformation x �→ θx, x ∈ Fq does on x1 + x2θ + · · · + xrθ
r−1, i.e., Θψ(x) = ψ(θx).

If α =
∑r−1

i=0 aiθ
i is the representation of an arbitrary element, denote by Ψ(α) the

matrix

Ψ(α) :=

r−1∑
i=0

aiΘ
i.



390 G. PIRSIC, J. DICK AND F. PILLICHSHAMMER

Clearly then Ψ(α)ψ(x) = ψ(αx). By linearity the mapping Ψ can be extended to
matrices by applying it to the matrix entries and letting the matrices run together,
i.e., with some abuse of notation,

Ψ(A) := (Ψ(ai,j))i,j ∈ Z
rm1×rm2
p for A = (ai,j)i,j ∈ F

m1×m2
q , ai,j ∈ Fq,

for arbitrary m1,m2. Again by linearity Ψ(A)ψ(x) = ψ(Ax) holds as well (for A ∈
F
m1×m2
q ,x ∈ F

m2
q , m1,m2 ∈ N).

Lemma 2.5. Let {x0, . . . ,xqm−1} be a digital net over Fq with bijection ϕ, where
ϕ(0) = 0, generated by the m×m matrices C1, . . . , Cs over Fq, m > 0. Then for any
vector k = (k1, . . . , ks) of nonnegative integers 0 ≤ k1, . . . , ks < qm we have

qm−1∑
h=0

Fq,ϕwalk(xh) =

{
qm if C�

1 ϕ(k1) + · · · + C�
s ϕ(ks) = 0,

0 else,

where 0 is the zero vector in F
m
q .

Proof. Denote by ωp the pth root of unity, i.e., ωp = exp(2πi/p). For each kj ,
1 ≤ j ≤ s let κj,l denote the lth q-adic digit of kj , i.e., kj = κj,0 + · · · + κj,m−1q

m−1.
For 0 ≤ h ≤ qm − 1 let xh = (xh,1, . . . , xh,s). Then we have

Σ :=

qm−1∑
h=0

Fq,ϕwalk(xh) =

qm−1∑
h=0

s∏
j=1

m−1∏
l=0

r∏
i=1

ω
(πi◦η)(κj,l)(πi◦η)(xh,j,l)
p

=

qm−1∑
h=0

s∏
j=1

m−1∏
l=0

ω
∑r

i=1(πi◦η)(κj,l)(πi◦η)(xh,j,l)
p =

qm−1∑
h=0

s∏
j=1

m−1∏
l=0

ω
〈η(κj,l),η(xh,j,l)〉
p ,

where 〈·, ·〉 denotes the usual inner product. By the definition of digital nets we have

xh,j,l = ϕ−1(〈c�j,l,�h〉),

where cj,l denotes the lth row vector of the matrix Cj and where �h = (ϕ(h0), . . . , ϕ(hm−1))
�

if h = h0 + · · · + hm−1q
m−1. Therefore we obtain

η(xh,j,l) = ψ ◦ ϕ(ϕ−1(〈c�j,l,�h〉)) = ψ(〈c�j,l,�h〉).

Since ϕ is a bijection we get

Σ =

qm−1∑
h=0

s∏
j=1

m−1∏
l=0

ω
〈η(κj,l),ψ(〈c�

j,l,
�h〉)〉

p =
∑

h∈Fm
q

s∏
j=1

m−1∏
l=0

ω
〈η(κj,l),ψ(〈c�

j,l,h〉)〉
p

=
∑

h′∈Zrm
p

s∏
j=1

m−1∏
l=0

ω
〈η(κj,l),Ψ(cj,l)h

′〉
p =

∑
h′∈Zrm

p

ω
〈h′,

∑s
j=1

∑m−1
l=0 Ψ(cj,l)

�η(κj,l)〉
p .

We have

m−1∑
l=0

Ψ(cj,l)
�η(κj,l) = Ψ(C�

j )η(kj),

since, denoting by cj,l,i the components of cj,l,

(
Ψ(cj,1)

� · · ·Ψ(cj,m)�
)

=

⎛
⎜⎝Ψ(cj,1,1)

� · · · Ψ(cj,m,1)
�

...
. . .

...
Ψ(cj,1,m)� · · · Ψ(cj,m,m)�

⎞
⎟⎠ = Ψ(C�

j ).
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So we obtain

Σ =
∑

h′∈Zrm
p

ω
〈h′,

∑s
j=1 Ψ(C�

j )η(kj)〉
p .

Bringing this into a form where we can evaluate the exponential sums, we get

Σ =

m−1∏
l=0

r−1∏
i=0

p−1∑
h=0

(
ω

(i m + l)th component of (
∑s

j=1 Ψ(C�
j )η(kj))

p

)h

=

{
qm if Ψ(C�

1 )η(k1) + · · · + Ψ(C�
s )η(ks) = 0 ∈ Z

rm
p ,

0 else,

and the lemma is proved by noting that

Ψ(C�
1 )η(k1) + · · · + Ψ(C�

s )η(ks) = ψ(C�
1 ϕ(k1) + · · · + C�

s ϕ(ks)) = 0

iff

C�
1 ϕ(k1) + · · · + C�

s ϕ(ks) = 0,

since ψ(0) = 0.
We next define cyclic digital nets following Niederreiter’s article in [14]. (See

this article of Niederreiter for more about the background of this notion and exact
definitions of some terms not explained further in this paper.)

Definition 2.6. Let integers m ≥ 1, s ≥ 2 and a finite field Fq be given. Fix an
element α ∈ Fqm and consider the set of polynomials

Pα := {f ∈ P, f(α) = 0} ⊆ P := {f ∈ Fqm [x],deg(f) < s}.

For each j = 1, . . . , s choose an ordered basis Bj of Fqm over Fq and define φ as the
mapping

φ : f(x) =

s∑
j=1

γjx
j−1 ∈ P �→ (γ1,1, . . . , γ1,m, . . . , γs,1, . . . , γs,m) ∈ F

ms
q ,

where (γj,1, . . . , γj,m) is the coordinate vector of γj with respect to the chosen basis
Bj.

We denote by Cα the orthogonal subspace in F
ms
q of the image Nα := φ(Pα). Let

Cα = (C�
1 · · ·C�

s ) ∈ F
m×sm
q

be a matrix whose row space is Cα. Then the Cj are the generating matrices of a
cyclic digital net with respect to B1, . . . ,Bs and Cα is its overall generating matrix.
We shall from now on assume a fixed choice of bases Bj and will therefore not explicitly
mention them again.

In the following we will again use the idea of employing linear representations
(i.e., the mapping ψ), but with Fq in the role of Zp and Fqm in the role of Fq. To be
more precise, let Fqm = Fq[ω], such that the powers of ω form a basis of Fqm/Fq. Let
ωm = β0 + · · · + βm−1ω

m−1, βl ∈ Fq, and P the matrix

P :=

⎛
⎜⎜⎜⎝

0 0 · · · β0

1 0 · · · β1

...
. . . 0

...
0 · · · 1 βm−1

⎞
⎟⎟⎟⎠ .
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Now, if we have the representation of α in Fqm as α =
∑m−1

l=0 alω
l, al ∈ Fq, define

ψ(α) := (a0, . . . , am−1) ∈ F
m
q , Ψ(α) :=

m−1∑
l=0

alP
l ∈ F

m×m
q .

Note that for any α, x ∈ Fqm \ {0} we have Ψ(α)ψ(x) = ψ(αx) �= 0 ∈ F
m
q as αx �=

0 ∈ Fqm . Hence it follows that for any α ∈ Fqm \ {0} we have that the matrix Ψ(α)
is regular.

Furthermore, for k =
∑m−1

l=0 κlq
l, let

ϕ′(k) :=

m−1∑
l=0

ϕ(κl)ω
l, ψ′(k) := ψ(ϕ′(k))

and define all extensions to vectors and matrices as above. We have the following
commutative diagram:

Zqm
ϕ′

��

ψ′
����

��
��

��
Fqm

ψ,Ψ

��
F
m
q

Note that we have ψ′ = ϕ.
Using similar methods as in Lemma 2.5 we can give the generating matrices for

Cα in the following form.
Theorem 2.7. Let m, s,Fq and α ∈ Fqm = Fq[ω] be given and define s matrices

Bj = (ψ(bj,1), . . . , ψ(bj,m))−1, where the bj,l constitute the chosen basis Bj. Then the
generating matrices of the net are given by Cj = (Ψ(αj−1)Bj)

� = (Ψ(α)j−1Bj)
�,

j = 1, . . . , s. Furthermore, it follows that Cj is regular for j = 1, . . . , s.
Proof. Let φ1 be the (additive) isomorphism between P ⊂ Fqm [x] and F

s
qm . To

arrive at the φ of Definition 2.6 we have to account for the choice of arbitrary bases
Bj . We do this by multiplying with the transformation matrix B−1, where B is a
square, block diagonal matrix with the matrices Bj of the statement of the theorem
in its diagonal. Then φ(f) = B−1ψ(φ1(f)), f ∈ P. We summarize these relations in
the following diagrams:

P
φ1 ��

φ

��

F
s
qm

ψ,Ψ

��
F
ms
q

B �� Fms
q

Pα
φ1 ��

φ

��

φ1(Pα)

ψ

��
Nα

B �� N ◦
α

Our first goal is to describe N ◦
α := ψ(φ1(Pα)). Clearly, φ1(Pα) is the space of all

vectors orthogonal to (1, α, . . . , αs−1)�. So x ∈ φ1(Pα) iff

0 = (1, α, . . . , αs−1)x ⇐⇒ 0 = ψ((1, α, . . . , αs−1)x)

= Ψ((1, α, . . . , αs−1))ψ(x),

hence N ◦
α is the orthogonal space to the row space of

C◦
α := Ψ((1, α, . . . , αs−1)) = (Ψ(1),Ψ(α), . . . ,Ψ(αs−1)).
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If the Bj are again taken into account, we have that Nα is the image of N ◦
α under

the automorphism x �→ B−1x; accordingly its orthogonal space is the image under
x �→ xB. Thus Cα := C◦

αB is the overall generating matrix of the cyclic digital net
(i.e., its row space is said to be orthogonal space) and Cj := (Ψ(αj−1)Bj)

� are its
generating matrices by the duality theory of digital nets. By the considerations before
Lemma 2.5, Ψ is a ring homomorphism, so Ψ(αj) = Ψ(α)j .

In order to show that the matrices Cj are regular, recall that for any α ∈ Fqm \{0}
the matrix Ψ(α) is regular and as Bj is regular as well, it follows that Cj has to be
regular.

Remark 2.8. Note that every digital net with regular generating matrices Cj is
cyclic with respect to some choice of bases Bj . However, the focus in this paper lies
on the class of all cyclic nets, i.e., where α runs through all elements in Fqm \ {0}, for
fixed bases Bj and we show that there is at least one good cyclic net (i.e., good choice
of α ∈ Fqm \ {0}) for each fixed choice of Bj . Those classes of cyclic nets which we
use in our search algorithms do depend on the choice of bases, but once chosen the
bases remain fixed throughout the search algorithm. In particular the search space of
our algorithm will still be of size qm for any given choice of bases.

Remark 2.9. It can be shown with a little calculation that Korobov polynomial
lattice rules can be constructed (up to reordering of points) as cyclic nets. There, we
have all Bj equal to the identity matrix. Note that with a suitably modified definition
of cyclic nets (namely, if we consider arbitrary polynomial residue class rings) this also
works for composite moduli f .

With similar little difficulty, Schmid’s constacyclic shift-nets can be realized as
cyclic nets, using the construction for Fqm = Fq[θ], where θm = k, if f(x) = xm − k is
irreducible, and k is the factor for the shifted elements. (Again, we could also extend
the definition of cyclic nets to include arbitrary polynomial residue class rings instead
of only Fqm/Fq.) Here, all Bj are constant and equal to the first, unshifted matrix
C1, and α is always chosen equal to θ.

These two relations are considered in detail in [16].
In view of Theorem 2.7 we propose the following generalization of the cyclic net

construction.
Definition 2.10. Given a finite field Fq, Fqm = Fq[ω] as above, choose s el-

ements α1, . . . , αs ∈ Fqm and regular matrices Bj ∈ F
m×m
q and let the generating

matrices of a digital net be defined by the matrices Cj = (Ψ(αj)Bj)
�. A digital net

constructed in this manner shall be called a hyperplane net with respect to B1, . . . ,Bs,
where by Bj we denote the ordered bases corresponding to the matrices Bj as in The-
orem 2.7. Again, we shall from now on assume a fixed choice of bases Bj and will
therefore no longer explicitly mention them.

Remark 2.11. Note that the generating matrices Cj of the hyperplane net are
regular provided that αj �= 0 ∈ Fqm . For αj = 0 we obtain that Cj = 0 ∈ F

m×m
q , the

matrix consisting only of the neutral element with respect to addition in Fq.
As a consequence, by Remark 2.8 a hyperplane net with regular generating ma-

trices can also be considered as a cyclic net for some choice of bases Bj . But the class
of all hyperplane nets with fixed bases Bj is a proper superclass of the class of all
cyclic nets with the same fixed bases Bj . Hence the search space over all hyperplane
nets is larger than the search space over all cyclic nets, as for the search we fix the
bases in advance.

The name of the generalized construction is motivated by the following corollary
of Lemma 2.5.
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Corollary 2.12. Let {x0, . . . ,xqm−1} be a digital net over Fq generated by the
m×m matrices C1, . . . , Cs over Fq, m > 0, as given in Definition 2.10. Then for any
vector 0 ≤ k1, . . . , ks < qm of nonnegative integers we have

qm−1∑
h=0

Fq,ϕwalk(xh) =

{
qm if α1ϕ

′(τ1(k1)) + · · · + αsϕ
′(τs(ks)) = 0,

0 else,

with permutations τj(k) = ψ′−1(Bjψ
′(k)), and Bj as in Theorem 2.7.

Proof. By Definition 2.10 and Theorem 2.7, the generating matrices of the net
are Cj = (Ψ(αj)Bj)

�, so by Lemma 2.5 the sum equals qm, iff (note that ψ′ = ϕ)

s∑
j=1

C�
j ψ′(kj) =

s∑
j=1

Ψ(αj)Bjψ
′(kj)

=

s∑
j=1

Ψ(αj)ψ
′(τj(kj)) = 0 ⇐⇒

s∑
j=1

ψ(αjϕ
′(τj(kj))) = 0

⇐⇒ ψ

⎛
⎝ s∑

j=1

αjϕ
′(τj(kj))

⎞
⎠ = 0 ⇐⇒

s∑
j=1

αjϕ
′(τj(kj)) = 0,

and vanishes otherwise, so the corollary follows.
Remark 2.13. With this corollary it is not difficult to show that an equivalent

definition in the spirit of Definition 2.6 exists: replace the P of Definition 2.6 by the
space of linear forms

P = {f(x1, . . . , xs) = x1γ1 + · · · + xsγs, xj ∈ Fqm} ⊂ Fqm [x1, . . . , xs]

and Pα by Pα = {f ∈ P, f(α1, . . . , αs) = 0}.
Remark 2.14. Similar to cyclic nets, polynomial lattice rules can be regarded as

a special case (Bj = I) of hyperplane nets. Note that we shall again need to modify
the definition of hyperplane nets to account for composite moduli f . Together with
Korobov polynomial lattice rules and cyclic digital nets etc. we get a hierarchy of nets
that is dealt with specifically and in more detail in [16].

3. Multivariate integration in weighted Sobolev spaces. In this section
we consider multivariate integration in the weighted Sobolev space Hsob,s,w,γ induced
by the reproducing kernel given by (see [2, 6, 18, 19])

Ksob,s,w,γ(x,y) =

s∏
j=1

(1 + γj�wj (xj , yj)),

where w = (w1, . . . , ws) ∈ [0, 1]s and

�w(x, y) =
|x− w| + |y − w| − |x− y|

2

=

{
min(|x− w|, |y − w|) if (x− w)(y − w) ≥ 0,

0 otherwise.

The inner product in Hsob,s,w,γ is given by
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〈f, g〉Hsob,s,w,γ

:= f(w)g(w) +
∑

u⊆{1,...,s}
u�=∅

∏
j∈u

γ−1
j

∫
[0,1)|u|

∂|u|f

∂xu
(xu,w)

∂|u|g

∂xu
(xu,w) dxu,

where for x = (x1, . . . , xs) and u ⊆ {1, . . . , s}, u �= ∅, we use the notation xu = (xj)j∈u

and (xu,w) denotes the s-dimensional vector whose jth component is xj if j ∈ u and
wj if j �∈ u. The Sobolev space Hsob,s,w,γ can also be defined as the set of all square
integrable functions where the norm induced by the above inner product is finite.

Choose a prime-power base q = pr and let x = x1

q + x2

q2 + · · · and σ = σ1

q + σ2

q2 + · · ·
be the base q representation of x and σ. Further choose a bijection ϕ : {0, 1, . . . , q −
1} −→ Fq with ϕ(0) = 0. Then the digitally shifted point (with respect to the
bijection ϕ) y = x⊕ϕ σ is given by y = y1

q + y2

q2 + · · · , where yi = ϕ−1(ϕ(xi) +ϕ(σi)).
For vectors x and σ we define the digitally shifted point x ⊕ϕ σ componentwise.
Obviously, the shift depends on the base q as well as on the bijection ϕ.

For a point set PN = {x0, . . . ,xN−1} and a σ ∈ [0, 1)s let PN,ϕ,σ = {x0 ⊕ϕ

σ, . . . ,xN−1 ⊕ϕ σ} be the digitally shifted point set.
We recall that the worst-case error e(PN ,K) for the integration of functions f

from a reproducing kernel Hilbert space H with reproducing kernel K by means of a
QMC-algorithm

QN,s(PN , f) =
1

N

N−1∑
n=0

f(xn)

using a point set PN = {x0, . . . ,xN−1} is defined as

e(PN ,K) := sup
f∈H,‖f‖≤1

∣∣∣∣∣
∫

[0,1]s
f(x) dx −QN,s(PN , f)

∣∣∣∣∣ .
(In [20, Theorem 1] it is shown that for w = (1, . . . , 1) we have e(PN ,Ksob,s,w,γ) =
L2,γ(PN ), the weighted L2,γ-discrepancy of the point set PN ; see (1.1).)

Let the mean square worst-case error ê2(PN ,K) be given by

E[e2(PN,ϕ,σ,K)] =

∫
[0,1)s

e2(PN,ϕ,σ,K) dσ.

Then we have ê2(PN ,K) = e2(PN ,Kds), where

Kds(x,y) :=

∫
[0,1)s

K(x ⊕ϕ σ,y ⊕ϕ σ) dσ

is the so-called shift invariant kernel of the kernel K. The proof of this result is similar
to that of [3, Theorem 7].

In Appendix A of this paper it is shown that the shift invariant kernel Kds,q,γ,w,ϕ

for the reproducing kernel Ksob,s,w,γ is given by

Kds,q,γ,w,ϕ(x,y) =
∑

k∈N
s
0

r̂q(w,γ,k)walk(x)walk(y),
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where w = (w1, . . . , ws) ∈ [0, 1]s and r̂q(w,γ,k) =
∏s

j=1 r̂q(wj , γj , kj), where

r̂q(w, γ, k) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + γ(w2 − w + 1
3 ) if k = 0,

−γ
2

⎛
⎜⎝ 1

3q2a + 2
q2a�

⎛
⎜⎝ q−1∑

u,v=0
v≥u

(v − u)walκa−1

(
u�ϕv

q

)
q

⎞
⎟⎠
⎞
⎟⎠ if k > 0.

Here for k > 0, κa−1 denotes the most significant bit in the base q representation of
k and � is the real part function. Note that this result generalizes the result in [3,
Appendix A], as we now also allow Walsh functions over arbitrary finite fields and
arbitrary bijections φ between Zq and Fq which satisfy φ(0) = 0.

Remark 3.1. Since Ksob,s,w,γ is a reproducing kernel, it is easy to see that the
corresponding shift invariant kernel Kds,q,γ,w,ϕ is a reproducing kernel as well and
from this one can see (by the properties of reproducing kernels; see [1]) that r̂q(w, γ, k)
is nonnegative for any k ∈ N0.

Further, for x = x1

q + x2

q2 + · · · and y = y1

q + y2

q2 + · · · we define ρds,q,w(x, x) :=

w2 − w + 1
2 and if x �= y,

(3.1) ρds,q,w(x, y) := w2 − w +
1

2
− 1

2qi0+1

×

⎛
⎜⎝ q−1∑

u=0
u<u⊕ϕxi0

	ϕyi0

(u⊕ϕ xi0 
ϕ yi0 − u) +

q−1∑
u=0

u<u⊕ϕyi0
	ϕxi0

(u⊕ϕ yi0 
ϕ xi0 − u)

⎞
⎟⎠ ,

where i0 is the smallest index such that the digits of x and y differ. Note that we
have ρds,q,w(x, y) = ρds,q,w(x
ϕ y, 0). Using Lemma B.2 it can easily be checked that

Kds,q,γ,w,ϕ(x,y) =

s∏
j=1

(1 + γjρds,q,wj (xj , yj)).

Now we obtain, as in [3], that the mean square worst-case error for integration
in the weighted Sobolev space Hsob,s,w,γ by using a random digital shift in base q
with respect to a bijection ϕ on the point set PN = {x0, . . . ,xN−1}, with xh =
(xh,1, . . . , xh,s), is given by

ê2(Pn,Ksob,s,w,γ)

=

∫
[0,1)2s

Kds,q,γ,w,ϕ(x,y) dx dy − 2

N

N−1∑
h=0

∫
[0,1)s

Kds,q,γ,w,ϕ(xh,y) dy

+
1

N2

N−1∑
h,n=0

Kds,q,γ,w,ϕ(xh,xn)

= −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))
+

1

N2

N−1∑
h,n=0

∑
k∈N

s
0

r̂q(w,γ,k)walk(xh)walk(xn)

= −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))
+

1

N2

N−1∑
h,n=0

s∏
j=1

(1 + γjρds,q,wj (xh,j , xn,j)).
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For the special case where the point set Pqm,ϕ is a digital (t,m, s)-net over Fq with
generating matrices C1, . . . , Cs and bijection ϕ (the same bijection as for the digital
shift) we obtain

ê2(Pqm,ϕ,Ksob,s,w,γ) = −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))

+
1

q2m

qm−1∑
n=0

⎛
⎝qm−1∑

h=0

∑
k∈N

s
0

r̂q(w,γ,k)walk(xh 
ϕ xn)

⎞
⎠

= −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))

+
1

q2m

qm−1∑
n=0

⎛
⎝qm−1∑

h=0

s∏
j=1

(1 + γjρds,q,wj (xh,j 
ϕ xn,j , 0))

⎞
⎠ .

It is easy to show that a digital net Pqm,ϕ over Fq generated by matrices C1, . . . , Cs

with bijection ϕ together with the addition ⊕ϕ becomes a group. Hence each term in
the sum over n has the same value and therefore we obtain

ê2(Pqm,ϕ,Ksob,s,w,γ)

= −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))
+

∑
k∈N

s
0

r̂q(w,γ,k)
1

qm

qm−1∑
h=0

walk(xh)

= −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))
+

1

qm

qm−1∑
h=0

s∏
j=1

(1 + γjρds,q,wj
(xh,j , 0)).

For k ∈ N0, k = κ0 + κ1q + · · · denote an m-bit truncation by

tcm,ϕ(k) = (ϕ(κ0), . . . , ϕ(κm−1))
� ∈ F

m
q .

For vectors k ∈ N
s
0 the mapping tcm,ϕ is defined componentwise. Further define

N = {k = (k1, . . . , ks) ∈ (Fm
q )s : C�

1 k1 + · · · + C�
s ks = 0},

where 0 is the zero vector in F
m
q .

Using these definitions and Lemma 2.5 we obtain the next theorem.
Theorem 3.2. Let Pqm,ϕ = {x0, . . . ,xqm−1} be a digital (t,m, s)-net over Fq

generated by C1, . . . , Cs and with respect to the bijection ϕ, where ϕ(0) = 0.
1. The mean square worst-case error for integration in the weighted Sobolev space

Hsob,s,w,γ by using the digital net Pqm,ϕ is given by

ê2(Pqm,ϕ,Ksob,s,w,γ) =
∑

k∈Ns
0\{0}

tcm,ϕ(k)∈N

r̂q(w,γ,k).

2. Let xh = (xh,1, . . . , xh,s) for 0 ≤ h ≤ qm − 1. Then we have

ê2(Pqm,ϕ,Ksob,s,w,γ)(3.2)

= −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))
+

1

qm

qm−1∑
h=0

s∏
j=1

(1 + γjρds,q,wj (xh,j , 0)),

where ρds,q,w is given by (3.1).
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Note that formula (3.2) allows us to compute the mean square worst-case error
for integration in the weighted Sobolev space Hsob,s,w,γ for any digital net over Fq in
O(qms) operations.

3.1. Integration in Hsob,s,w,γ with cyclic nets. In this subsection we con-
sider the special case where the digital net used for the QMC rule is a cyclic net.

Let α ∈ Fqm , B1, . . . ,Bs be s ordered bases of Fqm over Fq and let C1, . . . , Cs be
given as in Theorem 2.7. Then we have

N = Nα = φ(Pα);

see Definition 2.6. Let ϕ be a bijection from Zq to Fq with ϕ(0) = 0. The cyclic net
generated by C1, . . . , Cs with respect to ϕ will be denoted by Pα,ϕ.

Algorithm 3.3. Given a dimension s ≥ 2, an integer m ≥ 1, and weights
γ = (γj)j≥1,

1. Choose a prime power q, a finite field Fq with q elements, a bijection ϕ :
{0, 1, . . . , q − 1} −→ Fq with ϕ(0) = 0, and s ordered bases B1, . . . ,Bs of Fqm

over Fq.
2. Find α ∈ Fqm \ {0} that minimizes ê2(Pα,ϕ,Ksob,s,w,γ).

In the following theorem we show that this construction yields the same upper
bound as the Korobov construction of polynomial lattice rules, which is of course not
surprising as Korobov polynomial lattice rules are just a special case.

Theorem 3.4. Let s ≥ 2, let q be a prime power, let Fq be a finite field with q
elements, let ϕ : {0, 1, . . . , q−1} −→ Fq be a bijection with ϕ(0) = 0, and let B1, . . . ,Bs

be s ordered bases of Fqm over Fq. Further let m ≥ 1. Assume that α∗ ∈ Fqm \ {0} is
constructed by Algorithm 3.3. Then we have

ê2(Pα∗,ϕ,Ksob,s,w,γ) ≤
( s

qm − 1

) 1
λ

s∏
j=1

((
1 + γj

[
w2

j − wj + 1
3

] )λ

+ γλ
j ζq(λ)

) 1
λ

for all 1
2 < λ ≤ 1. Here for λ = 1, ζq(1) = 1

6 and for 1
2 < λ < 1 we have

ζ2(λ) =
1

3λ(22λ − 2)
and ζq(λ) =

(q − 1)q2λ

6λ(q2λ − q)
for q �= 2.

Proof. Since

min
α∈Fqm\{0}

ê2(Pα,ϕ,Ksob,s,w,γ) ≤

⎛
⎝ 1

qm − 1

∑
α∈Fqm\{0}

ê2(Pα,ϕ,Ksob,s,w,γ)λ

⎞
⎠

1
λ

,

it is enough to show that the inequality

1

qm − 1

∑
α∈Fqm\{0}

ê2(Pα,ϕ,Ksob,s,w,γ)λ

≤ s

qm − 1

s∏
j=1

((
1 + γj

[
w2

j − wj + 1
3

] )λ

+ γλ
j ζq(λ)

)
holds. With Jensen’s inequality, which states that for a sequence (ak) of nonnegative
reals we have (∑

ak

)λ

≤
∑

aλk
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for any 0 < λ ≤ 1, we obtain

Ms,q :=
1

qm − 1

∑
α∈Fqm\{0}

ê2(Pα,Ksob,s,w,γ)λ

≤ 1

qm − 1

∑
l∈N

s
0\{0}

r̂q(w,γ, l)λA(tcm,ϕ(l)),

where for k ∈ F
sm
q we define

A(k) := #{α ∈ Fqm \ {0} : k ∈ Nα}.

Now k ∈ F
sm
q \ {0} is contained in Nα iff α is a zero of the corresponding polynomial

φ−1(k). This polynomial has degree of at most s− 1 and hence it has at most s− 1
zeros. Thus A(k) ≤ s− 1. Further, we have A(0) = qm − 1.

For l ∈ N
s
0 we have tcm,ϕ(qml) = 0 and hence

Ms,q ≤ 1

qm − 1

( ∑
l∈N

s
0\{0}

r̂q(w,γ, qml)λA(0)

+
∑
l∈N

s
0

∑
l∗∈Ns

0
0<‖l∗‖∞<qm

r̂q(w,γ, l∗ + qml)λA(tcm,ϕ(l∗))

)

≤
∑

l∈N
s
0\{0}

r̂q(w,γ, qml)λ +
s− 1

qm − 1

∑
l∈N

s
0

r̂q(w,γ, l)λ.

The first sum in the last line in the inequality above can be estimated by∑
l∈N

s
0\{0}

r̂q(w,γ, qml)λ

= −
s∏

j=1

r̂q(wj , γj , 0)λ +

s∏
j=1

∞∑
k=0

r̂q(wj , γj , q
mk)λ

= −
s∏

j=1

(
1 + γj

(
w2

j − wj + 1
3

))λ

+

s∏
j=1

((
1 + γj

(
w2

j − wj + 1
3

))λ

+

∞∑
k=1

r̂q(wj , γj , q
mk)λ

)

≤ 1

q2λm

s∏
j=1

((
1 + γj

[
w2

j − wj + 1
3

] )λ

+

∞∑
k=1

r̂q(wj , γj , k)λ

)

and the second sum is

∑
l∈N

s
0

r̂q(w,γ, l)λ =

s∏
j=1

∞∑
k=0

r̂q(wj , γj , k)λ

=

s∏
j=1

((
1 + γj

[
w2

j − wj + 1
3

] )λ

+

∞∑
k=1

r̂q(wj , γj , k)λ

)
.
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We have
∞∑
k=1

r̂q(wj , γj , k)λ =: γλ
j μq(λ).

First note that∣∣∣∣∣∣∣
1

6
+ �

⎛
⎜⎝ q−1∑

u,v=0
v≥u

(v − u)walκa−1

(
u�ϕv

q

)
q

⎞
⎟⎠
∣∣∣∣∣∣∣ ≤

1

6
+

1

q

q−1∑
u,v=0
v≥u

(v − u)

=
1

6
+

1

q

q(q + 1)(q − 1)

6
=

q2

6
.

For 1
2 < λ < 1 we have

μq(λ) =

∞∑
k=1

⎛
⎜⎝−1

2

⎛
⎜⎝ 1

3q2a
+

2

q2a
�

⎛
⎜⎝ q−1∑

u,v=0
v≥u

(v − u)walκa−1

(
u�ϕv

q

)
q

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

λ

≤
∞∑
a=1

qa−1∑
k=qa−1

1

q2λa

(q2

6

)λ

=
(q − 1)q2λ

6λ(q2λ − q)
=: ζq(λ)

and for λ = 1 we have

μq(1)

= −1

2

∞∑
a=1

qa−1∑
k=qa−1

⎛
⎜⎝ 1

3q2a
+

2

q2a
�

⎛
⎜⎝ q−1∑

u,v=0
v≥u

(v − u)walκa−1

(
u�ϕv

q

)
q

⎞
⎟⎠
⎞
⎟⎠

= −1

6

∞∑
a=1

1

q2a
(qa − qa−1) −�

⎛
⎜⎝ ∞∑

a=1

1

q2a

qa−1∑
k=qa−1

q−1∑
u,v=0
v≥u

(v − u)walκa−1

(
u�ϕv

q

)
q

⎞
⎟⎠ .

Now with Lemma B.1 we obtain

∞∑
a=1

1

q2a

qa−1∑
k=qa−1

q−1∑
u,v=0
v≥u

(v − u)walκa−1

(
u�ϕv

q

)
q

=
∞∑
a=1

1

qa+2

q−1∑
κa−1=1

q−1∑
u,v=0
v≥u

(v − u)walκa−1(
u�ϕv

q ) =

∞∑
a=1

1

qa+2
q
1 − q2

6
= −q + 1

6q
.

Therefore we have

μq(1) = − 1

6q
+

q + 1

6q
=

1

6
=: ζq(1).

Let now q = 2 and 1
2 < λ < 1. Then

μ2(λ) =

∞∑
a=1

2a−1∑
k=2a−1

⎛
⎜⎝−1

2

⎛
⎜⎝ 1

3 · 22a
+

2

22a

1∑
u,v=0
v≥u

(v − u)wal1

(
u�ϕv

2

)
2

⎞
⎟⎠
⎞
⎟⎠

λ
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and by using

1∑
u,v=0
v≥u

(v − u)wal1

(
u�ϕv

2

)
2

=
wal1

(
0�ϕ1

2

)
2

= −1

2
,

we obtain

μ2(λ) =
1

3λ(22λ − 2)
=: ζ2(λ).

The theorem follows.
The following corollary shows that under certain conditions on the weights we can

obtain an upper bound which depends only polynomially on the dimension and thus
proving tractability. (See [20] for more information on tractability.) An analogous
result was shown for the Korobov construction of polynomial lattice rules; see [4].

Corollary 3.5. Let s ≥ 2, let q be a prime power, Fq be a finite field with q
elements, ϕ : {0, 1, . . . , q − 1} −→ Fq be a bijection with ϕ(0) = 0, and B1, . . . ,Bs be
s ordered bases of Fqm over Fq. Let m ≥ 1 and suppose α∗ ∈ Fqm \ {0} is constructed
by Algorithm 3.3. Let N = qm.

1. We have

ê(Pα∗,ϕ,Ksob,s,w,γ) ≤ cs,w,γ,δs
1−δN−1+δ for all 0 < δ ≤ 1

2 ,

where

cs,w,γ,δ := 21−δ
s∏

j=1

(
1 + γ

1
2(1−δ)

j

[(
w2

j − wj + 1
3

) 1
2(1−δ)

+ ζq

(
1

2(1−δ)

)])1−δ

.

2. Under the assumption

A := lim sup
s→∞

∑s
j=1 γj

log s
< ∞

we obtain cs,w,γ,1/2 ≤ c̄ηs
(A+η)/2 and therefore

ê(Pα∗,ϕ,Ksob,s,w,γ) ≤ c̄ηs
(1+(A+η))/2N− 1

2 for all η > 0,

where the constant c̄η depends only on the arbitrarily chosen parameter η.
Thus the root mean square worst-case error of the cyclic net generated by α∗

(with respect to the bijection ϕ) satisfies a bound which depends only polyno-
mially on the dimension.

The result can be shown using the methods employed in the proof of [4, Corollary
4.8].

3.2. Integration in Hsob,s,w,γ with hyperplane nets. In this subsection we
consider the special case where the digital net used for the QMC rule is a hyperplane
net.

Let α = (α1, . . . , αs) ∈ F
s
qm , B1, . . . ,Bs be s ordered bases of Fqm over Fq and let

C1, . . . , Cs be given as in Definition 2.10. Let

Nα = {k = (k1, . . . , ks) ∈ (Fm
q )s : C�

1 k1 + · · · + C�
s ks = 0},
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where 0 is the zero vector in F
m
q . Let ϕ be a bijection from Zq to Fq with ϕ(0) = 0.

The hyperplane net generated by C1, . . . , Cs with respect to ϕ will be denoted by
Pα,ϕ.

From now on we write ê2(Pα,ϕ,Ksob,s,w,γ) = ê2(α1, . . . , αs) to stress the depen-
dence of the mean square worst-case error on α = (α1, . . . , αs).

Algorithm 3.6. Given a dimension s ≥ 2, an integer m ≥ 1, and weights
γ = (γj)j≥1,

1. Choose a prime power q, a finite field Fq with q elements, a bijection ϕ :
{0, 1, . . . , q − 1} −→ Fq with ϕ(0) = 0, and ordered bases B1, . . . ,Bs of Fqm

over Fq.
2. Choose α1 ∈ Fqm \ {0}.
3. For d = 2, 3, . . . , s find αd ∈ Fqm \ {0} by minimizing the mean square worst-

case error ê2(α1, . . . , αd).
In the following theorem we show that this construction yields the same upper

bound as the component-by-component construction of polynomial lattice rules.
Theorem 3.7. Let s ≥ 2, let q be a prime power, let Fq be a finite field with q

elements, let ϕ : {0, 1, . . . , q−1} −→ Fq be a bijection with ϕ(0) = 0, and let B1, . . . ,Bs

be ordered bases of Fqm over Fq. Further let m ≥ 1. Assume that (α∗
1, . . . , α

∗
s) ∈

(Fqm \ {0})s is constructed by Algorithm 3.6. Then for all d = 1, 2, . . . , s we have

ê2(α∗
1, . . . , α

∗
d) ≤ (qm − 1)−

1
λ

d∏
j=1

((
1 + γj

[
w2

j − wj + 1
3

] )λ

+ ζq(λ)γλ
j

) 1
λ

for all 1
2 < λ ≤ 1. Here ζq(λ) is defined as in Theorem 3.4.

Proof. First we show that the inequality

ê2(α∗
1, . . . , α

∗
d) ≤

⎛
⎝ 1

qm − 1

∑
l∈N

d
0

r̂q(w,γ, l)λ

⎞
⎠

1
λ

(3.3)

holds for all d = 1, 2, . . . , s.
We start with d = 1. The generating matrix C1 is regular for all α1 ∈ Fqm \ {0}

and hence Nα1 = {0}. Hence we have

ê2(α∗
1) =

∑
k∈N0\{0}

qm|k

r̂q(ω1, γ1, k) =

∞∑
k=1

r̂q(ω1, γ1, q
mk) =

1

q2m

∞∑
k=1

r̂q(ω1, γ1, k).

The result for d = 1 now follows by applying Jensen’s inequality to the infinite sum
above.

Suppose for some 1 ≤ d < s we have α∗ = (α∗
1, . . . , α

∗
d) ∈ (Fqm \ {0})d and

ê2(α∗) ≤

⎛
⎝ 1

qm − 1

∑
l∈N

d
0

r̂q(w,γ, l)λ

⎞
⎠

1
λ

.
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Now we have

ê2(α, αd+1) =
∑

(l,ld+1)∈N
d+1
0 \{0}

(tcm,ϕ(l),tcm,ϕ(ld+1))∈N(α,αd+1)

r̂q(wd+1, γd+1, ld+1)r̂q(w,γ, l)

= r̂q(wd+1, γd+1, 0)ê2(α) + θ(αd+1),

where

θ(αd+1) =

∞∑
ld+1=1

r̂q(wd+1, γd+1, ld+1)
∑
l∈Nd

0
(tcm,ϕ(l),tcm,ϕ(ld+1))∈N(α,αd+1)

r̂q(w,γ, l).

In Algorithm 3.6, α∗
d+1 is chosen such that the mean square worst-case error ê2(α∗, αd+1)

is minimized. Since the only dependence on αd+1 is in θ(αd+1), we have θ(α∗
d+1) ≤

θ(αd+1) for all αd+1 ∈ Fqm \ {0}. Hence for any λ ≤ 1 we obtain

θ(α∗
d+1) ≤

⎛
⎝ 1

qm − 1

∑
αd+1∈Fqm\{0}

θ(αd+1)
λ

⎞
⎠

1
λ

.

From Jensen’s inequality it follows that

θ(αd+1)
λ ≤

∞∑
ld+1=1

r̂q(wd+1, γd+1, ld+1)
λ

∑
l∈Nd

0
(tcm,ϕ(l),tcm,ϕ(ld+1))∈N(α,αd+1)

r̂q(w,γ, l)λ.

If ld+1 is a multiple of qm, then tcm,ϕ(ld+1) = 0 and the sum is independent of αd+1.
Otherwise tcm,ϕ(ld+1) �= 0. We obtain

1

qm − 1

∑
αd+1∈Fqm\{0}

θ(αd+1)
λ ≤

∞∑
ld+1=1

qm|ld+1

r̂q(wd+1, γd+1, ld+1)
λ

∑
l∈Nd

0
tcm,ϕ(l)∈Nα

r̂q(w,γ, l)λ

+
1

qm − 1

∞∑
ld+1=1

qm � | ld+1

r̂q(wd+1, γd+1, ld+1)
λ
∑
l∈N

d
0

r̂q(w,γ, l)λ
∑

αd+1∈Fqm\{0}
(tcm,ϕ(l),tcm,ϕ(ld+1))∈N(α,αd+1)

1.

From tcm,ϕ(ld+1) �= 0 we obtain

∑
l∈N

d
0

r̂q(w,γ, l)λ
∑

αd+1∈Fqm\{0}
(tcm,ϕ(l),tcm,ϕ(ld+1))∈N(α,αd+1)

1

=
∑
l∈Nd

0
tcm,ϕ(l)�∈Nα

r̂q(w,γ, l)λ =
∑
l∈N

d
0

r̂q(w,γ, l)λ −
∑
l∈Nd

0
tcm,ϕ(l)∈Nα

r̂q(w,γ, l)λ.
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Therefore we can estimate

1

qm − 1

∑
αd+1∈Fqm\{0}

θ(αd+1)
λ ≤

∞∑
ld+1=1

qm|ld+1

r̂q(wd+1, γd+1, ld+1)
λ

∑
l∈Nd

0
tcm,ϕ(l)∈Nα

r̂q(w,γ, l)λ

+
1

qm − 1

∞∑
ld+1=1

qm � | ld+1

r̂q(wd+1, γd+1, ld+1)
λ

⎛
⎜⎜⎝∑

l∈N
d
0

r̂q(w,γ, l)λ −
∑
l∈Nd

0
tcm,ϕ(l)∈Nα

r̂q(w,γ, l)λ

⎞
⎟⎟⎠

≤
∞∑
l=1

r̂q(wd+1, γd+1, q
ml)λ

∑
l∈Nd

0
tcm,ϕ(l)∈Nα

r̂q(w,γ, l)λ

+
1

qm − 1

∞∑
l=1

r̂q(wd+1, γd+1, l)
λ

⎛
⎜⎜⎝∑

l∈N
d
0

r̂q(w,γ, l)λ −
∑
l∈Nd

0
tcm,ϕ(l)∈Nα

r̂q(w,γ, l)λ

⎞
⎟⎟⎠

≤ 1

qm − 1

∞∑
l=1

r̂q(wd+1, γd+1, l)
λ
∑
l∈N

d
0

r̂q(w,γ, l)λ.

Here the last inequality follows from the fact that

∞∑
l=1

r̂q(wd+1, γd+1, q
ml)λ − 1

qm − 1

∞∑
l=1

r̂q(wd+1, γd+1, l)
λ ≤ 0,

which follows from the definition of r̂q and since λ > 1
2 . Now we have

θ(α∗
d+1) ≤

⎛
⎝ 1

qm − 1

∞∑
l=1

r̂q(wd+1, γd+1, l)
λ
∑
l∈N

d
0

r̂q(w,γ, l)λ

⎞
⎠

1
λ

.

From this it follows that

ê2(α∗, α∗
d+1) ≤ r̂q(wd+1, γd+1, 0)ê2(α∗)

+

⎛
⎝ 1

qm − 1

∞∑
l=1

r̂q(wd+1, γd+1, l)
λ
∑
l∈N

d
0

r̂q(w,γ, l)λ

⎞
⎠

1
λ

≤

⎛
⎝ 1

qm − 1

∑
l∈N

d
0

r̂q(w,γ, l)λ

⎞
⎠

1
λ
⎛
⎝r̂q(wd+1, γd+1, 0) +

( ∞∑
l=1

r̂q(wd+1, γd+1, l)
λ

) 1
λ

⎞
⎠ .

Again from Jensen’s inequality we obtain

r̂q(wd+1, γd+1, 0) +

( ∞∑
l=1

r̂q(wd+1, γd+1, l)
λ

) 1
λ

≤
( ∞∑

l=0

r̂q(wd+1, γd+1, l)
λ

) 1
λ

and hence

ê2(α∗, α∗
d+1) ≤

⎛
⎝ 1

qm − 1

∑
l∈N

d+1
0

r̂q(w,γ, l)λ

⎞
⎠

1
λ

.

This finishes our induction proof of inequality (3.3).



CYCLIC DIGITAL NETS AND MULTIVARIATE INTEGRATION 405

Finally we have

∑
l∈N

d
0

r̂q(w,γ, l)λ =

d∏
j=1

∞∑
l=0

r̂q(wj , γj , l)
λ

=

d∏
j=1

(
(1 + γj [w

2
j − wj + 1

3 ])λ +

∞∑
l=1

r̂q(wj , γj , l)
λ

)
.

As in the proof of Theorem 3.4 we obtain

∞∑
l=1

r̂q(wj , γj , l)
λ ≤ γλ

j ζq(λ)

and the result follows.
The following corollary shows that under certain conditions on the weights we

can obtain an upper bound which depends only polynomially on the dimension,
and, with stronger conditions on the weights, we can also obtain an upper bound
which is independent of the dimension, thus proving strong tractability. (See [20] for
more information on (strong) tractability.) An analogous result was shown for the
component-by-component construction of polynomial lattice rules; see [4].

Corollary 3.8. Let s ≥ 2, let q be prime power, Fq be a finite field with q
elements, ϕ : {0, 1, . . . , q − 1} −→ Fq be a bijection with ϕ(0) = 0, and B1, . . .Bs be
s ordered bases of Fqm over Fq. Further let m ≥ 1. Suppose α∗ ∈ (Fqm \ {0})s is
constructed by Algorithm 3.6. Let N = qm.

1. We have

ê(α∗) ≤ cs,w,γ,δN
−1+δ for all 0 < δ ≤ 1

2 ,

where

cs,w,γ,δ := 21−δ
s∏

j=1

(
1 + γ

1
2(1−δ)

j

[(
w2

j − wj + 1
3

) 1
2(1−δ)

+ ζq

(
1

2(1−δ)

)])1−δ

.

2. Suppose

∞∑
j=1

γ
1

2(1−δ)

j < ∞.

Then cs,w,γ,δ ≤ c∞,w,γ,δ < ∞ and we have

ê(α∗) ≤ c∞,w,γ,δN
−1+δ for all 0 < δ ≤ 1

2 .

Thus the root mean square worst-case error of the hyperplane net generated by
α∗ (with respect to the bijection ϕ) is bounded independently of the dimension.

3. Under the assumption

A := lim sup
s→∞

∑s
j=1 γj

log s
< ∞

we obtain cs,w,γ,1/2 ≤ c̃ηs
(A+η)/2 and therefore

ê(α∗) ≤ c̃ηs
(A+η)/2N− 1

2 for all η > 0,
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where the constant c̃η depends only on the arbitrarily chosen parameter η.
Thus the root mean square worst-case error of the hyperplane net generated
by α∗ (with respect to the bijection ϕ) satisfies a bound which depends only
polynomially on the dimension.

The result can be shown using the methods employed in the proof of [4, Corollary
4.5].

Appendix A. Computation of the digital shift invariant kernel. Here we
compute the digital shift invariant kernel for the reproducing kernel

Ksob,s,w,γ(x,y) =

s∏
j=1

(1 + γj�wj
(xj , yj)),

where w = (w1, . . . , ws) ∈ [0, 1]s and

�w(x, y) =
|x− w| + |y − w| − |x− y|

2

=

{
min(|x− w|, |y − w|) if (x− w)(y − w) ≥ 0,

0 otherwise.

We have

Kds,q,γ,w,ϕ(x,y) :=

∫
[0,1)s

Ksob,s,w,γ(x ⊕ϕ σ,y ⊕ϕ σ) dσ

=

s∏
j=1

∫ 1

0

Ksob,1,wj ,γj (xj ⊕ϕ σ, yj ⊕ϕ σ) dσ,

where Ksob,1,w,γ(x, y) := 1 + γρw(x, y). So it suffices to compute

Kds,q,γ,w,ϕ(x, y) :=

∫ 1

0

Ksob,1,w,γ(x⊕ϕ σ, y ⊕ϕ σ) dσ.

It can easily be seen that the function Ksob,1,w,γ(x, y) is in L2([0, 1)2) and therefore
we can apply [3, Lemma 5], from which we find that

Kds,q,γ,w,ϕ(x, y) =

∞∑
k=0

K̂(k)walk(x)walk(y),

where

K̂(k) =

∫ 1

0

∫ 1

0

Ksob,1,w,γ(x, y)walk(x)walk(y) dxdy.

By Proposition 2.4(3) it follows easily that

K̂(k) =

{
1 + γ(w2 − w + 1

3 ) if k = 0,

−γ
2

∫ 1

0

∫ 1

0
|x− y|walk(y 
ϕ x) dxdy if k > 0.

Now we evaluate the last integral.
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Lemma A.1. Let qa−1 ≤ k < qa, κa−1 = �k/qa−1� > 0. Then

τ(k) :=

∫
[0,1)2

|x− y|walk(y 
ϕ x) dxdy

=
1

3q2a
+

2

q2a
�

⎛
⎜⎝ q−1∑

u,v=0
v≥u

(v − u)walκa−1

(
u�ϕv

q

)
q

⎞
⎟⎠ ,

where � is the real part function.
Proof. First we remark that

∫ (u+1)/qa

u/qa

∫ (v+1)/qa

v/qa
|x− y|dxdy =

{
1/(3q3a) if u = v,

|v − u|/(q3a) otherwise.

In the same way as in [3, Appendix A], we partition the unit square into subsquares
where the Walsh function is constant and get

τ(k) =

qa−1∑
u,v=0

walk

(
u
ϕ v

qa

)∫ (u+1)/qa

u/qa

∫ (v+1)/qa

v/qa
|x− y|dxdy

=
1

3q2a
+

1

q3a

qa−1∑
u,v=0
v>u

(v − u)

(
walk

(
u
ϕ v

qa

)
+ walk

(
u
ϕ v

qa

))

=
1

3q2a
+

2

q3a
�

⎛
⎜⎝ qa−1∑

u,v=0
v>u

(v − u)walk

(
u
ϕ v

qa

)⎞⎟⎠ .(A.1)

Let

0 ≤ u = qu′ + u0 < v = qv′ + v0 < qa, v′ > u′, 0 ≤ u0, v0 < q.

Since |walk((u
′ 
ϕ v′)/qa−1)| = 1 and

∑
u0,v0

(v′ − u′)walκa−1((u0 
ϕ v0)/q) = 0, we
have∣∣∣∣∣

q−1∑
u0,v0=0

((qv′ + v0) − (qu′ + u0))walk

(
(qu′ + u0) 
ϕ (qv′ + v0)

qa

)∣∣∣∣∣ =

∣∣∣∣∣
q−1∑

u0,v0=0

Tκa−1
(u0, v0)

∣∣∣∣∣ ,
where Tκ(u, v) := (v − u)walκ((u
ϕ v)/q). By the character properties of the Walsh
function system

(A.2)
q−1∑

u0,v0=0

Tκa−1(u0, v0) =

q−1∑
u0,v0=0

(v0 − u0)walκa−1

(
u0 
ϕ v0

q

)

=

q−1∑
v0=0

v0walκa−1

(
v0

q

) q−1∑
u0=0

walκa−1

(
u0

q

)
−

q−1∑
u0=0

u0walκa−1

(
u0

q

) q−1∑
v0=0

walκa−1

(
v0

q

)
= 0.

So the only (u, v) left in the sum (A.1) are (qu′ + u0, qu
′ + v0) for 0 ≤ u′ < qa−1. In
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this case the summands in the sum of (A.1) equal Tκa−1
(u0, v0) for fixed u′, we get

τ(k) =
1

3q2a
+

2

q3a
�

⎛
⎜⎝qa−1−1∑

u′=0

q−1∑
u0,v0=0
v0>u0

Tκa−1(u0, v0)

⎞
⎟⎠

=
1

3q2a
+

2

q2a+1
�

⎛
⎜⎝ q−1∑

u0,v0=0
v0≥u0

(v0 − u0)walκa−1

(
u0 
ϕ v0

q

)⎞⎟⎠ ,

as claimed. (Note the difference from (A.2) in the summation range of v0.)
Now define

r̂q(w, γ, k) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + γ(w2 − w + 1
3 ) if k = 0,

−γ
2

⎛
⎝ 1

3q2a + 2
q2a�

⎛
⎝ q−1∑

u,v=0
v≥u

(v−u)walκa−1

(
u	ϕv

q

)
q

⎞
⎠
⎞
⎠ if k > 0,

and for w = (w1, . . . , ws), k = (k1, . . . , ks) and γ = (γ1, γ2, . . . ) define

r̂q(w,γ,k) :=

s∏
j=1

r̂q(wj , γj , kj).

Then we obtain the following theorem.
Theorem A.2. The digital shift invariant kernel for the reproducing kernel

Ksob,s,w,γ(x,y), where the digital shift is taken in prime-power base q and with respect
to the bijection ϕ, is given by

Kds,q,γ,w,ϕ(x,y) =
∑

k∈N
s
0

r̂q(w,γ,k)walk(x)walk(y).

Appendix B. Some other useful results. Here we prove two results which
are used in section 3.

Lemma B.1. With Tκ(u, v) := (v− u)walκ((u
ϕ v)/q), for l ∈ {0, . . . , q− 1} we
have

q−1∑
κ=1

q−1∑
u,v=0
v≥u

walκ

(
l

q

)
Tκ(u, v) = q

⎛
⎜⎝1 − q2

6
+

q−1∑
u=0,

u<u⊕ϕl

(u⊕ϕ l) − u

⎞
⎟⎠

and

q−1∑
κ=1

q−1∑
u,v=0
v≥u

walκ

(
l

q

)
Tκ(u, v) = q

⎛
⎜⎝1 − q2

6
+

q−1∑
u=0,

u<u	ϕl

(u
ϕ l) − u

⎞
⎟⎠ .

Proof. For the first sum we have

q−1∑
κ=1

q−1∑
u,v=0
v≥u

(v − u)walκ

(
l ⊕ϕ u
ϕ v

q

)
=

q−1∑
u,v=0
v≥u

(v − u)

q−1∑
κ=1

walκ

(
l ⊕ϕ u
ϕ v

q

)
,
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where the right sum can be simplified such that the last line is equal to

q−1∑
u,v=0
v≥u

(v − u) ×
{
q − 1 if v = u⊕ϕ l,

−1 else,

=

q−1∑
u=0

q−1∑
v=u

−(v − u) + q

q−1∑
u,v=0

v≥u,v=u⊕ϕl

(v − u) =

q−1∑
d=0

−(q − d)d + q

q−1∑
u=0

u<u⊕ϕl

((u⊕ϕ l) − u)

=q

⎛
⎜⎝−(q2 − 1)

6
+

q−1∑
u=0

u<u⊕ϕl

((u⊕ϕ l) − u)

⎞
⎟⎠ .

The second part follows from the first by

q−1∑
κ=1

q−1∑
u,v=0
v≥u

walκ

(
l

q

)
Tκ

(
u, v

)

=

q−1∑
κ=1

q−1∑
u,v=0
v≥u

walκ

(
l

q

)
Tκ

(
u, v

)
=

q−1∑
κ=1

q−1∑
u,v=0
v≥u

walκ

(

ϕl

q

)
Tκ

(
u, v

)
,

which finishes the proof.
The next lemma was used in section 3 to give an explicit computable representa-

tion of the shift invariant kernel Kds,q,γ,w,ϕ.
Lemma B.2. If x �= y,

∞∑
k=1

−τ(k)

2
walk(x)walk(y) =

1

6
− 1

2qi0+1

×

⎛
⎜⎝ q−1∑

u=0,
u<u⊕ϕxi0

	ϕyi0

(u⊕ϕ xi0 
ϕ yi0 − u) +

q−1∑
u=0,

u<u⊕ϕyi0
	ϕxi0

(u⊕ϕ yi0 
ϕ xi0 − u)

⎞
⎟⎠

with xi0 , yi0 denoting the i0th fractional q-adic digits of x and y, where i0 is the
smallest index such that the digits differ. For x = y the sum is equal to 1/6. (Note
that for k > 0 we have r̂q(w, γ, k) = −γ

2 τ(k).)
Proof. Let Da,κ denote Da,κ =

∑
k=κqa−1+··· walk, where the sum ranges over all

k with the leading term κqa−1 in the q-adic expansion. By the character properties
of the Walsh function set we have

Da,κ = walκqa−1

∑
0≤k<qa−1

walk = walκqa−1 · qa−1 · 1[0,q−(a−1)).

First, let x �= y, i0 = max({i : xj = yj for all j = 0, . . . , i ≥ 0}) + 1, where xi, yi are
the q-adic digits of x and y. Then, with Tκ(u, v) = (v− u)walκ((u
ϕ v)/q) as above,
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and since τ(k) depends only on the q-adic length a and most significant digit κ,

∞∑
k=1

−τ(k)

2
walk(x)walk(y) =

∞∑
a=1

q−1∑
κ=1

−τ(κqa−1)

2
Da,κ(x
ϕ y)

=

∞∑
a=1

q−1∑
κ=1

1

q2a
�

⎛
⎜⎝−1

q

q−1∑
u,v=0,
v≥u

Tκ(u, v) − 1

6

⎞
⎟⎠Da,κ(x
ϕ y)

=

i0−1∑
a=1

q−1∑
κ=1

1

q2a
�

⎛
⎜⎝−1

q

q−1∑
u,v=0,
v≥u

Tκ(u, v) − 1

6

⎞
⎟⎠Da,κ(x
ϕ y)

+

q−1∑
κ=1

1

q2i0
�

⎛
⎜⎝−1

q

q−1∑
u,v=0,
v≥u

Tκ(u, v) − 1

6

⎞
⎟⎠Di0,κ(x
ϕ y)

=

i0−1∑
a=1

q−1∑
κ=1

1

qa+1
�

⎛
⎜⎝−1

q

q−1∑
u,v=0,
v≥u

Tκ(u, v) − 1

6

⎞
⎟⎠

+

q−1∑
κ=1

1

2qi0+1

⎛
⎜⎝−1

q

q−1∑
u,v=0,
v≥u

walκqi0−1(x
ϕ y)Tκ(u, v) −
walκqi0−1(x
ϕ y)

6

⎞
⎟⎠

+

q−1∑
κ=1

1

2qi0+1

⎛
⎜⎝−1

q

q−1∑
u,v=0,
v≥u

walκqi0−1(x
ϕ y)Tκ(u, v) −
walκqi0−1(x
ϕ y)

6

⎞
⎟⎠

=

i0−1∑
a=1

1

qa+1

(
q2 − 1

6
− q − 1

6

)
+

1

2qi0+1

⎛
⎜⎝2 · q

2 − 1

6

−

⎛
⎜⎝ q−1∑

u=0,
u<u⊕ϕxi0

	ϕyi0

(u⊕ϕ xi0 
ϕ yi0 − u) +

q−1∑
u=0,

u<u⊕ϕyi0
	ϕxi0

(u⊕ϕ yi0 
ϕ xi0 − u)

⎞
⎟⎠− 2 · −1

6

⎞
⎟⎠

=
1

6
− 1

2qi0+1

⎛
⎜⎝ q−1∑

u=0,
u<u⊕ϕxi0

	ϕyi0

(u⊕ϕ xi0 
ϕ yi0 − u) +

q−1∑
u=0,

u<u⊕ϕyi0
	ϕxi0

(u⊕ϕ yi0 
ϕ xi0 − u)

⎞
⎟⎠

by Lemma B.1.
If x = y, it is easy to see (e.g., by letting i0 → ∞ in the above term) that the

second term vanishes.
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Abstract. In this paper we prove a discrete version of the classical Ingham inequality for
nonharmonic Fourier series whose exponents satisfy a gap condition. Time integrals are replaced by
discrete sums on a discrete mesh. We prove that, as the mesh becomes finer and finer, the limit of
the discrete Ingham inequality is the classical continuous one. This analysis is partially motivated
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1. Introduction. Families of “nonharmonic” exponentials
{
eiλkt

}
appear in var-

ious fields of mathematics and signal processing. One of the central problems arising
in all of these applications is the question of the Riesz basis property.

The following inequality for nonharmonic Fourier series due to Ingham is well
known (see [9] and [26, p. 162]): Assume that the strictly increasing sequence {λk}k∈Z

of real numbers satisfies the “gap” condition

λk+1 − λk ≥ γ for all k ∈ Z,(1.1)

for some γ > 0. Then, for all T > 2π/γ there exist two positive constants C1, C2

depending only on γ and T such that

C1(T, γ)

∞∑
k=−∞

|ak|2 ≤
∫ T

0

∣∣∣∣∣
∞∑

k=−∞
ake

itλk

∣∣∣∣∣
2

dt ≤ C2(T, γ)

∞∑
k=−∞

|ak|2 ,(1.2)

for every complex sequence (ak)k∈Z ∈ �2, where

C1(T, γ) =
2T

π

(
1 − 4π2

T 2γ2

)
> 0,(1.3)

C2(T, γ) =
8T

π

(
1 +

4π2

T 2γ2

)
> 0,(1.4)
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and �2 is the Hilbert space of square summable sequences,

�2 =

{
{ak} : ‖ak‖2

�2 =
∑
k∈N

|ak|2 < ∞
}
.(1.5)

This result shows that the sequence of exponentials
{
eiλkt

}
forms a Riesz basis

of its span for T > 2π/γ (see [26, Chapter 3, p. 112]).
As we have mentioned above, one of the main applications of Ingham’s inequality

and its variants is the control of wave-like equations and other closely related problems
like observability or inverse problems. The problem of observability for wave equations
consists of analyzing whether the energy of the waves propagating in a domain with
suitable boundary conditions can be estimated in terms of the energy concentrated
on a given subregion of the domain (or its boundary) where propagation occurs in a
given time interval. On the other hand, the goal in controllability problems is to drive
the solutions of a given dynamical system (continuous or discrete) to a given state at
a given final time by means of a control acting on the system on that subregion (or
its boundary). It is well known that the two problems are equivalent provided one
chooses an appropriate functional setting, which depends on the equation (see, for
instance, [17]).

In the context of partial differential equations, using the Fourier representation
of the solutions, the problem of observability can be reduced to an application of
Ingham’s inequality in which the sequence {λk} is constituted by the spectrum of
the generator of the underlying semigroup. However, the gap condition (1.1) that
is required to apply Ingham’s inequality often limits the range of applicability of
this technique to 1-d problems like strings and beams. This has led to a significant
number of controllability results (see [15]) and also to far reaching generalizations
of the Ingham theorem under weakened gap conditions (see [2], [4], [5], [8], [12],
[13]). The most complete result in this direction has been obtained independently by
Baiocchi, Komornik, and Loreti in [2], [3], [4], and Avdonin and Moran in [1].

In the numerical analysis of those observability inequalities and for studying the
controllability properties of numerical schemes the need of a discrete version of this
inequality arises naturally (see [7], [19], [20], [21]). This paper is devoted to proving
a discrete version of that Ingham inequality.

The inequality we prove is uniform with respect to the mesh-size Δt in the time-
discretization and, in the limit as Δt → 0, yields the classical Ingham inequality
above.

The discrete Ingham inequality we prove is the natural tool to prove observabil-
ity/controllability properties for fully discrete schemes for the approximation of the
1-d wave equation and other closely related models (vibrating beams, Schrödinger
equation, etc.) and to show that the controls of the limiting continuous model are
the limit of the controls of the full discrete schemes. However, it is important to
recall that, as it is by now well known [28], numerical approximation schemes often
introduce spurious high frequency solutions that may be an obstacle for uniform (with
respect to the mesh-size) observability/controllability results. Thus, one often needs
to filter or cut-off those spurious numerical solutions. Our generalization of Ingham’s
inequality to the discrete context explains how this filtering has to be done in order
to guarantee uniform results.

As an example of application of our discrete Ingham inequality we perform the
analysis of the observability/controllability properties of the most standard centered
fully discrete schemes for the wave equation.
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The main reason for the lack of uniform observability/controllability of the nu-
merical high frequency spurious solutions, is that they generate high frequency wave
packets for which the group velocity is of the order of the mesh-size ([28]). Thus, as
the mesh-size tends to zero, since the velocity becomes smaller and smaller, the time
for observability/controllability increasing in a divergent way. This fact is related
to the dispersion diagram associated to the numerical approximation scheme, since,
roughly, the slope of the dispersion diagram is the group velocity of propagation of
wave packets and also coincides with the spectral gap. Part of this article is devoted to
explaining the connections of these notions and to show how combining the qualitative
information that the dispersion diagram provides with the discrete Ingham inequality,
one can get precise information on how the filtering should be implemented, if needed.

As proved in the original article by Ingham (see [9, p. 368]), an L1-version of
inequality (1.2) also holds. More precisely, for every increasing sequence {λk}k∈Z of
real numbers satisfying the “gap” condition (1.1) we also have

C1(T, γ) |ak| ≤
∫ T

0

∣∣∣∣∣
∞∑

k=−∞
ake

itλk

∣∣∣∣∣ dt ≤ C2(T, γ) |ak| for all k ∈ Z(1.6)

for all T > 2π/γ.
In this paper we also prove a discrete version of this inequality.
Our proofs are strongly inspired in that by Ingham (see also [26]), which is based

on the use of a suitable cut-off, nonnegative function, with compact support on the
time interval (0, T ) and whose Fourier transform is “concentrated” around τ = 0.
We use the same function in the physical space, but its Fourier transform has to be
replaced by the discrete one. One of the key points in the proof is a careful comparison
between the continuous and discrete transforms of this weight function. This is done
by using a key result by N. Trefethen [23].

This paper is organized as follows: in section 2 we state our discrete Ingham
inequality (see Theorem 2.1), we analyze the necessity of its hypotheses and compare
both the continuous and discrete inequalities. We also formulate a discrete version of
the L1 analogue (1.6) (see Theorem 2.2). In section 3 we discuss the application of this
result to the study of the properties of the solutions of fully discrete approximations
of the wave equation. In section 4 the controllability problem for the discrete system
is addressed and the main results of existence, characterization, and convergence of
the discrete controls are presented and proved. In section 5 we discuss these results in
connection with the dispersion diagrams of the discrete equations under consideration.
Finally, section 6 is devoted to proving the discrete Ingham inequality and its discrete
L1 version.

The discrete Ingham inequality we present in this paper has been announced in
[21].

2. Main results. The main result of this paper is as follows.
Theorem 2.1 (discrete Ingham inequality). Let {λk}k∈Z be an increasing se-

quence of real numbers satisfying for some γ > 0 the “gap” condition

λk+1 − λk ≥ γ > 0 for all k ∈ Z.(2.1)

Let T > 0 and 0 < Δt ≤ 1. Assume that {λk}|k|≤N satisfies the additional condition

|λk − λl| ≤
2π − (Δt)p

Δt
for all |k| ≤ N, |l| ≤ N, for some 0 ≤ p < 1/2,(2.2)
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where 2N ≤ M and M = [T/Δt− 1]. Then, there exists a positive number ε(Δt)
such that, for all T > T0(Δt) := 2π/γ + ε(Δt), there exist two positive constants
Cj(Δt, T, γ) > 0, j = 1, 2, such that

C1(Δt, T, γ)

N∑
k=−N

|ak|2 ≤ Δt

M∑
n=0

∣∣∣∣∣
N∑

k=−N

ake
inΔtλk

∣∣∣∣∣
2

≤ C2(Δt, T, γ)

N∑
k=−N

|ak|2 ,

(2.3)

for every complex sequence (ak)k∈Z ∈ �2.
Moreover, if γ and p in (2.1) and (2.2) are kept fixed, then ε(Δt) = o(Δt)1−2p

and the constants in (2.3) satisfy

Cj(Δt, T, γ) = Cj(T, γ) + δj(Δt), j = 1, 2, with δ1(Δt) ≤ 0 and δ2(Δt) ≥ 0,
(2.4)

where Cj(T, γ), j = 1, 2, are the Ingham constants in (1.3) and (1.4) and lim
Δt→0

δj(Δt) =

0, j = 1, 2.
Concerning the L1-version of Ingham inequality in (1.6), the following theorem

holds.
Theorem 2.2. Under the hypotheses of Theorem 2.1 we also have the following

discrete version of (1.6):

C1(Δt, T, γ) |ak| ≤ Δt

M∑
n=0

∣∣∣∣∣
N∑

k=−N

ake
inΔtλk

∣∣∣∣∣ ≤ C2(Δt, T, γ) |ak| for all |k| ≤ N.

(2.5)

As in Theorem 2.1, the time T and the constants in this inequality remain uniform
as Δt → 0 and converge to those of the continuous Ingham inequality (1.6).

Remark 2.3. Condition T > 2π/γ is optimal for the classical Ingham inequality
(see [26, p. 163]). In this sense, the condition T > 2π/γ + ε(Δt) in Theorem 2.1 is
asymptotically optimal since ε(Δt) → 0 as Δt → 0.

It is important to emphasize that the time T and the constants Cj , j = 1, 2 in
(2.3) are uniform in Δt. This is essential for the applications in numerical analysis
in which Δt → 0. The uniformity may be guaranteed because of the assumptions
(2.1)–(2.2) on the sequence {λk}k.

More precisely, when comparing the continuous and discrete inequalities, the
following can be said:

• In both continuous and discrete cases, the sequence {λk}k is required to
satisfy the so-called gap condition (2.1).

• The restriction (2.2) imposed on {λk}k in Theorem 2.1 is not needed in the
classical continuous Ingham inequality (1.2).

• It is easy to see that, for every N ∈ N fixed, if we pass to the limit Δt → 0
in (2.3), we get the classical Ingham inequality (1.2). Indeed, for (1.2) to be
true for all sequences (ak)k∈Z ∈ �2 it is sufficient, by density, to prove it for
sequences with only a finite number of nonzero components.
In that case (1.2) is the limit of (2.3) because of the convergence of the
minimal time T and the constants Cj , j = 1, 2, in (2.3) to those of (1.2).
We also have a discrete Ingham inequality (2.3) for every sequence (λk)k
verifying conditions (2.1) and (2.2), with 0 ≤ p ≤ 1. But, if p ≥ 1/2,
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ε(Δt) = o(Δt)1−2p → ∞, so T0(Δt) → ∞, and this makes it of little use in
practice because we are looking for a uniform (with respect to Δt) time T .

On the other hand, the restriction 2N ≤ M , with M = [T/Δt− 1], is sharp.
Indeed, when 2N > M one can find nontrivial values of the coefficients {ak}k such
that

N∑
k=−N

ake
inΔtλk = 0, 0 ≤ n ≤ M(2.6)

and

N∑
k=−N

|ak|2 �= 0.(2.7)

Observe that (2.6) is a system of M + 1 homogeneous linear equations with 2N + 1
unknown quantities ak. If 2N > M , this system necessarily has nontrivial solutions.
This is in agreement with common sense. Indeed, in view of the fact that we only
make M + 1 measurements for n = 0, . . . ,M one cannot expect to recover more than
M + 1 coefficients of the solution.

When 2N ≤ M , (2.6)–(2.7) do not hold. However if λk−λl ∈ 2πZ/Δt for certain
values of k and l with k �= l the sequence ak = −al = 1, an = 0, n �= k, and l satisfies
(2.6). Then, an inequality of type (2.3) is impossible. So, it is natural to impose on
the sequence {λk}k the condition λk − λl �∈ 2πZ/Δt for a discrete Ingham inequality
(2.3) to hold.

In fact, to avoid aliasing one has to restrict the increasing sequence of real numbers
{λk}k to be such that λk−λl ∈ [2πm/Δt, 2π(m + 1)/Δt], for some m ∈ Z. Therefore,
it is natural to impose the condition

|λk − λl| <
2π

Δt
.

In our theorem this latter condition is implied by the stronger one, (2.2), which
is needed for the uniform estimates in (2.3) to hold. More precisely, the restriction
0 ≤ p < 1/2 in (2.2) is needed to guarantee the asymptotically optimal time T >
2π/γ + ε(Δt), with ε(Δt) → 0 as Δt → 0 since ε(Δt) = o(Δt)1−2p.

Remark 2.4. The condition T > T0(Δt) is necessary for the proof of the first
inequality in (2.3) and in (1.6) (to have C1(Δt, T, γ) > 0). The second inequality in
(2.3) and (1.6), respectively, holds for all T > 0. In this respect the situation is the
same as for the continuous inequalities (1.2).

3. Application to the uniform observability of the full discretizations
of the 1-d wave equation.

3.1. The wave equation. This section is motivated by the classical problem of
control of waves. More precisely, it is related with the controllability of the 1-d wave
equation: given T > 0 and (u0, u1) ∈ L2(0, 1) × H−1(0, 1), the problem is to find a
control function v ∈ L2(0, T ) such that the solution of the system⎧⎨

⎩
utt − uxx = 0, 0 < x < 1, 0 < t < T,
u(0, t) = 0, u(1, t) = v(t), 0 < t < T,
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1,

(3.1)
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satisfies

u(T ) = ut(T ) = 0, 0 < x < 1.(3.2)

This property is well known to be true for T ≥ 2. This problem has been studied
and solved in a much more general setting and, in particular, for multidimensional
wave equations [17]. Several approaches to the problem have been developed. In
particular, the Hilbert uniqueness method (HUM) introduced by Lions in [17] offers
a general way of reducing the problem to the so-called observability problem for the
adjoint (up to an inversion in time) wave equation in the absence of control:⎧⎨

⎩
φtt − φxx = 0, 0 < x < 1, 0 < t < T,
φ(0, t) = φ(1, t) = 0, 0 < t < T,
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), 0 < x < 1.

(3.3)

It is well known that the energy

E(t) =
1

2

∫ 1

0

(
| φx(x, t) |2 + | φt(x, t) |2

)
dx(3.4)

of the solutions of (3.3) satisfies

dE(t)

dt
= E′(t) = 0 for all t ∈ [0, T ]

and therefore is conserved in time.
The observability problem is as follows: To find T > 0 such that there exists a

constant C(T ) > 0 for which

E(0) ≤ C(T )

∫ T

0

| φx(1, t) |2 dt(3.5)

holds for every solution of (3.3).
HUM allows showing that, once the observability inequality (3.5) is satisfied for

the adjoint system (3.3), system (3.1) is controllable in time T . Moreover, HUM
provides a systematic method to build the control v = φx(1, t) of minimal L2(0, T )-
norm.

In the context of the 1-d wave equation (3.3), inequality (3.5) can be easily proved
by several methods including Fourier series, D’Alembert Formula, multiplier tech-
niques, and Ingham’s theorem (1.2), provided T ≥ 2.

In order to solve the problem (3.5) applying the classical Ingham inequality, one
uses Fourier series techniques. Indeed, the solution of (3.3) admits the Fourier devel-
opment

φ(x, t) =
∑

k∈Z\{0}
ake

iλktϕk(x),(3.6)

with {λk}k, λk = kπ = −λ−k, k > 0, being the sequence of eigenvalues of the
system, ϕk(x) = sin(kπx), the corresponding eigenfunctions and ak ∈ C the Fourier
coefficients, which can be computed explicitly in terms of the initial data in (3.3).

By definition (3.4) of the conserved energy of the solution φ of (3.3) given by
(3.6), we have

Eφ =
1

2

∑
k∈Z\{0}

k2π2 |ak|2 .(3.7)
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On the other hand, in view of the explicit form of φx(1, t), inequality (3.5) may be
written as:

∑
k∈Z\{0}

k2π2 |ak|2 ≤ C(T )

∫ T

0

∣∣∣∣∣∣
∑

k∈Z\{0}
(−1)kkπake

iλkt

∣∣∣∣∣∣
2

dt.(3.8)

According to Ingham’s inequality (1.2), (3.8) holds for T > 2, since the gap of the
sequence {λk}k is constant, γ = π, and, consequently, the minimal observability time
is 2π/γ = 2. In this particular case the inequality holds also for the minimal time
T = 2. This is due to the orthogonality properties of the trigonometric polynomials.
But, in general, i.e., for a general sequence (λk)k∈Z satisfying the gap condition (1.1), it
is well known that the Ingham inequality (1.2) may fail for the minimal time T = 2π/γ
(see [26, p. 163]).

In order to obtain numerical approximations of the controls, it is natural to
analyze the controllability and observability properties of numerical approximation
schemes. We first recall some well-known facts about the space semi-discretization
schemes to later address space-time discretizations.

3.2. Space semi-discretizations. First, we consider the semi-discrete version
of the observability problem (3.5): Take N ∈ N, set h = 1/(N + 1) and consider the
finite-difference space semi-discretization of (3.3):⎧⎪⎨

⎪⎩
φ′′
j =

φj+1 − 2φj + φj−1

h2
, t > 0, j = 1, . . . , N,

φ0 = φN+1 = 0, t > 0,
φ(0) = φ0,j , φ′

j(0) = φ1,j , j = 1, . . . , N.

(3.9)

The energy of system (3.9) is given by

Eh(t) =
h

2

N∑
j=1

| φj(t) |2 +
h

2

N∑
j=0

| φj+1(t) − φj(t) |2
h2

(3.10)

and it is also conserved in time.
The semi-discrete version of (3.5) is

Eh(0) ≤ C

∫ T

0

∣∣∣∣φN (t)

h

∣∣∣∣2 dt.(3.11)

More precisely, one seeks for a positive constant C > 0 such that (3.11) holds.
The corresponding eigenvalue problem is of the form{

−[ϕk+1 + ϕk−1 − 2ϕk]/h
2 = λ2ϕk, k = 1, . . . , N,

ϕ0 = ϕN+1 = 0.
(3.12)

The eigenvalues and eigenvectors of (3.12) may be computed explicitly (see [10,
p. 456]); one then has⎧⎨

⎩λ2
k(h) =

4

h2
sin2

(
πkh

2

)
, k = 1, . . . , N,

ϕ̄k ≡ (ϕk,1, . . . , ϕk,N ); ϕk,j = sin(kπjh), j, k = 1, . . . , N.
(3.13)
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The solutions of (3.9) in Fourier series are

φ̄ =

N∑
k=−N,k 	=0

ake
iλk(h)tϕ̄k,(3.14)

where φ̄ = (φ1, . . . , φN ).
As pointed out in [11], (3.11) holds for all T > 0 and h > 0, but, the observability

constant in (3.11) may not remain uniformly bounded as h → 0, for any T > 0. More
precisely,

sup
φ̄∈Sh

[
Eh(0)∫ T

0
| φN (t)/h |2 dt

]
→ ∞, as h → 0,(3.15)

where Sh is the set of all solutions of (3.9). This is due to the pathological behavior
of the high frequency numerical solutions.

In the light of Ingham’s inequality (1.2), the lack of uniform observability as
h tends to zero may be explained because of the lack of gap between consecutive
eigenvalues (see [11], [28]). In particular, the gap between the largest eigenvalues
entering in the Fourier development of the solution of (3.9) may be bounded above as
follows:

λN (h) − λN−1(h) ≤ 3π2h

2
→ 0, as h → 0.(3.16)

As it was proved in [11], a suitable cut-off or filtering of the spurious numerical high
frequencies may be a good cure for these pathologies. Given 0 < α < 1, we introduce
the following classes of filtered solution of (3.9):

Cα(h) =

{
φ̄ sol. of (3.9) : φ̄ =

∑
|k|≤αN, k 	=0

ake
iλktϕ̄k

}
.(3.17)

In the class Cα(h) the high frequencies corresponding to the indexes j > αN have
been cut-off. This guarantees a uniform gap condition

λk+1(h) − λk(h) ≥ π cos
(πα

2

)
, for k ≤ α/h.(3.18)

Consequently, applying Ingham’s inequality, we may deduce the uniform observ-
ability in the class Cα(h) for

T > T (α) = 2/ cos(πα/2).(3.19)

Let us explain this in more detail.
By definition (3.10) of the conserved energy and taking into account the orthog-

onality properties of the eigenvectors (see [11], [20]), we have

Eh =
1

4

αN∑
k=−αN,k 	=0

|ak|2
(
1 + λ2

k(h)
)
.(3.20)

Then, inequality (3.11) in the class Cα(h) may be rewritten as

αN∑
k=−αN,k 	=0

|ak|2
(
1 + λ2

k(h)
)
≤ C(T )

∫ T

0

∣∣∣∣∣∣
αN∑

k=−αN,k 	=0

sin(Nkπh)

h
ake

iλkt

∣∣∣∣∣∣
2

dt.(3.21)
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Applying now Ingham’s theorem (1.2) for the real sequence (λk(h))|k|≤αN , in view
of (3.18), it follows that if T > T (α) with T (α) as in (3.19), there exists a constant
C > 0 such that

αN∑
k=−αN,k 	=0

∣∣∣∣ak sin(Nkπh)

h

∣∣∣∣2 ≤ C(T )

∫ T

0

∣∣∣∣∣∣
αN∑

k=−αN,k 	=0

sin(Nkπh)

h
ake

iλkt

∣∣∣∣∣∣
2

dt,(3.22)

holds for every solution of (3.9) in the class Cα(h). Finally, it is sufficient to observe
that

αN∑
k=−αN,k 	=0

∣∣∣∣ak sin(Nkπh)

h

∣∣∣∣2 ∼ Eh,

to obtain a uniform observability inequality (3.11) in each class Cα(h) for all 0 < α < 1.
Note, however, that the minimal time T (α) depends on the filtering parameter α and,
in particular, T (α)→ 2 as α→ 0 and T (α)→∞ as α→ 1 (see [28] for a rigorous proof).

As a further step towards a complete theory of numerical approximations of con-
trols it is natural to address the same issue for full space-time discretizations. This
issue is addressed in the following section.

3.3. Fully discrete approximations. The main ingredient to derive the fully
discrete analogue of (3.5) for a finite-difference full discretization of a homogeneous
1-d wave equation (3.3) is the Fourier representation of solutions combined, this time,
with our discrete Ingham inequality in Theorem 2.1.

Given M,N ∈ N we set Δx = 1/(N + 1) and Δt = T/(M + 1) and introduce the
nets

0 = x0 < x1 = Δx < · · · < xN = NΔx < xN+1 = 1,

0 = t0 < t1 = Δt < · · · < tM = MΔt < tM+1 = T

with xj = jΔx and tn = nΔt, j = 0, 1, . . . , N + 1, n = 0, 1, . . . ,M + 1.
We consider the following finite-difference discretization of (3.1):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un+1
j − 2un

j + un−1
j

(Δt)2
=

un
j+1 − 2un

j + un
j−1

(Δx)2
, j = 1, 2, . . . , N ; n = 1, 2, . . . ,M,

un
0 = 0, un

N+1 = vnΔx, n = 1, 2, . . . ,M,

u0
j = u0j , u1

j = Δtu1j + u0j , j = 1, 2, . . . , N.

(3.23)

We shall denote by ūn = (un
1 , . . . , u

n
N ) the solution at the time step n. As in the

context of the continuous wave equation above, we consider the uncontrolled system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φn+1
j − 2φn

j + φn−1
j

(Δt)2
=

φn
j+1 − 2φn

j + φn
j−1

(Δx)2
, j = 1, 2, . . . , N ; n = 1, 2, . . . ,M,

φn
0 = φn

N+1 = 0, n = 1, 2, . . . ,M,

φ0
j = φ0j , φ1

j = φ0j + Δtφ1j , j = 1, 2, . . . , N,

(3.24)
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a central finite difference discretization of (3.3).
Under the stability condition μ = Δt/Δx ≤ 1 (μ is the Courant number), the

scheme (3.24) is convergent of order 2.
However, as observed in [14], the resulting discrete sequence of controls vnΔx =

−φn
N/Δx obtained with a discrete HUM method may have an unstable behavior as

(Δt,Δx) → (0, 0). More precisely, it is possible to exhibit initial conditions such that
the discrete controls vnΔx do not converge towards the control v for (3.1) (see [28]).
Once more, filtering of high frequencies is an efficient cure for these instabilities and
our discrete Ingham inequality is the tool to analyze how it behaves.

The energy of (3.24) is

En =
Δx

2

N∑
j=0

⎡
⎣(φn+1

j − φn
j

Δt

)2

+

(
φn+1
j+1 − φn+1

j

Δx

)(
φn
j+1 − φn

j

Δx

)⎤⎦ ≥ 0,(3.25)

which is a discretization of the continuous energy E in (3.4), and it is conserved in
all the time steps En = E0, n = 1, . . . ,M , for the solutions of (3.24) (see [20]).

Solutions of (3.24) admit the Fourier development (see [20])

φ̄n =

N∑
k=−N,k 	=0

ake
iλknΔtϕ̄|k|,(3.26)

with ak ∈ C, ϕ̄k = (ϕk,1, . . . , ϕk,N ) = (sin(kπΔx), . . . , sin(NkπΔx)) and

λk = sgn(k)
2

Δt
arcsin

(
Δt

Δx
sin

kπΔx

2

)
.(3.27)

Our goal is to analyze the discrete version of the observability inequality (3.5)

E0 ≤ C

[
Δt

M∑
n=0

∣∣∣∣φn
N

Δx

∣∣∣∣2
]
,(3.28)

where E0 is the conserved energy of the solutions of the discrete system (3.24). This
inequality implies by HUM a controllability property of the discrete analogue (3.23)
of the control system (3.1). Of course, we seek for a positive constant C > 0 in (3.28),
independent on Δt and Δx. This will yield a family of controls that will be bounded
as Δt → 0, which constitutes a natural candidate to converge to the control of (3.1).

Inequality (3.28) is the discrete analogue of (3.5). In particular, note that, accord-
ing to Taylor’s formula φx(1, t) ∼ (φ(1, t) − φ(1 − Δx, t))/Δx. Thus, at the discrete
level and taking into account that, according to the boundary conditions, φn

N+1 = 0,
we obtain φx(1, t) ∼ −φn

N/Δx. Thus, the right-hand side of (3.28) represents a dis-
crete version of the right-hand side term in the continuous observability inequality
(3.5).

Inequality (3.28) may also be seen as a time-discretization of the semi-discrete
observability inequality (3.11). Note that, in fact, the semi-discrete case corresponds
to taking μ = 0 in the fully discrete scheme.

According to Theorem 2.1, the spectral gap between two consecutive eigenvalues
plays a very important role in the analysis of the uniform observability inequality
(3.28).
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It is important to distinguish two cases:
• In the particular case where Δt = Δx := h (μ = 1) we have

λk = sgn(k)
2

h
arcsin

(
sin

kπh

2

)
= sgn(k)kπ.

Thus,

λk+1 − λk = γ = π.

But the condition (2.2) does not hold, because

max
k,l

|λk − λl| =
2π − 2πΔt

Δt
.

Note, however, that, in this particular case, due to the orthogonality properties of
the family of complex discrete exponentials involved in the Fourier representation of
solutions,

M∑
n=0

einΔtπ(k−l) = (M + 1)δk,l,

where δk,l is Kronecker’s delta, an inequality of type (2.3) holds immediately and the
discrete Ingham inequality is not needed.

Indeed, denoting by mk = (−1)kak sin(kπΔx)/Δx, the energy of the solutions
(3.24) concentrated on the extreme x = 1 can be written as

Δt
M∑
n=0

∣∣∣∣φN

Δx

∣∣∣∣2 = Δt

M∑
n=0

∣∣∣∣∣
N∑

k=−N

mke
inΔtπk

∣∣∣∣∣
2

(3.29)

and the total energy of the solutions is

E0 =
1

2

N∑
k=−N

|mk|2(3.30)

(see [20] for more details). Then, for T = 2 we have

h
M∑
n=0

∣∣∣∣φN

h

∣∣∣∣2 = h

M∑
n=0

∣∣∣∣∣
N∑

k=−N

mke
inhπk

∣∣∣∣∣
2

= h

M∑
n=0

N∑
k=−N

|mk|2 + h

M∑
n=0

N∑
k=−N,k 	=l

mkm̄le
inhπ(k−l) = 2

N∑
k=−N

|mk|2 ,

and therefore

E0 =
1

4

[
h

M∑
n=0

∣∣∣∣φn
N

h

∣∣∣∣2
]
.

A similar identity holds for the continuous wave equation (3.3) in the minimal ob-
servability time T = 2. Namely

E =
1

4

∫ 2

0

|φx(1, t)|2
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for every solution φ of (3.3), where E is the energy of the solutions φ = φ(x, t).
• In the case when μ < 1 the gap between two consecutive eigenfrequencies

decreases at high frequencies and it is of the order of Δx when Δx → 0. Indeed, we
have

|λk+1 − λk| =

∣∣∣∣ 2

Δt

[
arcsin

(
Δt

Δx
sin

(k + 1)πΔx

2

)
− arcsin

(
Δt

Δx
sin

kπΔx

2

)]∣∣∣∣
≤
∣∣∣∣π2 2

Δt

Δt

Δx

(
sin

(k + 1)πΔx

2
− sin

kπΔx

2

)∣∣∣∣
=

∣∣∣∣π2 2

Δx

[
sin

kπΔx

2

(
cos

πΔx

2
− 1

)
+ sin

πΔx

2
cos

kπΔx

2

]∣∣∣∣
≤
∣∣∣∣π2 2

Δx

∣∣∣∣1 − cos
πΔx

2

∣∣∣∣+ π2

2
cos

kπΔx

2

∣∣∣∣
=

∣∣∣∣π2 2

Δx
2 sin2 πΔx

4
+

π2

2
cos

kπΔx

2

∣∣∣∣ ≤
∣∣∣∣π2

2

[
πΔx

4
+ sin

(
((N + 1) − k)Δxπ

2

)]∣∣∣∣ .
In particular, the gap for the highest frequencies satisfies

|λN − λN−1| ≤
π2

2

(
πΔx

4
+

πΔx

2

)
=

3π3Δx

8
→ 0, when Δx → 0.

So the uniform gap condition (2.1) is not satisfied and we cannot directly apply
Theorem 2.1 to prove inequality (3.28). Therefore, as soon as μ < 1, we are in the
same situation as for the semi-discrete equation (3.9) in which μ = 0: the lack of
spectral gap may produce the degeneracy of the observability constant.

To remedy this lack of uniform estimates, we need to introduce a subclass of
solutions of system (3.24) where the high frequency components have been filtered.
To do that, given α ∈ (0, 1), the so-called filtering parameter, we consider the class
Cα(Δx),

Cα(Δx) =

{
φ̄n sol. of (3.24) : φ̄n =

αN∑
k=−αN,k 	=0

ake
iλknΔtϕ̄|k|

}
,(3.31)

of solutions involving the eigenvalues {λk}k∈[−αN,αN ], k �= 0:

φ̄n =

αN∑
k=−αN,k 	=0

ake
iλknΔtϕ̄|k|.(3.32)

Let us first check the gap condition. We have

λk+1 − λk =
2

Δt

[
arcsin

(
Δt

Δx
sin

(k + 1)πΔx

2

)
− arcsin

(
Δt

Δx
sin

kπΔx

2

)]

=
π cos ξΔx

2√
1 −
(

Δt
Δx sin ξΔx

2

)2
:= γk,

(3.33)
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for every k ∈ [−αN,αN ] and for some ξ ∈ [kπ, (k + 1)π]. Therefore, in particular,

λk+1 − λk ≥
π cos NαπΔx

2√
1 −
(

Δt
Δx sin ξΔx

2

)2
≥ π cos

NαπΔx

2
≥ π(1 − α).

Consequently, for any filtering parameter α ∈ (0, 1), the gap condition (2.1) holds
with

γα := min
|k|≤αN

(γk) ≥ γ(α) = π cos

(
NαπΔx

2

)
≥ π(1 − α).(3.34)

On the other hand, by the mean value theorem,

|λk − λl| =

∣∣∣∣ 2

Δt

(
arcsin

(
Δt

Δx
sin

(
kπΔx

2

))
− arcsin

(
Δt

Δx
sin

(
lπΔx

2

)))∣∣∣∣
=

∣∣∣∣∣∣ 2

Δt

Δt
Δx

πΔx
2 cos

(
ξπΔx

2

)
(k − l)√

1 −
(

Δt
Δx

)2
sin2 ξπΔx

2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

2Nαπ cos
(

ξπΔx
2

)
√

1 −
(

Δt
Δx

)2
sin2 ξπΔx

2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
2Nαπ cos

(
ξπΔx

2

)
√(

Δt
Δx

)2 − (Δt
Δx

)2
sin2 ξπΔx

2

∣∣∣∣∣∣ = 2NαπΔx

Δt
=

2απ − 2απΔx

Δt

≤ 2πα(1 − Δt)

Δt
.

(3.35)

In view of (3.35), by choosing conveniently the filtering parameter α such that

α ≤ α∗(Δt) :=
2π − (Δt)p

2π(1 − Δt)
,(3.36)

with 0 ≤ p < 1/2, hypothesis (2.2) of Theorem 2.1 is verified.
In practice it is convenient to fix the filtering parameter 0 < α < 1, independent

of Δt. In this way (3.36) is automatically satisfied for Δt small enough, which is the
relevant case in numerical approximation problems. On the other hand the gap con-
dition (3.34) is also automatically and uniformly satisfied for the truncated sequence
{λk}|k|≤Nα.

Note that the gap γα (respectively, the minimal observability/ control time 2π/γα)
tends to π (respectively, to 2) when α ↘ 0+ while it converges to zero (respectively,
to infinity) when α ↗ 1−.

Note also that the minimal observability/control time can be taken to be any
T > 2π/γα since the minimal time T (α) = 2π/γα + ε(Δt) tends to 2π/γα as Δt tends
to zero.

More precisely, the following theorem holds.
Theorem 3.1. For all Courant numbers 0 < μ < 1 and all values of the filtering

parameter 0 < α < 1, the observability inequality below holds that

E0 ≤ 1

2 cos2 απ
2 C1(T, γα)

[
Δt

M∑
n=0

∣∣∣∣φN

Δx

∣∣∣∣2
]

(3.37)

for every solution of (3.24) in the class Cα(Δx), uniformly as (Δt,Δx) → (0, 0) for
any T > T (α) = 2π/γα, with C1(T, γα) given by (1.3). Moreover,
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1. T (α) ↗ ∞ as α ↗ 1− and T (α) ↘ 2 as α ↘ 0+.

2. Cα(T ) :=
1

2 cos2 απ
2 C1(T, γα)

↘ C(T ) =
1

2C1(T, γ)
as α ↘ 0+ with C1(T, γ)

given by (1.3), where C(T ) is the constant of the continuous observability
inequality (3.5).

Remark 3.2. This theorem allows the recovery of the uniform observability of
the original system (3.3) as the limit when (Δt,Δx) → (0, 0) of the observability of
the solutions of discrete one (3.24) in the classes (3.31) by means of Fourier filter-
ing; the statements in this theorem coincide with the predictions one may deduce
from the analysis of the dispersion diagram of the numerical scheme [28], as we shall
see in the next section.

Proof (Sketch of the proof). The energy of the solutions (3.26) of the discrete
system (3.24), concentrated on x = 1 is given by (3.29) and the total energy (3.25) of
the solutions is

E0 =
2

(Δx)2

∑
k

a2
k sin2 kπΔx

2
=

2

(Δx)2

∑
k

a2
k

sin2(kπΔx)

4 cos2 kπΔx
2

=
1

2

∑
k

| mk |2 1

cos2 kπΔx
2

,

where mk = sin(NkπΔx)/Δx.
For all k ∈ [−αN,αN ] we have cos(απ/2) ≤ cos(αNπΔx/2) ≤ cos(kπΔx/2) ≤ 1

and, in this case,

1

2

∑
k

| mk |2≤ E0 ≤ 1

2 cos2 NαπΔx
2

∑
k

| mk |2≤ 1

2 cos2 απ
2

∑
k

| mk |2.(3.38)

Applying Theorem 2.1 and the Fourier representation (3.32) of the solutions we obtain
that, for all T > 2π/γα + ε(Δt), there exist positive constants Cj(Δt, T, γα), j = 1, 2,
such that

C1(Δt, T, γα)

αN∑
k=−αN

|mk|2 ≤ Δt

M∑
n=0

∣∣∣∣∣
αN∑

k=−αN

mke
inΔtλk

∣∣∣∣∣
2

≤ C2(Δt, T, γα)

N∑
k=−N

|mk|2.

Therefore, for every α as in (3.36), by (3.38), the following inequalities hold:

2 cos2
απ

2
C1(Δt, T, γα)E0 ≤ Δt

M∑
n=0

∣∣∣∣φN

Δx

∣∣∣∣2 ≤ 2C2(Δt, T, γα)E0,(3.39)

with Cj(Δt, T, γα), j = 1, 2, defined by relations (2.4), for every truncated solution
(3.32) of system (3.24) belonging to the class Cα(Δx).

The uniform observability inequality (3.39) implies uniform controllability results,
as we shall prove in the next section, for the projection (over the subspace of unfiltered
Fourier components) of solutions of the dual controlled system (3.23). In the limit as
Δt,Δx → 0 one recovers the sharp controllability results of the wave equation (3.1).
For the details of the proof of convergence of controls we refer to [20] where the case
Δt = Δx was studied in detail. But, as mentioned above, for this particular one,
because of the orthogonality of complex harmonic polynomials, the discrete Ingham
inequality is not needed. We also refer to [16] where the convergence of controls for
the semi-discretizations of the beam equation was analyzed in detail.

The usual centered finite-difference approximation of the wave equation we have
considered here is only a simple example in which the discrete Ingham’s theorem
can be applied, together with some filtering mechanism, to get uniform observability
inequalities. The discrete Ingham inequality can also be applied, for instance, to the
implicit fully finite difference approximation of the wave equation, introduced in [18].
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4. Uniform controllability of the filtered solutions. In this section, we
apply the uniform observability results obtained above to analyze the controllability
properties of the fully discrete system (3.23).

Let us define the Hilbert spaces of square summable sequences �
1 and �

−1 as
follows:

�
1 =

{
{ak} ∈ �2 : ‖ak‖2

�1 =
∑
k∈N

| kπak |2< ∞
}
,(4.1)

�
−1 =

{
{ak} ∈ �2 : ‖ak‖2

�−1 =
∑
k∈N

∣∣∣ ak
kπ

∣∣∣2 < ∞
}
,(4.2)

where the discrete space �2 is given by (1.5).

For every α ∈ (0, 1), we introduce the space Sα generated by the eigenvectors
(ϕ̄k) involved in Cα(Δx) of the filtered solutions of the homogeneous system (3.24)
with filtering parameter α:

Sα = span {ϕ̄k : |k| ≤ αN} .(4.3)

For every s ∈ R, we denote by �
s
Δx,α the space Sα endowed with the norm

‖v‖2
s,Δx =

∑
|k|≤Nα

λs
k |ak|

2
, for v ∈ Sα : v =

∑
|k|≤Nα

akϕ̄k,

where λk are as in (3.27).

For every α ∈ (0, 1) and T > 0, we consider the partial controllability problem
for system (3.23) in the space �2 × �

−1, which consists of finding a control v̄n ∈ R
M

such that, for all initial data (ū0, ū1) ∈ �2 × �
−1, the solution ūn of (3.23) satisfies

(Παū
M ,Παū

M+1) = (0, 0),(4.4)

where Πα is the orthogonal projection over Sα; i.e.,

(
Παū

M ,Παū
M+1
)

=

( ∑
|k|≤Nα

ckϕ̄k,
∑

|k|≤Nα

dkϕ̄k

)
,

where (ck) and (dk) are the Fourier coefficients of (ūM , ūM+1) in the basis of the
eigenvectors (ϕ̄k)k. Observe that we only require to control uniformly the projection
Πα of the solutions of the discrete system (3.23) over subspaces in which the high
frequencies have been filtered.

As we shall see this result is a consequence of the partial observability results of
the previous section in the class of filtered solutions Cα(Δx).

Multiplying the first equation in (3.23) by an arbitrary solution φ̄n of (3.24) and
adding in j and n, we get

Δt

M∑
n=1

vnΔx

φn
N

Δx
+

1

μ

N∑
j=0

[
u1
jφ

0
j − u0

jφ
1
j

]
=

1

μ

N∑
j=0

[
uM+1
j φM

j − uM
j φM+1

j

]
.(4.5)
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The solution of system (3.23) may be characterized through a transposition argument
based on the identity above. Indeed, given M, N ∈ N, v̄Δt ∈ R

M , and (ū0, ū1) ∈
R

N × R
N , {ūn} solves (3.23) if for every s ∈ [1,M ] it holds that

Ls(φ̄
0, φ̄1) =

1

μ

N∑
j=1

[
us
jφ

s+1
j − us+1

j φs
j

]
,

or equivalently

Ls(φ̄
0, φ̄1) =

1

μ

(
ūs, φ̄s+1

)
RN +

1

μ

(
ūs+1,−φ̄s

)
RN ,(4.6)

for every solution {φ̄n} of the discrete problem (3.24), where the functional Ls: R
N ×

R
N → R is such that

Ls(φ̄
0, φ̄1) =

1

μ

N∑
j=1

[
u0
jφ

1
j − u1

jφ
0
j

]
− Δt

s∑
n=1

vnΔx

[
φn
N

Δx

]
.

The projection Παū
n may be characterized by the same variational formulation

(4.6), with the only difference being that the test functions in (4.6) are solutions of
(3.24) in the class Cα(Δx) (3.31).

Remark 4.1. Identity (4.4) is equivalent, by (4.5), to

Δt

M∑
n=1

vnΔx

[
φn
N

Δx

]
=

1

μ

N∑
j=0

[
u0
jφ

1
j − u1

jφ
0
j

]
,(4.7)

where (φ̄0, φ̄1) are the initial data corresponding to the solution φ̄n ∈ Cα(Δx) of the
discrete system (3.24).

Now let Δx = 1/q, Δt = μ/q, N = q− 1, for some q ∈ N and μ < 1. We have the
following uniform (with respect to (Δt,Δx) → (0, 0)) partial controllability property.

Theorem 4.2. Let 0 < μ < 1 and let us fix an arbitrary value of the filtering
parameter 0 < α < 1. For every T > T (α) = 2π/γα, the system (3.24) is partially
controllable on �2×�

−1 with controls v̄nΔt ∈ R
M when M = [Tq/μ−1]. Moreover, the

controls of minimal norm are uniformly bounded with respect to Δt. More precisely[
Δt

M∑
n=0

|vnΔx|
2

]1/2
≤ C‖(ū1,−ū0)‖�−1×�2 ,(4.8)

where C = C(T, γα) > 0 is a constant independent of Δt ∈ (0, 1).
Proof. Let (φ̄n) ∈ Cα(Δx) be the solution of (3.24) with initial data (φ̄0, φ̄1) ∈

Sα × Sα and define the convex quadratic functional JΔx : R
N × R

N → R, by

JΔx(φ̄0, φ̄1) =
Δt

2

M∑
n=0

∣∣∣∣φn
N

Δx

∣∣∣∣2 − 1

μ2
Δx

N∑
j=0

(
u0
j

φ1
j − φ0

j

Δt
−

u1
j − u0

j

Δt
φ0
j

)
.(4.9)

For every φ̄n ∈ Cα(Δx) we have∣∣∣∣∣∣
N∑
j=0

(
u0
jφ

1
j − u1

jφ
0
j

)∣∣∣∣∣∣ =
∣∣(Παū

1, φ̄0
)

RN

∣∣+ ∣∣(Παū
0,−φ̄1

)
RN

∣∣
≤ ‖Παū

1‖�−1‖φ̄0‖�1 + ‖Παū
0‖�2‖φ̄1‖�2

≤ ‖Πα(ū1,−ū0)‖�−1×�2‖(φ̄0, φ̄1)‖�1×�2 .

(4.10)
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According to (4.10) and the direct observability inequality (the right-hand side term
in (3.39)) we deduce that JΔx is continuous.

On the other hand, according to the observability inequality (3.37), JΔx is uni-
formly coercive in Cα(Δx),

∣∣JΔx(φ̄0, φ̄1)
∣∣ ≥ ∥∥(φ̄0, φ̄1)

∥∥
�1×�2

[
C1(T, γα)

∥∥(φ̄0, φ̄1)
∥∥

�1×�2
− ‖Πα(ū1,−ū0)‖�−1×�2

]
.

(4.11)

Thus, there exists a unique minimizer (φ̂0, φ̂1) of JΔx,

JΔx(φ̂0, φ̂1) = min
(φ̄0,φ̄1)∈Sα×Sα

JΔx(φ̄0, φ̄1).

Let φ̂n ∈ Cα(Δx) be the solution of the adjoint problem (3.24) with this minimizer
as initial datum.

The pair (φ̂0, φ̂1) satisfies the Euler–Lagrange equation

Δt

M∑
n=0

φ̂n
N

Δx

φn
N

Δx
=

1

μ

N∑
j=0

[
u0
jφ

1
j − u1

jφ
0
j

]
,(4.12)

for every initial data (φ̄0, φ̄1) ∈ Sα × Sα associated to the solution φ̄n ∈ Cα(Δx) of

(3.24). Therefore, according to (4.7), the control we were looking for is vnΔx = φ̂n
N/Δx.

To conclude the proof we check the uniform boundedness of the controls vnΔx. We
have

JΔx((φ̂0, φ̂1)) ≤ JΔx(0, 0) = 0,

and, by (4.10), this implies

Δt

2

M∑
n=0

∣∣∣∣∣ φ̂
n
N

Δx

∣∣∣∣∣
2

≤ ‖Πα(ū1,−ū0)‖�−1×�2‖(φ̄0, φ̄1)‖�1×�2 .(4.13)

The discrete energy E0 of a solution φ̄n of (3.24) with initial data (φ̄0, φ̄1) satisfies

E0 =
1

2
‖(φ̄0, φ̄1)‖2

�1×�2 .

Now, using the Fourier development (3.32) of the solution φ̄n and applying the
observability inequality (3.37) we get

‖(φ̄0, φ̄1)‖2
�1×�2 = 2E0 ≤ 1

cos2 NαπΔx
2 C1(T, γα,Δt)

Δt

M∑
n=0

∣∣∣∣∣ φ̂
n
N

Δx

∣∣∣∣∣
2

≤ 1

cos2 απ
2 C1(T, γα)

Δt
M∑
n=0

∣∣∣∣∣ φ̂
n
N

Δx

∣∣∣∣∣
2

.

(4.14)

Therefore, in (4.13) we obtain⎡
⎣Δt

M∑
n=0

∣∣∣∣∣ φ̂
n
N

Δx

∣∣∣∣∣
2
⎤
⎦1/2

≤ 1√
cos2 απ

2 C1(T, γα)
‖Πα(ū1,−ū0)‖�−1×�2 ,(4.15)
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and then, the discrete controls vnΔx = φ̂n
N/Δx satisfy[

Δt

M∑
n=0

|vnΔx|
2

]1/2
≤ C(T, γα)‖Πα(ū1,−ū0)‖�−1×�2 ,(4.16)

as stated above.
Remark 4.3. Note that, with the notations (3.32), the controls (vnΔx) are of the

form

vnΔx = − μ

Δt

Nα∑
k=−Nα

cos(kπ) sin(kπΔt/μ)âke
iλknΔt,(4.17)

where (âk)k are the Fourier coefficients of the solution φ̂n ∈ Cα(Δx) of the adjoint

problem (3.24), with initial data (φ̂0, φ̂1) being the minimizer of the functional JΔx.
Now we show the convergence of the controls vnΔx of the discrete system (3.23) to

the HUM control of the continuous one (3.1), as Δt,Δx → 0.
Given an initial state (u0, u1) ∈ L2(0, 1) × H−1(0, 1) of the continuous system

(3.1), we develop it in Fourier series

(u0, u1) =

∞∑
k=1

(ck, dk)ϕk(x),(4.18)

with

∑
k∈N

[
|ck|2 +

∣∣∣∣ dkkπ
∣∣∣∣2
]
< ∞.(4.19)

We now construct the initial states for the discrete system (3.23) by setting

(ū0, ū1) =

N∑
k=1

(ck, ck cos(λknΔt) +
dk
λk

sin(λknΔt))ϕ̄k,(4.20)

with λk given by (3.27). They may be rewritten as

(ū0, ū1) =

∞∑
k=1

(cNk , cNk cos(λknΔt) +
dNk
λk

sin(λknΔt))ϕ̄k,(4.21)

where

cNk = ckχN (k), dNk = dkχN (k),

χN being the characteristic function of the set {1, . . . , N}.
In view of Theorem 4.2, there exists a HUM control (vnΔx) for the discrete system

(3.23), satisfying (4.4), with initial data (4.20).
Let us now prove that the sequence (vnΔx) converges (in a sense to be more precise

below) to v ∈ L2(0, T ), which is the HUM control for system (3.1) with initial data
(4.18).

To better analyze the convergence of controls, we define the continuous extension
of the discrete controls by setting

vΔx(t) = − μ

Δt

∑
k∈Z

cos(kπ) sin(kπΔt/μ)âke
iλkt,
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where âk are taken to be zero for |k| > αN . This function, when restricted to the
mesh, coincides with (vnΔx) (recall that vnΔx is given by (4.17)).

The following convergence result holds.
Theorem 4.4. Let μ = Δt/Δx ≤ 1. Consider M, N as in Theorem 4.2. Fix

(u0, u1) ∈ L2(0, 1) × H−1(0, 1) and consider the continuous and discrete controls v
and vΔx as above, with the filtering parameter α ∈ (0, 1) and T > Tα. Then,

vΔx(·) → v(·) strongly in L2(0, T ) as Δt → 0.(4.22)

Proof (Sketch of the proof ). In view of (4.8) it is easy to see that

Δt

M∑
n=0

|vnΔx|
2 ≤ C,(4.23)

and therefore ∫ T

0

|vΔx|2 dt ≤ C.(4.24)

Then, up to the extraction of a subsequence that we still denote by {vΔx}Δt, we
have

vΔx(t) ⇀ v(t) in L2(0, T ) as Δt → 0.(4.25)

By a Γ-convergence argument it can also be seen that the limit v is given by

v(t) = −∂xφ̂(1, t),(4.26)

where φ̂ is the solution of the adjoint problem (3.3) with initial data (φ̂0, φ̂1) ∈
H1

0 (0, 1) × L2(0, 1), the unique minimizer of the functional

J(φ0, φ1) =
1

2

∫ T

0

| ∂xφ(1, t) |2 dt−
∫ 1

0

u0φ1− < u1, φ0 >−1,1(4.27)

in the energy space H1
0 (0, 1) × L2(0, 1). By taking limits in (4.7) and thanks to the

construction of the initial data to be controlled for the discrete system we obtain

0 =

∫ 1

0

[
u1(x)φ0(x) − u0(x)φ1(x)dx

]
+

∫ T

0

v(t)∂xφ(1, t)dt(4.28)

and this latter condition is equivalent to the fact that v, the limit in (4.25), is a
control for system (3.1), driving the initial data (u0, u1) to rest; i.e., v ∈ L2(0, T ) is
the control of minimal L2-norm.

The limit v being identified in a unique way, we deduce that the whole sequence
vΔx converges.

Moreover, by the hypotheses of Theorem 4.4, the linear term of the discrete
functional JΔx in (4.9) converges to the linear term of the functional defined in (4.27).
Therefore, proving (4.22) is equivalent to proving that

JΔx(φ̂0
Δx, φ̂

1
Δx) → J(φ̂0, φ̂1), as Δx → 0,

where (φ̂0
Δx, φ̂

1
Δx) ∈ Sα × Sα minimizes (4.9) and (φ̂0, φ̂1) ∈ H1

0 (0, 1) × L2(0, 1) min-
imizes (4.27). Indeed, taking into account the convergence of the linear terms in
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this functional, and the structure of the functionals (4.9) and (4.27), we deduce the
convergence of the norms of the controls that, together with the weak convergence,
ensure strong convergence.

Thus, the controls vΔx and the controlled discrete solutions uΔx converge to the
control and the controlled solution of the wave equation (3.1). It is important to note
that the projections of the solutions of the controlled system end up covering the
whole range of frequencies so that, in the limit, we recover the exact controllability
property (3.2) of the continuous wave equation.

The details of the several steps of the proof are given in [19] and we omit them
for brevity.

5. Discrete Ingham inequalities and dispersion diagrams. In this section
we discuss the observability results obtained in section 3 applying discrete Ingham
inequalities in connection with the dispersion diagrams of the equations and numerical
schemes under consideration. We also discuss the optimality of these results. First of
all, we introduce and recall some classical concepts and notations.

Any time-dependent scalar, linear partial differential equation with constant co-
efficients admits plane wave solutions

φ(x, t) = ei(ωt−ξx), ξ ∈ R, ω ∈ C,(5.1)

where ξ is the wave number and ω is the frequency . The relationship

ω = ω(ξ)(5.2)

is known as the dispersion relation for the equation.
Any individual “monochromatic wave” (involving only one Fourier component)

of (5.1) moves at the phase velocity

c(ξ, ω) =
ω(ξ)

ξ
.(5.3)

When one superimposes two waves with nearby propagation velocities, there ap-
pear wave packets which can propagate with different velocities. The energy of wave
packets propagates at the so-called group velocity

C(ξ, ω) =
dω(ξ)

dξ
.(5.4)

In general, the dispersion relation for a partial differential equation is a polynomial
relation between ξ and ω, while a discrete model amounts to a trigonometric approx-
imation.

• Continuous problem. For the continuous wave equation (3.3) we have ω(ξ) = ξ
and therefore c(ξ) = C(ξ) = 1.

• Semi-discrete problem. For the semi-discrete scheme (3.9) the dispersion relation
is

ω(ξ) =
2

Δx
sin

ξΔx

2
, ξ ∈

[
− π

Δx
,
π

Δx

]
.(5.5)

Note that, at the semi-discrete level, each dispersion relation is 2π/Δx–periodic in ξ,
and it is natural to take ξ ∈ [−π/Δx, π/Δx] as a fundamental domain.
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The phase velocity is in this case

c(ξ, ω) =
2

ξΔx
sin

ξΔx

2
.(5.6)

The corresponding group velocity is

C(ξ, ω) =
dω(ξ)

dξ
= cos

ξΔx

2
.(5.7)

• Discrete problem. The same analysis can be developed for fully discrete schemes.
Considering numerical plane waves φn

j = ei(ωnΔt−ξjΔx), for system (3.24), one obtains
the dispersion relation

ω(ξ) =
2

Δt
arcsin

(
Δt

Δx
sin

ξΔx

2

)
.(5.8)

It is 2π/Δx-periodic in ξ and 2π/Δt-periodic in ω.
• When Δt = Δx we obtain

ω(ξ) = ξ.(5.9)

This case is particularly interesting since (5.9) coincides with the dispersion relation
for the continuous weave equation. In this case, c(ξ, ω) = C(ξ, ω) = 1 and the discrete
waves propagate at a constant velocity identically equal to one, like in the continuous
case. But, as we shall see, this is a completely exceptional situation.

• When μ < 1, the phase velocity is given by

c(ξ, ω) =
2

ξΔt
arcsin

(
Δt

Δx
sin

ξΔx

2

)
(5.10)

and the group velocity is

C(ξ, ω) =
dω(ξ)

dξ
=

cos ξΔx
2√

1 −
(

Δt
Δx sin ξΔx

2

)2
.(5.11)

For Δt = 0 the phase and group velocities in (5.10) and (5.11), which depend on ξ,
coincide with those of the semi-discrete case (5.6) and (5.7), respectively, as expected.

Note that, as Δx → 0, for all ξ we have

C(ξ, ω) ≤
cos ξΔx

2√
1 −
(

Δt
Δx

)2 → 0

when ξ = π/Δx.
In Figures 1–4 we describe the evolution of the group velocity diagrams starting

with the semi-discrete case (μ = 0) up to μ = 1, for fixed Δx = 0.001.
In general, any discrete dynamics generates spurious high-frequency oscillations

that do no exist at the continuous level [23, 25]. Moreover, the interaction of waves
with the grid produces a dispersion phenomenon and the velocity of propagation of
these high frequency numerical waves may converge to zero when the mesh-size tends
to zero. These spurious oscillations weakly converge to zero. Consequently, their
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existence is compatible with the convergence of the numerical scheme for solving the
initial-value problem. However, when we are dealing with the exact controllability
or observability problems, a uniform time for the control of all numerical waves is
needed. Since the velocity of propagation of some high frequency numerical waves
may tend to zero as the mesh becomes finer and finer, uniform observability and
therefore controllability properties of the discrete model may fail for all T > 0.

According to Theorem 2.1, the uniform gap between two consecutive eigenvalues
is a sufficient (and actually also necessary) property for uniform (with respect to Δx
and Δt) observability. On the other hand, the group velocity is the derivative of
the eigenfrequencies λk and the spectral gap is, as we have seen, λk+1 − λk. Both
magnitudes are similar, and they become closer as Δx → 0.

Thus, to efficiently observe at the point x = 1 a wave packet concentrated to the
left of x = 1 that moves to the left (in the space variable) as t increases, and bounces
back at x = 0 to eventually reach the observation point x = 1, the time needed is

T ≥ 2/min
ξ

{C(ξ, ω)}.(5.12)

In the continuous case, (5.12) reduces to the well-known condition for observability
T ≥ 2 and it is uniform for all the frequencies. The minimal time T = 2 is the one
one obtains in view of Ingham’s theorem (1.2) because the gap is γ = π in this case.

For the semi-discrete case, the observation time is

T ≥ 2/min
ξ

(cos(ξΔx/2)).(5.13)

But minξ(cos(ξΔx/2)) is of the order of Δx, the same order as we have obtained in
(3.18) for the spectral gap for the highest frequencies. Consequently, the observation
time (5.13) diverges, T → ∞, as Δx → 0.

These facts confirm the necessity of filtering the high frequencies. Relation (5.13)
shows that the time grows with the high frequencies, in the points where cos ξΔx/2 ∼
0 (ξ ∼ π/Δx) and the same result is obtained applying the Ingham inequality.

For the fully discrete problem (3.24) the time needed for observation is

T ≥ max
ξ

2

√
1 −
(

Δt
Δx sin ξΔx

2

)2

cos ξΔx
2

.(5.14)

Passing to the limit in (5.14) as Δt → 0 for fixed Δx, one obtains the same time as in
the semi-discrete case (5.13). The observation time grows with the high frequencies,
except for the very particular case Δt = Δx, where the time obtained in the previous
section, using the orthogonality of the time exponentials, is T = 2, which coincides
with the observation time given by the group velocity (5.14).

Summarizing, when 0 < μ < 1, the sequence of eigenvalues has no uniform gap
and the observability time (5.14) tends to infinity. Therefore, as in the semi-discrete
case, a suitable filtering of the spurious numerical high frequencies is necessary. The-
orem 2.1 provides a sharp result in this direction and its main result coincides with
the predictions one may do in view of the structure of the dispersion diagram.

6. Proof of the discrete Ingham inequality. The proof of Theorem 2.1 uses
in an essential way some classical properties of the discrete Fourier transform. We
recall these properties in subsection 6.1 following [23].
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Fig. 1. Group velocity for the semi-discrete (–) and discrete (- -) cases with μ = Δt/Δx = 0.1
(left), μ = Δt/Δx = 0.3 (middle), μ = Δt/Δx = 0.5 (right), Δx = 0.001.

Fig. 2. Group velocity for the semi-discrete (–) and discrete (- -) cases with μ = Δt/Δx = 0.9
(left), μ = Δt/Δx = 0.999 (middle), μ = Δt/Δx = 1 (right), Δx = 0.001.

6.1. The discrete Fourier transform. Let h > 0 be a real number and let
. . . , x−1, x0, x1, . . . be defined by xj = jh. Thus {xj} = hZ, where Z is the set of
integers. The �2h-norm of a discrete function {vj} is defined as

‖v‖h =

⎡
⎣h ∞∑

j=−∞
|vj |2
⎤
⎦1/2

.

We denote by l2h the Hilbert space l2h = {v : ‖v‖h < ∞}, the space of discrete functions
of finite ‖ · ‖h norm.

For any v ∈ �2h, the discrete Fourier transform of v is the function v̂ defined by

v̂(ξ) = h
∞∑

j=−∞
e−iξxjvj , ξ ∈

[
−π

h
,
π

h

]
.(6.1)

This can be viewed as a discrete approximation of the continuous Fourier transform

û(ξ) =

∫ ∞

−∞
e−iξxu(x)dx, ξ ∈ R,

if u = u(x) is a sufficiently smooth function such that u(xj) = vj .
A priori, the sum in (6.1) defines a function v̂(ξ) for all ξ ∈ R. The function v̂(ξ)

is 2π/h periodic on R and therefore we analyze it only for ξ ∈ [−π/h, π/h] to avoid
aliasing.

Let us recall a standard definition. A function u defined on R is said to have
bounded variation if there is a constant M such that for any finite m and any points
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Fig. 3. Dispersion relation for the continuous (-.-), semi-discrete (- -) and discrete (–) cases
with μ = Δt/Δx = 0.1 (left) μ = Δt/Δx = 0.3 (middle), μ = Δt/Δx = 0.5 (right), Δx = 0.001.

Fig. 4. Dispersion relation for the continuous (-.-), semi-discrete (- -) and discrete (–) cases
with μ = Δt/Δx = 0.9 (left), μ = Δt/Δx = 0.999 (middle), μ = Δt/Δx = 1 (right), Δx = 0.001.

x0 < x1 < · · · < xm,

m∑
j=1

| u(xj) − u(xj−1) |≤ M.

Now we give a fundamental result (see [23, p. 96]) which describes the effect of
discretization in the Fourier transform.

Theorem 6.1. Suppose that u ∈ L2(R) is a sufficiently smooth function defined
on R and let v ∈ �2h be the discretization obtained by sampling u at the grid points xj,
i.e., u(xj) = vj.

Then, if u has p − 1 continuous derivatives in L2(R) for some p ≥ 1 and a pth
derivative in L2 that has bounded variation, it follows that

|v̂(ξ) − û(ξ)| = o(hp+1), when h → 0,(6.2)

uniformly on ξ ∈ [−π/h, π/h] .
Proof. Since u is continuous, apply Poisson formula

v̂(ξ) =
∞∑

j=−∞
û(ξ + 2πj/h), ξ ∈ [−π/h, π/h] .

Thus, for every u ∈ L2(R) and v ∈ �2, we obtain

v̂(ξ) − û(ξ) =

∞∑
j=−∞

û(ξ + 2πj/h) − û(ξ) =

∞∑
j=1

[û(ξ + 2πj/h) + û(ξ − 2πj/h)] ,

with û and v̂ the Fourier transforms of u and v, respectively.
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If u verifies the hypothesis of Theorem 6.1, then

|û(ξ)| ≤ C1 |ξ|−p−1
, when ξ → ∞

for some constant C1. Therefore

|v̂(ξ) − û(ξ)| ≤ C1

∞∑
j=1

(jπ/h)−p−1 = C2h
p+1

∞∑
j=1

j−p−1.

For every p ≥ 1 this sum converges, which implies (6.2), as required.

6.2. The discrete Fourier transform of Ingham’s cut-off function. We
study some general properties of a discrete Fourier transform that we shall use in the
proof of the discrete Ingham inequality.

Given M ∈ N and T > 0 we consider the function g : R → R

g(t) = sin

(
tπ

T

)
χ(0,T ),(6.3)

where χ(0,T ) is the characteristic function of the interval (0, T ). Function (6.3) is
precisely the same that Ingham [9] used in the proof of the continuous inequality
(1.2). Its Fourier transform G : R →R is

G(τ) =

∫ ∞

−∞
g(t)eitτdt = −2 cos

Tτ

2
e

iTτ
2

πT

(T 2τ2 − π2)
.(6.4)

We define the restriction of g to the grid

. . . < t−1 < t0 = 0 < t1 < · · · < tM+1 = T < . . . ,

with tn = nΔt, i.e.,

h(nΔt) = g(tn) = sin(nΔtπ/T )χM+1(n),

χM+1 being the characteristic function of the set {0, . . . ,M + 1}.
For any τ ∈ R we define the discrete Fourier transform of the discrete function h

H(τ) := Δt
∞∑

n=−∞
h(nΔt)einΔtτ(6.5)

for all τ ∈ [−π/Δt, π/Δt].
Lemma 6.2. For all Δt, T > 0 and k ∈ Z we have

H(τ) = −
Δt cos Tτ

2 e
iTτ
2 sin Δtπ

T

2 sin(Δt
2T (Tτ + π)) sin(Δt

2T (Tτ − π))
(6.6)

for any τ �= (2kπ)/Δt± π/T with k ∈ Z and

H

(
2kπ

Δt
± π

T

)
= ∓ T

2i
, k ∈ Z.(6.7)
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The function H defined in (6.5) is continuous and

lim
τ→ 2kπ

Δt ± π
T

H(τ) = ∓ T

2i
.(6.8)

Proof (Proof of Lemma 6.2). We divide the proof into two steps: first, we prove
that the explicit expression (6.5) of H is (6.6) and then we study the continuity of H.

• Step 1. From the definition of the function H for all τ �= 2kπ/Δt± π/T, k ∈ Z, we
have

H(τ) = Δt
M∑
n=0

sin
nπΔt

T
einΔtτ = Δt

M∑
n=0

e
inπΔt

T − e−
inπΔt

T

2i
einΔtτ .

Hence

H(τ) =
Δt

2i

M∑
n=0

e
inΔt

T (Tτ+π) − Δt

2i

M∑
n=0

e
inΔt

T (Tτ−π).(6.9)

In order to obtain identity (6.5), it is useful to prove it only for any |τ | < 2kπ/Δt−π/T
with k = 1. Then, taking the periodicity properties of the complex exponentials into
account, it is easy to obtain the same result for all k ∈ Z, τ �= 2kπ/Δt± π/T .

The first term on the right-hand side of (6.9) is

M∑
n=0

e
inΔt

T (Tτ+π) =
e

i(M+1)Δt
T (Tτ+π) − 1

e
iΔt
T (Tτ+π) − 1

=
e

i(M+1)Δt
T (Tτ+π) − 1

cos(Δt
T (Tτ + π)) + i sin(Δt

T (Tτ + π)) − 1

=
ei(Tτ+π) − 1

1 − 2 sin2(Δt
2T (Tτ + π)) + 2i sin(Δt

2T (Tτ + π)) cos(Δt
2T (Tτ + π)) − 1

=
−eiTτ − 1

2i sin(Δt
2T (Tτ + π))(cos(Δt

2T (Tτ + π)) + i sin(Δt
2T (Tτ + 1π)))

=
−(eiTτ + 1)e−

iΔt
2T (Tτ+π)

2i sin(Δt
2T (Tτ + π))

.

(6.10)

For the second one we have

M∑
n=0

e
inΔt

T (Tτ−π) =
e

i(M+1)Δt
T (Tτ−π) − 1

e
iΔt
T (Tτ−π) − 1

=
e

i(M+1)Δt
T (Tτ−π) − 1

cos Δt
T (Tτ − π) + i sin Δt

T (Tτ − π) − 1

=
ei(Tτ−π) − 1

−2 sin2 Δt
2T (Tτ − π) + 2i sin Δt

2T (Tτ − π) cos πΔt
2T (Tτ − π)

=
−eiTτ − 1

2i sin Δt
2T (Tτ − π)e

iΔt
2T (Tτ−π)

=
−(eiTτ + 1)e−

iΔt
2T (Tτ−π)

2i sin Δt
2T (Tτ − π)

.

(6.11)
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Substituting (6.10) and (6.11) into (6.9) we obtain

H(τ)

=
−Δt

4

[
(eiTτ + 1)e−

iΔt
2T (Tτ−π)

sin Δt
2T (Tτ − π)

− (eiTτ + 1)e−
iΔt
2T (Tτ+π)

sin(Δt
2T (Tτ + π))

]

=
−Δt(eiTτ + 1)

4

(
cos Δt

2T (Tτ − π) − i sin Δt
2T (Tτ − π)

sin Δt
2T (Tτ − π)

−
cos Δt

2T (Tτ + π) − i sin(Δt
2T (Tτ + π))

sin(Δt
2T (Tτ + π))

)

=
−Δt(eiTτ + 1)

4

(
cos Δt

2T (Tτ − π)

sin Δt
2T (Tτ − π)

−
cos Δt

2T (Tτ + π)

sin(Δt
2T (Tτ + π))

)

=
−Δt(eiTτ + 1)

4

(
cos Δt

2T (Tτ − π) sin Δt
2T (Tτ + π) − cos Δt

2T (Tτ + π) sin Δt
2T (Tτ − π)

sin Δt
2T (Tτ − π) sin(Δt

2T (Tτ + π)

)

=
−Δt(eiTτ + 1)

4 sin Δt
2T (Tτ − π) sin πΔt

2T (Tτ + π)
sin

πΔt

T
.

(6.12)

Therefore, applying Euler’s formula in (6.12) we obtain the following expression for
H:

H(τ) =
−Δt (cos(Tτ) + i sin(Tτ) + 1) sin πΔt

T

4 sin Δt
2T (Tτ − π) sin(Δt

2T (Tτ + π))

=
−Δt

(
2 cos2 Tτ

2 − 1 + 2i sin Tτ
2 cos Tτ

2 + 1
)
sin πΔt

T

4 sin Δt
2T (Tτ − π) sin(Δt

2T (Tτ + π))

=
−2Δt cos Tτ

2

(
cos Tτ

2 + i sin Tτ
2

)
sin πΔt

T

4 sin Δt
2T (Tτ − π) sin(Δt

2T (Tτ + π)

=
−Δt cos Tτ

2 e
iTτ
2 sin πΔt

T

2 sin Δt
2T (Tτ − π) sin(πΔt

2T (Tτ + π))
.

(6.13)

Moreover, if τ = 2kπ/Δt + π/T, with k ∈ Z, using the definition (6.5) of H, we
deduce that

H(τ) = Δt
M∑
n=0

sin
nπΔt

T
einΔt( 2kπ

Δt + π
T )

= Δt

M∑
n=0

e
inΔtπ

T − e−
inΔtπ

T

2i
e2kπine

inΔtπ
T =

Δt

2i

M∑
n=0

e
2inΔtπ

T − Δt

2i

M∑
n=0

1

=
Δt

2i

e
2i(M+1)Δtπ

T − 1

e
2iΔtπ

T − 1
− Δt

2i
(M + 1) =

Δt

2i

e2πi − 1

e
2iΔtπ

T − 1
− T

2i
= − T

2i
.
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For every τ = 2kπ/Δt− π/T, with k ∈ Z,

H(τ) = Δt

M∑
n=0

sin
nπΔt

T
einΔt( 2kπ

Δt − π
T )

= Δt

M∑
n=0

e
inΔtπ

T − e−
inΔtπ

T

2i
e2kπine

−inΔtπ
T

=
Δt

2i

M∑
n=0

1 − Δt

2i
e

−2i(M+1)Δtπ
T

M∑
n=0

e
2inΔtπ

T

=
Δt

2i
(M + 1) − Δt

2i

e
2i(M+1)Δtπ

T − 1

e
2iΔtπ

T − 1
=

T

2i
− Δt

2i

e2πi − 1

e
2iΔtπ

T − 1
=

T

2i
.

• Step 2. It is easy to see that H is continuous on R\{τ : τ =2kπ/Δt± π/T}, k ∈ Z.
We now study the continuity of H at the singularities τ = 2kπ/Δt± π/T . For every
τ → 2kπ/Δt± π/T, we have τ = 2kπ/Δt± π/T + επ, with ε → 0.

1. The case τ = 2kπ/Δt + π/T + επ with ε → 0.
Using the definition of H we have

H

(
2kπ

Δt
+

π

T
+ επ

)
= Δt

M∑
n=0

sin
nπΔt

T
einΔtπ( 2k

Δt+ 1
T +ε)

= Δt

M∑
n=0

e
inΔtπ

T − e−
inΔtπ

T

2i
einπ2keinΔtπ( 1

T +ε).

Hence,

H

(
2kπ

Δt
+

π

T
+ επ

)
=

Δt

2i

M∑
n=0

e
inΔtπ

T (2+Tε) − Δt

2i

M∑
n=0

einΔtπε.(6.14)

For every |x| < 2T/Δt, according to the classical formula for the sum of a
geometric series, the following identity holds:

M∑
n=0

e
inΔtπ

T x =
e

i(M+1)Δtπ
T x − 1

e
iΔtπ

T x − 1
=

eiπx − 1

e
iΔtπ

T x − 1
.(6.15)

For the first sum entering on the right-hand term of (6.14) we have

M∑
n=0

e
inΔtπ

T (2+Tε) =
e2πieiTπε − 1

e
iΔtπ

T (2+Tε) − 1
=

eiTπε − 1

e
iΔtπ

T (2+Tε) − 1
.(6.16)

For the second sum on the right-hand term (6.14), using (6.15) and the fact
that Δtπ/T (2 + Tε) < 2π, we have

M∑
n=0

einΔtπε =
eiTπε − 1

eiΔtπε − 1
.(6.17)
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Finally, replacing (6.16) and (6.17) in (6.14) and taking the limit ε → 0 we
obtain

lim
ε→0

H

(
2kπ

Δt
+

π

T
+ επ

)
=

Δt

2i
lim
ε→0

eiTπε − 1

e
iΔtπ

T (2+Tε) − 1
− Δt

2i
lim
ε→0

eiTπε − 1

eiΔtπε − 1

= 0 − Δt

2i
lim
ε→0

eiTπε − 1

eiΔtπε − 1
= −Δt

2i
lim
ε→0

iπTeiTπε

iΔtπeiΔtπε
= − T

2i
.

2. The case τ = 2kπ/Δt− π/T + επ with ε → 0.
We have

H

(
2kπ

Δt
− π

T
+ επ

)
= Δt

M∑
n=0

sin
nπΔt

T
einΔtπ( 2k

Δt−
1
T +ε)

= Δt
M∑
n=0

e
inΔtπ

T − e−
inΔtπ

T

2i
einπ2keinΔtπεe−

inΔtπ
T .

Hence

H

(
2kπ

Δt
− π

T
+ επ

)
=

Δt

2i

M∑
n=0

einΔtπε − Δt

2i

M∑
n=0

e
inΔtπ

T (Tε−2).(6.18)

By (6.17), for the first sum entering on the right-hand term of (6.18) we have

M∑
n=0

einΔtπε =
eiTπε − 1

eiΔtπε − 1
.(6.19)

Moreover, in (6.17), applying the identity (6.15) for the second sum on the
right-hand term of (6.18), we obtain

M∑
n=0

e−
inΔtπ

T (2−Tε) = e−
i(M+1)Δtπ

T (2−Tε)
M∑
n=0

e
inΔtπ

T (2−Tε)

= = e−2πieiTπε e
i(M+1)Δtπ

T (2−Tε) − 1

e
iΔtπ

T (2−Tε) − 1
= eiTπε e

2πie−iTπε − 1

e
iΔtπ

T (2−Tε) − 1

=
1 − eiTπε

e
iΔtπ

T (2−Tε) − 1
→ 0, ε → 0.(6.20)

Hence,

lim
ε→0

H

(
2kπ

Δt
− π

T
+ επ

)
=

T

Δt

Δt

2i
=

T

2i
.

This concludes the proof of Lemma 6.2.
Remark 6.3. For τ = 0 in (6.6) we have

H(0) = −
Δt sin Δtπ

T

2 sin πΔt
2T sin

(
−πΔt

2T

) = −
Δt sin Δtπ

T

−2 sin2 πΔt
2T

=
Δt2 sin Δtπ

2T cos Δtπ
2T

2 sin2 πΔt
2T

=
Δt cos Δtπ

2T

sin πΔt
2T

= Δt cot
Δtπ

2T
.

(6.21)



DISCRETE INGHAM INEQUALITIES AND APPLICATIONS 441

Taking the limit Δt → 0 in (6.6), for every τ fixed, we obtain

lim
Δt→0

H(τ) = −2 cos
Tτ

2
e

iTτ
2

πT

T 2τ2 − π2
= G(τ)(6.22)

and this is the classical Fourier transform of g given by (6.4).

6.3. Proof of Theorem 2.1. This section is devoted to the proof of the main
result of this paper. The proof of the discrete inequality (2.3) follows the strategy used
in [26, (pp. 162–163)] to prove the classical Ingham inequality (1.2).

Proof (Proof of the first (so-called inverse) inequality in (2.3)). We prove the first
inequality in (2.3), namely,

C1(Δt, T, γ)

N∑
k=−N

|ak|2 ≤ Δt

M∑
n=0

∣∣∣∣∣
N∑

k=−N

ake
inΔtλk

∣∣∣∣∣
2

.

Taking into account that sin(nΔtπ/T ) ≤ 1, we have

Δt

M∑
n=0

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

≥ Δt

M∑
n=0

sin
nΔtπ

T

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

= Δt

M∑
n=0

sin
nΔtπ

T

∑
k

∑
l

akāle
inΔt(λk−λl).

The function H defined by (6.6) is continuous, hence

Δt
M∑
n=0

sin
nΔtπ

T

∑
k

∑
l

akāle
inΔt(λk−λl)

=
∑
k

∑
l

akālH(λk − λl) = H(0)
∑
k

|ak|2 +
∑
k

∑
l,l 	=k

akālH(λk − λl)

≥ H(0)
∑
k

|ak|2 −
1

2

∑
k

∑
l,l 	=k

(
|ak|2 + |al|2

)
|H(λk − λl)|

= H(0)
∑
k

|ak|2 −
∑
k

|ak|2
∑
l,l 	=k

|H(λk − λl)| .

(6.23)

In the last term in (6.23) we have

∑
l,k 	=l

|H(λk − λl)| =
∑
l,k �=l

|λk−λl|≤
π
Δt

|H(λk − λl)| +
∑
l,k �=l

|λk−λl|>
π
Δt

|H(λk − λl)| .(6.24)

Moreover, the function H is periodic with period 2π/Δt. Consequently, for every
k, l ∈ Z with π/Δt < |λk − λl| < 2π/Δt, there exist mk,l ∈ [−π/Δt, π/Δt] such that
|mk,l| = 2π/Δt− |λk − λl| with the property H(λk − λl) = H(mk,l). Therefore, using
this periodicity property and applying (6.2) from Theorem 6.1 and (6.24) in (6.23),
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we obtain

Δt
M∑
n=0

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

≥ H(0)
∑
k

|ak|2 −
∑
k

|ak|2

⎛
⎜⎝ ∑

l,k �=l
|λk−λl|≤π/Δt

|H(λk − λl)| +
∑
l,k �=l

|mk,l|≤π/Δt

|H(mk,l)|

⎞
⎟⎠

≥ H(0)
∑
k

|ak|2 −
∑
k

|ak|2

⎛
⎜⎝ ∑

l,k �=l
|λk−λl|≤π/Δt

|G(λk − λl)| +
∑
l,k �=l

|mk,l|≤π/Δt

|G(mk,l)|

⎞
⎟⎠

+CN(Δt)2
)
.

(6.25)

On the other hand, as pointed out in [26, p. 162], for every sequence {λk} satis-
fying the gap condition (2.1), the function G satisfies

N∑
l 	=k,l=−N

|G(λk − λl)| ≤ 2πT

∞∑
l=−∞,l 	=k

1

T 2 (λk − λl)
2 − π2

≤ 2πT

∞∑
l=−∞,l 	=k

1

T 2γ2 (k − l)
2 − π2

= 4πT
∑
r≥1

1
T 2γ2

4π2 4π2r2 − π2
≤ 16π

Tγ2

∑
r≥1

1

4r2 − 1

=
8π

Tγ2

∑
r≥1

(
1

2r − 1
− 1

2r + 1

)
=

8π

Tγ2
.

(6.26)

Further, for the terms of the sequence {λk} satisfying π/Δt <| λk − λl |< (2π −
(Δt)p)/Δt, (and then, (Δt)p−1 ≤ |mk,l| ≤ π/Δt), k �= l, we have

|G(mk,l)| ≤ 2πT
1

T 2 (mk,l)
2 − π2

= 2πT
1

T 2
(

2π
Δt − (λl − λl)

)2 − π2

≤ 2πT
1

T 2
(

2π
Δt −

2π−(Δt)p

Δt

)2

− π2

= 2πT
Δt2

T 2(Δt)2p − π2Δt2

and it follows that

N∑
l 	=k,l=−N

|G(mk,l)| ≤ (NΔt)2πT
(Δt)1−2p

T 2 − π2(Δt)2−2p
.(6.27)

Using the relations (6.26) and (6.27) in (6.25) we obtain

Δt

M∑
n=0

sin
nΔtπ

T

∑
k

∑
l

akāle
inΔt(λk−λl)

≥ H(0)
∑
k

|ak|2 −
∑
k

|ak|2
[

8π

Tγ2
+ NCΔt2 + CNΔt(Δt)1−2p

](6.28)
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when Δt → 0. For the function H(0) given by (6.21) we have lim
Δt→0

H(0) = 2T/π,

which is equivalent to 2T/π − θ ≤ H(0) ≤ 2T/π + θ, with θ → 0 when Δt → 0. In

order to ensure the positivity of all the coefficients |ak|2 in (6.28) it is necessary and
sufficient to have

C1(Δt, T, γ) := H(0) − 8π

Tγ2
− (NCΔt2 + CNΔt(Δt)1−2p) > 0,(6.29)

which is equivalent to

T 2 − Tπ

2
(θ + ε1) −

4π2

γ2
> 0,

where ε1 = NCΔt2 + CNΔt(Δt)1−2p, C > 0. This condition holds for every

T (Δt) > T0(Δt) =

π
2 (ε1 + θ) +

√
π2

4 (θ + ε1)
2

+ 16π2

γ2

2
:=

2π

γ
+ ε(Δt)

with ε(Δt) = C(Δt + NΔt(Δt)1−2p). Hence, the inequality (2.3) holds with the con-
stant C1(Δt, T, γ) defined by the relation (6.29) where δ1(Δt) = −(ε1 + θ).

Proof of the second (so-called direct) inequality. We now prove the inequality

Δt

M∑
n=0

∣∣∣∣∣
N∑

k=−N

ake
inΔtλk

∣∣∣∣∣
2

≤ C2(Δt, T, γ)

N∑
k=−N

|ak|2 .

We have

Δt

M∑
n=0

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

= Δt

[M
2 ]∑

n=0

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

+ Δt

M∑
n=[M

2 ]+1

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

.

(6.30)

Consider the first term on the right-hand side of (6.30),

Δt

[M
2 ]∑

n=0

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

= Δt

[M
2 ]+[M+1

4 ]+1∑
n=[M+1

4 ]+1

∣∣∣∣∣∑
k

ake
i(n−[M+1

4 ]−1)Δtλk

∣∣∣∣∣
2

= Δt

[M
2 ]+[M+1

4 ]∑
n=[M+1

4 ]+1

∣∣∣∣∣∑
k

ake
i(n−[M+1

4 ]−1)Δtλk

∣∣∣∣∣
2

+ Δt

∣∣∣∣∣∑
k

ake
i[M

2 ]Δtλk

∣∣∣∣∣
2

.

(6.31)

Using the properties of the entire part of a real number we have[
M + 1

4

]
≤ M + 1

4
≤
[
M + 1

4

]
+ 1,[

M

2

]
+

[
M + 1

4

]
≤
[
3M + 1

4

]
,[

3M + 1

4

]
≤ 3M + 1

4
≤
[
3M + 1

4

]
+ 1.
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For every n ∈ N with

[
M + 1

4

]
+ 1 ≤ n ≤

[
3M + 1

4

]
, we have

M + 1

4
≤ n ≤ 3M + 1

4
(6.32)

and

π

4
≤ nπΔt

T
≤ 3π

4
,

due to the fact that (M + 1)Δt = T .
Therefore, for every n ∈ N as in (6.32) we have sin(nπΔt/T ) ≥

√
2/2 and

Δt

[M
2 ]+[M+1

4 ]∑
n=[M+1

4 ]+1

∣∣∣∣∣∑
k

ake
i(n−[M+1

4 ]−1)Δtλk

∣∣∣∣∣
2

+ Δt

∣∣∣∣∣∑
k

ake
i[M

2 ]Δtλk

∣∣∣∣∣
2

≤ 2Δt

[M
2 ]+[M+1

4 ]∑
n=[M+1

4 ]+1

sin
nπΔt

T

∣∣∣∣∣∑
k

ake
i(n−[M+1

4 ]−1)Δtλk

∣∣∣∣∣
2

+ Δt

∣∣∣∣∣∑
k

ake
i[M

2 ]Δtλk

∣∣∣∣∣
2

≤ 2Δt

M∑
n=0

sin
nπΔt

T

∣∣∣∣∣∑
k

ake
inΔtλke−i([M+1

4 ]+1)Δtλk

∣∣∣∣∣
2

+ Δt

∣∣∣∣∣∑
k

ake
i[M

2 ]Δtλk

∣∣∣∣∣
2

= 2Δt

M∑
n=0

sin
nπΔt

T

∑
k

∑
l

akāle
inΔt(λk−λl)e−i([M+1

4 ]+1)Δt(λk−λl)

+Δt
∑
k

∑
l

akāle
2i[M

2 ]Δt(λk−λl)

= 2
∑
k

∑
l

akālH(λk − λl)e
−i([M+1

4 ]+1)Δt(λk−λl) + Δt
∑
k

∑
l

akāle
i[M

2 ]Δt(λk−λl)

= 2H(0)
∑
k

|ak|2 + 2
∑
k

∑
l,l 	=k

akālH(λk − λl)e
−i([M+1

4 ]+1)Δt(λk−λk)

+Δt
∑
k

|ak|2 + Δt
∑
k

∑
l,l 	=k

akāle
i[M

2 ]Δt(λk−λk)

≤ 2H(0)
∑
k

|ak|2 +
∑
k

∑
l,l 	=k

(
|ak|2 + |al|2

)
|H(λk − λl)| + Δt

∑
k

|ak|2

+
NΔt

2

∑
k

∑
l,l 	=k

(
|ak|2 + |al|2

)

≤ 2H(0)
∑
k

|ak|2 + 2
∑
k

|ak|2
∑
l,l 	=k

|H(λk − λl)| + Δt
∑
k

|ak|2 + 2NΔt
∑
k

|ak|2 .

(6.33)
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Using the same argument (6.2) as in the proof of the inverse inequality, for every
C > 0, we have

∑
l,k 	=l

|H (λk − λl)| ≤
N∑

l 	=k,l=−N

|G (λk − λl)| + CN(Δt)2,(6.34)

when Δt is small enough, with G the Fourier transform (6.4) satisfying (6.26) and
(6.27).

Therefore, for every k,

2H(0)
∑
k

|ak|2 +
∑
k

∑
l,l 	=k

(
|ak|2 + |al|2

)
|H(λk − λl)| + Δt

∑
k

|ak|2

+
NΔt

2

∑
k

∑
l,l 	=k

(
|ak|2 + |al|2

)
≤ 2Δt cot

Δtπ

2T

∑
k

|ak|2

+2
∑
k

|ak|2
(

8π

Tγ2
+ NCΔt2 + CNΔt(Δt)1−2p + 2Δt

)
+ 2NΔt

∑
k

|ak|2 .

Hence

Δt

[M
2 ]∑

n=0

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

≤
∑
k

|ak|2
(

2Δt cot
Δtπ

2T
+

16π

Tγ2
+ ε(Δt)

)
,(6.35)

with ε(Δt) = 2NCΔt2 + 2CNΔt(Δt)1−2p + 2Δt + 2NΔt.

For the second right-hand term of (6.30) we have

Δt
M∑

n=[M
2 ]+1

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

= Δt

M−[M+1
4 ]−1∑

n=[M
2 ]−[M+1

4 ]

∣∣∣∣∣∑
k

ake
i(n+[M+1

4 ]+1)Δtλk

∣∣∣∣∣
2

= Δt

M−[M+1
4 ]−1∑

n=[M
2 ]+1−[M+1

4 ]

∣∣∣∣∣∑
k

ake
i(n+[M+1

4 ]+1)Δtλk

∣∣∣∣∣
2

+ Δt
∑
k

∣∣∣akei([M
2 ]+1)Δtλk

∣∣∣2 .

Taking into account that

M −
[
M + 1

4

]
− 1 ≤ 3M + 1

4
and

[
M

2

]
−
[
M + 1

4

]
+ 1 ≥ M + 1

4
,

for every n ∈ N, with (M + 1)/4 ≤ n ≤ (3M + 1)/4 we have sin(nπΔt/T ) ≥
√

2/2.
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Thus,

Δt
M∑

n=[M
2 ]+1

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

≤ 2Δt

M−[M+1
4 ]−1∑

n=[M
2 ]+1−[M+1

4 ]

sin
nπΔt

T

∣∣∣∣∣∑
k

ake
i(n+[M+1

4 ]+1)Δtλk

∣∣∣∣∣
2

+Δt
∑
k

∣∣∣akei([M
2 ]+1)Δtλk

∣∣∣2

≤ 2Δt

M∑
n=0

sin
nπΔt

T

∣∣∣∣∣∑
k

ake
inΔtλkei([

M+1
4 ]+1)Δtλk

∣∣∣∣∣
2

+ Δt
∑
k

∣∣∣akei([M
2 ]+1)Δtλk

∣∣∣2

= 2Δt

M∑
n=0

sin
nπΔt

T

∑
k

∑
l

akāle
inΔt(λk−λl)ei([

M+1
4 ]+1)Δt(λk−λk)

+Δt
∑
k

∣∣∣akei([M
2 ]+1)Δtλk

∣∣∣2
and we obtain the estimate

Δt

M∑
n=[M

2 ]+1

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

≤ 2H(0)
∑
k

|ak|2 + 2
∑
k

∑
l,l 	=k

|ak|2 |H(λk − λl)| + 2NΔt
∑
k

|ak|2

≤
(

2Δt cot
Δtπ

2T
+

16π

Tγ2
+ NCΔt2 + CNΔt(Δt)1−2p + 2NΔt

)∑
k

|ak|2 .

(6.36)

For the function H(0) defined by the relation (6.21) we have lim
Δt→0

H(0) = 2T/π.

From (6.30) and (6.35) we get

Δt

M∑
n=0

∣∣∣∣∣∑
k

ake
inΔtλk

∣∣∣∣∣
2

≤
(

8T

π
+

32π

Tγ2
+ δ2(Δt)

)∑
k

|ak|2 ,(6.37)

with

δ2(Δt) = 4ε(Δt) + θ,

(2T/π − θ ≤ H(0) ≤ 2T/π + θ, with θ → 0 when Δt → 0).

This concludes the proof of Theorem 2.1.
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Proof (Proof of Theorem 2.2). Following the same steps of the above proof
we obtain the discrete version (2.5) of the L1 Ingham’s inequality (1.6) given by
Theorem 2.2.

More precisely, we have

Δt

M∑
n=0

sin
nΔtπ

T

(∑
k

ake
inΔtλk

)
e−inΔtλk =

∑
l

alH(λk − λl),(6.38)

where function H is defined by (6.6).
Taking l = ν in (6.38), where |aν | is the greatest |an|, we deduce

∣∣∣∣∣Δt

M∑
n=0

sin
nΔtπ

T

(∑
k

ake
inΔtλk

)
e−inΔtλν

∣∣∣∣∣ ≥ |aνH(0)| − |aν |
∑

k,k 	=ν

|H(λk − λν)| .

(6.39)

Function H is exactly the discrete Fourier transform (6.5) used in the proof of discrete
Ingham’s inequality (2.3). By (6.24) and the estimates for |H(λk − λν)| used in the
proof of Theorem 2.1, i.e.,

∑
k,k 	=ν

|H(λk − λν)| ≤
[

8π

Tγ2
+ NCΔt2 + CNΔt(Δt)1−2p

]
,

as in (6.28), we deduce that

Δt
M∑
n=0

∣∣∣∣∣
N∑

k=−N

ake
inΔtλk

∣∣∣∣∣ ≥ C1(Δt, T, γ) max |an| .(6.40)

The direct inequality in (2.5) may be obtained using the same arguments and estimates
and we omit the details.
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[7] C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation
derived from a mixed finite elements method, preprint, 2005.

[8] C. Castro and E. Zuazua, Une remarque sur les séries de Fourier non-harmoniques et son
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Abstract. In [L. Badea, Convergence Rate of a Multiplicative Schwarz Method for Strongly
Nonlinear Inequalities, V. Barbu, I. Lasiecka, D. Tiba, and C. Varsan, eds., Kluwer Academic Pub-
lishers, Boston, 2003], the convergence of a subspace correction method applied to the constrained
minimization of a functional in a general reflexive Banach space has been proved, provided that the
convex set verifies a certain assumption. This assumption is weaker than that in which the convex
set is decomposed according to the space decomposition as a sum of subsets. In the Sobolev spaces,
the proposed method becomes a multiplicative Schwarz method for the solution of the variational
inequalities coming from the minimization of nonquadratic functionals. We prove in this paper that
this assumption holds for the one-, two- and multilevel multiplicative Schwarz methods in the fi-
nite element space, and we explicitly write the constants in the error estimations depending on the
overlapping and mesh parameters. Our error estimates are similar with those obtained for the min-
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1. Introduction. Domain decomposition methods provide efficient numerical
algorithms to solve very large-scale problems. The great interest in these methods
comes from the fact that they are parallelizable on multiprocessor machines. Schwarz
overlapping methods represent a typical example of such parallelizable methods, and
they are traditionally being classified as multiplicative and additive. The main focus
of this paper is the convergence of the multiplicative Schwarz method applied to the
constrained minimization of nonquadratic convex functionals.

Naturally, most papers dealing with these methods are dedicated to linear prob-
lems. The multiplicative and additive Schwarz methods for elliptic linear problems
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for the multiplicative methods, and Dryja [12]; Dryja and Widlund [13], [14]; and
Nepomnyaschikh [32] for the additive version.

For the application of the Schwarz method to the solution of the variational
inequalities, we can cite the papers written by Hoffman and Zou [19]; Kuznetsov and
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Shih [29]; Zeng and Zhou [42]; Tai [35, 36, 37]; Tai and Tseng [39]; Badea and Wang
[3]; Badea, Tai, and Wang [4]; and Badea [2], [6], [7].

∗Received by the editors June 17, 2003; accepted for publication (in revised form) August 2,
2005; published electronically March 15, 2006. This work was supported by IMAR under contract
ICA1-CT-2000-70022 with the European Commission.

http://www.siam.org/journals/sinum/44-2/42995.html
†Institute of Mathematics, Romanian Academy of Sciences, P. O. Box 1-764, RO-70700 Bucharest,

Romania (lori.badea@imar.ro).

449



450 L. BADEA

Also, the multilevel and multigrid methods can be viewed as domain decompo-
sition methods and we can cite the results obtained by Kornhuber [21]; Mandel [31];
and Smith, Bjørstad, and Gropp [34].

However, very few papers deal with the application of these methods to nonlinear
problems. We can cite in this direction the papers written by Tai and Espedal [38],
Tai and Xu [40] for nonlinear equations, Hoffmann and Zhou [20], Lui [30], Zeng and
Zhou in [43] for inequalities having nonlinear source terms, and Badea [5] for a general
result concerning the convergence of the method for the constrained minimization of
nonquadratic functionals. Evidently, the above lists of citations are not exhaustive
and can be completed by many other papers.

Almost exclusively, the convergence of the domain decomposition methods for
variational inequalities coming from the minimization of a functional is studied in the
case when this functional is quadratic. Also, most papers consider the convex set
decomposed according to the space decomposition as a sum of convex subsets. The
main goal of this paper is to give error estimates for the one-, two- and multilevel
Schwarz domain decomposition methods applied to the constrained minimization of
the nonquadratic convex functionals over enough general convex sets.

The convergence of a domain decomposition algorithm solving variational inequal-
ities coming from the minimization of quadratic functionals over convex sets is proved
in [2]. In that paper, the convex set, defined by constraints on the function values
at the points of the domain, is not supposed to be decomposed as a sum of convex
subsets. In [40], a subspace correction method applied to the minimization without
constraints of a differentiable and convex functional defined in a reflexive Banach
space is introduced. Also, in [5], the convergence of an algorithm in a reflexive Ba-
nach space for the constrained minimization of convex functionals is proved. There, in
order to prove the convergence, a weaker property than that given in [2] is imposed on
the convex set. To the author’s knowledge, there are no other papers dealing with the
Schwarz method applied to the constrained minimization of nonquadratic function-
als. Even if sometimes the conditions on the convex functional are general enough,
the authors always consider the space H1 and implicitly quadratic functionals. For
instance, in [4], using the subspace correction techniques in [8] and [41], and more
general conditions in [38] on the convex functional, the convergence rate for the one-
and two-level algorithms of the method in [2] is given only for the minimization of
quadratic functionals. Starting from the general convergence result given in cite [5],
we generalize in this paper the results in [4] and [40] to the constrained minimization
of nonquadratic functionals. Our error estimates are similar with those obtained for
the minimization of quadratic functionals in [4] or [37].

The paper is organized as follows. In section 2, we state the multiplicative Schwarz
method as a subspace correction method in a general reflexive Banach space for the
constrained minimization of convex functionals. We also give the convergence theorem
of this algorithm which has been proven in [5] provided that a certain assumption
holds. In sections 3, 4, and 5 we prove that the introduced assumption holds and we
estimate the error for the one-, two- and multilevel Schwarz methods, respectively, in
the finite element spaces. In these cases, we are able to explicitly write the convergence
rate depending on the mesh and domain decomposition parameters. The proof for
the two- and multilevel methods is based on a lemma which can be viewed as a
Friedrichs–Poincaré inequality for the finite element spaces. In subsection 5.1, we
find the convergence rate of the multigrid method from the results obtained for the
multilevel method.
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Finally, for writing simplicity, we have considered the next sections problems in
W 1,s, but all the obtained results hold reading [W 1,s]d in the place of W 1,s.

2. General convergence result. We enunciate in this section a general algo-
rithm and give an error estimate theorem for it. This general theory, the proof of
the theorem included, are given in detail in [5]. We consider that V is a reflexive
Banach space and V1, . . . , Vm, are some closed subspaces of V . Also, let K ⊂ V be a
nonempty closed convex set, and we make the following

Assumption 2.1. There exists a constant C0 such that for any w, v ∈ K and
wi ∈ Vi with w +

∑i
j=1 wj ∈ K, i = 1, . . . ,m, there exist vi ∈ Vi, i = 1, . . . ,m,

satisfying

w +

i−1∑
j=1

wj + vi ∈ K for i = 1, . . . ,m,(2.1)

v − w =
m∑
i=1

vi,(2.2)

and

m∑
i=1

||vi||p ≤ Cp
0

(
||v − w||p +

m∑
i=1

||wi||p
)
.(2.3)

This assumption looks complicated enough, but as we shall see in what follows, it is
satisfied for a large kind of convex sets in Sobolev spaces. In our proofs, v is the exact
solution, w is the solution of the iterative algorithm at a certain iteration, and wi are
its corrections on the subspaces Vi, i = 1, . . . ,m. In the case of the convex sets written
as a sum of convex subsets, (2.1) and (2.2) are always satisfied. We point out that
in the case of the problems without constraints or that of the one-obstacle problems,
the above assumption can be taken with wi = 0 (see [37], for instance), and for this
reason (2.3) usually is known without the extra terms given by wi.

We consider a Gâteaux differentiable functional F : K → R, which is supposed
to be coercive if K is not bounded, and we assume that for any real number M > 0
there exist two functions,

αM (τ) = AMτp, βM (τ) = BMτ q−1,(2.4)

such that

< F ′(v) − F ′(u), v − u >≥ αM (||v − u||), for any u, v ∈ K, ||u||, ||v|| ≤ M,(2.5)

and

βM (||v − u||) ≥ ||F ′(v) − F ′(u)||V ′ , for any u, v ∈ K, ||u||, ||v|| ≤ M,(2.6)

where F ′ is the Gâteaux derivative of F , and AM > 0, BM > 0, p > 1, and q > 1 are
some real constants. We have marked here that the constants AM and BM depend
on M . It is evident that if (2.5) and (2.6) hold, then

αM (||v − u||) ≤< F ′(v) − F ′(u), v − u >≤ βM (||v − u||)||v − u||,
for any u, v ∈ K, ||u||, ||v|| ≤ M.

(2.7)
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It follows from (2.7) that we must take p ≥ q. Following the way in [17, Lemmas 1.1
and 1.2] we can prove that

< F ′(u), v − u > +λM (||v − u||) ≤ F (v) − F (u)
≤< F ′(u), v − u > +μM (||v − u||), for any u, v ∈ K, ||u||, ||v|| ≤ M,

(2.8)

where

λ(τ) = AM

p τp, μ(τ) = BM

q τ q.(2.9)

It is well known (see [16]) that if V and F satisfy the above assumption, then the
minimization problem

u ∈ K : F (u) ≤ F (v), for any v ∈ K(2.10)

has a unique solution, and it is also the unique solution of the problem

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K.(2.11)

From (2.8), for a given M > 0 such that the solution u of (2.11) satisfies ||u|| ≤ M ,
we have

λM (||v − u||) ≤ F (v) − F (u), for any v ∈ K, ||v|| ≤ M.(2.12)

The proposed algorithm corresponding to the subspaces V1, . . . , Vm and the con-
vex set K is written as follows.

Algorithm 2.1. We start the algorithm with an arbitrary u0 ∈ K. At iteration
n + 1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, . . . ,m, wn+1

i ∈ Vi

satisfying

wn+1
i = arg min

un+ i−1
m + vi ∈ K
vi ∈ Vi

G(vi), with G(vi) = F (un+ i−1
m + vi),(2.13)

and then we update

un+ i
m = un+ i−1

m + wn+1
i .

This algorithm does not assume a decomposition of the convex set K depending on
the subspaces Vi, and it has been proposed in [2] in an equivalent form. The above
form of this algorithm has been proposed in [4] for the constrained minimization of
the quadratic functions. As for problem (2.10), since the subspaces Vi are reflexive
Banach spaces, problem (2.13) has a unique solution and also satisfies the variational
inequality

wn+1
i ∈ Vi, u

n+ i−1
m + wn+1

i ∈ K :

< F ′(un+ i−1
m + wn+1

i ), vi − wn+1
i >≥ 0,

for any vi ∈ Vi, u
n+ i−1

m + vi ∈ K.

(2.14)

The introduction of some parameters εij ≥ 0, i, j = 1, . . . ,m, is useful to obtain
some sharper error estimations, especially in the case of minimization of the quadratic
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functionals. Following this way, we assume that for a given M > 0, if v ∈ K, ||v|| ≤ M ,
and vi ∈ Vi, satisfying v + vi ∈ K, ||v + vi|| ≤ M , i = 1, . . . ,m, then we have

< F ′(v + vi) − F ′(v), wj >≤ εijBM ||vi||q−1||wj ||(2.15)

for any wi ∈ Vi, i = 1, . . . ,m. Evidently, using (2.6), we may always take εij = 1,
i, j = 1, . . . ,m, in (2.15).

In [40], it is proved the convergence of the method for nonlinear equations. The
following theorem extends this result to inequalities.

Theorem 2.1. We consider that V is a reflexive Banach, V1, . . . , Vm are some
closed subspaces of V , K is a nonempty closed convex subset of V , and F is a Gâteaux
differentiable functional on K which is supposed to be coercive if K is not bounded.
We assume that the functional F satisfies (2.5) and (2.6), and we make Assumption
2.1. On these conditions, if u is the solution of problem (2.10) and un, n ≥ 0 are
its approximations obtained from Algorithm 2.1, then we have the following error
estimations:

(i) if p = q we have

F (un) − F (u) ≤
(

Ĉ
Ĉ+1

)n [
F (u0) − F (u)

]
,

||un − u||p ≤ Ĉ+1

C̄

(
Ĉ

Ĉ+1

)n [
F (u0) − F (u)

]
.

(2.16)

(ii) if p > q we have

F (un) − F (u) ≤ F (u0)−F (u)[
1+n C̃(F (u0)−F (u))

p−q
q−1

] q−1
p−q

,

||u− un||p ≤ Ĉ

C̄

(F (u0)−F (u))
q−1
p−1[

1+(n−1)C̃(F (u0)−F (u))
p−q
q−1

] (q−1)2

(p−1)(p−q)

.

(2.17)

The constants Ĉ, C̄, and C̃ are written as

Ĉ = Ĉ(m,C0, u
0) = BM ( p

AM
)

q
p |εij |

[
(1 + 2C0)

(
F (u0) − F (u)

) p−q
p(p−1)

+
(
BM ( p

AM
)

q
p |εij |

) 1
p−1

C
p

p−1

0 /η
1

p−1

]
/(1 − η),

(2.18)

C̄ =
(2 − η)AM

(1 − η)p
,(2.19)

C̃ =
p− q

(p− 1) (F (u0) − F (u))
p−q
q−1 + (q − 1)Ĉ

p−1
q−1

.(2.20)

The value of η in the expressions of Ĉ and C̄ can be arbitrary in (0, 1). On the other
hand, we see that the constants in the error estimations of F (un) −−F (u) in (2.16)
and (2.17) are some increasing functions of Ĉ, and there is an η0 ∈ (0, 1) such that
Ĉ(η0) ≤ Ĉ(η) for any η ∈ (0, 1). However, this value η0 can be found by solving a
nonlinear algebraic equation.
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We point out that a convergence result can be found (see [5]) under weaker condi-
tions on the functions αM and βM than those given in (2.4), and a weaker assumption
than Assumption 2.1.

The above algorithm can be viewed as a multiplicative Schwarz method in a
subspace correction variant if we use the Sobolev spaces. In this way, we consider for
a domain Ω in Rd, d ≥ 1, with Lipschitz continuous boundary ∂Ω, an overlapping
decomposition

Ω =
m⋃
i=1

Ωi(2.21)

in which the subdomains Ωi have a Lipschitz continuous boundary, too. We associate
with the domain Ω the space V = W 1,s

0 (Ω), 1 < s < ∞, and with the subdomains Ωi

the subspaces Vi = W 1,s
0 (Ωi), i = 1, . . . ,m. We assume that the convex set K ⊂ V

satisfies
Property 2.1. If v, w ∈ K, and if θ ∈ C1(Ω) with 0 ≤ θ ≤ 1, then θv+(1−θ)w ∈

K.
For such a convex set, the following proposition has been proved in [5].
Proposition 2.1. If for the domain decomposition (2.21) there exist some

continuously differentiable unity partitions {θij}j=i,...,m associated with ∪m
j=iΩj, i =

1, . . . ,m, (i.e., for any i = 1, . . . ,m, supp θij ⊂ Ωj, θ
i
j ∈ C1(Ωj), and 0 ≤ θij ≤ 1, for

j = i, . . . ,m, and
∑m

j=i θ
i
j = 1 on ∪m

j=iΩj), then Assumption 2.1 holds for any convex
set K having Property 2.1.

Consequently, provided that functional F satisfies (2.5) and (2.6), Algorithm 2.1
converges and we can apply Theorem 2.1 to get the convergence rate. The above
Sobolev spaces W 1,s

0 correspond to Dirichlet boundary conditions. Similar results can
be obtained if we consider appropriate subspaces of W 1,s for the mixed boundary
conditions.

The constant C0 in Assumption 2.1 depends on the domain decomposition param-
eters. Consequently, since the constants Ĉ and C̄ in the error estimations in Theorem
2.1 depend on C0, then these estimations will depend on domain decomposition pa-
rameters, too. The goal of the next sections is to prove, for the one-, two-level and
multilevel multiplicative Schwarz methods, that Assumption 2.1 also holds for any
closed convex K satisfying a similar property to that given in 2.1. In these cases we
are able to explicitly write the dependence of C0 on the domain decomposition and
mesh parameters.

3. One-level multiplicative Schwarz method. First, let us consider that
the domain Ω ⊂ Rd has an overlapping domain decomposition {Oi}1≤i≤M and a
simplicial mesh partition Th of mesh size h. We assume that Th is regular (i.e., there
exists a constant C > 0, independent of h, such that each τ in Th contains a ball with
the diameter of Ch, and, evidently, it is contained in a ball with the diameter of h;
see [11], p. 124, for instance) and it supplies a mesh partition for each subdomain Oi,
i = 1, . . . ,M , too. In addition, we suppose that there exists a positive constant δ, the
overlapping parameter, such that for any i = 1, . . . ,M , we have

Oi ∩ ∂

⎛
⎝⋃

j �=i

Oj

⎞
⎠ 
= ∅ and dist

⎛
⎝∂Oi\∂Ω, Oi ∩ ∂

⎛
⎝⋃

j �=i

Oj

⎞
⎠
⎞
⎠ ≥ δ.(3.1)

Now, we assume that there exist m colors such that each subdomain Oi can be marked
with one color, and the subdomains with the same color do not intersect with each
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other. For suitable overlaps, one can always choose m = 2 if d = 1, m ≤ 4 if d = 2,
and m ≤ 8 if d = 3. Let Ωi be the union of the subdomains Oj having the color i. In
this way, we have obtained an overlapping decomposition (2.21) with overlaps of size
δ. Taking into account (3.1), we can assume that the unity partitions {θij}j=i,...,m

associated with ∪m
j=iΩj in Proposition 2.1 satisfy

|∂xk
θij | ≤ C/δ, for any i = 1, . . . ,m.j = i, . . . ,m, and k = 1, . . . , d,(3.2)

As in (3.2), we denote in the following by C a generic constant which does not depend
on either the mesh or the domain decomposition parameters.

In this section we prove for the finite element spaces a similar result to that given
in Proposition 2.1 for general Sobolev spaces. The proof is also similar to that given
in [4] for the minimization of the quadratic functionals. We consider the piecewise
linear finite element space

Vh = {v ∈ C0(Ω̄) : v|τ ∈ P1(τ), τ ∈ Th, v = 0 on ∂Ω},(3.3)

and also, for i = 1, . . . ,m, we take

V i
h = {v ∈ Vh : v = 0 in Ω\Ωi}(3.4)

as some subspaces of Vh corresponding to the domain decomposition Ω1, . . . ,Ωm.
The spaces Vh and V i

h , i = 1, . . . ,m, are considered subspaces of W 1,s, for some fixed
1 ≤ s ≤ ∞. We denote by || · ||0,s the norm in Ls, and by || · ||1,s and | · |1,s the norm
and seminorm in W 1,s, respectively.

In the following, Lh will be the P1-Lagrangian interpolation operator which uses
the function values at the nodes of the mesh Th. The convex set Kh is defined as a
subset of Vh satisfying the following property.

Property 3.1. If v, w ∈ Kh, and if θ ∈ C1(Ω) with 0 ≤ θ ≤ 1, then Lh(θv +
(1 − θ)w) ∈ Kh.

In order to prove that Assumption 2.1 holds, we follow the same way as in [4] or
[5]. Taking into account the additivity of the Lagrangian interpolation Lh, (2.1) and
(2.2) in Assumption 2.1 can be recurrently proved. Indeed, first we write

v1 = Lh

(
θ1
1(v − w) + (1 − θ1

1)w1

)
,(3.5)

and prove that

v1 ∈ V 1
h and w + v1 ∈ Kh,

v − v1 + w1 ∈ Kh,

v − w − v1 ∈ W 1,s
0

⎛
⎝ m⋃

j=2

Ωj

⎞
⎠ and

v − w − v1 = 0 in Ω − ∪m
j=2Ωj .

Next, for i = 2, . . . ,m− 1, we write

vi = Lh

⎛
⎝θii(v − w −

i−1∑
j=1

vj) + (1 − θii)wi

⎞
⎠ ,(3.6)
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and prove

vi ∈ V i
h and w +

i−1∑
j=1

wj + vi ∈ Kh,

v −
i∑

j=1

vj +

i∑
j=1

wj ∈ Kh,

v − w −
i∑

j=1

vj ∈ W 1,s
0

⎛
⎝ m⋃

j=i+1

Ωj

⎞
⎠ and

v − w −
i∑

j=1

vj = 0 in Ω − ∪m
j=i+1Ωj ,

assuming that these equations hold for i− 1. Finally, we take

vm = v − w −
m−1∑
j=1

vj .(3.7)

To prove inequality (2.3) in Assumption 2.1, we first note that, starting from v1 given
in (3.5) by the recurrent application of (3.6), and then taking vm given in (3.7), we
get that vi, i = 1, . . . ,m, are of the form

vi = Lh

⎛
⎝τ i0(v − w) +

i∑
j=1

τ ijwj

⎞
⎠ , i = 1, . . . ,m.(3.8)

By a simple calculus we get that

τ1
0 = θ1

1, τ
1
1 = 1 − θ1

1,

τ i0 = θii(1 − θi−1
i−1) · · · (1 − θ1

1), τ
i
i = 1 − θii, τ

i
j = −θii(1 − θi−1

i−1) · · · (1 − θjj ),

for i = 2, . . . ,m− 1, j = 1, . . . , i− 1,
τm0 = (1 − θm−1

m−1) · · · (1 − θ1
1), τ

m
m = 0, τmm−1 = −(1 − θm−1

m−1),

τmj = θm−1
m−1(1 − θm−2

m−2) · · · (1 − θjj ), for j = 1, . . . ,m− 2.

Consequently, from (3.2), we have

|τ ij | ≤ 1 and |∂xk
τ ij | ≤ C(m− 1)/δ, i = 1, . . . ,m, j = 0, . . . , i, k = 1, . . . , d.(3.9)

For a v ∈ Vh, we get (see, for instance [11, Theorem 3.1.6]) that

||τ ijv − Lh(τ ijv)||0,s ≤ Ch|τ ijv|1,s, ||τ ijv − Lh(τ ijv)||1,s ≤ C|τ ijv|1,s,

and therefore

||Lh(τ ijv)||1,s ≤ C||τ ijv||1,s, with v ∈ Vh,(3.10)

for any i = 1, . . . ,m, j = 0, . . . , i. On the other hand, from (3.9) we get

||τ ijv||0,s ≤ ||v||0,s, |τ ijv|1,s ≤ C

(
|v|1,s +

m− 1

δ
||v||0,s

)
, for any v ∈ Vh,(3.11)
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and therefore, using (3.10), we get

||Lh(τ ijv)||1,s ≤ C

(
||v||1,s +

m− 1

δ
||v||0,s

)
, for any v ∈ Vh.(3.12)

Now, by a application of (3.12) to (3.8) we get

||vi||1,s ≤ C

(
1 +

m− 1

δ

)⎛
⎝||v − w||1,s +

i∑
j=1

||wj ||1,s

⎞
⎠ ,

for any i = 1, . . . ,m.

(3.13)

Using the above equation we get (2.3) in Assumption 2.1, and have the following
proposition.

Proposition 3.1. Let Ω1, . . . ,Ωm be the overlapping decomposition of the do-
main Ω defined in this section. Then, Assumption 2.1 holds for the piecewise linear
finite element spaces, V = Vh and Vi = V i

h, i = 1, . . . ,m, and for any convex set
K = Kh ⊂ Vh having Property 3.1. The constant in (2.3) of Assumption 2.1 can be
written as

C0 = C(m + 1)

(
1 +

m− 1

δ

)
,(3.14)

where C is independent of the mesh parameter and the domain decomposition.
Remark 3.1. We notice that the number m of the subdomains Ωi in the decom-

position of Ω is in fact the number of colors of the overlapping domain decomposition
{Oi}1≤i≤M , and it depends only on the dimension d of the space Rd. Consequently,
error estimations (2.16) and (2.17) in Theorem 2.1 depend only on the size δ of the
overlaps through the intermediary of the constant C0 given in (3.14).

4. Two-level multiplicative Schwarz method. We consider a simplicial mesh
partition Th of the domain Ω ⊂ Rd of a mesh size h, and a simplicial coarser mesh
TH with a mesh size H, Th being a refinement of TH . The mesh size h is supposed to
approach zero and we shall consider a family of mesh pairs (h,H). We assume that
both the families, of fine and coarse meshes, are regular.

As in the previous section, we consider an overlapping decomposition Ω = ∪M
i=1Oi,

the mesh partition Th of Ω supplying a mesh partition for each Oi, 1 ≤ i ≤ M . Also,
we assume that the overlapping size is δ, i.e., (3.1) is satisfied. In addition, we suppose
that there exists a constant C such that

diam(Oi) ≤ CH, i = 1, . . . ,M.(4.1)

Now, we color the subdomains Oi, i = 1, . . . ,M , and obtain the subdomains Ωi,
i = 1, . . . ,m as in the previous section. We point out that the domain Ω may be
different from

Ω0 =
⋃

τ∈TH

τ,(4.2)

but we assume that if a node of TH lies on ∂Ω0, then it lies on ∂Ω, too, and

Ω\Ω0 ⊂
⋃

xi node of TH , xi∈∂Ω

Sxi ,(4.3)
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where the sets Sxi are defined as follows. We first denote by ωi the union of all τ ∈ TH
having xi as a vertex. Then, Sxi is the union of ωi with all τ ∈ Th, τ 
⊂ Ω0, which are
contained in the smallest sphere centered at xi and containing ωi.

Now, we introduce the continuous, piecewise linear finite element space corre-
sponding to the H-level,

V 0
H =

{
v ∈ C0(Ω̄0) : v|τ ∈ P1(τ), τ ∈ TH , v = 0 on ∂Ω0

}
,(4.4)

and extending the functions of V 0
H with zero in Ω\Ω0, it becomes a subspace of Vh.

The convex set Kh ⊂ Vh is defined as a subset of Vh having Property 3.1.
The two-level Schwarz method is also obtained from Algorithm 2.1 in which we

take V = Vh, K = Kh, and the subspaces V0 = V 0
H , V1 = V 1

h , V2 = V 2
h , . . . , Vm = V m

h .
As in the previous section, the spaces Vh, V 0

H , V 1
h , V 2

h , . . . , V
m
h , are considered as

subspaces of W 1,s for 1 ≤ s ≤ ∞. We note that this time the decomposition of the
domain Ω contains m overlapping subdomains, but we use m+ 1 subspaces of V , V0,
V1, . . . , Vm, in Algorithm 2.1. Naturally, this algorithm will converge if Assumption
2.1, written for m+1 subspaces, will be satisfied for the previous choice of the convex
set K and the subspaces V0, V1, . . . , Vm, of V . As in the previous section, we prove that
Assumption 2.1 holds and find the constant C0 depending on the mesh and domain
decomposition parameters. First, we have the following lemma in which inequality
(4.5) can be viewed as a Friedrichs–Poincaré type for the finite element spaces.

Lemma 4.1. Let ω ⊂ Rd be a domain of diameter H, and ωi, i = 0, 1, . . . , N ,
be an overlapping decomposition of it, ω = ∪N

i=0ωi. We consider a simplicial regular
mesh partition Th of ω and assume that it supplies a mesh partition for each ωi,
i = 0, 1, . . . , N , too. Let x0 ∈ ω̄0 be a node of Th. We assume that the overlapping
partition of ω satisfies:

(i) for any x ∈ ω̄0, the line segment [x0, x] lies in ω̄0,
(ii) for N > 0, if ωi ∩ ωj 
= Ø, 0 ≤ i 
= j ≤ N , then for any x ∈ ω̄i, y ∈ ω̄j and

z ∈ ω̄i ∩ ω̄j, the line segments [x, z] and [y, z] lie in ω̄i and ω̄j, respectively.
On these conditions, if v is a continuous function which is linear on each τ ∈ Th, and
v(x0) = 0, then

||v||0,s,ω ≤ C(N, s)C(d, s)HCd,s(H,h)|v|1,s,ω,(4.5)

where

Cd,s(H,h) =

⎧⎪⎨
⎪⎩

1 if d = s = 1 or 1 ≤ d < s ≤ ∞(
ln H

h + 1
) d−1

d if 1 < d = s < ∞(
H
h

) d−s
s if 1 ≤ s < d < ∞,

(4.6)

C(d, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C if d = s = 1 or 1 = s < d < ∞

C
(
d s−1
s−d

) s−1
s

if 1 ≤ d < s ≤ ∞
Cd

d−1
d if 1 < d = s < ∞

C(d s−1
d−s )

s−1
s if 1 < s < d < ∞.

(4.7)

and

C(N, s) =

{
1 if N = 0

if (N + 1)
C(N+1)/s

ω −1

C
1/s
ω −1

if N 
= 0
(4.8)
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with

Cω = max
ωi∩ωj �=Ø

|ωi|
|ωi ∩ ωj |

.(4.9)

In (4.9) we have denoted by | | the measure of a set, and have marked in (4.5) that
the norm in Ls and the seminorm in W 1,s, 1 ≤ s ≤ ∞, refer to the domain ω. The
constant C in (4.7) is independent of H, h, d, s, and the decomposition of ω.

Proof. Here we use the polar coordinates. The Jacobian determinant of the trans-
formation from the rectangular coordinates to the polar coordinates can be written
as

J(r, ϕ) = rd−1E(ϕ),

where E(ϕ) is an algebraic expression of cosines and sines of the component angles
of ϕ.

We first consider that N = 0, i.e., the decomposition of ω in the statement of the
lemma has only one element, ω0 = ω. Consequently, for any x ∈ ω̄, the line segment
[x0, x] lies in ω̄. We take the origin of the system of coordinates at the point x0, and,
using the polar coordinates, a point x = (x1, . . . , xd), will be written as x = (r, ϕ),
ϕ being the system of d − 1 angles giving the direction of the vector x. We denote
by rϕ the maximum size of the radius in the direction ϕ of the points in ω̄, and
consequently, the points on ∂ω will be written as (rϕ, ϕ). We denote by o the union
of the τ ∈ Th having a vertex at x0; let r0 be the distance from x0 to ∂o\∂ω. We
consider the open ball with the center at x0 of radius r0, Br0(x

0). For two points
x′ = (r′, ϕ) ∈ ω ∩Br0(x

0) and x = (r, ϕ) ∈ ω\B̄r0(x
0), we have

|v(x)| = |v(r, ϕ)| ≤ |v(r′, ϕ)| +
∣∣∫ r

r′
∂v
∂r (ρ, ϕ)dρ

∣∣
=
∣∣∂v
∂r (r′, ϕ)

∣∣ r′ +
∣∣∫ r

r′
∂v
∂r (ρ, ϕ)dρ

∣∣ ≤ ∣∣ν1
∂v
∂x1

(r′, ϕ) + · · · + νd
∂v
∂xd

(r′, ϕ)
∣∣ r′

+
∣∣∣∫ rϕ

r′

(
ν1

∂v
∂x1

(ρ, ϕ) + · · · + νd
∂v
∂xd

(ρ, ϕ)
)
dρ
∣∣∣

≤
(∣∣∣ ∂v

∂x1
(r′, ϕ)

∣∣∣ + · · · +
∣∣∣ ∂v
∂xd

(r′, ϕ)
∣∣∣) r′

+
∫ rϕ
r′

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣ + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣) dρ,

(4.10)

where (ν1, . . . , νd) is the unity vector giving the direction of x = (r, ϕ) in the rectan-
gular system of coordinates (x1, . . . , xd). In the following, we find (4.5) for the various
values of d and s starting from (4.10).

For d = s = 1 or 1 ≤ d < s ≤ ∞, we take r′ = 0 in (4.10). If d = s = 1 we get

|v(x)| = |v(r, ϕ)| ≤
∫ rϕ

0

∣∣∣∣ ∂v∂x1
(ρ, ϕ)

∣∣∣∣ dρ.
Here, we may have ϕ = 0 and ϕ = π if x0 is a inner point in ω, and only ϕ = 0 or
only ϕ = π if x0 ∈ ∂ω. Integrating again from 0 to rϕ ≤ H, we get (4.5) for N = 0
and d = s = 1. If 1 ≤ d < s = ∞, we have

|v(x)| ≤ rϕd max
1≤j≤d

sup
0≤ρ≤rϕ

∣∣∣∣ ∂v∂xj
(ρ, ϕ)

∣∣∣∣ ≤ CdH|v|1,∞,ω.

If 1 ≤ d < s < ∞ we have

|v(x)|s ≤ ds−1

[∫ rϕ

0

ρ
1−d
s−1 dρ

]s−1 ∫ rϕ

0

(∣∣∣∣ ∂v∂x1
(ρ, ϕ)

∣∣∣∣s + · · · +
∣∣∣∣ ∂v∂xd

(ρ, ϕ)

∣∣∣∣s
)
ρd−1dρ.
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Multiplying the above inequality by rd−1 and integrating from 0 to rϕ ≤ H we get∫ rϕ
0

|v(r, ϕ)|srd−1dr

≤
(
d s−1
s−d

)s−1

(CH)s
∫ rϕ
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ.

By multiplication of this equation with the Jacobian part depending on ϕ, E(ϕ), and
integrating over the d− 1 dimensional domain of the angles ϕ, we get (4.5) for N = 0
and 1 ≤ d < s < ∞.

Now, from (4.10) for an arbitrary 0 < r′ < r0, we get

|v(x)| = |v(r, ϕ)| ≤
(∣∣∣ ∂v

∂x1
(r′, ϕ)

∣∣∣ + · · · +
∣∣∣ ∂v
∂xd

(r′, ϕ)
∣∣∣) r0

+
∫ rϕ
r0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣ + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣) dρ.

(4.11)

Also, since for a fixed ϕ, ∂v
∂r (r′, ϕ) is constant for r′ ∈ (0, r0), we have

|v(x′)|s = |v(r′, ϕ)|s ≤ (r′)s−d

d

∫ r0
0

∣∣∣∂v∂ρ (ρ, ϕ)
∣∣∣s ρd−1dρ

≤ ds−2(r′)s−d
∫ r0
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ.

Multiplying the above inequality by (r′)d−1, and integrating from 0 to r0, we get∫ r0
0

|v(ρ, ϕ)|sρd−1dρ

≤ ds−2

s rs0
∫ r0
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ.

(4.12)

Now, if 1 = s < d < ∞ we get from (4.11),

|v(x)| ≤ 1
dr

1−d
0

∫ r0
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣ + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣) ρd−1dρ

+ r1−d
0

∫ rϕ
r0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣ + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣) ρd−1dρ

≤ r1−d
0

∫ rϕ
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣ + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣) ρd−1dρ.

Using the regularity of the mesh Th, we have
rϕ
r ≤ CH

h , and therefore,

∫ rϕ
r0

|v(ρ, ϕ)|ρd−1dρ ≤ CH
(
H
h

)d−1 ∫ rϕ
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣ + · · · +

∣∣∣| ∂v
∂xd

(ρ, ϕ
∣∣∣) ρd−1dρ.

From this last inequality and (4.12) we get (4.5) for N = 0 and 1 = s < d < ∞ by a
multiplication with E(ϕ) and integrating over the domain of the angles ϕ.

Starting again from (4.11), for 1 < d = s < ∞ or 1 < s < d < ∞, we get

|v(x)|s ≤ (2d)s−1

(∣∣∣∣ ∂v∂x1
(r′, ϕ)

∣∣∣∣s + · · · +
∣∣∣∣ ∂v∂xd

(r′, ϕ)

∣∣∣∣s
)
rs0

+ (2d)s−1
[∫ rϕ

r0
ρ

1−d
s−1 dρ

]s−1 ∫ rϕ
r0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ

= 2s−1dsrs−d
0

∫ r0
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ

+ (2d)s−1
[∫ rϕ

r0
ρ

1−d
s−1 dρ

]s−1 ∫ rϕ
r0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ.
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Consequently,∫ rϕ
r0

|v(ρ, ϕ)|sρd−1dρ

≤ (2d)s−1rdϕr
s−d
0

∫ r0
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ

+ 2s−1ds−2rdϕ

[∫ rϕ
r0

ρ
1−d
s−1 dρ

]s−1

·
∫ rϕ
r0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ.

(4.13)

Now, from (4.13), if 1 < d = s < ∞ we get∫ rϕ
r0

|v(ρ, ϕ)|dρd−1dρ

≤ 2d−1rdϕ max

{
dd−1, dd−2

(
ln

rϕ
r0

)d−1
}

∫ rϕ
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ
∣∣∣d + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣d) ρd−1dρ.

Using regularity of the mesh Th, we get∫ rϕ
r0

|v(ρ, ϕ)|dρd−1dρ

≤ dd−1 (CH)
d (

ln H
h + 1

)d−1 ∫ rϕ
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣d + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ.

This inequality together with (4.12) prove (4.5) for N = 0 and 1 < d = s < ∞.
Finally, if 1 < s < d < ∞, we get from (4.13),

∫ rϕ
r0

|v(ρ, ϕ)|sρd−1dρ ≤ 2s−1 max

{
ds−1rdϕr

s−d
0 , ds−2rsϕ( s−1

d−s )
s−1

[(
rϕ
r0

) d−s
s−1 − 1

]s−1
}

∫ rϕ
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ,

and, consequently,∫ rϕ
r0

|v(ρ, ϕ)|sρd−1dρ

≤ (d s−1
d−s )

s−1(CH)s
(
H
h

)d−s ∫ rϕ
0

(∣∣∣ ∂v
∂x1

(ρ, ϕ)
∣∣∣s + · · · +

∣∣∣ ∂v
∂xd

(ρ, ϕ)
∣∣∣s) ρd−1dρ.

Using again (4.12) and the last inequality, we get (4.5) for N = 0 and 1 < s < d < ∞.
Assume now that N > 0, i.e., we have more than one subdomain ωi, i =

0, 1, . . . , N in the overlapping decomposition of ω. Such a decomposition is considered
when there exist points x ∈ ω̄ for which the line segment [x0, x] does not wholly lie in
ω̄. Let ωi and ωj , i 
= j be two fixed subdomains such that ωi ∩ωj 
= Ø. We consider
a fixed point z ∈ ωi ∩ ωj , and denoting by zk and φk the nodes of Th in ω̄i ∩ ω̄j and
the corresponding functions in the nodal basis, respectively, for a given 1 ≤ s < ∞,
we have

||v||0,s,ωj −
∣∣∣∣∣∑

k

v(zk)φk(z)

∣∣∣∣∣ |ωj |1/s ≤ ||v −
∑
k

v(zk)φk(z)||0,s,ωj

=

∥∥∥∥∥∑
k

(
v − v(zk)

)
φk(z)

∥∥∥∥∥
0,s,ωj

≤
∑
k

||v − v(zk)||0,s,ωj
φk(z).
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Since v − v(zk) vanishes at zk, we get from the first part of the proof and the last
equation that

||v||0,s,ωj −
∣∣∣∣∣∑

k

v(zk)φk(z)

∣∣∣∣∣ |ωj |1/s ≤
∑
k

C(d, s)HCd,s(H,h)|v|1,s,ωjφk(z)

= C(d, s)HCd,s(H,h)|v|1,s,ωj ,

and integrating over ωi ∩ ωj , we get

|ωi ∩ ωj |||v||0,s,ωj ≤ |ωj |1/s
∫
ωi∩ωj

|v| + |ωi ∩ ωj |C(d, s)HCd,s(H,h)|v|1,s,ωj

≤ |ωj |1/s|ωi ∩ ωj |(s−1)/s||v||0,s,ωi∩ωj + |ωi ∩ ωj |C(d, s)HCd,s(H,h)|v|1,s,ωj
.

Consequently, we have

||v||0,s,ωj ≤
(

|ωj |
|ωi ∩ ωj |

)1/s

||v||0,s,ωi + C(d, s)HCd,s(H,h)|v|1,s,ωj .(4.14)

It is easy to see that (4.14) holds for s = ∞, too. Taking into account that

||v||0,s,ω0 ≤ C(d, s)HCd,s(H,h)|v|1,s,ω0 ,(4.15)

from (4.14) and (4.15), we get (4.5) for N > 0.
Remark 4.1. As stated at the beginning of this section, we are interested in the

error estimation for a family of pairs (H,h). In general, since the mesh Th is regular,
the overlapping decomposition of ω in Lemma 4.1 can be taken such that the number
N and the constant Cω in (4.9) are bounded and independent of (H,h). In this
point of view, the constants C(d, s), C(N, s) and Cω, written in (4.7)–(4.9), can be
considered as independent of H and h, and assimilated to the generic constant C. In
the following we write (4.5) as

||v||0,s,ω ≤ CHCd,s(H,h)|v|1,s,ω,(4.16)

where C = C(N, s)C(d, s) and Cd,s(H,h) is given in (4.6).
The above lemma can be very useful in various error estimations. The following

result, for instance, extends to W 1,s that in [9, Lemma 2.3].
Corollary 4.1. Let ω be a domain of diameter H and have a simplicial regular

mesh partition Th. If v is a continuous function which is linear on each τ ∈ Th, and
v = 0 on ∂ω, then for any 1 ≤ s ≤ ∞ we have

||v||0,∞,ω ≤ CH
s−d
s Cd,s(H,h)|v|1,s,ω,(4.17)

where Cd,s(H,h) is given in (4.6), and C is independent of H and h.
Proof. Let x0 ∈ ω̄ be the point where |v(x0)| = ||v||0,∞,ω, and x ∈ ω a current

point. We note that x0 is a node of Th. For 1 ≤ s < ∞, we have

|v(x0)|s ≤ 2s−1|v(x0) − v(x)|s + 2s−1|v(x)|s,

and integrating it over ω, using (4.16), we get

|ω|||v||s0,∞,ω ≤ 2s−1||v(x0) − v(x)||s0,s,ω + 2s−1||v(x)||s0,s,ω
≤ 2s−1 (CHCd,s(H,h))

s |v(x)|s1,s,ω + 2s−1||v(x)||s0,s,ω.
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Now, since v = 0 on ∂ω, we can apply the classical Friedrichs–Poincaré inequality and
obtain (4.17). If s = ∞, the proof is similar.

Coming back to the two-level method, let us denote by xi a node of TH , by φi

the linear nodal basis function associated with xi and TH , and by ωi the support
of φi. We point out that we consider all the nodal basis functions, including those
corresponding to the nodes on ∂Ω0. Given a v ∈ Vh, let us write

I−i v = min
x∈ωi

v(x)− and I+
i v = min

x∈ωi

v(x)+,(4.18)

where v(x)− = max(0,−v(x)) and v(x)+ = max(0, v(x)). Since v is piecewise linear,
I−i v or I+

i v are attained at a node of Th if they are not zero. For a v ∈ Vh, we define

I−Hv :=
∑

xi node of TH

(I−i v)φi(x) and I+
Hv :=

∑
xi node of TH

(I+
i v)φi(x),(4.19)

and we write

IHv = I+
Hv − I−Hv.(4.20)

The following result extends to that given in [37], where similar operators to I+
i

have been introduced.
Lemma 4.2. For any v ∈ Vh we have

||IHv − v||0,s,Ω0 ≤ CHCd,s(H,h)|v|1,s,Ω0(4.21)

and

||IHv||0,s,Ω0 ≤ C||v||0,s,Ω0 and |IHv|1,s,Ω0 ≤ CCd,s(H,h)|v|1,s,Ω0 ,(4.22)

where Ω0 is the union of the simplexes in TH written in (4.2), Cd,s(H,h) is defined in
(4.6), and C is independent of H, h, and δ. Equations (4.21) and (4.22) also hold if
Ω0 is replaced by Ω. Moreover, if K is a convex and closed set in Vh having Property
3.1, with 0 ∈ K, then for any v ∈ K we have IHv ∈ K ∩ V 0

H .
Proof. Let us take an ωi, the support of the linear basis function φi corresponding

to the node xi of TH , and a v ∈ Vh. If v vanishes at a point in ωi, then I+
i v = I−i v = 0

and v+ and v− vanish at some nodes of Th in ωi. Applying Lemma 4.1, we get

||v||s0,s,ωi
= ||v+ − v−||s0,s,ωi

= ||v+||s0,s,ωi
+ ||v−||s0,s,ωi

≤ [CHCd,s(H,h)]
s [|v+|s1,s,ωi

+ |v−|s1,s,ωi

]
= [CHCd,s(H,h)]s|v|s1,s,ωi

.
(4.23)

Consequently,

||v − I+
i v + I−i v||0,s,ωi ≤ CHCd,s(H,h)|v|1,s,ωi .(4.24)

If v 
= 0 at any point of ωi, then either v+ = I+
i v = 0 or v− = I−i v = 0. Consequently,

there exits at least a node of Th in ωi at which v− I+
i v+ I−i v = v+ − v− − I+

i v+ I−i v
vanishes. From Lemma 4.1, since I+

i v − I−i v is a constant, we again get (4.24). We
notice that, since for any x ∈ ωi the line segment [xi, x] lies in ωi, we can take a
decomposition of ωi as in Lemma 4.1 having N ≤ 1. Assuming that N = 1, let ωi0

and ωi1 = ω be this decomposition. Since ωi0 contains at least one τ ∈ TH and the
mesh TH is regular, then, according to (4.9), Cωi can be taken independent of H and
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h. Consequently, C(N, s) in (4.8) is independent of H and h. Now, using (4.24), we
get

||IHv − v||s0,s,ωi
=

∥∥∥∥∥∥
∑

xj∈ωi

[
I+
j v − I−j v − v

]
φj

∥∥∥∥∥∥
s

0,s,ωi

≤ C
∑

xj∈ωi

||I+
j v − I−j v − v||s0,s,ωi∩ωj

≤ [CHCd,s(H,h)]
s
∑

xj∈ωi

|v|s1,s,ωj
.

Above, xj are nodes of TH , and we used the fact that, since the mesh is regular,
the maximum number of ωj which nonemptily intersects a given ωi is bounded and
independent of H. Now, we again use this property to obtain

||IHv − v||s0,s,Ω0
≤

∑
xi∈Ω0

||IHv − v||s0,s,ωi

≤ [CHCd,s(H,h)]
s
∑

xi∈Ω0

∑
xj∈ωi

|v|s1,s,ωj
≤ [CHCd,s(H,h)]

s
∑

xi∈Ω0

|v|s1,s,ωi
.

Also, from the regularity of the mesh, it follows that each ωi contains a bounded
number of simplexes of TH which is independent of H. Consequently, we have

||IHv − v||s0,s,Ω0
≤ [CHCd,s(H,h)]

s
∑
τ∈TH

|v|s1,s,τ ,

and in this way, we get (4.21).
In order to prove (4.22), we notice first that, from the definition of I+

i v and I−i v,
we have for any x ∈ ωi,

0 ≤ I+
i v − I−i v ≤ v(x) if v(x) ≥ 0, and

0 ≥ I+
i v − I−i v ≥ v(x) if v(x) ≤ 0,

(4.25)

and therefore,

|I+
i v − I−i v| ≤ |v(x)| for any x ∈ ωi.(4.26)

Using this inequality, we obtain

||IHv||s0,s,ωi
=

∥∥∥∥∥∥
∑

xj∈ωi

(I+
j v − I−j v)φj

∥∥∥∥∥∥
s

0,s,ωi

≤
∫
ωi

⎛
⎝ ∑

xj∈ωi

|I+
j − I−j |φj

⎞
⎠s

=

∫
ωi

⎛
⎝ ∑

xj∈ωi

|v(x)|φj

⎞
⎠s

=

∫
ωi

|v(x)|s = ||v||s0,s,ωi
.

Taking again into account the regularity of the mesh, we get

||IHv||s0,s,Ω0
≤

∑
xi∈Ω0

||IHv||s0,s,ωi
≤

∑
xi∈Ω0

||v||s0,s,ωi
≤ C

∑
τ∈TH

||v||s0,s,τ ,

and therefore, the first equation in (4.22) holds. To prove the second equation in
(4.22), first we write

|IHv|s1,s,ωi
=

∣∣∣∣∣∣
∑

xj∈ωi

(I+
j v − I−j v)φj

∣∣∣∣∣∣
s

1,s,ωi

≤ CHd−s max
xk,xl∈ωi,ωk∩ωl �=∅

|(I+
k v − I−k v) − (I+

l v − I−l v)|s.
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Since ωk ∩ωl 
= ∅, taking into account the definition of I+
i v and I−i v in (4.18), we get

that I+
k v− I−k v and I+

l v− I−l v cannot be both different from zero and have different
signs. Therefore, if we write

|I+
p v − I−p v| − |I+

q v − I−q v| = max
xk,xl∈ωi,ωk∩ωl �=∅

|(I+
k v − I−k v) − (I+

l v − I−l v)|,

using (4.26), we get

|IHv|s1,s,ωi
≤ CHd−s(|I+

p v − I−p v| − |I+
q v − I−q v|)s ≤ CHd−s(|v(x)| − |I+

q v − I−q v|)s

for any x ∈ ωp ∩ ωq. Since the mesh Th is regular, we have Hd ≤ C|ωp ∩ ωq|, and
integrating the above equation over ωp ∩ ωq we get

|IHv|s1,s,ωi
≤ CH−s

∫
ωp∩ωq

(|v(x)| − |I+
q v − I−q v|)s

= CH−s
∫
ωp∩ωq

|v(x) − (I+
q v − I−q v)|s ≤ CH−s

∫
ωq

|v(x) − (I+
q v − I−q v)|s.

If there exists a point in ωq at which v vanishes, then I+
q v = I−q v = 0, and, as in

(4.23), we get

|IHv|1,s,ωi ≤ CCd,s(H,h)|v|1,s,ωq
.

Also, if v > 0 or v < 0 in ωq, then there exists xq ∈ ωq, node of Th, such that
v(xq) = I+

q v − I−q v, and we again get the above inequality applying Lemma 4.1.
Finally, using again the fact that the mesh TH is regular, we get the second equation
in (4.22).

To prove that (4.21) and (4.22) hold on Ω, we see that IHv = 0 on all the sets
Sxi introduced in (4.3). Therefore, (4.22) holds on all sets Sxi . Also, since v(xi) = 0,
from Lemma 4.1, we get that (4.21) holds on Sxi . Consequently, the above reasoning
we made for Ω0 can be done for Ω, too. From (4.25), (4.19), and (4.20), we get that
for any x ∈ Ω, we have

0 ≤ IHv(x) ≤ v(x) if v(x) ≥ 0, and 0 ≥ IHv(x) ≥ v(x) if v(x) ≤ 0.(4.27)

Therefore, we can find a θ(x) ∈ C1(Ω), 0 ≤ θ(x) ≤ 1, such that θ(xi) = IHv(xi)/v(xi)
if IHv(xi) 
= 0, and θ(xi) = 0 if IHv(xi) = 0, at any node xi of Th. Consequently, we
can write IHv = Lh(θv + (1 − θ)0). Finally, if 0, v ∈ K, and K has Property 3.1, we
get that IHv ∈ K.

Now, we can prove the following proposition which shows that the constant C0 in
Assumption 2.1 is independent of the mesh and domain decomposition parameters if
H/δ and H/h are constant. This result is similar to that given in [4] for the inequalities
coming from minimization of the quadratic functionals. In the first part of the proof,
the construction of vi, i = 1, . . . ,m, is similar to that given for the one-level method.
In the second part we define an appropriate v0 using the previous lemma.

Proposition 4.1. Let Ω1, . . . ,Ωm be the overlapping decomposition of the do-
main Ω defined in this section. Then Assumption 2.1 is verified for the piecewise
linear finite element spaces V = Vh and V0 = V 0

H , Vi = V i
h, and i = 1, . . . ,m, defined

in (3.3), (3.4), and (4.4), respectively, and any convex set K = Kh satisfying Property
3.1. The constant in (2.3) of Assumption 2.1 can be taken of the form

C0 = C(m + 2)1−
1
p

(
1 + (m− 1)

H

δ

)
Cd,s(H,h),(4.28)
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where C is independent of the mesh and domain decomposition parameters, and
Cd,s(H,h) is given in (4.6).

Proof. Let us consider w ∈ Kh, w0 ∈ V 0
H , and wi ∈ V i

h such that w +
∑i

j=0 wi ∈
Kh, i = 0, . . . ,m, and let v be another element in Kh. In the following, we use unity
partitions (θij)j=i,...,m, of the domains ∪m

j=i,mΩj , i = 1, . . . ,m, having property (3.2).

Step 1. We assume that we have a v0 ∈ V 0
H satisfying

w + v0, v + w0 − v0 ∈ Kh,(4.29)

and we recursively construct vi ∈ V i
h , i = 1, . . . ,m, which satisfies (2.1) and (2.2) in

Assumption 2.1. To this end, we define

v1 = Lh

(
θ1
1(v − w − v0) + (1 − θ1

1)w1

)
,(4.30)

and, as in the previous section, we get

v1 ∈ V 1
h and w + w0 + v1 ∈ Kh,

v − v0 − v1 + w0 + w1 ∈ Kh,

v − w − v0 − v1 ∈ W 1,s
0

⎛
⎝ m⋃

j=2

Ωj

⎞
⎠ and

v − w − v0 − v1 = 0 in Ω − ∪m
j=2Ωj .

Also, for i = 2, . . . ,m− 1 we write

vi = Lh

⎛
⎝θii

⎛
⎝v − w −

i−1∑
j=0

vj

⎞
⎠ + (1 − θii)wi

⎞
⎠ ,(4.31)

and we prove

vi ∈ V i
h and w +

i−1∑
j=0

wj + vi ∈ Kh,

v −
i∑

j=0

vj +

i∑
j=0

wj ∈ Kh,

v − w −
i∑

j=0

vj ∈ W 1,s
0

⎛
⎝ m⋃

j=i+1

Ωj

⎞
⎠ , and

v − w −
i∑

j=0

vj = 0 in Ω − ∪m
j=i+1Ωj ,

assuming that these equations hold for i− 1. Finally, we take

vm = v − w −
m−1∑
j=0

vj(4.32)

and we get that (2.1) and (2.2) in Assumption 2.1 hold.
Step 2. We define in this step a v0 ∈ V 0

H satisfying (4.29) and prove that condition
(2.3) in Assumption 2.1 is satisfied with the constant C0 given in (4.28). It is easy to
see that (4.29) is equivalent with

v0 − w0 ∈ (Kh − (w + w0)) ∩ (v −Kh) ,(4.33)
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and also, since v, w + w0 ∈ Kh, we get

v − w − w0 ∈ (Kh − (w + w0)) ∩ (v −Kh) .(4.34)

We write K = (Kh − (w + w0))∩ (v −Kh), and from the above equation and Lemma
4.2, we get that IH(v − w − w0) ∈ K. From (4.21) and (4.22) we have

||v − w − w0 − IH(v − w − w0)||0,s ≤ CHCd,s(H,h)|v − w − w0|1,s(4.35)

and

||IH(v − w − w0)||0,s ≤ CCd,s(H,h)||v − w − w0||0,s
|IH(v − w − w0)|1,s ≤ CCd,s(H,h)|v − w − w0|1,s,

(4.36)

where Cd,s(H,h) is defined in (4.6). Now we take

v0 = w0 + IH(v − w − w0),(4.37)

and, from 4.34, the second part of Lemma 4.2, and (4.33), we get that it satisfies
condition (4.29). To prove condition (2.3) in Assumption 2.1, we first notice that,
starting from v1 given in (4.30), by the recurrent application of (4.31), as in the proof
of Proposition 3.1, we get vi, i = 1, . . . ,m, of the form

vi = Lh

⎛
⎝τ i0(v − w − v0) +

i∑
j=1

τ ijwj

⎞
⎠ , i = 1, . . . ,m,(4.38)

where τ ij , i = 1, . . . ,m, j = 0, . . . , i, satisfy (3.9). Using (3.10) and (3.11), we get

||Lh(τ ijwj)||1,s ≤ C||τ ijwj ||1,s ≤ C

(
||wj ||1,s +

m− 1

δ
||wj ||0,s

)
.

It follows from (4.1) that the diameters of the connected component of Ωi are less
than CH, and since wi ∈ V i

h , using the classical Friedrichs–Poincaré inequality, we
get

||Lh(τ ijwj)||1,s ≤ C

[
1 + (m− 1)

H

δ

]
|wj |1,s, i = 1, . . . ,m, j = 1, . . . , i.(4.39)

On the other hand, taking into account (3.10), (3.11), (4.37), and (4.35), we get

||Lh(τ i0(v − w − v0))||1,s ≤ C[|v − w − v0|1,s +
(
1 + m−1

δ

)
||v − w − v0||0,s]

= C[|v − w − v0|1,s +
(
1 + m−1

δ

)
||v − w − w0 − IH(v − w − w0)||0,s]

≤ C
[
|v − w − v0|1,s + (m− 1)Cd,s(H,h)Hδ |v − w − w0|1,s

]
≤ C(|v − w|1,s + |v0|1,s) + C(m− 1)Cd,s(H,h)Hδ (|v − w|1,s + |w0|1,s).

Consequently, we have

||Lh(τ i0(v − w − v0))||1,s ≤ C
[
1 + (m− 1)Hδ

]
Cd,s(H,h)

· (|v − w|1,s + |w0|1,s) + C|v0|1,s, i = 1, . . . ,m.
(4.40)
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Also, from (4.37) and (4.36), we get

|v0|1,s = |w0 + IH(v − w − w0)|1,s ≤ |w0|1,s + |IH(v − w − w0)|1,s
≤ |w0|1,s + CCd,s(H,h)|v − w − w0|1,s,

and therefore,

|v0|1,s ≤ CCd,s(H,h)(|v − w|1,s + |w0|1,s).(4.41)

Now, from (4.40) and (4.41), we get

||Lh(τ i0(v − w − v0))||1,s
≤ C

[
1 + (m− 1)Hδ

]
Cd,s(H,h)(|v − w|1,s + |w0|1,s), i = 1, . . . ,m.

(4.42)

Finally, from (4.38), (4.39), (4.41), and (4.42) we obtain that condition (2.3) in As-
sumption 2.1 holds with C0 given in (4.28).

Remark 4.2. As in Remark 3.1, we notice that, since the number m of the
subdomains Ωi is the number of colors of the overlapping domain decomposition
{Oi}1≤i≤M , the error estimates in Theorem 2.1 depends only on C0 given in (4.28).
Therefore, if the overlapping size δ and the mesh sizes H and h are chosen such that
H/h and H/δ are constant, then the convergence rate of the two-level multiplicative
Schwarz method is independent of the mesh and domain decomposition parameters.

5. Multilevel multiplicative Schwarz method. We consider over the domain
Ω ⊂ Rd a family of regular meshes Thj of mesh sizes hj , j = 1, . . . , L, such that Thj+1

is a refinement of Thj , j = 1, . . . , L− 1. We write

Ωj =
⋃

τ∈Thj

τ(5.1)

and we assume that Ω = ΩL. As in the previous section, we assume that, if a node of
Thj

lies on ∂Ωj , then it lies on ∂Ωj+1, too, that is, it lies on ∂Ω. Also, for the nodes
xj ∈ ∂Ω of Thj

, j = 1, . . . , L − 1, we consider the union of all τ ∈ Thj having xj as
a vertex, ωj , and define the set Sxj as the union of ωj with all τ ∈ Thj+1 , τ 
⊂ Ωj ,
which are contained in the smallest sphere which is centered at xj and contains ωj .
We assume that

Ωj+1\Ωj ⊂
⋃

xj node of Thj
, xj∈∂Ω

Sxj for j = 1, . . . , L− 1.(5.2)

Since the mesh Thj+1 is a refinement of Thj , we have hj+1 ≤ hj , and assume that
there exists a constant γ, independent of the number of meshes, L, such that

1 < γ ≤ hj

hj+1
, j = 1, . . . , L− 1.(5.3)

At each level j = 1, . . . , L, we consider an overlapping decomposition {Oi
j}1≤i≤Mj

of Ωj , and assume that the mesh partition Thj of Ωj supplies a mesh partition for
each Oi

j , 1 ≤ i ≤ Mj . Also, we assume that the overlapping size for the domain
decomposition at the level 1 ≤ j ≤ L is δj , i.e.,

Oi
j ∩ ∂

⎛
⎝⋃

l �=i

Ol
j

⎞
⎠ 
= ∅ and dist

⎛
⎝∂Oi

j\∂Ωj , O
i
j ∩ ∂

⎛
⎝⋃

l �=i

Ol
j

⎞
⎠
⎞
⎠ ≥ δj(5.4)
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is satisfied. In addition, we suppose that there exists a constant C such that

diam(Oi
j+1) ≤ Chj , j = 1, . . . , L− 1, i = 1, . . . ,Mj .(5.5)

Now, at each level j = 1, . . . , L, we color the subdomains Oi
j , i = 1, . . . ,Mj , and

obtain the overlapping subdomains Ωi
j , i = 1, . . . ,mj , as in the previous section.

Finally, we assume that m1 = 1, and write

m = max
j=1,...,L

mj .(5.6)

At each level j = 1, . . . , L, we introduce the linear finite element spaces,

Vhj = {v ∈ C0(Ω̄j) : v|τ ∈ P1(τ), τ ∈ Thj , v = 0 on ∂Ωj},(5.7)

and, for i = 1, . . . ,mj , we write

V i
hj

= {v ∈ Vhj
: v = 0 in Ωj\Ωi

j}.(5.8)

The convex set will be a subset KhL
of VhL

having Property 3.1.
In order to prove that Assumption 2.1 holds for the convex set K = KhL

and the
spaces V = VhL

, V i
j = V i

hj
, j = 1, . . . , L, i = 1, . . . ,mj , and to find the constant C0 in

(2.3) as a function of the domain decomposition and mesh parameters, we need the
following lemma. This result generalizes to more than two levels the second inequality
(4.22) in Lemma 4.2. To this end, we introduce operators Ihk

: Vhk+1
→ Vhk

, k =
1, . . . , L− 1, which are similar to the operator IH : Vh → VH defined in (4.20).

Lemma 5.1. For a given 1 ≤ j < L− 1, let vk, wk ∈ Vhk
, k = j + 1, . . . , L− 1,

such that

vk = wk + Ihk
(vk+1).(5.9)

Then,

|Ihjvj+1|1,s,Ωj ≤ C(L− j)
s−1
s

⎧⎨
⎩

L−1∑
k=j+1

Cd,s(hj , hk)
s|wk|s1,s,Ωj

+ Cd,s(hj , hL)s|vL|s1,s,Ωj

⎫⎬
⎭

1
s

.

(5.10)

Moreover, (5.10) also holds if its seminorms over Ωj are replaced with seminorms
over Ωk, for any k = j + 1, . . . , L.

Proof. Let ωj be the support of the nodal basis function in Vhj corresponding to

the node xj of Thj
. Then there exists two nodes of Thj

, xj
1, x

j
2 ∈ ωj , such that

|Ihjvj+1|s1,s,ωj
≤ Chd−s

j |(Ihjvj+1)(x
j
1) − (Ihjvj+1)(x

j
2)|s.(5.11)

Starting from (5.11), we prove that, for each k = j, . . . , L − 1, there exist two
nodes of Thk+1

, xk+1
1 ∈ ω1

k and xk+1
2 ∈ ω2

k, ω
1
k and ω2

k being the supports of the nodal
basis function in Vhk

corresponding to the nodes xk
1 and xk

2 of Thk
, respectively, such

that

|Ihjvj+1|s1,s,ωj

≤ Chd−s
j

⎡
⎣ L−1∑
k=j+1

|wk(x
k
1) − wk(x

k
2)| + |vL(xL

1 ) − vL(xL
2 )|

⎤
⎦s

.
(5.12)
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First, we assume that, starting with xj
1 and xj

2 in (5.11), at each level k =
j, . . . , L − 1, the values of (Ihk

vk+1)(x
k
1) and (Ihk

vk+1)(x
k
2) are obtained as values

of vk+1 at two nodes xk+1
1 ∈ ω1

k and xk+1
2 ∈ ω2

k, respectively, that is, we have

(Ihk
vk+1)(x

k
1) = vk+1(x

k+1
1 ) and (Ihk

vk+1)(x
k
2) = vk+1(x

k+1
2 ).(5.13)

Therefore, starting from (5.11), using (5.9), for any j + 1 ≤ N ≤ L− 1, we get

|Ihjvj+1|s1,s,ωj
≤ Chd−s

j

·

⎡
⎣ N∑
k=j+1

|wk(x
k
1) − wk(x

k
2)| + |(IhN

vN+1)(x
N
1 ) − (IhN

vN+1)(x
N
2 )|

⎤
⎦s

,
(5.14)

and, consequently, we get (5.12). Now, we prove that there exist some nodes xk
1 and

xk
2 of Thk

such that (5.12) holds, even if (5.13) does not hold for all k = j, . . . , L− 1.
Let us assume that (5.13) holds for k = j, . . . , N , j + 1 ≤ N ≤ L − 1. Therefore
we can get (5.14). From the definition of the operators I+

i and I−i in (4.18), it
follows that if, for instance, (IhN

vN+1)(x
N
1 ) 
= vN+1(x) for any node x ∈ ω1

N of
ThN+1

, then (IhN
vN+1)(x

N
1 ) = 0 and vN+1 takes both positive and negative values

at the nodes of ThN+1
in ω1

N . Consequently, if both (IhN
vN+1)(x

N
1 ) 
= vN+1(x) for

any node x ∈ ω1
N of ThN+1

, and (IhN
vN+1)(x

N
2 ) 
= vN+1(x) for any node x ∈ ω2

N

of ThN+1
, then (IhN

vN+1)(x
N
1 ) = (IhN

vN+1)(x
N
2 ) = 0, and we get that (5.12) holds

for some arbitrary nodes of Thk
, xk

1 ∈ ω1
k−1, xk

2 ∈ ω2
k−1, N + 1 ≤ k ≤ L. Also, if

(IhN
vN+1)(x

N
1 ) 
= vN+1(x) for any node x ∈ ω1

N of ThN+1
, but there exists xN+1

2 ∈ ω2
N ,

node of ThN+1
, such that (IhN

vN+1)(x
N
2 ) = vN+1(x

N+1
2 ), then

|(IhN
vN+1)(x

N
1 ) − (IhN

vN+1)(x
N
2 )| = |vN+1(x

N+1
2 )| ≤ |vN+1(x

N+1
1 ) − vN+1(x

N+1
2 )|,

where xN+1
1 ∈ ω1

N is an arbitrary node of ThN+1
for which vN+1(x

N+1
1 ) and vN+1(x

N+1
2 )

have different signs. In this way we get that (5.14) holds for N + 1, and can continue
the same reasoning for N + 2 ≤ k ≤ L− 1.

If we write ω1
j−1 = ω2

j−1 = ωj , since, for k = j, . . . , L, the above nodes xk
1 and xk

2

of Thk
belong to ω1

k−1 and ω2
k−1, respectively, and diam(ω1

k−1), diam(ω2
k−1) ≤ 2hk,

then xk
1 and xk

2 , k = j, . . . , L, belong to the sphere centered at xj and having the
radius of 2hj + hj+1 + hj+2 + · · ·+ hL−1. Using (5.3), we get that they belong to the
sphere centered at xj with the radius of 2γ−1

γ−1 hj . Consequently, if we write

ω̃j =
⋃

τ∈Thj
, dist(xj,τ)≤ γ

γ−1hj

τ,(5.15)

then xk
1 , x

k
2 ∈ ω̃j , k = j, . . . , L. For any x ∈ ω̃j , we get from (5.12),

|Ihjvj+1|s1,s,ωj
≤ Chd−s

j [2(L− j)]s−1⎧⎨
⎩

L−1∑
k=j+1

[|wk(x
k
1) − wk(x)|s + |wk(x

k
2) − wk(x)|s]

+ |vL(xL
1 ) − vL(x)|s + |vL(xL

2 ) − vL(x)|s
⎫⎬
⎭ ,



CONVERGENCE RATE OF A SCHWARZ MULTILEVEL METHOD 471

and integrating over ω̃j we have,

( 2γ−1
γ−1 hj)

d|Ihj
vj+1|s1,s,ωj

≤ Chd−s
j [2(L− j)]s−1⎧⎨

⎩
L−1∑

k=j+1

[||wk(x
k
1) − wk||s0,s,ω̃j

+ ||wk(x
k
2) − wk||s0,s,ω̃j

]

+ ||vL(xL
1 ) − vL||s0,s,ω̃j

+ ||vL(xL
2 ) − vL||s0,s,ω̃j

⎫⎬
⎭ .

From this inequality and (4.16), we get

|Ihjvj+1|s1,s,ωj
≤ C(L− j)s−1

(
γ−1
2γ−1

)d

⎧⎨
⎩

L−1∑
k=j+1

Cd,s

(
2hj

2γ − 1

γ − 1
, hk

)s

|wk|s1,s,ω̃j
+ Cd,s

(
2hj

2γ − 1

γ − 1
, hL

)s

|vL|s1,s,ω̃j

⎫⎬
⎭ ,

and, taking into account the definition of Cd,s in (4.6), we have

|Ihjvj+1|s1,s,ωj
≤ C(L−j)s−1

⎧⎨
⎩

L−1∑
k=j+1

Cd,s(hj , hk)
s|wk|s1,s,ω̃j

+ Cd,s(hj , hL)s|vL|s1,s,ω̃j

⎫⎬
⎭ .

Finally, since the mesh Thj is regular and γ is independent of L and of the mesh
parameters, then ωj and ω̃j contain a bounded number of simplexes in Thj , which
is also independent of L and of the mesh parameters. Consequently, we get (5.10).
Since the nodes of Thj

belonging to ∂Ωj lie also on ∂Ωj+1, and vj+1 = 0 on ∂Ωj+1, it
follows that Ihj

vj+1 = 0 on ∂Ωj . Consequently, they are extended with zero to Ωk,
j + 1 ≤ k ≤ L, and (5.10) holds for these domains, too.

The following proposition shows that Assumption 2.1 holds for the multilevel
method and writes the constant C0 as a function of the domain decomposition and
mesh parameters.

Proposition 5.1. Let, for each level j = 1, . . . , L, Ω1
j , . . . ,Ω

mj

j be the overlapping
decomposition of the domain Ωj defined in this section with ΩL = Ω and m1 = 1. Then
Assumption 2.1 is verified for the piecewise linear finite element spaces, V = VhL

and
V i
j = V i

hj
, j = 1, . . . , L, i = 1, . . . ,mj defined in (5.7) and (5.8), respectively, and any

convex set K = KhL
⊂ VhL

with Property 3.1. The constant in (2.3) of Assumption
2.1 can be taken of the form

C0 = Cm2(L + 1)2−
1
p−

1
s

L∑
j=1

[
1 + (m− 1)

hj−1

δj

]
Cd,s(hj−1, hL)(5.16)

in which we take h0 = h1, C is independent of the mesh and domain decomposition
parameters, and Cd,s(H,h) is given in (4.6).

Proof. Let us consider w ∈ KhL
, wi

j ∈ V i
hj

, j = 1, . . . , L, i = 1, . . . ,mj , such

that w +
∑k−1

j=1

∑mj

i=1 w
i
j +

∑l
i=1 w

i
k ∈ KhL

, k = 1, . . . , L, l = 1, . . . ,mk, and let v be
another element in KhL

. For j = 1, . . . , L, we write

w0
j =

mj∑
i=1

wi
j and wj =

j∑
k=1

w0
k =

j∑
k=1

mj∑
i=1

wi
j .
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Since v, w + wL−2 ∈ KhL
, and also, w + wL−2 + w0

L−1 ∈ KhL
and w + wL−2 +

w0
L−1 +

∑l
i=1 w

i
L ∈ KhL

, l = 1, . . . ,mL, as in the proof of Proposition 4.1, we get that
there exist v0

L−1 ∈ VhL−1
and viL ∈ V i

hL
, i = 1, . . . ,mL such that

w + wL−2 + v0
L−1 ∈ KhL

,(5.17)

w + wL−2 + w0
L−1 +

l−1∑
i=1

wi
L + vlL ∈ KhL

, l = 1, . . . ,mL,(5.18)

v − w − wL−2 = v0
L−1 +

mL∑
i=1

viL,(5.19)

and

v0
L−1 = w0

L−1 + IhL−1
(v − w − wL−2 − w0

L−1),

viL = LhL
(τ i0

(
v − w − wL−2 − v0

L−1) +

i∑
l=1

τ ilw
l
L

)
, i = 1, . . . ,mL,

(5.20)

where τ ij , i = 1, . . . ,m, j = 0, . . . , i, satisfy (3.9). In this way, using (5.17), we get

that w + wL−3 + w0
L−2 + v0

L−1, w + wL−3 ∈ KhL
, and also, w + wL−3 + w0

L−2 ∈ KhL

and w + wL−3 + w0
L−2 +

∑l
i=1 w

i
L−1 ∈ KhL

, l = 1, . . . ,mL−1. Consequently, there
exist v0

L−2 ∈ VhL−2
and viL−1 ∈ V i

hL−1
, i = 1, . . . ,mL−1 such that

w + wL−3 + v0
L−2 ∈ KhL

,(5.21)

w + wL−3 + w0
L−2 +

l−1∑
i=1

wi
L−1 + vlL−1 ∈ KhL

, l = 1, . . . ,mL−1,(5.22)

w0
L−2 + v0

L−1 = v0
L−2 +

mL−1∑
i=1

viL−1,(5.23)

and

v0
L−2 = w0

L−2 + IhL−2
(v0

L−1)

viL−1 = LhL−1

(
τ i0(w

0
L−2 + v0

L−1 − v0
L−2) +

i∑
l=1

τ ilw
l
L−1

)
, i = 1, . . . ,mL−1.

(5.24)

Starting with (5.21) we successively get for j = 3, . . . , L − 1 that w + wL−j−1 +
w0

L−j + v0
L−j+1, w + wL−j−1 ∈ KhL

, and also, w + wL−j−1 + w0
L−j ∈ KhL

and w +

wL−j−1 +w0
L−j +

∑l
i=1 w

i
L−j+1 ∈ KhL

, l = 1, . . . ,mL−j+1. Consequently, there exist

v0
L−j ∈ VhL−j

and viL−j+1 ∈ V i
hL−j+1

, i = 1, . . . ,mL−j+1 such that

w + wL−j−1 + v0
L−j ∈ KhL

,(5.25)

w + wL−j−1 + w0
L−j +

l−1∑
i=1

wi
L−j+1

+ vlL−j+1 ∈ KhL
, l = 1, . . . ,mL−j+1,

(5.26)

w0
L−j + v0

L−j+1 = v0
L−j +

mL−j+1∑
i=1

viL−j+1,(5.27)
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and

v0
L−j = w0

L−j + IhL−j
(v0

L−j+1)

viL−j+1 = LhL−j+1

(
τ i0(w

0
L−j + v0

L−j+1 − v0
L−j)

+

i∑
l=1

τ ilw
l
L−j+1

)
, i = 1, . . . ,mL−j+1.

(5.28)

If we write v1
1 = v0

1 , since m1 = 1, then (5.18), (5.22), and (5.26) prove that (2.1) of
Assumption 2.1 holds. Also, we get (2.2) of Assumption 2.1 from (5.19), (5.23), and
(5.27). Now, if we write

v0
L = v − w − wL−1,(5.29)

we get from (5.20), (5.24), and (5.28) that

v0
j−1 = w0

j−1 + Ihj−1
(v0

j ),

vij = Lhj

(
τ i0(w

0
j−1 + v0

j − v0
j−1) +

i∑
l=1

τ ilw
l
j

)
,

for j = 2, . . . , L, i = 1, . . . ,mj .

(5.30)

Similar to (4.39), we get that

||Lhj
(τ ilw

l
j)||1,s ≤ C

[
1 + (mj − 1)

hj−1

δj

]
|wl

j |1,s,
j = 2, . . . , L, i = 1, . . . ,mj , l = 1, . . . , i.

(5.31)

Replacing v0
j−1 given in the first equation of (5.30) into the second equation of (5.30),

and using (4.21) and (4.22), we get

||Lhj (τ
i
0(w

0
j−1 + v0

j − v0
j−1))||1,s = ||Lhj

(τ i0(v
0
j − Ihj−1

v0
j ))||1,s

≤ C
[
|v0

j − Ihj−1
v0
j |1,s +

(
1 +

mj−1

δj

)
||v0

j − Ihj−1
v0
j ||0,s

]
≤ C

{
[1 + Cd,s(hj−1, hj)]|v0

j |1,s +
(
1 +

mj−1
δj

)
hj−1Cd,s(hj−1, hj)|v0

j |1,s
}
.

Therefore, we have

||Lhj (τ
i
0(w

0
j−1 + v0

j − v0
j−1))||1,s

≤ C
[
1 + (mj − 1)

hj−1

δj

]
Cd,s(hj−1, hj)|v0

j |1,s for j = 2, . . . , L, i = 1, . . . ,mj .
(5.32)

From the second equation in (5.30), (5.31), and (5.32), for j = 2, . . . , L and i =
1, . . . ,mj , we get

||vij ||1,s ≤ C[1 + (mj − 1)
hj−1

δj
]Cd,s(hj−1, hj)|v0

j |1,s

+ C

[
1 + (mj − 1)

hj−1

δj

] i∑
l=1

|wl
j |1,s,

and using (5.6), we have

||vij ||1,s ≤ C
[
1 + (m− 1)

hj−1

δj

]
Cd,s(hj−1, hj)|v0

j |1,s

+ C

[
1 + (m− 1)

hj−1

δj

] mj∑
l=1

|wl
j |1,s for j = 2, . . . , L.

(5.33)
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The first equation in (5.30) shows that the conditions of Lemma 5.1 are satisfied, and
we get from (5.10) that for j = 1, . . . , L− 1,

|v0
j |1,s ≤ C(L− j)

s−1
s

⎡
⎣L−1∑

k=j

Cd,s(hj , hk)
s|w0

k|s1,s + Cd,s(hj , hL)s|v0
L|s1,s

⎤
⎦

1
s

.

Since Cd,s(hj , hk) ≤ Cd,s(hj , hL), j = 1, . . . L− 1, j ≤ k ≤ L− 1, using (5.29), we get

|v0
j |1,s ≤ C(L− 1)

s−1
s Cd,s(hj , hL)

[
L−1∑
k=1

|w0
k|1,s + |v − w|1,s

]
for j = 1, . . . , L− 1.

(5.34)

From (4.6), we have Cd,s(hj−1, hj)Cd,s(hj , hL) ≤ Cd,s(hj−1, hL), and using it we get
from (5.33) and (5.34),

||vij ||1,s ≤ C(L− 1)
s−1
s

[
1 + (m− 1)

hj−1

δj

]
Cd,s(hj−1, hL)[

L∑
k=1

mk∑
l=1

|wl
k|1,s + |v − w|1,s

]
, for j = 2, . . . , L.

Since m1 = 1 and we have written v1
1 = v0

1 which vanishes on ∂Ω, it follows from
(5.34) that the above equation also holds for j = 1 with h0 = h1. From this equation
we get

||vij ||1,s ≤ Cm
p−1
p (L + 1)

p−1
p (L− 1)

s−1
s

[
1 + (m− 1)

hj−1

δj

]
Cd,s(hj−1, hL)

[
L∑

k=1

mk∑
l=1

|wl
k|

p
1,s + |v − w|p1,s

] 1
p

,

(5.35)

and (5.16) follows from it.

5.1. Multigrid method. In the above multilevel method a mesh is the re-
finement of that on the previous level, but the domain decompositions are almost
independent from one level to another. The multigrid method is obtained from the
multilevel method by taking the subsets Oi

j of a particular form: we associate at each

node xi
j of Thj , j = 1, . . . , L, i = 1, . . . ,Mj , an Oi

j defined as the union of the sim-

plexes in Thj having xi
j as a vertex. Consequently, the subspaces V i

hj
will be direct

sums of some one-dimensional spaces generated by the nodal basis functions associ-
ated with the nodes of Thj . Evidently, all the previous assumptions on the domain
decompositions are satisfied and we can take δj = hj . In the multigrid methods, the
construction of a finer mesh from a coarse one, is made following the same procedure
of division of the simplexes at each level. Therefore, we can replace (5.3) by

1 < γ ≤ hj

hj+1
≤ Cγ, j = 1, . . . , L− 1,(5.36)
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where the constant C is independent of the number of meshes. Starting with the
expression of the constant C0 in (5.16), using (5.36), we have

Cm2(L + 1)2−
1
p−

1
s

L∑
j=1

[
1 + (m− 1)

hj−1

δj

]
Cd,s(hj−1, hL)

≤ Cm2(L + 1)2−
1
p−

1
sL[1 + (m− 1)γ]Cd,s(h1, hL)

≤ Cm3L3− 1
p−

1
s γCd,s(h1, hL).

If we write h = h1 and denote by H the diameter of Ω, then the constant C0 can be
taken as

C0 = CL3− 1
p−

1
s γCd,s(H,h).(5.37)

We point out that an iteration of Algorithm 2.1 using the one-dimensional spaces
generated by the basis functions corresponding to the nodes of the L meshes represents
half of a V-cycle multigrid iteration. Since a full V-cycle multigrid iteration uses these
one-dimensional spaces more than once, in order to describe it we should repeat them
in the list of the subspaces used by Algorithm 2.1. Consequently, for the multigrid
method, only L in the expression of C0 in (5.37) should be multiplicated by a constant.
Therefore, C0 given in (5.37) is valid for the multigrid method, too.
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FORMULATION OF LINEAR PLANE ELASTICITY∗
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Abstract. In this paper, we develop a multigrid preconditioner for the discrete system of lin-
ear equations that results from the mixed formulation of the linear plane elasticity problem using
the Arnold–Winther elements. This, in turn, can be reduced to the problem of finding a multi-
grid preconditioner for the form (·, ·) + (div ·,div ·) in the symmetric matrix space resulting from
Arnold–Winther elements. Since the form is not uniformly elliptic, a Helmholtz-type decomposi-
tion is essential. The Arnold–Winther finite element space gives rise to nonnested multilevel spaces
adding difficulty to the analysis. We prove that for the variable V-cycle multigrid preconditioner, the
condition number of the preconditioned system is independent of the number of levels. The results
of numerical experiments are also presented.
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1. Introduction. Mixed finite element methods [7, 16] have been widely used in
solving partial differential equations. Compared to the primal-based methods, mixed
finite element methods have some well-known advantages. For example, the dual
variable (in this case the stress), which is often the variable of primary interest, is
computed directly as a fundamental unknown. Mixed methods also have some obvious
disadvantages, such as the necessity of constructing stable pairs of finite element spaces
and the fact that the resulting discrete system is indefinite. The construction of stable
pairs of finite element spaces and the development of efficient iterative solvers for the
resulting discrete system remain two of the most important issues in the applications
of mixed finite element methods.

For decades, extensive research has been carried out to explore the mixed formu-
lation of the plane elasticity problem. Most of this research was focused on developing
stable pairs of mixed finite element spaces, and several different solutions have been
proposed [5, 6, 26]. As stated in those papers, the crux of the difficulty is that the
stress tensor in the Hellinger–Reissner principle has to be symmetric. Indeed, this
symmetry condition is so hard to satisfy that the authors of [5, 26] resort to compos-
ite elements. Only recently did Arnold and Winther construct a stable pair of mixed
finite elements [6] which did not use composite elements. The Arnold–Winther finite
element spaces consist of piecewise polynomials over a triangular mesh tied together
by degrees of freedom resulting in H(div) conforming symmetric approximation sub-
spaces.

We mention some alternative ways to circumvent the difficulty of constructing
stable pairs of finite elements. One way is to reformulate the saddle-point problem
by using Lagrangian functionals so that it does not require symmetric matrices [1, 4].
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Another way is to use the least-square formulation so that the classical discrete inf-sup
condition is no longer needed [10, 17, 18]. Finally, other authors resort to the use of
stabilizing techniques (see [22] and the references therein).

In this paper, we will focus on the lowest order Arnold–Winther finite element.
The purpose is to develop and analyze a multigrid preconditioner for the resulting
discrete system.

The discretization of the mixed formulation leads to a symmetric indefinite lin-
ear system. Generally speaking, there are three main approaches for solving large
symmetric indefinite linear systems corresponding to mixed formulations. The first
approach is to use Uzawa-type methods [9, 11, 20]. The second is the positive def-
inite reformulation proposed by Bramble and Pasciak in [12] and [13]. The third
is the preconditioned minimum residual method analyzed in [2, 27]. We adopt the
idea of the preconditioned minimum residual method. An analysis similar to the one
in [2] will show that the problem of constructing a preconditioner for the indefinite
linear system derived from the mixed formulation of linear plane elasticity can be
reduced to the problem of constructing a preconditioner for the H(div) problem on
the Arnold–Winther finite element space on the symmetric matrix field.

In this paper, we construct and analyze a multigrid preconditioner for the H(div)
problem. Multigrid methods provide efficient preconditioners for second order elliptic
problems. A vast amount of research has been done in this area [15, 24, 29]. How-
ever, the classical techniques for the multigrid preconditioner do not work for the
H(div) problem since the discrete operator which results from the H(div) problem
is not uniformly elliptic. To deal with this difficulty, we follow the idea of using a
Helmholtz-like decomposition [2, 3, 8, 21, 25] and decompose the Arnold–Winther
finite element space into two orthogonal subspaces: the subspace of divergence-free
functions and its orthogonal complement. Then, the analysis of our preconditioners
can be done on these two subspaces separately. Our results show that for convex
polygonal domains and the pure traction boundary problem, the condition number
of the preconditioned system using the variable V-cycle multigrid preconditioner is
independent of the number of levels.

The outline of the remainder of the paper is as follows. In section 2, we briefly
introduce the mixed formulation of the elasticity problem, the Arnold–Winther mixed
finite element for (2.3) and the technique for preconditioning a mixed system proposed
in [2]. In section 3, the details of the multigrid preconditioner are explained, and the
condition number of the preconditioned system is analyzed under certain assumptions
on the smoother. In section 4, we construct a smoother and prove that it satisfies the
assumptions stated in section 3. Finally, we give results of numerical experiments in
section 5.

2. The mixed problem formulation, discretization, and precondition-
ing. In this section, we first state the mixed form of the linear elasticity problem.
Next, we introduce the Arnold–Winther elements of lowest order. Finally, we briefly
describe the idea of preconditioning the mixed system introduced in [2] which reduces
the preconditioning problem to one on H0(div ,Ω,S2) (defined below).

2.1. Mixed elasticity formulation. Let Ω be a convex polygon in R
2. We

use the usual notation Hs(Ω), where s is a real number, to denote the Sobolev space
defined on Ω [19]. For s = 0, the space is also denoted by L2(Ω). Define Hs

0(Ω) to be
the closure of C∞

0 (Ω) under the Hs(Ω) norm.
Let R

2 be the space of two-dimensional vector functions and S2 be the space of
symmetric 2 × 2 matrix functions defined on Ω. Throughout the paper, we adopt
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the convention that bold Latin characters in lower case denote vectors and bold
Greek characters denote 2 × 2 symmetric matrices. Let τ = (τij)1≤i,j≤2 ∈ S2,
v = (vi)1≤i≤2 ∈ R

2, and q be a scalar function. Define div v = ∂v1

∂x + ∂v2

∂y and

div τ =

(
∂τ11
∂x + ∂τ12

∂y
∂τ21
∂x + ∂τ22

∂y

)
, airy q =

(
∂2q
∂y2 − ∂2q

∂x∂y

− ∂2q
∂x∂y

∂2q
∂x2

)
.(2.1)

Denote the inner product between vectors and the inner product between matrices by

u · v = u1v1 + u2v2, and σ : τ =

2∑
i,j=1

σijτij .

We generalize the definition of the Sobolev space to the cases of vector functions
and symmetric matrix functions. Define the spaces

Hs(Ω,R2) = (Hs(Ω))2, Hs(Ω,S2) = (Hs(Ω))3

with norms

‖v‖Hs(Ω,R2) = (‖v1‖2
Hs(Ω) + ‖v2‖2

Hs(Ω))
1/2,

‖τ‖Hs(Ω,S2) = (‖τ11‖2
Hs(Ω) + 2‖τ12‖2

Hs(Ω) + ‖τ22‖2
Hs(Ω))

1/2.

We define L2(Ω,R2) and L2(Ω,S2) in the same fashion. For simplicity, denote ‖ · ‖s,Ω
to be the Hs-norm over scalar, vector, or symmetric matrix fields, depending on the
type of the function. We also use the notation (·, ·) for the L2 inner product over
scalar, vector, or matrix fields defined on Ω.

Define

H0(div ,Ω,S2) = {τ ∈ L2(Ω,S2) : div τ ∈ L2(Ω,R2) and τn|∂Ω = 0},

where n is the outward normal vector on ∂Ω. The norm on H0(div ,Ω,S2) is defined
to be

‖τ‖2
H(div ,Ω,S2)

= ‖τ‖2
0,Ω + ‖div τ‖2

0,Ω.

H0(div ,Ω,S2) is a Hilbert space with the inner product

Λ(σ, τ ) = (σ, τ ) + (div σ,div τ ).(2.2)

Next, we state the mixed formulation of the plane elasticity problem. We only con-
sider the pure traction boundary problem [6, 16]: Find the stress σ ∈ H0(div ,Ω,S2)
and the displacement u ∈ L2(Ω,R2) satisfying{∫

Ω
Aσ : τ dx +

∫
Ω

div τ · u dx = 0 for all τ ∈ H0(div ,Ω,S2),∫
Ω

div σ · v dx =
∫
Ω

g · v dx for all v ∈ L2(Ω,R2).
(2.3)

Here the fourth order compliance tensor A is bounded, symmetric, and uniformly
positive definite the body force per unit volume g is in L2(Ω,R2). For (2.3) to be
well posed, we need a compatibility condition on g. Let

RM := span

{(
1
0

)
,

(
0
1

)
,

(
−y
x

)}
be the space of infinitesimal rigid motions. By Korn’s inequality, one can see that for
any g ∈ L2(Ω,R2)/RM (the orthogonal complement of RM in L2(Ω,R2)), system
(2.3) has a unique solution in H0(div ,Ω,S2) × L2(Ω,R2)/RM [16].
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Fig. 2.1. The Arnold–Winther finite element ΣT .

2.2. Arnold–Winther elements. Let T be a quasi-uniform triangulation of Ω
with characteristic mesh size h. On each triangle T ∈ T define

ΣT = {symmetric matrices τ ∈ (P3(T ))3 such that div τ ∈ (P1(T ))2},
V T = (P1(T ))2,

where Pi(T ) denotes the space consisting of polynomials of degree i or less. The
degrees of freedom (dofs) for ΣT are

• the nodal values of the three components of τ (x) at each vertex of T (9 dofs);
• the moments of degree 0 and 1 of the two normal components of τ on each

edge of T (12 dofs);
• the moments of degree 0 of the three components of τ on T (3 dofs).

The dofs of V T are given as the zeroth and first order moments on T . Figure 2.1
illustrates the dofs for ΣT . The finite element spaces on the mesh T and domain Ω
are defined as follows:

Σ(T ,Ω) ={τ : τ |T ∈ ΣT for each T ∈ T , τ is continuous on the dofs

on each vertex and each edge of T and τn|∂Ω = 0},
V (T ,Ω) ={v ∈ L2(Ω,R2) : v|T ∈ V T for each T ∈ T }.

The definition of Σ(T ,Ω) implies that Σ(T ,Ω) ⊂ H0(div ,Ω,S2) (see [6, 16]). Note
that the boundary condition τn|∂Ω = 0 implies two linear relations among the three
components of τ on boundary nodes. Hence on the corner vertices where two bound-
ary edges meet, we will have τ = 0. This fact was noticed by Arnold and Winther in
[6]. Another immediate observation is that by Green’s formula,

div τ ∈ RM⊥V (T ,Ω) for all τ ∈ Σ(T ,Ω).

The discrete elasticity problem can be written as follows: find σh ∈ Σ(T ,Ω) and
uh ∈ V (T ,Ω) such that{

(Aσh, τ ) + (div τ ,uh) = 0 for all τ ∈ Σ(T ,Ω),

(div σh,v) = (g,v) for all v ∈ V (T ,Ω).
(2.4)

Arnold and Winther have proved that the Arnold–Winther finite element spaces (with-
out the essential boundary condition τn|∂Ω = 0) satisfy the LBB condition [6]. In
[28], it was proved that the Arnold–Winther finite element spaces (Σ(T ,Ω),V (T ,Ω))
(with the essential boundary condition τn|∂Ω = 0) also satisfy the LBB condition.
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Furthermore, the assumption on A implies that there exists a positive constant c such
that

(Aτ , τ ) ≥ c‖τ‖2
H(div ,Ω,S2)

for all τ ∈ H0(div ,Ω,S2) with div τ = 0.(2.5)

Combining these results shows that problem (2.4) has a unique solution (for compat-
ible g) in (Σ(T ,Ω),V (T ,Ω)/RM). Furthermore, if (σ,u) is the solution of the weak
problem (2.3) and (σh,uh) is the solution of the discrete problem (2.4), we have the
following error estimates [6, 28]:

‖σ − σh‖0,Ωm ≤ chm‖σ‖m,Ω, 1 ≤ m ≤ 3,

‖div σ − div σh‖0,Ω, ≤ chm‖div σ‖m,Ω, 0 ≤ m ≤ 2,

‖u − uh‖L2(Ω,R2)/RM , ≤ chm‖u‖m+1,Ω, 1 ≤ m ≤ 2,

(2.6)

where c is a positive constant independent of h.
Next, we introduce the Argyris element, which plays an important role in later

analysis. Let QT denote the Argyris element [19] defined on T . It is a quintic element
and the dofs are

• the function value on each vertex (three dofs), the first derivatives at each
vertex (six dofs), and the second derivatives at each vertex (nine dofs);

• the moments of degree 0 of the normal derivative on each edges of T (three
dofs).

Define the space

Q(T ,Ω) = {q : q|T ∈ QT for each T ∈ T , q is continuous on the degrees of

freedom on each vertex and each edge of T and q|∂Ω = 0, ∇q|∂Ω = 0}.

Clearly Q(T ,Ω) ⊂ H2
0 (Ω).

Similar to the De Rham sequence, it is elementary to see that the following exact
sequence holds [6, 28]:

0
⊂−→ H2

0 (Ω)
airy−→ H0(div ,Ω,S2)

div−→ L2(Ω,R2)/RM → 0.

Recall that operators in an exact sequence have the property that the range of the
operator on the left equals the kernel of the operator on the right.

We can define an operator div−1 : L2(Ω,R2)/RM → H0(div ,Ω,S2)/Ker(div )
as follows. For v ∈ L2(Ω,R2)/RM , let σ ∈ H(div ,Ω,S2) and u ∈ L2(Ω,R2) satisfy{

(σ, τ ) + (div τ ,u) = 0 for all τ ∈ H0(div ,Ω,S2),

(div σ,w) = (v,w) for all w ∈ L2(Ω,R2).
(2.7)

Since div maps H0(div ,Ω,S2) onto L2(Ω,R2)/RM , system (2.7) admits a unique
solution in (H0(div ,Ω,S2),L

2(Ω,R2)/RM) (see [16]). Then, set div−1v = σ. By
definition, div−1v is orthogonal to any divergence free function in H0(div ,Ω,S2)
under both the L2 inner product and the H0(div ,Ω,S2) inner product. Therefore,
for all τ ∈ H0(div ,Ω,S2), we have a unique orthogonal decomposition

τ = airy q + div−1v,

where q ∈ H2
0 (Ω) and v = div τ . Furthermore, we have the regularity result (see

[23]),

div−1v ∈ H1(Ω,S2) and ‖div−1v‖1,Ω ≤ c‖v‖0,Ω,(2.8)
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where c is a positive constant independent of v.
Analogously, on the discrete level we have the following exact sequence:

0
⊂−→ Q(T ,Ω)

airy−→ Σ(T ,Ω)
div−→ V (T ,Ω)/RM → 0.(2.9)

The exactness of this sequence for the Arnold–Winther finite element spaces follows
from [6]. We define an operator div−1

T : L2(Ω,R2)/RM → Σ(T ,Ω)/Ker(div ) as
follows. For v ∈ L2(Ω,R2)/RM , let σh ∈ Σ(T ,Ω) and uh ∈ V (T ,Ω) satisfy{

(σh, τ ) + (div τ ,uh) = 0 for all τ ∈ Σ(T ,Ω),

(div σh,w) = (v,w) for all w ∈ V (T ,Ω).
(2.10)

Since the Arnold–Winther finite element spaces satisfy the LBB condition, the solution
to (2.10) exists and is unique in (Σ(T ,Ω),V (T ,Ω)/RM). Define div−1

T v = σh. Then,
for all τ ∈ Σ(T ,Ω), there exists a unique discrete orthogonal decomposition

τ = airy q + div−1
T v,

where q ∈ Q(T ,Ω) and v = div τ .
By the approximation property (2.6) of the Arnold–Winther element and the

regularity result (2.8), for all v ∈ L2(Ω,R2)/RM ,

‖div−1v − div−1
T v‖0,Ω ≤ ch‖div−1v‖1,Ω ≤ ch‖v‖0,Ω,(2.11)

where c is a positive constant independent of v.

2.3. A block diagonal preconditioner for the mixed system. For simplic-
ity, let Σ = Σ(T ,Ω) and V = V (T ,Ω)/RM . Let ‖ · ‖Σ and ‖ · ‖V be the norms on
Σ and V , respectively, i.e., ‖ · ‖H(div ,Ω,S2) and ‖ · ‖L2(Ω,R2). Let Σ∗ and V ∗ be the
dual spaces of Σ and V with dual norms ‖ · ‖Σ∗ and ‖ · ‖V ∗ and < ·, · > denote the
duality pairing. Define the operators{

A : Σ → Σ∗, < Aσ, τ >= (Aσ, τ ) for all τ ∈ Σ,

B : Σ → V ∗, < Bσ,v >= (div σ,v) for all v ∈ V .

Let Bt : V → Σ∗ be the adjoint of B. Equation (2.4) can be rewritten as

M
(

σ
u

)
=

(
A Bt

B 0

)(
σ
u

)
=

(
F
G

)
,(2.12)

where F ∈ Σ∗, G ∈ V ∗. The following lemma results from the LBB condition and
(2.5). (See [16] for the proof.)

Lemma 2.1. The map (F,G) → (σ,u) defined by solving (2.12) with F ∈ Σ∗

and G ∈ V ∗ is an isomorphism of Σ∗ × V ∗ onto Σ × V and so

c0(‖F‖Σ∗ + ‖G‖V ∗) ≤ ‖σ‖Σ + ‖u‖V ≤ c1(‖F‖Σ∗ + ‖G‖V ∗),

where c0 and c1 are positive and independent of h.
Our purpose is to find a preconditioner for the operator M. By Lemma 2.1, we

only need to find an operator S : Σ∗×V ∗ → Σ×V such that ‖S‖L(Σ∗×V ∗,Σ×V ) and
‖S−1‖L(Σ×V ,Σ∗×V ∗) are bounded uniformly in h (see [2] for details). Indeed, we can

consider an operator in the form S =
(S1 0
0 S2

)
, where S1 : Σ∗ → Σ and S2 : V ∗ → V
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and their inverses are bounded uniformly in h. Consider the following problem: find
σ ∈ Σ such that

Λ(σ, τ ) = F (τ ) for all τ ∈ Σ.(2.13)

Clearly a good preconditioner for this problem will yield an ideal S1. Similarly, an
ideal S2 will come from a good preconditioner for the following problem: find u ∈ V
such that

(u,v) = G(v) for all v ∈ V .(2.14)

The problem (2.14) is easy to solve efficiently. Indeed, we use the basis for V (T ,Ω)
in the implementation. (This, of course, provides a spanning set for V .) First, we note

that the functional G in original problem (2.12) is usually available as a functional G̃
defined on (V (T ,Ω))∗ which vanishes on RM . This functional is naturally represented
by its action on the basis functions for V (T ,Ω) and provides the data for the first
solve of (2.14). Subsequent solves of (2.14) involve this data plus the result of B
applied to something in Σ. Thus, at any step of the iteration, (2.14) will have to be

solved with a known functional G̃ on (V (T ,Ω))∗ which vanishes on RM . In this case,
the solution of (2.14) coincides with the solution u ∈ V (T ,Ω) satisfying

(u,v) = G̃(v) for all v ∈ V (T ,Ω).(2.15)

The space V (T ,Ω) consists of discontinuous linears on the triangles so the exact solu-
tion of (2.15) reduces to the inversion of a block diagonal matrix, with 3× 3 diagonal
blocks. Hence the problem of defining S reduces to the problem of constructing S1. In
the remainder of this paper we will focus on constructing a multigrid preconditioner
for problem (2.13).

3. The multigrid preconditioner. In this section, we construct and analyze a
multigrid preconditioner for problem (2.13). To this end, let T1 be a unit-sized coarse
triangulation of Ω. Subsequently finer triangulations are defined recursively. Given
the kth level triangulation Tk, define the (k + 1)st level mesh Tk+1 by breaking each
triangle in Tk into four triangles by connecting the midpoints of the edges. Repeating
this process gives a series of nested meshes T1, T1, . . . , TK . Denote the characteristic
mesh size of Tk as hk. We clearly have hk = 1

2hk−1 = O(2−k). For simplicity of
notation, in the rest of this paper, we use � to denote “less then or equal to” with a
factor c independent of k or hk.

Denote the finite element spaces on the kth level by

Qk = Q(Tk,Ω), Σk = Σ(Tk,Ω), V k = V (Tk,Ω)/RM.

Notice that we have Qk ⊂ H2
0 (Ω), Σk ⊂ H0(div ,Ω,S2), and V k ⊂ L2(Ω,R2) for

each k.
The bilinear form for the biharmonic problem will play an important role in the

following analysis. It is defined on H2
0 (Ω) by

A(q, p) =

∫
Ω

(
∂2q

∂x2

∂2p

∂x2
+ 2

∂2q

∂x∂y

∂2p

∂x∂y
+

∂2q

∂y2

∂2p

∂y2

)
dx

= (airy q,airy p).

(3.1)
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Define operators Ak : Qk → Qk and Λk : Σk → Σk by

(Akq, p) = A(q, p) for all q, p ∈ Qk,

(Λkσ, τ ) = Λ(σ, τ ) for all σ, τ ∈ Σk,

where the bilinear forms A(·, ·) and Λ(·, ·) were defined in (3.1) and (2.2), respectively.
The spaces {Qk} and {Σk} are nonnested since, for example, a function σ ∈ Σk

is not necessarily continuous at the midpoints of the edges in the mesh Tk and a
function q ∈ Qk does not necessarily have continuous second order derivatives at
the midpoints of the edges in the mesh Tk. Hence we need to define interpolation
operators Ik : Qk−1 → Qk and Ik : Σk−1 → Σk. The easiest way to do this is by
using the “local” nodal value interpolation on each triangle and then taking average
on the discontinuous degrees of freedom at vertices.

Denote Nk to be the set of all nodes in the mesh Tk. For any vertex v ∈ Nk, let
Sk−1(v) be the set of all triangles in Tk−1 which contain the vertex v and let |Sk−1(v)|
denote the number of triangles in Sk−1(v). For q ∈ Qk−1 and τ ∈ Σk−1, define the
dofs for Ikq and Ikτ to be identical to those for q and τ for all dofs excluding the
second order derivatives at the vertices for Ikq and the nodal values at the vertices
for Ikτ . On the excluded dofs we use

airy (Ikq)(v) =
1

|Sk−1(v)|
∑

Tv∈Sk−1(v)

airy q(v)|Tv for v ∈ Nk,

Ikτ (v) =
1

|Sk−1(v)|
∑

Tv∈Sk−1(v)

τ (v)|Tv for v ∈ Nk.

Combining the above gives the definition of Ikq and Ikτ on all dofs. We then have

Ikq = q + q̃ for all q ∈ Qk−1,

Ikτ = τ + τ̃ for all τ ∈ Σk−1,

where q̃ ∈ H2
0 (Ω) and τ̃ ∈ H0(div ,Ω,S2) satisfy

airy q̃(v)|T =

(
1

|Sk−1(v)|
∑

Tv∈Sk−1(v)

airy q(v)|Tv

)
− airy q(v)|T ,

τ̃ (v)|T =

(
1

|Sk−1(v)|
∑

Tv∈Sk−1(v)

τ (v)|Tv

)
− τ (v)|T

(3.2)

at each vertex v of any triangle T ∈ Tk and vanish at all the other dofs. Define
Pk−1 : Qk → Qk−1 to be the A-adjoint of Ik and Pk−1 : Σk → Σk−1 to be the
Λ-adjoint of Ik.

Lemma 3.1. We have

Λ(Ikσk−1, Ikσk−1) ≤ ωΛ(σk−1,σk−1) for all σk−1 ∈ Σk−1,

where ω is independent of k. Consequently,

Λ(Pk−1σk,Pk−1σk) ≤ ωΛ(σk,σk) for all σk ∈ Σk.

Proof. The proof follows from a standard scaling argument, the definition of Ik,
and the quasi-uniformity of the mesh.
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We have the following two lemmas concerning the interpolation operators Ik and
Ik from [28].

Lemma 3.2. Let T be a triangle and vi, i = 1, 2, 3, be its vertices. Let τ i,
i = 1, 2, 3, be given constant symmetric matrices. Define q ∈ QT and τ ∈ ΣT such
that

airy q(vi) = τ i for i = 1, 2, 3,

τ (vi) = τ i for i = 1, 2, 3,

while vanishing on all the other dofs. Then airy q = τ .
Lemma 3.3. The following commutative diagram of exact sequences holds:

0 −→ Qk−1
airy−→ Σk−1

div−→ V k−1/RM → 0
↓Ik ↓Ik ↓id

0 −→ Qk
airy−→ Σk

div−→ V k/RM → 0.

(3.3)

It is not our goal to study the general approximation properties of the interpo-
lation operator Ik. Instead, for the multigrid analysis, we require the specific results
obtained in the following two lemmas.

Lemma 3.4. Let τ k−1 be piecewise linear with respect to Tk−1 on all components.
Then,

((I − Ik)σk−1, τ k−1) = 0 for all σk−1 ∈ Σk−1.

Proof. Let T ∈ Tk−1 and vi, i = 1, 2, 3, be the three midpoints of each edge of T .
We note that (I− Ik)σk−1 restricted to T is in Σ(Tk, T ) and has nonzero dofs only on
the nodal values at vi, i = 1, 2, 3. On each of the four finer triangles Ti, i = 1, . . . , 4,
making up T , we have

(I − Ik)σk−1 = airy qi

for qi as defined in Lemma 3.2. By construction, these qi share the same nodal
values at vj , j = 1, 2, 3, and thus the function q whose restriction is qi on Ti is in
Q(Tk, T ) ⊂ C1(T ). Now, since σk−1 has continuous normal components, we have

(I − Ik)σk−1 n|∂T = airy q n|∂T = 0,

i.e., ∂2q
∂n∂s = ∂2q

∂s2 = 0, where n is the outward normal vector and s is the normal
tangential vector of ∂T . It follows that both q and ∇q vanish on ∂T and are continuous
across ∂Ti. Thus, integration by parts gives that for any linear function f on T ,

((I − Ik)σk−1, f)L2(T ) = (airy q, f)L2(T ) = 0.

This completes the proof of the lemma.
Lemma 3.5. There exists a positive constant c such that for all vk−1 ∈ V k−1,

‖(I − Ik)div−1
k−1vk−1‖0,Ω ≤ chk‖vk−1‖0,Ω.

Here div−1
k = div−1

Tk
as defined by (2.10).

Proof. Notice that (I−Ik)div−1
k−1vk−1 is divergence free by Lemma 3.2. Therefore

((I − Ik)div−1
k−1vk−1,div−1vk−1) = 0.
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According to Lemma 3.4, for any τ k−1 ∈ Σk−1 which is continuous and piecewise
linear with respect to Tk−1,

((I − Ik)div−1
k−1vk−1, τ k−1) = 0.

Let τ k−1 be the L2 projection of div−1vk−1 into the space of continuous piecewise
linear functions based on Tk−1. Notice that Ikτ k−1 = τ k−1. By the regularity result
(2.8) and the approximation result (2.11),

‖(I − Ik)div−1
k−1vk−1‖2

0,Ω = ((I − Ik)div−1
k−1vk−1,div−1

k−1vk−1 − div−1vk−1)

− ((I − Ik)div−1
k−1vk−1, Ik(div−1

k−1vk−1 − τ k−1))

� ‖(I − Ik)div−1
k−1vk−1‖0,Ω(hk‖vk−1‖0,Ω + ‖div−1

k−1vk−1 − τ k−1‖0,Ω).

Thus,

‖(I − Ik)div−1
k−1vk−1‖0,Ω � hk‖vk−1‖0,Ω + ‖div−1

k−1vk−1 − div−1vk−1‖0,Ω

+ ‖div−1vk−1 − τ k−1‖0,Ω

� hk‖vk−1‖0,Ω.

This completes the proof of the lemma.
Now we state the variable V-cycle multigrid preconditioner. Let Rk : Σk → Σk

be a symmetric and positive definite linear operator which we call a smoother. A
construction for Rk will be given in the next section. Let mk, the number of smoothing
steps on the kth level, satisfy

β0mk ≤ mk−1 ≤ β1mk, where 1 < β0 ≤ β1.

The choice of β0 = β1 = 2 is typical. Denote Itk : Σk → Σk−1 to be the L2-adjoint of
Ik, i.e.,

(Itkσk, τ k−1) = (σk, Ikτ k−1) for all τ k−1 ∈ Σk−1.

The variable V-cycle multigrid preconditioner Bk : Σk → Σk is defined inductively
as follows.

Algorithm 1. Set B1 = Λ−1
1 . Assuming that Bk−1 : Σk−1 → Σk−1 has been

defined, define Bk : Σk → Σk as follows. For g ∈ Σk, set τ 0 = 0 and define
(1) τ l = τ l−1 + Rk(g − Λkτ

k−1) for l = 1, . . . ,mk;
(2) σmk = τmk + IkBk−1I

t
k(g − Λkτ

mk);
(3) σl = σl−1 + Rk(g − Λkσ

l−1) for l = mk + 1, . . . , 2mk;
Set Bkg = σ2mk .

Remark 1. It appears that one needs to solve linear systems involving the mass
matrix for the computation of Itk and Λk in the above algorithm. This Gram matrix
inversion is avoided in the implementation because of the judicious choice of Rk. For
these and other implementation issues, see [15, 28].

The following theorem and its proof is a straightforward variation of Theorem 7.4
in [15].

Theorem 3.6. Assume that
(M.1) the spectrum of I − RkΛk lies inside the interval [0, 1);
(M.2) there exist a constant 0 < α ≤ 1 and a constant Cp independent of k such that

for all τ ∈ Σk,

|Λ((I − IkPk−1)τ , τ )| ≤ C2α
p (RkΛkτ ,Λkτ )αΛ(τ , τ )1−α.
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Then, the preconditioner Bk is symmetric and positive definite. Furthermore, Bk

satisfies(
mα

k

M + mα
k

)
Λ(τ , τ ) ≤ Λ(BkΛkτ , τ ) ≤

(
M + mα

k

mα
k

)
Λ(τ , τ ) for all τ ∈ Σk,

where M is a sufficiently large positive constant depending only on Cp and α.
In the next section, we will construct an additive smoother and prove it satisfies

assumptions (M.1) and (M.2).

4. An additive Schwarz smoother. Recall that Nk denotes the set of all
nodes in the triangulation Tk (including the boundary nodes) and Sk(v) denotes the
set of triangles in Tk meeting at the vertex v for each v ∈ Nk. The (interior of the)
union of all triangles in Sk(v) forms a subdomain which we denote Ωk,v. Clearly
{Ωk,v}v∈Nk

is an overlapping decomposition of Ω such that each x ∈ Ω is in at most
three subdomains in {Ωk,v}v∈Nk

.
Let Qk,v and Σk,v be the subspace of functions in Qk and Σk, respectively, which

have support contained in Ωk,v. It is easy to see that the span of {Qk,v} (respectively,
Σk,v) is all of Qk (respectively, Σk). Let Pk,v : Qk → Qk,v be the A-projection,
Pk,v : Σk → Σk,v be the Λ-projection, and It

k,v : Qk → Qk,v, Itk,v : Σk → Σk,v be

the L2-projections. Define Ak,v : Qk,v → Qk,v and Λk,v : Σk,v → Σk,v by

(Ak,vp, q) = A(p, q) for all p, q ∈ Qk,v,

(Λk,vσ, τ ) = Λ(σ, τ ) for all σ, τ ∈ Σk,v.

Clearly, we have Ak,vPk,v = It
k,vAk and Λk,vPk,v = Itk,vΛk. Define

Rk = ρ
∑
v∈Nk

Pk,vA
−1
k = ρ

∑
v∈Nk

A−1
k,vIt

k,v,

Rk = ρ
∑
v∈Nk

Pk,vΛ
−1
k = ρ

∑
v∈Nk

Λ−1
k,vI

t
k,v,

(4.1)

where ρ > 0 is a scaling factor which will only depend on the finite overlapping
constant, e.g., ρ = 1/3. It is well known (see [30]) that since {Σk,v} spans Σk, Rk is
invertible and satisfies

(R−1
k τ , τ ) = ρ−1 inf

τv∈Σk,v∑
v τv=τ

∑
v∈Nk

Λ(τ v, τ v) for all τ ∈ Σk.(4.2)

Also, we note that Rk is defined purely for theoretical analysis and only Rk appears
in the implementation. The implementation of Rk involves solving local problems on
each Ωk,v.

Remark 2. The above smoother Rk is constructed by using an additive Schwarz
scheme. A multiplicative version of the smoother can be constructed based on the
same space decomposition.

In the remainder of this section, we prove that the smoother Rk satisfies assump-
tions (M.1) and (M.2). These results are gathered in the next two lemmas.

Lemma 4.1. For ρ ≤ 1/3, the smoother Rk satisfies assumption (M.1).
Proof. The proof follows from the Cauchy–Schwarz inequality and the finite

overlapping condition (see, e.g., [14]).
Lemma 4.2. The smoother Rk satisfies assumption (M.2).
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Proof. As shown in section 2, there exists a decomposition σk = airy qk+div−1
k vk

for σk ∈ Σk, where qk ∈ Qk and vk = div σk ∈ V k/RM . By Lemma 3.3,

(I − IkPk−1)σk =

4∑
i=1

σi
k,

where

σ1
k = airy (qk − IkPk−1qk),

σ2
k = Ik(airyPk−1qk − Pk−1airy qk),

σ3
k = div−1

k vk − Ikdiv−1
k−1vk,

σ4
k = Ik(div−1

k−1vk − Pk−1div−1
k vk).

Notice that all σi
k, i = 1, 2, 3, 4, are in Σk and σ1

k is divergence free. Thus

|Λ((I − IkPk−1)σk,σk)| = |Λ(σ1
k + σ2

k + σ3
k + σ4

k,σk)|

� |Λ(σ1
k,airy qk)| +

4∑
i=2

(R−1
k σi

k,σ
i
k)

1/2(RkΛkσk,Λkσk)
1/2.

(4.3)

We will show that
(I) |Λ(σ1

k,airy qk)| � (RkΛkσk,Λkσk)
1/4Λ(σk,σk)

3/4;
(II) (R−1

k σi
k,σ

i
k) � Λ(σk,σk) for i = 2, 3, 4.

Then, since assumption (M.1) implies (RkΛkσk,Λkσk) ≤ Λ(σk,σk), assumption
(M.2) with α = 1/4 will follow from (4.3), (I), and (II).

To prove (I), first notice that for the biharmonic problem, we have (see [15])

1

λ̃k

‖Akqk‖2
0,Ω � (RkAkqk,Akqk) for all qk ∈ Qk,

where λ̃k = O(h−4
k ) is the largest eigenvalue of the operator Ak.

Theorem 14.1 in [15] states that if Ω is a convex polygon, then

A((I − IkPk−1)qk, qk) � (Akqk, qk)
3/4

(
‖Akqk‖2

0,Ω

λ̃k

)1/4

.

Therefore,

|Λ(σ1
k,airy qk)| = |Λ(airy (qk − IkPk−1qk),airy qk)|

= |A((I − IkPk−1)qk, qk)| � (Akqk, qk)
3/4

(
‖Akqk‖2

0,Ω

λ̃k

)1/4

� Λ(σk,σk)
3/4(RkAkqk,Akqk)

1/4.

Thus, to prove (I), we only need to show that

(RkAkqk,Akqk) ≤ (RkΛkσk,Λkσk).(4.4)

Notice that by the definition of Rk and Rk,

(RkAkqk,Akqk) = ρ
∑
v∈Nk

A(Pk,vqk,Pk,vqk),

(RkΛkσk,Λkσk) = ρ
∑
v∈Nk

Λ(Pk,vσk,Pk,vσk).
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Hence (4.4) will follow if for each v ∈ Nk,

A(Pk,vqk,Pk,vqk) = Λ(airy (Pk,vqk),airy (Pk,vqk)) ≤ Λ(Pk,vσk,Pk,vσk).(4.5)

Notice that for any p ∈ Qk,v,

Λ(Pk,vσk,airy p) = (σk,airy p) = (airy qk,airy p)

= (airy (Pk,vqk),airy p) = Λ(airy (Pk,vqk),airy p).

This implies that airy (Pk,vqk) is the Λ-projection of Pk,vσk into the subspace
airy (Qk,v) of Σk,v. Therefore, (4.5) follows. This completes the proof of (I).

Next, we prove (II). For each v ∈ Nk let θv denote the piecewise continuous linear
basis function associated with v. Clearly,

∑
v θv gives a partition of unity on Ω which

satisfies

(1) θv|T ∈ P1(T ) for any T ∈ Tk; (2) supp(θv) ⊂ Ωk,v;

(3) |θv|W j,∞(Ω) � h−j
k , j = 0, 1.

Let Πk denote the natural interpolation operator onto Σk associated with the
dofs. Clearly Πk is linear and preserves σk ∈ Σk. Notice that for each σi

k, Πk(θvσ
i
k)

is a well-defined function in Σk,v and σi
k =

∑
v∈Nk

Πk(θvσ
i
k). Since the Arnold–

Winther element is affine under the matrix Piola transformation [6], a simple scaling
argument shows that

‖Πk(θvτ )‖0,Ω � ‖θvτ‖0,Ω.(4.6)

Also, it has been shown in [6] that div Πk = PV k
div , where PV k

is the L2 projection
onto V k. Therefore

‖div Πk(θvτ )‖0,Ω = ‖PV k
div (θvτ )‖0,Ω ≤ ‖div (θvτ )‖0,Ω.

By (4.2), (4.6), an inverse inequality, and the properties of θv, for i = 2, 3, 4,

(R−1
k σi

k,σ
i
k) ≤ ρ−1

∑
v∈Nk

(‖Πk(θvσ
i
k)‖2

0,Ωk,v
+ ‖div Πk(θvσ

i
k)‖2

0,Ωk,v
)

�
∑
v∈Nk

(‖θvσi
k‖2

0,Ωk,v
+ ‖div (θvσ

i
k)‖2

0,Ωk,v
)

� h−2
k ‖σi

k‖2
0,Ω + ‖div σi

k‖2
0,Ω.

Hence the proof for (II) reduces to proving for i = 2, 3, 4 that

‖σi
k‖0,Ω � hk‖σk‖H(div ,Ω,S2),

‖div σi
k‖0,Ω � ‖σk‖H(div ,Ω,S2).

(4.7)

For σ2
k and any τ k−1 = airy pk−1 + div−1

k−1wk−1 ∈ Σk−1,

|Λ(airyPk−1qk − Pk−1airy qk, τ k−1)|
= |(airyPk−1qk,airy pk−1) − (airy qk, Ikτ k−1)|.

Now

(airyPk−1qk,airy pk−1) = (airy qk, Ikairy pk−1)
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so

|Λ(airyPk−1qk − Pk−1airy qk, τ k−1)| = |(airy qk, Ikdiv−1
k−1wk−1)|

≤ |(airy qk, (Ik − I)div−1
k−1wk−1)| + |(airy qk,div−1

k−1wk−1 − div−1wk−1)|
� hk‖σk‖H(div ,Ω,S2)‖τ k−1‖H(div ,Ω,S2).

We used the Cauchy–Schwarz inequality, (2.11), and Lemma 3.5 for the last inequality
above. Then, by setting τ k−1 = airyPk−1qk − Pk−1airy qk and using Lemma 3.1,
we have

‖σ2
k‖H(div ,Ω,S2) � ‖airyPk−1qk − Pk−1airy qk‖H(div ,Ω,S2)

� hk‖σk‖H(div ,Ω,S2).

Therefore, σ2
k satisfies (4.7).

Next, we consider σ3
k. Define PV k−1

to be the L2 projection onto V k−1/RM .
Then

‖div σ3
k‖0,Ω = ‖vk − PV k−1

vk‖0,Ω ≤ ‖vk‖0,Ω � ‖σk‖H(div ,Ω,S2)

and by (2.11), Lemma 3.5, and the fact that hk−1 = 2hk,

‖σ3
k‖0,Ω � ‖div−1

k vk − div−1vk‖0,Ω + ‖div−1vk − div−1
k−1vk‖0,Ω

+ ‖(I − Ik)div−1
k−1vk‖0,Ω

� hk‖vk‖0,Ω � hk‖σk‖H(div ,Ω,S2).

Hence σ3
k satisfies (4.7).

For σ4
k, let τ k−1 ∈ Σk−1 be arbitrary. Then

|Λ(div−1
k−1vk − Pk−1div−1

k vk, τ k−1)| = |Λ(div−1
k−1vk, τ k−1) − Λ(div−1

k vk, Ikτ k−1)|
= |(div−1

k−1vk, τ k−1) − (div−1
k vk, Ikτ k−1) + (PV k−1

vk − vk,div τk−1)|
= |(div−1

k−1vk, τ k−1) − (div−1
k vk, Ikτ k−1)|.

(4.8)

Since (div−1vk, (I − Ik)τ k−1) is zero, by (4.8), (2.11), and Lemma 3.1, we have

|Λ(div−1
k−1vk − Pk−1div−1

k vk, τ k−1)| = |(div−1
k−1vk − div−1vk, τ k−1)

+ (div−1vk − div−1
k vk, Ikτ k−1)|

� hk‖σk‖H(div ,Ω,S2)‖τ k−1‖H(div ,Ω,S2).

Setting τ k−1 = div−1
k−1vk − Pk−1div−1

k vk and using Lemma 3.1 gives

‖σ4
k‖H(div ,Ω,S2) � ‖div−1

k−1vk − Pk−1div−1
k vk‖H(div ,Ω,S2)

� hk‖σk‖H(div ,Ω,S2).

Therefore, σ4
k satisfies (4.7).

Combining all the above shows that Rk satisfies assumption (M.2) with a constant
Cp independent of k.
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Table 5.1

Condition number estimates for Λk, BR
k Λk, BkΛk, and Bm

k Λk.

level dofs cond(Λk) cond(BR
k Λk) cond(BkΛk) cond(Bm

k Λk)

2 115 1.58e+04 6.37e+03 3.43 2.66
3 395 7.19e+04 3.90e+04 4.09 3.15
4 1459 2.97e+05 1.67e+05 4.23 3.41
5 5603 1.20e+06 6.82e+05 4.24 3.53

Table 5.2

Condition number estimates for BV
k Λk.

level 2 3 4 5

cond(BV
k Λk) 3.43 4.03 4.20 4.22

5. Numerical results. We report some numerical results for the multigrid pre-
conditioners for the H(div) problem (2.13). Let Ω be the unit square (0, 1) × (0, 1).
We solve problem (2.13) by the preconditioned conjugate gradient method (PCG).
The right-hand side is selected randomly.

Three different multigrid preconditioners are considered. For variable V-cycle
preconditioners, we use β0 = β1 = 2 and one smoothing on the finest grid. First,
we consider the variable V-cycle multigrid preconditioner with Richardson smoother
(denoted by BR

k ). Secondly, we experiment on the variable V-cycle multigrid precon-
ditioner Bk with the additive Schwarz smoother built on the vertex-based subspaces,
as defined in section 4. The scaling factor ρ in (4.1) is set to be 1

3 . Finally, we
consider the variable V-cycle multigrid preconditioner Bm

k using the multiplicative
Schwarz smoother as discussed in Remark 2. For all three preconditioners, we set the
first level mesh by bisecting Ω using its negatively sloped diagonal.

Experiments show that BR
k does not work well, as shown in Table 5.1. We report

the condition number estimates for BkΛk in Table 5.1, together with the condition
number estimates for Bm

k Λk. Both appear to be bounded independently of k. These
results also indicate that Bm

k works better than Bk, which is not surprising since
multiplicative overlapping Schwarz methods have been observed to work better than
additive overlapping Schwarz methods for many other applications.

Further experiments also suggest that the V-cycle multigrid preconditioner BV
k

with the additive Schwarz smoother as in Bk and one smoothing on each level is
also optimal for this test problem (see Table 5.2). We are unable to explain this
theoretically.
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Abstract. Two types of pointwise a posteriori error estimates are presented for gradients of
finite element approximations of second-order quasilinear elliptic Dirichlet boundary value problems
over convex polyhedral domains Ω in space dimension n ≥ 2. We first give a residual estimator
which is equivalent to ‖∇(u − uh)‖L∞(Ω) up to higher-order terms. The second type of residual
estimator is designed to control ∇(u−uh) locally over any subdomain of Ω. It is a novel a posteriori
counterpart to the localized or weighted a priori estimates of [Sch98]. This estimator is shown to be
equivalent (up to higher-order terms) to the error measured in a weighted global norm which depends
on the subdomain of interest. All estimates are proved for general shape-regular meshes which may
be highly graded and unstructured. The constants in the estimates depend on the unknown solution
u in the nonlinear case, but in a fashion which places minimal restrictions on the regularity of u.
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1. Introduction and results.

1.1. Introduction. We consider finite element approximations to second-order
quasilinear elliptic Dirichlet boundary value problems having the form

(1.1)
−

n∑
i=1

∂

∂xi
Fi(x, u,∇u) + F0(x, u,∇u) = 0 in Ω,

u= b on ∂Ω.

Here Ω is a convex polyhedral domain in R
n, n ≥ 2, and we assume that u ∈ C1,α(Ω)

for some 0 < α ≤ 1. The coefficients Fi(x, z, p) are assumed to be elliptic (although
not necessarily uniformly so) and to satisfy minimal smoothness requirements given in
detail later. Problems ranging from uniformly elliptic equations to highly nonlinear,
nonuniformly elliptic equations take the form (1.1). Examples which may be treated
with the techniques presented here include uniformly elliptic linear problems, where
Fi(x, z, p) =

∑n
j=1 aij(x)pj , 1 ≤ i ≤ n, and F0(x, z, p) = �b(x) · p + c(x)z − f(x);

the prescribed mean curvature equation, where Fi(x, z, p) = pi/
√

1 + |p|2, 1 ≤ i ≤
n, and F0(x, z, p) = −H(x); and mildly nonlinear equations, where Fi(x, z, p) =∑n

j=1 aij(x, z)pj , 1 ≤ i ≤ n, and F0(x, z, p) = −f(x).
In this paper we provide two types of computationally efficient residual-based

pointwise a posteriori error estimators for the gradient error ∇(u− uh) in the piece-
wise linear finite element approximation uh to u. We first give estimators which are
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equivalent up to constants and logarithmic factors to ‖∇(u− uh)‖L∞(Ω). While most
a posteriori error estimates in the literature similarly control global norms of the er-
ror, the quantity of interest in many practical calculations is dependent only on the
solution in some subset D of Ω. The goal in these cases is to refine the mesh enough
globally to ensure that the solution in Ω\D does not “pollute” the solution in D while
not overrefining in Ω \ D. To this end, we prove an a posteriori error estimate for
‖∇(u− uh)‖L∞(D) which is a novel a posteriori counterpart to the weighted or local-
ized a priori pointwise estimates proved in [Sch98]. The resulting estimators, which
we call localized estimators, bound ‖∇(u− uh)‖L∞(D) and are essentially equivalent
to a certain weighted global norm of ∇(u− uh). Both types of estimates are valid on
general shape-regular meshes and under reasonable regularity assumptions on coeffi-
cients and the solution u. To our knowledge, these estimates are the first to provide
pointwise error control for gradients in either global or local norms on highly graded,
unstructured meshes.

The W 1
∞ estimates we give here are in several senses an extension of the framework

for a posteriori analysis of nonlinear problems in integral norms which was proposed in
[Ver94]. As in that work, our estimates provide a theoretical basis for a posteriori error
estimation and adaptive mesh refinement but also suffer from several drawbacks. The
first is that we can prove reliability of our estimators only under the uncomputable
condition that ‖∇(u− uh)‖L∞(Ω) is small enough. Second, a priori constants appear
in our a posteriori upper bounds. Finally, the estimates presented here suffer from
a “spectral gap” between the a posteriori upper and lower bounds when the maxi-
mum pointwise ratio of the largest and smallest eigenvalues of the coefficient matrix
[ ∂
∂pj

Fi(x, u,∇u)] is large. [FV03] proposes a method which essentially eliminates the

first two of these problems in the context of a posteriori error estimation in the en-
ergy norm for equations of prescribed mean curvature. The third problem mentioned
above, ill conditioning resulting from a spectral gap, seems to be an essential feature
of residual-type estimators for linear as well as nonlinear problems; cf. [FV03] and
[BV00].

In the present work we focus on presenting a basic theory for problems on polyhe-
dral domains. Two important questions which we do not consider here are the case of
smooth boundaries and the treatment of the constants arising in our estimates. The
first of these questions is important for many nonlinear problems as even theoretical
results are not always available on polygonal domains. However, the proper treatment
of finite element approximations involving curved boundaries is somewhat technical
even when considering a posteriori energy-norm bounds (cf. [DR98]), and we do not
wish to clutter our presentation. Second, the constants in our a posteriori estimates
depend on the unknown solution u in nonlinear problems and even in linear prob-
lems may depend on the coefficients in a fashion that will require a local weighting
of the residuals. In [De05] we combine further theoretical results with computational
experiments in order to investigate this problem.

1.2. Outline of results. Before outlining our results, we introduce some nota-
tion. First note that we shall restrict most of our presentation to a model problem
having the form

(1.2)
−

n∑
i=1

∂

∂xi
Fi(x,∇u) = f in Ω,

u= 0 on ∂Ω,

where Ω is convex and polygonal. Most of the examples mentioned in the previous
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section are of the form (1.2). Extension to more general coefficients is fairly immediate
under appropriate assumptions. In section 5 we sketch the necessary modifications
and also provide a brief analysis of problems with nonhomogeneous Dirichlet boundary
conditions.

Let T be a decomposition of Ω (now assumed to be polygonal) into shape-regular
simplices. Let also hT = |T |1/n for each element T ∈ T , let h = minT∈T hT , and let
Sh be the continuous piecewise linear functions which are 0 on ∂Ω. We emphasize
that we place no restrictions on the mesh other than shape regularity, so that both
highly graded and unstructured meshes are allowed throughout. A logarithmic factor
which for technical reasons is different when n = 2 also appears in our estimates, and
for convenience we define γ(2) = 2, γ(n) = 1 for n > 2, and �h,n = (log(1/h))γ(n).

We next define a first-order maximum norm residual. Let S be a face shared by
two elements T1 and T2, and let �n be a unit normal on S (with arbitrary orientation).
For vh ∈ Sh, we then define

[vh]S(x) =

n∑
i=1

[Fi(x,∇vh|T1
) − Fi(x,∇vh|T2)]ni

with [vh]S(x) = 0 when S ⊂ ∂Ω. Dropping the subscript S as it will cause no
confusion, we define the residual

(1.3) ET = hT ‖f +

n∑
i=1

∂

∂xi
Fi(·,∇uh)‖L∞(T ) + ‖[uh]‖L∞(∂T ).

Our first result is the global estimate

(1.4)
1

C̃1

max
T∈T

(ET −R1(T )) ≤ ‖∇(u− uh)‖L∞(Ω) ≤ C1�h,n max
T∈T

ET + R2(Ω),

where Ri, i ≥ 1, denotes a higher-order term which will be defined more precisely later
and C1 and C̃1 depend on the coefficients Fi, ‖∇u‖L∞(Ω), and the Dini continuity of
∇u in the nonlinear case. Thus our estimators are equivalent to the actual error up
to constants, logarithmic factors, and higher-order terms, that is, they are efficient
and reliable. We do not attempt to provide asymptotically exact estimators. Besides
having obvious application to control of global norms of gradient errors, our global
estimates may also be combined with the results of [Noc95] and [DDP00] to establish
a posteriori estimates for ‖u− uh‖L∞(Ω) for nonlinear problems on convex polygonal
and polyhedral domains in two and three space dimensions.

In order to provide local error control, we present novel localized estimators which
are inspired by the localized or weighted a priori pointwise estimates proved in [Sch98].
These estimates are valid for smooth linear Neumann problems on globally quasi-
uniform meshes of size h. Defining the weight σx0(y) = h

|y−x0|+h , it was shown that

|∇(u− uh)(x0)| ≤ ‖σx0
∇(u− uh)‖L∞(Ω) ≤ C min

χ∈Sh

‖σx0
∇(u− χ)‖L∞(Ω).

In our a posteriori results, we wish to control ∇(u − uh) over any subset D of Ω, so
we define the piecewise constant weight

σD(T ) =
hT

dist(T,D) + hT
.



LOCALIZED POINTWISE A POSTERIORI ESTIMATES 497

We prove the localized a posteriori estimate

(1.5)
1
C̃1

maxT∈T σD(T )(ET −R1(T ))≤‖σD∇(u− uh)‖L∞(Ω)

≤C2�h,n maxT∈T (σD(T )ET + E2
T ) + R3(Ω).

Here C2 depends on the coefficients Fi and ‖u‖W 2
∞(Ω) in the nonlinear case, and

the term E2
T may be dropped in the linear case. Note that the right-hand side of

(1.5) also bounds ‖∇(u − uh)‖L∞(D) since σD ≡ 1 on D. Beyond the evaluation
of standard residuals, the only requirement for the practical implementation of the
estimator maxT∈T (σD(T )ET + E2

T ) is the ability to efficiently compute the distance
to the set D.

The constants C1 and C2 appearing in the estimates (1.4) and (1.5) depend on
the unknown solution u in nonlinear situations, and these estimates are thus not
strictly speaking a posteriori estimates. We do establish that C1 depends only on
weak regularity properties of u (‖∇u‖L∞(Ω) and the Dini continuity of ∇u), and
C2 depends on moderate regularity properties of u (‖u‖W 2

∞(Ω)). Although perhaps
possible, tracing a more precise theoretical dependence of these constants on u would
be difficult and, more important for practical purposes, unlikely to yield sharp results.
In nonlinear problems especially, the estimators given here are therefore at most
suitable for use as error indicators in adaptive mesh refinement.

We finally give a brief survey of relevant work related to pointwise a posteriori
estimates and a posteriori estimates for nonlinear problems. In [Ver94], a general
framework is given for a posteriori error estimation in canonical or energy norms
for nonlinear problems. As mentioned in the introduction, our global estimates are
maximum-norm analogues (in a rather more restricted situation) to the estimates
presented in that work in that they yield reliable estimators only for uh close enough
to u, and the constants in the a posteriori estimates depend on the unknown solution
u. The method of proof used here is partially inspired by that used in [Noc95] and
[DDP00] to establish reliable and efficient a posteriori estimates for ‖u − uh‖L∞(Ω)

for linear problems on general shape regular grids on arbitrary polygonal domains
in R

2 and R
3. A technique related to our localized estimates when D consists of a

single point is the “dual weighted residual” method of [BR01], which involves solving
a linear dual problem for each point for which one wishes to control the gradient
error. Finally, in [HSWW01] and [SW04], localized a priori pointwise estimates are
employed to provide sharply local and asymptotically exact pointwise control of the
gradient via “gradient recovery” operators. These estimates have been shown to be
valid only for smooth linear problems and on globally quasi-uniform meshes, however.

The outline of the paper is as follows. Section 2 contains further preliminaries and
assumptions. In sections 3 and 4 we give precise results and proofs along with more
detailed discussion of our global and localized a posteriori estimates, respectively. In
section 5 we briefly discuss extensions to problems of the form (1.1).

2. Preliminaries. In this section we make a number of definitions and state
some lemmas.

2.1. Finite element approximation and mesh. In addition to the notation
and assumptions introduced in the previous section, we make the following definitions.
By shape regular we mean that there exist positive constants r1 and r2 such that
for each T ∈ T , one may inscribe a sphere of radius r1hT in T and inscribe T in
a sphere of radius r2hT . Letting Tx be an arbitrary element containing the point
x, we denote by h(x) the quantity hTx . Additionally, we define the patches PT =
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∪{T ′∈T such that T̄∩T̄ ′ �=∅}T̄
′, P ′

T = ∪{T ′⊂PT }PT ′ , and P ′′
T = ∪{T ′⊂P ′

T
}PT ′ . Finally,

we assume that there exists a finite element approximation uh ∈ Sh to u satisfying

(2.1)

∫
Ω

n∑
i=1

Fi(x,∇uh)χxi dx =

∫
Ω

fχ dx ∀ χ ∈ Sh.

The proof of our localized estimates requires a global growth condition on the
mesh which is implied by shape regularity, a fact which we now formulate and prove.

Proposition 2.1. Assume the triangulation T is shape regular. Then there
exists a constant CT depending only on the shape regularity of T such that for the
barycenter xT of each element T ∈ T , there holds for each point y ∈ Ω \ T

(2.2) h(y) ≤ CT |xT − y|.

Proof. First fix an element T with barycenter xT . Shape regularity implies that
there exists 0 < K1 such that

(2.3) dist(xT , ∂T ) ≥ K1hT .

Next note that the elements contained in PT are quasi-uniform, that is, there exist
constants K3 ≤ 1 ≤ K4 such that for each T ′ ⊂ PT ,

K3hT ≤ hT ′ ≤ K4hT .

We shall without loss of generality assume that K4 ≥ K1. Finally, shape regularity
implies that there exists 0 < K2 ≤ 1 such that for each point y ∈ T ,

(2.4) BK2hT
(y) ⊂ PT .

We now assert that (2.2) holds with CT = K4

K1K2
. Note from (2.3) that if y ∈

PT \ T , then |y − xT | ≥ dist(xT , ∂T ) ≥ K1hT . Since K2 ≤ 1, we thus have

h(y) ≤ K4hT ≤ K4

K1
|y − xT | ≤

K4

K1K2
|y − xT |.

Now assume that y /∈ PT , that is, T̄ ∩ T̄y = ∅. In order to reach a contradiction, we
assume that h(y) > K4

K1K2
|y − xT |. Then since K4

K1
≥ 1,

K2h(y) >
K4

K1
|xT − y| ≥ |xT − y|,

that is, xT ∈ BK2h(y)(y). Thus by (2.4), xT ∈ BK2h(y)(y) ⊂ PTy , that is, T̄ ∪ T̄y = ∅.
This is a contradiction, so our proposition is proved.

We shall also employ the Scott–Zhang interpolation operator Ih defined in [SZ90]
which preserves homogeneous boundary conditions and satisfies

(2.5) ‖v − Ihv‖L1(T ) ≤ Ch1+j
T ‖v‖W 1+j

1 (PT ), j = 1, 2,

and

(2.6) ‖v − Ihv‖W 1
1 (T ) ≤ Chj

T ‖v‖W 1+j
1 (PT ), j = 0, 1.

Here and throughout, C is a constant which depends at most on Ω and the shape
regularity of T .
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2.2. Auxiliary problems and assumptions on coefficients. We assume that
the coefficients Fi(x, p) are twice continuously differentiable in p and define Fij(x, p) =
∂

∂pj
Fi(x, p) and Fijk(x, p) = ∂2

∂pj∂pk
Fi(x, p). We also require that Fi(x, p), 1 ≤ i ≤ n,

have derivatives with respect to the x variable which are uniformly bounded with
respect to both x and p. We note that the analysis of our global results requires only
that Fij(x, p) be Dini-continuous with respect to the x variable, but Fi(x, p) must
possess bounded spatial derivatives over each element in order to guarantee that the
residual (1.3) is computable. Finally, we assume the ellipticity condition

(2.7)
n∑

i,j=1

Fij(x, p)ξiξj > 0 ∀ x ∈ Ω, ξ ∈ R
n \ {0}, p ∈ R

n.

Remark 2.2. The conditions placed on the coefficients Fi may be slightly relaxed
at the expense of some complication in our presentation. First, for our global re-
sults it is necessary not that Fijk(x, p) exist but rather only that Fij(x, p) be Hölder
continuous in p with Hölder exponent 0 < α ≤ 1. A perturbation term of the form
‖∇(u − uh)‖2

L∞(Ω) arising in our global results would be replaced in this situation

by ‖∇(u − uh)‖1+α
L∞(Ω). Second, the ellipticity condition (2.7) must only hold for

p ∈ range(∇u) and not for all p in R
n. This latter observation would, for example,

allow analysis of the β-Laplacian, where Fi(x, p) = pi|p|β−2 and 1 < β < ∞, if it could
be established a priori that |∇u| ≥ C > 0. For W 2

∞ solutions of the β-Laplacian with
β > 2, Lemma 4.2 of [BL93] establishes such an inequality if |f | ≥ C > 0. However,
we are not aware of any regularity results in the literature which would guarantee
such smooth solutions of this problem.

Two auxiliary linear problems are used in our analysis of quasilinear problems.
Following for example [FR78], we define

ahij =

∫ 1

0

Fij(x,∇uh + t∇(u− uh)) dt, i, j = 1, . . . , n,

and

aij = Fij(x,∇u), i, j = 1, . . . , n.

Correspondingly, we define bilinear forms

(2.8) Ah(v, w) =

∫
Ω

n∑
i,j=1

ahijvxjwxi dx

and

A(v, w) =

∫
Ω

n∑
i,j=1

aijvxjwxi dx.

From the ellipticity and smoothness of the coefficients Fi and the boundedness of ∇u,
we can conclude that [aij ] is uniformly elliptic in Ω, that is,

(2.9) λ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ Λ|ξ|2.

We emphasize that for nonlinear problems, λ and Λ in general depend on ‖∇u‖L∞(Ω).
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The ellipticity of Ah, on the other hand, depends upon ‖∇uh‖L∞(Ω), but Ah

satisfies the error equation

(2.10) Ah(u− uh, χ) =

∫
Ω

n∑
i=1

(Fi(x,∇u) − Fi(x,∇uh))χxi
dx = 0

for χ ∈ Sh, and in fact for general v ∈ H1
0 (Ω),

(2.11) Ah(u− uh, v) =

∫
Ω

n∑
i=1

(Fi(x,∇u) − Fi(x,∇uh))vxi dx.

We finally note that with S denoting the convex hull of range(∇u) and range(∇uh),

(2.12)

|aji − ahji|= |
∫ 1

0

Fji(∇u) − Fji(∇uh + t∇(u− uh)) dt|

≤
∫ 1

0

n∑
k=1

‖Fjik‖L∞(S)(1 − t)|∇(u− uh)| dt

≤CF |∇(u− uh)|.

The essential estimate max1≤i,j,k≤n ‖Fijk‖L∞(S) ≤ CF may be established here in one
of two ways. It sometimes happens that Fijk is bounded on Ω×R

n, so that the bound is
immediate and does not rely on ∇u and ∇uh. If Fijk is not globally bounded, then we
must assume a priori that ‖∇uh‖L∞(Ω) ≤ C or alternatively that ‖∇(u−uh)‖L∞(Ω) ≤
C. CF can then be taken to be the bound for max1≤i,j,k≤n |Fijk(x, p)| on the compact
set {x ∈ Ω, |p| ≤ ‖∇u‖L∞(Ω) + C}. Thus we shall assume that either Fijk(x, p) is
globally bounded in both x and p for all 1 ≤ i, j, k ≤ n or that ‖∇uh‖L∞(Ω) ≤ C.

2.3. Green’s function estimates. We denote by G(x, y) the Green’s function
satisfying A(G(x, ·), v) = v(x) for sufficiently smooth v ∈ H1

0 (Ω). The following
estimate for the first and mixed second derivatives of G is essential to our proofs.

Lemma 2.3. Assume that the coefficients aij are Dini-continuous and satisfy
the uniform ellipticity condition (2.9), and let Ω be smooth or convex. Assume that
|α| ≤ 1 and |β| ≤ 1. Then for n ≥ 3

(2.13) |Dα
xD

β
yG(x, y)| ≤ CG|x− y|2−n−|α|−|β|

and for n = 2

(2.14) |Dα
xD

β
yG(x, y)| ≤ CG|x− y|2−n−|α|−|β| log

1

|x− y| .

Here CG depends on Ω, the Dini-continuity of the coefficients aij, and λ and Λ.
The estimate (2.13) for space dimension n ≥ 3 may be found in [GW82] assuming

that ∂Ω satisfies a uniform exterior sphere condition. This condition is met by both
convex and smooth domains. The proof given in [GW82] does not carry directly over
to n = 2 due to the logarithmic nature of the singularity, but one may use the same
method to obtain the suboptimal estimate (2.14) so long as the estimate

|G(x, y)| ≤ C(λ,Λ,Ω) log
1

|x− y|
is known. This estimate is contained in [DM95] under the weak restrictions of L∞ and
uniformly elliptic coefficients and Lipschitz boundary ∂Ω. The suboptimal estimate
(2.14) will only add an additional logarithmic factor to our results in the case n = 2.
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3. Global estimate. In this section we state, discuss, and prove reliability and
efficiency results for global estimators for ∇(u− uh).

3.1. Reliability of global estimators. First we state the following upper
bound for ‖∇(u− uh)‖L∞(Ω).

Theorem 3.1. In addition to the assumptions of section 2, assume that u ∈
C1,ν(Ω) for some 0 < ν ≤ 1. Then for any 0 < α ≤ ν and any β ≥ 1,

(3.1)
‖∇(u− uh)‖L∞(Ω) ≤C1β

γ(n)�h,n(maxT∈T ET + CF ‖∇(u− uh)‖2
L∞(Ω))

+ Chαβ |u|C1,α(Ω).

Here C1 depends on CG, the ellipticity coefficients λ and Λ, and the shape regularity
of T . In the nonlinear case, C1 thus depends on ‖∇u‖L∞(Ω), the Dini-continuity of
∇u, and the coefficients Fi. In the linear case, C1 does not depend on u and the term
‖∇(u− uh)‖2

L∞(Ω) in (3.1) does not appear.

Remark 3.2. The term hαβ |u|C1,α(Ω) may be omitted for h small enough if we

make the nondegeneracy assumption hε|u|C1,α(Ω) ≤ ‖∇(u−uh)‖L∞(Ω) for some ε > 0.

We may then take β = (ε + 1)/α and h small enough to kick back the resulting term
Ch‖∇(u − uh)‖L∞(Ω). In [De04] we give a more precise nondegeneracy assumption
which relies on lower bounds for polynomial approximations. In particular, assume
that there exists a single point x̃ ∈ Ω and η > 0 such that |D2u(x̃)| ≥ C̃ > 0 and
‖u‖W 3

∞(Bη(x̃)) ≤ C̃ ′. The term hαβ |u|C1,α(Ω) may then be removed at the expense of a

weak preasymptotic a priori dependence in the logarithmic factor. We do not give the
details here. This more precise nondegeneracy assumption leads to an estimate which
for linear problems is reliable on coarse meshes, and in most practical situations we
may thus omit this term.

In [Noc95] and [DDP00], the Hölder continuity of u (instead of ∇u) and an
assumption similar to the condition hε|u|C1,α(Ω) ≤ ‖∇(u−uh)‖L∞(Ω) above were used

in the establishment of asymptotically reliable residual estimators for ‖u− uh‖L∞(Ω)

for linear problems on nonconvex polygonal domains. The technique we use in [De04]
to remove the term hαβ |u|C1,α(Ω) is essentially a more rigorous and careful version of

the argument contained in these works. A different and more sophisticated argument
was used in [NSV03] to remove such nondegeneracy assumptions completely and thus
prove L∞ estimates which have no a priori dependence in the upper bounds and which
are valid on coarse meshes. This technique does not appear to be applicable in the
current context of W 1

∞ estimates, however.
Remark 3.3. The estimate (3.1) includes a logarithmic factor, whereas typical a

priori estimates for ‖∇(u−uh)‖L∞(Ω) do not. It is possible to remove the logarithmic
factor under the restriction that the mesh be quasi-uniform on balls of size c log(1/h)
for any fixed c > 0. Removing this computationally negligible factor would also lead
to a stronger dependence of C1 on u in the nonlinear case or on the coefficients aij in
the linear case.

Next note that we may kick back the term ‖∇(u− uh)‖2
L∞(Ω) in (3.1) if

(3.2) C1CFβ
γ(n)�h,n‖∇(u− uh)‖L∞(Ω) ≤ C∗ < 1.

See [FR78] for an asymptotic a priori estimate for ‖∇(u−uh)‖L∞(Ω) on quasi-uniform
meshes and under stricter regularity assumptions than we have made here. Using (3.2)
and Remark 3.2 while noting that ‖uh‖L∞(Ω) ≤ C if (3.2) holds, we may formulate
an asymptotic reliability result which yields a computable estimator.
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Corollary 3.4. Assume that T is shape regular, u ∈ C1,ν(Ω), ‖∇(u−uh)‖L∞(Ω)

is small enough, h ≤ C, and that ‖∇(u− uh)‖L∞(Ω) ≥ Chε|u|
C1,ν(Ω)

for some ε > 0.

Then

(3.3) ‖∇(u− uh)‖L∞(Ω) ≤ C1

(
ε + 1

ν

)γ(n)

�h,n max
T∈T

ET .

Here C1 is as in Theorem 3.1.
As stated in the introduction, the condition that ‖∇(u−uh)‖L∞(Ω) is small enough

is an a priori and uncomputable condition. We refer again to [Ver94] for a posteriori
estimates for nonlinear problems in integral norms which are reliable only for uh close
enough to u and which have reliability constants depending on the unknown solution
u. For energy norms, an alternative approach to that of [Ver94] is to bound the error
in a weighted problem-dependent norm depending on uh. In some cases one may
thus avoid the problem of unknown a priori constants replace the requirement that
∇u and ∇uh be close enough with a computable condition whose fulfillment ensures
reliability of the a posteriori upper bound; cf. [FV03] for such an example.

We finally note that our results may easily be combined with those of [Noc95] and
[DDP00] to establish a bound for ‖u − uh‖L∞(Ω) for quasilinear problems on convex
polyhedral domains in two and three space dimensions.

Corollary 3.5. Assume that the conditions of Theorem 3.1 are satisfied and
that in addition the coeffcients Fi are nonlinear and u ∈ W 2

∞(Ω). Then for any α > 0
and β > 0,

(3.4)
‖u− uh‖L∞(Ω) ≤ C̃βγ(n)�h[maxT∈T hTET + maxT∈T E2

T

+ ‖∇(u− uh)‖4
L∞(Ω)] + C[hαβ |u|Cα(Ω) + h2αβ |u|C1,α(Ω)],

where C̃ depends on ‖u‖W 2
∞(Ω) and the coefficients Fi, and �h is a generic logarithmic

factor.
Dropping the higher-order terms in the second line yields an asymptotically reli-

able estimator for ‖u− uh‖L∞(Ω).

3.2. Efficiency of global estimators. Before stating our efficiency result, we
define Ph to be the L2 projection onto the functions which are piecewise constant
on T and let P̃h be the L2 projection onto the set of functions which are piecewise
constant on the edges of elements in T .

Theorem 3.6. Assume that either Fij is globally bounded for 1 ≤ i, j ≤ n, or
that ‖∇uh‖L∞(Ω) ≤ C. Then for any element T ∈ T ,

(3.5)
ET ≤ C̃1‖∇(u− uh)‖L∞(PT ) + ChT ‖f̃h − Phf̃h‖L∞(PT )

+ C‖[uh] − P̃h[uh]‖L∞(∂T ).

Here f̃h(x) = f(x) +
∑n

i=1
∂

∂xi
Fi(x,∇uh) and C̃1 = C‖ahij‖L∞(Ω) is bounded indepen-

dent of uh under the assumptions of this theorem.
Remark 3.7. If the coefficients Fi(x, p) do not depend on x (as is the case for

example for the prescribed mean curvature problem), then the higher-order term
hT ‖f̃h − Phf̃h‖L∞(PT ) + ‖[uh] − P̃h[uh]‖L∞(∂T ) reduces to ‖f − Phf‖L∞(PT ).

3.3. Proof of reliability. In our proofs we shall use a discrete δ-function. Modi-
fying the technique used in [Noc95], we fix a point x and define a function δx as follows.
Let x ∈ T ∈ T . We then fix a simplex T̃ such that x ∈ T̃ ⊂ T and T̃ is shape regular



LOCALIZED POINTWISE A POSTERIORI ESTIMATES 503

with diameter ρ = hβ for β ≥ 1, where β is as given in the statement of Theorem 3.1.
We then let δx ∈ C∞

0 (T̃ ) be a nonnegative function such that
∫
T̃
δx dy = 1,

(3.6) ‖δx‖Wk
p (T̃ ) ≤ Cρn(1−1/p)−k,

and dist(supp(δx), ∂T̃ ) ≥ cρ for some c > 0. Such a function δx is easy to define by
scaling and translation to T̃ from a reference element.

Denote by ∂ a first-order directional differential operator, that is, ∂ = ∇ · �v
for some �v with |�v| = 1. Let x0 ∈ T and ∂ be such that ‖∇(u − uh)‖L∞(Ω) ≤
C|∂(u − uh)(x0)|, and let ∂u = 1

|T̃ |

∫
T̃
∂u dx. Noting that ∂uh is constant on T̃ and

that ∂u = ∂u(x1) for some x1 ∈ T̃ , we compute

(3.7)

‖∇(u−uh)‖L∞(Ω) ≤ C|∂(u− uh)(x0)|
≤C(|∂u(x0) − ∂u(x1)| + |∂u− ∂uh|)
≤C(ρα|u|C1,α(T̃ ) + |(∂u− ∂uh, δx0)|)
≤C(ρα|u|C1,α(T̃ ) + |(∂u− ∂u, δx0)| + |(∂(u− uh), δx0

)|)
≤C(ρα|u|C1,α(T̃ ) + ‖∂u(x1) − ∂u‖L∞(T̃ ) + |(u− uh, ∂δx0

)|)
≤C(ρα|u|C1,α(Ω) + |(u− uh, ∂δx0

)|)
≤C(hαβ |u|C1,α(Ω) + |(u− uh, ∂δx0)|).

We next introduce a discrete Green’s function. With ∂ and x0 as above, we define
gx0 ∈ H1

0 (Ω) as the unique function satisfying

(3.8) A(v, gx0) = (∂δx0 , v)

for all v ∈ H1
0 (Ω). Since the bound given below does not depend upon x0, we shall

suppress the dependence of g and δ on x0 for the rest of this section. The heart of
our proof consists of proving the following bound for ‖g‖W 1

1 (Ω).
Lemma 3.8. If the conditions of Theorem 3.1 are satisfied, then

(3.9) ‖g‖W 1
1 (Ω) ≤ Cgβ

γ(n)�h,n,

where Cg = C(CG, λ,Λ).
In order to complete the proof of Theorem 3.1 given Lemma 3.8, we use (3.8),

(2.10), and (2.11) to find that

(3.10)

(u− uh, ∂δ) =A(u− uh, g) = (A−Ah)(u− uh, g) + Ah(u− uh, g)

= (A−Ah)(u− uh, g) + Ah(u− uh, g − Ihg)

≤CF ‖∇(u− uh)‖2
L∞(Ω)‖g‖W 1

1 (Ω)

+

∣∣∣∣
∫

Ω

n∑
i=1

(Fi(x,∇u) − Fi(x,∇uh))(g − Ihg)xi dx

∣∣∣∣.
Note that Ah = A if (1.2) is a linear problem, so the term ‖∇(u − uh)‖2

L∞(Ω) is
dropped in this case as claimed. We use the easily-proven scaled trace inequality

‖v‖L1(∂T ) ≤ C(h−1
T ‖v‖L1(T ) + ‖∇v‖L1(T ))
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and integrate the last term in (3.10) by parts elementwise to find

(3.11)

∣∣∣∣
∫

Ω

∑n
i=1(Fi(x,∇u) − Fi(x,∇uh))(g − Ihg)xi dx

∣∣∣∣
=

∣∣∣∣∣∑
T∈T

∫
T

n∑
i=1

(Fi(x,∇u) − Fi(x,∇uh))(g − Ihg)xi dx

∣∣∣∣∣
=

∣∣∣∣∣∑
T∈T

∫
T

(−
n∑

i=1

∂

∂xi
(Fi(x,∇u) − Fi(x,∇uh))(g − Ihg) dx

+

∫
∂T

n∑
i=1

(Fi(x,∇u) − Fi(x,∇uh))ni(g − Ihg) ds

∣∣∣∣∣
≤

∑
T∈T

‖f +

n∑
i=1

∂

∂xi
Fi(·,∇uh)‖L∞(T )‖g − Ihg‖L1(T )

+ ‖[uh]‖L∞(∂T )‖g − Ihg‖L1(∂T )

≤
∑
T∈T

∥∥∥∥∥f +

n∑
i=1

∂

∂xi
Fi(·,∇uh)

∥∥∥∥∥
L∞(T )

‖g − Ihg‖L1(T )

+ ‖[uh]‖L∞(∂T )(h
−1
T ‖g − Ihg‖L1(T ) + ‖∇(g − Ihg)‖L1(T )).

Finally, we apply the approximation results (2.5) and (2.6) and thus obtain

(3.12)

∑
T∈T

∥∥∥f +
∑n

i=1
∂

∂xi
Fi(∇uh)‖L∞(T )‖g − Ihg

∥∥∥
L1(T )

+ ‖[uh]‖L∞(∂T )(h
−1
T ‖g − Ihg‖L1(T ) + ‖∇(g − Ihg)‖L1(T ))

≤
∑
T∈T

ET ‖g‖W 1
1 (PT )

≤C‖g‖W 1
1 (Ω) maxT∈T ET .

Combining (3.12), (3.11), (3.10), and (3.7) and finally applying (3.9) completes the
proof of Theorem 3.1 assuming Lemma 3.8.

To begin the proof of Lemma 3.8, we first note the elementary inequality

(3.13) ‖g‖H1(Ω) ≤
C(Ω)

λ
‖δ‖L2(Ω).

In order to prove (3.9) for n ≥ 3, we then note that if |x − x0| > 2ρ, we may apply
(2.13) and (3.6) to find that

(3.14)

|∇xg(x)|=
∣∣∣∣∣
∫

supp(δ)

∇xG(x, y)∂δ(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫

supp(δ)

∂y∇xG(x, y)δ dy

∣∣∣∣∣
≤CG|x0 − y|−n‖δ‖L1(Ω) ≤ CG|x0 − x|−n,
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and similarly,

(3.15) |g(x)| ≤ CG|x0 − x|1−n.

We then use (3.13), (3.6), (3.14), and (3.15) to compute

‖g‖W 1
1 (Ω) ≤Cρn/2‖g‖H1(B3ρ(x0)) + ‖g‖W 1

1 (Ω\B3ρ(x0))

≤ ρn/2
C(Ω)

λ
‖δ‖L2(Ω) + CG

∫ diam(Ω)

Cρ

r−nrn−1dr

≤ C(Ω)

λ
ρn/2ρ−n/2 + CG log(1/ρ)

≤C

(
1

λ
+ CG

)
β log(1/h).

If n = 2, we must apply (2.14) instead of (2.13). Since we always apply (2.14) with
|x− y| ≥ Cρ, this results in an extra factor of log(1/ρ) in our estimates.

Proof of Corollary 3.5. Letting δx0
= δ be as above, it is easy to compute that

for some x0 ∈ Ω, ‖u− uh‖L∞(Ω) ≤ Chαβ |u|Cα(Ω) + |(u− uh, δ)|. Let then g ∈ H1
0 (Ω)

satisfy A(v, g) = (v, δ) for all v ∈ H1
0 (Ω). Then

(3.16)
|(u− uh, δ)|= |A(u− uh, g)| ≤ |(A−Ah)(u− uh, g)| + |Ah(u− uh, g − Ihg)|

≤C(‖∇(u− uh)‖2
L∞(Ω) + maxT∈T hTET )‖g‖W 2

1 (Ω).

Inserting the bounds established in Theorem 3.1 of [Noc95] (n = 2) and Corollary 2.3
of [DDP00] (n = 3) for ‖g‖W 2

1 (Ω) and also (3.1) into (3.16) yields (3.4).

3.4. Proof of efficiency. We follow here the local argument given in [Ver89] and
adapted to the maximum norm case in [Noc95] and [DDP00]. Recalling the definition
of f̃h from Theorem 3.6, we note first that for any v ∈ H1

0 (Ω),

(3.17)
∑
T∈T

∫
T

f̃hv dx +
1

2

∫
∂T

[uh]v ds = Ah(u− uh, v).

Now fix an element T and choose v = bT , where bT is the polynomial bubble function
of degree n + 1 which is obtained by multiplying the barycentric coordinates and
scaling so that bT is 1 at the barycenter of T . By transforming from a reference
element, we see that

∫
T
bT dx = Chn

T , ‖bT ‖L1(T ) ≤ Chn
T , and ‖∇bT ‖L1(T ) ≤ Chn−1

T .
Since bT = 0 on ∂T , we may thus compute from (3.17) that

C̃1h
n−1
T ‖∇(u− uh)‖L∞(T ) ≥ |Ah(u− uh, bT )|

=

∣∣∣∣
∫
T

f̃hbT dx +
1

2

∫
∂T

[uh]bT ds

∣∣∣∣ =

∣∣∣∣
∫
T

f̃hbT dx

∣∣∣∣
=

∣∣∣∣
∫
T

(f̃h − Phf̃h)bT dx + Phf̃h|T
∫
T

bT dx

∣∣∣∣
≥ Chn

T |Phf̃h|T | − C‖f̃h − Phf̃h‖L∞(T )

≥ Chn
T (|‖f̃h‖L∞(T ) − ‖f̃h − Phf̃h‖L∞(T )| − C‖f̃h − Phf̃h‖L∞(T ))

≥ Chn
T (‖f̃h‖L∞(T ) − C‖f̃h − Phf̃h‖L∞(T ))

so that

(3.18) hT ‖f̃h‖L∞(T ) ≤ C̃1‖∇(u− uh)‖L∞(T ) + ChT ‖f̃h − Phf̃h‖L∞(T ).



506 ALAN DEMLOW

Next let S = T ∩ T ′ be a face of T not contained in ∂Ω. We then define qS to
be the continuous piecewise polynomial of degree n which is 0 on ∂(T ∪ T ′) and 1
at the barycenter of S. Note that ‖qS‖L1(T∪T ′) ≤ Chn

T , ‖∇qS‖L1(T∪T ′) ≤ Chn−1
T ,

‖qS‖L1(S) ≤ Chn−1
T , and

∫
S
qSds = Chn−1

T . Again computing using (3.17), we find
that

C̃1h
n−1
T ‖∇(u−uh)‖L∞(T∪T ′) ≥ Ah(u− uh, qS)

=

∫
T

f̃hqS dx +

∫
S

([uh] − P̃h[uh])qSds +

∫
S

P̃h[uh]qSds

≥Chn−1
T ‖[uh]‖L∞(S)

− C(hn
T ‖f̃h‖L∞(T∪T ′) + hn−1

T ‖[uh] − P̃h[uh]‖L∞(S))

and

(3.19)
‖[uh]‖L∞(S) ≤ C̃1‖∇(u− uh)‖L∞(PT )

+ ChT ‖f̃h‖L∞(PT ) + C‖[uh] − P̃h[uh]‖L∞(S).

Recalling that ET = hT ‖f̃h‖L∞(T ) + ‖[uh]‖L∞(∂T ) and combining (3.18) with (3.19)
completes the proof of (3.5).

4. Localized estimates.

4.1. Reliability of localized estimators. We first give an a posteriori bound
for ‖σD∇(u− uh)‖L∞(Ω).

Theorem 4.1. Let D ⊂ Ω. In addition to the assumptions of section 2, assume
that u ∈ C1,ν(Ω) for some 0 < ν ≤ 1 if the coefficients Fi are linear and u ∈ W 2

∞(Ω)
if the coefficients Fi are nonlinear. Then for any 0 < α ≤ ν and any β ≥ 1,

(4.1)

‖∇(u−uh)‖L∞(D) ≤ ‖σD∇(u− uh)‖L∞(Ω)

≤ βγ(n)�h,n[C2 maxT∈T σD(T )ET + C1CF ‖∇(u− uh)‖2
L∞(Ω)]

+ Chαβ maxT∈T σD(T )|u|C1,α(T ).

Here C1 is as in Theorem 3.1 and C2 depends on CG, ‖aij‖W 1
∞(Ω), λ, Λ, and the

shape regularity of T . In the nonlinear case, C2 thus depends on ‖u‖W 2
∞(Ω) and the

coefficients Fi. In the linear case, C2 does not depend on u and the term ‖∇(u −
uh)‖2

L∞(Ω) in (4.1) does not appear.

Note that the term ‖∇(u − uh)‖2
L∞(Ω) in (4.1) is not generally of higher order,

in contrast to the situation which arises when the global estimate (3.1) is applied.
One may insert (3.3) into (4.1) in the nonlinear case to yield the following asymptotic
reliability result.

Corollary 4.2. Assume that u ∈ W 2
∞(Ω), ‖∇(u − uh)‖L∞(Ω) and h are small

enough and ‖σD∇(u− uh)‖L∞(Ω) ≥ Chε maxT∈T σD(T )|u|C1,ν(T ) for some positive ν

and ε. Then

(4.2)

‖∇(u− uh)‖L∞(D)

≤ C2

(
1 + ε

ν

)γ(n)

�h,n max
T∈T

σD(T )ET + C3
1CF

(
1 + ε

ν

)2γ(n)

�3h,n max
T∈T

E2
T

≤ C(C1, C2, ε)�h maxT∈T (σD(T )ET + E2
T ).

Here C1 and C2 are as in Theorems 3.1 and 4.1, �h is a generic logarithmic factor,
and the term E2

T may be dropped in the linear case.
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As in the case of our global estimator, the constants C1 and C2 potentially make it
difficult to apply (4.2) efficiently and accurately as an error estimator in the nonlinear
case. Even if we only wish to apply (4.2) as an error indicator, it likely will be
necessary in most situations to gain some knowledge of the relative sizes of C1 and
C2 as the terms in (4.2) could be weighted improperly otherwise. As stated in the
introduction, a purely theoretical determination of these constants appears difficult,
and their investigation is the subject of ongoing work.

One application of (4.2) is the computation of a gradient at a single point x0 ∈ Ω
to within a given tolerance without requiring that ∇uh approximate ∇u to the same
tolerance globally (as would be the case if a global estimator were used). Here the
localized estimate (4.2) is an alternative to the “dual weighted residual” approach
of [BR01], which in this case essentially involves computing a finite element approx-
imation to the discrete Green’s function gx0 and inserting this approximation (using
appropriate methods such as difference quotients to approximate second derivatives)
into the appropriate residual equation, which for linear problems is

|∂(u− uh)(x0)| ≤ C
∑
T∈T

hTET |gx0 |W 2
1 (T ).

Note that our localized analysis essentially involves bounding |gx0 |W 2
1 (T ) a priori in-

stead of a posteriori as in the dual residual method. Since more of the work is done
ahead of time, so to speak, localized estimators may be applied more easily and over
larger subdomains than dual estimators, but potentially at the expense of some sharp-
ness and unknown constants as compared with the dual weighted residual method.
The advantages of localized estimators are their lower computational cost (the local
nature of the discrete Green’s function is employed a priori instead of being computed
a posteriori) and the fact that they can easily be applied over larger subdomains.

4.2. Efficiency of localized estimators. We shall show that our localized
estimator is efficient (up to higher-order terms) in the linear case and in a certain
sense also in the nonlinear case.

Theorem 4.3. Under the same conditions as are assumed in Theorem 3.6,

(4.3)
σD(T )ET ≤ C̃1‖σD∇(u− uh)‖L∞(PT ) + C‖hσD(f̃h − Phf̃h)‖L∞(PT )

+ C‖σD([uh] − P̃ [uh])‖L∞(∂T ).

Here C̃1 = ‖ahij‖L∞(Ω), and C only depends on T .
Proof. To prove (4.3), we simply distribute the weight σD(T ) through (3.5) while

noting that h and σD are always equivalent on adjacent elements (and in particular
on PT ).

Remark 4.4. In the linear case, (4.3) establishes immediately that up to higher-
order terms,

1

C̃1

max
T∈T

σD(T )ET ≤ ‖σD∇(u− uh)‖L∞(Ω) ≤ C2β
γ(n)�h,n max

T∈T
σD(T )ET .

In the nonlinear case, the perturbation term maxT∈T E2
T “morally” should behave as

‖hT∇(u−uh)‖L∞(Ω), which is bounded by ‖σD∇(u−uh)‖L∞(Ω). However, one would
have to resort to a priori estimates to prove such a statement. Instead, we combine the
global reliability and efficiency estimates (3.1) and (3.5) with the localized estimates
(4.2) and (4.3) while consolidating constants and ignoring higher-order terms to yield
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the estimate

1

C
max
T∈T

(σD(T )ET + E2
T )≤ ‖σD∇(u− uh)‖L∞(Ω) + ‖∇(u− uh)‖2

L∞(Ω)

≤ C�h maxT∈T (σD(T )ET + E2
T ).

Thus the estimator maxT∈T (σD(T )ET + E2
T ) reliably and efficiently estimates the

quantity ‖σD∇(u−uh)‖L∞(Ω) + ‖∇(u−uh)‖2
L∞(Ω) instead of just the weighted norm

‖σD∇(u− uh)‖L∞(Ω) as originally intended.

4.3. Proof of Theorem 4.1. First we assume that D is a single point x0 ∈ Ω.
We begin by picking a point x1 ∈ Ω and a first-order directional derivative ∂ such
that ‖σx0

∇(u−uh)‖L∞(Ω) ≤ Cσx0
(x1)|∂(u−uh)(x1)|. Here we have abused notation

slightly by letting σx0(x1) = σx0
(Tx1), where Tx1 is any element with x1 ∈ T x1 .

Proceeding as in (3.7) while noting that ‖σx0
‖L∞(Ω) = 1, we obtain

(4.4)
‖σx0∇(u− uh)‖L∞(Ω) ≤Cσx0(x1)|∂(u− uh)(x1)|

≤Cσx0(x1)(|(u− uh, ∂δx1
)| + hαβ |u|C1,α(Tx1 )).

We now compute as in (3.10) and (3.11) that

(4.5)

|(u− uh, ∂δx1)| ≤ |(A−Ah)(u− uh, g
x1)| + |Ah(u− uh, g

x1 − Ihg
x1)|

≤CF ‖∇(u− uh)‖2
L∞(Ω)‖gx1‖W 1

1 (Ω)

+
∑
T∈T

[∥∥∥∥∥f +

n∑
i=1

∂

∂xi
Fi(x,∇uh)

∥∥∥∥∥
L∞(T )

‖gx1 − Ihg
x1‖L1(T )

+ ‖[uh]‖L∞(∂T )(h
−1
T ‖gx1 − Ihg

x1‖L1(T ) + ‖∇(gx1 − Ihg
x1)‖L1(T ))

]
.

Next we note that by shape regularity, the elements in P ′′
T are quasi-uniform. Also, the

weight σx1 is equivalent to 1 on P ′′
Tx1

and is always equivalent on adjacent elements.

Using these facts, we then apply (2.2) along with (2.5) and (2.6) to obtain

(4.6)

∑
T∈T

∥∥∥∥∥f +

n∑
i=1

∂

∂xi
Fi(·,∇uh)

∥∥∥∥∥
L∞(T )

‖gx1 − Ihg
x1‖L1(T )

+ ‖[uh]‖L∞(∂T )(h
−1
T ‖gx1 − Ihg

x1‖L1(T ) + ‖∇(gx1 − Ihg
x1)‖L1(T ))

≤
∑

T⊂P ′′
Tx1

ET ‖gx1‖W 1
1 (PT )

+
∑

T∩P ′′
Tx1

=∅

hT

dist(x1, T ) + hT
ET (dist(x1, T ) + hT )|gx1 |W 2

1 (PT )

≤C(‖gx1‖W 1
1 (Ω) +

∑
T∩P ′

Tx1
=∅

(dist(x1, T ) + hT )|gx1 |W 2
1 (T ))

· maxT∈T σx1(T )ET

≤C(‖gx1‖W 1
1 (Ω) +

∫
Ω\P ′

Tx1

|x− x1||D2gx1 | dx) max
T∈T

σx1(T )ET .

We next state the fundamental lemma in the proof of our localized estimate.
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Lemma 4.5. If the conditions of Theorem 4.1 are satisfied, then for any x1 ∈ Ω,

(4.7)

∫
Ω

|x− x1||D2gx1(y)| dx ≤ C ′
gβ

γ(n)�h,n,

where C ′
g depends on λ, Λ, ‖aij‖W 1

∞(Ω), and the constant Cg from Lemma 3.8.
Assuming (4.7), we apply (3.9) and combine (4.4), (4.5), and (4.6) to find that

(4.8)
‖σx0

∇(u−uh)‖L∞(Ω) ≤ βγ(n)�h,n[C ′
g maxT∈T σx0

(Tx1
)σx1

(T )ET
+CFCg‖∇(u− uh)‖2

L∞(Ω)] + C maxT∈T σD(T )|u|C1,α(T ).

In order to complete our proof, we thus must show that for T ∈ T ,

(4.9) σx0(x1)σx1(T ) ≤ σx0
(T ).

We shall compute with the weight h(x)
|x0−x|+h(x) , which is equivalent to but more con-

venient than σx0
(x). Thus for any T ∈ T and x2 ∈ T ,

(4.10)

σx0
(x1)σx1(T )≤C

h(x1)h(x2)

(|x0 − x1| + h(x1))(|x1 − x2| + h(x2))

=C
h(x2)

|x0 − x2| + h(x2)

h(x1)(|x0 − x2| + h(x2))

(|x0 − x1| + h(x1))(|x1 − x2| + h(x2))

≤Cσx0
(x2)

h(x1)(|x0 − x2| + h(x2))

(|x0 − x1| + h(x1))(|x1 − x2| + h(x2))
.

Using the triangle inequality and noting from (2.2) that h(x1) ≤ C(|x1−x2|+h(x2)),
we next compute that

(4.11)

h(x1)(|x0 − x2| + h(x2))

≤ h(x1)(|x0 − x1| + |x1 − x2| + h(x2))

= h(x1)|x0 − x1| + h(x1)(|x1 − x2| + h(x2))

≤ C(|x1 − x2| + h(x2))|x0 − x1| + h(x1)(|x1 − x2| + h(x2)).

Noting that the expression above is bounded by C times the denominator of (4.10),
we combine (4.10) and (4.11) to obtain (4.9). Inserting (4.9) into (4.8) completes the
proof of (4.1) for D = x0 assuming Lemma 4.5. Taking the maximum of (4.1) over
x0 ∈ D while recalling (4.9) completes the proof of (4.1) for arbitrary D ⊂ Ω.

In order to prove Lemma 4.5, we shall need the linear H2
2 regularity result

(4.12) ‖g‖H2
2 (Ω) ≤ Creg‖∂δ‖L2(Ω,

where Creg = C(λ,Λ, ‖aij‖W 1
∞(Ω)). This result is standard for smooth domains and

may be found in [Gr85] for convex (including convex polyhedral) domains. Here and
in what follows we suppress the dependence of g and δ on x1.

We now decompose Ω into dyadic annuli. Let Ω0 = B3ρ(x1), so that according
to our definitions dist(supp(δ), ∂Ω0) > Cρ. We then define dj = 2j3ρ, j = 0, . . . , N ,

Ω̃j = {x ∈ R
n such that dj−1 ≤ |x − x1| ≤ dj}, Ωj = Ω̃j ∩ Ω, and Ω′

j = Ωj−1 ∪
Ωj ∪ Ωj+1. Note that Ω =

⋃N
j=0 Ωj with N ≤ C log(1/ρ). Finally, we let ωj ∈

C∞
0 (Ω̃j−1 ∪ Ω̃j ∪ Ω̃j+1) be a cutoff function which is 1 on Ω̃j and which satisfies
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‖ωj‖Wk
∞(Ω) ≤ Cd−k

j , k = 0, 1, 2. Then

(4.13)

∫
Ω

|x− x1||D2gx1 | dx≤Cd
n/2+1
1 ‖D2g‖L2(Ω′

1)
+

N∑
i=2

dj‖D2g‖L1(Ωj)

≤Cregρ
n/2+1‖∂δ‖L2(Ω) +

N∑
i=2

dj‖D2(ωjg)‖L1(Ω)

≤Creg +

N∑
i=2

dj‖D2(ωjg)‖L1(Ω).

Abusing notation slightly by letting A denote the matrix of coefficients [aij ], we
compute that for v ∈ H1

0 (Ω) and j > 1,

A(v, ωjg) = (v,−div(A∗∇(ωjg)))

= (v,−div(A∗(g∇ωj + ωj∇g)))

= (v,−g div(A∗∇ωj) −A∗∇ωj · ∇g −A∗∇g · ∇ωj − ωj div(A∗∇g))

= (v,−g div(A∗∇ωj) −A∗∇ωj · ∇g −A∗∇g · ∇ωj − ωjδ)

= (v,−g div(A∗∇ωj) −A∗∇ωj · ∇g −A∗∇g · ∇ωj)

since ωj and δ have disjoint support for j > 1. Then applying the regularity result
(4.12) to ωjg, we find that

(4.14) ‖D2(ωjg)‖L2(Ω) ≤ Creg‖aij‖W 1
∞(Ω)

(
1

d2
j

‖g‖L2(Ω′
j
) +

1

dj
‖∇g‖L2(Ω′

j
)

)
.

We then insert (4.14) into (4.13) while recalling (3.14) and (3.15) to find that for
n ≥ 3,
(4.15)∫

Ω

|x− x1| |D2gx1 | dx ≤ C(Creg +

N∑
i=1

d
n/2+1
j

(
1

d2
j

‖g‖L2(Ωj) +
1

dj
‖∇g‖L2(Ωj))

)

≤ Creg‖aij‖W 1
∞(Ω)

(
1 +

N∑
i=1

(dn−1
j ‖g‖L∞(Ωj) + dnj ‖∇g‖L∞(Ωj))

)

≤ Creg‖aij‖W 1
∞(Ω)CG

(
1 +

N∑
i=1

(dn−1
j d1−n

j + dnj d
−n
j )

)

≤ Creg‖aij‖W 1
∞(Ω)CG(1 + log(1/ρ))

≤ Creg‖aij‖W 1
∞(Ω)CGβ log(1/h).

When n = 2, an extra factor of log(1/ρ) enters the estimate (4.15) as before. Thus
the proof of Lemma 4.5 is completed.

5. Extension of results to the general quasilinear equation (1.1). In this
section we outline the steps necessary to extend our results to operators of the form
(1.1). We first consider the treatment of nonhomogeneous Dirichlet conditions in a
model problem of the form (1.2), then we consider general operators of the form (1.1)
with homogeneous boundary conditions.
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5.1. Nonhomogeneous boundary conditions. We consider here the model
problem (1.2), but now with the more general Dirichlet boundary condition u = b on
∂Ω for some b ∈ W 1

∞(Ω). We also assume that bh is a piecewise linear finite element
approximation to b and that uh with uh − bh ∈ Sh solves (2.1). The following is a
corollary to Theorem 3.1 and Theorem 4.1.

Corollary 5.1. Under the conditions of Theorem 3.1,

(5.1)
‖∇(u− uh)‖L∞(Ω) ≤C1β

γ(n)�h,n[maxT∈T ET + CF ‖∇(u− uh)‖2
L∞(Ω)

+ ‖∇(b− bh)‖L∞(Ω)] + Chαβ |u|C1,α(Ω).

Under the conditions of Theorem 4.1,

(5.2)

‖∇(u−uh)‖L∞(D)

≤ βγ(n)�h,n[C2 maxT∈T σD(T )ET + C1CF ‖∇(u− uh)‖2
L∞(Ω)]

+ C1‖(b− bh)[dist(·, D) + hβ ]−n‖L1(∂Ω)

+ Chαβ maxT∈T σD(T )|u|C1,α(T ).

Sketch of Proof. We procede as in (3.7) through (3.10), then let �n be the outward
normal on ∂Ω and compute that for δ and g defined with respect to the point x0,

(5.3) (u− uh, ∂δ) = A(u− uh, g) −
∫
∂Ω

(b− bh)(A∇g · �n) dσ.

To prove (5.1), we bound A(u− uh, g) precisely as before and compute

(5.4)

∣∣∣∣
∫
∂Ω

(b− bh)(A∇g · �n) dσ

∣∣∣∣= |(b− bh, ∂δ) −A(b− bh, g)|

≤ |(∂(b− bh), δ)| + Λ‖∇(b− bh)‖L∞(Ω)‖∇g‖L1(Ω).

and then apply (3.6) with p = 1 and k = 1 along with Lemma 3.8.
In order to prove (5.2), we let x0 ∈ D be such that ‖∇(u− uh)‖L∞(D) = |∇(u−

uh)(x0)|. Recall that δx0 may always be defined so that dist(supp(δ), ∂Ω) ≥ cρ. A
calculation similar to (3.14) then yields |(A∇g ·�n)(y)| ≤ C1[|ρ+ |x0−y|]−n for y ∈ ∂Ω.
Inserting this inequality into (5.3), recalling that ρ = hβ , and bounding A(u− uh, g)
as in (4.5) and following completes the proof.

In [DR98] an a posteriori energy-norm bound is given which treats Dirichlet data
in a fashion similar to (5.1). The term ‖(b−bh)[dist(·, D)+hβ ]−n‖L1(∂Ω) ≤ Ch−1‖b−
bh‖L∞(∂Ω) in (5.2) is very similar to one appearing in the a priori estimates given in
Theorem A.1 of [BTW03]. One may easily compute that

(5.5) ‖(b−bh)[dist(·, D)+hβ ]−n‖L1(∂Ω) ≤ C min(dist(D, ∂Ω)−1, h−β)‖b−bh‖L∞(∂Ω).

If D ⊂⊂ Ω this term is thus of higher order, reflecting the localization of the error
to D. If D abuts ∂Ω, however, the term hβ leads to suboptimality if β > 1. (Note
that this problem is not encountered in the a priori estimates of [BTW03] on quasi-
uniform meshes, where hβ may be replaced by the mesh size h.) One may in this case
instead estimate the error in approximating the Dirichlet data by ‖∇(b − bh)‖L∞(Ω)

as in (5.1), but this estimate does not reflect the more local nature of the error. Thus
(5.2) could likely be improved, although it appears difficult to do so using the present
techniques.



512 ALAN DEMLOW

5.2. Theoretical comments on more general operators. We assume that
u solves (1.1) with u = 0 on ∂Ω. As before, we assume Ω to be convex and polygonal.
We also assume that uh ∈ Sh satisfies∫

Ω

n∑
i=1

Fi(x, uh,∇uh)vh,xi + F0(x, uh,∇uh)vh dx = 0, vh ∈ Sh.

The essential linear auxiliary operators A and Ah defined in section 2.2 may be
easily modified to aid in the analysis of problems of the form (1.1). Letting Fj0 =
∂
∂zFj(x, z, p) and vx0

= v, we have for i = 0, . . . , n that

Fi (x, u,∇u) − Fi(x, uh,∇uh)

=

n∑
j=0

∫ 1

0

Fij(x, uh + t(u− uh),∇uh + t∇(u− uh))(u− uh)xj
dt.

For 0 ≤ i, j ≤ n, we then make the definitions

ahij(x) =

∫ 1

0

Fij(x, uh + t(u− uh),∇(uh + t∇(u− uh)) dt,

aij(x) = Fij(x, u,∇u),

Ah(v, w) =

∫
Ω

n∑
i,j=0

ahij(x)vxjwxi dx,

A(v, w) =

∫
Ω

n∑
i,j=0

aij(x)vxjwxi dx.

Note also that

(5.6) |aij(x) − ahij(x)| ≤
n∑

k=0

‖Fijk‖L∞ |(u− uh)xk
(x)|.

A and Ah as defined here differ from their previous incarnations mainly in that some
lower-order terms are now included. (Note that summation indices now run from 0
to n instead of from 1 to n.) Finally, the residual ET must be modified to reflect the
presence of lower-order terms. Thus we now define

ET = hT

∥∥∥∥∥
n∑

i=1

∂

∂xi
Fi(·, uh,∇uh) − F0(·, uh,∇uh)

∥∥∥∥∥
L∞(T )

+ ‖[uh]‖L∞(∂T ).

The analytical assumptions of section 2 must be modified only slightly. We must
still assume that the operator A is uniformly elliptic in Ω, a fact which may be
established exactly as in seciton 2.2. Second, we must assume that A admits unique
and sufficiently regular solutions for homogeneous Dirichlet problems. Note that
establishing existence and uniqueness of solutions of such problems is potentially
complicated by the presence of lower-order terms. In nonlinear problems, we must as
before assume some regularity of u as well, although lower regularity may be required
of u in the case of mildly nonlinear problems, as we show below. Next, the Green’s
function estimates of Lemma 2.3 must hold. [GW82] states such results only for
divergence form operators with no lower-order terms, although the same techniques
should apply when lower-order terms are present. Finally, the constant CF arising in
(2.12) must be bounded as before.
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5.3. Example: A mildly nonlinear problem. Consider the mildly nonlinear
problem

(5.7)
−

n∑
i,j=0

∂

∂xi
(ãij(x, u)

∂u

∂xj
) = f(x) in Ω,

u= 0 on ∂Ω,

where we assume that the coefficients Fi(x, u,∇u) =
∑n

j=1 ãij(x, u)uxj
satisfy the

requirements outlined in the previous subsection. Note that the term (A − Ah)(u −
uh, g) appearing in (3.10) and (4.5) of the proofs of Theorem 3.1 and Theorem 4.1
led there to a nonlinear perturbation error term of the form ‖∇(u−uh)‖2

L∞(Ω). Since

Fi(x, u,∇u) now depends only linearly on ∇u, however, (5.6) yields

|aij − ahij | ≤ CF |u− uh|

so that

|(A−Ah)(u− uh, g)| ≤ C‖u− uh‖L∞(Ω)‖∇(u− uh)‖L∞(Ω)‖g‖W 1
1 (Ω).

Thus the nonlinear perturbation term is now of higher order than it generally is for
approximations of u solving (1.1).

Using this observation, we may obtain estimates similar to, but often simpler
than, those in Theorem 3.1, Corollary 3.5, and Theorem 4.1. We assume here that
a nondegeneracy condition as outlined in Remark 3.2 is satisfied and that u possess
sufficient regularity. First, analogous to Theorem 3.1 and Corollary 3.4, we find that
if ‖u− uh‖L∞(Ω) is small enough, then

‖∇(u−uh)‖L∞(Ω)

≤C3�h,n(maxT∈T ET + CF ‖u− uh‖L∞(Ω)‖∇(u− uh)‖L∞(Ω))

≤ 2C3�h,n maxT∈T ET .

Analogous to Corollary 3.5, we obtain for ‖∇(u− uh)‖L∞(Ω) small enough that
(5.8)

‖u− uh ‖L∞(Ω) ≤ C4�h(maxT∈T hTET + CF ‖u− uh‖L∞(Ω)‖∇(u− uh)‖L∞(Ω))

≤ 2C4�h maxT∈T hTET .

Finally, we employ (5.8) and note that hT ≤ CσD(T ) for D ⊂ Ω to find that for
‖∇(u− uh)‖ small enough,

(5.9)

‖σD∇(u− uh)‖L∞(Ω)

≤ C5�h,n(maxT∈T σD(T )ET + CF ‖∇(u− uh)‖L∞(Ω)‖u− uh‖L∞(Ω))

≤ C5�h,n(maxT∈T σD(T )ET + CF ‖∇(u− uh)‖L∞(Ω)C4�h maxT∈T hTET )

≤ C5�h,n maxT∈T σD(T )ET (1 + CF ‖∇(u− uh)‖L∞(Ω)C4�h)

≤ 2C5�h,n maxT∈T σD(T )ET .

Since the coefficients of the dual linear operator A now have essentially the same
regularity as u instead of as ∇u, the constants C3, C4, and C5 above depend more
weakly on the regularity of u than do the corresponding constants in Theorem 3.1,
Corollary 3.5, and Theorem 4.1. Indeed, C3 depends on ‖u‖L∞(Ω) and the Dini-
continuity of u as opposed to C1 from Theorem 3.1, which depends on ‖∇u‖L∞(Ω)
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and the Dini-continuity of ∇u. C4 and C5 depend only on ‖u‖W 1
∞(Ω) as opposed to

C̃ and C2 from Corollary 3.5 and Theorem 4.1, which both depend on ‖u‖W 2
∞(Ω). We

also note that (5.8) and (5.9) only require that u ∈ C1,ν(Ω) for some ν > 0 in order to
hold, whereas the corresponding estimates in Corollary 3.5 and Theorem 4.1 require
u ∈ W 2

∞(Ω).
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THE MESHFREE POINT COLLOCATION METHOD∗
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Abstract. The discrete Laplacian operator is considered in the sense of the meshfree point
collocation method which will be called the strong meshfree Laplacian operator. To define the
strong meshfree Laplacian operator, we use the fast version of the generalized moving least square
approximation, which can calculate the approximated derivatives of shape functions. Some types
of the locally layered node distribution are defined in this paper, and two specific domains are
constructed onto which we can distribute locally layered nodes. At such nodes, the discrete maximum
principle can be shown to hold through the representation formula for the strong meshfree Laplacian
operator. The discrete maximum principle, together with the reproducing property of the meshfree
approximations, results in an a priori estimate for the strong meshfree Laplacian operator in the
nodal solution space. Furthermore, the a priori estimate we have obtained guarantees the existence
and the uniqueness of the numerical solution and plays a central role in achieving converged results
for the Poisson problem with Dirichlet boundary conditions in the nodal solution space. The order
of convergence of the nodal solutions can be raised up to O(h2) at the proposed type of nodes in
specific domains. For generally shaped domains immersed in the previously mentioned domains, we
can obtain the first order convergence result of O(h).
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analysis
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1. Introduction. In the field of numerical computations, meshfree methods
have been developed for more than a decade. In order to solve many physical prob-
lems represented by partial differential equations, researchers and scientists have pro-
posed meshfree approximations, examples of which include the element free Galerkin
method [3], the moving least square reproducing kernel method [10, 17], the partition
of unity finite element method [2], the reproducing kernel hierarchical partition of
unity [11, 12, 13, 15], the reproducing kernel element method [14, 16, 18, 20], etc.

The above pioneering work has presented a common framework for meshfree
methodologies and shown the potential of meshfree methods. In many cases, the work
in meshfree fields has been based on the weak formulation of the model equation, but
only a few papers supply the mathematical convergence for numerical solutions in the
one-dimensional (1-D) case [2, 12].

In this paper, we focus on uniform convergence analysis for the numerical so-
lution of the strong formulation using a meshfree approximation. Here we use the
generalized moving least square approximation for efficient calculation of higher order
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shape function derivatives, which stem from the reproducing kernel hierarchical par-
tition of unity method by Li and Liu [11, 12], and from the fast moving least square
reproducing kernel approximation method by D. W. Kim and Y. Kim [8, 9]. Such
approximations are desired to convert the higher order differential operator into a
discrete one by attacking the strong formulation and utilizing the point collocation
method. The meshfree point collocation method (MPCM) follows the philosophy of
the meshfree method in which no structured meshes are used.

In mathematical analyses of the Galerkin formulation using meshfree approxi-
mations, difficulties arise mainly in the treatment of Dirichlet boundary conditions.
The construction of a test function space which belongs to the Sobolev space H1

0 (Ω)
is a challenging issue in meshfree Galerkin formulations, particularly for higher di-
mensions. However, once one can overcome this difficulty, then the remaining part
of the convergence analysis follows similarly from the mathematical theories of the
finite element method. For the finite element method, uniform convergence has been
shown by Ciarlet and Raviart [4] for second order elliptic models under some specially
shaped meshes. To achieve first order uniform convergence, they used the discrete
maximum principle and obtained an a priori estimate for the discrete solution of the
Poisson-type problem. For local pointwise error estimates in finite element methods,
one can see the important results for second order elliptic problems in [5] written by
L. B. Wahlbin.

The meshfree point collocation methods, in contrast to the Galerkin formulation,
have few mathematical results, as the theory of function spaces is not directly avail-
able. Thus, the objective of this paper is to build the underlying theories for the
MPCM, particularly for the discrete Laplacian operator, and based on those theo-
ries to prove uniform convergence of the nodal solutions of the Poisson problem with
Dirichlet boundary conditions. For the convergence estimate in the MPCM, the first
step is to define the rigorous point collocation scheme—an important portion of the
mathematical analysis. Next, we will show that the discrete Laplacian operator sat-
isfies the discrete maximum principle for some classes of nodes, and then obtain an
a priori estimate for the strong meshfree Laplacian operator on the nodal solution
space, provided the discrete maximum principle holds.

As for the discrete maximum principle itself, many researchers are interested in
cases in which it occurs and their applications [1, 4, 7, 19, 21, 22]. The discrete max-
imum principle for the discretized Laplacian operator in the finite difference method
on evenly spaced grid points is well-known and is closely related to the mean-value
property for the Laplace solutions. This means that the average value on the sur-
rounding four points in a five-point stencil for the Laplacian operator is equal to the
center value. Inspired by the difference scheme for the Laplacian operator in the
finite difference method, we can obtain the representation formula at each node for
the strong meshfree Laplacian operator which is followed by the discrete maximum
principle.

As a result of the discrete maximum principle, an a priori estimate for the strong
meshfree Laplacian is derived in the nodal solution space. The a priori estimate
guarantees the existence and the uniqueness of the numerical solution governed by the
point collocation scheme. We finally achieve convergence for the numerical solutions of
the Poisson problem with Dirichlet boundary conditions. The convergence order can
be up to second order on some specific domains, while we have first order convergence
for general domains immersed in the specific domains.

We know that finite difference methods and finite element methods have discrete
maximum principle for elliptic partial differential equations. However, for meshfree
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strong form collocation methods, the authors are not aware of any previous theoretical
results. This is an important aspect, and this is the first paper to the authors knowl-
edge that deals with the theoretical foundation of the meshfree collocation method.

2. Generalized moving least square reproducing kernel approximation.
To make this paper self-contained, we will describe how to obtain the meshfree approx-
imation of the Laplacian operator. For a moment, we will make general statements
on the moving least square reproducing kernel approximation as we can see similar
content in the literature [8, 11, 12].

Let Ω be a bounded domain in R
n and also Λ ≡ {xI ∈ Ω | I = 1, . . . , N} where

Λ is a set of distributed nodes in Ω. Throughout the paper, the multi-index notation
and related definitions are employed as follows:

α = (α1, . . . , αn), |α| ≡
n∑

i=1

αi, α! ≡ α1!α2! · · ·αn!,(2.1)

x = (x1, . . . , xn) ∈ R
n, xα ≡ xα1

1 . . . xαn
n , Dα

x ≡ ∂α1
x1

. . . ∂αn
xn

,(2.2)

where αk’s are nonnegative integers and α is called the multi-index. We consider a
vector of complete basis functions of order m in R

n such that

Bm(x) = (bβ1(x), bβ2(x), . . . , bβL
(x))T , |βk| ≤ m,(2.3)

where βk’s are all multi-indices in lexicographical order. Here we note that the number

of βk’s is L ≡ (m+n)!
m!n! and the complete basis of order m means that the L×L matrix

JBm
(0) is invertible if we define the Jacobian of Bm(x) at 0 as

JBm
(0) ≡ lim

x→0
(Dα

x bβ(x)) , |α|, |β| ≤ L.(2.4)

Let Br(z) ≡ {y | ‖y−z‖ < r} be the r-ball in R
n with center z. We introduce the

continuous nonnegative window function with its support on B1(0) of the following
type

W (x) = (1 − ‖x‖ 1
2 )2 for ‖x‖ < 1, x ∈ R

n(2.5)

and the continuous positive dilation function

ρ(x) > 0 on Ω.(2.6)

For brevity, we will use ρx instead of ρ(x).
Remark 1. The decreasing rate of the window function values apart from the

origin is essential in proving the discrete maximum principle for the strong meshfree
Laplacian operator introduced in a later section. The window function of the form
(2.5) meets this decreasing rate. The support of the window function in this paper
has the n-dimensional unit ball shape.

Remark 2. The dilation parameter used in most meshfree methods can be re-
placed with the dilation function defined on the whole domain Ω. The required
regularity for the dilation function is only the continuity to be well defined when
the center of window function moves to the evaluation point. The dilation function
controls the support and its size of shape functions, and thus is directly available to
the geometrically multiple scale problems [9].

The subsequent procedure to make the shape functions and the approximated
derivative operators is addressed in detail in Appendix I. This includes the generalized
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reproducing properties of meshfree shape functions and the proposal of a sufficient
condition to regenerate the dilated basis functions. These are novel differences from
the standard moving least square reproducing kernel approximation.

From this point forward, we restrict our attention to polynomial basis functions;
that is, if there is no comment, then the basis functions will be maintained as complete
polynomials up to order m

Bm(x) = (xβ1 ,xβ2 , . . . ,xβL), |βk| ≤ m(2.7)

throughout the mathematical analysis.
For the subsequent analysis, we require the definition of the proper node distri-

butions.
Definition 1 (proper triple). Let (Ω,Λ, ρx) be the triple of a domain, a set of

distributed nodes on Ω, and a dilation function. The triple (Ω,Λ, ρx) is said to be
proper if the moment matrix Mρx(xI) is invertible for every interior node xI ∈ Λ∩Ω
under the dilation function ρx.

This definition is preventive of the degenerate distribution of nodes to approxi-
mate functions in the meshfree method.

3. Problem statement and the definition of the discrete problem. We
will now consider the discretization of the Poisson problem as the popular model in
the second order elliptic problem with Dirichlet boundary conditions and prepare the
terminology for its convergence analysis. The Poisson equation uses the Laplacian
operator, the principal operator in most physical models. Furthermore, the Laplacian
is an interesting operator in itself, since it has the salient feature referred to as the
maximum principle. Many mathematical theories have been developed based on this
property. Among them, the regularity and the uniqueness of solutions of the Poisson
equation is highly involved with the maximum principle. For the discrete case anal-
ogous to the continuous one, the discrete maximum principle has been reported not
only for the Galerkin formulation [4] in the finite element method but also for the
solution of some algebraic systems [7].

We consider the Poisson problem with Dirichlet data on the boundary of a do-
main Ω and propose the corresponding discrete problem using the point collocation
approach based on the generalized meshfree approximation operators described in
the previous section and Appendix I in detail. The model problem considered in this
paper is governed by the following equations:

(CP)

{
Δu = f, in Ω

u = g, on Γ,
(3.1)

where Γ ≡ ∂Ω represents the boundary of the open bounded domain Ω. According
to Theorem 6.13 in [6] for the general existence and regularity of a unique solution
of (CP), if Ω is a bounded domain satisfying an exterior sphere condition at every
boundary point and we have f ∈ Cs−2, α(Ω) for s = 3, 4 and g ∈ C(∂Ω), then the
Dirichlet problem (CP) has a unique solution u ∈ C0(Ω) ∩ Cs, α(Ω), where C0(Ω) is
the vector space to consist of all bounded and uniformly continuous functions on Ω
and Cs,α(Ω) represents the Hölder space of exponent 0 < α ≤ 1 equipped with the
norm

‖v‖Cs,α(Ω) ≡ max
0≤|β|≤s

sup
x∈Ω

|Dβv(x)| + max
0≤|β|≤s

sup
x,y∈Ω,x�=y

|Dβv(x) −Dβv(y)|
|x − y|α .(3.2)
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To discretize the problem (CP) in terms of meshfree point collocation method,
we focus on the second order meshfree approximation (m = 2); that is, the complete
polynomial basis functions up to second order are adopted to obtain all the shape
functions (see Appendix I). It is taken to satisfy the minimum order of consistency for
the discretization of second order partial differential equations since we approximate
the Laplace operator in a pointwise manner. Higher order approximation could be
better than the second order one in general but, since the focus in this paper is on
analyzing the structure of the meshfree Laplace operator, the second order meshfree
approximation must be the starting point. We also consider the 2-D space (n = 2) and
hence the relevant multi-index βk (k = 1, . . . , 6) appearing in the basis polynomials
(2.7) which are fixed in lexicographical order as follows:

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2).(3.3)

The analysis in this paper is expected to hold for the higher dimensions as well as
for higher orders. It could depend on the construction of the local nodes and the
adequate dilation function.

In order to define the discrete counterpart of the continuous problem (3.1), we
assume Λ is a set of well distributed nodes on the domain Ω and its boundary, so that
(Ω,Λ, ρx) becomes the proper triple. Let C(Ω) be the space of continuous functions
up to the boundary of Ω, and V be the finite dimensional space of functions defined
on Λ. We will call the function space V the nodal solution space if V is equipped
with the following seminorm:

‖v‖∞,A ≡ max
xK∈A

|vK | when v ∈ V,(3.4)

where A is a nonempty subset of Λ. In the case when A = Λ, the seminorm becomes
the norm on V .

If the restriction map i : C(Ω) → V to Λ is defined such that, for any u ∈ C(Ω),

i(u)(xI) ≡ u(xI) for any xI ∈ Λ,(3.5)

then the point collocation Laplacian operator Δρ can be defined on V into itself such
that if v ∈ V , then

(Δρv)(xI) ≡
∑
xJ∈Λ

v(xJ)ψΔ
J (xI) for any xI ∈ Λ,(3.6)

where the function ψΔ
J (xI) will be called the Laplacian shape function at xI and is

defined by

ψΔ
J (xI) ≡ ψ

[(2,0)]
J (xI) + ψ

[(0,2)]
J (xI)(3.7)

which is the sum of the (2, 0)th and (0, 2)th approximate derivatives whose definition
comes from (7.3) in Appendix I. In fact, the operator Δρ stems from the meshfree

approximated Laplacian operators D
(2,0)
m,ρx + D

(0,2)
m,ρx ∼ Δ. Hereafter, we will often use

the symbol uJ instead of u(xJ) if u ∈ V and xJ ∈ Λ.
Using these operators i and Δρ, we define the meshfree point collocation dis-

cretization of Poisson problem (CP) as the following:

uh ∈ V :

{
Δρuh = i(f), on Λo

uh = g, on Λb
,(3.8)
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where Λ = Λo ∪ Λb and Λo and Λb are sets of interior nodes and Dirichlet boundary
nodes, respectively. Consequently, our discrete problem for (CP) results in finding
the nodal solution uh ∈ V such that

(DP)

{
uh ∈ Vg ≡ {vJ ∈ R | vK = g(xK) for all xK ∈ Λb} ⊂ V

Δρuh = i(f), on Λo.
(3.9)

This final formulation will be called the discrete Poisson problem (DP) and the op-
erator Δρ will be called the strong meshfree Laplacian operator.

In order to attain the error estimate, we begin discussion of the discrete maximum
principle for the strong meshfree Laplacian operator Δρ.

4. Discrete maximum principle for the strong meshfree Laplacian op-
erator Δρ. Let (Ω,Λ, ρx) be the proper triple. For convenience sake, the r-neighbor
nodes of x are assumed to be the following set:

Λr(x) ≡ {xK ∈ Λ |xK ∈ Br(x)}, r > 0(4.1)

and the symbol A∗ for a subset A ⊂ Λ implies the set defined by

A∗ ≡
⋃

xJ∈A

ΛρxJ
(xJ).(4.2)

If there is no confusion, we briefly write Λ(xK) instead of ΛρxK
(xK) for any node

xK ∈ Λ.
We now state the definition of the discrete maximum principle.
Definition 2 (discrete maximum principle for the operator Δρ

). Assume the
proper triple (Ω,Λ, ρx) is given. We will say the strong meshfree Laplacian Δρ satisfies
the discrete maximum principle at a node xI ∈ Λ if the condition (Δρv)(xI) ≥ 0 for
v ∈ V implies that either vI < maxxK∈Λ(xI)\{xI} vK or vK = vI for all xK ∈ Λ(xI).
We also will say the operator Δρ satisfies the discrete maximum principle on a subset
A ⊂ Λ if it satisfies the discrete maximum principle at all nodes in A.

In fact, the discrete maximum principle for the discrete Laplace operator is known
to depend on the geometry of the mesh in the finite element method and the orthog-
onal grid in the finite difference method, respectively. For example, if all the angles
of the triangles of the triangulation on a domain are less than or equal to π

2 , then the
discrete maximum principle is known to hold in the finite element method [4]. Hence
it can also be expected that the relative attitude between nodes strongly affects this
kind of phenomenon in the meshfree area. Therefore, we are interested in finding such
node distributions from the meshfree point of view. On the other hand, to perform
the convergence analysis on such nodes, we have to inspect closely the moment matrix
and its inverse, since it is located in the core of Laplacian shape functions in (3.7).

The moment matrix for the given set Λ of nodes has the following form in the
generalized moving least square reproducing kernel approximation [17] (see also (7.5)
in Appendix I)

Mρx(x) =
∑
xI∈Λ

Bm

(
xI − x

ρx

)
BT

m

(
xI − x

ρx

)
W

(
xI − x

ρx

)
,(4.3)

where Bm

(
y−x
ρx

)
is the normalized basis polynomial up to order m at the center
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3

r

1

0

Fig. 4.1. The locally (p, q)-layered nodes (x-plane) and the normalizing ones (ξ-plane) by
TxI ,r(x). SK ’s are the layers of the normalized nodes.

point x ∈ Bρx(x) such that

Bm

(
y − x

ρx

)
=

((
y − x

ρx

)β1

,

(
y − x

ρx

)β2

, . . . ,

(
y − x

ρx

)βL
)
, |βk| ≤ m.(4.4)

To calculate the moment matrix and its inverse concretely, we need to focus on some
class of node distributions. In order to define some classes of nodes, we must first
introduce the normalizing transformation Tx,r(y) : Br(x) → B1(0) such that, as
shown in Figure 4.1,

ξ = Tx,r(y) ≡ y − x

r
.(4.5)

Definition 3 (layered node distribution). Let Ar(xI) ≡ {xK |xK ∈ Br(xI)} be
the finite subset of nodes within the distance r around xI . The set of nodes Ar(xI) is
said to be the locally (p, q)-layered at xI if all the normalized nodes in TxI ,r(Ar(xI))
remain on the p-layer sets S1, . . . , Sp in the increasing radial direction from the origin
and the q nodes are distributed evenly on each layer. All the layer sets Sk’s have the
spherical shape only. Furthermore, we say that the node set Λ is possibly layered if, for
any interior node xI ∈ Λ, Λ(xI) is the locally (p, q)-layered at xI for some p, q > 0.

As a matter of fact, the possibly layered distribution of nodes is not a simple
matter since the property of the locally (p, q)-layered at every neighboring node has
to be achieved. Thus, we will propose two kinds of available distribution of nodes and
show that they are the possibly layered. On such types of the possibly layered nodes,
the discrete maximum principle for the strong meshfree Laplacian will be proven.

We begin with the calculation of the moment matrix that will play an essential
role in proving the discrete maximum principle on some possibly layered nodes. If the
subset of nodes Λ(xI) ⊂ Λ is the locally (p, q)-layered at xI , then the moment matrix
at xI can be calculated from the following manner:

Mρx(xI) = W (0)Bm(0)Bm(0)T +

p∑
K=1

δK DK

⎛
⎝ ∑

ξJ∈SK

Bm(ζJ)Bm(ζJ)T

⎞
⎠ DK ,

(4.6)
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where SK is the Kth layer set in the definition and for any nonzero ξJ ∈ SK we use
the symbols

ξJ ≡ TxI
(xJ), τK ≡ |ξ1| = · · · = |ξq| < 1, ζJ ≡ ξJ

τK
,(4.7)

δK ≡ W (ξ1) = · · · = W (ξq),(4.8)

and DK is the diagonal matrix such that

DK ≡ Diag(τ
|α1|
K , τ

|α2|
K , . . . , τ

|αL|
K ).(4.9)

Since we have assumed n = 2, we have, without loss of generality, the ζJ ’s distributed
evenly on the layer SK and represented by

ζj =

(
cos

(
θK + j

2π

q

)
, sin

(
θK + j

2π

q

))
, j = 0, 1, . . . , q − 1,(4.10)

where θK is the angle of the starting node ζ1 on SK . If the distribution of nodes around
xI is assumed to be the locally (p, q)-layered at xI , then, from the trigonometric
identities in Appendix II, the term

∑
ξJ∈SK

B(ζJ)B(ζJ)T in (4.6) has the following
forms for the cases when q = 4 and q ≥ 5:

•
∑

ξJ∈SK
B(ζJ)B(ζJ)T when q = 4,

4

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
2 0 1

2
0 1

2 0 0 0 0
0 0 1

2 0 0 0
1
2 0 0 3

8 + 1
8 cos 4θK

1
8 sin 4θK

1
8 − 1

8 cos 4θK
0 0 0 1

8 sin 4θK
1
8 − 1

8 cos 4θK − 1
8 sin 4θK

1
2 0 0 1

8 − 1
8 cos 4θK − 1

8 sin 4θK
3
8 + 1

8 cos 4θK

⎤
⎥⎥⎥⎥⎥⎥⎦ ;(4.11)

•
∑

ξJ∈SK
B(ζJ)B(ζJ)T when q ≥ 5

q

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
2 0 1

2
0 1

2 0 0 0 0
0 0 1

2 0 0 0
1
2 0 0 3

8 0 1
8

0 0 0 0 1
8 0

1
2 0 0 1

8 0 3
8

⎤
⎥⎥⎥⎥⎥⎥⎦ .(4.12)

Here we note that, if the number of nodes on the layer SK is greater than or equal to
5, then the moment matrix does not depend on θK . This means that the (p, q)-layered
node distributions for q ≥ 5 makes the rotation invariant moment matrix.

The strong meshfree Laplacian operator Δρ at xI on the (p, q)-layered node set
Λ(xI) can be calculated from the equivalent form:∑

xJ∈Λ(xI)

uh(xJ)ψΔ
J (xI) = dΔ Mρx(xI)

−1 Bm(0)W (0)uh(0)

+ dΔ Mρx(xI)
−1

p∑
K=1

δK DK

[
Bm

(
ζK1

)
Bm

(
ζK2

)
· · · Bm

(
ζKq

)]
uK
h ,(4.13)
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(II) Type II : Locally ( p, 6 )−layered nodes

p = 1, 2

2 h

2h h2 rp

δ1

δ2
δ3

δ0

h θ

h

W(r)

(I) Type I : Locally ( p, 4 )−layered nodes

p = 2, 3

Fig. 4.2. Two types of locally (p, q)-layered node distribution: (I) the set of Type I and, (II)
the set of Type II.

where uK
h ≡ [uh(ξK1 ), . . . , uh(ξKq )]T is a column vector, the superscript of ξKJ means

that ξJ is on SK , and when m = 2 the symbol dΔ designates the following row vector:

dΔ ≡
[
0, 0, 0,

(2, 0)!

ρ
|(2,0)|
xI

, 0,
(0, 2)!

ρ
|(0,2)|
xI

]
.(4.14)

We now consider the two kinds of locally (p, q)-layered node distributions. The
first one is composed of orthogonally positioned nodes and the other comes from a
hexagonal structure.

In constructing specific types of nodes, we use the symbol δK as defined in (4.8)
including δ0 ≡ W (0) = 1, or equivalently we have δK ≡ W (τK) since our window
function W in (2.5) depends only on the radial values. The terminology of the multi-
index βk defined in (3.3) is also utilized.

Let h > 0 and θ be the given angle.

4.1. Type I: The locally (p, 4)-layered nodes (p = 2, 3). Let Arp(0) be
the set consisting of the following nodes as shown in Figure 4.2(I):

{(0, 0)} ∪
p⋃

K=1

{(
tK h cos

(
θK + i

2π

4

)
, tK h sin

(
θK + i

2π

4

) ∣∣∣∣ i = 0, 1, 2, 3

}
,

(4.15)

where tK =
√

2
K−1

, θK = θ + (K − 1)π4 , and

rp = h

√
2 + 2

2
, h

2 +
√

5

2
, respectively when p = 2, 3.(4.16)

If A is a subset of nodes with xI as its center node and it has the same property as
Arp(0) for p = 2, 3 under the normalizing transform (4.5), then it is said to be the set
of Type I at the node xI . In this case, the values of τK ’s in (4.7) are calculated as the
following:

τK =
h tK
rp

, 1 ≤ K ≤ p = 2, 3.(4.17)
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When p = 3, the determinant of the moment matrix in (4.6) at the center node can
be calculated such as

|Mrp(0)| = 26τ
2
∑6

k=1
|βk|

1 δ2 (δ1 + 2 δ2 + 4 δ3)
2 (δ1 + 16 δ3)AR = 0,(4.18)

where the symbol AR stands for the following positive value:

AR = δ1 + 4 δ2 + 16 δ3 + 4 δ1δ2 + 16 δ2δ3 + 36 δ1δ3.(4.19)

When p = 2, we may simply set δ3 = 0.
On this kind of local node distribution, the strong meshfree Laplacian operator

at the origin is calculated from the equation (4.13) as follows:

ψΔ
0 (0) = − 4

h2

δ0 (δ1 + 2 δ2 + 4 δ3)

AR
,(4.20)

ψΔ
ξJ∈S1

(0) =
1

h2

δ1 (1 − 4 δ2 − 12 δ3)

AR
≡ 1

h2
A1,(4.21)

ψΔ
ξJ∈S2

(0) =
1

h2

2 δ2 (1 + 2 δ1 − 4 δ3)

AR
≡ 1

h2
A2,(4.22)

ψΔ
ξJ∈S3

(0) =
1

h2

4 δ3 (1 + 3 δ1 + 2 δ2)

AR
≡ 1

h2
A3,(4.23)

where SK (K = 1, 2, 3) is the Kth layer and there are 4-nodes on each SK . Therefore,
from (4.20), (4.21), (4.22), and (4.23) and the fact that A1 + A2 + A3 = δ1+2 δ2+4 δ3

AR

since δ0 ≡ W (0) = 1, we have, for any v ∈ V ,

h2
∑

xJ∈Ar(0)

v(xJ)ψΔ
J (0) =

3∑
k=1

Ak

⎛
⎝−4 v(0) +

∑
ξJ∈Sk

v(ξJ)

⎞
⎠ .(4.24)

If we set δ3 = 0 in the above formula, then we obtain the case when p = 2. With
these types of nodes, the moment matrix depends on the rotation of nodes (θ) but
the discrete Laplacian shape function ψΔ

J (0) is invariant under the rotation.
Summarizing the above discussion, we have the following lemma on the set of

Type I at xI .
Lemma 1. Let (Ω,Λ, ρx) be a proper triple and Λ(xI) ⊂ Λ be the set of Type I at

the node xI . Then we have the following properties:
1. The following representation formula for the strong meshfree Laplacian opera-

tor holds:

∑
xJ∈Λ(xI)

v(xJ)ψΔ
J (xI) =

1

h2

p∑
K=1

AK

⎛
⎝−4 v(xI) +

∑
ξJ∈SK

v(ξJ)

⎞
⎠(4.25)

for some coefficients AK which depend on the window function.
2. If the coefficients AK are positive, then the following type of inverse inequality

for the Laplacian shape functions holds:

∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ ≤ 8

h2
.(4.26)
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Proof. The first property directly comes from (4.24). For the second property,
if AK > 0 for K = 1, . . . , p where p = 2, 3, then we have the following bound from
(4.20), (4.21), (4.22), and (4.23):

∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ = −ψΔ
I (xI) +

∑
xJ∈Λ(xI)\{xI}

ψΔ
J (xI) =

8

h2

p∑
K=1

AK ≤ 8

h2
(4.27)

since ψΔ
I (xI) is the only nonpositive term among ψΔ

J (xI) for all J , xJ ∈ Λ(xI).

4.2. Type II: The locally (p, 6)-layered nodes (p = 1, 2). Let Arp(0) be
the set consisting of the following nodes as shown in Figure 4.2(II):

{(0, 0)} ∪
p⋃

K=1

{(
tK h cos

(
θK + i

2π

6

)
, tK h sin

(
θK + i

2π

6

) ∣∣∣∣ i = 0, 1, 2, 3, 4, 5

}
,

(4.28)

where tK =
√

3
K−1

, θK = θ + (K − 1)π6 , and

rp = h

√
3
p−1

+
√

3
p

2
, p = 1, 2.(4.29)

If A is a subset of nodes with xI as its center node and it has the same property as
Arp(0) for p = 1, 2 under the normalizing transform (4.5), then it is said to be the set
of Type II at the node xI . Here, we can see that

τK =
h tK
rp

, 1 ≤ K ≤ p = 1, 2.(4.30)

When p = 2, the determinant of the moment matrix in (4.6) at the center node in
this case can be calculated as follows:

|Mrp(0)| = 35τ
2
∑6

k=1
|βk|

1 (δ1 + 3 δ2)
2(δ1 + 9 δ2)

2 AH = 0,(4.31)

where the symbol AH means the following positive value:

AH = δ1 + 9 δ2 + 24 δ1δ2.(4.32)

In the case when p = 1, we can set δ2 = 0.
On this kind of local node distribution, the strong meshfree Laplacian operator

at the origin is derived from (4.13) as follows:

ψΔ
0 (0) = − 4

h2

δ0 (δ1 + 3 δ2)

AH
,(4.33)

ψΔ
ξJ∈S1

(0) =
1

h2

2
3δ1 (1 − 12 δ2)

AH
≡ 1

h2
A1,(4.34)

ψΔ
ξJ∈S2

(0) =
1

h2

2δ2 (1 + 4 δ1)

AH
≡ 1

h2
A2,(4.35)

where SK (K = 1, 2) is the Kth layer and there are 6-nodes in each SK . Thus, from

(4.33), (4.34), (4.35), and the identity A1 + A2 =
2
3 (δ1+3 δ2)

AH
, we also obtain, for any

v ∈ V ,

h2
∑

xJ∈Ar(0)

v(xJ)ψΔ
J (0) =

2∑
k=1

Ak

⎛
⎝−6 v(0) +

∑
ξJ∈Sk

v(ξJ)

⎞
⎠ .(4.36)



526 DO WAN KIM AND WING KAM LIU

In the case when p = 1, we can only set δ2 = 0.
Summarizing the above discussion, on the set of Type II at xI , we have the

following lemma similar to Lemma 1.
Lemma 2. Let (Ω,Λ, ρx) be a proper triple and Λ(xI) ⊂ Λ be the set of Type II

at the node xI . Then we have the following properties:
1. The following representation formula for the strong meshfree Laplacian opera-

tor holds:

∑
xJ∈Λ(xI)

v(xJ)ψΔ
J (xI) =

1

h2

p∑
K=1

AK

⎛
⎝−6 v(xI) +

∑
ξJ∈SK

v(ξJ)

⎞
⎠(4.37)

for some coefficients AK which depend on the window function.
2. If the coefficients AK are positive, then the following inverse inequality for the

Laplacian shape functions holds:

∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ ≤ 8

h2
.(4.38)

Proof. The proof is similar to that in Lemma 1, so we omit the proof.
Remark 3. The set of Type I and Type II belong to the locally (p, 4)-layered and

locally (p, 6)-layered class, respectively. The significant feature of the set of Type I
and Type II nodes is the staggered distribution of nodes across layers. Particularly,
in the case of Type I, it is essential for the invertibility of the moment matrix at the
center node since the matrix (4.11) derived from the nodes in each layer is singular
with kernel dimension 1. However, in the case of Type II, the nodes do not have
to be staggered through layers since one can see the nonsingular matrix (4.12) is
independent of the attitude of nodes in each layer. Hence, Type II is more natural
than Type I in the meshfree approximation.

4.3. Two possibly layered node distributions on specific domains. We
propose two kinds of evenly spaced nodes on some domains. The size, the rotation,
and the translation of the domain we are to construct are not critical in the subsequent
analysis (i.e., the subsequent analysis is independent of the similarity transfromation).

As shown in Figure 4.3(a), we first consider the open square domain ΩR with 4
vertices at

(1, 1), (−1, 1), (−1,−1), (1,−1).(4.39)

In this case, the nodes can be distributed on ΩR to be Type I (i.e., staggered locally
(p, 4)-layered (p = 2, 3)) at each interior node. The set of such nodes on ΩR is written
by the symbol ΛR.

As depicted in Figure 4.3(b), the hexagonal domain ΩH with the six vertices
located at

(1, 0),

(
1

2
,

√
3

2

)
,

(
−1

2
,

√
3

2

)
, (−1, 0),

(
−1

2
, −

√
3

2

)
,

(
1

2
, −

√
3

2

)
(4.40)

is taken as the second open domain. On the domain ΩH , the nodes can be entirely
distributed to be Type II (i.e., locally (p, 6)-layered (p = 1, 2)) at each interior node.
Such a set of nodes is denoted by ΛH .
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Fig. 4.3. Possibly layered node distribution: (a) ΩR, and (b) ΩH .

In both cases, the minimum node distance is set by h ≡ 2
n where n is regarded

as the number of divisions. Now, we determine the dilation function ρx for each case.
We only need the values of ρx at nodes. First of all, we notice that the value ρxI

at
each node xI on ΛR (or ΛH) depends on how we take the p number in the locally
(p, q)-layered set Λ(xI) at xI . As illustrated in Figure 4.3(a) and (b), we choose them
in the following way:

ρRxI
=

{
h

√
2+2
2 , xI /∈ ∂ΩR, dist(xI , ∂ΩR) < 3

2h

h ((3 − p)
√

2+2
2 + (p− 2) 2+

√
5

2 ), xI /∈ ∂ΩR, dist(xI , ∂ΩR) ≥ 3
2h

,(4.41)

ρHxI
=

{
h 1+

√
3

2 , xI /∈ ∂ΩH , dist(xI , ∂ΩH) < 3
2h

h ((2 − p) 1+
√

3
2 + (p− 1)

√
3+3
2 ), xI /∈ ∂ΩH , dist(xI , ∂ΩH) ≥ 3

2h
(4.42)

in which dist(xI , B) ≡ miny∈B ‖xI − y‖ represents the distance between xI and the
closed set B as usual and p = 2, 3 and p = 1, 2, respectively, in (4.41) and (4.42).
The dilation function values on the interior nodes, taken by (4.41) and (4.42), make
the node sets ΛR and ΛH be the possibly layered. Furthermore, every ΛρxI

(xI) for
interior node xI becomes the set of Type I or Type II at xI .

On the boundary nodes for both cases, the dilation function values can be assigned
arbitrarily but they must be large enough to ensure the inverse of the moment matrices
at the nodes themselves. Actually, the dilation function values on the boundary nodes
do not affect the subsequent theorems for the convergence proof.

From the construction of two triples, namely, (ΩR,ΛR, ρ
R
x ) and (ΩH ,ΛH , ρHx ),

we can see that both ΛR and ΛH are the possibly layered and hence the two triples
become the proper triples attributed to (4.24) and (4.36). Although we could not say
how many possibly layered node distributions exist, we find at least two types of the
possibly layered set of nodes.

4.4. Discrete maximum principle on the set of Type I or Type II. For
these locally (p, q)-layered nodes of Type I and Type II, we should pay attention to
the discretized form (4.24) and (4.36). If the window function is suitably chosen so
that all the coefficients Ak may be strictly positive, then we can prove the discrete
maximum principle at the center node.

Lemma 3. Let (Ω,Λ, ρx) be the triple. If the local node set Λ(xI) ⊂ Λ is of either
Type I or Type II at xI , then the strong meshfree Laplacian operator Δρ satisfies the



528 DO WAN KIM AND WING KAM LIU

discrete maximum principle at the center node xI .
Proof. Let xI ∈ Λ be the center node of Λ(xI) that is either Type I or Type II at

xI . Then the set Λ(xI) is obviously the locally (p, q)-layered where p = 2, 3 for q = 4
or p = 1, 2 for q = 6. The discrete Laplacian shape functions have been calculated in
(4.24) and (4.36) for both cases. First, we will show that all the coefficients AK of the
representation formula in Lemmas 1 and 2 are strictly positive. In the case of Type I
which is the (p, 4)-layered, we claim that, when p = 3,

1 − 4 δ2 − 12 δ3 > 0, 1 + 2 δ1 − 4 δ3 > 0, 1 + 3 δ1 + 2 δ2 > 0(4.43)

and, when p = 2,

1 − 4 δ2 > 0, 1 + 2 δ1 > 0.(4.44)

If δ2 < 1
16 and δ3 < 1

36 , then all the left terms in (4.43) stay positive. Indeed, when

p = 3, from (4.17) we have δ2 = W ( 2
√

2
2+

√
5
) < 1

16 and δ3 = W ( 4
2+

√
5
) < 1

36 . In the

other case when p = 2, it is true from (4.17) that δ2 = W ( 2
√

2
2+

√
2
) < 1

16 . Therefore, we

are done with the proof for the case of the locally (p, 4)-layered nodes (p = 2, 3).
On the other hand, when Λ(xI) is of Type II which is the locally (p, 6)-layered,

all the coefficients A1 and A2 of the representation formula in Lemma 2 are positive

since we know from (4.30) that δ2 = W ( 2
√

3
3+

√
3
) < 1

16 when p = 2. For the case when

Λ(xI) is the locally (1, 6)-layered at xI , we trivially have A1 > 0.
Let Λ(xI) be the set of Type I or Type II at xI ∈ Λ as mentioned in this

Lemma. To prove the discrete maximum principle, suppose (Δρ v)(xI) ≥ 0 for some
v ∈ V . Due to the window function of type (2.5), the coefficients Ai in Lemmas 1
or 2 are proved to be positive in the above. From the positivity of the coefficients
of the representation formula in both Lemmas 1 and 2, it never happens under this
assumption that the center nodal value vI of v at xI is strictly greater than all the
other nodal values vK at the node xK ∈ ΛρxI

(xI) and therefore we have

vI ≤ max
xK∈Λ(xI)\{xI}

vK .(4.45)

If the equality holds, then the event vI > vK for some xK ,K = I makes (Δρ v)(xI) <
0. Hence, all vK ’s must be equal to vI . Therefore, the operator Δρ satisfies the
discrete maximum principle at the node xI and this completes the proof.

4.5. A priori estimate for the strong meshfree Laplacian operator. For
the set of nodes on which the discrete maximum principle holds, we can obtain the
general results in the meshfree regime.

Lemma 4. Let (Ω,Λ, ρx) be a proper triple. Assume the operator Δρ satisfies the
discrete maximum principle on a finite subset A ⊂ Λ. Then we have the following
inequality:

max
xJ∈A

vJ ≤ max
xK∈A∗\A

vK(4.46)

whenever v ∈ V and Δρv ≥ 0 on A.
Proof. Let us assume v ∈ V and Δρv ≥ 0 on A. Suppose the maximum of nodal

values over A occurs at the node xK∗ ∈ A; that is,

vK∗ = max
xJ∈A

vJ .(4.47)
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Then only two cases are possible. The first case is when Λ(xK∗)\A = ∅. In this
case, from the maximum principle we have nothing to prove. In the other case, we
have Λ(xK∗) ⊂ A. For this case, all vK ’s in Λ(xK∗) are the same as vK∗ . If we set
A0 ≡ Λ(xK∗), then we can construct the set A1 ≡ A∗

0 strictly larger that A0 (i.e., A1

contains at least one node not in A0). If A1\A = ∅, then this lemma is proved. If not,
all coefficients vK in A1 must have the same value vK∗ . Continuing this process, we
can construct A2 = A∗

1, A3 = A∗
2, . . . . However, this process has to stop in a number

of finite steps since the number of nodes in A is finite. Therefore, we have proven this
lemma.

Theorem 1 (a priori estimate for the strong meshfree Laplacian operator). Let
(Ω,Λ, ρx) be a proper triple. Assume the strong meshfree Laplacian operator Δρ sat-
isfies the discrete maximum principle on a finite subset A ⊂ Λ. Then, we have the
following a priori estimate

‖v‖∞,A ≤ C(A) ‖Δρv‖∞,A + ‖v‖∞,A∗\A whenever v ∈ V,(4.48)

where C(A) = minx∗ maxxL∈A∗\A
1
4‖xL − x∗‖2.

Proof. Let v ∈ V be assumed to be the nodal function on Λ. Then from the
definition of the strong meshfree Laplacian Δρ, we have

(Δρv)(xK) =
∑
xJ∈Λ

vJ ψΔ
J (xK), xK ∈ A.(4.49)

Obviously we see that

−‖Δρv‖∞,A ≤ (Δρv)(xK) ≤ ‖Δρv‖∞,A for any xK ∈ A.(4.50)

Owing to the reproducing property for polynomials up to second order, we have, for
any xK ∈ A,

Δρ

(
‖Δρv‖∞,A i

(
1

4
‖x − x∗‖2

))
=

∑
xJ∈Λ

(
‖Δρv‖∞,A

1

4
‖xJ − x∗‖2

)
ψΔ
J (x)(4.51)

= ‖Δρv‖∞,A,(4.52)

where x∗ is an arbitrary point. The first equality (4.51) comes from the definition
of the operator Δρ on V . The last identity (4.52) enables us to derive the following
inequalities due to (4.50). For any xK ∈ A,

∑
xJ∈Λ

[
vJ +

(
‖Δρv‖∞,A

1

4
‖xJ − x∗‖2

)]
ψΔ
J (xK) ≥ 0,(4.53)

∑
xJ∈Λ

[
−vJ +

(
‖Δρv‖∞,A

1

4
‖xJ − x∗‖2

)]
ψΔ
J (xK) ≥ 0.(4.54)

From the discrete maximum principle (4.46) in Lemma 4 and both inequalities (4.53)
and (4.54), we can conclude that

vK ≤ max
xL∈A∗\A

(
vL +

(
‖Δρv‖∞,A

1

4
‖xL − x∗‖2

))
,(4.55)

−vK ≤ max
xL∈A∗\A

(
−vL +

(
‖Δρv‖∞,A

1

4
‖xL − x∗‖2

))
(4.56)
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for all xK ∈ A. Therefore, the following estimate holds:

|vK | ≤ max
xL∈A∗\A

|vL| + max
xL∈A∗\A

(
‖Δρv‖∞,A

1

4
‖xL − x∗‖2

)
.(4.57)

This completes the proof.

5. Error estimate for Poisson problem on specific domains ΩR and ΩH .
From here, we will achieve the convergence of the numerical solutions using the mesh-
free point collocation approach (DP) in (3.1) for the Poisson equation with Dirichlet
data on two specific domains—ΩR and ΩH . Through the convergence proof, we can
also understand the basic phenomena on the strong meshfree Laplacian operator and
can view the structure of the meshfree approximations.

For the numerical solution of the problem (DP), the meshfree point collocation
scheme is proposed in the manner of (3.9). The existence and uniqueness of the
numerical solutions of (DP) follows immediately from the a priori estimate in Theo-
rem 1.

Theorem 2 (existence and uniqueness). Assume that (Ω,Λ, ρx) is either (ΩR,ΛR,
ρRx ) or (ΩH ,ΛH , ρHx ). Then there exists the unique solution of the problem (DP) on
V .

Proof. Let us introduce the linear mapping Δ̂ρ : V → V defined by

(Δ̂ρ v)(xK) ≡
{

(Δρ v)(xK), xK ∈ Λo

vK , xK ∈ Λb
for all v ∈ V,(5.1)

where Λo ≡ Λ∩Ω and Λb ≡ Λ \Λo. Then our discrete problem (DP) is equivalent to
the following:

find v ∈ V such that Δ̂ρ v =

{
i(f) on Λo

g on Λb
.(5.2)

Since Λ is the possibly layered, the discrete maximum principle holds on Λo. Applying
the a priori estimate in Theorem 1 to the problem (5.2), we have

‖v‖∞,Λ∩Ω ≤ C ‖i(f)‖∞,Λ∩Ω + ‖g‖∞,Λ∩∂Ω.(5.3)

We claim that the linear mapping Δ̂ρ is one-to-one and onto. It suffices to show
that the mapping is one-to-one since solution space V has finite dimension.

Suppose Δ̂ρ v = 0. This means that f and g become zero on the right-hand side
of (5.3). Consequently, we have ‖v‖∞,Λ∩Ω = 0 and hence v = 0 on Λ∩Ω. This implies

v = 0 on Λ since g = 0 on Λ ∩ ∂Ω. Therefore, the mapping Δ̂ρ is injective. From the
fact that Im Δ̂ρ = (Ker Δ̂ρ)⊥ = V , we also are done with the surjective proof.

Furthermore, the following error estimate of the unique nodal solution of the prob-
lem (DP) holds on two specific domains ΩR and ΩH under the regularity assumption
of the continuous problem (CP).

Theorem 3. Let (Ω,Λ, ρx) be either the triple (ΩR,ΛR, ρ
R
x ) or (ΩH ,ΛH , ρHx ).

Assume u ∈ C0(Ω) ∩ Cs, α(Ω) (s = 3, 4) is the classical solution of Poisson problem
(CP) with Dirichlet data and uh ∈ V is the nodal solution of the discrete Poisson
problem (DP) on the node set Λ corresponding to Ω. If Λ∩Ω is the interior nodes of
Λ, then we have the following error estimate:

‖i(u) − uh‖∞,Λ∩Ω ≤ K hs−2 ‖u‖Cs,α(Ω)(5.4)
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for some constant K > 0 independent of h.
Proof. We note that the set of nodes Λ ≡ ΛR (or ΛH) of the proper triple

(ΩR,ΛR, ρ
R
x ) (or (ΩH ,ΛH , ρHx )) is obviously the possibly layered from the construc-

tion. Thus we can calculate the operator Δρ at every interior node xI ∈ Λ ∩ Ω. Let
Λo ≡ Λ ∩ Ω be the interior nodes of Λ. If uh ∈ V is the nodal solution of (DP) and
u ∈ C0(Ω) ∩ Cs, α(Ω) (s = 3, 4) is the solution of (CP), then we can derive the error
equation on Λo such that

(Δρuh)(xI) − Δu(xI) = 0 for all xI ∈ Λo.(5.5)

From the error equation (5.5), we can obtain∑
xJ∈Λ

(uh
J − u(xJ))ψΔ

J (xI) = Δu(xI) −
∑
xJ∈Λ

u(xJ)ψΔ
J (xI)(5.6)

for all xI ∈ Λo. Since the domain Ω is convex, we can obtain the following Taylor
expansions for u(x) at xI ∈ Λo. For every xJ ∈ Λ(xI),

u(xJ) =
∑

|β|≤s−1

1

β!
(xJ − xI)

βDβu(xI)

+
∑
|β|=s

1

β!

∫ 1

0

(1 − τ)s−1Dβu(xI + τ(xJ − xI)) dτ(xJ − xI)
β .(5.7)

Since Λ(xI) is the locally (p, q)-layered (q = 4, 6) at xI ∈ Λo, we can observe the
symmetric node structure such that −(xJ − xI) and xJ − xI are on the same layer
for all xJ ∈ Λ(xI). This implies that, when |β| = 3,∑

xJ∈Λ

(xJ − xI)
β ψΔ

J (xI) = 0.(5.8)

Thus, inserting the expansions (5.7) into the right-hand side of (5.6), the following is
obtained from the second order reproducing property and the symmetric factor (5.8):∑

xJ∈Λ

(uh
J − u(xJ))ψΔ

J (xI) =
∑
xJ∈Λ

cIJψ
Δ
J (xI) for all xI ∈ Λo,(5.9)

where the coefficients cIJ are defined as

cIJ = −
∑
|β|=s

1

β!

∫ 1

0

(1 − τ)s−1Dβu(xI + τ(xJ − xI)) dτ(xJ − xI)
β .(5.10)

Since the left-hand side of (5.9) is the image of the strong meshfree Laplacian operator
Δρ of uh − i(u) ∈ V , the a priori estimate (4.48) due to the maximum principle on
Λo leads to the following estimate

max
xJ∈Λo

|uh
J − u(xJ)| ≤ C(Λo) max

xI∈Λo

∑
xJ∈Λ(xI)

|cIJ |
∣∣ψΔ

J (xI)
∣∣ + max

xJ∈Λo∗\Λo
|uh

J − u(xJ)|.
(5.11)

In the case of the node distributions assumed, we know that Λb = Λo∗\Λo and uh
J −

u(xJ) = 0 on Λb because of the Dirichlet boundary conditions and hence the second
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term on the right-hand side of the inequality (5.11) vanishes. For the estimate of the
first term on the right-hand side of the inequality (5.11), we need the estimate of |cIJ |
for all xJ ∈ Λ(xI) as follows. For each xI ∈ Λo,

|cIJ | ≤
(

max
|β|=s

sup
x∈Ω

|Dβu(x)|
) (

max
xJ∈Λ(xI)

|xJ − xI |
)s

1

s

∑
|β|=s

1

β!
(5.12)

≤ Ks ‖u‖Cs, α ‖i(ρ)‖s∞,Λ(xI),(5.13)

where Ks = 1
s

∑
|β|=s

1
β! and ρ is the dilation function. Therefore, we have the

following error bound

max
xJ∈Λo

|uh
J − u(xJ)| ≤ Ks C(Λo) ‖i(ρ)‖s∞,Λo ‖u‖Cs, α max

xI∈Λo

∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ .(5.14)

On the other hand, the constant C(Λo) is bounded by the diameter of the domain Ω,
and the dilation function ρ in the assumed triple (Ω,Λ, ρx) satisfies

h < ‖i(ρ)‖∞,Λo < C h(5.15)

for some constant C independent of h. Furthermore, from Lemmas 1 and 2,∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ ≤ 8

h2
.(5.16)

Consequently, we obtain the error estimate derived from (5.14):

‖i(u) − uh‖∞,Λ∩Ω ≤ K hs−2 ‖u‖Cs,α(Ω)(5.17)

for some K > 0 independent of h.
Remark 4. As seen in the proof of Theorem 3, the convergence order of the

numerical solution to the exact one can be proven only to be 2, although the regularity
index s of the solution becomes greater than 4. The higher order of basis polynomials
in the fast version of the generalized moving least square meshfree approximation is
directly related to a lift in the convergence order (see [8]). Its proof seems to need
the boundary error estimate for the numerical solution without the discrete maximum
principle, while the interior error estimate is the same as ours.

The error ratio of about 4 in Table 5.1 implies the second order convergence even
for the less-regularity case. The numerical result not only attests the validation of
the error estimate but also shows the numerical scheme proposed could be more accu-
rate than we anticipated. A numerical example is proposed to verify the theoretical
convergence result. The solution u(x, y) is assumed to be defined on both domains
(ΩR,ΛR, ρ

R
x ) and (ΩH ,ΛH , ρHx ) as follows:

u(x, y) = ex+y−1

∣∣∣∣x− 1

2

∣∣∣∣
(
x− 1

2

)2

.(5.18)

Applying the Laplacian operator to this solution, the corresponding force is given as
follows:

f(x, y) = 2

∣∣∣∣x− 1

2

∣∣∣∣ ex+y−1

(
x2 + 2x +

7

4

)
.(5.19)
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Table 5.1

Numerically experimental result on the relative error (‖uh − i(u)‖Λ,∞/‖i(u)‖Λ,∞) and the con-
vergence rate of the numerical solutions for (ΩR,ΛR, ρRx ) and (ΩH ,ΛH , ρHx ), where Λ is either ΛR

or ΛH , and ρR and ρH are taken as the value 1.8 ∗ h at each interior node so that ΛR and ΛH can
be locally (2, 4)-layered and locally (1, 6)-layered, respectively.

h (ΩR,ΛR, ρRx ) Error ratio h (ΩH ,ΛH , ρHx ) Error ratio
2
20

4.2660 × 10−3 — 2
10

1.1900 × 10−2 —
2
40

1.0726 × 10−3 3.98 2
20

2.9148 × 10−3 4.08
2
80

2.6857 × 10−4 4.00 2
40

7.1881 × 10−4 4.06
2

160
6.7162 × 10−5 4.00 2

80
1.7833 × 10−4 4.03

x J

Ix

Λo

ΩR

x J

Ixinside node

non−inside node

Ω

Fig. 5.1. The immersed domain Ω in ΩR.

In this case, Dirichlet boundary condition on either ∂ΩR or ∂ΩH is presumed from
the exact solution u(x, y). The function u, in fact, belongs to C2,1-class of functions
on considered domains whose regularity is weaker than that stated in Theorem 3;
nevertheless, the numerical example produces the second order convergence result as
seen in Table 5.1.

6. Error estimate in the general domain immersed in ΩR or ΩH . We
will try to analyze the convergence of our discrete problem (DP) with the boundary
condition zero on a domain Ω which is immersed in the larger domain, for example,
Ω ⊂ Ω̂R (or Ω ⊂ Ω̂H) where Ω̂R (or Ω̂H) is the image domain transformed from ΩR

(or ΩH) by the similarity map. For brevity, we will rename it by ΩR (or ΩH).

Let Λ ≡ ΛR be the set of nodes in the triple (ΩR, ΛR, ρRx ). Assume that the nodal
solution space V in this case is defined on Λ. As shown in Figure 5.1, we separate the
set of nodes into two parts—the set Λo of inside nodes and the set Λb of non-inside
nodes which are defined as the following:

Λo ≡ {xJ ∈ Λ |Λ(xJ) ⊂ Ω}, Λb ≡ Λ \ Λo.(6.1)

The inside node xI ∈ Λ implies that the ρxI
-neighbor nodes are contained in the open

set Ω while the nonside node is anything else. The following is the immersed meshfree
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Poisson problem:

(IMP)

{
uh ∈ V0 ≡ {vJ ∈ R | vK = 0 for all xK ∈ Λb} ⊂ V

Δρuh = i(f) on Λo
.(6.2)

Let the solution u of the Poisson problem (CP) with zero Dirichlet data belong to
C0(Ω)∩C3, α(Ω) and uh ∈ V0 be the nodal solution of the immersed meshfree Poisson
problem (IMP). If we extend u to ΩR \ Ω by zero, then we conjecture that

‖i(u) − uh‖∞,Λ∩Ω ≤ K h ‖u‖C3,α(Ω),(6.3)

where the constant K is independent of h.
Theorem 4 (existence and uniqueness). Let (ΩR,ΛR, ρ

R
x ) and (ΩH ,ΛH , ρHx ) be

the triples. Assume Ω is immersed in either ΩR or ΩH . Then there exists the unique
solution of the problem (IMP) on V .

The proof of the theorem is similar to that of Theorem 2 and thus it is omitted.
In order to prove the convergence result (6.3) for the immersed meshfree Poisson

problem (IMP), let (ΩR,ΛR, ρ
R
x ) be the triple defined in section 5. First, we have

the following error:

‖i(u) − uh‖∞,Λo ∗\Λo = ‖i(u)‖∞,Λo ∗\Λo(6.4)

since Λo ∗ \Λo ⊂ Ω and uh(xJ) = 0 on it. Through the similar procedure to the proof
of Theorem 3 and from the fact that Λ(xI) ⊂ Ω for any xI ∈ Λo, we can obtain the
following error equation:∑

xJ∈Λ

(uh
J − u(xJ))ψΔ

J (xI) =
∑
xJ∈Λ

cIJψ
Δ
J (xI) for all xI ∈ Λo,(6.5)

where the coefficients cIJ are calculated as follows:

cIJ = −
∑
|β|=3

1

β!

∫ 1

0

(1 − τ)2Dβu(xI + τ(xJ − xI)) dτ(xJ − xI)
β .(6.6)

From a priori estimate in Theorem 1 due to the discrete maximum principle on Λo

and from the identity (6.4), we obtain the following estimates:

‖i(u) − uh‖∞,Λo ≤ C(Λo) max
xI∈Λo

∣∣∣∣∣ ∑
xJ∈Λ

cIJψ
Δ
J (xI)

∣∣∣∣∣ + ‖i(u) − uh‖∞,Λo ∗\Λo

≤ K1 h ‖u‖C3,α(Ω) + ‖i(u)‖∞,Λo ∗\Λo(6.7)

for some constant K1 > 0 independent of h. On the other hand, let us pay attention
to the fact that

‖i(u) − uh‖∞,Λb∩Ω = ‖i(u)‖∞,Λb∩Ω.(6.8)

Then, from this fact and (6.7), the nodal error on the nodes in Ω is bounded by

‖i(u) − uh‖∞,Λ∩Ω ≤ K1 h ‖u‖C3,α(Ω) + ‖i(u)‖∞,Λb∩Ω(6.9)
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since Λo ∗ \ Λo ⊂ Λb ∩ Ω. Here, the second term on the right-hand side of (6.9) is
bounded by

‖i(u)‖∞,Λb∩Ω ≤
(

max
xK∈Λb∩Ω

dist(xK , ∂Ω)

)
‖u‖C1,α(Ω) ≤ K2 h ‖u‖C3,α(Ω)(6.10)

for some constant K2 > 0 independent of h. Therefore, we have obtained the following
theorem.

Theorem 5. Let Ω ⊂ R
2 be an open bounded domain which is immersed in either

ΩR or ΩH . Assume that u ∈ C0(Ω)∩C3,α(Ω) is the solution of (CP) and uh ∈ V0 is
the nodal solution of (IMP). Then we have the following error estimate:

‖i(u) − uh‖∞,Λ∩Ω ≤ K h ‖u‖C3,α(Ω),(6.11)

where the node set Λ is either ΛR or ΛH and K is constant independent of h.

7. Conclusion. The generalized moving least square approximation is intro-
duced, and based on this, we can define the strong meshfree Laplacian operator in
the sense of a point collocation strategy. From the mathematical point of view, the
discrete maximum principle for the strong meshfree Laplacian operator is presented
for several types of layered node distributions. Using this principle, we perform con-
vergence analysis for the nodal solutions of the Poisson problem with Dirichlet data
on the boundary. As a result, second order convergence is achieved on the specific
nodes in two typical domains, while the generally shaped domain immersed in these
domains produces first order convergence of the nodal solution. An a priori estimate
for the strong Laplacian operator in the meshfree regime is newly obtained via the
discrete maximum principle and it is located in the core of the convergence proof
together with the point collocation scheme proposed in this paper.

Appendix I: Generalized moving least square reproducing operators.
For a given window function W (x) and a dilation function ρx, we find the vector a
to minimize the following weighted square functional at x̄ ∈ Ω:

J(a; x̄, u) ≡
∑
xI∈Λ

|u(xI) − Uρx̄
m (xI ; x̄,a)|2 W

(
xI − x̄

ρx̄

)
,(7.1)

where u(x) is a continuous function defined in Ω and Uρx̄
m (x; x̄,a) ≡ Bm(x−x̄

ρx̄
) · a.

Then the minimizer a should be a function of x̄ and u, and we can make the following
approximation operators for u by limiting process

Dβk
m,ρx

u(x) ≡ lim
x̄→x

Dβk
x Uρx̄

m (x; x̄,a(x̄, u)), |βk| ≤ m.(7.2)

As a matter of fact, the operators Dβk
m,ρx

are linear in u(x). We call the operator

Dβ
m,ρx

(|β| ≤ m) the βth meshfree approximated derivative operator equipped with
ρx.

Suppose {uI(x) |uI(xJ) = δIJ , xI ,xJ ∈ Λ} is a set of continuous functions. We
define the following functions:

ψ
ρx,[βk]
I (x) ≡ Dβk

m,ρx
uI(x).(7.3)



536 DO WAN KIM AND WING KAM LIU

Then the functions ψ
ρx,[βk]
I (x) can be characterized as follows:⎛

⎜⎜⎜⎜⎝
ρx

|β1| ψ
ρx,[β1]
I (x)

ρx
|β2| ψ

ρx,[β2]
I (x)
...

ρx
|βL| ψ

ρx,[βL]
I (x)

⎞
⎟⎟⎟⎟⎠ = JBm

(0)Mρx(x)
−1

Bm

(
xI − x

ρx

)
W

(
xI − x

ρx

)
,(7.4)

where Mρx(x) is called the moment matrix and is defined such that

Mρx(x) ≡
∑
xI∈Λ

Bm

(
xI − x

ρx

)
BT

m

(
xI − x

ρx

)
W

(
xI − x

ρx

)
.(7.5)

We call the function ψ
ρx,[β]
I (x) the βth shape function associated with the window

function W and the dilation function ρx, or briefly call it the βth shape function if no
confusion arises. As a consequence of (7.3), the operator Dβk

m,ρx
defined by (7.2) can

be rewritten as follows:

Dβ
m,ρx

u(x) =
∑
xJ∈Λ

u(xJ)ψ
ρx,[β]
J (x), |β| ≤ m.(7.6)

We also call this operator the βth meshfree approximated derivative operator and the
following properties of this operator can be justified.

Theorem 6 (generalized mth order consistency). We have the following identi-
ties: ∑

xI∈Λ

bα

(
xI − x

ρx

)
ψ
ρx,[β]
I (x) =

1

ρx
|β|

∂β

∂xβ
bα(0).(7.7)

Proof. To the matrix equation (7.4) for the βth shape functions, multiplying
Bm (xI − x/ρx) to the right on both sides and summing it over the whole nodes xI ,
we obtain the matrix equation. If we rewrite it in element-wise manner, then we have
the resultant (7.7).

The above theorem does not promise the βth meshfree approximated derivative
operator to reproduce automatically all of the derivatives for the basis functions.
However, for some useful class of functions including the polynomial class up to order
m, we can have the generalized reproducing property which will play an important
role in the convergence of approximations. For the class of the given basis functions
to have such a generalized reproducing property, it is sufficient to satisfy the following
condition.

Corollary 1 (sufficient condition for the generalized reproducing property).
Under the constant dilation function such that ρx ≡ ρ, we assume that the basis
functions satisfy the following relationships:

bβ

(
y

ρ

)
=

∑
|γ|≤m

cγ β

(
x

ρ

)
bγ

(
y − x

ρ

)
, |β| ≤ m(7.8)

and the coefficient matrix is calculated from the equation[
cαβ

(
x

ρ

)]
≡ C

(
x

ρ

)
= JBm(0)−1 JBm

(
x

ρ

)
,(7.9)
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where JBm

(
x
ρ

)
is the Jacobian matrix defined as

JBm

(
x

ρ

)
≡

[
(Dαbβ)

(
x

ρ

)]
.(7.10)

Then the basis functions scaled by ρ are exactly reproduced by the meshfree approxi-
mated derivative operators, i.e.,

Dβ
m,ρx

bβ

(
x

ρ

)
= Dβ

x bβ

(
x

ρ

)
, |β| ≤ m.(7.11)

Proof. Assume that bα(x)’s for |α| ≤ m are the basis functions satisfying both
conditions of (7.8) and (7.9). If we directly enforce (7.7) on these basis functions,
then we obtain the result of (7.11).

Corollary 1 provides us the opportunity of taking the general basis functions
which can be reproduced in a dilated form. It is worth noting that the reproducing
property does not happen in general if we take an arbitrary set of basis functions.
That is why we propose the sufficient condition to ensure the reproducing condition
for the dilated basis functions. According to the sufficient condition of (7.8) and (7.9)
for the reproducing of basis functions, the class of polynomial basis up to order m can
be shown to satisfy the exact reproducing property. That is, all of the derivatives of
the basis itself are reproducible even in the case when involving the dilation function.

Corollary 2. If we take the polynomials up to order m as basis functions, then
the βth meshfree approximated derivative operator Dβ

m,ρx
is exactly the same as the

differential operator Dβ on the polynomial space up to order m. That is,

Dβ
m,ρx

u(x) = Dβ
x u(x)(7.12)

whenever u(x) is a polynomial of order up to m.

Proof. We can replace all ρx in Theorem 6 and all ρ in Corollary 1 with the
number 1 for the case of polynomial basis up to order m. This fact suffices to prove
this lemma.

This corollary can be understood by recognizing that the βth meshfree approx-
imated derivative operator Dβ

m,ρx
behaves in the same way as the exact derivative

operator Dβ
x at least on the polynomial function space up to order m.
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Appendix II: Trigonometric identities. Let θ be an angle fixed. Then we
have the following trigonometric identities for any natural number n ≥ 4:

n−1∑
k=0

cos

(
θ + k

2π

n

)
=

n−1∑
k=0

sin

(
θ + k

2π

n

)
=

n−1∑
k=0

cos

(
θ + k

2π

n

)
sin

(
θ + k

2π

n

)
= 0,

(7.13)

n−1∑
k=0

cos2
(
θ + k

2π

n

)
=

n−1∑
k=0

sin2

(
θ + k

2π

n

)
=

n

2
,

(7.14)

n−1∑
k=0

cos3
(
θ + k

2π

n

)
=

n−1∑
k=0

sin3

(
θ + k

2π

n

)
= 0,

(7.15)

n−1∑
k=0

cos2
(
θ + k

2π

n

)
sin

(
θ + k

2π

n

)
=

n−1∑
k=0

cos

(
θ + k

2π

n

)
sin2

(
θ + k

2π

n

)
= 0,

(7.16)

n−1∑
k=0

cos4
(
θ + k

2π

n

)
=

n−1∑
k=0

sin4

(
θ + k

2π

n

)
=

{
3
8n + 1

8n cos 4θ, n = 4

3
8n, n = 4

,

(7.17)

n−1∑
k=0

cos2
(
θ + k

2π

n

)
sin2

(
θ + k

2π

n

)
=

{
1
8n− 1

8n cos 4θ, n = 4

1
8n, n = 4

,

(7.18)

n−1∑
k=0

cos3
(
θ + k

2π

n

)
sin

(
θ + k

2π

n

)
=

{
1
8n sin 4θ, n = 4

0, n = 4
,(7.19)

n−1∑
k=0

cos

(
θ + k

2π

n

)
sin3

(
θ + k

2π

n

)
=

{
− 1

8n sin 4θ, n = 4

0, n = 4
.(7.20)
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A LEAST-SQUARES FINITE ELEMENT METHOD FOR THE
LINEAR BOLTZMANN EQUATION WITH ANISOTROPIC

SCATTERING∗

TRAVIS M. AUSTIN† AND THOMAS A. MANTEUFFEL‡

Abstract. Least-squares methods have been applied to a wide range of differential equations and
have been established to be competitive with other existing discretization strategies [P. B. Bochev
and M. D. Gunzburger, SIAM Rev., 40 (1998), pp. 789–837]. In this article, we consider a least-
squares method for the linear Boltzmann equation with anisotropic scattering. A similar method has
already been developed, and extensively examined, for the linear Boltzmann equation with isotropic
scattering. The success of the least-squares method for isotropic scattering depends on scaling the
linear Boltzmann equation so that minimization of the least-squares functional in a discrete space
always yields accurate discrete solutions. A similar scaling of the linear Boltzmann equation is
employed for anisotropic scattering. In the previous work for isotropic scattering, coercivity and
continuity results were established for the scaled least-squares functional relative to a physically
reasonable norm. In this paper, we extend the previous coercivity and continuity results so that they
hold in this more general case of anisotropic scattering. Additionally, we extend the bounds for the
discretization error for the thin regime and for the thick regime. For the thick regime, we establish
optimal error estimates for the case of highly anisotropic scattering.

Key words. least-squares, neutron transport, anisotropic scattering, finite elements
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1. Introduction. In this paper, we examine a least-squares method that is used
to obtain discrete solutions to the single-group, steady-state linear Boltzmann equa-
tion with anisotropic scattering. The least-squares method for isotropic scattering
was carefully analyzed for slab geometry in [12] and for xyz-geometry in [13]. Here,
in the context of xyz-geometry, we extend the generality of the least-squares method
by allowing for anisotropic scattering, whereby a particle has a preferential direction
of scatter after collision.

For isotropic scattering, where particles have no preferential direction of scatter,
it was proved in [12, 13] that the least-squares method yields discrete solutions that
exhibit the correct asymptotic behavior in the diffusion limit. In this limit, the leading-
order asymptotic solution of the Boltzmann equation converges to the solution of a
diffusion equation. In [13], ellipticity of the least-squares functional was proved and
the existence of optimal error estimates for a PN angular discretization and a finite
element spatial discretization was established. In [14], the authors enhanced the least-
squares approach by adding a boundary functional to the least-squares functional,
thus, weakly imposing the boundary conditions.

In [5], anisotropic scattering in the scaled least-squares approach was first consid-
ered in the context of multigroup transport. A scaling operator for the least-squares
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approach with anisotropic scattering in the multigroup context was introduced. Ad-
ditionally, convergence results for a multilevel solution algorithm for the multigroup
version of anisotropic scattering were presented. However, ellipticity of the scaled
least-squares functional or estimates of the least-squares error were not considered.

For the single group equation, we set a foundation for the scaled least-squares
approach introduced in [5] by proving ellipticity of the least-squares functional. We
employ a scaling operator that is a single-group form of the scaling operator used
in [5]. The proof of ellipticity for the thick regime with large absorption is identical
to the equivalent case for isotropic scattering. The remaining cases depend on new
techniques that were not used in [14]. Moreover, the proofs for the thin regime and the
thick regime with small absorption have as special cases the proofs for the isotropic
scattering [14]. It is the opinion of the authors that the proofs presented here are
simpler and clearer than the proofs of [14], albeit resulting in small coercivity bounds.

The ellipticity results imply that the least-squares variational problem is well
posed in an appropriate norm with ellipticity constants that are independent of the
problem parameters. This ellipticity allows us to use Céa’s lemma in establishing error
bounds. Thus, once we introduce the discretization scheme (drawn from [5, 13, 14]),
we use Céa’s lemma to illustrate optimal bounds on the discretization error in the
context of anisotropic scattering for the thin and thick regimes. For the thin regime,
the proof from [14] can be invoked. For the thick regime with mildly anisotropic
scattering, we merely indicate that the results are of the same form as [14]. There
will, however, be new results for the thick regime with highly anisotropic scattering.
These results will depend on an asymptotic expansion from Larsen and Pomraning in
[10].

Most of the research on numerical methods for the linear Boltzmann equation
with anisotropic scattering has focused on devising a plan to speed up source itera-
tion, which is the standard iterative solution method used to solve isotropic transport
problems [11]. Research has not focused on tailoring the discretization schemes used
for isotropic scattering problems to anisotropic scattering problems because, in gen-
eral, the same discretization techniques may be used [2, 15, 16]. Here, we focus on
the formulation and discretization using a least-squares approach. We will not ad-
dress the issue of what is the appropriate method for solving the resulting system
of equations. For now we refer the reader to [5]. Since the approach for anisotropic
scattering first described in [5] has not been studied theoretically, we concentrate on
placing the method on firm ground. To this end, we proceed in the following way.

In section 2, we present the necessary preliminaries. Previous results for isotropic
scattering are described in section 3. The scattering operator is presented in section
4 along with ellipticity results. In section 5, we describe the spatial and angular
discretization scheme and present error estimates. In the final section, we discuss
future work and further extensions of the least-squares method.

2. Preliminaries. As discussed in [11], the single-group, steady-state linear
Boltzmann equation with anisotropic scattering is given by

(2.1)
[Ω · ∇ + σt I − σs K]ψ(x,Ω) = q for (x,Ω) ∈ R× S2 ,

ψ(x,Ω) = g for x ∈ ∂R with n · Ω < 0,

where σt is the total cross section, σs is the scattering cross section, and ψ is the
angular flux to be determined for all points x ∈ R ⊂ �3 and all possible travel
directions Ω = (sin θ cosϕ , sin θ sinϕ, cos θ) ∈ S2. Spatial domain R is assumed to
be an open connected set with diam(R) = 1 and to have a piecewise C1,1 boundary
denoted by Γ := ∂R.
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To define anisotropic scattering operator K, we must recall the normalized spher-
ical harmonics from [3], given by

(2.2) Y�m(Ω) := Y�m(θ, ϕ) = (−1)m

√
(2� + 1)(�−m)!

(� + m)!
Pm
� (cos θ) eimϕ,

where Pm
� (·) corresponds to the (�m)th associated Legendre moment. Normalization

dΩ =
sin(θ) dθ dϕ

4π

allows us to expand the scattering operator K as

(2.3) (Kv)(x,Ω) =

∞∑
�=0

σ�

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
,

where σ� ∈ [0, 1] for all l > 0 (with σ0 ≡ 1) and Y ∗
�m is the complex conjugate of Y�m.

This infinite sum is truncated, in practice, such that for some NS ≥ 0,

(2.4) (Kv)(x,Ω) =

NS∑
�=0

σ�

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
.

Note that NS depends on the degree of anisotropy in the scattering, and that when
NS = 0 in (2.4), we have

(2.5) (Kv)(x,Ω) =

∫
S2

v(x,Ω
′
) dΩ

′
,

resulting in the isotropic transport operator. For the remainder, we refer to the
operator in (2.5) as P. Note that for subset Ξ ⊂ N ≡ {0, 1, 2, 3, . . . } we can define
the more general operator

(2.6) (PΞ v)(x,Ω) :=
∑
�∈Ξ

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
.

Next, to distinguish between the isotropic and anisotropic transport operators,
we introduce the notation LI and LA such that, for v : R× S2 → �,

(2.7) LI v := Ω · ∇ v + σt (I − P) v + σa P v

and

(2.8) LA v := Ω · ∇ v + σt (I − K) v + σa K v,

where σa := σt − σs represents the absorption cross section. Also, at times, the
scattering term of the anisotropic transport operator will be represented by

(2.9) S = σt(I − K) + σa K,

or by

(2.10) Sv(x,Ω) =

∞∑
�=0

μ�

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
,



LEAST-SQUARES ANISOTROPIC TRANSPORT 543

where

(2.11) μ� = σt(1 − σ�) + σaσ�.

Next, let the standard L2 inner product and norm be denoted by

〈u, v〉 :=

∫
S2

∫
R

u v∗ dxdΩ
′

and ‖u‖ :=
√

〈u, u〉,

where v∗ again is the complex conjugate of v. Denote by L2(S2 × R) the set of
functions that are L2-integrable on S2 ×R. Any function in L2(S2 ×R) has a unique
expression in terms of the spherical harmonics since the spherical harmonics are an
orthonormal basis for L2(S2). Specifically, every v ∈ L2(S2 ×R) has the expansion

(2.12) v(x,Ω) =

∞∑
�=0

�∑
m=−�

φ�m(x)Y�m(Ω),

with moments φ�m(x) given by

(2.13) φ�m(x) =

∫
S2

Y ∗
�m(Ω

′
)v(x,Ω

′
) dΩ

′
.

3. Previous results for isotropic scattering. In [13], a scaling operator of
the form R := a(I − P) + bP was defined, with a and b depending on σt and σa.
The isotropic form of (2.1) was then restated as the minimization of the least-squares
functional

(3.1) G0(ψ; q) :=
∥∥∥R−1/2(LI ψ − q)

∥∥∥2

.

The main result presented in [13] showed coercivity and continuity of the bilinear
form

〈
R−1LI u,LI v

〉
with respect to

(3.2) ‖v‖2
V :=

〈
R−1Ω · ∇v,Ω · ∇v

〉
+ 〈Rv, v〉 .

To be more precise, defining V as the space of functions bounded in the V -norm and
V0 as the subspace of V with homogeneous inflow boundary conditions, the authors
established V -ellipticity, i.e., constants Ce and Cc, independent of σt and σa, such
that

(3.3) Ce ‖v‖2
V ≤

〈
R−1LIv,LIv

〉
≤ Cc ‖v‖2

V

for any v ∈ V0. In [14], they extended this work by adding a boundary functional to
the V -norm and the least-squares functional, and again proved ellipticity.

To describe the work in [14], it is necessary to describe the boundary functional.
For each x ∈ Γ, define n(x) to be the outward unit normal, define

(3.4) ΓI(Ω) := {x ∈ Γ : n · Ω < 0} ,

and define ΓO(Ω) := Γ/ ΓI(Ω) to be the set of inflow and outflow particle travel
directions. By defining D := R×S2, we then denote the inflow and outflow boundary
of D by

(3.5) ∂DI := {(x,Ω) ∈ D : x ∈ ΓI(Ω)}
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and

(3.6) ∂DO := {(x,Ω) ∈ D : x ∈ ΓO(Ω)} .

Corresponding to the inflow and outflow boundary of D are

(3.7) bI(u, v) :=

∫
∂R

∫
n·Ω<0

uv|n · Ω|dΩdσ

and

(3.8) bO(u, v) :=

∫
∂R

∫
n·Ω>0

uv|n · Ω|dΩdσ.

Associated with bI(·, ·) is the inflow norm

(3.9) ‖v‖2
BI

:= bI(v, v)

and the corresponding Sobolev space

(3.10) BI :=
{
v ∈ C∞(∂RI) : ‖v‖2

BI
< ∞

}
.

For q ∈ L2 and g ∈ BI , the least-squares functional studied in [14] is given by

(3.11) GI(ψ; q, g) := G0(ψ; q) + 2bI(ψ − g, ψ − g).

The authors obtained ellipticity results for (3.11) with respect to

(3.12) ‖v‖2
V1

:= ‖v‖2
V + bI(v, v)

and the space V1 consisting of functions bounded in the V1-norm. Since GI offers a
more robust approximation of boundary conditions than G0, we work exclusively in
this paper with a least-squares functional that is similar in form to (3.12).

4. New results for anisotropic scattering. The scaling operator for anisotropic
scattering is given by

(4.1) R :=

⎧⎨
⎩

I in Region I ,
σt(I − K) + σaK in Region II ,
σt(I − K) + 1

σt
K in Region III ,

where Regions I, II, and III are defined in Figure 4.1. Note that R is a continuous
function in σt and σa for fixed K and can be alternatively expressed as

(4.2) Rv :=
∞∑
�=0

ν�

�∑
m=−�

φ�m(x)Y�m(Ω),

using φ�m in (2.13) and

(4.3) ν� :=

⎧⎨
⎩

1 for Region I ,
σt (1 − σ�) + σa σ� for Region II ,
σt (1 − σ�) + 1

σt
σ� for Region III .
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     (II)

with "large"

with "small"

Fig. 4.1. Division of parameters into Regions I, II, and III.

In the remainder of this section, we develop V1-ellipticity proofs for the case of
anisotropic scattering using the scaling operator (4.1). Firstly, though, we note that
the V1-norm, defined by (3.12), does not change for anisotropic scattering once R is
defined in terms of (4.1). Secondly, for q ∈ L2 and g ∈ BI , we note that the solution
of (2.1) can be expressed as

(4.4) ψ = arg min
v∈V1

GA (v; q, g),

where GA(v; q, g) is the anisotropic equivalent of GI(v; q, g). The corresponding
variational form is: find ψ ∈ V1 such that

(4.5) a(ψ, v) :=
〈
R−1LA ψ,LA v

〉
+ 2bI(ψ, v) =

〈
R−1q,LA v

〉
+ 2bI(g, v)

for every v ∈ V1. Once we establish V1-ellipticity results for a(ψ, v), we will have
established that (4.5) is well posed. This well posedness will imply that, for each
pair q ∈ L2 and g ∈ BI , there exists a unique ψ ∈ V1 satisfying (2.1). Moreover, a
standard stability result (cf. [4]) implies that we get the a priori estimate:

(4.6) ‖ψ‖V1
≤ C−1

e

(∥∥∥R−1/2q
∥∥∥ + bI(g, g)

1/2
)
,

where Ce is the coercivity bound.

4.1. Auxiliary lemmas. In this section, we present two lemmas. Most of the
first lemma is a restatement of Lemma 3.1 from [14]. The second lemma is used in
the thin and thick regime ellipticity proofs.

First, we define an operator that arises in Lemma 4.1, and the ellipticity proof
for the thick regime with small absorption. To define the operator, we define s =
(σt − 1

σt
)/(σt − σa) and split the moments into the two disjoint sets,

Υ = { � ∈ N : σl > s} = {� ∈ N : μ� < 1/σt} ,(4.7)

Υ̂ = { � ∈ N : σl ≤ s} = {� ∈ N : μ� ≥ 1/σt} .(4.8)

We can then define the projection operator

PΥv(x,Ω) :=
∑
�∈Υ

�∑
m=−�

φ�m(x)Y�m(Ω),
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according to (2.6). A similar operator can be defined for Υ̂. Furthermore, we introduce
the operator D given by

(4.9) D v(x,Ω) := PΥv(x,Ω) +
∑
�∈Υ̂

ζl

�∑
m=−�

φ�m(x)Y�m(Ω),

where ζ� := (1 − σ�) + σaσ�

σt
. Notice that Ds is a meaningful operator for any s ∈ �

and that ‖D‖ ≤ 1 since ζ� ≤ 1. In the following, we use the notation,
∑

� =
∑∞

� .
Lemma 4.1. For v ∈ V1, we have
(i) 2 〈Ω · ∇v, v〉 = bO(v, v) − bI(v, v) ≥ −bI(v, v) ;
(ii) the Poincaré-Friedrichs inequality

(4.10) ‖v‖2 ≤ 2 diam(R)2 ‖Ω · ∇v‖2
+ 2 diam(R) bI(v, v) ;

(iii) for diam(R) = 1 and σt ≥ 1, we have

(4.11) ‖PΥ v‖2 ≤ 2
∥∥∥Q−1/2 Ω · ∇v + σt PΥ Ω · ∇v

∥∥∥2

+ 2bI(v, v) ,

where Q := D (I − PΥ) and Qs := Ds (I − PΥ) for s ∈ �.
Proof. The proofs of (i) and (ii) are found in Lemma 3.1 of [14], while (iii) is

proved by assuming (ii), and noting that ‖PΥ v‖2 ≤ ‖v‖2
and

‖Ω · ∇ v‖2 ≤
∥∥∥D−1/2 (I − PΥ)Ω · ∇v + σt PΥ Ω · ∇v

∥∥∥2

.

Lemma 4.2. Given λ� > 0 and ω� > 0, the minimum of

(4.12) I(d) :=
∑
�

(λ� − d)2ω�

for d ∈ [0, 1] is achieved at

dm =

∑
� λ�ω�∑
� ω�

,

and furthermore,

I(dm) =
∑
�

λ2
�ω� −

(
∑

� λ�ω�)
2∑

� ω�
.

Proof. The result is established by differentiating I(d) with respect to d.
The thin regime and thick regime with small absorption ellipticity proofs that

follow make use of the projection operator

(4.13) P�v :=

�∑
m=−�

φ�m(x)Y�m(Ω),

implying that (2.10) can be expressed as

(4.14) Sv(x,Ω) =
∞∑
�=0

μ� P� v(x,Ω).

Note the observation,
∑

� P� = I, that we need in the following.
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4.2. Thin regime (0 ≤ σa ≤ σt ≤ 1). For the thin regime, we have R = I
and

‖u‖2
V1

= ‖Ω · ∇v‖2
+ ‖v‖2

+ bI(v, v).

Theorem 4.3 (continuity and V1-ellipticity for thin regime). Assume that 0 ≤
σa ≤ σt ≤ 1. Then, for all u, v ∈ V1, we have

|a(u, v)| = | 〈LA u,LA v〉 + 2bI(u, v)| ≤ Cc ‖u‖V1
‖v‖V1

,(4.15)

a(v, v) = 〈LA v,LA v〉 + 2bI(v, v) ≥ Ce ‖v‖2
V1

,

with Cc ≤ 2 and Ce ≥ 0.06574145.
Proof. Using the Cauchy–Schwarz inequality, we obtain

|a(u, v)| ≤ ‖LA u‖ ‖LA v‖ + 2bI(u, u)
1
2 bI(v, v)

1
2

≤
(
‖LA u‖2

+ 2bI(u, u)
) 1

2
(
‖LA v‖2

+ 2bI(v, v)
) 1

2

.

Given that σt(1 − σ�) ≤ 1 and σaσ� ≤ 1, we have

‖LA u‖2 ≤ 2
(
‖Ω · ∇u‖2

+ ‖(I − P)u‖2
+ ‖Pu‖2

)
= 2

(
‖Ω · ∇u‖2

+ ‖u‖2
)

so that ‖LA u‖2
+ 2bI(u, u) ≤ 2 ‖u‖2

V1
. This proves continuity of a(·, ·).

To prove ellipticity, we note that 0 ≤ μ� ≤ 1 and refer the reader to (4.14). Using
this definition of S, we have

a(v, v) = 〈Ω · ∇v,Ω · ∇v〉 + 2 〈Ω · ∇v,Sv〉 + 〈Sv,Sv〉 + 2 bI(v, v)

= 〈Ω · ∇v,Ω · ∇v〉 + 2
∑
�

μ� 〈Ω · ∇v,P�v〉 +
∑
�

μ2
� 〈P�v, v〉 + 2 bI(v, v).(4.16)

For any d ∈ [0, 1], adding the identity

2d

[
〈Ω · ∇v, v〉 −

∑
�

〈Ω · ∇v,P�v〉
]

= 0

to (4.16) and using Lemma 4.1(i) yields

a(v, v) ≥ 〈Ω · ∇v,Ω · ∇v〉 + 2
∑
�

(μ� − d) 〈Ω · ∇v,P�v〉(4.17)

+
∑
�

μ2
� 〈P�v, v〉 + (2 − d) bI(v, v).

For convenience, we put A� = ‖P�Ω · ∇v‖2
, A = ‖Ω · ∇v‖2

, B� = ‖P�v‖2
, and

B = ‖v‖2
. We also define γ� = A�/A and δ� = B�/B and note that∑

�

δ� =
∑
�

γ� = 1.

Thus we seek a proof of

a(v, v) ≥ C (A + B + bI(v, v))
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for all v ∈ V1. Applying the arithmetic-geometric inequality to the cross product term
in (4.17) with η > 0 yields

a(v, v) ≥
(
A− η

∑
�

A�

)
+

(∑
�

μ2
�B� −

1

η

∑
�

(μ� − d)2B�

)
+ (2 − d) bI(v, v)

= (1 − η)A +

(∑
�

μ2
�δ� −

1

η

∑
�

(μ� − d)2δ�

)
B + (2 − d) bI(v, v)

since B� = δ�B. Making use of Lemma 4.2 we choose d =
∑

� μ�δ� ≤
∑

� δ� = 1,
implying that

a(v, v) ≥ [1 − η] A +

⎡
⎣∑

�

μ2
�δ� −

1

η

⎛
⎝∑

�

μ2
�δ� −

(∑
�

μ�δ�

)2
⎞
⎠
⎤
⎦ B + bI(v, v)

= [1 − η]A +

⎡
⎣(1 − 1

η

)∑
�

μ2
�δ� +

1

η

(∑
�

μ�δ�

)2
⎤
⎦ B + bI(v, v).

For convenience, define δ =
∑

� μ
2
�δ� ≤

∑
� μ�δ� ≤ 1 such that

a(v, v) ≥ [1 − η]A +

[(
1 − 1

η

)
δ +

1

η
δ2

]
B + bI(v, v)

= [1 − η]A +

[
δ − 1

η
δ(1 − δ)

]
B + bI(v, v).

Using Lemma 4.1(ii) (assuming diam(R) = 1) we get

a(v, v) ≥ [1 − η − β]A +

[
δ − 1

η
δ(1 − δ) +

β

2

]
B + [1 − β] bI(v, v)

for any β ≥ 0. Define

C1 = 1 − η − β,

C2 = δ − 1

η
δ(1 − δ) +

β

2
,

C3 = 1 − β.

Next, set η =
√
δ(1 − δ) and choose β to make C1 = C2. This requires

1 −
√
δ(1 − δ) − β = δ −

√
δ(1 − δ) +

β

2
,

which implies

β =
2

3
(1 − δ) ≥ 0.

Plugging back into C1 yields

C1 = C2 = 1 −
√
δ(1 − δ) − 2

3
(1 − δ),

C3 = 1 − 2

3
(1 − δ) ≥ 1

3
.
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Numerically we find that the minimum value of C1 occurs at δ =
1−

√
16/52

2 ≈
0.2226499 and yields C1 = C2 ≈ 0.06574145. Comparing to the bound on C3, we
see that Ce ≥ 0.06574145.

4.3. Thick regime with “large” absorption (1 ≤ σt < ∞ ; 1
σt

≤ σa ≤
σt). For the thick regime with “large” absorption, the scaling is given by

(4.18) R = σt (I − K) + σa K,

which implies that

‖v‖2
V :=

〈
R−1Ω · ∇v,Ω · ∇v

〉
+ 〈R v, v〉

and

‖v‖2
V1

= ‖v‖2
V + bI(v, v).

Theorem 4.4 (continuity and V1-ellipticity for the thick regime with “large”
absorption). Assume that 1 ≤ σt < ∞ and 1

σt
≤ σa ≤ σt. Then, for all u, v ∈ V1, we

have

|a(u, v)| ≤ 2 ‖u‖V1
‖v‖V1

,(4.19)

a(v, v) ≥ ‖v‖2
V1

.

Proof. See the proof establishing coercivity and continuity in thick regime with
“large” absorption from [14]. Proof for coercivity is the same because, as in [14],
scaling operator R, in (4.18) is equal to scattering operator S.

4.4. Thick regime with “small” absorption (1 ≤ σt ≤ ∞ ; σa ≤ 1
σt

).
For the thick regime with “small” absorption, we must define the scaling operator so
that it does not become singular as σa → 0. Hence, the scaling operator defined in
(4.18) is recast as

(4.20) R = σt(I − K) +
1

σt
K,

while the V -norm and the V1-norm have the same dependence on R.
One of the key ingredients of the following proof is the intermediate scaling op-

erator defined below. Recall Υ and Υ̂ defined by (4.7) and (4.8), and Q defined by
(4.11). The intermediate scaling operator is

T := σtQ +
1

σt
PΥ = S(I − PΥ) +

1

σt
PΥ.

Note that Q ≤ I, and additionally, that σaPΥ ≤ SPΥ ≤ 1
σt
PΥ, which is equivalent

to σa ≤ μ� ≤ 1
σt

for � ∈ Υ. The first inequality is true by definition of μ�, and the
second is true by definition of Υ. We also introduce τ� according to

(4.21) τ� :=

{ 1
σt

for � ∈ Υ

μ� for � ∈ Υ̂

such that, from (4.13),

T v(x,Ω) =
∞∑
�=0

τ�P�v(x,Ω).
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νl :

τl :

1/σt

σt

σl s 1.0

Fig. 4.2. Graph of τ� and ν�, where the black region on σ� ∈ [0, 1] denotes Υ̂ and the grey
region denotes Υ. From the graph we can see that the largest ratio occurs at the interface between
Υ̂ and Υ, which is where σ� = s.

For future reference, we note that

T −1S = ST −1 = (I − PΥ) + σtSPΥ,(4.22)

T −1S2 = S2T −1 = σtQ + σtS2PΥ,(4.23)

and S can be expressed as

S = S(I − PΥ) + SPΥ = σtQ + SPΥ.

Note the inequality

(4.24) 〈Sv, v〉 ≤ 〈T v, v〉 ≤ 〈Rv, v〉

and the related inequality

(4.25)
〈
T −1v, v

〉
≥

〈
R−1v, v

〉
.

We also need the following lemma, which further relates T to R.
Lemma 4.5. For σt ≥ 1 and σa ≤ 1/σt, we have

2 〈T v, v〉 ≥ 〈Rv, v〉 and
〈
T −1v, v

〉
≤ 2

〈
R−1v, v

〉
.

Proof. To prove both results, we establish a bound relating τ� to ν�, where ν� is
defined by (4.3). By observing the graph of τ� and ν� in Figure 4.2, we see that the
ratio ν�/τ� is maximized at s = (σt − 1

σt
)/(σt − σa). Evaluating both ν� and τ� at s

yields

ν�
τ�

=
σt(1 − s) + s/σt

1/σt
= σ2

t (1 − s) + s =
2σt − σaσ

2
t − 1/σt

σt − σa
.

As σa → 0, the value of s decreases to its minimum (dependent on σa) of 1 − 1/σ2
t .

Since ν�/τ� = σ2
t (1 − s) + s, the maximum of the ratio is where s is at its minimum,

i.e., where σa = 0. This implies

ν�
τ�

≤ 2 − 1/σ2
t ≤ 2.

Both results follow from this inequality.



LEAST-SQUARES ANISOTROPIC TRANSPORT 551

Theorem 4.6 (continuity and V1-ellipticity for thick regime with “small” ab-
sorption). Assume that 1 ≤ σt < ∞, 0 ≤ σa ≤ 1

σt
. Then, for all u, v ∈ V1, we

have

|a(u, v)| = |
〈
R−1LA u,LA v

〉
+ 2bI(u, v)| ≤ Cc ‖u‖V1

‖v‖V1
,(4.26)

a(v, v) =
〈
R−1LA v,LA v

〉
+ 2bI(v, v) ≥ Ce ‖v‖2

V1
,(4.27)

with Cc ≤ 2 and Ce ≥ 0.01667, independent of σt and σa.
Proof. The proof for continuity follows from the same reasoning as used in The-

orem 4.4 since

|a(u, v)| ≤
(∥∥∥R− 1

2LA u
∥∥∥ + 2bI(u, u)

) 1
2
(∥∥∥R− 1

2LA v
∥∥∥ + 2bI(v, v)

) 1
2

.

The observation that μ� ≤ ν� implies∥∥∥R− 1
2Su

∥∥∥ ≤
∥∥∥R 1

2u
∥∥∥ .

One can easily show then that
∥∥∥R− 1

2LA u
∥∥∥2

≤ 2 ‖u‖2
V .

To establish coercivity, we proceed as follows. We first define

(4.28) ã(v, v) :=
〈
T −1LAv,LAv

〉
+ 2 bI(v, v),

and through Lemma 4.5, we get

(4.29) a(v, v) ≥ 1

2
ã(v, v).

Assume for now that we have

(4.30) ã(v, v) ≥ C̃e

(∥∥∥T −1/2Ω · ∇v
∥∥∥2

+
∥∥∥T 1/2v

∥∥∥2

+ bI(v, v)

)
.

Using inequality (4.25) and Lemma 4.5, we can bound the first two terms on the
right-hand side of (4.30) from below to get

(4.31) ã(v, v) ≥ C̃e

2

(∥∥∥R−1/2Ω · ∇v
∥∥∥2

+
∥∥∥R1/2v

∥∥∥2

+ bI(v, v)

)
.

With (4.29) we get as an ellipticity constant in (4.27) the value of C̃e/4. Thus, we

are only left to prove (4.30), and determine C̃e.
Noting (4.22) and (4.23) we write

ã(v, v) =
〈
T −1Ω · ∇v,Ω · ∇v

〉
+
〈
S2T −1v, v

〉
+ 2

〈
ST −1Ω · ∇v, v

〉
+ 2bI(v, v)

=
1

σt

〈
Q−1Ω · ∇v,Ω · ∇v

〉
+ σt 〈PΥΩ · ∇v,Ω · ∇v〉 + σt 〈Qv, v〉

+σt

∑
�∈Υ

μ2
� 〈P�v, v〉 + 2 〈Ω · ∇v, (I − PΥ)v〉 + 2σt

∑
�∈Υ

μ� 〈Ω · ∇v,P�v〉

+ 2bI(v, v).

For any d ∈ [0, 1], adding the identity

2d [〈Ω · ∇v, v〉 − 〈Ω · ∇v, (I − PΥ)v〉 − 〈Ω · ∇v,PΥv〉] = 0
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to the last line above, and using the inequality from Lemma 4.1(ii), yields

ã(v, v) ≥ 1

σt

〈
Q−1Ω · ∇v,Ω · ∇v

〉
+ σt 〈PΥΩ · ∇v,Ω · ∇v〉 + σt 〈Qv, v〉

+σt

∑
�∈Υ

μ2
� 〈P�v, v〉 − 2|1 − d| |〈Ω · ∇v, (I − PΥ)v〉|

−2
∑
�∈Υ

|σtμ� − d| |〈Ω · ∇v,P�v〉| + (2 − d)bI(v, v).

It is convenient to note that we may write

| 〈Ω · ∇v, (I − PΥ)v〉 | ≤
∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v

∥∥∥∥ ∥∥∥√σtQ
1/2v

∥∥∥ ,
and for � ∈ Υ,

| 〈Ω · ∇v,P� v〉 | ≤ ‖√σt P� Ω · ∇v‖
∥∥∥∥ 1
√
σt

P� v

∥∥∥∥ .
Let’s now define

δ� :=

∥∥∥ 1√
σt
P�v

∥∥∥2

∥∥∥√σtQ1/2v + 1√
σt
PΥv

∥∥∥2 and γ� :=

∥∥√σtP�Ω · ∇v
∥∥2∥∥∥ 1√

σt
Q−1/2Ω · ∇v +

√
σtPΥΩ · ∇v

∥∥∥2

for � ∈ Υ. Additionally, let δ0 = 1−
∑

�∈Υ δ� and γ0 = 1−
∑

�∈Υ γ�. For convenience,
set

A =
∥∥∥T −1/2Ω · ∇v

∥∥∥2

=

∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v +
√
σtPΥΩ · ∇v

∥∥∥∥2

and

B =
∥∥∥T 1/2v

∥∥∥2

=

∥∥∥∥√σtQ1/2v +
1

√
σt

PΥv

∥∥∥∥2

.

We can now use the arithmetic-geometric inequality to write, for any η > 0,

ã(v, v) ≥
∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v

∥∥∥∥2

+
∑
�∈Υ

‖√σtP�Ω · ∇v‖2
+
∥∥∥√σtQ1/2v

∥∥∥2

+
∑
�∈Υ

(σtμ�)
2

∥∥∥∥ 1
√
σt

P�v

∥∥∥∥2

− η

∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v

∥∥∥∥2

− (1 − d)2

η

∥∥∥√σtQ1/2v
∥∥∥2

−
∑
�∈Υ

η ‖√σtP�Ω · ∇v‖2

−
∑
�∈Υ

(σtμ� − d)2

η

∥∥∥∥ 1
√
σt

P�v

∥∥∥∥2

+ (2 − d)bI(v, v)

=

[
(1 − η)γ0 +

∑
�∈Υ

(1 − η)γ�

]
A +

[(
1 − (1 − d)2

η

)
δ0(4.32)

+
∑
�∈Υ

(
(σtμ�)

2 − (σtμ� − d)2

η

)
δ�

]
B + (2 − d)bI(v, v).(4.33)
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We choose d to make the coefficient of B as large as possible. First we simplify
this expression by temporarily setting μ0 = 1/σt so that the coefficient on B can be
expressed as

(4.34)
∑

�∈0∪Υ

(σtμ�)
2δ� −

1

η

∑
�∈0∪Υ

(σtμ� − d)2δ�.

Then we see that d should be chosen to minimize the second sum, which by Lemma
4.2, yields

(4.35) d =
∑

�∈0∪Υ

(σtμ�) δ�,

making use of the fact that
∑

�∈0∪Υ δ� = 1. Note that d ∈ [0, 1] because (σtμ�) ∈ [0, 1].
Substituting d defined by (4.35) into (4.34) yields

(4.36) δ0 +
∑
�∈Υ

(σtμ�)
2δ� −

1

η

⎛
⎝(

δ0 +
∑
�∈Υ

(σtμ�)
2 δ�

)
−
(
δ0 +

∑
�∈Υ

(σtμ�) δ�

)2
⎞
⎠ .

For convenience, we rewrite (4.36) as

Δ0 −
1

η

(
Δ0 − Δ2

1

)
= Δ0

(
1 − 1

η

)
+

Δ2
1

η
,

where

Δ0 = δ0 +
∑
�∈Υ

(σtμ�)
2δ� and Δ1 = δ0 +

∑
�∈Υ

(σtμ�)δ�.

Note that Lemma 4.2 implies that Δ0 ≥ Δ2
1. Also, (σtμ�)

2 ≤ (σtμ�) ≤ 1 for � ∈ Υ
implies that Δ0 ≤ Δ1 ≤ 1. Hence, we get

(4.37) Δ0 −
1

η

(
Δ0 − Δ2

1

)
= Δ0

(
1 − 1

η

)
+

Δ2
1

η
≥ Δ0

(
1 − 1

η

)
+

Δ2
0

η
.

Lastly, notice that Δ0 ≥ δ0.
Next, using (4.37) and the fact that γ0 = 1 −

∑
�∈Υ γ�, we obtain from (4.32)–

(4.33)

ã(v, v) ≥ [1 − η]A +

[
Δ0

(
1 − 1

η

)
+

Δ2
0

η

]
B + bI(v, v)

≥ [1 − η]A +

[
Δ0 −

Δ0(1 − Δ0)

η

]
B + bI(v, v).

If we set δ = (1 − Δ0) ≤ (1 − δ0), then using Lemma 4.1(iii), we can say

βδ

2
B ≤ β(1 − δ0)

2
B =

β

2

∥∥∥∥ 1
√
σt

PΥv

∥∥∥∥2

≤ β

∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v +
√
σtPΥΩ · ∇v

∥∥∥∥2

+
β

σt
bI(v, v) = βA +

β

σt
bI(v, v).

This implies

(4.38) ã(v, v) ≥ [1 − η − β]A +

[
(1 − δ) − δ(1 − δ)

η
+

βδ

2

]
B +

[
1 − β

σt

]
bI(v, v),

where β ≥ 0 and η ≥ 0 are to be determined.
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Our choice of β is given by

(4.39) β =
2

2 + δ

(
δ +

δ(1 − δ)

η
− η

)
,

which is found by setting C1 = C2, that is, setting

1 − η − β = (1 − δ) − δ(1 − δ)

η
+

βδ

2
.

Plugging (4.39) into the coefficient on A generates the lower bound

(4.40) C = 1 − η − β =

(
(2 − δ)

(2 + δ)
− δ

2 + δ

(
η +

2(1 − δ)

η

))
.

This is maximized for η =
√

2(1 − δ), which yields

(4.41) C =
(2 − δ) − 2δ

√
2(1 − δ)

2 + δ
.

Note that this is only valid when the corresponding β ≥ 0, that is, (4.41) is valid only
for δ ≥ δc, where δc is the root of

β =
2

2 + δ

(
δ +

δ(1 − δ)√
2(1 − δ)

−
√

2(1 − δ)

)
=

2δ − (2 − δ)
√

2(1 − δ)

2 + δ
= 0.

This root is the only real root of the polynomial

δ3 − 3δ2 + 8δ − 4 = 0.

Numerically we find that δc ≈ 0.6117, implying Cc ≈ 0.1188. We also find numerically
the minimum of C in (4.41) on [δc, 1] to be

(4.42) Cm = min
δ∈[δc,1]

C ≈ 0.06667,

which occurs at δm ≈ 0.7836.
Now, for δ ≤ δc, we set β = 0 and choose η such that

1 − η = (1 − δ) − δ(1 − δ)

η
,

resulting in

η =
δ +

√
4δ − 3δ2

2
,

and, subsequently,

C =
2 − δ −

√
4δ − 3δ2

2
.

Clearly, C is a decreasing function of δ ∈ [0, δc] implying it takes on its smallest value
at δc. As mentioned previously C ≈ 0.1188 for this value of δ.
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We finally complete the proof with a bound on the coefficient of bI(v, v) in (4.38).
The minimization of this term is only considered on [δc, 1] since β = 0 on [0, δc].
Plotting β on [δc, 1] shows that β is an increasing function of δ on this interval implying
β ≤ 2/3. Thus, we have that [1 − β/σt] ≥ 1/3. We finally conclude that

ã(v, v) ≥ C̃e(A + B + bI(v, v)),

where C̃e = Cm ≥ 0.06666 coming from (4.42). Since A ≥
∥∥R−1/2Ω · ∇v

∥∥2
and

2B ≥
∥∥R1/2v

∥∥2
, we get

ã(v, v) ≥ 0.03333 ‖v‖2
V1

,

implying that Ce = 0.03333/2 = 0.01667 from (4.31).

5. Discretization and error bounds. Any finite dimensional subspace of V1

may be used to construct an approximation to the solution of ψ. One approach,
which is a subject of future research, is using a tessellation of the sphere to represent
angular dependence and nonconforming finite elements to describe spatial variability.
However, in this paper, we develop error bounds associated with a PN approximation
in angle and standard H1 conforming finite elements in space. The angular approx-
imation is represented by a truncated expansion of (2.12), which must be of greater
order than the finite sum that represents the scattering kernel (i.e., N ≥ NS). A
finite element approximation of the moments is defined on a triangulation Th of R
into hexahedrals or tetrahedrons.

Let Pk(Th) denote the space of piecewise polynomials of degree ≤ k on Th, let
Πh be the corresponding interpolation operator on Pk(Th), and let the truncation
operator ΠN be defined by

(5.1) ΠN v(x,Ω) :=

N∑
�=0

�∑
m=−�

φ�m(x)Y�m(Ω).

Then the discrete space V h is defined by

(5.2) V h :=

{
vh ∈ V : vh =

N∑
�=0

�∑
m=−�

φh
�m(x), Y�m(Ω); φh

�m(x) ∈ Pk(Th)

}
.

The definition of V h yields the discrete problem: find ψh ∈ V h such that

(5.3) a(ψh, vh) =
〈
R−1 q,LA vh

〉
+ 2bI(g, v

h)

for all vh ∈ V h.
Bounds for the discretization error are obtained by following the procedure out-

lined in [14]. Thus, let the components of Ω ∈ S2 and x ∈ R be denoted by
Ω = (Ω1,Ω2,Ω3), x = (x1, x2, x3), respectively, and let β, γ be a multi-index such

that Dβ
x := ∂|β|

∂
β1
x1 ∂

β2
x2 ∂

β3
x3

, and Dγ
Ω := ∂|γ|

∂
γ1
Ω1

∂
γ2
Ω2

∂
γ3
Ω3

. Recall that the standard norms [1] of

Hk(R) ×H l(S2) and Hk(∂R) ×H l(S2) are given by

‖v‖2
k,l :=

∑
|β|≤k

∑
|γ|≤l

∥∥Dγ
ΩDβ

xv
∥∥ ,

‖v‖2
k,l,∂R :=

∑
|β|≤k

∑
|γ|≤l

∫
∂R

∫
S2

|Dβ
xv|2 dΩdσ.
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Note also the following bounds for the interpolation error (see [4]):

(5.4)
‖v − Πhv‖p,0 ≤ Chk+1−p ‖v‖k+1,0 ∀v ∈ Hk+1(R) ×H l(S2),

‖v − Πhv‖p,0,∂R ≤ Chk+1−p ‖v‖k+1,0,∂R ∀v ∈ Hk+1(∂R) ×H l(S2)

for p ∈ 0, 1. We also define

(5.5) Eh(v) := v − Πhv

and

(5.6) EN (v) := v − ΠNv

for all v ∈ L2(S2 ×R).
To bound the error of the truncated expansion (5.1), we recall that the spherical

harmonics are eigenfunctions of the Laplacian operator on the unit sphere, which
implies

(5.7)
ΔΩY�m(Ω) =

[
1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2

]
Y�m(Ω)

= −l(l + 1)Y�m(Ω)

for l ≥ 0 and m = −l, . . . , 0, . . . , l. Next, for the reader’s convenience, we include
Lemma 4.1 from [14], as it is used throughout the remaining proofs.

Lemma 5.1. For N ≥ 1, |β| ≤ k + 1, and v ∈ V ∩ (Hk+1(R) × H2(S2)) with

v(x,Ω) =
∑∞

�=0

∑�
m=−� φ�m(x)Y�m(Ω), we have the following:

(i) ‖Ω · ∇v‖ ≤
√

3
∑3

i=1

∥∥∥ ∂v
∂xi

∥∥∥ .
(ii)

∥∥Dβ
xφ�m(x)

∥∥2 ≤ 1
[l(l+1)]2

∫
S2 |ΔΩDβ

xv(x,Ω)|2 dΩ.

(iii)
∥∥Dβ

xEN (v)
∥∥ ≤ 2

N+1

∥∥ΔΩDβ
xv

∥∥ .
(iv) bI(v, v) ≤ ‖v‖2

0,0,∂R .

(v) ‖EN (v)‖0,0,∂R ≤ 2
N+1 ‖ΔΩv‖0,0,∂R .

(vi) If, in addition, v satisfies the asymptotic expansion (5.9), then

‖ΠN (Eh(v))‖0,0,∂R ≤ C
1

σt
hk ‖ΔΩφR‖k+1,∂R .

Proof. See the proof in [14].
In the following, we present theorems for the thin regime (without proof) and for

the thick regime with highly anisotropic scattering.
Theorem 5.2 (thin regime). Suppose that N > NS ≥ 1, 0 ≤ σa ≤ σt ≤ 1 and

that ‖·‖V1
is defined as in (3.12). Let ψ ∈ V1 ∩ (Hk+1(R) ×H2(S2)) be the solution

of (4.5), and let ψh be the solution of (5.3) with V h defined by (5.2). Then we have

∥∥ψ − ψh
∥∥
V1

≤ C1

N + 1

(
‖ΔΩψ‖1,0 + ‖ΔΩψ‖0,0,∂R

)
+ C2h

k
(
‖ψ‖k+1,0 + ‖ψ‖0,∂R

)
with C1 and C2 independent of σt and σa.

Proof. See the proof of the isotropic case in [14].
The error bounds for the thick regime require considering the asymptotic limit

defined by σt → ∞. These bounds depend on the asymptotic form of ψ, which itself
depends on assumptions regarding material parameters. For the case of isotropic
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scattering, this limit has been extensively examined, where it is assumed that σa =
ζ/σt, where ζ is bounded independently of σt as σt → ∞ (see [7, 6, 9, 8, 17]). In this
limit, referred to as the diffusion limit, the solution to (2.1) with isotropic scattering
can then be expressed as

ψ(x,Ω) = φD(x) +
1

σt
φR(x,Ω),

with φR bounded independently of σt and the leading-order term φD satisfying a
diffusion equation.

In [10], for anisotropic scattering Larsen and Pomraning presented two different
asymptotic limits for σt → ∞. These two different limits rely on different assumptions
on the degree of anisotropy in the scattering. One is for the case of mildly anisotropic
scattering, and the other is for highly anisotropic scattering. In the following, we only
examine the case of highly anisotropic scattering because the case of mildly anisotropic
scattering yields results identical to Theorem 4.3 of [14].

To define the asymptotic limit, we let ζl and ωl be O(1) constants. Then we
define μ� in terms of these constants as

(5.8) μ� =

{
ζl, 0 ≤ l ≤ NS ,

σt

ωl+1 , l > NS .

Note that with these assumptions, we get that σa = O(1) and

σl =

{ σt−ζl
σt−σa

, 0 ≤ l ≤ NS ,

σtωl

σs(ωl+1) , l > NS .

Under these assumptions, Larsen and Pomraning in [10] illustrated that ψ can be
expressed as

(5.9) ψ(x,Ω) = φ̂D(x,Ω) +
1

σt
φ̂R(x,Ω),

where

φ̂D(x,Ω) :=

NS∑
�=0

�∑
m=−�

φ�m(x)Y�m(Ω)

satisfies the first-order PNS
equations and φ̂R(x,Ω) can be bounded independently of

σt.
Remark. The PNS

equations are a set of (NS + 1)2 differential equations for
(NS + 1)2 unknowns, which are obtained by substituting ψNS

:= ΠNS
ψ for ψ in (2.1)

and setting the resulting equation orthogonal to all spherical harmonics up to order
NS . Furthermore, as was illustrated in [14], the least-squares formulation described
here is nearly identical to a least-squares minimization of the PNS+1 equations.

The two components, φ̂D and φ̂R, of (5.9) are not orthogonal in L2(S2). But we
can rewrite (5.9) such that this condition holds. Note that this condition is employed
in the proof of Theorem 5.3. This new expression is

(5.10) ψ(x,Ω) = φD(x,Ω) +
1

σt
φR(x,Ω),
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where PΣ φR = 0 for Σ = {l ∈ N : l ≤ NS}. Before proving Theorem 5.3, we intro-
duce the notation ‖a‖ � ‖b‖ meaning ‖a‖ ≤ C ‖b‖, where C denotes an arbitrary,
parameter-independent, positive constant.

Theorem 5.3. (diffusive regime with highly anisotropic scattering ) Suppose
that N > NS ≥ 1, 1 ≤ σt < ∞ and that ‖·‖V1

is defined as in (3.12). Let ψ ∈ V1 ∩
(Hk+1(R)×H2(S2)) be the solution of (4.5), and let ψh be the solution of (5.3) with V h

as defined in (5.2) using the scaling operator (4.18). Assuming that ζ� ∈ (ζm, ζM ) and
ω� ∈ (ωm, ωM ) ∀l, where the minimum and maximum terms are O(1) and independent
of σt, and assuming that ψ satisfies the expansion (5.10), then∥∥ψ − ψh

∥∥
V1

≤ C1D1(σt,φR)

σ
1/2
t (N+1)

+ C2D2(σt, φD, φR)hk

with C1 and C2 independent of σt and σa, and

D1(σt, φR) :=
1

σt

3∑
i=1

∣∣∣∣
∣∣∣∣ΔΩ

∂φR

∂xi

∣∣∣∣
∣∣∣∣ + ‖ΔΩφR‖ +

1

σ
1/2
t

‖ΔΩ φR‖0,0,∂R ,

and

D2(σt, φD, φR) := ‖φD‖k+1,0+‖ΔΩφD‖k+1,0,∂R+
1

σ
3/2
t

‖φR‖k+1,0+
1

σt
‖ΔΩφR‖k+1,0,∂R .

Proof. Combining Céa’s lemma with Theorem 4.4 yields

‖ψ − ψh‖V1
�

(
‖EN (ψ)‖V1

+ ‖ΠN (ψ − Πhψ)‖V1

)
.

Using

‖v‖V1
≤

(
‖v‖2

V + ‖v‖2
0,0,∂R

)1/2

≤ ‖v‖V + ‖v‖0,0,∂R ,

which is obtained from

bI(v, v) ≤
∫
∂R

∫
S2

|v|2 = ‖v‖2
0,0,∂R ,

we have
(5.11)

‖ψ − ψh‖V1
�

(
‖EN (ψ)‖V + ‖EN (ψ)‖0,0,∂R + ‖ΠN (Eh(ψ))‖V + ‖ΠN (Eh(ψ))‖0,0,∂R

)
.

Next, we note that σtEN (ψ) = EN (φR) because of the fact that ψ satisfies (5.10).
ΠNS

(Ω · ∇(EN (φR))) = 0 and ΠNS
(EN (φR)) = 0 because of our our assumptions on

N . Now, we bound the first term of (5.11) as

‖EN (ψ)‖V =
1

σt
‖EN (φR)‖V

� 1

σ
3/2
t

‖ENS
((Ω · ∇) EN (φR))‖ +

1

σ
1/2
t

‖ENS
(EN (φR))‖

� 1

σ
1/2
t

(
1

σt

3∑
i=1

∣∣∣∣
∣∣∣∣ ∂

∂xi
EN (φR)

∣∣∣∣
∣∣∣∣ + ‖EN (φR)‖

)

� 1

σ
1/2
t (N + 1)

(
1

σt

3∑
i=1

∣∣∣∣
∣∣∣∣ΔΩ

∂φR

∂xi

∣∣∣∣
∣∣∣∣ + ‖ΔΩφR‖

)
,
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where we used (i) and (iii) of Lemma 5.1 and the fact that (I − ΠNS
) is an L2(S2)

orthogonal projection. We bound the second term of (5.11) according to

‖EN (ψ)‖0,0,∂R =
1

σt
‖EN (φR)‖0,0,∂R ≤ 2

σt(N + 1)
‖ΔΩφR‖0,0,∂R ,

given (v) of Lemma 5.1.
For the third term of (5.11), we first need to introduce ONS

:= ΠNS
(Ω ·∇). Since

σa > 1/σt, we have

||ΠN (Eh(ψ))||V = ||Eh(φD)||V +
1

σt
||ΠN (Eh(φR))||V .

We then say

||Eh(φD)||V � 1

σ
1/2
t

||ENS
((Ω · ∇) Eh(φD))|| + ||ONS

Eh(φD)|| + ||Eh(φD)||

� ||Ω · ∇(Eh(φD))|| + ||Eh(φD)||

�
3∑

i=1

∣∣∣∣
∣∣∣∣ ∂

∂xi
Eh(φD)

∣∣∣∣
∣∣∣∣ + ||Eh(φD)||

� hk
(
‖φD‖k+1,0 + h ‖φD‖k+1,0

)
� hk ‖φD‖k+1,0

and

||ΠN (Eh(φR))||V � 1

σt
||ONS

PNS+1(Eh(φR))|| + 1

σ
3/2
t

||ENS
((Ω · ∇) ΠNEh(φR))||

+
1

σ
1/2
t

||ΠNEh(φR)||

� 1

σt
||Ω · ∇(Eh(φR))|| + 1

σ
1/2
t

||ΠNEh(φR)||

�
3∑

i=1

1

σt

∣∣∣∣
∣∣∣∣ ∂

∂xi
Eh(φR)

∣∣∣∣
∣∣∣∣ +

1

σ
1/2
t

||Eh(φR)||

� hk

σ
1/2
t

(
1

σ
1/2
t

‖φR‖k+1,0 + h ‖φR‖k+1,0

)

� hk

σ
1/2
t

‖φR‖k+1,0 .

Subsequently,

||ΠN (Eh(ψ))||V � hk

(
‖φD‖k+1,0 +

1

σ
3/2
t

‖φR‖k+1,0

)
.

Last, we can bound the fourth term of (5.11) according to

‖ΠN (Eh(ψ))‖0,0,∂R � hk ‖ΔΩψ‖k+1,0,∂R � ‖ΔΩφD‖k+1,0,∂R +
1

σt
‖ΔΩφR‖k+1,0,∂R ,

where we have used (iv) of Lemma 5.1.
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6. Final remarks. In this paper, we have extended the least-squares method
for the linear Boltzmann equation to the case of anisotropic scattering by establishing
uniqueness and existence of the minimization problem (4.5). Furthermore, the ellip-
ticity is with respect to a physically meaningful norm, and the ellipticity constants
are independent of the problem parameters. Using the ellipticity constants, we have
also established error bounds in all three parameter regimes.

Future work consists of examining the least-squares approach with respect to more
complex discretization approaches. Besides spherical harmonics approximations, one
can use tessellations of the sphere as a finite element representation of the angular
dependency. One of the main advantages to this approach is that there is a reduced
coupling among moments as compared to the spherical harmonics approach used here.
For the spatial domain, we plan to investigate nonconforming finite elements so as to
better approximate problems having discontinuous solutions. Lastly, since this work
provides a partial foundation for [5], we hope to provide a complete foundation by
extending the results introduced here to the case of multiple energy groups.
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FOURIER SPECTRAL APPROXIMATION TO LONG-TIME
BEHAVIOR OF DISSIPATIVE GENERALIZED KdV-BURGERS

EQUATIONS∗
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Abstract. In this paper, we consider a generalized KdV-Burgers equation with periodic initial
value condition. Firstly, a fully discrete Galerkin–Fourier spectral approximation scheme, which is a
linear one, is constructed. Next, the dynamical properties of the discrete system are analyzed for the
autonomous case. The existence and the convergence of the global attractors of the discrete system
are obtained by a priori estimates and the error estimates of the discrete solution. The stability of
the discrete scheme is also proved. Finally, the long-time stability and the convergence of the discrete
scheme are proved for the nonautonomous case. All results in this paper are obtained without any
restriction on the time step size.

Key words. long-time stability, long-time convergence, global attractors, spectral methods,
KdV-Burgers equation
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1. Introduction and description of the method. In the wake of the develop-
ment in the study of infinite-dimensional dynamical systems, the long-time behavior
of dissipative nonlinear partial differential equations has attracted more and more
attention of scientists—for example, the existence and the estimate of dimension of
global attractor, the inertial manifolds and the approximate inertial manifolds, the
structure of global attractor, and so on (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). How-
ever, these studies depended on the results of numerical experimentation to a great
extent. For this reason, it is worth studying whether the numerical results are reli-
able and the calculation schemes are suitable. This work began in the late 1980s (see
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]). Most of the existing classical Galerkin methods
are nonlinear schemes, and the calculation is complex. The nonlinear Galerkin meth-
ods sometimes can be linear schemes, but the dimension of which is many times that
of the classical Galerkin ones; consequently, the computation amount is very heavy.
In addition, the stability and convergence of these discrete schemes were established
under certain restrictions on the time step size.

In this paper, we construct a fully discrete classical Galerkin spectral scheme,
which is a linear scheme. On the one hand, in comparison with the existing nonlinear
Galerkin methods with linear schemes or classical Galerkin methods with nonlinear
schemes, the computation amount of this scheme can be greatly reduced. On the other
hand, without any restriction on the time step size, the results about the uniform
stability and convergence of this discrete scheme are obtained.

To be more specific in this paper, we restrict ourselves to a class of damped
generalized KdV-Burgers equations. More generally, similar schemes and analysis are
applicable to other dissipative dynamical systems.
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The damped KdV-Burgers equation is a kind of important nonlinear evolution
equations. They are proposed in many physical problems; for example, see [21, 22].
For this reason, the research of them is of theoretical and practice significance. In
[23, 24], the existence and the uniqueness for the global smooth solution of this kind
of equation have been proved. In [25] the existence of chaotic phenomena for a KdV-
Burgers equation has been found. In this paper, we consider the periodic initial value
problem of the damped generalized KdV-Burgers equation

ut − αuxx + βuxxx + f(u)x = g(u) + h, x ∈ R, t > 0,(1.1)

u(x + 2π, t) = u(x, t), x ∈ R, t ≥ 0,(1.2)

u(x, 0) = u0(x), x ∈ R,(1.3)

where α, β are real constants and α > 0, β �= 0; f(u), g(u), h are real value functions.
In [6, 20] the existence of global attractors and the estimates of upper bounds of

their Hausdorff and fractal dimensions were proved for problem (1.1)–(1.3). In [19, 20]
the Fourier discrete schemes, which are nonlinear schemes, were constructed, and the
existence and the convergence of approximate attractors were proved. In this paper,
we first construct a fully discrete Fourier spectral approximation scheme, which is a
linear one. Then the existence and the convergence of approximate attractors, as well
as the stability of discrete scheme, are proved in the autonomous case. Furthermore,
the long-time stability and the convergence of discrete scheme are obtained in the
nonautonomous case.

Throughout this paper we use the following notation: Ω = [0, 2π]; (·, ·) denotes
the inner product of L2(Ω), ‖·‖m the norm of Sobolev spaces Hm(Ω), and ‖·‖ = ‖·‖0,
‖ · ‖∞ = ‖ · ‖L∞(Ω).

For any given positive integer N , let SN = Span{ sin kx, cos kx : |k| ≤ N}, and
denote by PN : L2

p(Ω) → SN the orthogonal projection operator (see [26]).

Let τ be the mesh size in the variable t, tk = kτ , uk = u(x, tk), ∂tu
k = 1

τ (uk −
uk−1). The Fourier spectral scheme for solving (1.1)–(1.3) is to find uk

N ∈ SN such
that

(∂tu
k
N − αuk

Nxx + βuk
Nxxx, ϕ) + B(uk−1

N , uk
N , ϕ)

= (G(uk−1
N )uk

N + hk, ϕ) for all ϕ ∈ SN , k = 1, 2, . . . ,
(1.4)

u0
N = PNu0,(1.5)

where

B(uk−1
N , uk

N , ϕ) = (F (uk−1
N )uk

Nx, ϕ) − (F (uk−1
N )uk

N , ϕx),

F (u) =

⎧⎪⎪⎨
⎪⎪⎩

1

u2

∫ u

0

sf ′(s)ds for u �= 0,

1

2
f ′(0) for u = 0,

G(u) =

{
g(u)

u
for u �= 0,

g′(0) for u = 0.

It is a linear iteration scheme, and then it needs only to solve a class of linear
algebraic equations for every iteration.

The following lemmas are necessary for further discussion.
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Lemma 1.1 (see [26]). If u ∈ Hm
p (Ω), then there exists a constant c independent

of u, N such that

‖u− PNu‖μ ≤ cNμ−m‖Dmu‖ for all 0 ≤ μ ≤ m.

Lemma 1.2 (Sobolev interpolation inequality [27]). Suppose that u ∈ Lq(Ω),
Dmu ∈ Lr(Ω), Ω ⊂ Rn, 1 ≤ r ≤ ∞, 0 ≤ j ≤ m. Then there exists a constant
c = c(j,m,Ω, p, q, r) independent of u such that

‖Dju‖Lp ≤ c‖Dmu‖aWm,r(Ω)‖u‖1−a
Lq ,

where

1

p
=

j

n
+ a

(1

r
− m

n

)
+ (1 − a)

1

q
,

j

m
< a < 1.

Lemma 1.3 (discrete Gronwall’s inequality [17]). Let yk, gk, hk be three series
satisfying

yk+1 − yk

τ
≤ gkyk + hk, k = 0, 1, 2, . . . .

Then we have

yn ≤ y0 exp

(
τ

n−1∑
k=0

gk

)
+ τ

n−1∑
k=0

hk exp

(
τ

n−1∑
i=k

gi

)
for all n ≥ 1.

Lemma 1.4 (discrete uniform Gronwall’s inequality [17]). Let yk, gk, hk be
three series satisfying

yk+1 − yk

τ
≤ gkyk + hk for all k ≥ k0

and

τ

n0+k1∑
k=k1

gk ≤ α1, τ

n0+k1∑
k=k1

hk ≤ α2, τ

n0+k1∑
k=k1

yk ≤ α3 for all k1 ≥ k0

with τn0 = r. Then

yk ≤
(α3

r
+ α2

)
eα1 for all k ≥ n0 + k0.

An outline of this paper is as follows. We consider the autonomous case (i.e.,
h = h(x)) in sections 2 to 4. In section 2 the existence of discrete attractors Aτ

N is
obtained by the t-independent priori estimates of discrete solutions (Theorem 2.2).
In section 3 the convergence of Aτ

N is proved by the error estimates in [0,+∞) of the
discrete solutions (Theorem 3.5). In section 4 we prove the stability of the discrete
scheme (Theorem 4.1). Finally, we consider the nonautonomous case (i.e., h = h(x, t))
in section 5. The long-time stability and the convergence of discrete scheme are proved
(Theorem 5.3 and Theorem 5.4).



564 SHUJUAN LÜ AND QISHAO LU

2. Existence of approximation global attractors Aτ
N . In sections 2 to

4, we let h = h(x) and h(x+2π) = h(x). The main purpose of this section is to prove
the existence of the global attractors Aτ

N of problem (1.4)–(1.5). To the end, we need
the following result (see [1]).

Theorem 2.1. Let H be a Banach space, {S(t), t ≥ 0} a set of continuous
semigroup operations, i.e., S(t) : H → H satisfies

S(t + τ) = S(t) · S(τ) for all t ≥ 0, τ ≥ 0, S(0) = I,

where I is the identity operator. We also assume that
(i) there exists a bounded absorbing set B0 ⊂ H, i.e., for any given bounded set

B ⊂ H, there exists a constant T (B) such that

S(t)B ⊂ B0 for all t ≥ T (B);

(ii) the operator S(t) is uniformly compact for t enough large. By this we mean
that for every bounded set B there exists a constant t0 = t0(B) such that⋃

t≥t0

S(t)B

is relatively compact in H.
Then the semigroup of operators {S(t)}t≥ has a compact global attractor A ⊂ H.

By this we mean that
(a) S(t)A = A for all t ≥ 0;
(b) for any given bounded set B ⊂ H, limt→∞ dist(S(t)B,A) = 0, where

dist(X,Y ) = sup
x∈X

inf
y∈Y

‖x− y‖H .

Now we give the main result in this section.
Theorem 2.2. If f ∈ C3, |f ′(u)| ≤ A|u|2, g ∈ C2, g(0) = 0, g′(u) ≤ b < 0,

|g(u)| ≤ B|u|(|u|4 + 1), h(x) ∈ H1
p (Ω), and u0(x) ∈ H2

p (Ω), then the semigroup of
operator {Sτ

N (n)}n≥0 generated by problem (1.4), (1.5) has a compact global attractor
Aτ

N ⊂ H2
p (Ω) ∩ SN .

To prove Theorem 2.2, the following results are necessary.
Lemma 2.3. If f, g ∈ C1, g(0) = 0, g′(s) ≤ b < 0; h ∈ L2(Ω), u0 ∈ L2

p(Ω). Then
for the solution un

N of problem (1.4), (1.5), we have the estimates

‖un
N‖2 ≤ (1 − bτ)−n‖u0

N‖2 +
‖h‖2

b2
≤ ‖u0‖2 +

‖h‖2

b2
Δ
= E2

0 for all n ≥ 1,

lim
n→∞

‖uk
N‖2 ≤ ‖h‖2

b2
Δ
= (ρ′0)

2,

τ2
n∑
1

‖∂tu
k
N‖2 ≤ C1(1 + tn) for all n ≥ 1,

where the constant C0 = C0(‖uo‖) is independent of N, n, and τ .
Proof. Set ϕ = uk

N in (1.4). Then we have

1

2
∂t‖uk

N‖2 +
τ

2
‖∂tu

k
N‖2 + α‖uk

Nx‖2 + B(uk−1
N , uk

N , uk
N ) = (G(uk−1

N )uk
N ,+h, uk

N ).
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From the definition of B(u, v, ϕ), G(u) and ε- inequality, we obtain

B(uk−1
N , uk

N , uk
N ) = 0,

(G(uk−1
N )uk

N , uk
N ) = (g′(θuk−1

N )uk
N , uk

N ) ≤ b‖uk
N‖2,

(h, uk
N ) ≤ ‖h‖ ‖uk

N‖ ≤ |b|
2
‖uk

N‖2 +
1

2|b| ‖h‖
2.

Therefore

∂t ‖uk
N‖2 + τ ‖∂tu

k
N‖2 + α ‖uk

Nx‖2 − b ‖uk
N‖2 ≤ ‖h‖2

|b| .(2.1)

Multiplying (2.1) by (1 − bτ)k−1 and summing them for k from 1 to n, we have

‖un
N‖2 ≤ (1 − bτ)−n

(
‖u0

N‖2 − ‖h‖2

b2

)
+

‖h‖2

b2
≤ ‖u0

N‖2 +
‖h‖2

b2
Δ
= E2

0 ,

which implies that

lim
n→∞

‖uk
N‖2 ≤ ‖h‖2

b2
Δ
= (ρ′0)

2.

Taking the sum of (2.1) for k from k0+1 to n, we recover the proof of the lemma.
Corollary 2.4. For any given ρ0 > ρ′0 and R0 > 0, if ‖u0‖ ≤ R0, then

‖un
N‖2 ≤ ρ2

0 for all n ≥ n0 =
(

ln
R2

0

ρ2
0 − (ρ′0)

2

)/
ln(1 − bτ).

Lemma 2.5. In addition to the conditions of Lemma 2.3, we suppose that f ∈ C2,
|f ′(u)| ≤ A|u|2; |g(u)| ≤ B|u|(|u|4+1); u0 ∈ H1

p (Ω), ‖u0‖ ≤ R0. Then for the solution
un
N of problem (1.4), (1.5), we have the estimates

‖uk
Nx‖2 ≤ ρ2

1 for n ≥ n0 + N0
Δ
= n1,

‖uk
Nx‖2 ≤ E2

1 for n ≥ 1,

τ2

n∑
k=1

‖∂tu
k
Nx‖2 ≤ C1(1 + tn) for all n ≥ 1,

where n0 is given by Corollary 2.4, N0 an arbitrary positive integer, r an arbitrary
positive number such that N0τ = r, the constant ρ1 independent of N, n, τ , and
‖u0‖1, C1 = C1(‖uo‖1), and E1 = E1(‖u0‖1) independent of N, n, and τ .

Proof. Let ϕ = −uk
Nxx in (1.4). Then we have

1

2
∂t‖uk

Nx‖2 +
τ

2
‖∂tu

k
Nx‖2 + α‖uk

Nxx‖2 + B(uk−1
N , uk

N ,−uk
Nxx)

= (G(uk−1
N )uk

N + h,−uk
Nxx).

(2.2)

We now estimate the last two terms in the above equality. First, from the definition
of B(u, v, ϕ), we have

B(uk−1
N , uk

N ,−uk
Nxx) = 2(F (uk−1

N )uk
Nx,−uk

Nxx) + (F ′(uk−1
N )uk−1

Nx uk
N ,−uk

Nxx),
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where from the definition of F (u), the mean theorem of integration, and the Sobolev
interpolation inequality, we have for two terms in the above equality

2(F (uk−1
N )uk

Nx,−uk
Nxx)

= 2

(
uk
Nx

(uk−1
N )2

∫ uk−1
N

0

sf ′(s)ds,−uk
Nxx

)
= (f ′(θuk−1

N )uk
Nx,−uk

Nxx)

≤ A‖uk−1
N ‖2

∞ ‖uk
Nx‖ ‖uk

Nxx‖ ≤ c‖uk−1
N ‖ ‖uk−1

N ‖1 ‖uk
N‖ 1

2 ‖uk
Nxx‖

3
2

≤ α

8
‖uk

Nxx‖2 + c(‖uk−1
N ‖4 ‖uk

N‖2 ‖uk−1
Nx ‖4 + ‖uk−1

N ‖8 ‖uk
N‖2)

and

(F ′(uk−1
N )uk−1

Nx uk
N ,−uk

Nxx)

=

((
(uk−1

N )2f ′(uk−1
N ) − 2

∫ uk−1
N

0

sf ′(s)ds

)
uk−1
Nx uk

N

(uk−1
N )3

,−uk
Nxx

)

=

((
f ′(uk−1

N )

uk−1
N

− f ′(θuk−1
N )

uk−1
N

)
uk−1
Nx uk

N ,−uk
Nxx

)

≤ 2A‖uk−1
N ‖∞‖uk

N‖∞‖uk−1
Nx ‖‖uk

Nxx‖

≤ α

8
‖uk

Nxx‖2 + c‖uk
N‖2(‖uk−1

N ‖ 4
3 + 1)(‖uk−1

Nx ‖4 + ‖uk−1
N ‖4).

Therefore

B(uk−1
N , uk

N ,−uk
Nxx) ≤ α

4
‖uk

Nxx‖2 + c‖uk
N‖2(‖uk−1

N ‖4 + 1) (‖uk−1
Nx ‖4 + ‖uk−1

N ‖4).

Next, from the definition of G(u) we have

(G(uk−1
N )uk

N ,−uk
Nxx) ≤ 5B

4
(‖uk−1

N ‖4
∞ + 1)‖uk

N‖‖uk
Nxx‖

≤ α

8
‖uk

Nxx‖2 + c‖uk
N‖2(‖uk−1

N ‖4‖uk−1
Nx ‖4 + ‖uk−1

N ‖8 + 1).

In addition, we have

(h,−uk
Nxx) ≤ α

8
‖uk

Nxx‖2 +
4

α
‖h‖2.

Hence (2.2) can be rewritten as

∂t‖uk
Nx‖2 + τ‖∂tu

k
Nx‖2 + α‖uk

Nxx‖2

≤ c(‖uk−1
N ‖4 + 1)‖uk

N‖2 ‖uk−1
Nx ‖4 + c

(
‖uk

N‖2(‖uk−1
N ‖8 + 1) + ‖h‖2

)
.

(2.3)

By using (2.1), Lemma 2.3, and its corollary, we obtain for all k0 > n0
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cτ

k0+N0∑
k=k0+1

(‖uk−1
N ‖4 + 1)‖uk

N‖2‖uk−1
Nx ‖2 ≤ cρ2

0(1 + ρ4
0)τ

k0+N0∑
k=k0+1

‖uk−1
Nx ‖2

≤ cρ4
0(1 + ρ4

0)(1 + r)
Δ
= α1,

cτ

k0+N0∑
k=k0+1

(
‖uk

N‖2(‖uk−1
N ‖8 + 1) + ‖h‖2

)
≤ c

(
ρ2
0(ρ

8
0 + 1) + 1

)
r

Δ
= α2,

cτ

k0+N0∑
k=k0+1

‖uk
Nx‖2 ≤ c

(
ρ2
0 +

‖h‖2

|b| N0τ
)
≤ cρ2

0(1 + r)
Δ
= α3.

By applying the discrete uniform Gronwall’s inequality to (2.3), we derive

‖uk
Nx‖2 ≤

(α3

r
+ α2

)
eα1

Δ
= ρ2

1 for all n ≥ n1 = n0 + N0.

For n ≤ n1, by applying the discrete Gronwall’s inequality to (2.3), we have

‖uk
Nx‖2 ≤

(
‖u0x‖2 + c

(
E2

0(E8
0 + 1) + ‖h‖2

)
tn

)
exp

(
cE2

0(E4
0 + 1)(‖u0‖2 + ρ2

0tn1
)
)

Δ
= (E′

1)
2.

Let E2
1 = max{(ρ′1)2, (E′

1)
2}. Then the second relation is obtained. Taking the sum

of (2.3), we complete the proof of Lemma 2.5.

Corollary 2.6. Under the hypotheses of Lemma 2.5, we have

‖un
N‖∞ ≤ c(ρ0, ρ1) for all n ≥ n1,

‖un
N‖∞ ≤ c(E0, E1) for all n ≥ 1.

Lemma 2.7. In addition to the conditions of Lemma 2.5, we suppose that f ∈ C3,
u0 ∈ H2

p (Ω) satisfying ‖u0xx‖2 ≤ R2
0. Then we have

‖un
Nxx‖2 ≤ ρ2

2 for all n ≥ n2 = n1 + N0,

‖un
Nxx‖2 ≤ E2

2 for all n ≥ 1,

τ2

n∑
k=1

‖∂tu
k
Nxx‖2 + τ

n∑
k=1

‖uk
Nxxx‖2 ≤ c2(1 + tn) for all n ≥ 1,

where n1 is given by Lemma 2.5, N0 an arbitrary positive integer, r an arbitrary
positive number such that N0τ = r, the constant ρ2 independent of N, n, τ , and
‖u0‖2, E2 = E2(‖u0‖2), and C2 = C2(‖u0‖2) independent of N, n, and τ .

Proof. Let ϕ = uk
Nx4 in (1.4), and then we have

1

2
∂t‖uk

Nxx‖2 +
τ

2
‖∂tu

k
Nxx‖2 + α‖uk

Nxxx‖2 + B(uk−1
N , uk

N , uk
Nx4)

= (G(uK−1
N )uk

N + h, uk
Nx4).
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When k ≥ n1. From Lemma 2.3 to Corollary 2.6, we obtain

B(uk−1
N , uk

N , uk
Nx4) = (2F (uk−1

N )uk
Nx + F ′(uk−1

N )uk−1
Nx uk

N , uk
Nx4)

= (2F (uk−1
N )uk

Nxx + 3F ′(uk−1
N )uk−1

Nx uk
Nx + F ′(uk−1

N )uk−1
Nxxu

k
N

+ F ′′(uk−1
N )(uk−1

Nx )2uk
N , −uk

Nx3)

≤ c(ρ0, ρ1)‖uk
Nxxx‖2(‖uk

Nxx‖ + ‖uk−1
Nx ‖‖uk

Nx‖∞ + ‖uk
Nxx‖

+ ‖uk
N‖∞‖uk−1

Nx ‖∞‖uk−1
Nx ‖)

≤ α

6
‖uk

Nxxx‖2 + c(ρ0, ρ1)(‖uk
Nx‖2 + ‖uk

N‖2‖uk−1
Nx ‖2)

+ c(ρ0, ρ1)(‖uk
N‖‖uk

Nx‖ + ‖uk
N‖2‖uk−1

N ‖2)‖uk−1
Nxx‖2,

(G(uk−1
N )uk

N , uk
Nx4) = (G(uk−1

N )uk
Nx,−uk

Nx3) + (G′(uk−1
N )uk−1

Nx uk
N ,−uk

Nx3)

≤ c(ρ0, ρ1)‖uk
Nxxx‖(‖uk

Nx‖ + ‖uk−1
Nx ‖)

≤ α

6
‖uk

Nxxx‖2 + c(ρ0, ρ1)(‖uk
Nx‖2 + ‖uk−1

Nx ‖2),

and

(h, uk
Nx4) = (hx,−uk

Nx3) ≤
α

6
‖uk

Nxxx‖2 + c‖hx‖2.

Thus

∂t‖uk
Nxx‖2 + τ‖∂tu

k
Nxx‖2 + α‖uk

Nxxx‖2

≤ c(ρ0, ρ1)(‖uk−1
Nx ‖2 + ‖uk

Nx‖2 + ‖hx‖2).
(2.4)

By using Lemmas 2.3 and 2.5 and (2.3), we derive

τ

k0+N0∑
k=k0+1

‖uNxx‖2 ≤ 1

α

(
ρ2
1 + rc(ρ0, ρ1)

) 	
= α3,

c(ρ0, ρ1)τ

k0+N0∑
k=k0+1

(‖uk
Nx‖2 + ‖uk−1

Nx ‖2 + ‖hx‖2) ≤ c(ρ0, ρ1)r
	
= α2.

Then by applying discrete uniform Gronwall’s inequality to (2.4), we have

‖un
Nxx‖2 ≤ α3

r
+ α2

Δ
= ρ2

2 for all n ≥ n2 = n1 + N0.(2.5)

For k ≥ 1, as in the proof of the inequality (2.4), we have

∂t‖uk
Nxx‖2 + τ‖∂tu

k
Nxx‖2 + α‖uk

Nxxx‖2

≤ c(E0, E1)(‖uk−1
Nx ‖2 + ‖uk

Nx‖2 + ‖hx‖2).
(2.6)

Taking the sum of (2.6) for k from 1 to n, we obtain

‖un
Nxx‖2 + τ2‖∂tu

n
Nxx‖2 + ατ

n∑
k=1

‖uk
Nxxx‖2 ≤ C2(tn + 1) for all n ≥ 1.(2.7)

Combining inequality (2.5) and (2.7), the proof of this lemma is complete.
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Proof of Theorem 2.2. Let H = H2
p (Ω)∩SN , Sτ

N (n) be a semigroup operator, i.e.,
the solution operator generated by problem (1.4), (1.5). On account of Theorem 2.1,
we shall prove this theorem by checking the conditions (i) and (ii) in Theorem 2.1.

(i) By using the results of Lemmas 2.3–2.7, and assuming that u0
N ∈ B =

{u0
N

∣∣ ‖u0
N‖2 ≤ R0} ⊂ H2

p (Ω) ∩ SN , we have

‖Sτ
N (n)u0

N‖2 = ‖un
N‖2 ≤ (ρ2

0 + ρ2
1 + ρ2

2)
1
2 for all n ≥ n1(R).

Hence

B0 = {un
N ∈ H2

p (Ω) ∩ SN : ‖un
N‖2 ≤ (ρ2

0 + ρ2
1 + ρ2

2)
1
2 }

is a bounded absorbing set of the semigroup of operator {Sτ
N (n)}n≥0.

(ii) From Lemmas 2.3–2.7 and their corollaries, we have

‖Sτ
N (n)u0

N‖2 ≤ (E2
0 + E2

1 + E2
2)

1
2 for all n ≥ 0.

This means that {Sτ
N (n)} is uniformly bounded in H2

p (Ω)∩SN . Since a closed bounded
set is a compact set in the finite dimensional space H2

p (Ω) ∩ SN , the operator Sτ
N (n)

is uniformly compact for any n ≥ 0.
On the other hand, it is easy to check the continuity of operator Sτ

N (n) from its
boundedness. Thus the proof of the theorem is completed.

3. Convergence of the global attractors Aτ
N . In this section, we study the

convergence of attractors Aτ
N . To this end, we first give the following results.

Let GN : L2
p(Ω) → SN be the integral projection operator, i.e., for any given

u ∈ L2(Ω) we have

((GNu)x, vx) + (GNu, v) = (u, v) for all v ∈ SN .(3.1)

Then for any u, v ∈ L2(Ω), we have (GNu, v) = (u,GNv).
Lemma 3.1. For the integral projection operator GN , the following results hold:

(A1) ‖GNu‖2 ∼ ‖PNu‖ for all u ∈ L2
p(Ω);

(A2) ‖GNux‖ = ‖(GNu)x‖ for all u ∈ H1
p (Ω),

‖GNuxx‖ = ‖(GNux)x‖ = ‖(GNu)xx‖ for all u ∈ H2
p (Ω);

(A3) ‖G2
Nuxx‖ = ‖(G2

Nux)x‖ = ‖(G2
Nu)xx‖ for all u ∈ H2

p (Ω).

Proof. (A1). Setting v = PNu in (3.1) and applying the definition of PN , it is
obtained that

‖PNu‖ ≤ ‖GNu‖ + ‖(GNu)xx‖.(3.2)

Setting v = GNu in (3.1), we have

‖GNu‖ ≤ ‖PNu‖.(3.3)

Letting v = (GNu)xx in (3.1), we find

‖(GNu)xx‖ ≤ ‖PNu‖.(3.4)

Combining (3.2), (3.3), and (3.4), the equality (A1) is obtained.
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(A2). Using the definition of GN repeatedly, the first equality of (A2) is obtained
as follows:

‖GNux‖2 = (GNux, GNux) = −(u, (G2
Nux)x)

= −((GNu)x, (G
2
Nux)xx) − (GNu, (G2

Nux)x)
= ((G2

Nux)x, (GNu)xx) + (G2
Nux, (GNu)x) = (GNux, (GNu)x)

= ((GN (GNu)x)x, (GNu)xx)+(GN (GNu)x, (GNu)x)=((GNu)x, (GNu)x)
= ‖(GNu)x‖2.

By using the above equality and the definition of GN repeatedly, the second equality
of (A2) is recovered as follows:

‖GNuxx‖2 = ((GNux)x, (GNux)x) = (ux, GNux) − (GNux, GNux)
= −(u, (GNux)x) − ‖GNux‖2

= ((GNu)xx, (GNux)x) + ((GNu)x, (GNux)) − ‖GNux‖2

= −(u, (GNu)xx) − ‖GNux‖2

= ‖(GNu)xx‖2 + ‖(GNu)x‖2 − ‖GNux‖2 = ‖(GNu)xx‖2.

(A3). By using the definition of GN and results of (A2), the equalities of (A3) are
proved as follows:

‖G2
Nuxx‖2 =−((G4

Nuxx)x, ux) = ((GNux)xx, (G
4
Nuxx)x) + ((GNux)x, G

4
Nuxx)

=((GNux)x, G
3
Nuxx) = −((G3

N (GNux)x)x, ux)
=−((GNux)x, (G

3
N (GNux)x)xx) − (GNuX , (G3

N (GNux)x)x)
=‖GN (GNux)x‖2 = ‖(G2

Nux)x‖2

and

‖G2
Nuxx‖2 = −((G4

Nuxx)x, ux) = (G4
Nuxx, u) − (G3

Nuxx, u)

= −(ux, (G
4
Nu)x) + (ux, (G

3
Nu)x)

= −(u,G3
Nu) + (u,G4

Nu) + (u,G2
Nu) − (u,G3

Nu)

= −(GNu,G2
Nu) + (G2

Nu,G2
Nu) + (u,G2

Nu) − (GNu,G2
Nu)

= −((G2
Nu)x, (G

2
Nu)x) + ((GNu)x, (G

2
Nu)x)

= ((G2
Nu)x, (G

2
Nu)xx) − (GNu, (GNu, (G2

Nu)x)

= −((G2
Nu)x, (G

2
Nu)xxx) = ‖(G2

Nu)xx‖2.

Theorem 3.2 (see [20]). If f ∈ C3, |f ′(u)| ≤ A|u|2; g ∈ C1, g(0) = 0,
g′(s) ≤ b < 0; h(x) ∈ H1

p (Ω); u0 ∈ H2
p (Ω), then there exists a unique global solution

u(x, t) ∈ L∞(R+; H2
p (Ω)) for the problem (1.1)–(1.3) such that∫ t

0

(‖u‖2
3 + ‖ut‖2) dt ≤ c(t + 1) for all t ∈ R+,

where the constant c is independent of t.
Furthermore, if f ∈ C3, g ∈ C2, then u(x, t) satisfies

t‖uxxx‖2 ≤ c(t2 + 1) for all t ∈ R+,

and there exists a global attractor A ⊂ H2
p (Ω) of problem (1.1)–(1.3), i.e., there exist

a set A ⊂ H2
p (Ω) such that

(a) S(t)A = A,
(b) dist(S(t)B, A) → 0, as t → +∞.
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Theorem 3.3 (see [1]). Suppose that
(1) {Hη}0<η≤η0

is a family of closed subspaces of Banach space H such that⋃
0<η≤η0

Hη

is dense in H.
(2) Sη(t): Hη → Hη and S(t): H → H are two nonlinear semigroup operators,

Aη ⊂ Hη and A ⊂ H are the global attractors of Sη(t) and S(t), respectively.
(3) For every compact interval I ⊂ (0,+∞),

δη(I) = sup
u0∈Hη

sup
t∈I

dist (Sη(t)u0 , S(t)u0) → 0 as η → 0.

Then Aη is convergent to A in the sense of the semidistance:

dist(Aη,A) → 0 as η → 0,

where

dist(Aη,A) = sup
u∈Aη

inf
v∈A

‖u− v‖H .

Finally, similar to Lemma 2.7, the following result can be proved easily.
Lemma 3.4. Under the hypotheses of Lemma 2.7, we have the estimates for the

smooth solution u(x, t) of problem (1.1)–(1.3)

t‖ut‖2 +

∫ t

0

s‖utx‖2ds ≤ c(1 + t2),

t2‖utx‖2 +

∫ t

0

s2‖utxx‖2ds ≤ c(1 + t3),

t3‖utxx‖2 +

∫ t

0

s3(‖utt‖2 + ‖utxxx‖2)ds ≤ c(1 + t4),

t4‖utt‖2 +

∫ t

0

s4‖uttx‖2ds ≤ c(1 + t5),

where the constant c is independent of t.
Now we give the main result of this section.
Theorem 3.5. Suppose that the conditions of Theorem 2.2 hold. Then

dist(Aτ
N ,A) → 0 as τ → 0, N → +∞.

Proof. Let ‖u0‖2 ≤ R0. On account of Theorem 3.2, this theorem will be proved
by taking the error estimates of the solution un

N of discrete problem (1.4), (1.5). Now
we accomplish them through two steps.

Step 1. Take the error estimates of the solution vnN of the linear scheme as follows:

(∂tv
k
N − αvkNxx + βvkNxxx + αvkN + f(uk)x, ϕ) = (g(uk) + αuk + h, ϕ)

for all ϕ ∈ SN , k = 1, 2, · · · ,(3.5)

v0
N = PNu0.(3.6)



572 SHUJUAN LÜ AND QISHAO LU

Let uk − vkN = (uk − PNuk) + (PNuk − vkN ) = ρk + θk. Then θk satisfies

(∂tθ
k − αθkxx + βθkxxx + αθk − (∂tu

k − uk
t ), ϕ) = 0 for all ϕ ∈ SN ,(3.7)

θ0 = 0.(3.8)

Letting ϕ = θk in (3.7), we have

1

2
∂t‖θk‖2 +

τ

2
‖∂tθ

k‖2 + α‖θk‖2
1 = (∂tθ

k − uk
t , θ

k).

From the definition of GN , we find

(∂tu
k − uk

t , θ
k) = ((GN (∂tu

k − uk
t ))x, θ

k
x) + (GN (∂tu

k − uk
t ), θ

k)

≤ α

2
‖θk‖2

1 +
1

2α
‖GN (∂tu

k − uk
t )‖2

1,

where

‖GN (∂tu
k − uk

t )‖2
1 =

1

τ2

∥∥∥∫ tk

tk−1

(s− tk−1)GNuttds
∥∥∥2

1

≤ 1

τ2

∫ tk

tk−1

(s− tk−1)
2

s2
ds

∫ tk

tk−1

s2‖GNutt‖2
1ds

≤ τ

t2k

∫ tk

tk−1

s2‖GNutt‖2
1ds.

Thus

∂t‖θk‖2 + τ‖∂tθ
k‖2 + α‖θk‖2 ≤ 1

α
‖GN (∂tu

k − uk
t )‖2

1 ≤ τ

αt2k

∫ tk

tk−1

s2‖GNutt‖2
1ds.

Multiplying the above inequality by t2k, taking the sum for k from 1 to n, and using
‖GNutt‖1 ≤ c‖ut‖2, we have

t2n‖θn‖2 + ατ

n∑
k=1

t2k‖θk‖2
1 + τ2

n∑
k=1

t2k‖∂tθ
k‖2

≤ 3τ

n∑
k=1

tk‖θk‖2 +
τ2

α

n∑
k=1

∫ tk

tk−1

s2‖GNutt‖2
1ds

≤ 3τ

n∑
k=1

tk‖θk‖2 + cτ2

∫ tn

0

s2‖ut‖2
2ds

≤ 3τ

n∑
k=1

tk‖θk‖2 + cτ2(1 + t3n).

(3.9)

Now we estimate τ
∑n

k=1 tk‖θk‖2 in the above inequality. Let ϕ = GNθk in (3.7).
Then it is obtained that

(∂tθ
k − αθkxx + βθkxxx + αθk − (∂tu

k − uk
t ), GNθk) = 0.
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From the definition of GN , we find

(∂tθ
k, GNθk) = (∂t(GNθk)x, (GNθk)x) + (∂t(GNθk), GNθk) =

1

2
∂t‖GNθk‖2

1,

(−αθkxx + αθk, GNθk) = α((GNθk)x, θ
k
x) + α(GNθk, θk) = α(θk, θk) = α‖θk‖2,

β(θkxxx, GNθk) = −β(θk, (GNθk)xxx)
= −β((GNθk)x, (GNθk)x4) − β(GNθk, (GNθk)xxx)
= 0

and

(∂tu
k − uk

t , GNθk) = (GN (∂tu
k − uk

t ), θ
k) ≤ α

2
‖θk‖2 +

2

α
‖GN (∂tu

k − uk
t )‖2.

Therefore

∂t‖GNθk‖2
1 + α‖θk‖2 ≤ 1

α
‖GN (∂tu

k − uk
t )‖2.

Multiplying this inequality by τtk, summing them for k from 1 to n, and using
‖GNutt‖ ≤ c‖ut‖1, we have

tn‖GNθk‖2
1 + ατ

n∑
k=1

tk‖θk‖2

≤ τ2

α

n∑
k=1

tk‖GN (∂tu
k − uk

t )‖2 + τ

n∑
k=1

‖GNθk‖2
1

≤ τ

α

∫ tn

0

s‖GNutt‖2ds + τ

n∑
k=1

‖GNθk‖2
1

≤ cτ2(1 + t2n) + τ

n∑
k=1

‖GNθk‖2
1.

(3.10)

To estimate τ
∑n

k=1 ‖GNθk‖2
1 in the above relation, let ϕ = G2

Nθk in (3.7). Then
we have

(∂tθ
k − αθkxx + βθkxxx + αθk − (∂tu

k − uk
t ), G

2
Nθk) = 0.

From the definition of GN , we obtain

(∂tθ
k, G2

Nθk) =
1

2
∂t‖GNθk‖2 +

τ

2
‖GN (∂tθ

k)‖2,

(−αθkxx + αθk, G2
Nθk) = α‖GNθk‖2

1,

β(θkxxx, G
2
Nθk) = 0

and

(∂tu
k − uk

t , G
2
Nθk) = ((G2

N (∂tu
k − uk

t ))x, (GNθk)x) + (G2
N (∂tu

k − uk
t ), GNθk)

≤ α

2
‖GNθk‖2

1 +
1

2α
‖G2

N (∂tu
k − uk

t )‖2
1.

Therefore

∂t‖GNθk‖2 + α‖GNθk‖2
1 ≤ 1

α
‖G2

N (∂tu
k − uk

t )‖2
1.
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Taking the sum of the above relation for k from 1 to n, and applying ‖G2
Nutt‖1 ≤

c‖ut‖, it is derived that

‖GNθk‖2 + ατ

n∑
k=1

‖GNθk‖2
1 ≤ τ

α

n∑
k=1

‖G2
N (∂tu

k − uk
t )‖2

1

≤ τ2

α

∫ tn

0

‖G2
Nutt‖2

1ds ≤ cτ2(1 + tn).

(3.11)

Combining (3.9)–(3.11), we have

t2n‖θn‖2 + τ2

n∑
k=1

t2k‖∂tθ
k‖2 + ατ

n∑
k=1

t2k‖θk‖2
1 + ατ

n∑
k=1

tk‖θk‖2

≤ cτ2(1 + t3n).

(3.12)

Let ϕ = −θkxx in (3.7), and then we have

1

2
∂t‖θkx‖2 +

τ

2
‖∂tθ

k
x‖2 + α‖θkxx‖2 + α‖θkx‖2 = (∂tu

k − uk
t ,−θxx)

≤ α

2
‖θkxx‖2 +

1

2α
‖∂tu

k − uk
t ‖2,

namely,

∂t‖θkx‖2 + τ‖∂tθ
k
x‖2 + α‖θkxx‖2 + α‖θkx‖2 ≤ 1

α
‖∂tu

k − uk
t ‖2.

Multiplying this by τt3k, taking the sum for k from 1 to n, and using (3.12), we have

t3n‖θnx‖2 + τ2

n∑
k=1

t3k‖∂tθ
k
x‖2 + ατ

n∑
k=1

t3k(‖θkxx‖2 + ‖θkx‖2)

≤ τ

α

n∑
k=1

t3k‖∂tu
k − uk

t ‖2 + 7τ

n∑
k=1

t2k‖θkx‖2

≤ τ

α

(
n∑

k=2

t3k
τ2

∫ tk

tk−1

(s− tk−1)
2

s3
ds

∫ tk

tk−1

s3‖utt‖2ds + τ3‖∂tu
1 − u1

t‖2

)
+cτ2(1 + t3n)

≤ 2τ2

α

∫ tn

τ

s3‖utt‖2ds +
2τ2

α

∥∥∥∫ τ

0

utds
∥∥∥2

+
2τ4

α
‖u1

t‖2 + cτ2(1 + t3n)

≤ cτ2(1 + t4n) + cτ3(1 + τ2) +
2τ2

α

∫ τ

0

‖ut‖2ds

≤ cτ2(1 + t4n).

(3.13)

Multiplying (3.13) by
1

ατ
, we have

t3n‖θnxx‖2 ≤ cτ(1 + t4n).(3.14)

Step 2. Take the error estimates of solution un
N of problem (1.4), (1.5). Let

vkN − uk
N = ek. Then ek satisfies

(∂te
k − αekxx + βekxxx + f(uk)x, ϕ) −B(uk−1

N , uk
N , ϕ)

= (α θk + g(uk) −G(uk−1
N )uk

N , ϕ) for all ϕ ∈ SN , k = 1, 2, . . . ,
(3.15)

e0 = 0.(3.16)
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Let ϕ = ek in (3.15), and then we have

1

2
∂t‖ek‖2 +

1

2
‖∂te

k‖2 + α‖ekx‖2 + B(uk, uk, ek) −B(uk−1
N , uk

N , ek)

= (g(uk) −G(uk−1
N )uk

N , ek) + α(θk, ek).

We now estimate every term in the above equality. First,

(g(uk) −G(uk−1
N )uk

N , ek)

= (g(uk) − g(uk
N ) + G(uk

N )uk
N −G(uk−1

N )uk
N , ek),

where

(g(uk) − g(uk
N ), ek) = (g′(η1)(ρ

k + θk + ek), ek) ≤ 15b

16
‖ek‖2 + c(‖ρk‖2 + ‖θk‖2)

and

(G(uk
N )uk

N −G(uk−1
N )uk

N , ek) ≤ |b|
16

‖ek‖2 + c‖∂tu
k
N‖2.

Thus

(g(uk) −G(uk−1
N )uk

N , ek) ≤ 7b

8
‖ek‖2 + c (‖ρk‖2 + ‖θk‖2 + τ2‖∂tu

k
N‖2).

Second,

B(uk, uk, ek) −B(uk−1
N , uk

N , ek)

= (F (uk)uk
x − F (uk−1

N )uk
Nx, e

k) − (F (uk)uk − F (uk−1
N )uk

N , ekx),

where

(F (uk)uk
x − F (uk−1

N )uk
Nx, e

k)

= (F (uk)(uk
x−uk

Nx), ek)+(F (uk)−F (uk−1), uk
Nxe

k)+(F (uk−1)−F (uk−1
N ), uk

Nxe
k)

Δ
= I1 + I2 + I3,

I1 = −(F (uk)x e
k + F (uk)ekx, u

k − uk
N ) ≤ c‖uk − uk

N‖ (‖ek‖ + ‖ekx‖)

≤ c(‖ek‖ + ‖ekx‖) (‖ρk−1‖ + ‖θk−1‖ + ‖ek−1‖ + τ‖∂tu
k‖ + τ‖∂tu

k
N‖)

≤ c

(
‖ek−1‖2 + ‖ρk−1‖2 + ‖θk−1‖2 + τ

∫ tk

tk−1

‖ut‖2ds + τ2‖∂tu
k
N‖2

)

+
( |b|

16
‖ek‖2 +

α

16
‖ekx‖2

)
,

I2 = (F ′(η)uk
Nx(uk − uk−1), ek) ≤ |b|

16
‖ek‖2 + cτ

∫ tk

tk−1

‖ut‖2 ds,

I3 = (F ′(η)uk
Nx(uk−1 − uk−1

N ), ek)

≤ |b|
16

‖ek‖2 + c
(
‖ρk−1‖2 + ‖ek−1‖2 + ‖θk−1‖2).

Thus

(F (uk)uk
x − F (uk−1

N )uk
Nx, e

k) ≤ 3|b|
16

‖ek‖2 +
α

16
‖ekx‖2

+c

(
‖ek−1‖2 + ‖ρk−1‖2 + ‖θk−1‖2 + τ

∫ tk

tk−1

‖ut‖2ds + τ2‖∂tu
k
N‖2

)
.
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Similarly

(F (uk)uk − F (uk−1
N )uk

N , ekx)

= (uk(F (uk) − F (uk−1) + (uk(F (uk−1) − F (uk−1
N )) + F (uk)(uk − uk

N ), ekx)

≤ α

16
‖ekx‖2 + c

(
‖ek−1‖2 + ‖ρk−1‖2 + ‖θk−1‖2 + τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

‖ut‖2 ds

)
.

Thus

B(uk, uk, ek) −B(uk−1
N , uk

N , ek) ≤ α

8
‖ekx‖2 +

3|b|
16

‖ek‖2

+ c

(
‖ek−1‖2 + ‖ρk−1‖2 + ‖θk−1‖2 + τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

‖ut‖2 dds

)
.

Finally

α(θk, ek) ≤ |b|
16

‖ek‖2 + c‖θk‖2.

Therefore

∂t‖ek‖2 + α‖ekx‖2 − b‖ek‖2 + τ‖∂te
k‖2 ≤ c(‖ek−1‖2 + ‖ρk‖2 + ‖θk‖2)

+ c

(
‖ρk−1‖2 + ‖θk−1‖2 + τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

‖ut‖2ds

)
.

(3.17)

By applying the discrete Gronwall’s inequality to (3.17), and using Lemma 1.1, Lemma
2.3, Theorem 3.2, (3.10), and (3.11), we have

‖en‖2 ≤ c ectnτ

n∑
k=1

(
‖ρk‖2 + ‖θk‖2 + τ2‖∂tu

k
N‖2 + τ

∫ tn

tk−1

‖ut‖2ds

)
≤ c(1 + t2n)ectn(N−4 + τ).

(3.18)

Taking the sum of (3.17) for k from 1 to n and using (3.18) and (3.9)–(3.11), we have

τ

n∑
k=1

‖ek‖2
1 + τ2

n∑
k=1

‖∂te
k‖2 ≤ c(1 + t3n) ectn(N−4 + τ).(3.19)

Let ϕ = −ekxx in (3.15), and then similarly as in (3.17) we have

∂t‖ekx‖2 + α‖ekxx‖2 ≤ c
(
‖ρk‖2

1 + ‖θk‖2
1 + τ2‖∂tu

k
N‖2

1 + ‖ek‖2
)
.

Multiplying the above relation by τtk, summing them for k from 1 to n, and using
Lemma 2.5, (3.18), (3.19), (3.9)–(3.11), we have

tn‖ekx‖2 + ατ

n∑
k=1

tk‖ekxx‖2

≤ τ

n∑
k=1

‖ekx‖2 + τ

n∑
k=1

tk(‖ek‖2 + ‖θk‖2
1 + ‖ρk‖2

1 + τ2‖∂tu
k
N‖2

1)

≤ c(1 + t4n)ectn(N−2 + τ).

(3.20)
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Letting ϕ = ex4 in (3.15), we have

1

2
∂t‖ekxx‖2 +

τ

2
‖∂te

k
xx‖2 + α‖ekxxx‖2 + B(uk, uk, ekx4) −B(uk−1

N , uk
N , ekx4)

= (g(uk) −G(uk−1
N )uk

N , ekx4) + α(θk, ekx4).
(3.21)

Now we estimate the last three terms in (3.21). First, from the definition of
B(u, v, ϕ), we have

B(uk, uk, ekx4) −B(uk−1
N , uk

N , ekx4)

= 2
(
F (uk)uk

xx − F (uk−1
N )uk

Nxx,−ekxxx

)
+3

(
F ′(uk)(uk

x)2 − F ′(uk−1
N )uk−1

Nx uk
Nx,−ekxxx

)
+
(
F ′(uk)ukuk

xx − F ′(uk−1
N )uk

Nuk−1
Nxx,−ekxxx

)
+
(
F ′′(uk)uk(uk

x)2 − F ′′(uk−1
N )uk

N (uk−1
Nx )2,−ekxxx

)
= I7 + I8 + I9 + I10,

where

I7 ≤ α

16
‖ekxxx‖2 + c(‖ρk‖2

2 + ‖θk‖2
2 + ‖ek‖2 + τ2‖∂tu

k
N‖2),

I8 ≤ α

16
‖ekxxx‖2 + c

(
‖ρk‖2

1 + ‖θkx‖2 + ‖ek‖2 + τ2‖∂tu
k
N‖2

1

)
,

I9 ≤ α

16
‖ekxxx‖2 + c

(
‖ρk‖2

2 + ‖θk‖2
2 + ‖ek‖2 + τ2‖∂tu

k
N‖2

2

)
and

I10 ≤ α

16
‖ekxxx‖2 +

(
‖ρk‖2

1 + ‖θk‖2
1 + ‖ek‖2 + τ2‖∂tu

k
N‖2

1

)
.

Thus

B(uk, uk, ekx4) −B(uk−1
n , uk

N , ekx4)

≤ α
4 ‖e

k
xxx‖2 + c

(
‖ρk‖2

2 + ‖θk‖2
2 + ‖ek‖2 + τ2‖∂tu

k
N‖2

2

)
.

(3.22)

Second, by the definition of G(u), we have(
g(uk) −G(uk−1

N ), ekx4

)
=

(
g′(uk)uk

x −G′(uk−1
N )uk−1

Nx uk
N −G(uk−1

N )uk
Nx,−ekxxx

)
≤ 1

8
‖ekxxx‖2 + c

(
‖ρk‖2

1 + ‖θk‖2
1 + ‖ek‖2 + τ2‖∂tu

k
N‖2

1

)
.

(3.23)

Finally

α(θk, ekx4) ≤
α

8
‖ekxxx‖2 + c‖θkx‖2.(3.24)

Combining (3.21)–(3.24), we have

∂t‖ekxx‖2 + α‖ekxxx‖2 ≤ c(‖ρk‖2
2 + ‖θk‖2

2 + ‖ek‖2 + τ2‖∂tu
k
N‖2

1).(3.25)
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From Lemma 1.1, we have

‖ρk‖2
2 ≤ cN−2‖uk

xxx‖2.

From Theorem 3.2, we have

tk‖uk
xxx‖2 ≤ c(1 + t2k).

Hence multiplying (3.25) by τt2k, summing them and using (3.9)–(3.14), (3.19), and
(3.20), we have

t2n‖enxx‖2 + ατ

n∑
k=1

t2k‖ekxxx‖2

≤ cτ

n∑
k=1

t2k(‖uk
xxx‖2N−2 + ‖θk‖2

2 + ‖ek‖2 + τ2‖∂tu
k
N‖2

1) + 2τ

n∑
k=1

tk‖ekxx‖2

≤ c(1 + t5n)ectn(N−2 + τ).

By using the triangle inequality, we have

‖un − un
N‖2

2 ≤ 3(‖ρn‖2
1 + ‖θn‖2

2 + ‖ek‖2
2)

≤ cectn(1 + t−3
n + t3n)(N−2 + τ)

for all t ∈ (0,+∞).

Finally, applying Theorem 3.3, we complete the proof of this theorem.

4. Stability of the discrete autonomous system. In this section, the sta-
bility of the discrete scheme (1.4), (1.5) is proved.

Theorem 4.1. Suppose that f, g, h satisfy the conditions of Lemma 2.5. Let
{un

N}, {vnN} be the two solutions of the discrete scheme (1.4), (1.5) with the initial
values {u0

N}, {v0
N}, respectively, and the initial values satisfy ‖u0

N‖1 ≤ R0, ‖v0
N‖1 ≤

R0. Then we have

‖un
N − vnN‖1 ≤ cectn‖u0

N − v0
N‖1 for all n ≥ 1.

Furthermore, if f, g, h satisfy the conditions of Lemma 2.7, and ‖u0
N‖2 ≤ R0,

‖v0
N‖2 ≤ R0, then we have

‖un
N − vnN‖2 ≤ cectn‖u0

N − v0
N‖2 for all n ≥ 1.

Proof. Let wk
N = uk

N − vkN , and then wk
N satisfies

(∂tw
k
N − αwk

Nxx + βwk
Nxxx, ϕ) + B(uk−1

N , uk
N , ϕ) −B(vk−1

N , vkN , ϕ)

= (G(uk−1
N )uk

N −G(vk−1
N )vkN , ϕ), for all ϕ ∈ SN , k = 1, 2, . . . .

(4.1)

First, we assume that the conditions of Lemma 2.5 are satisfied.
Letting ϕ = wk

N in (4.1), we have

1

2
∂t‖wk

N‖2 + α‖wk
Nx‖2 ≤ −

(
B(uk−1

N , uk
N , wk

N ) −B(vk−1
N , vkN , wk

N )
)

+(G(uk−1
N )uk

N −G(vk−1
N )vkN , wk

N ).
(4.2)

Now we estimate the last two terms. First, by applying the definition of B(u, v, w)
and G(u), Sobolev interpolation inequality, Young’s inequality, and the estimates in
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section 2, we obtain∣∣B(uk−1
N , uk

N , wk
N ) −B(vk−1

N , vkN , wk
N )

∣∣ =
∣∣B(uk−1

N , uk
N , wk

N ) −B(vk−1
N , uk

N , wk
N )

∣∣
=

∣∣(F (uk−1
N ) − F (vk−1

N ))uk
Nx, w

k
N ) − ((F (uk−1

N ) − F (vk−1
N ))uk

N , wk
Nx

)∣∣
≤ |b|

4
‖wk

N‖2 +
α

2
‖wk

Nx‖2 + c‖vkN‖2
1 ‖wk−1

N ‖2

and

(G(uk−1
N )uk

N −G(vk−1
N )vkN , wk

N )

=
(
(G(uk−1

N ) −G(vk−1
N )uk

N , wk
N ) + (G(vk−1

N )wk
N , wk

N )

≤ c‖uk
N‖∞‖wk

N‖ ‖wk−1
N ‖ + b‖wk

N‖2 ≤ 3b

4
‖wk

N‖2 + c‖uk
N‖2

1‖wk−1
N ‖2.

Hence (4.2) can be rewritten as

∂t‖wk
N‖2 + α‖wk

Nx‖2 − b‖wk
N‖2 ≤ c‖uk

N‖2
1 ‖wk−1

N ‖2.(4.3)

By applying the discrete Gronwall’s inequality, we obtain

‖wk
N‖2 ≤ ‖w0

N‖2ectn = ectn‖u0
N − v0

N‖2 for all n ≥ 1.(4.4)

Taking the sum of (4.3) for k from 1 to n, we have

‖wk
N‖2 + τ

n∑
k=1

‖wk
N‖2

1 ≤ (1 + cectn)‖u0
N − v0

N‖2.(4.5)

Letting ϕ = −wk
Nxx in (4.1), we have

1

2
∂t‖wk

Nx‖2 + α‖wk
Nxx‖2 + B(uk−1

N , uk
N ,−wk

Nxx) −B(vk−1
N , vkN ,−wk

Nxx)

≤ (G(uk−1
N )uk

N −G(vk−1
N )vkN ,−wk

Nxx).
(4.6)

Since

B(uk−1
N , uk

N ,−wk
Nxx) −B(vk−1

N , vkN ,−wk
Nxx)

= B(uk−1
N , wk

N ,−wk
Nxx) + B(uk−1

N , vkN ,−wk
Nxx) −B(vk−1

N , vkN ,−wk
Nxx),

where

B(uk−1
N , wk

N ,−wk
Nxx) = (2F (uk−1

N )wk
Nx + F ′(uk−1

N )uk−1
Nx wk

N ,−wk
Nxx)

≤ c‖wk
Nxx‖(‖uk−1

N ‖∞‖wk
Nx‖ + ‖uk−1

Nx ‖ ‖wk
N‖∞)

≤ α

6
‖wk

Nxx‖2 + c‖uk−1
N ‖2

1 ‖wk
N‖2,

B(uk−1
N , vkN ,−wk

Nxx) −B(vk−1
N , vkN ,−wk

Nxx)

= 2(F (uk−1
N ) − F (vk−1

N ),−vkNxw
k
Nxx) + (F ′(uk−1

N )wk−1
Nx ,−vkNwk

Nxx)

+ (F ′(uk−1
N ) − F ′(vk−1

N ),−vk−1
Nx vkNwk

Nxx)

≤ c‖wk
Nxx‖ (‖vkN‖∞‖wk−1

Nx ‖ + (‖vkNx‖ + ‖vk−1
Nx ‖) ‖wk−1

N ‖∞)

≤ α

6
‖wk

Nxx‖2 + c(‖vkN‖2
1 + ‖vk−1

N ‖2) ‖wk−1
N ‖2

1
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and

(G(uk−1
N )uk

N −G(vk−1
N )vkN ,−wk

Nxx)

= (G(uk−1
N )wk

N + (G(uk−1
N ) −G(vk−1

N )vkN ,−wk
Nxx)

≤ c‖wk
Nxx‖ (‖uk−1

N ‖∞‖wk
N‖ + ‖vkN‖∞‖wk−1

N ‖)

≤ α

6
‖wk

Nxx‖2 + c(‖uk−1
N ‖2

1 + ‖vkN‖2
1) (‖wk

N‖2 + ‖wk−1
N ‖2),

(4.6) can be rewritten as

∂t‖wk
Nx‖2 + α‖wk

Nxx‖2 ≤ c(‖wk
N‖2 + ‖wk−1

N ‖2
1).(4.7)

Taking the sum of (4.7) for k from 1 to n, and applying (4.4) and (4.5), we have

‖wNx‖2 + ατ

n∑
k=1

‖wk
Nxx‖2 ≤ ‖w0

Nx‖2 + cectn‖w0
N‖2.(4.8)

Now we assume that the conditions of Lemma 2.7 are satisfied.
Letting ϕ = wk

Nx4 in (4.1), we have

1

2
∂t‖wk

Nxx‖2 + α‖wk
Nxxx‖2 + B(uk−1

N , uk
N , wk

Nx4) −B(vk−1
N , vkN , wk

Nx4)

≤ (G(uk−1
N )uk

N −G(vk−1
N )vkN , wk

Nx4).
(4.9)

Since

B(uk−1
N , uk

N , wk
Nx4) −B(vk−1

N , vkN , wk
Nx4)

= B(uk−1
N , wk

N , wk
Nx4) + B(uk−1

N , vkN , wk
Nx4) −B(vk−1

N , vkN , wk
Nx4),

where

B(uk−1
N , wk

N , wk
Nx4)

= (2F (uk−1
N )wk

Nx + F ′(uk−1
N )uk−1

Nx wk
N , wk

Nx4)

= (2F (uk−1
N )wk

Nxx + 3F ′(uk−1
N )uk−1

Nx wk
Nx + F ′(uk−1

N )uk−1
Nxxw

k
N ,−wk

Nxxx)

+ (F ′′(uk−1
N )(uk−1

Nx )2wk
N ,−wk

Nxxx)

≤ ‖wk
Nxxx‖ (‖uk−1

N ‖ ‖wk
Nxx‖ + ‖uk−1

Nx ‖∞‖wk
Nx‖

+‖uk−1
Nxx‖ ‖u

k−1
Nx ‖ ‖wk

N‖∞ + ‖uk−1
Nx ‖∞‖wk

N‖)

≤ α

8
‖wk

Nxxx‖2 + c‖uk−1
N ‖2

2 ‖wk
N‖2;

similarly we have

B(uk−1
N , vkN , wk

Nx4) −B(vk−1
N , vkN , wk

Nx4) ≤
α

8
‖wk

Nxxx‖2 + c‖vkN‖2 ‖wk−1
N ‖2

2

and

(G(uk−1
N )uk

N −G(vk−1
N )vkN , wk

Nx4)

≤ α

6
‖wk

Nxxx‖2 + c(‖uk−1
N ‖2

2 + ‖vkN‖2
2) (‖wk

N‖2
1 + ‖wk−1

N ‖2
1),
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hence

∂t‖wk
Nxx‖2 + τ‖∂tw

k
Nxx‖2 + α‖wk

Nxxx‖2 ≤ c(‖wk
N‖2 + ‖wk−1

N ‖2
2).(4.10)

Taking the sum of (4.10) for k from 1 to n, and using (4.4), (4.5), and (4.8), we have

‖wn
Nxx‖2 ≤ ‖w0

Nxx‖2 + cectn‖w0
N‖2

1 for all n ≥ 1.(4.11)

Combining (4.4), (4.8), and (4.11), we complete the proof of this theorem.

5. Long-time stability and convergence of the discrete scheme. In this
section, let h = h(x, t). To prove the long-time stability and the convergence of
discrete scheme (1.4), (1.5), the following results are necessary.

Lemma 5.1. Suppose that f ∈ Cm, g ∈ Cm−1, |f ′(s)| ≤ A(|s|2 + 1), g(0) = 0,
g′(s) ≤ b < 0, |g′(s)| ≤ B|s|(|s|4+1); h, ht ∈ L∞(R+;Hm−2

p (Ω))
⋂
L2(R+;Hm−3

p (Ω));
u0 ∈ Hm

p (Ω) (m ≥ 5). Then we have the solution u(x, t) ∈ L∞(R+;Hm
p (Ω)) ∩

L2(R+;Hm+1
p (Ω)) of problem (1.1)–(1.3), and

ut ∈ L∞(R+;Hm−3
p (Ω)) ∩ L2(R+;Hm−2

p (Ω)); utt ∈ L2(R+;Hm−5
p (Ω)).

Lemma 5.2. Under the conditions of Lemma 5.1, we have the estimates for the
solution uk

N of discrete problem (1.4), (1.5),

‖un
N‖2

2 + τ2
n∑

k=1

‖∂tu
k
N‖2

2 + τ

n∑
k=1

‖uk
N‖2

3 ≤ c for all n ≥ 1,

where the constant c is independent of N, τ , and n.
The proofs of Lemmas 5.1 and 5.2 are similar to those of Lemmas 2.3–2.7.
Now we give the main results in this section.
Theorem 5.3. Under the conditions of Lemma 5.1, we have the following error

estimates for the solutions uk
N of discrete scheme (1.4), (1.5):

‖un − un
N‖2

1 ≤ c(N−2(m−1) + τ) for all n ≥ 1,

where the constant c = c(‖u0‖m) is independent of N , τ , and n.

Proof. Let uk − uk
N = (uk − PNuk) + (PNuk − uk

N )
Δ
= ηk + ξk. Then ξk satisfies

(∂tξ
k − αξkxx + βξkxxx, ϕ) + B(uk, uk, ϕ) −B(uk−1

N , uk
N , ϕ)

= (g(uk) −G(uk−1
N )uk

N , ϕ) + (∂tu
k − uk

t , ϕ) for all ϕ ∈ SN , n ≥ 1,
(5.1)

ξ0 = 0.(5.2)

Letting ϕ = ξk in (5.1), we have

1

2
∂t‖ξk‖2 +

τ

2
‖∂tξ

k‖2 + α‖ξkx‖2 + B(uk, uk, ξk) −B(uk−1
N , uk

N , ξk)

= (g(uk) −G(uk−1
N )uk

N , ξk) + (∂tu
k − uk

t , ξ
k).

(5.3)

Now we estimate every term in the above equality. First,

(g(uk) −G(uk−1
N )uk

N , ξk) = (g(uk) − g(uk
N ), ξk) + (g(uk

N ) −G(uk−1
N )uk

N , ξk),
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where from the definition of G(u), we have

(g(uk) − g(uk
N ), ξk)

= (g′(0)(uk − uk
N ) + g′′(θ2)u

k
N (uk − uk

N ) +
1

2
g′′(θ1)(u

k − uk
N )2, ξk)

≤ b‖ξk‖2 + c‖ξk‖‖uk − uk
N‖(‖uk‖∞ + ‖uk

N‖∞)

≤ 15|b|
16

‖ξk‖2 + c(‖uk‖2
1 + ‖uk

N‖2
1)

(
‖ηk−1‖2 + ‖ξk−1‖2 + τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

‖ut‖2 ds

)

and

(g(uk
N ) −G(uk−1

N )uk
N , ξk) ≤ |b|

8
‖ξk‖2 + cτ2‖∂tu

k
N‖2.

This implies

(g(uk) −G(uk−1
N )uk

N , ξk)

≤ c(‖uk‖2 + ‖uk
N‖2) (‖ξk−1‖2 + ‖ηk−1‖2) +

7b

8
‖ξk‖2

+c
(
τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

‖ut‖2 ds
)
.

(5.4)

Second,

B(uk, uk, ξk) −B(uk−1
N , uk

N , ξk)

= (F (uk)uk
x − F (uk−1

N )uk
Nx, ξ

k) − ((F (uk)uk − F (uk−1
N )uk

N , ξkx),

where from the definition of F (u), we have

(F (uk)uk
x − F (uk−1

N )uk
Nx, ξ

k)

= (F (uk)(uk
x − uk

Nx, ξ
k) + (uk

Nx(F (uk) − F (uk−1
N )), ξk)

= (F (0)(uk
x−uk

Nx, ξ
k)+(F ′(θuk)uk(uk

x−uk
Nx), ξk)+(uk

Nx(F (uk)−F (uk−1
N )), ξk)

≤ c‖ξk‖
(
‖uk‖∞‖uk

x − uk
Nx‖ + ‖uk

Nx‖∞(‖uk − uk−1‖ + ‖uk
N − uk−1

N ‖)
)

≤ c(‖uk‖2
1 + ‖uk

N‖2
2)(‖ξk−1‖2 + ‖ηk−1‖2 + ‖ηkx‖2) +

|b|
8
‖ξk‖2 +

α

16
‖ξkx‖2

+ c

(
τ

∫ tk

tk−1

‖ut‖2 ds + τ2‖∂tu
k
N‖2

)

and

((F (uk)uk − F (uk−1
N )uk

N , ξkx) ≤ α

16
‖ξkx‖2 + c(‖uk‖2

1 + ‖uk
N‖2

1)‖ξk−1‖2

+ c(‖uk‖2
1 + ‖uk

N‖2
1)
(
‖ηk−1‖2 + τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

‖ut‖2 ds
)
.

Hence

B(uk, uk, ξk) −B(uk−1
N , uk

N , ξk)

≤ c(‖uk‖2
1 + ‖uk

N‖2
2)(‖ξk−1‖2 + ‖ηk−1‖2 + ‖ηk‖2

1) +
α

8
‖ξkx‖2

+
|b|
8
‖ξk‖2 + c

(
τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

‖ut‖2 ds

)
.

(5.5)
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Finally

(∂tu
k − uk

t , ξ
k) ≤ |b|

16
‖ξk‖2 + cτ

∫ tk

tk−1

‖utt‖2 ds.(5.6)

Then combining (5.3) to (5.6), we obtain

∂t‖ξk‖2 + τ‖∂tξ
k‖2 + ‖ξk‖2

1

≤ c(‖uk‖2
1 + ‖uk

N‖2
2) ‖ξk−1‖2 + c(‖uk‖2

1 + ‖uk
N‖2

2) (‖ηk−1‖2 + ‖ηk‖2
1)

+ c

(
τ2‖∂tu

k
N‖2 + τ

∫ tk

tk−1

(‖utt‖2 + ‖ut‖2)ds

)
.

(5.7)

By using the integrating formula by parts, it is easily proved that

τ

∞∑
k=0

‖uk‖2
1 ≤ τ

∫ ∞

0

‖ut‖2
1 dt + (1 + τ)

∫ ∞

0

‖u‖2
1 dt;

then by applying the discrete Gronwall’s inequality to (5.7) and using Lemma 1.1 and
Lemmas 5.1–5.2, we derive

‖ξn‖2 ≤ c(N−2(m−1) + τ).(5.8)

Taking the sum of (5.7) for k from 1 to n and using the above inequality, it is obtained
that

τ2
n∑

k=1

‖∂tξ
k‖2 + τ

n∑
k=1

‖ξk‖2
1 ≤ c(N−2(m−1) + τ).

Let ϕ = ξkxx in (5.1). Then similar to (5.7) we have

∂t‖ξkx‖2 + α‖ξkxx‖2 ≤ c(‖uk‖2
1 + ‖uk

N‖2
2)(‖ηk‖2

1 + ‖ηk−1‖2)

+

(
‖ξk‖2 + τ2‖∂tu

k
N‖2

1 + τ

∫ tk

tk−1

‖utt‖2ds

)
.

Summing them for k from 1 to n, and using the previous estimates, we have

‖ξnx‖2 + τ

n∑
k=1

‖ξkxx‖2 ≤ c(N−2(m−1) + τ).(5.9)

Now combining (5.8) and (5.9) and using the triangle inequality, we complete the
proof of the theorem.

Theorem 5.4. Suppose that f, g satisfy the conditions of Theorem 5.3; h, ht ∈
L2(R+; H1

p (Ω)); {un
N} and {vnN} are the two solutions of the discrete scheme (1.4),

(1.5) with initial values {u0
N} and {v0

N}, respectively; and the initial values satisfy
‖u0

N‖2 ≤ R0, ‖v0
N‖2 ≤ R0. Then we have

‖un
N − vnN‖2 ≤ c‖u0

N − v0
N‖2 for all n ≥ 0,

where the constant c is independent of N, τ , and tn.
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Proof. The proof of this theorem is similar to that of Theorem 4.1. Let uk
N−vkN =

wk
N . Then by applying Lemma 5.2 and the discrete Gronwall’s inequality to (4.3), we

have

‖wn
N‖2 ≤ ‖w0

N‖2 exp

(
cτ

n∑
k=0

‖uk
N‖2

1

)
≤ c ‖w0

N‖2.(5.10)

Taking the sum of (4.3) and using (5.10) and Lemma 5.2, we obtain

τ2
n∑

k=1

‖∂tw
k
N‖2 + ατ

n∑
k=1

‖wk
Nx‖2 − b

n∑
k=1

‖wk
N‖2 ≤ c‖w0

N‖2.(5.11)

Taking the sum of (4.7) and using (5.11), we have

‖wn
Nx‖2 + τ2

n∑
k=1

‖∂tw
k
Nx‖2 + α

n∑
k=1

‖wk
Nxx‖2 ≤ ‖w0

Nx‖2 + c‖w0
N‖2.(5.12)

Taking the sum of (4.10) and using (5.11), (5.12), we find

‖wn
Nxx‖2 ≤ ‖w0

Nxx‖2 + c‖w0
N‖2

1.(5.13)

Now combining (5.10), (5.12), and (5.13), we recover the results of this
theorem.
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A MATRIX ANALYSIS OF OPERATOR-BASED UPSCALING FOR
THE WAVE EQUATION∗
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Abstract. Scientists and engineers who wish to understand the earth’s subsurface are faced with
a daunting challenge. Features of interest range from the microscale (centimeters) to the macroscale
(hundreds of kilometers). It is unlikely that computational power limitations will ever allow modeling
of this level of detail. Numerical upscaling is one technique intended to reduce this computational
burden. The operator-based algorithm (developed originally for elliptic flow problems) is modified
for the acoustic wave equation. With the wave equation written as a first-order system in space, we
solve for pressure and its gradient (acceleration). The upscaling technique relies on decomposing the
solution space into coarse and fine components. Operator-based upscaling applied to the acoustic
wave equation proceeds in two steps. Step one involves solving for fine-grid features internal to coarse
blocks. This stage can be solved quickly via a well-chosen set of coarse-grid boundary conditions.
Each coarse problem is solved independently of its neighbors. In step two we augment the coarse-
scale problem via this internal subgrid information. Unfortunately, the complexity of the numerical
upscaling algorithm has always obscured the physical meaning of the resulting solution. Via a detailed
matrix analysis, the coarse-scale acceleration is shown to be the solution of the original constitutive
equation with input density field corresponding to an averaged density along coarse block edges. The
pressure equation corresponds to the standard acoustic wave equation at nodes internal to coarse
blocks. However, along coarse cell boundaries, the upscaled solution solves a modified wave equation
which includes a mixed second-derivative term.

Key words. upscaling, multiscale methods, acoustic wave propagation, matrix analysis, seis-
mology

AMS subject classifications. 35L05, 74Q15, 86-08, 86A15, 65M06

DOI. 10.1137/050625369

1. Introduction. Many problems in physics and engineering result in models
involving multiple scales. Often, one is forced to solve partial differential equations
with highly oscillatory coefficients over very large spatial domains. The size of the
resulting discrete problems makes a direct numerical simulation extremely difficult.
In reservoir simulation, for example, it is common to require tens of millions of grid
blocks to capture the fluctuations in the permeability of the medium [10]. Upscaling
(or multiscale) techniques provide a way to solve the problem on a coarser scale while
still capturing some of the effects of the fine scale.

There are two main approaches to upscaling. The first idea involves averaging the
input data and thereby forming effective (or upscaled) parameters. A new problem
corresponding to this upscaled data is solved on a coarse grid [7], [10]. The second
approach allows the problem to be solved on the coarse scale without explicitly form-
ing effective coefficients. Instead, some kind of operator-based technique is used to
incorporate the fine-grid information into a coarse solution [4], [14].

Averaging techniques [16], [10] and the methods based on homogenization [7],
[8] are examples of the first approach. Averaging is one of the simplest methods for
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calculating effective parameters. The general idea is to obtain an effective value on
each coarse block as some kind of average (arithmetic, harmonic, or geometric) of
the original input parameter field. The averaging methods have a limited range of
application. They only give correct results for certain types of media [16].

The methods based on homogenization theory [7], [8], [1] use asymptotic analysis
to replace the given problem by a macroscopic problem with simple effective coef-
ficients. (In many cases the effective coefficients are constants.) Homogenization is
based on two main hypotheses:

• the medium under study is periodic, and
• the period is small compared to the size of the domain.

In homogenization, the effective parameters are constructed analytically. This con-
struction requires the solution of so-called cell problems—boundary value problems
within a single period cell. The main drawback of such methods is that they are,
typically, not applicable to realistic nonperiodic structures.

More recently, a number of methods of the second, operator-based, type have
been introduced and developed. The multiscale finite element method for elliptic
problems with rapidly oscillating coefficients developed by Hou and Wu is an example
of this approach [14], [12]. The idea behind the multiscale finite element method
is to construct special coarse-scale finite element basis functions which capture the
small-scale information within each element. These basis functions are obtained by
solving homogeneous elliptic equations in each element subject to specified boundary
conditions. The effect of the small scale is then incorporated into the coarse solution
through the global stiffness matrix. The main difficulty is that large errors may result
from “resonance” between the grid scale and the scales of the continuous problem.
An oversampling technique is used to overcome this limitation [9], [18], [13].

Another example of the operator-based approach to upscaling is the mortar
method [15], [19]. This method is based on domain decomposition. The physical
domain is decomposed into a series of blocks in which different numerical grids, phys-
ical models, and discretization techniques can be used. Mortar finite element spaces
are then used to allow for nonmatching grids across the block interfaces and to im-
pose physically meaningful interface continuity conditions. One of the advantages of
the method is that one may vary the number of mortar degrees of freedom and thus
achieve improvements in accuracy. The disadvantage of the mortar technique is that
it can be expensive, especially when a large number of degrees of freedom are used in
the interface problems.

The operator-based upscaling technique was introduced for elliptic equations by
Arbogast, Minkoff, and Keenan in [4]. The method was further developed by Arbogast
et al. in [3], [6], [5]. The idea of the method is to decompose the solution into two
parts: a coarse grid representation and a subgrid component. The subgrids are the
portions of the domain contained within each of the coarse-grid cells. The problem
is solved in two steps. First, we solve for the fine-scale information internal to each
coarse cell. Due to a simplifying assumption imposed on the boundaries of the coarse
cells, these subgrid problems decouple and can be solved independently. The second
step involves using the subgrid solutions to modify the coarse-scale operator. The
resulting coarse-scale solution includes some of the fine-scale features of the problem
under study. A significant advantage of this method is that we use data provided
on the fine scale directly in our computations (no averaging). Further, we need not
assume that the medium is periodic. Perhaps most importantly, however, the operator
upscaling method does not assume a separation of scales (a fundamental underlying
assumption of asymptotic techniques). Geologic materials contain heterogeneities on
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a continuum of scales which for realistic problems negates the basic separation of
scales hypothesis.

In the companion paper by Vdovina, Minkoff, and Korostyshevskaya [17] we adapt
operator-based upscaling for use with the acoustic wave equation. We focus on the
second-order in space and time acoustic wave equation which we write as a system of
two first-order equations (in space). Thus we solve for both pressure and its derivative
(acceleration). The practical details of both the serial and parallel implementations of
the algorithm are described in that paper. Specifically we detail the numerical imple-
mentation of the system described in section 2.1 of this paper (the original upscaled
system). The two-stage algorithm requires solving the subgrid equations (2.5–2.6) and
the coarse equation (2.7) for each time step. In Vdovina et al. [17] we describe the rel-
ative costs of the serial and parallel implementations as well. Upscaling by definition
implies that we are not solving the full fine-grid problem. Some simplifications must
be made to speed up the computation. With this method our primary simplification is
that we impose zero flux conditions between coarse blocks at the subgrid stage of the
algorithm (when we solve for internal subwavelength scale information). This assump-
tion means that the most costly part of the algorithm (the subgrid solve) is trivial to
parallelize. Each coarse cell is solved independently of its neighbors. Thus we achieve
near-optimal speedup for the parallel upscaling algorithm. Because acceleration is up-
scaled but pressure is defined only on the fine grid in our current implementation, we
find that standard fine grid stability and dispersion results (CFL and number of grid-
points per wavelength) hold. (Extensions of the method for upscaling both pressure
and acceleration are also discussed in [17].) Finally, three realistic numerical experi-
ments are described in that paper. We compare the upscaled solution to a full finite
difference solution of the wave equation for a periodic (checkerboard) velocity, a finely
layered medium, and a stochastic velocity field describing a two-component mixture
of materials taken from a von Karman distribution. These three velocity fields were
chosen primarily for their geologic relevance. (They contain basic components one
might encounter in subsurface regions such as the Gulf of Mexico or deep crust.) The
upscaled solution qualitatively captures even the subwavelength-scale heterogeneity
of the full solution.

Our focus in this work is on addressing the question of what the upscaled solu-
tion means. What physics does the solution model? Is our model still the acoustic
wave equation or an attenuated version of the wave equation? We provide the first
answers to these questions in this paper via a linear algebra analysis of the method.
What this analysis highlights is that the numerical upscaling process solves a consti-
tutive equation similar in form to the original equation. The constitutive equation
relates acceleration to the gradient of pressure. For the coarse (upscaled) problem,
however, the parameter field (density) reduces to an averaged density along coarse
block edges. Similarly, when analyzing the pressure equation, we find the upscaled
solution solves the original wave equation at nodes internal to the coarse blocks, but
a modified equation at coarse block edges. Specifically, a cross-derivative (involving
differentiation with respect to both x and y) enters the standard wave equation. This
analysis not only simplifies the coding of the algorithm but illuminates the physical
meaning of the upscaled solution. In this paper, we focus on the theory. (We do not
include numerical experiments based on the system of equations which result from
the analysis given in this paper.) However, the new formulation should simplify the
simulations described in [17] considerably and is the subject of future work. The stan-
dard implementation of operator upscaling involves technicalities (such as the use of
numerical Green’s functions) that are no longer necessary as a result of this analysis.
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It is important to point out that the equations which result from this analysis
(specifically the conclusions of Theorems 1, 10, and 11) are to our knowledge entirely
new. While other papers exist which discuss convergence of operator upscaling for
elliptic problems in the context of finite elements, no other work (outside this paper
and the related work by Vdovina et al. [17]) discusses operator upscaling for the wave
equation. More importantly, the physics modeled by operator upscaling has not been
illuminated (for any PDE) prior to this work.

In the remainder of the paper we describe the mathematics behind the upscaling
algorithm. Then we begin the matrix analysis of the two-equation system. First we
analyze the constitutive equation for coarse acceleration. The result is both a finite
difference stencil and a continuous differential equation corresponding to the upscaled
acceleration equation. Finally, we apply a similar analysis to the pressure equation.
We define the finite difference stencils for pressure (which depend on the location of the
pressure unknown within the coarse block) and corresponding continuous differential
equations coming from the upscaling algorithm.

2. Upscaled acoustic wave equation.

2.1. Subgrid upscaling for the acoustic wave equation: Variational for-
mulation. Let Ω be a two-dimensional domain with boundary Γ. We consider the
acoustic wave equation in Ω written as a first-order system for acceleration �v and
pressure p:

�v = −1

ρ
∇p,(2.1)

1

ρc2
∂2p

∂t2
= −∇ · �v + f.(2.2)

Here c is the sound velocity, ρ is the density, and f is the source of acoustic energy.
Both c and ρ are functions of spatial location only and are assumed to be heterogeneous.
To simplify the presentation of the method, we will assume zero boundary conditions:

�v · �ν = 0 on Γ,

where �ν is the unit outward normal vector.
The subgrid upscaling technique is developed in the context of a mixed finite

element method. Let

H0(div,Ω) = {�v ∈ (L2(Ω))2 : ∇ · �v ∈ L2(Ω), and �v · �ν = 0 on Γ}.

We rewrite (2.1)–(2.2) in weak form as follows: find �v ∈ H0(div; Ω) and p ∈ L2(Ω)
such that

〈ρ�v, �u〉 = 〈p,∇ · �u〉 ,(2.3) 〈
1

ρc2
∂2p

∂t2
, w

〉
= −〈∇ · �v, w〉 + 〈f, w〉(2.4)

for all �u ∈ H0(div; Ω) and w ∈ L2(Ω).
The idea of the upscaling method is that while the original problem is posed on

a fine grid (specifically the input acceleration and density are measured fields on the
fine grid), our goal is to solve the problem on a coarse mesh. We wish to capture
some of the fine-scale information internal to each coarse cell and then to use this
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Fig. 2.1. A 2 × 2 coarse grid with coarse acceleration unknowns and a corresponding 4 × 4
fine grid with subgrid unknowns. Pressures live at the centers of the cells. Acceleration lives on cell
edges.

information to determine the best solution possible on the coarse scale. We break the
acceleration into two parts—the coarse representation (coarse-grid unknowns) and the
subgrid part (fine-grid unknowns internal to each coarse-grid cell):

�v = �vc + δ�v.

In earlier work the pressure space was also decomposed. (See [4] for an example
of this decomposition for the elliptic pressure equation.) Unfortunately, the basis
functions for the pressure space are computationally clumsy. Since no additional work
is required to keep the pressure on the fine grid, we have chosen to only decompose
acceleration in this paper. Pressure can be projected onto the coarse grid as a post-
processing step if so desired.

In the mixed finite element method, we use a rectangular two-scale mesh and
approximate the pressure and the acceleration in finite element spaces W and V ,
respectively. We take the pressure space W to be the space of piecewise discontinuous
constant functions on the fine grid with nodes at the centers of the cells. To define the
acceleration space V for the upscaling method, we introduce two finite element spaces
δV and V c associated with the fine and coarse computational grids. Both of these
spaces consist of piecewise linear vector functions of the form (a1x+b1, a2y+b2) living
on the edges of the grid blocks (see Figure 2.1). We impose an important simplifying
condition on the space δV , namely,

δ�u · �ν = 0 on the boundary of each coarse element.

This is the only simplifying assumption in the definition of our method. It allows us
to decouple the subgrid problems coming from different coarse-grid cells. Note that
this simplifying assumption only applies to the solution of the subgrid problems which
were never intended to be solved exactly but merely approximated. Exact solution
of the subgrid problems would lead us back to a full finite difference solution of the
wave equation.

The upscaling process consists of two steps. First, we restrict to the subgrid test
functions in (2.3)–(2.4) and use the above decomposition to obtain a series of subgrid
problems, one for each coarse element Ec:

〈ρ(�vc + δ�v), δ�u〉 = 〈p,∇ · δ�u〉,(2.5) 〈
1

ρc2
∂2p

∂t2
, w

〉
= −〈∇ · (�vc + δ�v), w〉 + 〈f, w〉(2.6)
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for all δ�u ∈ δV , w ∈ W . The values of �vc are unknown at this stage, so we find the
solution to the subgrid problem as a function of the coarse unknowns. Note, that the
pressure is completely determined by (2.5–2.6).

The second step of the upscaling process uses δ�v and p to determine �vc ∈ V c

through solution of the upscaled coarse equation ((2.3) with coarse-grid test func-
tions):

〈ρ(�vc + δ�v(�vc)), �uc〉 = 〈p,∇ · �uc〉(2.7)

for all �uc ∈ V c.
The problem is solved sequentially in time. We use second-order finite differences

to approximate the time derivative in (2.6). First, we find the pressure on the current
time level using the velocities and pressure from the previous time levels. Then we
solve (2.5) and (2.7) for the subgrid and coarse velocities. The process then repeats
for the next time step.

2.2. A matrix analysis discussion of subgrid upscaling. One of the main
purposes of this paper is to derive the explicit coarse-scale equation solved by the
upscaling algorithm using the discrete form of the subgrid and coarse problems. The
advantage of using the discrete formulation is that it allows us to obtain both finite
difference and continuous differential equations for coarse acceleration. The finite
difference equation yields an explicit stencil for pressure and coarse acceleration that
could be implemented directly, thus giving an alternate, simpler way to code the al-
gorithm over that which is detailed in section 2.1 of this paper and in [17]. This
analysis shows that coarse acceleration is defined using the average of density values
on the boundaries of coarse cells (in a sense defining an upscaled density). From the
finite difference equation we can derive the continuous differential equation for the
coarse problem which is similar to the original equation (2.1) with density replaced
by the upscaled density. We see that the upscaled acceleration approximates the
gradient of pressure on the boundaries of the coarse cells compensating for the simpli-
fying zero boundary conditions used by the algorithm. In this section, we derive the
matrix-vector form of the subgrid and coarse problems. In terms of linear algebra,
we see that the subgrid problems can easily be solved for the subgrid acceleration in
terms of the pressure and the coarse acceleration. Thus, we can eliminate the subgrid
unknowns from the coarse problem to obtain a matrix equation for the coarse acceler-
ation and pressure only. The analysis of the resulting system allows us to determine
the differential equation solved by the upscaling algorithm and to understand the
physical meaning of the coarse part of the solution.

Homogenization is an alternate technique for analyzing equations with param-
eters and unknowns that contain multiple scales. The operator upscaling analysis
given in this paper is complete in itself and is distinct from a homogenization analy-
sis. Future work may include comparison of operator-based upscaling results to those
obtained from asymptotic series solutions. Arbogast and Boyd [2] examine the con-
nection between the multiscale finite element method (a numerical technique based
on homogenization) and operator upscaling in the context of elliptic problems. We
do not discuss connections between methods here.

We begin by describing the finite element context in which the method is devel-
oped. In order to discretize the subgrid and the coarse problems, we use finite element
approximations of the unknown functions. In this paper, we restrict our attention to
the x component vx of the acceleration vector, since the equations for vy are similar.
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Fig. 2.2. Subgrid and coarse unknowns. The grid consists of K total coarse cells.

To simplify notation, consider a domain consisting of one row of coarse cells, each
subdivided into a number of fine cells (Figure 2.2). If K is the number of coarse cells,
we divide each coarse cell into nx fine cells in the x direction and ny fine cells in the
y direction. Then the number of fine cells in one coarse block is N = nxny, and the
total number of fine cells is KN .

In the subgrid upscaling method we will describe here, both the coarse and fine
components of the horizontal acceleration are approximated by the space of piecewise
continuous linear functions in x and piecewise constants in y. Obviously, other choices
of finite element spaces are also possible. However, this choice is the simplest. The
coarse and subgrid basis functions (uc

x)i, (δux)i for the acceleration space have nodes
at the midpoints of vertical edges of the coarse cells for the coarse acceleration and
at the midpoints of vertical edges of the fine cells for the subgrid acceleration (Figure
2.2). At time t,

vcx(t, x, y) =

K−1∑
i=1

(vc
x)i(t)(u

c
x)i(x, y),(2.8)

δvx(t, x, y) =

MK∑
i=1

(δvx)i(t)(δux)i(x, y).(2.9)

Here, K−1 is the number of the coarse acceleration unknowns, M is the number of the
subgrid acceleration unknowns inside one coarse cell so that MK is the total number
of the subgrid acceleration unknowns in the domain, and the coefficients (vc

x)i, (δvx)i
are to be determined. Since the subgrid acceleration lives on the vertical edges of the
fine cells and there are no nodes on the boundaries of the coarse cells, we have that
M = N − ny.

The pressure p is approximated by piecewise constants defined on the fine grid.
Thus, we have the expansion

p(t, x, y) =

NK∑
i=1

pi(t)wi(x, y).(2.10)

Here NK is the total number of pressure unknowns, and wm is the basis function for
pressure, which takes the value 1 on the mth subgrid cell and 0 everywhere else.

We will now derive the matrix forms of the subgrid and coarse problems and then
use these equations to eliminate the subgrid unknowns from the coarse problem. To
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obtain a linear system from subgrid equations (2.5)–(2.6), we use the finite element
expansions given in (2.8)–(2.10):

(2.11)
K−1∑
j=1

(vc
x)j〈ρ(uc

x)j , (δux)i〉 +

MK∑
j=1

(δvx)j〈ρ(δux)j , (δux)i〉 =

NK∑
j=1

pj

〈
wj ,

∂(δux)i
∂x

〉
,

i = 1, 2, . . . ,MK,

and

(2.12)
NK∑
j=1

∂2pj

∂t2

〈
1

ρc2
wj , wi

〉
= −

K−1∑
j=1

(vc
x)j

〈
∂(uc

x)j
∂x

,wi

〉
−

MK∑
j=1

(δvx)j

〈
∂(δux)j

∂x
,wi

〉
− (vy terms) + 〈f, wi〉, i = 1, 2, . . . , NK.

These equations can be written in matrix form by defining the following matrix entries:

affi,j = 〈ρ(δux)j , (δux)i〉, acfi,j = 〈ρ(uc
x)j , (δux)i〉, bfi,j =

〈
wj ,

∂(δux)i
∂x

〉
,(2.13)

wi,j =

〈
1

ρc2
wj , wi

〉
, fi = 〈f, wi〉, bci,j =

〈
wj ,

∂(uc
x)i

∂x

〉
.(2.14)

Then the subgrid system reduces to the following linear system:

Acfvc
x + Affδvx = Bfp,(2.15)

W
∂2p

∂t2
= −(Bc)Tvc

x − (Bf )T δvx − (vy terms) + F.(2.16)

Similar steps lead to a discretization of the coarse problem (2.7). We obtain the
matrix equation:

Accvc
x + (Acf )T δvx = Bcp,(2.17)

where the matrix Acc has entries

acci,j = 〈ρ(uc
x)j , (u

c
x)i〉.(2.18)

We will now use the matrix form of the subgrid and coarse problems to eliminate the
subgrid unknowns from the coarse equation. The subgrid equations are coupled to the
coarse scale unknowns. In particular, (2.15) involves coarse acceleration unknowns
vc

x, which are not known at the subgrid step of the algorithm. This equation can
easily be solved for δvx in terms of vc

x

δvx = −(Aff )−1Acfvc
x + (Aff )−1Bfp.(2.19)

Substituting (2.19) into the coarse problem (2.17), we obtain the matrix equation for
the coarse acceleration and pressure only,

(Acc − (Acf )T (Aff )−1Acf )vc
x = (Bc − (Acf )T (Aff )−1Bf )p(2.20)
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or

Uvc
x = Dp.(2.21)

Formula (2.21) gives us the matrix equation for the coarse acceleration and pressure.
We will use (2.21) later to derive a difference and then differential equations for the
coarse acceleration. Therefore, it is worthwhile to study the structure of the matrices
U and D, and to explicitly define their entries. In Theorem 1, we show that the
choice of bases for the finite element spaces results in matrices which are sparse and
have special structure. Moreover, we obtain simple explicit formulas for the entries by
computing them with special quadrature rules defined on the fine grid. The choice to
use fine grid quadratures is based on the assumption that the parameter fields ρ and
c vary on the fine scale. We do not want to introduce averaging errors by requiring
these parameters to live on the coarse grid.

Let us begin with some notation that will be used throughout the rest of this
paper. Let hx and hy be the lengths of a single fine cell in the x and y directions
respectively, and Hx, Hy the lengths of a single coarse cell in these two directions.
We denote by ρl and (uc

x)j |l the values of the density and coarse acceleration basis

functions at the lth node of subgrid acceleration, and by ρjl the values of the density
on the boundary of the coarse cell corresponding to the jth coarse acceleration node.

Theorem 1. Consider the set of subgrid problems (2.5)–(2.6) and the coarse
problem (2.7). The upscaling technique results in the linear system for the coarse
acceleration and pressure of the form

Uvc
x = Dp,

where U and D are given by (2.20)–(2.21). U is of size (K − 1) × (K − 1) and D is
of size (K − 1) ×NK.

Further, assume the density ρ and sound velocity c are smooth enough for the
inner products in the matrix entries U and D to be computed using fine-grid midpoint
and trapezoidal rules. Then the matrix U is diagonal and the matrix D is block upper
bidiagonal with blocks of size 1×N . The entries of U are given by the sum of density
values on the corresponding boundaries of the coarse cells

Ui,i = (hxhy)

ny∑
l=1

ρil.(2.22)

The blocks of D are given by

Di,i =
hxhy

hx

[
0, 0, . . . , 1, . . . , 0, 0, . . . 1

]
,(2.23)

Di,i+1 =
hxhy

hx

[
−1, 0, . . . , 0, . . . , −1, 0, . . . , 0

]
,(2.24)

where the nonzero entries correspond to the pressure nodes located along the boundaries
of the coarse cells.

Note. In this Theorem, we are using the trapezoidal rule on the fine grid in the
x direction and the midpoint rule in the y direction to compute the integrals. When
these rules are used, the quadrature node points coincide with the nodes of the subgrid
basis functions. This fact simplifies the formulas for the matrix entries. Even more
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importantly, both the midpoint rule and the trapezoidal rule are accurate enough that
no additional error is incurred for our choice of interpolating polynomials.

The results of Theorem 1 will allow us to determine the explicit difference equa-
tion for coarse acceleration solved by the upscaling algorithm and to understand the
physical meaning of the resulting problem solution.

Proof. First, let us discuss the coefficient matrix U of coarse acceleration. Recall
that

U = Acc − (Acf )T (Aff )−1Acf .(2.25)

In order to explicitly define the entries of U , we need to study the matrices Acc, Acf ,
and Aff . The following lemmas describe the structure of these matrices.

Lemma 2. The matrix Acf is a lower bidiagonal K × (K − 1) block matrix with
blocks of size M × 1. If the entries of the matrix are evaluated by the trapezoidal rule
in x and the midpoint rule in y on each fine cell, then

acfl,j = (hxhy)ρl(u
c
x)j |l.(2.26)

Proof. The entries of the matrix Acf are the inner products of the coarse and sub-
grid acceleration basis functions (2.13). Since the total number of subgrid acceleration
basis functions is MK and the total number of coarse acceleration basis functions is
K − 1, the matrix Acf is of size MK × (K − 1).

Each coarse acceleration basis function is supported on two coarse cells and,
therefore, has nonzero inner products with the subgrid functions from these coarse
cells only. For example, the first coarse acceleration basis function is nonzero on the
coarse cells 1 and 2 (Figure 2.2). Thus we can partition the matrix into blocks of size
M × 1 (where M is the number of subgrid acceleration nodes inside a single coarse

cell). Each block Acf
ij represents the interaction of the jth coarse basis function with

the ith coarse cell. Then the matrix Acf can be written as a K × (K − 1) lower
bidiagonal block matrix:

Acf =

⎡
⎢⎢⎢⎢⎢⎢⎣

Acf
1,1 0

Acf
2,1 Acf

2,2

. . .
. . .

Acf
K−1,K−1

0 Acf
K,K−1

⎤
⎥⎥⎥⎥⎥⎥⎦ .(2.27)

We can evaluate the matrix entries by the trapezoidal rule in x and the midpoint
rule in y on each fine cell, so that the quadrature nodal points coincide with the fine
acceleration nodes (Figure 2.3). Applying these rules to each entry gives a product
of the area of the cell (hxhy) with the value of the integrand at the nodal points
of the fine acceleration. Since any subgrid acceleration basis function is 1 at the
corresponding node and 0 at all other nodes, we obtain

acfl,j = 〈ρ(uc
x)j , (δux)l〉 = (hxhy)ρl(u

c
x)j
∣∣
l
.

Lemma 3. If the entries of the matrix Aff are evaluated by the trapezoidal rule
in x and the midpoint rule in y on each fine cell, then Aff is an MK×MK diagonal
matrix with entries

affll = (hxhy)ρl.
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Fig. 2.3. Coarse and subgrid acceleration basis functions (uc
x)j and (δux)l. The crosses repre-

sent the subgrid acceleration nodes which are used as quadrature nodal points.

l−1 l l+1

Fig. 2.4. Subgrid acceleration basis functions (δux)l−1, (δux)l, and (δux)l+1. The crosses
represent the subgrid acceleration nodes which are used as quadrature nodal points.

Note. Aff is the coefficient matrix of subgrid unknowns in (2.15). The fact that
we are able to reduce Aff to a diagonal matrix makes the elimination of the subgrid
unknowns cheap and easy.

Proof. The matrix Aff is the coefficient matrix of subgrid unknowns in (2.15)
and its entries are the inner products of subgrid acceleration basis functions (2.13).
The total number of subgrid acceleration basis functions is MK, so the matrix Aff

has size MK × MK. Each subgrid acceleration basis function interacts with itself
and its neighbors to the left and to the right. As in Lemma 2, we use the trapezoidal
rule in x and the midpoint rule in y on each fine cell to compute the entries. The
quadrature nodal points coincide with the fine acceleration nodes (Figure 2.4). We
obtain

affl,l+1 = 〈ρ(δux)l, (δux)l+1〉 = 0, affl−1,l = 〈ρ(δux)l−1, (δux)l〉 = 0,(2.28)

affl,l = 〈ρ(δux)l, (δux)l〉 = (hxhy)ρl.(2.29)

Here, we made use of the fact that any subgrid acceleration basis function is 1 at the
corresponding node and 0 at all other nodes. We see that if the entries are computed
as above, the matrix Aff is diagonal.

Lemma 4. The matrix Acc is a (K − 1) × (K − 1) tridiagonal matrix. If the
entries of Acc are evaluated by the composite trapezoidal rule in the x direction and
the midpoint rule in the y direction, then

accj,j+1 = (hxhy)

M(j+1)∑
l=Mj+1

ρl(u
c
x)j+1(u

c
x)j
∣∣
l
,

accj,j−1 = (hxhy)

Mj∑
l=M(j−1)+1

ρl(u
c
x)j−1(u

c
x)j
∣∣
l
,

accj,j = (hxhy)

M(j+1)∑
l=M(j−1)+1

ρl(u
c
x)2j
∣∣
l
+ (hxhy)

ny∑
l=1

ρjl .
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j j+1j−1

Fig. 2.5. Coarse acceleration basis functions (uc
x)j−1, (uc

x)j , and (uc
x)j+1. The crosses rep-

resent the subgrid acceleration nodes l = M(j − 1) + 1, . . .Mj, which are used as quadrature nodal
points in the computation of accj,j−1.

Proof. The entries of the matrix Acc are the inner products of coarse acceleration
basis functions (2.18). The total number of the coarse acceleration nodes in the
domain is K − 1, therefore, the matrix has size (K − 1) × (K − 1).

Since each coarse acceleration basis function is supported on two coarse cells and
interacts with both its neighbors (Figure 2.5), the matrix Acc is tridiagonal. The
entries can be computed by the composite trapezoidal rule in the x direction and
composite midpoint rule in y on each coarse cell so that the quadrature nodal points
coincide with the fine acceleration nodes. Fine grid quadrature is used because the
parameter fields ρ and c live on the fine grid, and we do not want to average these
parameters. We obtain

accj,j−1 = 〈ρ(uc
x)j−1, (u

c
x)j〉 = (hxhy)

Mj∑
l=M(j−1)+1

ρl(u
c
x)j−1

∣∣
l
(uc

x)j
∣∣
l
,(2.30)

where M is the number of subgrid acceleration nodes inside one coarse cell, and the
indices M(j − 1) + 1, . . . ,Mj represent the subgrid acceleration nodes inside coarse
cell j (Figure 2.5). Notice that only the nodes internal to the coarse cell are involved
in the computation, since either (uc

x)j or (uc
x)j−1 is zero on its boundary. Similarly,

for 〈ρ(uc
x)j+1, (u

c
x)j〉 we have

accj,j+1 = 〈ρ(uc
x)j+1, (u

c
x)j〉 = (hxhy)

M(j+1)∑
l=Mj+1

ρl(u
c
x)j+1

∣∣
l
(uc

x)j
∣∣
l
,(2.31)

where we sum over the subgrid acceleration nodes inside coarse cell j + 1. The
entry 〈ρ(uc

x)j , (u
c
x)j〉 is the inner product of the coarse basis function with itself and,

therefore, is supported on two coarse cells. We compute the diagonal entry using the
composite trapezoidal rule in x and midpoint in y

accj,j = 〈ρ(uc
x)j , (u

c
x)j〉 = (hxhy)

M(j+1)∑
l=M(j−1)+1

ρl(u
c
x)2j
∣∣
l
+ (hxhy)

ny∑
l=1

ρjl .(2.32)

The indices M(j − 1) + 1, . . . ,M(j + 1) in the first term represent the subgrid accel-
eration nodes inside coarse cells j and j + 1. The last term on the right corresponds
to the boundary between the two cells at which the basis function (uc

x)i has value 1,
and ρjl are the values of the density on this boundary.

Proof of formula (2.22) for U . Let us now use the above results to study the
matrix U = Acc − (Acf )T (Aff )−1Acf , the coefficient matrix of coarse acceleration
in (2.21). Performing block matrix multiplications in (Acf )T (Aff )−1Acf and using
Lemmas 2 and 3, we see that the product (Acf )T (Aff )−1Acf is a tridiagonal matrix.
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Let us derive a formula for its upper diagonal entries. For convenience of notation,
we present the derivation of the first upper diagonal entry [(Acf )T (Aff )−1Acf ]1,2.
The derivation of the rest of the entries is similar. We use the block notation for Acf

introduced in Lemma 2 and the fact that Aff is diagonal (Lemma 3) to obtain

(2.33) [(Acf )T (Aff )−1Acf ]1,2

= (Acf
2,1)

T

⎡
⎢⎢⎢⎣

(affM+1,M+1)
−1 . . . 0

...

0 . . . (aff2M,2M )−1

⎤
⎥⎥⎥⎦Acf

2,2,

where the blocks Acf
2,2 and (Acf

2,1)
T have size M×1 and 1×M , respectively. The block

Acf
2,1 represents the interaction of the first coarse acceleration basis function (uc

x)1
with the subgrid acceleration basis functions from the second coarse cell. The explicit
formula (2.26) for the entries of Acf gives that

(Acf
2,1)

T = (hxhy)
[
ρM+1(u

c
x)1
∣∣
M+1

. . . ρ2M (uc
x)1
∣∣
2M

]
,(2.34)

where the indices M +1, . . . , 2M are the subgrid acceleration nodes inside the second
coarse cell (Figure 2.2). Similarly, the block Acf

2,2 consists of the inner products of the
second coarse acceleration basis function (uc

x)2 with the subgrid basis functions from
the second coarse cell and is given by

Acf
2,2 = (hxhy)

⎡
⎢⎢⎣
ρM+1(u

c
x)2
∣∣
M+1

...
ρ2M (uc

x)2
∣∣
2M

⎤
⎥⎥⎦ .(2.35)

The explicit formula (2.29) for the entries of Aff and (2.34)–(2.35) result in

[(Acf )T (Aff )−1Acf ]1,2 = (hxhy)

2M∑
l=M+1

ρl(u
c
x)2
∣∣
l
(uc

x)1
∣∣
l
.(2.36)

We can obtain a general formula for the (j, j + 1)-upper diagonal entry:

[(Acf )T (Aff )−1Acf ]j,j+1 = (hxhy)

M(j+1)∑
l=Mj+1

ρl(u
c
x)j+1

∣∣
l
(uc

x)j
∣∣
l
.(2.37)

Following the same manipulations, we derive the lower diagonal and diagonal entries

[(Acf )T (Aff )−1Acf ]j,j−1 = (hxhy)

Mj∑
l=M(j−1)+1

ρl(u
c
x)j−1

∣∣
l
(uc

x)j
∣∣
l
,(2.38)

[(Acf )T (Aff )−1Acf ]j,j = (hxhy)

M(j+1)∑
l=M(j−1)+1

ρl(u
c
x)2j
∣∣
l
.(2.39)
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Thus, summing the result for entries of Acc from Lemma 4 ((2.30)–(2.32)) with results
(2.37)–(2.39) gives us explicit formulas for the entries of U :

Uj,j+1 = 0, Uj,j−1 = 0, Uj,j = (hxhy)

ny∑
l=1

ρjl .(2.40)

We see that the matrix U is diagonal and its entries depend only on those values of
density which lie on the corresponding boundary of the coarse cell.

Now let us turn our attention to the coefficient matrix of pressure, namely, D.
This matrix is defined by

D = Bc − (Acf )T (Aff )−1Bf .(2.41)

In order to write explicit formulas for the entries of D, we need to study the matrices
Acf , Aff , Bf , and Bc. We have already discussed the matrices Acf and Aff . The
following two lemmas describe the structure of the matrices Bc and Bf .

Lemma 5. The matrix Bf is a block diagonal Kny ×Kny matrix with blocks of
size (nx − 1) × nx. The blocks of the matrix are given by

T = −hxhy

hx

⎡
⎢⎢⎣
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . . . . .
0 0 0 . . . −1 1

⎤
⎥⎥⎦ .(2.42)

Proof. The entries of the matrix Bf are the inner products of the x deriva-
tive of subgrid acceleration basis functions with pressure basis functions, bfl,m =

〈wm, ∂(δux)l
∂x 〉. Since the total number of subgrid acceleration basis functions is

Kny(nx − 1) and the total number of pressure basis functions is Knynx, the ma-
trix Bf is of size Kny(nx − 1) ×Knynx. The entries of the matrix can be evaluated
easily since the subgrid acceleration basis function is piecewise linear in x and constant
in y, so its derivative is easily computed

∂(δux)l
∂x

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

hx
left branch,

− 1

hx
right branch.

(2.43)

Then bfl,m = ±(hxhy)
1
hx

whenever the pressure basis function and the subgrid

acceleration basis function have the same support. Since each subgrid acceleration
basis function interacts with only two pressure nodes, one block of the matrix Bf has
the form (2.42). Each block corresponds to the interactions of one row of the pressure
and acceleration basis functions within a single coarse cell. Since one row of fine cells
inside a single coarse cell has nx−1 subgrid acceleration nodes and nx pressure nodes,
each block T is of size (nx − 1)×nx. Finally Bf can be written as the block diagonal
matrix with blocks given by T .

Lemma 6. The matrix Bc is an upper bidiagonal (K − 1)×K block matrix. The
blocks are of size 1 ×N and are given by

Bc
l,l =

hxhy

Hx

[
1 . . . 1

]
, Bc

l,l+1 = −hxhy

Hx

[
1 . . . 1

]
.(2.44)
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Proof. The entries of the matrix Bc are the inner products of the x derivative
of coarse acceleration basis functions and pressure basis functions (2.14). The total
number of the coarse acceleration nodes is (K−1) and the total number of the pressure
nodes is NK, so Bc has size (K−1)×NK. Each coarse acceleration basis function is
supported on two coarse cells and, therefore, has a nonzero inner product only with
the pressure basis functions internal to those cells. If we introduce the blocks Bc

ij of
size 1 × N which represent the interaction of the ith coarse basis function with the
pressure basis functions from the jth coarse cell, then the matrix Bc can be written
as a bidiagonal matrix:

Bc =

⎡
⎢⎢⎢⎣
Bc

1,1 Bc
1,2 0

Bc
2,2 Bc

2,3

. . .
. . .

0 Bc
K−1,K−1 Bc

K−1,K

⎤
⎥⎥⎥⎦ .(2.45)

The entries of Bc can be computed exactly. To evaluate (bc)l,m = 〈wm,
∂(uc

x)l
∂x 〉, we use

the fact that (uc
x)l is a linear function in x and a constant in y. Thus, its derivative

is easily computed and is given by

∂(uc
x)l

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

Hx
lth coarse cell,

− 1

Hx
(l + 1)th coarse cell.

(2.46)

The pressure basis function wm is 1 on the corresponding fine cell and 0 everywhere
else. Therefore, we have

bcl,m =

〈
wm,

∂(uc
x)l

∂x

〉
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(hxhy)
1

Hx
lth coarse cell,

−(hxhx)
1

Hx
(l + 1)th coarse cell.

(2.47)

Thus,

Bc
l,l =

hxhy

Hx

[
1 . . . 1

]
, Bc

l,l+1 = −hxhy

Hx

[
1 . . . 1

]
.(2.48)

Proof of formula (2.23)–(2.24) for D. We can use Lemmas 2, 3, 5, and 6 to study
the matrix D, which is given by formula (2.41). Performing block multiplication
in (Acf )T (Aff )−1Bf , we see that the resulting matrix is an upper bidiagonal block
matrix. Let us derive explicit formulas for the diagonal blocks first. The results
obtained in Lemmas 2, 3, and 5 give that

(2.49) [(Acf )T (Aff )−1Bf ]ii

=
[
(uc

x)i
∣∣
(M(i−1)+1

, (uc
x)i
∣∣
M(i−1)+2

, . . . (uc
x)i
∣∣
Mi

]
⎡
⎢⎢⎢⎣
T 0

T
. . .

0 T

⎤
⎥⎥⎥⎦ ,
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PP rl

Fig. 2.6. The nodes of coarse acceleration and pressure involved in the difference equation.

where (uc
x)i
∣∣
l
, l = M(i−1)+1,M(i−1)+2, . . . ,Mi, are the values of the coarse basis

function at the nodal points of subgrid acceleration inside coarse cell i. Note that
these values can be easily computed since the function (uc

x)i is known (it is linear in
x and constant in y, and it takes value 1 at the corresponding node and 0 at all other
nodes).

After further matrix multiplications and application of Lemma 6, we see that D
is block upper bidiagonal with the blocks given by (2.23)–(2.24). The nonzero entries
correspond to those pressure nodes that are located along the boundary of the coarse
cell i.

2.3. Difference and differential equations for coarse acceleration. The
results of Theorem 1 allow us to write the difference equation for the coarse acceler-
ation explicitly as

(hxhy)

ny∑
l=1

ρil(v
c
x)i = −(hxhy)

[
ny∑
l=1

pNi+nx(l−1)+1

hx
−

ny∑
l=1

pN(i−1)+nxl

hx

]
.(2.50)

Notice that the two sums on the right-hand side of (2.50) are the sums of the pres-
sure values to the right and to the left of the coarse cell boundary on which coarse
acceleration (vc

x)i is located (Figure 2.6). If we denote the average of pressure along
the right and left boundary, respectively, by

p̄r ≡

ny∑
l=1

pNi+nx(l−1)+1

ny
, p̄l ≡

ny∑
l=1

pN(i−1)+nxl

ny
,(2.51)

then (2.50) reduces to

ρ̄(vc
x)i = − p̄r − p̄l

hx
,(2.52)

where ρ̄ is the average of the density values on the boundary of the coarse cell, i.e.,

ρ̄ =

ny∑
l=1

ρil

ny
.

Let us define a new function ρups, which we will call upscaled density. This
function is defined to be the original density values at node points interior to the
coarse cells and is an average of density values ρ̄ at node points along coarse block
edges. In the following theorem, we derive the continuous differential equation for vcx
and p.
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(x,y) (x+1/2h  ,y)

(x+1/2h  ,y+h  )

(x+1/2h  ,y−h  )

x y

x

x y

Fig. 2.7. The coordinates of coarse acceleration and pressure involved in the difference equation
in the case of 3 × 3 fine cells inside a single coarse cell.

Theorem 7. Assume pressure p is at least four times continuously differentiable.
Then the difference equation (2.52) is a discretization of the following differential
equation

ρupsvcx = −∂p

∂x
,

with order of approximation O(h2
x + h2

y).
Note. Theorem 7 gives a continuous differential equation for coarse acceleration

which is essentially (2.1) from the original first-order system with density replaced by
an upscaled density. We see that the upscaled acceleration approximates the gradient
of pressure on the boundaries of coarse cells and, thus, compensates for the simplifying
zero boundary conditions used in the algorithm.

Proof. Let acceleration node (vc
x)i be associated with the point (x, y). Replace

(vc
x)i, pNi+nx(l−1)+1, and pN(i−1)+nxl in the difference equation by the smooth func-

tions vcx and p at the corresponding points and expand each pressure term in a Taylor
series about the point (x, y). Notice that the pressure terms in p̄r are located at
(x + 1

2hx, y ± jhy), where jhy is the distance between the corresponding pressure
node and the acceleration node in the y direction. For example, in the case of 3 × 3
fine cells inside a single coarse cell, we see in Figure 2.7 that the terms in the sum
p̄r are located at (x + 1

2hx, y + hy), (x + 1
2hx, y), and (x + 1

2hx, y − hy). Thus, the
subscript j takes on values j = 0, 1. Similarly, the pressure terms in p̄l are located at
(x− 1

2hx, y ± jhy). We expand each pressure term in (2.51) in a fourth-order Taylor
series about (x, y). Since the pressure nodes are symmetric about the point (x, y),
the linear and cubic terms in hy cancel when computing the sums in (2.51), and we
obtain for p̄r and p̄l

p̄r =

ny∑
l=1

[
p +

∂p

∂x

(
1

2
hx

)
+

1

2

[
∂2p

∂x2

(
1

2
hx

)2

+
∂2p

∂y2
(jhy)

2

]]
ny

+ O(h3
x) + O(hxh

2
y)

(2.53)

and

p̄l =

ny∑
l=1

[
p− ∂p

∂x

(
1

2
hx

)
+

1

2

[
∂2p

∂x2

(
1

2
hx

)2

+
∂2p

∂y2
(jhy)

2

]]
ny

+ O(h3
x) + O(hxh

2
y),

(2.54)
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where p ≡ p(x, y). Substituting (2.53) and (2.54) into the difference equation (2.52)
results in the following differential equation:

ρupsvcx = −∂p

∂x
,(2.55)

up to order O(h2
x+h2

y). We conclude that the upscaled acceleration approximates the
x derivative of pressure on the boundary of the coarse cell with the upscaled density
given by ρ̄ at each nodal point.

2.4. Matrix analysis of the pressure equation. In the next two sections, we
will explain how coarse acceleration determines pressure in the time-dependent equa-
tion ((2.6) of the subgrid problem). The upscaling algorithm modifies the original
wave equation on the boundaries of the coarse cells by using the coarse acceleration
and the averaged density values on these boundaries. The equation which is solved
includes an additional cross-derivative term not seen in the original wave equation.
We follow the same basic outline as in sections 2.2–2.3. In other words, we start by
analyzing the matrix form of (2.6) and then make use of results from the previous sec-
tions to derive the matrix equation for coarse acceleration and pressure. These results
are then used to obtain a corresponding difference and finally differential equation for
pressure resulting from the upscaling algorithm.

Theorem 8. Consider the set of subgrid problems (2.5)–(2.6). The elimination
of the subgrid unknowns from the pressure equation (2.6) results in the following linear
system for the coarse acceleration and pressure

W
∂2p

∂t2
= −DTvc

x − Cp − (vy terms) + F.

The matrix D and vector F are defined in Theorem 1 by (2.23), (2.24), and (2.14).
The matrix W is diagonal with entries having values of 1

ρc2 at the corresponding

pressure nodes. The matrix C is a block diagonal matrix. The blocks of C are of size
nx × nx and are given by

Ci,i =
hxhy

h2
x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ−1
I+1 −ρ−1

I+1 0

−ρ−1
I+1 ρ−1

I+1 + ρ−1
I+2 −ρ−1

I+2

. . .
. . .

. . .

−ρ−1
I+nx−2 ρ−1

I+nx−2 + ρ−1
I+nx−1 −ρ−1

I+nx−1

0 −ρ−1
I+nx−1 ρ−1

I+nx−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(2.56)

where I = (i− 1)(nx − 1).
Proof. The idea of the proof is similar to that of Theorem 1. First, we use the

matrix form of the subgrid problem (2.15)–(2.16) to eliminate the subgrid unknowns
from the pressure equation (2.16). We obtain the time-dependent matrix equation
for pressure and coarse acceleration only and derive explicit formulas for the matrix
entries.

Recall that the matrix form of the subgrid problem is given by (2.15)–(2.16). We
see that the first equation can be solved easily for δvx in terms of vc

x. Thus, we
can eliminate the subgrid unknowns from the time-dependent pressure equation. We
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obtain

(2.57)

W
∂2p

∂t2
= −[(Bc)T −(Bf )T (Aff )−1Acf ]vc

x−(Bf )T (Aff )−1Bfp−(vy terms)+F,

or

W
∂2p

∂t2
= −DTvc

x − Cp − (vy terms) + F.(2.58)

In the rest of the proof of the theorem, we discuss the structure and entries of the
matrices W , DT , and C. In what follows, if i is the ith pressure node, then 1

ρc2

∣∣
i

denotes the value of 1
ρc2 at that node.

Lemma 9. The matrix W is a diagonal NK ×NK matrix with nonzero entries
given by

wi,i = (hxhy)
1

ρc2
∣∣
i
.(2.59)

Proof. The entries of the matrix W are the inner products of pressure basis
functions with themselves, 〈 1

ρc2wi, wj〉. Computing these entries using the midpoint
rule and noting that each pressure basis function is supported on one fine cell only
gives the desired result.

Completion of the proof of Theorem 8. Let us now consider the matrix for coarse
acceleration DT . Notice that the matrix D was defined in Theorem 1 (2.23)–(2.24).
Using those results, we see that DT is a lower block bidiagonal matrix with blocks
given by DT

i,i+1 and DT
i,i. The nonzero entries in DT are associated with pressure

unknowns located along the vertical boundaries of the coarse cells.
Let us now turn our attention to the coefficient matrix for pressure

C = (Bf )T (Aff )−1Bf .

The structure and the entries of Aff and Bf were discussed in Lemmas 3 and 5. We
have shown that Aff is a diagonal matrix, and Bf is a block diagonal matrix with
blocks of size (nx − 1) × nx. Thus, C is also a block diagonal matrix with blocks of
size nx × nx.

We can derive explicit formulas for the entries of C. For simplicity of notation,
let us discuss the derivation of the first block C1,1. Using the explicit formulas for the
entries of Aff and the blocks of Bf in (2.29) and (2.42), we obtain

(2.60) C1,1

=
hxhy

h2
x

⎡
⎢⎢⎢⎢⎣
−1 0 . . . 0
1 −1 . . . 0
0 1 . . . 0

. . . . . .
0 0 . . . 1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣ρ

−1
1 0

. . .

0 ρ−1
nx−1

⎤
⎥⎦
⎡
⎢⎢⎣
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . . . . .
0 0 0 . . . −1 1

⎤
⎥⎥⎦

=
hxhy

h2
x

⎡
⎢⎢⎢⎢⎣

ρ−1
1 −ρ−1

1 0 . . . 0 0 0
−ρ−1

1 ρ−1
1 + ρ−1

2 −ρ−1
2 . . . 0 0 0

. . .
0 0 0 . . . −ρ−1

nx−2 ρ−1
nx−2 + ρ−1

nx−1 −ρ−1
nx−1

0 0 0 . . . 0 −ρ−1
nx−1 ρ−1

nx−1

⎤
⎥⎥⎥⎥⎦ .
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Fig. 2.8. Pressure unknowns in the case of 3×3 fine cells inside a single coarse cell: (a) vector
notation, (b) coordinate notation.
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Fig. 2.9. Density values at subgrid velocity nodes in the case of 3 × 3 fine cells inside a single
coarse cell: (a) vector notation, (b) coordinate notation.

Similarly, we can compute the rest of the blocks Ci,i to get (2.56). Recall that blocks
of C have size nx×nx, so each block is associated with one row of pressure unknowns
inside a single coarse cell.

2.5. Difference and differential equations for pressure. To better under-
stand the meaning of the matrix problem (2.58), we interpret it as a difference equation
first and then as a continuous differential equation. In the following theorems, it is
beneficial to change from vector notation (Figures 2.8(a) and 2.9(a)), used in the pre-
vious sections, to a spatial coordinate notation (Figures 2.8(b) and 2.9(b)). This nota-
tion change simplifies the discussion of the difference equation. In coordinate notation,
pi+1/2,j+1/2 will denote the value of pressure at the grid point (xi+1/2 = (i+ 1/2)hx,
yj+1/2 = (j + 1/2)hy), and ρi,j+1/2 will be the value of density at the grid point
(xi = ihx, yj+1/2 = (j + 1/2)hy), which is associated with the subgrid acceleration
node (Figure 2.9). In the following theorems, we see that the matrix problem gives rise
to different difference equations and hence different differential equations at different
points in the spatial grid. The three pressure node locations we need to consider are
(a) nodes internal to the coarse cell, (b) nodes along the right boundary of the coarse
cell, and (c) nodes along the left boundary of the coarse cell (Figure 2.10).

In Theorem 10, we derive the difference and differential equations for the internal
pressure nodes (Figure 2.10(a)). We then derive the difference and differential equa-
tions for the pressure nodes along the right boundary in Theorem 11. The result for
pressure nodes along the left boundary of the coarse cells is similar.

Theorem 10. Let pi+1/2,j+1/2 be a pressure unknown internal to a particular
coarse cell (Figure 2.10(a)). Then the difference equation corresponding to matrix
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(a)                          (b)                           (c)

Fig. 2.10. Three pressure node locations inside one coarse cell: (a) internal pressure nodes, (b)
pressure nodes along the right boundary of the coarse cell, (c) pressure nodes along the left boundary
of the coarse cell.

problem (2.58) has the following form:

(2.61)
1

ρc2
∂2pi+1/2,j+1/2

∂t2

= − 1

h2
x

(
− pi+3/2,j+1/2ρ

−1
i+1,j+1/2 + pi+1/2,j+1/2

(
ρ−1
i+1,j+1/2 + ρ−1

i,j+1/2

)
− pi−1/2,j+1/2ρ

−1
i,j+1/2

)
− 1

h2
y

(
− pi+1/2,j+3/2ρ

−1
i+1/2,j+1 + pi+1/2,j+1/2

(
ρ−1
i+1/2,j+1 + ρ−1

i+1/2,j

)
− pi+1/2,j−1/2ρ

−1
i+1/2,j

)
+ fi+1/2,j+1/2.

Further, assume pressure p and density ρ are at least four times continuously differen-
tiable. Then difference equation (2.61) is a discretization of the following continuous
differential equation:

1

ρc2
∂2p

∂t2
=

∂

∂x

(
ρ−1 ∂p

∂x

)
+

∂

∂y

(
ρ−1 ∂p

∂y

)
+ f,(2.62)

with order of approximation O(h2
x + h2

y).
Proof. Recall that the matrix equation for the pressure and coarse acceleration is

given by (2.58). For simplicity, let us consider a particular case of 3×3 fine cells inside
a single coarse cell (that is, nx = ny = 3), and we will focus initially on a particular
pressure unknown, p3/2,1/2, internal to the first coarse cell (Figure 2.8). Notice that
in this case each coarse cell contains only three internal pressure unknowns. We
chose p3/2,1/2, since it is the only internal unknown in the first row of the first coarse
cell. We first derive a difference equation for this unknown and then generalize the
resulting formula. Since W is diagonal and its entries are given by (2.59) (Lemma 9),

the product W ∂2p
∂t2 yields

(hxhy)
1

ρc2
∣∣
3/2,1/2

∂2p3/2,1/2

∂t2
.(2.63)

As was shown in Theorem 8, the corresponding row of the matrix DT contains zeroes.
Therefore, the difference equation does not involve the coarse acceleration nodes. Let
us now consider the term Cp. Since the unknown of interest is located in the first row
of the first coarse cell, we need to consider the block C1,1 (2.60). In the case where
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i−1/2, j+1/2 i+1/2, j+1/2 i+3/2, j+1/2 

i, j+1/2 i+1, j+1/2

Fig. 2.11. Finite-difference stencil for the internal pressure unknowns. Note that pressure
nodes are denoted by circles and acceleration nodes by x’s. Density lives at acceleration nodes,
sound velocity at pressure nodes.

nx = ny = 3, C1,1 becomes

C1,1 =
hxhy

h2
x

⎡
⎢⎣ ρ−1

1,1/2 −ρ−1
1,1/2 0

−ρ−1
1,1/2 ρ−1

1,1/2 + ρ−1
2,1/2 −ρ−1

2,1/2

0 −ρ−1
2,1/2 ρ−1

2,1/2

⎤
⎥⎦ ,(2.64)

where we have used coordinate notation (Figure 2.9). The pressure unknown p3/2,1/2

corresponds to the second entry in the vector p. Thus, multiplying the second row of
the matrix C by p, we obtain a sum of three nonzero terms

hxhy

h2
x

(
−p1/2,1/2ρ

−1
1,1/2 + p3/2,1/2

(
ρ−1
2,1/2 + ρ−1

1,1/2

)
− p5/2,1/2ρ

−1
2,1/2

)
.(2.65)

Putting (2.63) and (2.65) together gives

(2.66)

1

ρc2
∣∣
3/2,1/2

∂2p3/2,1/2

∂t2
=

1

h2
x

(
−p1/2,1/2ρ

−1
1,1/2 + p3/2,1/2

(
ρ−1
2,1/2 + ρ−1

1,1/2

)
− p5/2,1/2ρ

−1
2,1/2

)
− (vy terms) + f3/2,1/2.

The above formula can be generalized to the case of nx × ny fine cells inside a coarse
cell. Since the structure of the matrices does not change, the same steps will lead us
to the following difference equation for internal pressure unknowns (see Figure 2.11
for the x-derivative finite difference stencil):

(2.67)
1

ρc2
∂2pi+1/2,j+1/2

∂t2

= − 1

h2
x

(
− pi+3/2,j+1/2ρ

−1
i+1,j+1/2 + pi+1/2,j+1/2

(
ρ−1
i+1,j+1/2 + ρ−1

i,j+1/2

)
− pi−1/2,j+1/2ρ

−1
i,j+1/2

)
− (vy terms) + fi+1/2,j+1/2.

The difference expression for the vy terms is similar.
Notice that the first term on the right-hand side of (2.67) is the standard second-

order centered finite difference approximation of ∂
∂x (ρ−1 ∂p

∂x ) [11]. Expanding the pres-
sure and density terms in Taylor series around the point (xi+1/2, yj+1/2), we obtain
from (2.67)

1

ρc2
∂2p

∂t2
=

∂

∂x

(
ρ−1 ∂p

∂x

)
+

∂

∂y

(
ρ−1 ∂p

∂y

)
+ f + O(h2

x + h2
y).(2.68)
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This shows that the difference equation for the pressure unknowns internal to the
coarse cell, which results from the upscaling algorithm, approximates the standard
continuous acoustic wave equation up to order O(h2

x + h2
y).

Theorem 11. Let pi+1/2,j+1/2 be a pressure unknown located along the right
boundary of a particular coarse cell (Figure 2.10(b)). Then the difference equation
corresponding to (2.58) has the following form:

1

ρc2
∂2pi+1/2,j+1/2

∂t2

= − 1

hx
vcx − 1

h2
x

(
pi+1/2,j+1/2ρ

−1
i,j+1/2 − pi−1/2,j+1/2ρ

−1
i,j+1/2

)
− 1

h2
y

(
− pi+1/2,j+3/2ρ

−1
i+1/2,j+1 + pi+1/2,j+1/2

(
ρ−1
i+1/2,j+1 + ρ−1

i+1/2,j

)
−pi+1/2,j−1/2ρ

−1
i+1/2,j

)
+ fi+1/2,j+1/2,

(2.69)

where vcx is the value of the coarse acceleration on the given boundary.
Further, assume pressure p and density ρ are at least four times continuously

differentiable. Then difference equation (2.69) is a discretization of the following
continuous differential equation with order of approximation O(hx + hy):

1

ρc2
∂2p

∂t2
=

∂

∂x

(
(ρups)−1 ∂p

∂x

)
+

(
(ρups)−1 ∂2p

∂x∂y

)
K +

∂

∂y

(
(ρups)−1 ∂p

∂y

)
+ f,

(2.70)

where K is a constant which depends on the location of the pressure node within a
single coarse cell.

Proof. The proof of the theorem is similar to that of Theorem 10. We first
consider the case of 3× 3 fine cells inside a single coarse cell and derive the difference
equation for pressure unknown, p5/2,1/2 located along the right boundary of the coarse
cell (Figure 2.8(b)). The pressure unknown p5/2,1/2 corresponds to the third entry
in the vector p (Figure 2.8). Therefore, we need to look at the third rows of the
matrices DT and C. Only the first entry of the third row of DT is nonzero (Theorems
1 and 8). The third row of the block C1,1 in coordinate notation is given by (2.64).
Thus, performing matrix-vector multiplications in matrix problem (2.58), we obtain

V
c
x V

c
x V

c
x

i, j+1/2

i−1/2, j+1/2 i+1/2, j+1/2 

i+1/2, j+1/2 i−1/2, j+1/2

i, j+1/2

i−1/2, j+1/2 i+1/2, j+1/2 

i, j+1/2

Fig. 2.12. Locations of pressure nodes relative to coarse velocity for the case of 3× 3 fine cells
inside a single coarse cell. Note that pressure nodes are denoted by circles and subgrid and coarse
acceleration nodes by x’s and X’s, respectively. Density lives at the same location as the subgrid
acceleration nodes.
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the difference equation for p5/2,1/2:

(2.71)

1

ρc2
∂2p5/2,1/2

∂t2
= − 1

hx
vcx−

1

h2
x

(
p5/2,1/2ρ

−1
2,1/2 − p3/2,1/2ρ

−1
2,1/2

)
−(vy terms)+f5/2,1/2.

The above formula can be generalized to the case of nx × ny fine cells inside a coarse
cell. We obtain the following difference equation for pressure unknowns along the
boundary of the coarse cell (see Figure 2.12)(2.72)

1

ρc2
∂2pi+1/2,j+1/2

∂t2
= − 1

hx
vcx − 1

h2
x

(
pi+1/2,j+1/2ρ

−1
i,j+1/2 − pi−1/2,j+1/2ρ

−1
i,j+1/2

)
− (vy terms) + fi+1/2,j+1/2,

where vcx is the coarse acceleration unknown on the given boundary.
Let us now derive the differential equation. The idea is to use Taylor expansions

around the point (xi+1/2, yj+1/2). First, consider the term vcx on the right-hand side
of (2.72). We have shown in the previous sections that coarse acceleration is related
to pressure through the difference equation

vcx = −1

ρ̄

p̄r − p̄l
hx

.(2.73)

The terms p̄r, p̄l are the averaged sums of pressure unknowns to the right and left of
a particular boundary of the coarse cell, and ρ̄ is the average of density values on the
same boundary. We can write p̄r, p̄l, and ρ̄ using coordinate notation as

p̄r =

∑
k

pi+3/2,j+1/2+k

ny
, p̄l =

∑
k

pi+1/2,j+1/2+k

ny
,(2.74)

ρ̄ =

∑
k

ρi+1,j+1/2+k

ny
,(2.75)

where pi+3/2,j+1/2+k = p(hx(i + 3/2), hy(j + 1/2 + k)), ρi+1,j+1/2+k = ρ(hx(i +
1), hy(j + 1/2 + k)), and khy represents the distance between the unknown and the
point (xi+1/2, yj+1/2) in the y direction. The number of terms in each sum is equal to
ny, the number of fine cells inside a single coarse cell in the y direction. The values
that k takes will depend on the number of fine cells inside a single coarse cell and the
location of a particular pressure unknown in that cell. For example, Figure 2.13 shows
that in the 3 × 3 case, if the pressure unknowns of interest are in bold, then k may
take values −1, 0, 1 (Figure 2.13(a)); or the values 0, 1, 2 (Figure 2.13(b)); or 0, −1,
−2 (Figure 2.13(c)). Expanding all the pressure unknowns in p̄r, p̄l in a fourth-order
Taylor series about the point (xi+1/2, yj+1/2) and using (2.73), we obtain for coarse
acceleration

vcx = −1

ρ̄

⎡
⎢⎢⎣∂p∂x +

hx

2

∂2p

∂x2
+

∑
k

k

ny
hy

∂2p

∂x∂y

⎤
⎥⎥⎦+ O(h2

x + hxhy + h2
y),(2.76)
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i+1/2, j+1/2 i−1/2, j+1/2

i, j+1/2

i+1/2,j−1/2

i+1/2,j+3/2

i+3/2,j−1/2

i+3/2,j+1/2

i+3/2,j+3/2

i, j+1/2

i+1/2, j+1/2 i−1/2, j+1/2 i+3/2,j+1/2

i+3/2,j+3/2

i+3/2,j+5/2

i+1/2,j+3/2

i+1/2,j+5/2 i+1/2, j+1/2 i−1/2, j+1/2

i, j+1/2

i+1/2, j−1/2 

i+1/2, j−3/2 

i+3/2,j+1/2

i+3/2,j−1/2

i+3/2,j−3/2

(a) (b) (c)

Fig. 2.13. Examples of finite-difference stencils for different positions of pressure unknown
pi+1/2,j+1/2 in the case of 3 × 3 fine cells inside a single coarse cell. The open circles denote the
pressure unknowns used in the calculation of p̄r and p̄l.

where p ≡ p(xi+1/2, yj+1/2). Expanding the rest of the terms on the right-hand side
of (2.72) around the same point, we obtain

(2.77) − 1

hx
vcx − 1

h2
x

(
pi+1/2,j+1/2ρ

−1
i,j+1/2 − pi−1/2,j+1/2ρ

−1
i,j+1/2

)

=
1

ρ̄

⎛
⎜⎜⎝ 1

hx

∂p

∂x
+

1

2

∂2p

∂x2
+

∑
k

k

ny

hy

hx

∂2p

∂x∂y

⎞
⎟⎟⎠

−
(

1

hx

∂p

∂x
− 1

2

∂2p

∂x2

)
×
(
ρ−1 − hx

2

∂ρ−1

∂x

)
+ O(hx + hy),

where ρ ≡ ρ(xi+1/2, yj+1/2). We can use the definition of the new function ρups to
say that

1

ρ̄
=
(
ρupsi+1,j+1/2

)−1

.(2.78)

Suppose the function ρups can be constructed in such a way that it is smooth enough
for Taylor series expansion. Expanding (ρupsi+1,j+1/2)

−1 around the point (xi+1/2, yj+1/2),

we obtain from (2.77)

(2.79) − 1

hx
vcx − 1

h2
x

(
pi+1/2,j+1/2ρ

−1
i,j+1/2 − pi−1/2,j+1/2ρ

−1
i,j+1/2

)

=
∂p

∂x

∂(ρups)−1

∂x
+

∂2p

∂x2
(ρups)−1 +

∑
k

k

ny

hy

hx

∂2p

∂x∂y
(ρups)−1 + O(hx + hy).

We use (2.79) in (2.72) to obtain the following differential equation

(2.80)
1

ρc2
∂2p

∂t2
=

∂

∂x

(
(ρups)−1 ∂p

∂x

)
+

(
(ρups)−1 ∂2p

∂x∂y

)
K + (vy terms) + f,

where K =

∑
k

k

ny

hy

hx
.
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Note. The constant K depends on the size of the fine mesh, the size of the coarse
mesh, and the position of the pressure node under consideration. In particular, K = 0
when the pressure node has the same y coordinate as the coarse acceleration node.
In this situation, k takes values −1, 0, 1, so that

∑
k k = 0 (see Figure 2.13(a)).

3. Conclusions. To model subsurface phenomena ranging from the centimeter
to the kilometer scale (micro- to macroscale), requires enormous amounts of comput-
ing power. Resolving all fine-scale features over large sections of the earth (at depths
ranging from the near-surface down to the deep crust) is computationally prohibitive.
Upscaling techniques allow us to perform these simulations on a coarser scale while
capturing some of this fine-scale subwavelength information. There are a variety of
upscaling methods. However, most of these techniques have been developed in the
context of elliptic equations. We have adapted the operator-based upscaling tech-
nique, previously developed for elliptic flow, to the variable density, variable sound
velocity acoustic wave equation. The upscaling method relies on decomposing the
space of unknowns into coarse and subgrid subspaces. The problem is then naturally
solved in two steps. First, we solve the subgrid problems for fine-scale information
internal to each coarse cell. Then we use the subgrid solutions to augment the coarse-
scale operator. A simplifying zero boundary condition imposed on each coarse cell
decouples the subgrid problems from one coarse cell to the next. The fine-grid input
parameters (density and sound velocity) are used throughout the computations. The
algorithm does not explicitly average these input parameters. Further, separation
of scales is not assumed with this technique. The numerical implementation of the
upscaling algorithm for the wave equation is discussed in detail in Vdovina et al. [17].
Numerical experiments presented in that paper indicate that operator-based upscaling
models wave propagation (even at the subwavelength scale) quite accurately relative
to full finite difference solutions.

In this paper we convert the second-order acoustic wave equation into a system of
two first-order equations (first-order in space) which involve solving for both pressure
and its gradient (acceleration). The algorithm is based conceptually on the mixed
finite element method. However, the pressure equation is solved via finite differences
due to an equivalence between finite elements and finite differences. The first practical
result from this analysis is that the system matrix for coarse acceleration is diagonal
which greatly simplifies the implementation of the method.

Even more importantly, the analysis presented in this paper gives the first ex-
planation of exactly which physical equations are solved by the upscaling algorithm.
What we have shown is that the upscaling algorithm produces a coarse solution to
the original constitutive equation for acceleration with the input density field rede-
fined as an averaged density along coarse-block edges. This result indicates that the
algorithm compensates for the simplifying zero boundary conditions on coarse block
edges. Similarly, the upscaling algorithm leaves the wave equation for pressure un-
touched at nodes internal to coarse blocks. However, the pressure equation solved on
coarse cell edges is modified to include a cross-derivative term for pressure (a second
derivative involving both x and y) — a form of diffusion. This analysis allows us to
simplify the algorithmic implementation of the method and to gain an understanding
of what the solution produced by this technique models physically.
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ANALYSIS OF PROJECTION METHODS FOR RATIONAL
FUNCTION APPROXIMATION TO THE MATRIX EXPONENTIAL∗

L. LOPEZ† AND V. SIMONCINI‡

Abstract. Krylov subspace methods for approximating the action of the matrix exponential
exp(A) on a vector v are analyzed with A Hermitian and negative semidefinite. Our approach is
based on approximating the exponential with the commonly employed diagonal Padé and Chebyshev
rational functions, which yield a system of equations with a polynomial coefficient matrix. We
derive optimality properties and error bounds for the convergence of a Galerkin-type approximation
and of a computationally feasible and extensively used alternative. As complementary results, we
theoretically justify the use of a popular a posteriori error estimate, and we provide upper bounds
for the components of the solution vector. Our theoretical and numerical results show that this
methodology may provide an appropriate framework to devise new strategies such as more powerful
acceleration schemes.
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1. Introduction. The problem of numerically approximating the action of the
matrix exponential exp(A) on v for a given matrix A and vector v is of great im-
portance in a wide range of applications. In fact, it is the core of many exponential
integrators for solving systems of ordinary differential equations (see [26, 25]) or time-
dependent partial differential equations [17, 19]. Over the years, several methods
have been proposed for approximating the exponential of a matrix; we refer to [33]
for a recent survey. For A of large dimension, Krylov subspace methods for approx-
imating exp(A)v have been successfully used for a long time; see, e.g., [36, 39], the
more recent publications [19, 25, 9], and references therein. In the past few years,
important contributions have appeared that have significantly increased the theoret-
ical understanding of this approach [48, 11, 12, 24, 41]. In this paper, we restrict our
attention to the case of A Hermitian and negative semidefinite, as it is often the case
in real applications, although the approach can be used even for non-Hermitian A.
Given an n × n matrix A, the Krylov subspace Km(A, v) = span{v,Av, . . . , Am−1v}
is characterized by the key relation

AVm = Vm+1Hm+1,m, v = Vme1β0,(1.1)

with Hm+1,m ∈ R
(m+1)×m tridiagonal and β0 = ‖v‖, where ‖v‖ is the 2-norm of v.

Here and in the following, ek denotes the kth vector of the canonical basis, whose
dimension is clear from the context. In later sections, we use eGm and eKm to denote the
error vectors for the analyzed methods. Relation (1.1), also known as the Lanczos
recurrence, allows one to compute a matrix Vm whose orthonormal columns span
Km(A, v), while Hm+1,m contains the coefficients of the orthogonalization process. A
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common approximation in Km(A, v) is

exp(A)v ≈ Vm exp(Hm)e1β0;(1.2)

here Hm is the (Hermitian) m×m principal part of Hm+1,m, i.e., Hm = V ∗
mAVm, where

V ∗
m is the transpose of Vm. This approximation was analyzed in [41], where it was

also shown that the vector Vm exp(Hm)e1β0 represents a polynomial approximation
to exp(A)v, in which the polynomial of degree m − 1 interpolates the exponential
function in the Hermite sense on the set of eigenvalues of Hm [41, Theorem 3.3]. Our
analysis aims to explore this polynomial approach but from a different perspective.

The computation of exp(A), and of exp(Hm) cannot be carried out exactly, even
assuming exact arithmetic [33]; we refer to [43] for a description of current software
for computing the exponential of small matrices. In practice, exp(Hm) is often very
accurately approximated by means of rational functions, such as Padé or Cheby-
shev functions; see, e.g., [1, 20, 21, 23, 19]. Therefore, given the rational function
Rμ,ν(λ) := Φμ(λ)/Ψν(λ) for some specifically chosen polynomials Ψμ,Φν of degree
μ and ν, respectively, the approximate solution Vm exp(Hm)e1β0 is replaced by the
vector VmRμ,ν(Hm)e1β0; see, e.g., the Matlab routine expm [32]. In the following we
restrict our analysis to the case μ = ν, and thus we use Rν ≡ Rν,ν ; see section 3.

The aim of this paper is to increase our understanding of Krylov-subspace-based
approximations to the exponential operator by exploiting rational functions and their
approximation properties of the exponential. Rational functions may provide an ap-
propriate framework to devise more powerful techniques, as well as to justify currently
proposed approaches such as those in [6, 49]; see also section 6. In particular, we wish
to set up the stage for the development of new acceleration strategies to computa-
tionally enhance the approximation process.

General results on approximation of matrix rational functions within Krylov sub-
spaces are very limited; see, for instance, [51]. In practice, the theoretical as well as
computational aspects associated with such approximation have not been completely
addressed. We aim to contribute in filling this gap, as very general hypotheses on the
rational functions are employed. Therefore, in this paper we first derive new error
estimates for projection-type minimization methods used to approximate the action
of matrix rational functions. Our results are very general and can be applied in con-
texts other than the approximation of the exponential. We then derive new insightful
relations for the approximation of the exponential, with the commonly employed tech-
nique in (1.2).

We start with the preliminary consideration that the approximation

exp(A)v ≈ Rν(A)v = (Ψν(A))−1Φν(A)v

entails solving the following system of equations:

Ψν(A)x = Φν(A)v.(1.3)

Note that as an alternative to solving (1.3), one could first approximately solve the
system Ψν(A)x̂ = v and then compute x = Φν(A)x̂. Since for m > ν it holds that
Φν(A)v ∈ Km(A, v), the approach (1.3) should be preferred in practice. Following
[51], we analyze two procedures for solving (1.3). The first approach determines
an approximation xm by imposing a classical Galerkin condition on the residual.
The second one, which we call the Krylov approximation,1 is computationally more

1Also called Arnoldi or Lanczos approximation.
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appealing and turns out to be equivalent to the standard procedure, namely,

xm = VmRν(Hm)e1β0 ≈ Vm exp(Hm)e1β0.(1.4)

For the sake of simplicity, and without loss of generality, in the following we assume
that ‖v‖ = 1 so that β0 = 1. We analyze the optimality properties of the first method
and show that the second method, although nonoptimal, provides an approximate
solution that is significantly close to the optimal one. By using the partial fraction
expansion of Rν we derive convergence bounds for both approaches that depend on
the spectrum of A. In addition, we examine the role of the degree and the poles of
both Padé and Chebyshev rational approximants in the convergence behavior as well
as in the obtained error bounds.

Our convergence estimates predict linear, and not superlinear, convergence, and
in this sense they are weaker than available error bounds; however, we also show that
the superlinear behavior can be recovered by varying the degree ν. We stress here
that our aim is not to derive better bounds than those in the literature. Instead, we
wish to show that rational functions may represent a new numerical tool with no loss
in convergence properties if the degree ν is taken into account.

Throughout the paper we assume exact precision arithmetic. We refer to [10]
for a detailed analysis of the behavior of Krylov subspace approximations of matrix
functions in finite precision computation.

In section 2 we review some basic facts on Krylov approximation of the exponen-
tial, while in section 3 we review several important properties of rational functions
that will be used extensively in the paper. In section 4 we show an optimality prop-
erty associated with the Galerkin method and provide bounds for the approximation
error. In section 5 we analyze in detail the Krylov method. We first relate its approx-
imate solution with that obtained with the optimal Galerkin approximation. Then,
we derive new error estimates and compare them with those obtained for the Galerkin
procedure. In section 6 we discuss some computational properties derived by using
rational functions. In section 7 we analyze the Padé rational function approximation
when the scaling and squaring procedure is employed to handle a matrix whose norm
is significantly larger than one, while in section 8 we discuss the role of ν in the oc-
currence of superlinear convergence. Finally, section 9 discusses some related issues
that our analysis brings to light.

2. Krylov subspace approximation to the matrix exponential. Krylov
subspace approximations to the exponential have been analyzed in several papers;
see, e.g., [41, 19]. However, the most significant error bounds were given in [48, 11]
and later with a different approach in [24]. The authors of these papers were able to
capture the so-called superlinear convergence of the approximation. As a reference, we
recall here one of the results stated in [24] in our notation; see [48, 11] for qualitatively
similar, although asymptotic bounds. We call these bounds ideal bounds, for reasons
that will be clear in the following.

Theorem 2.1 (see [24]). Let A be a Hermitian negative semidefinite matrix with
eigenvalues in the interval [−4ρ, 0]. Then the error in the Lanczos approximation of
exp(A)v is bounded as follows:

‖ exp(A)v − Vm exp(Hm)e1‖ ≤ 10e−m2/(5ρ),
√

4ρ ≤ m ≤ 2ρ,

‖ exp(A)v − Vm exp(Hm)e1‖ ≤ 10

ρ
e−ρ

(eρ
m

)m

, m ≥ 2ρ.
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Different bounds that also emphasize the superlinear character of the approximation
have also been proposed in [47]; we found these latter bounds less sharp than those
in [48, 11, 24], at least experimentally.

The Krylov approximation devised in (1.2) is not naturally equipped with a stop-
ping criterion. Since the error norm ‖ exp(A)v − Vm exp(Hm)e1β0‖ cannot be com-
puted explicitly as m increases, a criterion based on the quantity

hm+1,m|e∗m exp(Hm)e1β0|(2.1)

was proposed in [41, section 5.2]. This criterion works well in many cases, especially
when ‖A‖ is moderate, and qualitative arguments were discussed in [41] to justify
its use; a higher order estimate can also be employed, which can be easily derived
from (2.1) [41]. In general, an insightful interpretation of the quantity in (2.1) in
not always immediate, usually due to the lack of a definition of residual, unlike in
equation-based problems. An exception is the situation when the computation is
related to the following initial value problem{

−Ax(t) + x′(t) = 0,
x(0) = v,

in which case it holds hm+1,m|e∗m exp(tHm)e1β0| = ‖ −Axm(t) + x′
m(t)‖, that is, the

a posteriori estimate is indeed the residual associated with the approximate solution
xm(t); see, e.g., [7, 10]. An alternative viewpoint was proposed in [26], where the
authors introduced a new concept of residual norm by generalizing that of error norm
in a functional setting. The new residual norm was shown to be equal to the estimate
(2.1). With our derivation, we suggest a general role for the stopping criterion (2.1)
in terms of residual associated with a matrix equation.

3. Rational function approximation. Rational functions are commonly used
to accurately approximate analytic functions such as the exponential [1]. Here we
review some characteristics of Chebyshev and Padé rational functions that are used
in our analysis. However, several of the results in later sections apply to general
rational functions and to the approximation of other smooth functions.

Let us assume that exp(λ) is approximated by the rational function Rν(λ). In this
case, the quality of the approximation when using the Krylov subspace only affects
part of the overall approximation. The bound

‖ exp(A)v − Vm exp(Hm)e1‖ ≤ ‖ exp(A)v −Rν(A)v‖ + ‖Rν(A)v − VmRν(Hm)e1‖
+‖Rν(Hm)e1 − exp(Hm)e1‖

emphasizes that there are two components in the error estimate: the second term
on the right is the “Krylov subspace error,” and it can be monitored as the chosen
approximation in Km(A, v) takes place, whereas the size of the second component,
corresponding to the other two terms in the bound, depends on the accuracy of the
rational function approximation employed.

The first component is related to the numerical solution of the system (1.3) in
the Krylov subspace. The solution of algebraic systems having a matrix function as
coefficient matrix by means of Krylov subspaces has been analyzed in detail by van
der Vorst in [51]; see also the recent presentation in [50]. Two distinct methods are
studied in [51] for special cases of Ψν and for Φν = 1. In the first approach, the
problem is projected onto the smaller dimension space, whereas the second approach
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is characterized by a sequential projection. In this paper we generalize these two
methods to our framework and analyze their properties.

Several approaches have been considered for choosing the rational function ap-
proximation. In the context of one-step methods for initial value differential problems,
a stable way to approximate exp(A) consists of employing diagonal Padé approxi-
mants Rν = Φν/Ψν , where Φν ,Ψν are polynomials of degree ν; see, e.g., [26, 25] and
references therein. These two polynomials satisfy Φν(λ) = Ψν(−λ) so that we can
write

Ψν(λ) = ψν · (λ− ξ1) · · · (λ− ξν), Φν(λ) = φν · (λ + ξ1) · · · (λ + ξν).(3.1)

Here ψν and φν are the leading term coefficients. The two polynomials are uniquely
defined apart from a scaling factor. We shall assume in the following that this scaling
factor is such that Ψν(0) = Φν(0) = 1. The roots of Ψν all have positive real part, so
that those of Φν have negative real part; in addition, they come in complex conjugate
if their imaginary part is nonzero and their absolute value is larger than one, and
increasing with ν. The leading coefficient ψν satisfies

|ψν | =
1

|ξ1 · · · · · ξν |
� 1;

it is positive if ν is even, and negative if ν is odd. In addition, |Φν(λ)/Ψν(λ)| ≤ 1 for
λ ≤ 0 [52]. Finally, for any nonpositive real λ we have Ψν(λ) > 0. In our context,
this property ensures that Ψν(A) is Hermitian and positive definite for any Hermitian
negative semidefinite matrix A, that is, x∗Ψν(A)x > 0 for any nonzero vector x.

In the context of parabolic partial differential equations, rational Chebyshev
approximations have also been considered; see, e.g., [52, 19], which provide best
rational approximations to exp(x) for x ∈ (−∞, 0] in the Chebyshev sense. If
Φν(−λ)/Ψν(−λ) is the Chebyshev approximant for λ ≤ 0, then it is known that
supλ≤0 | exp(λ)−Φν(−λ)/Ψν(−λ)| ≈ 10−ν ; see [8, Table II]. In addition, since Ψν has
all strictly positive coefficients (cf. [8, Table III]), then Ψν(x) > 0 for x ≥ 0, implying
that Ψν(−A) is positive definite for A Hermitian and negative semidefinite. The roots
ξj of Ψν appear with positive and negative real part, therefore Mj = −A − 
(ξj)I
may be indefinite for some ξj , j = 1, . . . , ν. We note that the Chebyshev rational
approximation uses Φν(−λ)/Ψν(−λ) with λ ≤ 0, whereas the Padé approximation
employs Φν(λ)/Ψν(λ) with λ ≤ 0. In this paper we do not distinguish between the
sign in the two cases, using Φν(λ)/Ψν(λ) with λ ≤ 0, while warning the reader that
depending on the strategy used, the variable sign should be changed accordingly.

Padé approximants of degree up to ν = 14 are commonly employed [23], and 10−14

is often considered a sufficiently good accuracy for the Chebyshev approximation.
Unless otherwise specified, we thus restrict our experiments to the case ν ≤ 14. For
the sake of simplicity, we only consider equal degree approximants, whereas it is
known that in the Padé approximation, Φν−1,Ψν also provide stable approximations
in the context of stiff ordinary differential equations; see, e.g., [20]. In our analysis we
use the fact that both the Padé and the Chebyshev approximants have simple poles,
although the presence of multiple poles is addressed in section 7 in the context of the
scaling and squaring method.

We also recall that the rational function Rν = Φν/Ψν can be written by means
of a partial fraction expansion as

Rν(λ) = τ0 +

ν∑
j=1

τj
(λ− ξj)

,(3.2)
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where ξ1, . . . , ξν are the distinct roots of Ψν , τ1, . . . , τν are the coefficients (appearing
in complex conjugates) of the expansion, and τ0 is the remainder.

4. Convergence analysis of the Galerkin method. In this section we ana-
lyze the convergence properties of the Galerkin approximation. A Galerkin approach
based on the Krylov subspace Km(A, v) approximates x in (1.3) as xG

m = VmyGm by
imposing that the residual Φν(A)v−Ψν(A)xG

m be orthogonal to the Krylov subspace,
namely, V ∗

m(Φν(A)v − Ψν(A)xG
m) = 0. Therefore, yGm is computed as the solution to

the system

V ∗
mΨν(A)Vmy = V ∗

mΦν(A)v.(4.1)

The method is of interest from a theoretical point of view, because of its opti-
mality properties. From a computational standpoint, the explicit computation of
V ∗
mΨν(A)Vm requires ν evaluations with A at each iteration, making the approach

not appealing. The Krylov approximation thus represents a valuable competitive
alternative, and we show that the convergence properties are indeed comparable.

We first show that the Galerkin approximate solution has a minimization property,
ensuring that the error is nonincreasing with m in the considered norm; then we derive
upper bounds for this error norm. All these results appear to be new.

Proposition 4.1. Let x� = Rν(A)v and let xG
m be the Galerkin approximation

to x� in Km(A, v) and assume that Ψν(A) is Hermitian and positive definite. Then

min
x∈Km(A,v)

‖x� − x‖Ψν(A) = ‖x� − xG
m‖Ψν(A).

Proof. The result follows from imposing the Galerkin condition on the residual
Ψν(A)(x� − xm); cf. [42, Proposition 5.2].

Proposition 4.2. Let [α, β] be the interval containing all eigenvalues of A and
assume that the hypotheses of Proposition 4.1 hold. Then

min
x∈Km(A,v)

‖x� − x‖2
Ψν(A) = min

q∈Pm−1

‖x� − q(A)v‖2
Ψν(A)

≤ min
q∈Pm−1

max
λ∈[α,β]

∣∣1 −Rν(λ)−1q(λ)
∣∣2 ‖v‖2

Ψν(A).

Proof. Let u1, . . . , un be the unit norm eigenvectors of A associated with the
eigenvalues λ1, . . . , λn. Define χi := u∗

i x� and s(λ) := 1 − q(λ)(Rν(λ))−1. We have
x� − q(A)v =

(
I − q(A)(Rν(A))−1

)
x� =

∑n
i=1 uis(λi)χi so that

‖x� − q(A)v‖2
Ψν(A) = 〈x� − q(A)v,Ψν(A)(x� − q(A)v) 〉

=

n∑
i=1

Ψν(λi)(s(λi))
2χ2

i ≤ max
λ∈[α,β]

|s(λ)|2‖v‖2
Ψν(A).

We next provide a bound for the polynomial min-max problem in Proposition 4.2;
we use the following definitions. For each pole ξj , we set Mj = A − 
(ξj)I, and we
let αj be the eigenvalue of Mj with largest absolute value and βj be the eigenvalue of
Mj with smallest absolute value. If 
(ξj) > 0, then αj < βj < 0. Moreover, we let

ρj = γj +
√
γ2
j − 1 with γj =

|αj − i(ξj)| + |βj − i(ξj)|
|αj − βj |

.(4.2)

The following bound holds.
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Theorem 4.3. Assume that the spectrum of A is contained in the negative in-
terval [α, β], and that Ψν has distinct roots. Then, with the notation above,

min
q∈Pm−1

max
λ∈[α,β]

∣∣1 − (Rν(λ))−1q(λ)
∣∣ ≤ 2

ν∑
j=1

(
max

λ∈[α,β]

|τj |
Rν(λ) |λ− ξj |

)
1

ρmj + 1/ρmj
.

Proof. In the proof we omit the polynomial subscripts. We first rewrite the
problem as

min
q∈Pm−1

max
λ∈[α,β]

∣∣1 − (R(λ))−1q(λ)
∣∣ = min

q∈Pm−1

max
λ∈[α,β]

∣∣∣∣ 1

R(λ)
(R(λ) − q(λ))

∣∣∣∣ .(4.3)

Let q∗ be the polynomial of degree at most m− 1 that attains the minimum in (4.3).
Using the partial fraction expansion in (3.2), for any q ∈ Pm−1 we have

|R(λ) − q∗(λ)| =

∣∣∣∣∣∣τ0 +

ν∑
j=1

τj
λ− ξj

− q∗(λ)

∣∣∣∣∣∣ ≤ max
λ∈[α,β]

∣∣∣∣∣∣τ0 +

ν∑
j=1

τj
λ− ξj

− q(λ)

∣∣∣∣∣∣ .

We choose q ∈ Pm−1 defined as q(λ) = τ0 +
∑ν

j=1 τjq
(j)(λ− ξj), with λ ∈ [α, β], while

q(j) ∈ Pm−1, j = 1, . . . ν are polynomials yet to be determined. We set p(j)(λ− ξj) =
1 − (λ− ξj)q

(j)(λ− ξj), with p(j) ∈ Pm and p(j)(ξj) = 1. Thus∣∣∣∣∣∣τ0 +

ν∑
j=1

τj
λ− ξj

− q(λ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ν∑

j=1

τj

(
1

λ− ξj
− q(j)(λ− ξj)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
ν∑

j=1

τj
1

λ− ξj
p(j)(λ− ξj)

∣∣∣∣∣∣ .
It was shown in [15, formula (38)] that the polynomial p(j) can be constructed so that
maxζ∈[α−ξj ,β−ξj ] |p(j)(ζ)| = 2/(ρmj + 1/ρmj ). Hence, we can write

min
q∈Pm−1

max
λ∈[α,β]

∣∣∣∣ 1

R(λ)
(R(λ) − q(λ))

∣∣∣∣ ≤ max
λ∈[α,β]

∣∣∣∣∣∣
ν∑

j=1

τj
R(λ)(λ− ξj)

p(j)(λ− ξj)

∣∣∣∣∣∣
≤

ν∑
j=1

(
max

λ∈[α,β]

|τj |
R(λ) |λ− ξj |

)
2

(ρmj + 1/ρmj )
.

The denominator in the bound always satisfies |λ − ξj | �= 0 if (ξj) �= 0. For ν
odd and real ξj , we have ξj > 0 for Padé so that λ − ξj < 0 for λ ∈ [α, β], while
for Chebyshev, we have ξj < 0 and −λ ∈ [α, β] so that λ − ξj > 0. In both cases,
|λ− ξj | �= 0.

Remark 4.4. When β = 0, so that the eigenvalues of A are in [α, 0], then roughly
ρj ≈ 2(1 + 2|ξj/α|). Therefore, we obtain

ν∑
j=1

(
max

λ∈[α,β]

|τj |
Rν(λ) |λ− ξj |

)
2

(ρmj + 1/ρmj )
≈ e−α

ν∑
j=1

max
λ∈[α,β]

|τj |
|λ− ξj |

.
2

(2 + 4| ξjα |)m
,
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Fig. 4.1. Example 4.5: Galerkin approximation. Left: Padé rational functions (black solid
with squares) and upper bound for ν = 7, 11. Right: Chebyshev rational functions (black solid with
squares) and upper bounds for ν = 7, 14.

which shows the role of ξj as |α| gets large. See also section 8 for additional remarks
on the role of the poles.

To show the sharpness of the bound in Theorem 4.3, we next report a numerical
experiment with both Padé and Chebyshev rational functions. Below and later in the
paper, we show convergence curves for ‖ exp(A)v− xm‖∗, where ‖ · ‖∗ is the norm of
interest. The bound ‖ exp(A)v − xm‖∗ ≤ ‖ exp(A)v −Rν(A)v‖∗ + ‖Rν(A)v − xm‖∗
allows us to use estimates such as that in Theorem 4.3 to bound the second term in
the right-hand side, whereas the first term depends on the accuracy of the rational
function approximation. We will see that the error ‖ exp(A)v−xm‖∗ stagnates at the
final accuracy level of ‖ exp(A)v −Rν(A)v‖∗.

Example 4.5. This is a contrived example but here and later in the text, it
serves as a simple platform for describing the principal properties of the two rational
approximations. We consider the 100 × 100 diagonal matrix A of the logarithm of
equispaced values between 0.2 and 0.99. In Matlab notation, this can be defined as
A = diag(log(linspace(0.2,0.99,100))). The spectrum of A is contained in the
interval [−1.61,−0.0101]. The vector v is chosen to be the vector of all ones, scaled
so as to have unit norm. The Padé polynomials Ψν ,Φν are computed for ν = 7 and
ν = 11, and no prescaling of A is employed (see section 7). The approximate solution
xG
m = VmyGm is obtained at each step m by explicitly computing V ∗

mΨν(A)Vm and
V ∗
mΦν(A)v, and then solving (1.3).

In the left plot of Figure 4.1 we report the relative Ψν(A)-norm of the error,
‖ exp(A)v−xG

m‖Ψν(A) (solid black curve with squares), together with the upper bound
in Theorem 4.3 corresponding to Padé rational functions with ν = 7, 11. Note that
the Ψν(A)-norm of the error is indistinguishable for the two values of ν. The right plot
shows the same curves associated with Chebyshev rational functions with ν = 7, 14.
As predicted by the theory, the final level of accuracy is reached at about 10−ν .

We remark that the bound is significantly accurate for the Padé approximation.
The deterioration due to the high degree ν = 11 is mostly noticed during the first
phase of the convergence; but see also section 8. A very satisfactory bound is obtained
for the Chebyshev approximation as well, especially for ν = 14.
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5. Layers of Galerkin approximations. The Krylov approximation in (1.4)
requires the solution of the system Ψν(Hm)ym = Φν(Hm)e1. This is interpreted in
[51] as a sequential Galerkin projection onto the Krylov subspace Km(A, v) of the
linear systems

(A− ξjI)w
(j)
m = w(j−1)

m , j = 1, . . . , ν,

with w
(0)
m = Vmy

(0)
m and y

(0)
m = Φν(Hm)e1. The solution of each system in the Krylov

subspace then corresponds to employing the full orthogonalization method (FOM)

[42]. Indeed, writing w
(j)
m = Vmy

(j)
m for j = 1, . . . , ν , we have

V ∗
m(A− ξjI)Vmy(j)

m = y(j−1)
m , j = 1, . . . , ν,

that is, (Hm − ξjI)y
(j)
m = y

(j−1)
m , j = 1, . . . , ν, so that, using (3.1),

ym ≡ 1

ψν
y(ν)
m =

1

ψν
(Hm − ξνI)

−1 · · · (Hm − ξ1I)
−1Φν(Hm)e1

≡ (Ψν(Hm))−1Φν(Hm)e1.

In this section we try to increase our understanding of the Krylov approximation.
The next result states an explicit relation between the Galerkin and Krylov solutions
when the approximation subspace has dimension larger than ν. We show that the
two matrices V ∗

mΨν(A)Vm,Ψν(Hm) coincide except for the bottom ν − 1 diagonal
block. This result also allows us to conclude that the two solutions tend to coalesce
as convergence takes place.

Proposition 5.1. For m > ν, let yKm = (Ψν(Hm))−1Φν(Hm)e1 and yGm =
(V ∗

mΨν(A)Vm)−1V ∗
mΦν(A)v be the Krylov and Galerkin approximations to the vector

x� = (Ψ(A))−1Φν(A)v, respectively. Then, there exists a (ν − 1) × (ν − 1) matrix
Sν , such that V ∗

mΨν(A)Vm = Ψν(Hm) + Sm,ν , with Sm,ν = Em,ν−1SνE
∗
m,ν−1, and

E∗
m,ν−1 = [0, Iν−1] ∈ R

(ν−1)×m. As a consequence, Φν(A)v = VmΦν(Hm)e1, and

yKm = yGm + (V ∗
mΨν(A)Vm)−1Em,ν−1SνE

∗
m,ν−1y

K
m

so that ‖yGm − yKm‖ ≤ ‖(V ∗
mΨν(A))−1Em,ν−1Sν‖ ‖E∗

m,ν−1y
K
m‖.

Proof. We eliminate the polynomial subscripts in the proof. For any polyno-
mial Ψ of degree at most ν, it can be explicitly shown that for j ≤ m − ν + 1,
V ∗
mΨ(A)Vmej = Ψ(Hm)ej and because of symmetry, it also holds e∗jV

∗
mΨ(A)Vm

= e∗jΨ(Hm). Therefore, we can write Sm,ν = Em,ν−1SνE
∗
m,ν−1, E

∗
m,ν−1 = [0, Iν−1],

for some (ν − 1) × (ν − 1) matrix Sν , from which the first result follows.
The fact that the two vectors Φ(A)v and VmΦ(Hm)e1 are equal is an immediate

consequence of the matrix relation above. Using the definition of yKm , yGm, we have

(V ∗
mΨ(A)Vm − Sm,ν)y

K
m = Φ(Hm)e1,

yKm − (V ∗
mΨ(A)Vm)−1Sm,νy

K
m = (V ∗

mΨ(A)Vm)−1Φ(Hm)e1 ≡ yGm,

yKm − yGm = (V ∗
mΨ(A)Vm)−1Sm,νy

K
m ,

from which the relation and the final bound follow.
Direct inspection shows that ‖Sν‖ = O(h2

m+1,m). In Table 5.1, we report some
numerical results that highlight the relation between the two methods. Data in Exam-
ple 4.5 with the Padé rational function of degree ν = 7 are considered. The columns
display the norm of the error for the Krylov method as the subspace dimension in-
creases and the 2-norm and Ψν-norm of the error for the Galerkin method. The two
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Table 5.1

Example 4.5: Convergence of Galerkin and Krylov approaches using Padé approximation with
ν = 7. The last column shows the difference between the two solutions.

m ‖x� − xK
m‖ ‖x� − xG

m‖ ‖x� − xG
m‖Ψν ‖xK

m − xG
m‖

1 2.3574e-01 2.3565e-01 2.7175e-01 4.0544e-04
2 4.6261e-02 4.6749e-02 5.4550e-02 2.9431e-03
3 6.1459e-03 6.2329e-03 7.3193e-03 5.8970e-04
4 6.1599e-04 6.2576e-04 7.3762e-04 7.1273e-05
5 4.9501e-05 5.0333e-05 5.9474e-05 6.3820e-06
6 3.3163e-06 3.3738e-06 3.9931e-06 4.5871e-07
7 1.9031e-07 1.9368e-07 2.2948e-07 2.7646e-08
8 9.5430e-09 9.7134e-09 1.1518e-08 1.4367e-09
9 4.2452e-10 4.3215e-10 5.1269e-10 6.5655e-11

10 1.6955e-11 1.7261e-11 2.0484e-11 2.6769e-12
11 6.1394e-13 6.2500e-13 7.4186e-13 9.8467e-14
12 2.2013e-14 2.2331e-14 2.7469e-14 3.3028e-15
13 8.4927e-15 8.4682e-15 1.2372e-14 1.8598e-16

approaches show very close, although not identical, approximation (cf. ‖xK
m − xG

m‖).
We also notice that the error between the two solutions decreases with m, the differ-
ence being one order of magnitude smaller than the approximation error.

Although the result of Proposition 5.1 sheds light on the similarities of the two
methods for large m, the two approaches behave very similarly even for m ≤ ν. The
analysis for m ≤ ν is of great interest, since for ‖A‖ not much greater than unit, high
convergence rate can be observed for the two methods, and final accuracy is obtained
for m possibly smaller than ν, as is the case in Example 4.5. In the following section
we show that the error in the Krylov approximation can be bounded in a way similar
to what we derived for the Galerkin approximation.

5.1. The Krylov approximation. The proof of Theorem 4.3 inspires an al-
ternative way to justify the use of the Krylov approach in (1.4) to approximate the
rational function Rν(A)v. Using the partial fraction expansion in (3.2) we can write

x� = Rν(A)v = τ0v +

ν∑
j=1

τj(A− ξjI)
−1v.(5.1)

Therefore, an approximation to x� may be obtained by approximating the solution
d(j) to each system (A − ξjI)d = v, j = 1, . . . , ν; this type of approach has been
explored, for instance, in [18, 5, 2, 4, 31]. Thanks to the shift invariance property of
Krylov subspaces, i.e., Km(A, v) = Km(A − ξjI, v) for any ξj ∈ C, approximations

to d(j) can be obtained in the same subspace Km(A, v) as d
(j)
m = Vmy

(j)
m for some

y
(j)
m using the FOM method. More precisely, if y

(j)
m is determined by imposing a

Galerkin (orthogonality) condition on the residual v−(A−ξjI)Vmy
(j)
m , then we obtain

y
(j)
m = (Hm − ξjI)

−1e1. Therefore, substituting y
(j)
m in the expansion yields

x� = τ0v +

ν∑
j=1

τj(A− ξjI)
−1v ≈ τ0v +

ν∑
j=1

τjVmy(j)
m

= Vm

⎛
⎝τ0e1 +

ν∑
j=1

τj(Hm − ξjI)
−1e1

⎞
⎠ = VmRν(Hm)e1.(5.2)

The last term is precisely the Krylov approximation (1.4).
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Theorem 4.3 shows that the approximation obtained by a Galerkin projection min-
imizes the error in the Ψ(A)-norm over all approximations in the subspace Km(A, v),
and thus we expect a larger error with the Krylov approximation. The derivation
above shows that the Krylov approximation yields a Galerkin solution on each sys-
tem with (A − ξjI); however, since (A − ξjI) is not Hermitian for ξj complex, the
Galerkin solution does not yield an error minimizing process. Note, however, that
if for some j, ξj is real (and positive), then the matrix A − ξjI is negative definite.
Therefore the Krylov approach does provide an error minimizing solution for that
term in the expansion.

If one abandons the idea of using the Krylov approximation (5.2), the expansion
in (5.1) suggests that one could use any available method for solving (A− ξjI)d = v
for each j. In particular, one could exploit the fact that A − ξjI is normal and
complex symmetric to devise an efficient minimum residual approach (cf. [28], [16,
Theorem 3.4]) that would yield a termwise (with respect to the partial fraction ex-
pansion) optimal method for approximating x�. We refer to [35] for a discussion of a
closely related approach from a polynomial point of view.

5.2. Residual and error in the Krylov approximation. We next provide a
direct bound for the error of the Krylov approach in (5.2), defined as

eKm := Rν(A)v − xK
m =

ν∑
j=1

τj((A− ξjI)
−1v − Vmy(j)

m ).(5.3)

We can also introduce the residual vector

rKm =

ν∑
j=1

τj(v − (A− ξjI)Vmy(j)
m ),

which is a linear combination of the ν residuals of the partial fraction expansion. It is
remarkable that the error eKm and the residual rKm written in the expansion form are a
fully algebraic representation of the error εm and of the generalized residual ρm defined
using the Cauchy integral form in [26, section 6.3, p. 1566]; see also [22] where a similar

connection is made. Denote with r
(j)
m the residual of the jth term in the expansion.

Since r
(i)
m = v − (A − ξjI)Vmy

(i)
m = v − Vm+1Hm+1,my

(i)
m = −vm+1hm+1,me∗my

(i)
m , we

have

rKm = −vm+1hm+1,m

ν∑
j=1

τje
∗
my(j)

m , with V ∗
mrKm = 0,(5.4)

and eKm = −hm+1,m

∑ν
j=1(A − ξjI)

−1vm+1τje
∗
my

(j)
m . Note that the Galerkin residual

rGm = Φν(A)v − Ψν(A)xG
m also satisfies V ∗

mrGm = 0, however, rGm does not belong to
the subspace generated by vm+1.

The quantity hm+1,m|e∗myKm | is a well established a posteriori estimate of the error
of the Krylov approximation [26, 41, 43]. As shown in (5.2), the Krylov approximation

is given by VmyKm = τ0Vme1 + Vm

∑ν
j=1 τjy

(j)
m so that e∗myKm =

∑ν
j=1 τje

∗
my

(j)
m for

m > 1, and

hm+1,m|e∗myKm | =

∣∣∣∣∣∣hm+1,m

ν∑
j=1

τje
∗
my(j)

m

∣∣∣∣∣∣ = ‖rKm‖.
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Hence, the a posteriori convergence estimate is precisely the norm of the residual rKm ;
see [7] for similar considerations.

We next bound the error of the Krylov approximation. We first need a lemma that
bounds the error obtained when solving each system in the partial fraction expansion;
see [29, formula (1.3)] for a qualitatively similar result.

Lemma 5.2. Let Mj = A − 
(ξj)I, and let αj, βj be the largest and smallest

eigenvalues of Mj in absolute value, respectively. Moreover, let β̂j = βj if Mj is

definite, which includes the case (ξj) = 0, otherwise β̂j = 0. Then, with the notation

above, the error e
(j)
m = (A− ξjI)

−1v − Vm(Hm − ξjI)
−1e1 satisfies

‖e(j)
m ‖ ≤ κ̂j‖(A− ξjI)

−1v‖ 2

ρmj + 1/ρmj
,

where κ̂j = |αj − i(ξj)|/|β̂j − i(ξj)| and ρj is the solution to the problem in (4.2).
Proof. The proof is inspired by that of [15, Theorem 4]. Let d� = (A− ξjI)

−1v,

dm = Vm(Hm − ξjI)
−1e1, e

(j)
m = d� − dm, e

(j)
0 = d�, and rm = (A − ξjI)e

(j)
m =

Mje
(j)
m − i(ξj)e

(j)
m . In the following we will omit the superscript in the error, and we

will use 〈u, v〉 = u∗v. We have 〈rm, em〉 = 〈Mjem, em〉 − 〈i(ξj)em, em〉 so that

|〈rm, em〉|2 = (〈Mjem, em〉)2 + (ξj)
2(〈em, em〉)2 ≥ (β̂2

j + (ξj)
2)‖em‖4.

We also have ‖rm‖2 = ‖Mjem‖2 +(ξj)
2‖em‖2 ≤ (α2

j +(ξj)
2)‖em‖2. Recalling that

rm ⊥ Km(Mj , v), for any u ∈ Km(Mj , v) we have

|〈rm, em〉|2 = |〈rm, d� − u〉|2

≤ ‖rm‖2 ‖d� − u‖2 ≤ (α2
j + (ξj)

2)‖em‖2 ‖d� − u‖2.

Collecting all bounds, we obtain (β̂2
j +(ξj)

2)‖em‖4 ≤ (α2
j +(ξj)

2)‖em‖2 ‖d�−u‖2,
that is,

‖em‖2 ≤
α2
j + (ξj)

2

β̂2
j + (ξj)2

‖d� − u‖2.

Since u is arbitrary, we take as u the solution to the problem

min
u∈Km

‖d� − u‖ = min
p∈Pm,p(0)=1

‖p(A− ξjI)e0‖.

Therefore, arguing as in the proof of Theorem 4.3, we have

min
p∈Pm,p(0)=1

‖p(A− ξjI)e0‖ ≤ ‖e0‖
2

ρmj + 1/ρmj
,

and the final result follows.
In the lemma above, for ν odd, Mj = A − 
(ξj)I is negative definite for the

real (positive) Padé pole, whereas in the case of the real (negative) Chebyshev pole,
Mj = −A − 
(ξj)I is positive definite (we recall here the change of sign in the case
of Chebyshev function). This ensures that the lemma holds for both Chebyshev and
Padé rational functions. Moreover, for definite Mj , a sharper bound can be obtained;
see Lemma 7.1.
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Theorem 5.3. Assume the previous notation holds and that the poles ξj are
distinct. Let Mj = A − 
(ξj)I and αj , βj be the largest and smallest eigenvalues of
Mj in absolute value, respectively. Then, with the notation of Lemma 5.2,

‖eKm‖ ≤ 2

ν∑
j=1

(
|τj |κ̂j‖(A− ξjI)

−1v‖
) 1

ρmj + 1/ρmj
.

Proof. Using the definition of eKm in (5.3) and its partial fraction representation,
we have

‖eKm‖ ≤
ν∑

j=1

|τj |‖e(j)
m ‖, e(j)

m = (Mj − i(ξj)I)
−1v − Vmy(j)

m .(5.5)

From Lemma 5.2, it follows ‖e(j)
m ‖ ≤ 2κ̂j‖(A − ξjI)

−1v‖/(ρmj + 1/ρmj ). Substituting
in (5.5), the result follows.

For κ̂j ≈ 1, we have

|τj |κ̂j‖(A− ξjI)
−1v‖ ≈ |τj |‖(A− ξjI)

−1v‖ ≤ max
λ∈[α,β]

|τj |
|λ− ξj |

,

where the last term is precisely the factor in the bound of the Galerkin approach; see
Remark 4.4. The condition κ̂j ≈ 1 is met, for instance, when [α, β] ≈ [−1, 0]. Indeed,
in this case, the poles in the partial fraction expansion are significantly larger in
absolute value than the values in [−1, 0] so that κ̂j = |(α−ξj)/(β−ξj)| ≈ |ξj |/|ξj | = 1.

Roughly speaking, the result of Theorem 5.3 tells us that the convergence rate
of the bound is driven by the convergence of the single systems (A − ξjI)d = v,
j = 1, . . . , ν with the FOM method. We also explicitly observe that the convergence
rate of systems with matrix A−ξjI is significantly different from that observed with A.
This is due to the fact that the spectrum of A− ξjI is in a complex line segment near
ξj , sufficiently far away from the origin to ensure fast convergence. These observations
should be compared to those in [24] and earlier literature, where the rate of conver-
gence of iterative solvers for systems with A was observed to be an unsatisfactory tool
for describing the convergence rate in the exponential approximation.

Finally, we have experimented with the bounds for the Krylov approximation as
in Example 4.5, and numerical results almost identical to those of Figure 4.1 were
obtained.

6. Some computational advantages of rational function approximation.
The use of rational functions and their partial fraction expansion allows us to exploit
and generalize known properties of Krylov subspace methods for the solution of al-
gebraic linear systems. In particular, in this section we show that our formulation
makes it easy to interpret recently proposed strategies.

As an immediate consequence of our formulation, in the following proposition we
provide a bound for the components of the solution yKm . Analyzing the pattern of the
solution components is of interest when using some recently developed preconditioning
strategies [49]. In these promising techniques, the Krylov subspace with respect to the
matrix (I − γA)−1 is generated for a conveniently chosen scalar γ. An approximation
to exp(A) is then obtained in this rational space. Since (I − γA)−1 cannot be applied
exactly, it is shown that the accuracy with which the inverse needs to be employed
can be tied to the magnitude of the solution components in the generated Krylov
subspace; we refer to [49, section 5] for a more comprehensive discussion.
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Proposition 6.1. Assume the notation of the previous sections holds. Let xK
m =

VmyKm be the Krylov approximation to the exponential operator and assume that for
k ≤ m, the matrix Hk − ξjI is nonsingular for all poles ξj, j = 1, . . . , ν. Then

|e∗kyKm | ≤ |e∗ke1τ0| +
ν∑

j=1

|τj |
σmin(Hm − ξjI)

‖r(j)
k−1‖, k ≤ m,

where σmin(Hm − ξjI) is the smallest singular value of Hm − ξjI, and ‖r(j)
k−1‖is the

residual norm associated with the jth partial fraction expansion system in Kk−1(A, v).
Proof. Using the partial fraction expansion of Rν(Hm) we have

yKm = τ0e1 +

ν∑
j=1

τj(Hm − ξjI)
−1e1 = τ0e1 +

ν∑
j=1

τjy
(j)
m ,(6.1)

from which

e∗ky
K
m = e∗ke1τ0 +

ν∑
j=1

τje
∗
ky

(j)
m .(6.2)

It was shown in [46, Lemma 5.2] that if the matrix Hk − ξjI is nonsingular for all

k = 1, . . . ,m so that the residuals r
(j)
k−1 are well defined, then

|e∗ky(j)
m | ≤ |e∗ke1τ0| +

1

σmin(Hm − ξjI)
‖r(j)

k−1‖.

Substituting in (6.2), the result follows.
The result of Proposition 6.1 shows that the components of yKm approximately

decrease with the residuals of the shifted systems in the expansion. This fact can be
exploited to rigorously show that the preconditioning technique proposed in [49] can
be successfully implemented with an inexact application of (I − γA)−1 and a relaxed
tolerance [40].

If convergence is not fast, a problem encountered with Krylov subspace ap-
proximation is that the maximum allowed approximation space dimension is lim-
ited by memory restrictions, and thus some form of restarting must be devised.
We next show that our rational function framework provides a simple though ef-
fective way to describe a recently proposed restarting strategy. Once the vector

xK
m = τ0v +

∑ν
j=1 Vmy

(j)
m is determined, a new approximation space can be obtained

as Km(A, vm+1) with vm+1 = Vm+1em+1 and associated matrix V
(1)
m so that the

approximation can be updated as

xK
m =

⎛
⎝τ0v +

ν∑
j=1

Vmy(j)
m

⎞
⎠ +

ν∑
j=1

V (1)
m (y(j)

m )(1),(6.3)

with obvious notation for (y
(j)
m )(1). We rewrite (6.3) as xK

m = τ0v +
∑ν

j=1(Vmy
(j)
m +

V
(1)
m (y

(j)
m )(1)). Recalling that this approach approximates τ0v+

∑ν
j=1(A−ξjI)

−1v, this
relation shows that each term in the expansion formula is nothing but the approximate
solution obtained by restarted FOM applied to each shifted system separately. This

last statement can be verified by recalling that all system residuals r
(j)
m are collinear
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with vm+1 (cf. (5.4)) so that the method can be restarted with the same approximation
space for all systems [45]. Further use of the properties of the restarted FOM method,
see, e.g., [44], shows that this restarting procedure corresponds to Algorithm 2 in [14]
when used with rational functions; see also [27] for more results on the derivation of
the restarted approximation method.

Finally, appropriate Krylov subspace approaches and rational function approx-
imations can be used to preserve geometric properties of the exponential of skew-
symmetric matrices; this is the subject of current investigation [30].

7. The role of ‖A‖ in the Padé approximation. In the previous sections
we assumed that ‖A‖ was not much greater than unit. For the case of Chebyshev
rational functions, this is an unnecessary constraint, as good approximations to e−x

can be obtained for x ∈ [0,+∞); see, e.g., [8]. In the right plot of Figure 7.1 we report
the convergence curve and its bound for the Krylov approximation using Chebyshev
rational functions with ν = 14 for the matrix in Example 7.3. In the plot, the ideal
bound (2.1) is also reported.

Padé rational function approximation is effective for ‖A‖ close to the origin.
Otherwise, a procedure called scaling and squaring is commonly employed in con-
junction with Padé functions that allows one to compute an approximation to the
exponential of a conveniently scaled matrix; see, e.g., [21]. The procedure amounts
to finding the smallest integer s ≥ 0 such that ‖A‖∞/2s is less than a prescribed
value, a common value being 1/2. Recent work by Higham has shown that this latter
value can be significantly relaxed, depending on the rational function degree used
in the approximation [23]. For the sake of simplicity, here we limit ourselves to the

case ‖A‖∞2−s ≤ 1
2 . Setting Ã = A/2s, the scaling and squaring method produces

the matrix B = (Rν(Ã))−1 so that the sought after approximation is obtained as
exp(A) ≈ B2s

, where the operation is performed by repeated squaring of B. Within
the Krylov approximation (1.2), scaling and squaring can be conveniently performed
at each step m as exp(Hm)e1 ≈ (Rν(Hm/2s))2

s

e1, where s may vary with m [43].
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Fig. 7.1. Example 7.3 with ‖A‖ � 1, Krylov approximation. Left. Padé rational function
with scaling and squaring: convergence curve and upper bound for ν = 7, and ideal bound. Right.
Chebyshev rational function: convergence curve and upper bound for ν = 14, and ideal bound.
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We next show that this corrected scheme can be included in our theoretical anal-
ysis. Let s ≥ 0 be the smallest integer such that Ã := A/2s satisfies ‖Ã‖ ≤ 1/2. The

construction of the Krylov subspace Km(Ã, v) corresponds to scaling Hm in (1.1) by
the quantity 2s, independent of m but dependent on ‖A‖. Since ‖Hm‖ ≤ ‖A‖ for all
m ≥ 0, this approach is more conservative than the one that scales Hm by a different
quantity at each iteration. We then approximate exp(A)v as

exp(A)v ≈
(
Rν(Ã)

)2s

v ≈ Vm

(
Rν(H̃m)

)2s

e1 ≡ VmyKm .

In the scaling and squaring method, the Padé approximant has poles of multiplicity
2s so that the partial fraction expansion is given by

Rν(ζ)
2s

= τ̃0 +

ν∑
j=1

2s∑

=1

τ̃j,

(ζ − ξj)


,(7.1)

where ξ1, . . . , ξν are the roots of Ψν and

τ̃j,
 =
1

(�− 1)!

d
−1

(dζ)
−1

(ζ − ξj)
2s

Φν(ζ)
2s

Ψν(ζ)2
s

∣∣∣∣
ζ=ξj

.

Therefore, we can write

(
Rν(Ã)

)2s

v = τ̃0v +

ν∑
j=1

2s∑

=1

τ̃j,
(Ã− ξjI)
−
v.

Because of the multiple poles, the computation of τ̃j,
 may be very ill conditioned,
therefore, we do not advocate implementing this procedure. Instead, it provides a way
to theoretically justify this computational strategy within our polynomial framework.
Once again, setting x� = Rν(Ã)2

s

v, we use the bound

‖ exp(A)v − VmyKm‖ ≤ ‖ exp(A)v − x�‖ + ‖x� − VmyKm‖,

in which the magnitude of the first term depends on the accuracy of the rational
approximation, whereas only the second term depends on the accuracy in the Krylov
subspace. By approximating each inverse power in the Krylov subspace, we have

x� = τ̃0v +

ν∑
j=1

2s∑

=1

τ̃j,
(Ã− ξjI)
−
v

≈ τ̃0v +

ν∑
j=1

2s∑

=1

τ̃j,
Vm(H̃m − ξj)
−
e1 = Vm

(
Rν(H̃m)

)2s

e1.

In spite of the presence of multiple poles, we next show that the error can be
bounded similarly to what we did for the simple poles. In fact, the bound for the
error in practice is not influenced by the presence of the scaling and squaring method.

We first derive a bound for the errors in the partial fraction expansion, which
holds for symmetric and definite matrices.

Lemma 7.1. Let Mj = A − 
(ξj)I be a symmetric definite matrix, and let
αj, βj be the largest and smallest eigenvalues of Mj in absolute value, respectively,
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so that κj = αj/βj > 0 is the condition number of Mj. Then, the error e
(j)
m =

(A− ξjI)
−1v − Vm(Hm − ξjI)

−1e1 satisfies

‖e(j)
m ‖ ≤ κ

1
2
j ηj‖(A− ξjI)

−1v‖ 2

ρmj + 1/ρmj
,

where ηj =
(
1 +

�(ξj)
2(κj−1)2

4κj�(ξj)2+α2
j (κj+1)2

) 1
2

, and ρj is the solution to the problem in (4.2).

Proof. We assume that Mj is positive definite, otherwise we can work with −Mj .

For each j = 1, . . . , ν, y
(j)
m is computed by imposing a Galerkin condition on the

corresponding residual v − (Mj − i(ξj)I)Vmy
(j)
m . It was shown in [15, Theorem 4]

that if Mj is definite, then

‖e(j)
m ‖Mj ≤ 2

ηj

ρmj + 1
ρm
j

‖e(j)
0 ‖Mj .

Then ‖e(j)
m ‖ ≤ ‖M−1/2

j ‖‖e(j)
m ‖Mj , ‖e(j)

0 ‖Mj ≤ ‖M1/2
j ‖‖e(j)

0 ‖, where ‖M1/2
j ‖ denotes

the norm of M
1/2
j , induced by the vector 2-norm, and ‖e(j)

0 ‖ = ‖(A− ξjI)
−1v‖.

The bound of Lemma 7.1 is analogous to that in Lemma 5.2 for κ̂j ≈ 1, which is
the case when ‖A‖ ≤ 1. The new bound of Lemma 7.1 provides a sharper estimate
for ‖A‖ > 1 and Mj definite; therefore it can be used with Padé rational functions.

Theorem 7.2. With the notation and definitions of Lemma 7.1, let ξj, j =
1, . . . , ν be the roots of Ψν(λ). Assume that the eigenvalues of A are contained in [α, β],

and that 1
2s

|λ|
|ξj | � 1 for λ ∈ [α, β]. Let x� =

(
Rν(Ã)

)2s

v and yKm =
(
Rν(H̃m)

)2s

e1.

Finally, for j = 1, . . . , ν, let

τ̂j := max

=1,...,2s

|τ̃j,
|
|(−ξj)
−1| .

Then,

‖x� − VmyKm‖
∼
≤ 2s+1

ν∑
j=1

|τ̂j |κ
1
2
j

ηj

ρmj + 1
ρm
j

‖(A− ξjI)
−1‖,

where
∼
≤ means that higher order terms are omitted.

Note that the bound is in terms of A and not of its scaled counterpart Ã.
Proof. Recalling (7.1), we have

R2s(λ) :=

(
Rν(

λ

2s
)

)2s

= τ̃0 +

ν∑
j=1

2s∑

=1

τ̃j,


( λ
2s − ξj)


= τ̃0 +

ν∑
j=1

2s∑

=1

τ̃j,


ξ
j(
λ

2sξj
− 1)


.

For |λ|
2s|ξj | � 1, we have ( λ

2sξj
− 1)
 ≈ (−1)
( 


2sξj
λ− 1) so that

R2s(λ) ≈ τ̃0 +

ν∑
j=1

2s∑

=1

τ̃j,


(−ξj)
(

λ

2sξj
− 1)

= τ̃0 −
ν∑

j=1

2s∑

=1

τ̃j,


(−ξj)
−1( 

2sλ− ξj)

.
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Let ωj,
 := τ̃j,
/(−ξj)

−1. Then,

‖x� − VmyKm‖ = ‖R2s(A)v − VmR2s(Hm)e1‖

≈

∥∥∥∥∥∥
ν∑

j=1

2s∑

=1

ωj,


((
�

2s
A− ξjI

)−1

v − Vm

(
�

2s
Hm − ξjI

)−1

e1

)∥∥∥∥∥∥
≤

ν∑
j=1

2s∑

=1

|ωj,
|‖εj,
‖,

where εj,
 = (

j
2sA − ξjI)

−1v − Vm(

j
2sHm − ξjI)

−1e1. Note that the approximation
above is ensured to hold for Hm because the eigenvalues of Hm = V T

mAVm are also

contained in [α, β] so that |θ|
2s|ξj | � 1 for any eigenvalue θ of Hm. Using Lemma 7.1

and appropriately modifying the notation, we have

‖εj,
‖ ≤ 2

(
κ

(
�

2s
A−
(ξj)I

)) 1
2 ηj,


ρmj,
 + 1
ρm
j,�

∥∥∥∥∥
(

�

2s
A− ξjI

)−1

v

∥∥∥∥∥ .
Since �/2s ≤ 1 for � ∈ {1, . . . , 2s}, we have ‖(�j/2sA− ξjI)

−1‖ ≤ ‖(A− ξjI)
−1‖ and

κ

(
�j
2s

A−
(ξj)I

)
η2
j,
 ≤ κ(A−
(ξj)I))η

2
j,2s ≡ κjη

2
j ;(7.2)

see the appendix for a proof of this inequality. From the definition of ρj,
, it follows
that

| �
2s

α−�(ξj) − i�(ξj)| + | �
2s

β −�(ξj) − i�(ξj)|
�
2s

|α− β|
=

|α− 2s

�
ξj | + |β − 2s

�
ξj |

|α− β|

≥ |α− ξj | + |β − ξj |
|α− β|

,

from which it follows that ρj,
 ≥ ρj,2s > 1, and because of monotonicity, we obtain

1

ρmj,
 + 1
ρm
j,�

≤ 1

ρmj,2s + 1
ρm
j,2s

.

Since ρj,2s corresponds to the convergence with (A − ξjI), we can set ρj,2s = ρj .
Collecting all bounds, we obtain

‖εj,
‖ ≤ 2κ
1
2
j

ηj

ρmj + 1
ρm
j

‖(A− ξjI)
−1‖.

Since |ωj,
| ≤ |τ̂j |, we finally have

ν∑
j=1

2s∑

=1

|ωj,
|‖εj,
‖ ≤ 2

ν∑
j=1

2s∑

=1

|τ̂j |κ
1
2
j

ηj

ρmj + 1
ρm
j

‖(A− ξjI)
−1‖

≤ 2 · 2s
ν∑

j=1

|τ̂j |κ
1
2
j

ηj

ρmj + 1
ρm
j

‖(A− ξjI)
−1‖.

A few remarks are in order. We first notice that the bound in Theorem 7.2 fully
mimics the bound in Theorem 5.3. The only relevant difference is the presence of
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the additional scaling factor 2s. The two bounds also differ for the terms τ̂j . In our
experiments, however, replacing τ̂j with τj did not seem to affect the approximation.

Although the approximation VmyKm with Padé does require scaling and squaring,
the convergence rate does not seem to depend on it. The proof suggests that one
could use the following estimate:

‖x� − VmyKm‖ ≈ ‖Rν(A)v − VmRν(Hm)e1‖,(7.3)

where, however, for ‖A‖ � 1, neither Rν(A)v is a good approximation to x�, nor
VmRν(Hm)e1 is a good approximation of VmyKm .

Example 7.3. We consider the 1001×1001 diagonal matrix A in [24] with entries
uniformly distributed in [−40, 0] and the random vector v with uniformly distributed
values in [0, 1] (Matlab function rand) and unit norm. In Figure 7.1 we report the
convergence of the error norm for the Krylov method, together with the ideal bound
(2.1) from [24] (referred to as HL bound). In the plot, we also report the following
estimate, derived from Theorem 7.2 by replacing τ̂j with τj , the latter being the
coefficients in the partial fraction expansion of Rν(λ),

‖x� − VmyKm‖
∼
≤ 2s+1

ν∑
j=1

|τj |
κj

ρmj + 1
ρm
j

‖(A− ξjI)
−1‖,(7.4)

‖x� − VmyKm‖
∼
≤ 2

ν∑
j=1

|τj |
κj

ρmj + 1
ρm
j

‖(A− ξjI)
−1‖.(7.5)

The new bound for the error norm does not significantly differ from those observed in
previous sections, although in this case the actual Padé approximation is performed
with scaling and squaring. In other words, convergence seems to be only driven by
the spectral properties of the matrix, as stressed by the bound on the convergence
rate that is based on polynomial estimates of the shifted spectrum of A.

8. Recovering superlinear convergence. Our bounds for both Galerkin and
Krylov approximations with rational functions of degree ν predict linear convergence
as the Krylov subspace dimension m increases. The superlinear convergence ex-
pressed, say, in the first bound of Theorem 2.1, can be recovered as a function of
the degree of the rational function. To explain this approach, we first recall that the
bounds in Theorem 2.1 were determined in two steps in [24, Theorem 2]. In the first
step, the error is bounded by means of the Cauchy integral on a curve Γ, which is the
boundary of a piecewise smooth bounded region containing the numerical range of A.
The second step amounts to conveniently choosing Γ so as to appropriately bound
the Cauchy integral. In particular, the selected curve is a parabola whose right-most
point turns out to be equal to γ = m2/(4ρ) in the notation of Theorem 2.1 (cf. [24,
pp. 1916-1917]). Therefore, the chosen curve moves away from the spectrum with m2

as the Krylov subspace dimension m increases.
The partial fraction expansion of Rν may be viewed as a way to approximate

the Cauchy integral representation of exp(λ) for a fixed integration curve passing
through the expansion poles. It is known that in both cases of Padé and Chebyshev
approximations Rν , the values ξj increase as ν grows. Therefore, a larger degree ν
corresponds to selecting a curve Γ that is farther away from the spectrum. In other
words, we expect better approximation of the bounds with small ν at an early con-
vergence stage, whereas larger ν are required to appropriately bound the convergence
curve as the dimension of the Krylov subspace increases. For the Chebyshev approx-
imation, superlinear convergence as ν increases may be observed in the right plot of
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Fig. 8.1. Example 7.3: Krylov approximation with Padé rational function; bound in (7.4) for
ν = 1, 4, 7, 10, 14, 18. The ideal bounds of Theorem 2.1 are also reported (labeled “HL bound”).

Figure 4.1, where the straight line for ν = 7 better represents the early convergence
stage, whereas the line for ν = 14 sharply bounds the convergence curve for larger m.

In the case of Padé approximation, this behavior can be better formalized, yield-
ing a relation between the approximation degree and the dimension of the Krylov
subspace. Using [1, Theorem 5.7.3], we know that the poles of the Padé approximant
Rν of degree ν are located in the complex annulus2

2 · 0.27ν ≤ |z| ≤ 2ν +
4

3
.

Therefore, if we wish to employ poles on a curve that intersects the positive real
semi-axis close to the “optimal value” m2/(4ρ), we require that ν satisfies 2 · 0.27ν ≤
m2

4ρ ≤ 2ν + 4
3 , that is,

m2

8ρ
− 2

3
≤ ν ≤ 1

0.27

m2

8ρ
.(8.1)

Hence, if the degree ν is chosen within the bounds above, we expect that the Padé
rational function approximates the Cauchy integral on a quasi-optimal curve, with
respect to m, in the sense of [24]. For instance, below are the values of ν satisfying
the lower bound in (8.1) for m ∈ {1, . . . , 40} and ρ = 10.

m 4 8 12 16 20 24 28 32 36 40
ν 0 1 2 3 5 7 10 13 16 20

The fidelity of this correspondence can be fully appreciated in Figure 8.1 for the
data in Example 7.3. Reported are the actual error curve (solid with squares), and
the ideal bounds of Theorem 2.1. We also display the upper bounds in (7.4) for

2It is also possible to detect a parabolic region that is pole-free; see [1, Theorem 5.7.4]. This
would more closely mimic the choice of the curve Γ in [24]. However, for the sake of simplicity we
limit our presentation to this more intuitive case.
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the Padé approximation with ρj associated with the poles for ν = 1, 4, 7, 10, 14, 18.
Remarkably, the envelope of the reported straight lines completely reproduces the
true convergence history, while the single lines well represent the local convergence
behavior at the corresponding subspace dimension m (e.g., the line for ν = 7 well
approximates the convergence slope around iteration m = 24).

Finally, we stress that all reported bounds, including the ideal bounds, only de-
pend on the spectral interval of the given matrix, and not on the location of the
eigenvalues within this interval. Particular eigenvalue distributions may cause severe
overestimations of the true convergence behavior; see, e.g., [10, section 3.2].

9. Conclusions and outlook. We have proposed a new analysis of Krylov
subspace methods for approximating the action of matrix rational functions with spe-
cific application to the matrix exponential operator. We have shown a minimization
property of one of the methods, we have provided new upper bounds for the approx-
imation error by using partial fraction expansion, and we have theoretically justified
some computational strategies.

Our analysis may be generalized to cases in which the rational function employed
to approximate the exponential is different from the widely used Padé or Chebyshev,
as in [38, 3]. Among these generalizations, the case of polynomial approximation of
the exponential is particularly appealing for its simplicity; see, e.g., [11]. We also
refer to [14, 35] for examples of polynomial interpolation at points different from
the eigenvalues of Hm. Without great differences, one could extend our results to
the case of restricted denominator (RD) rational forms, which are rational functions

Rj,k =
qj(x)

(1+ρx)k
, where ρ ∈ R and qj is a polynomial of degree not greater than j. Such

RD-rational forms have been introduced in [37] and were recently used to approximate
the exponential of a matrix in [34]. Our theoretical results may provide some insight
into the selection of the parameters involved in the definition of the RD-rational form.

Some of our results may be naturally extended to the case of non-Hermitian A,
although optimality results of the Galerkin method do not carry over. Finally, the
techniques and the analysis used in this paper could be adapted to the numerical
approximation of other analytic functions in the Krylov subspace, such as A

1
2 ; see

[13, 53] and references therein.

Appendix. We prove inequality (7.2) in the proof of Theorem 7.2.
Proof. Let ξj = ξR + iξI and κj,
 = κ( 


2sA− ξjI). We have

κj,
η
2
j,
 = κj,
 + κj,


ξ2
I (κj,
 − 1)2

4κj,
ξ2
I +

(


2sα− ξR

)
(κj,
 + 1)2

.

Let χ = �/2s and κj,
 = (χα− ξR)/(χβ − ξR) =: f(χ). Since α < β < 0 and ξR > 0,
we have f ′(χ) = ξR(−α+ β)/(χβ − ξR)2 > 0, that is, f is a monotonically increasing
function so that κj,
 = f(χ) ≤ f(1) = κj,2s for χ ∈ (0, 1]. With analogous reasoning,

we have that
√

f(χ) + 1/
√
f(χ) ≥

√
f(1) + 1/

√
f(1) and that (χα− ξR) ≥ (α− ξR)

for χ ∈ (0, 1]. Therefore,

κj,
η
2
j,
 = κj,
 + κj,


ξ2
I (κj,
 − 1)2

κj,


(
4ξ2

I +
(



2sα− ξR

) (√
κj,
 + 1√

κj,�

)2
)

≤ κj,2s +
ξ2
I (κj,2s − 1)2

4ξ2
I + (α− ξR)

(√
κj,2s + 1√

κj,2s

)2 = κjη
2
j .
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TWO FINITE ELEMENT APPROXIMATIONS OF NAGHDI’S SHELL
MODEL IN CARTESIAN COORDINATES∗
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Abstract. We present a penalized version of Naghdi’s model and a mixed formulation of the
same model, in Cartesian coordinates for linearly elastic shells with little regularity, and finite element
approximations thereof. Numerical tests are given that validate and illustrate our approach.

Key words. Naghdi’s shell model, finite element approximation, penalty method, mixed for-
mulation
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1. Introduction. The purpose of this work is to approximate the solution of a
formulation of Naghdi’s shell model in Cartesian coordinates that is appropriate for
linearly elastic shells that present curvature discontinuities. Our intent is to use finite
elements of class C0 and implement the approximation scheme as simply as possi-
ble using the general purpose, open source, two-dimensional finite element package
FreeFem++ (http://www.freefem.org).

The formulation of Naghdi’s model used here was introduced in Blouza [5] and
Blouza and Le Dret [7]. This formulation is based on the idea of using a local basis-free
formulation in which the unknowns are described in Cartesian coordinates instead of
with covariant or contravariant components as is usually done in shell theory; see, for
example, [4]. This formulation is able to accommodate shells with a W 2,∞-midsurface,
thus allowing for curvature discontinuities, as opposed to C3 in the classical formalism,
and makes for much simpler expressions. Although it was proven to be well-posed
and to be the natural limit of the classical formulation when a sequence of regular
midsurfaces converges to a W 2,∞-midsurface in [7], the new formulation has not been
used in a numerical setting to the best of our knowledge.

The literature on finite element approximation of two-dimensional shell models
is huge. Let us just mention a few different approaches. Concerning conforming
methods, the Ganev and Argyris triangles provide P4 and P5 interpolation with high
order convergence in O(h4) when the solution is smooth enough. These elements
were used, for example, to study the linear Koiter model for a C3-shell in the classical
covariant formulation; see [3]. This method was applied to approximate geometrically
exact shell models in [10]. The Argyris element was also used in [15] for the numerical
analysis of Koiter’s model for shells with little regularity in the Cartesian formulation
proposed in [6]. Let us also mention the three-dimensional shell element approach;
see [11].

Still in the context of shells with little regularity, a nonconforming DKT element
was used in [16] to approximate a Koiter model similar to the one introduced in [6].
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This article is organized as follows. We first briefly recall the geometry of the
midsurface and Naghdi shell formulation given in [5] and [7]. This formulation involves
the infinitesimal rotation vector, a vector unknown that is tangent to the midsurface.
Such tangency cannot be implemented in a conforming way in finite element spaces
(a problem that does not occur in the classical covariant formulation).

Therefore, in section 3, we introduce a penalized version of Naghdi’s model in-
tended to approximate the above mentioned tangency. We prove the existence and
uniqueness of the solution of the penalized model and establish its convergence to the
solution of the original Naghdi problem when the penalization parameter tends to 0.

In section 4, we present a mixed formulation of Naghdi’s model in which the
tangency condition is enforced by a Lagrange multiplier. We prove that the inf-sup
condition is satisfied and that the mixed problem is well-posed and solves the original
Naghdi problem.

Section 5 is devoted to the finite element discretization of both formulations.
The numerical analysis of the penalized version is rather standard. On the contrary,
the discrete inf-sup condition for the mixed formulation does not follow from usual
arguments, in the sense of those found in the discussion of approximations of the
Stokes problem for instance.

Finally, we present a few numerical tests in section 6. The method was imple-
mented in FreeFem++, a high level, free software package that manages mesh gener-
ation and adaption, matrix assembly, and linear system resolution automatically and
generally uses as input the resolution domain, boundary conditions, and bilinear and
linear forms. In addition to the resolution domain, boundary conditions, and applied
loads, the only specific input required from the user by our code is the definition
of the covariant vectors and of the partial derivatives of the normal vector. All the
other geometrical and mechanical quantities, including the bilinear form, are code-
generated. We present results for the standard hyperbolic paraboloid benchmark and
for the planar-cylindrical W 2,∞ shell considered in [15]. We also show results for a
W 2,∞ roof constructed on a basket-handle arch profile.

2. Notation. Greek indices and exponents take their values in the set {1, 2} and
Latin indices and exponents take their values in the set {1, 2, 3}. Unless otherwise
specified, the summation convention for indices and exponents is assumed.

Let (e1, e2, e3) be the canonical orthonormal basis of the Euclidean space R
3. We

note u · v the inner product of R
3, |u| =

√
u · u the associated Euclidean norm and

u ∧ v the vector product of u and v.
Let ω be a domain of R

2. We consider a shell whose midsurface is given by
S = ϕ(ω̄), where ϕ ∈ W 2,∞(ω; R3) is one-to-one mapping such that the two vectors

aα = ∂αϕ

are linearly independent at each point x ∈ ω̄. We let

a3 =
a1 ∧ a2

|a1 ∧ a2|

be the unit normal vector on the midsurface at point ϕ(x). The vectors ai define
the local covariant basis at point ϕ(x). The contravariant basis ai is defined by the
relations ai · aj = δji , where δji is the Kronecker symbol. In particular a3(x) = a3(x).
Note that all these vectors are of class W 1,∞. We let a(x) = |a1(x) ∧ a2(x)|2 so that√
a(x) is the area element of the midsurface in the chart ϕ.
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The first fundamental form of the surface is given in covariant components by

aαβ = aα · aβ .

Let u ∈ H1(ω; R3) be a midsurface displacement and r ∈ H1(ω; R3) a rotation of the
normal vector (which is related to the actual infinitesimal rotation vector; see formula
(15) below), i.e., H1-regular mappings from ω into R

3 such that r is tangent to the
midsurface, given in covariant and Cartesian components by

u(x) = ui(x)ai(x) = uc
i (x)ei, where ui = u · ai and uc

i = u · ei,

and

r(x) = rα(x)aα(x) = rci (x)ei with the same meaning.

Note that the tangency requirement is easily expressed in covariant coordinates, as it
simply reads r3 = 0, whereas it becomes

rci (x)ac3,i(x) = 0 in ω(1)

in Cartesian coordinates.
Let aαβρσ ∈ L∞(ω) be the elasticity tensor, which we assume to satisfy the usual

symmetries and to be uniformly strictly positive. In the case of a homogeneous,
isotropic material with Young modulus E > 0 and Poisson coefficient 0 ≤ ν < 1/2,
we have

aαβρσ =
E

2(1 + ν)
(aαρaβσ + aασaβρ) +

Eν

1 − ν2
aαβaρσ,

where aαβ = aα · aβ are the contravariant components of the first fundamental form.
In this context, the covariant components of the change of metric tensor read

γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα),(2)

the covariant components of the change of transverse shear tensor read

δα3(u, r) =
1

2
(∂αu · a3 + r · aα),(3)

and the covariant components of the change of curvature tensor read

χαβ(u, r) =
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα);(4)

see [5] and [7]. Note that all these quantities make sense for shells with little regu-
larity and are easily expressed with the Cartesian coordinates of the unknowns and
geometrical data. For instance, we have

∂αu · aβ = ∂αu
c
ia

c
β,i and so on.

We assume that the boundary ∂ω of the chart domain is divided into two parts:
γ0 of strictly positive one-dimensional measure on which the shell is clamped and
a complementary part γ1 on which the shell is subjected to applied tractions and
moments.
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Let us consider the function space, introduced in [5] and [7], which is appropriate
in the context of shells with little regularity,

V =
{
(v, s) ∈ H1(ω; R3)2; s · a3 = 0 in ω, v = s = 0 on γ0

}
.(5)

This space is endowed with the natural Hilbert norm

‖(v, s)‖V =
(
‖v‖2

H1(ω;R3) + ‖s‖2
H1(ω;R3)

)1/2
.(6)

The boundary conditions considered are hard clamping conditions on part of the
boundary. Soft clamping or simple support conditions correspond to v = 0 on γ0.
These conditions also work provided that ϕ(γ0) is not included in a straight line;
see [7].

Let us now recall the problem formulation and the existence and uniqueness result
in the space V for the linear Naghdi model for shells with little regularity.

Theorem 2.1. Let f ∈ L2(ω; R3) be a given resultant force density, N ∈
L2(γ1; R

3) an applied traction density, M ∈ L2(γ1,R
3) an applied moment density

such that M · a3 = 0 almost everywhere on γ1, and e > 0 the thickness of the shell.
Then there exists a unique solution to the following problem: find (u, r) ∈ V such that

∀(v, s) ∈ V, a
(
(u, r); (v, s)

)
= L((v, s)),(7)

where

a
(
(u, r); (v, s)

)
=

∫
ω

{
eaαβρσ

[
γαβ(u)γρσ(v) +

e2

12
χαβ(u, r)χρσ(v, s)

]

+ e
E

1 + ν
aαβδα3(u, r)δβ3(v, s)

}
√
a dx(8)

and

L((v, s)) =

∫
ω

f · v
√
a dx +

∫
γ1

(N · v + M · s) dγ.(9)

Proof. See [5] and [7].
Here and in the sequel, we make use of the following notational device: arguments

in a bilinear form are separated by a semicolon, whereas members of a couple are
separated by a comma. This will help keep track of who does what, since our bilinear
forms often apply to couples.

3. A penalized version of Naghdi’s model. The purpose of the present work
is to approximate the solution of (7) with a finite element method and to proceed in
the simplest possible way. (Note that we do not concern ourselves with locking in the
present paper; in this respect see [2], [12].) As the solution is in H1, C0-Lagrange P1

elements should be sufficient. However, we immediately encounter a problem since
the tangency constraint s ·a3 = 0 in ω clearly cannot be implemented in a conforming
way for a general shell.

We thus introduce a penalized Naghdi problem in which the unknowns still are
the displacement u and rotation r, elements of the space H1(ω; R3) without any
orthogonality constraint on r.

Let us introduce the relaxed function space

X =
{
(v, s) ∈ H1(ω; R3)2; v = s = 0 on γ0

}
(10)

and equip it with the standard H1 norm.
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Theorem 3.1. Let p ∈ R such that 0 < p ≤ 1. Let f ∈ L2(ω; R3), N ∈
L2(γ1; R

3), and M ∈ L2(γ1,R
3). Then there exists a unique solution to the following

problem: find (up, rp) ∈ X such that

∀(v, s) ∈ X , a
(
(up, rp); (v, s)

)
+

1

p
b(rp · a3; s · a3) = L((v, s)),(11)

where

b(λ;μ) =

∫
ω

∂αλ∂αμdx.(12)

The proof is based on the following version of the infinitesimal rigid displacement
lemma.

Lemma 3.2. Let (u, r) ∈ H1(ω; R3)2 and assume that ϕ ∈ W 2,∞(ω; R3).
(i) If γαβ(u) = 0, then there exists ψ ∈ L2(ω; R3) such that ∂αu = ψ ∧ aα.
(ii) If δα3(u, r) = 0, then ∂αu · a3 = −r · aα ∈ H1(ω).
(iii) If, in addition to (i) and (ii), χαβ(u, r) = 0, then ψ is a constant vector in

R
3 and there exists c ∈ R

3 such that

u(x) = c + ψ ∧ ϕ(x),(13)

and

r(x) = ψ ∧ a3(x) + (r(x) · a3(x))a3(x).(14)

Proof. The argument is exactly the same as in [7], except that we do not assume
r · a3 = 0, hence the extra term in formula (14).

Remarks. 1. Note that the infinitesimal rotation vector ψ is given by

ψ = εαβ(∂βu · a3)aα + εαβ(∂αu · aβ)a3

= εβα(r · aβ)aα + εαβ(∂αu · aβ)a3,(15)

where ε11 = ε22 = 0 and ε12 = −ε21 = 1/|a1 ∧ a2|.
2. If (v, s) ∈ X are such that (13) and (14) are verified, then we have

u = 0 and r = (r · a3)a3 a.e. in ω,

due to the boundary conditions.
We now are in a position to prove the ellipticity of the penalized bilinear form.
Lemma 3.3. The bilinear form in (11) is X -elliptic, uniformly with respect to p

for 0 < p ≤ 1.
Proof. The proof follows along lines similar to those found in [7] and we omit it

for brevity.
Proof of Theorem 3.1. Apply the Lax–Milgram lemma.
Remark. It is important to note that the original bilinear form a is not X -

elliptic; indeed it does not even define a norm on the relaxed space. It is therefore
necessary to add such terms as the extra terms ‖∂α(s · a3)‖2

L2 to recover ellipticity
over the larger space. In the case of soft clamping, these extra terms are not sufficient,
since (0, a3) still belongs to the kernel of the penalized bilinear form. In this case,
one should add the full H1 norm of s · a3, i.e., use a penalization term of the form
b(r · a3; s · a3) =

∫
ω

[
(r · a3)(s · a3) + ∂α(r · a3)∂α(s · a3)

]
dx.

It is now fairly classical that the penalization provides an approximation of the
constrained problem.



APPROXIMATION OF NAGHDI’S SHELL MODEL 641

Theorem 3.4. Let U = (u, r) and Up = (up, rp), respectively, be the unique
solutions of problems (7) and (11). Then

‖rp · a3‖H1(ω) ≤ Cp(16)

and

‖Up − U‖X ≤ Cp.(17)

Proof. Let L = L2(ω; R2) and Ψ: X → L defined by U 	→ ∇(r · a3). Now, we
have V = ker Ψ and b(r · a3; r · a3) = (Ψ(U),Ψ(U))L. It is known that if Ψ has closed
range, then the following estimates hold true (see [9]):

‖Ψ(Up)‖L ≤ Cp and ‖Up − U‖X ≤ Cp.

The first estimate gives estimate (16) and the second estimate is just estimate (17).
Let us thus check that Ψ has closed range. Consider a sequence Un ∈ X such

that Ψ(Un) → Z in L. By the Poincaré inequality, it follows that rn ·a3 is bounded in
H1(ω) and we can extract a weakly convergent subsequence such that rn · a3 ⇀ ζ in
H1(ω). Moreover, since rn · a3 = 0 on γ0 in the sense of traces, it follows that ζ = 0
on γ0 as well. In addition, clearly Z = ∇ζ. We thus set U = (0, ζa3) ∈ X and we see
that Ψ(U) = Z.

Remark. Since we are aiming for simplicity of implementation, we have made
no attempt to make the penalization term intrinsic. In fact, it does depend on the
chart, whereas the other terms do not. This could arguably be considered to be a
poor choice, especially if a chart was used that gave much more weight to one part of
the shell compared to the rest. An intrinsic choice that obviously works is

b′(r · a3; s · a3) =

∫
ω

aαβ∂α(r · a3)∂β(s · a3)
√
a dx.

This penalization term has the same properties as our simple penalization term and
does not suffer from the above mentioned drawback.

4. A mixed formulation of Naghdi’s model. Another way of imposing a
constraint in a variational problem is to use a mixed formulation. We follow this
route in this section. Naturally, mixed formulations for Naghdi’s model already exist
of the displacement/stress type, but in the context of attempting to write nonlocking
formulations; see, for instance, [2]. In the present article, we are not concerned with
locking issues but only with imposing the tangency of the rotation vector in Cartesian
coordinates. Hence the mixed formulation will be relatively simple. In particular, it
involves the same bilinear forms as those used in the penalization approach. Let us
set M = H1

γ0
(ω).

Theorem 4.1. For all ρ ≥ 0, the variational problem of finding (U, λ) ∈ X ×M
such that

∀(V, μ) ∈ X ×M,

{
a(U ;V ) + ρb((r · a3); (s · a3)) + b((s · a3);λ) = L(V ),

b((r · a3);μ) = 0,
(18)

has a unique solution, which is such that U ∈ V is the solution of Naghdi’s problem
(7).

Proof. The bilinear form a + ρb is V-elliptic (and even X -elliptic for ρ > 0 by
Lemma 3.3). In order to prove that problem (18) has a unique solution, we therefore
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just need to prove that b satisfies the inf-sup condition; see [14], [9]. Let thus

β = inf
μ∈M

sup
V ∈X

b((s · a3);μ)

‖V ‖X ‖μ‖M
,

and we want to show that β > 0. Let μ ∈ M \ {0} be arbitrary. Since μ vanishes on
γ0 and since a3 ∈ W 1,∞(ω; R3), we clearly have V = (0, μa3) ∈ X and μa3 · a3 = μ.
Therefore,

sup
V ∈X

b((s · a3);μ)

‖V ‖X
≥

‖∇μ‖2
L2(ω;R2)

‖a3 ⊗∇μ + μ∇a3‖L2(ω;M32)

so that

β ≥ inf
μ∈M

‖∇μ‖L2(ω;R2)

‖a3 ⊗∇μ + μ∇a3‖L2(ω;M32)
.

It is quite clear that the left-hand side of the above inequality is strictly positive,
since the denominator is basically a lower order perturbation of the numerator. Let
us quickly show this by a contradiction argument. Assume thus that we are given a
sequence μn ∈ M such that

‖∇μn‖L2(ω;R2) → 0 but ‖a3 ⊗∇μn + μn∇a3‖L2(ω;M32) = 1.

Obviously, due to the boundary conditions and the Poincaré inequality, μn → 0 in
H1(ω), hence a3 ⊗∇μn → 0 in L2 and μn∇a3 → 0 in L2 (recall that a3 ∈ W 1,∞), a
contradiction. Hence the inf-sup condition holds true and the mixed formulation has
one and only one solution.

Let us now check that this solution corresponds to the usual Naghdi problem.
Taking μ = r · a3 in the second equation, we see that U ∈ V. Then, taking V ∈ V
cancels all terms involving b in the first equation, hence the result.

Remarks. 1. We can also replace b by any scalar multiple of itself, and in the case
of soft clamping, we must replace it by the full H1 scalar product between s ·a3 and μ.
The lack of intrinsic character can be cured in the same way as for the penalization.

2. The Lagrange multiplier λ that enforces the tangency constraint r ·a3 = 0 does
not have a specific mechanical meaning, since the bilinear forms are pretty arbitrary.
Note that when nonzero, r ·a3 is sometimes called the pinching component or pinching
strain; see [11]. Indeed, it corresponds to a change in length of the deformed normal
fiber in the three-dimensional Kirchhoff–Love displacement constructed from u and r.
It is thus conceivable that a mechanical meaning could be ascribed to such a Lagrange
multiplier, but we do not pursue this line of reasoning here.

3. We may choose ρ = 0 or ρ > 0. In the latter case, we are adding a penalization
term in the spirit of augmented Lagrangian methods, which can be tuned for the best
numerical results.

5. The discrete formulations.

5.1. Finite element discretization of the penalized problem. The penal-
ized problem is a standard variational problem formulated in H1. We thus propose
to use a standard conforming finite element approximation.

Let thus Th be a regular affine family of triangulations which covers the domain
ω. The discrete space of admissible displacements and rotations is given by

Xh = {(v, s) ∈ C0(ω; R3)2, (v, s)|K ∈ P1(K), v = s = 0 on γ0},(19)

which is obviously contained in the continuous space X .
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The discrete problem thus reads as follows: find (up,h, rp,h) ∈ Xh such that

∀(v, s) ∈ Xh, a
(
(up,h, rp,h); (v, s)

)
+

1

p
b(rp,h · a3; s · a3) = L(v, s).(20)

Naturally, this problem has a unique solution.

5.2. Convergence. By virtue of the classical properties of Galerkin approxima-
tion, we have the following convergence result.

Theorem 5.1. There exists a sequence hp → 0 such that

‖(u, r) − (up,hp
, rp,hp)‖X −→ 0 when p → 0.(21)

Proof. For each p, we have up,h → up when h → 0 because this is a Galerkin
approximation of a classical variational problem. We then appeal to Theorem 3.4 to
construct a converging diagonal sequence.

If the solution is assumed to have some regularity, the second step of the approx-
imation may of course be controlled via an error estimate.

Proposition 5.2. Assume that the solution (up; rp) of problem (11) belongs to
H2(ω,R3)2 for all p. Then there exists a constant Cp independent of h, such that

‖(up,h, rp,h) − (up, rp)‖X ≤ Cph‖(up, rp)‖H2 .(22)

Proof. See [13], for example.
Remarks. 1. Since we are mostly interested in shells with little regularity—

otherwise classical formulations would apply—it is presumably not useful to look for
higher order elements in the hope of improving the rate of convergence. Indeed,
even without taking into account the penalization term, in the case of such a shell,
the underlying system of PDEs has nonsmooth coefficients. It is therefore unclear
whether elliptic regularity can be applied to yield even an H2 regularity, let alone
Hk+1 regularity with k ≥ 1. Note, however, that if the midsurface chart is smooth
and we want to use our formulation nonetheless for simplicity as compared to the
classical approach, then elliptic regularity will apply.

2. We could also combine estimates (17) and (22) to obtain a global error esti-
mate for the whole penalization/discretization process. To achieve this goal, we would
need to estimate the constant Cp in terms of p, which would probably include terms
of the order of p−1 due to the continuity constant of the bilinear form ap, and the
term ‖(up, rp)‖H2 . The latter term could be evaluated by using Nirenberg’s transla-
tions method, but the technical aspects involved hardly seem worth the effort in this
particular case, in view of the previous remark. In any case, it is reasonable to expect
locking due to the penalization term.

5.3. Finite element discretization of the mixed problem. The mixed prob-
lem is also a standard variational problem formulated in H1. In order to prove the
convergence of conforming finite element approximations, we only need to establish
the uniform discrete inf-sup condition. As is often the case, the uniform discrete inf-
sup condition turns out to be harder to prove than its continuous counterpart and in
our particular case, some of the arguments are rather nonstandard. Let us treat the
P1 case, with zero boundary condition for the multiplier, for simplicity. In this case,
we have

Mh = {μh ∈ C0(ω̄), μh|K ∈ P1(K), μh = 0 on ∂ω}.
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Theorem 5.3. For all ρ ≥ 0, the variational problem of finding (Uh, λh) ∈
Xh ×Mh such that

∀(Vh, μh) ∈ Xh ×Mh,

{
a(Uh;Vh) + ρb((rh · a3); (sh · a3)) + b((sh · a3);λh) = L(Vh),

b((rh · a3);μh) = 0,

(23)

has a unique solution for h small enough. Moreover

‖U − Uh‖X + ‖λ− λh‖M → 0 when h → 0.

We first need a couple of geometrical results.
Lemma 5.4. Let ϕ be a W 2,∞ chart. There exists a constant C > 0 such that

for all x, y in ω,

|a3(x) · (a3(x) − a3(y))| ≤ C‖x− y‖2.(24)

Proof. We adapt an argument of [1, Lemma 3.5]. By our regularity hypothesis,
the normal vector a3 is Lipschitz on ω̄. Hence, for all x0 ∈ ω̄, the function

Z(x) = (a3(x) − a3(x0)) · a3(x0)

is also Lipschitz. Therefore, by Rademacher’s theorem it is almost everywhere differ-
entiable and we have

∇Z(x) = ∇a3(x)Ta3(x0)

for almost all x ∈ ω. Therefore, due to the identification between Lipschitz and
W 1,∞ functions in a Lipschitz domain (see [1] for a proof), there exists a constant Cω

depending only on ω such that

|Z(x)| = |Z(x) − Z(x0)| ≤ Cω‖∇aT3 a3(x0)‖L∞(B̄(x0,‖x−x0‖)∩ω;R2)‖x− x0‖.

Now, a3 is a unit vector. Hence, at any point y of differentiability of a3, a3(y) is
orthogonal to the image of ∇a3(y), that is to say, ∇a3(y)

Ta3(y) = 0. Consequently,
we have that almost everywhere in B̄(x0, ‖x− x0‖) ∩ ω,

∇a3(y)
Ta3(x0) = ∇a3(y)

Ta3(x0) −∇a3(y)
Ta3(y)

so that

‖∇a3(y)
Ta3(x0)‖ ≤ ‖∇a3(y)

T ‖‖a3(x0) − a3(y)‖
≤ Cω‖∇a3‖2

L∞(ω;M32)
‖y − x0‖

almost everywhere. Therefore,

‖∇aT3 a3(x0)‖L∞(B̄(x0,‖x−x0‖)∩ω;R2) ≤ Cω‖∇a3‖2
L∞(ω;M32)

‖x− x0‖,

hence the result with C = C2
ω‖∇a3‖3

L∞(ω;M32)
.

Remark. Note that the above geometrical result holds true under the weaker,
“minimal” regularity hypotheses advocated in [1] for a shell midsurface, namely, ϕ
bilipschitz and such that a3 is Lipschitz.
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Lemma 5.5. Under the same hypotheses, there exists a constant C > 0 such that
for all x and almost all y in ω,

|a3(x) · ∂αa3(y)| ≤ C‖x− y‖.(25)

Proof. Let y be a point of differentiability of a3. We have

a3(x) · ∂αa3(y) = (a3(x) − a3(y)) · ∂αa3(y)

so that

|a3(x) · ∂αa3(y)| ≤ Cω‖∇a3‖2
L∞(ω;M32)

‖x− y‖

for all x ∈ ω.
We now turn to the inf-sup condition per se. Let Πh denote either the vector-

valued Lagrange interpolation operator from C0
0 (ω̄; R3) into Xh or the scalar-valued

Lagrange interpolation operator from C0
0 (ω̄) into Mh, depending on the context, and

ψh
j the shape function associated with vertex Sj of the triangulation.

Lemma 5.6. For all μh ∈ Mh, we let Rh(μh) = Πh(μha3). There exists a
constant C > 0 independent of h such that

b(Rh(μh) · a3;μh) ≥ C‖μh‖2
M.(26)

Proof. Note that while μh is scalar piecewise P1, μha3 is vector-valued and Rh(μh)
is vector-valued piecewise P1. Let us set

δh = Rh(μh) · a3 − μh

so that

b(Rh(μh) · a3;μh) = ‖μh‖2
M + b(δh;μh)

with

|b(δh;μh)| ≤ ‖μh‖M‖δh‖M.

We thus just need to estimate δh in the norm of M. By Lagrange interpolation, we
have

μh(x) =
∑
Sj

μh(Sj)ψ
h
j (x)

and

Rh(μh)(x) =
∑
Sj

μh(Sj)ψ
h
j (x)a3(Sj).

Therefore

Rh(μh) · a3(x) =
∑
Sj

μh(Sj)[a3(Sj) · a3(x)]ψh
j (x),

and

δh(x) =
∑
Sj

μh(Sj)[(a3(Sj) − a3(x)) · a3(x)]ψh
j (x),
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since a3(x) is a unit vector. Consequently, we arrive at the formula

∂αδh(x) =
∑
Sj

μh(Sj)[a3(Sj) · ∂αa3(x)]ψh
j (x)

+
∑
Sj

μh(Sj)[(a3(Sj) − a3(x)) · a3(x)]∂αψ
h
j (x)

almost everywhere (namely inside the triangles). At every point of differentiability in
ω, at most three terms in the sums are nonzero; therefore we can estimate

‖∂αδh‖L∞(ω) ≤ 3‖μh‖L∞(ω) max
j

max
Kk,j

[
|a3(Sj) · ∂αa3(x)| + C

h
|(a3(Sj) − a3(x)) · a3(x)|

]
,

where Kk,j stand for all the triangles having Sj as vertex. Since all triangles have
diameter bounded by a constant times h, we deduce with the help of Lemmas 5.4 and
5.5 that

‖∂αδh‖L∞(ω) ≤ Ch‖μh‖L∞(ω),

where C does not depend on h nor on μh.
We now appeal to the classical discrete Sobolev estimate (see [8]) and deduce that

‖∇δh‖L2(ω;R2) ≤ C‖∇δh‖L∞(ω;R2) ≤ Ch‖μh‖L∞(ω) ≤ Ch(lnh)1/2‖∇μh‖L2(ω;R2).

Taking h small enough so that Ch(lnh)1/2 ≤ 1
2 , we obtain estimate (26).

We now are in a position to prove the crucial uniform discrete inf-sup condition
which guarantees the convergence of the finite element scheme applied to the mixed
formulation.

Theorem 5.7. There exists β∗ > 0 independent of h such that

inf
μh∈Mh

sup
Vh∈Xh

b((sh · a3);μh)

‖Vh‖X ‖μh‖M
≥ β∗.(27)

Proof. Let thus

βh = inf
μh∈Mh

sup
Vh∈Xh

b((sh · a3);μh)

‖Vh‖X ‖μh‖M
.

By construction, since μh vanishes on ∂ω, we see that Vh = (0, Rh(μh)) ∈ Xh and
that ‖Vh‖X = ‖∇Rh(μh)‖L2(ω;M32). Therefore, by Lemma 5.6,

βh ≥ C inf
μh∈Mh

‖μh‖M
‖∇Rh(μh)‖L2(ω;M32)

,

and it suffices to estimate the denominator from above independently of h. We can
write

Rh(μh) = Rh(μh) − μha3 + μha3,

and since μha3 ∈ H1(ω; R3) ∩C0(ω̄; R3) and Rh(μh) is the P1-interpolate of μha3 on
the triangulation, which is regular by assumption, a classical scaling argument shows
that

‖∇Rh(μh) − μha3‖L2(ω;M32) ≤ C‖∇(μha3)‖L2(ω;M32).
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Therefore

‖∇Rh(μh)‖L2(ω;M32) ≤ (C + 1)‖∇(μha3)‖L2(ω;M32).

But we have already seen in the continuous case that

‖∇(μha3)‖L2(ω;M32) ≤ C‖μh‖M.

We have thus obtained that

‖∇Rh(μh)‖L2(ω;M32) ≤ C‖μh‖M,

which completes the proof of the Theorem.
Remark. It is fairly clear that the proof works the same if we replace P1 interpo-

lation by another Lagrange interpolation, for example, P2, which is also available in
FreeFem++.

The proof of Theorem 5.3 follows as in [9] or [14].
Naturally, if we assume some regularity of the solution, we obtain error estimates.
Proposition 5.8. Assume that the solution ((u, r), λ) of problem (4.1) belongs

to H2(ω,R3)3. Then there exists a constant C independent of h such that

‖(uh, rh) − (u, r)‖X + ‖λh − λ‖M ≤ Ch‖((u, r), λ)‖H2 .(28)

Proof. See [14], for example.

6. Numerical tests. In this section, we implement the discretization of both
penalized and mixed approaches, compare them on a literature benchmark, and apply
them to genuinely W 2,∞ shells.

6.1. Implementation details. Both model formulations only require the knowl-
edge of aα, a3, and ∂αa3. All other quantities, either geometrical like the elasticity
tensor or kinematical like the strain tensors, can be expressed by means of dot prod-
ucts involving these quantities. It is convenient to define these vectors as FreeFem++
functions. The dot products are expressed as FreeFem++ macros, which are then
combined into other macros that eventually expand to all the other quantities of in-
terest. The net result is that our code automatically constructs the bilinear forms,
with minimal user input, typically between 10 and 20 lines of code. This works well if
an analytic description of the midsurface is available. In the case of midsurfaces im-
plicitly defined via interpolation of nodal values, as in [11], the same approach should
be possible, provided the interpolated surface chart retains W 2,∞ regularity. We plan
to address this issue in a further iteration of the code.

Let us note that with respect to user input and code complexity, our approach
compares favorably with classical formulations which require the computation of the
covariant and mixed components of the second fundamental form and of the Christoffel
symbols of the chart; see, for example, [3].

Three-dimensional visualization of the undeformed and deformed shells uses
Medit,1 a free mesh visualization software available at http://www.ann.jussieu.fr/˜frey
/logiciels/medit.html.

All the tests were run on 1.5GHz Apple PowerBook G4 laptops and 2GHz single-
processor Apple Xserve G5.

1This software was designed and developed at the Laboratoire Jacques-Louis Lions of the Uni-
versity Pierre et Marie Curie.
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6.2. The hyperbolic paraboloid shell. This test is a literature benchmark for
shell elements. We use this example, in which the midsurface of the shell is represented
by a chart of class C∞, mainly to validate our code. It does not constitute a relevant
test for the W 2,∞ case.

The reference domain of the midsurface is given by

ω =
{
|x| + |y| <

√
2b
}
,

and the chart is defined by

ϕ(x, y) =
(
x, y,

c

2b2
(x2 − y2)

)T

,

where b = 50 cm and c = 10 cm.
The shell is clamped on ∂ω and subjected to a uniform pressure q = 0.01 kp/cm2.

The mechanical data are

E = 2.85 104 kp/cm2, ν = 0.4,

The thickness of the shell is e = 0.8 cm.
The reference value for this test is the normal displacement at the center A of the

shell. Its value computed by various methods is of −0.024 cm; see [3].
Due to the symmetries of the problem, we use the computational domain

ω′ =
{
0 < x, 0 < y, x + y <

√
2b
}

and enforce the symmetry conditions

u2 = 0, r2 = 0 on y = 0

and

u1 = 0, r1 = 0 on x = 0.

These conditions are obtained by expressing the continuity of the three-dimensional
Kirchhoff–Love displacement U = u + x3r along these edges.

The following are results for both methods using mesh adaption and P2 elements:

Degrees of freedom (u · a3)(A) Range of values for r · a3

Penalized 7005 −0.0241419 −3.46456e−08 3.52366e−08
Mixed 7279 −0.0241416 −3.52081e−08 3.51064e−08

In the penalized test, the penalization parameter was 103 E
2(1+ν) . Both methods

achieve excellent tangency for the rotation vector and similar performance in terms
of the reference value, see also Figures 1 and 2.

Remark. We also performed tests on another benchmark, the Scordelis–Lo roof.
Unfortunately, in this case, P1 and P2 elements present significant locking. (We obtain
a maximum normal displacement that is only 65% of the reference value.) Until
more sophisticated elements become integrated into FreeFem++, such tests cannot
yield satisfactory results. We were, however, able to confirm that both Cartesian
formulations provide the same (locked) result as the classical covariant formulation
using P1 and P2 elements.
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Fig. 1. The initial and final meshes.

Fig. 2. Isovalues of the normal displacement u · a3, mixed formulation.

6.3. A plane-cylinder W 2,∞-shell. Our next test is a genuine W 2,∞ test with
curvature discontinuities. The shell consists of a plane part and a cylindrical part with
a C1-join; see Figure 3. The reference domain of the midsurface is given by

ω = ]−R,R[×]−L/2, L/2[,

and the chart is defined by

ϕ(x, y) =

{
(x, y, 0)T if x < 0,

(R sin(x/R), y, R(1 − cos(x/R)))T if x ≥ 0

with R = 300 in. and L = 600 in. (These values come from the Scordelis–Lo test.)
The thickness of the shell is e = 3 in.
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Fig. 3. The plate-cylinder shell.

Fig. 4. The initial mesh on the midsurface.

The mechanical data are

E = 3.0 × 106 psi, ν = 0.0.

The shell is submitted to a uniform downward pressure of 0.625 lb/in2.
Concerning boundary conditions, we consider the case of hard clamping on lines

AB and DC

u1 = u2 = u3 = 0 and r1 = r2 = r3 = 0,

and the shell is free on its remaining edges. Thanks to the symmetry, we only consider
half of the midsurface, y > 0. The corresponding symmetry conditions on AD are

u2 = r2 = 0.

Note that the initial mesh ignores the curvature discontinuity at x = 0.
Note that in Medit, the coordinate axes are attached to the bounding box: al-

though it seems that the clamped left side of the shell has moved up in Figure 5
compared to Figure 4, this is not actually the case.

It is interesting to note that mesh adaption concentrates around the curvature
discontinuity, thus indicating the lack of regularity of the solution across this line. In
the isovalues of Figures 6, 7, and 8, the leftmost half of the domain corresponds to
the planar part of the shell for x1 < 0 and the other half to the cylindrical part of the
shell. The line AD is represented by the bottom side of the domain.
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Fig. 5. The deformed half-shell (displacement magnified by a factor of 7).

Fig. 6. Isovalues of u1. The range of values is [−0.967042, 0.0130627].

Fig. 7. Isovalues of u2. The range of values is [−0.00181261, 0.00234357].

Fig. 8. Isovalues of u3. The range of values is [−6.31062, 0.949939]. (Isovalues for u · a3 are
practically identical and those for r1 and λ show similar features.)

Note that although the pressure acts downward, the cylindrical part of the shell
lifts a little bit to compensate for the large deflection of its planar part.

Concerning the rotation vector, we have the following isovalues in Figures 9 and
10. (r1 is not represented; see Figure 8.)

To see how the mixed formulation manages to enforce the tangency constraint,
we also plot the isovalues of the normal rotation r · a3 (Figure 11). We see that the
curvature discontinuity makes it harder to capture this constraint than in the C∞

case of the hyperbolic paraboloid.
Finally, we compare our results with those of [15] for the same geometry, but

for the Koiter model, using the Argyris element on a structured mesh that respects
the curvature discontinuity. The vertical displacement of point O is found to be
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Fig. 9. Isovalues of r2. The range of values is [−0.0011471, 0.000972632].

Fig. 10. Isovalues of r3. The range of values is [−0.00547512, 0.0128569].

Fig. 11. Isovalues of r · a3. The range of values is [−9.18161e−06, 0.00474402].

I

Circle of center J
Circle of center I

A

M
C

N

BKJ
O

Fig. 12. AMNB is basket handle or three-centered arch.

approximately −4.0 in. (value based on a graph in [15]). We find u3(0) = −3.83631
in., which is in good agreement.

6.4. A basket-handle tunnel. A basket-handle is a classical approximation of
an arc of ellipse, and a very good one, constructed with three circles (Figure 12). It
has long been used in architecture as a replacement for an ellipse. Clearly this arc
presents two curvature discontinuities and the same will be true for arches based on it.

We present numerical results for a long, tunnel-like shell based on a slightly
extended basket-handle arc.

We use the same mechanical data as for the plate-cylinder shell. Clamping is
assumed on both rectilinear sides of the shell. These sides are of length 3000 in. The
large circle radius is 400 in. and the small circle radius 200 in.

The natural chart for this shell is of class W 2,∞. It is obtained by parametrizing
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Fig. 13. The initial mesh on the basket-handle midsurface.

Fig. 14. The deformed shell (displacement magnified by a factor of 3).

Fig. 15. Isovalues of u · a3 (left), r · a3 (middle), and u2 (right).
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the basket-handle by arclength. The computational domain is a rectangle ]−628.32,
628.32[×]−1800, 1800[. (We compute the whole shell without using the symmetries
for better visualization.)

The vertical displacement of the center of the shell is u3(0, 0) = −27.3815 in.
Figure 13 shows the initial mesh, Figure 14 the deformed shell, and Figure 15 various
isovalues.

Remark. Naturally, the isovalues for u2 should respect the shell symmetries.
However, since the range of values for u2 is of the order of [−2e−5, 2e−5], the shape of
the isovalue lines is very sensitive to errors. It nonetheless becomes more symmetrical
when the mesh is further refined.

Acknowledgments. The authors wish to thank Christine Bernardi and Vivette
Girault for illuminating discussions about finite element theory, Marina Vidrascu
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GENERALIZED CUBIC SPLINE FRACTAL INTERPOLATION
FUNCTIONS∗
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Abstract. We construct a generalized Cr-Fractal Interpolation Function (Cr-FIF) f by pre-
scribing any combination of r values of the derivatives f (k), k = 1, 2, . . . , r, at boundary points of
the interval I = [x0, xN ]. Our approach to construction settles several questions of Barnsley and
Harrington [J. Approx Theory, 57 (1989), pp. 14–34] when construction is not restricted to pre-
scribing the values of f (k) at only the initial endpoint of the interval I. In general, even in the case
when r equations involving f (k)(x0) and f (k)(xN ), k = 1, 2, . . . , r, are prescribed, our method of
construction of the Cr-FIF works equally well. In view of wide ranging applications of the classical
cubic splines in several mathematical and engineering problems, the explicit construction of cubic
spline FIF fΔ(x) through moments is developed. It is shown that the sequence {fΔk

(x)} converges
to the defining data function Φ(x) on two classes of sequences of meshes at least as rapidly as the
square of the mesh norm ‖Δk‖ approaches to zero, provided that Φ(r)(x) is continuous on I for
r = 2, 3, or 4.

Key words. fractal, iterated function system, fractal interpolation function, spline, cubic spline
fractal interpolation function, convergence

AMS subject classifications. 26A18, 37N30, 41A30, 65D05, 65D07, 65D10

DOI. 10.1137/040611070

1. Introduction. With the advent of fractal geometry [2], the use of stochastic
or deterministic fractal models [3, 4, 5] has significantly enhanced the understanding
of complexities in nature and different scientific experiments. Hutchinson [6] has stud-
ied the deterministic fractal model based on the theory of Iterated Function System
(IFS). Using IFS, Barnsley [3, 7] has introduced the concept of Fractal Interpola-
tion Function (FIF) for approximation of naturally occurring functions showing some
sort of self-similarity under magnification. A FIF is the fixed point of the Read–
Bajraktarević operator acting on different function spaces. Generally, affine FIFs are
nondifferentiable functions and the fractal dimensions of their graphs are nonintegers.
The generation of FIF codes provides a powerful technique for compression of images,
speeches, time series, and other data; see, e.g., [8, 9, 10].

If the experimental data are approximated by a Cr-FIF f , then one can use the
fractal dimension of f (r) as a quantitative parameter for the analysis of experimen-
tal data. The differentiable Cr-FIF differs from the classical spline interpolation by
a functional relation that gives self-similarity on small scales. Barnsley and Har-
rington [1] have introduced an algebraic method for the construction of a restricted
class of Cr-FIF f , which interpolates the prescribed data by providing values of f (k),
k = 1, 2, . . . , r, at the initial endpoint of the interval. However, in their method of
construction, specifying boundary conditions similar to those for classical splines has
been found to be quite difficult to handle. Massopust [11] has attempted to generalize
work in [1] by constructing smooth fractal surfaces via integration.
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In the present paper, a method of construction of a Cr-fractal function is devel-
oped by removing the requirement of prescribing the values of integrals of the given
FIF only at the initial endpoint x0. Thus, a Cr-fractal function is constructed when
successive r values of integrals of a FIF are prescribed in any combination at boundary
points of the interval. Further, a general method is proposed to construct an inter-
polating Cr-FIF for the prescribed data with all possible boundary conditions. The
complex algebraic method proposed in [1] uses complicated matrices and particular
types of end conditions. Using the functional relations present between the values of
the Cr-FIF that involve endpoints of the interval, our approach does not need the
complex algebraic method in [1]. Our construction settles several queries of Barnsley
and Harrington [1] such as (i) which boundary point conditions lead to uniqueness
of a Cr-FIF, (ii) what happens if horizontal scalings are in reverse direction and (iii)
how to build up the moment integrals theory in this case. The advantage of such a
spline FIF construction is that, for prescribed data and given boundary conditions,
one can have an infinite number of spline FIFs depending on the vertical scaling fac-
tors, giving thereby a large flexibility in the choice of differentiable Cr-FIFs according
to the need of an experiment.

Due to the importance of the cubic splines in computer graphics, CAGD, FEM,
differential equations, and several engineering applications [12, 13, 14, 15], cubic spline
FIF fΔ(x) on a mesh Δ is constructed through moments Mn = f

′′

Δ(xn), n = 0, 1, 2, . . . ,
N . These cubic spline FIFs may have any types of boundary conditions as in classical
splines. It is shown that the sequence {fΔk

(x)} converges to the defining data function
Φ(x) on two classes of sequences of meshes at least as rapidly as the square of the
mesh norm ‖Δk‖ converging to zero, provided that Φ(r)(x) is continuous on [x0, xN ]
for r = 2, 3, or 4.

In section 2, some basic results for FIFs are given and a general method for
construction of a Cr-FIF with different boundary conditions is enunciated after de-
veloping a basic calculus of C1-FIFs. The construction of a generalized cubic spline
FIF through moments is described in section 3 with all possible boundary conditions,
as in the classical splines. In section 4, two classes of sequences of meshes are defined
and the convergence of suitable sequence of cubic spline FIFs {fΔk

} to Φ ∈ Cr[x0, xN ],
r = 2, 3, or 4, is established. Finally, in section 5, the results obtained in section 3
are illustrated by generating certain examples of cubic spline FIFs for a given data
and two different sets of vertical scaling factors.

2. A general method for construction of Cr-FIF. We give the basics of
the general theory of FIFs and develop the calculus of C1-FIFs in section 2.1. The
principle of construction of a Cr-FIF that interpolates the given data is described in
section 2.2.

2.1. Preliminaries and calculus of C1-FIFs. Barnsley et al. [1, 3, 8, 16, 17]
have developed the theory of FIF and its extensive applications. In the following, some
of the notations and results of FIF theory, which we will later need, are described.

Let K be a complete metric space with metric d and H be the set of nonempty
compact subsets of K. Then, {K;ωn, n = 1, 2, . . . , N} is an iterated function system
(IFS) if ωn : K → K is continuous for n = 1, 2, . . . , N. An IFS is called hyperbolic
if d(ωn(x), ωn(y)) ≤ sd(x, y) for all x, y ∈ K,n = 1, 2, . . . , N and 0 ≤ s < 1. Set

W (A) =
⋃N

n=1 ωn(A) for A ∈ H. The following proposition gives a condition on an
IFS to have a unique attractor.

Proposition 2.1 (see [3]). Let {K;ωn, n = 1, 2, . . . , N} be a hyperbolic IFS.
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Then, it has an unique attractor G such that h(Wm(A), G) → 0 as m → ∞, where
h(. , .) is the Hausdorff metric.

Suppose a set of data points {(xi, yi) ∈ I × R : i = 0, 1, 2, . . . , N} is given, where
x0 < x1 < · · · < xN and I = [x0, xN ]. Set K = I ×D, where D is a suitable compact
set in R. Let Ln : I −→ In = [xn−1, xn] be the affine map satisfying

Ln(x0) = xn−1, Ln(xN ) = xn(2.1)

and Fn : K −→ D be a continuous function such that

Fn(x0, y0) = yn−1, Fn(xN , yN ) = yn

|Fn(x, y) − Fn(x, y∗)| ≤ αn|y − y∗|

}
,(2.2)

where, (x, y), (x, y∗) ∈ K, and 0 ≤ αn < 1 for all n = 1, 2, . . . , N. Define ωn(x, y) =
(Ln(x), Fn(x, y)) for all n = 1, 2, . . . , N. The definition of a FIF originates from the
following proposition.

Proposition 2.2 (see [3]). The IFS {K;ωn, n = 1, 2, . . . , N} has a unique
attractor G such that G is the graph of a continuous function f : I → R (called
FIF associated with IFS {K;ωn, n = 1, 2, . . . , N}) satisfying f(xn) = yn for n =
0, 1, 2, . . . , N.

The following observations based on Proposition 2.2 are needed in the sequel.
Let F = {f : I → R | f is continuous, f(x0) = y0 and f(xN ) = yN} and ρ be the
sup-norm on F . Then, (F , ρ) is a complete metric space. The FIF f is the unique
fixed point of the Read–Bajraktarević operator T on (F , ρ) so that

Tf(x) ≡ Fn(L−1
n (x), f(L−1

n (x))) = f(x), x ∈ In, n = 1, 2, . . . , N.(2.3)

For an affine FIF, Ln and Fn are given by

Ln(x) = anx + bn

Fn(x, y) = αny + qn(x)

}
, n = 1, 2, . . . , N,(2.4)

where qn(x) is an affine map and |αn| < 1.
Barnsley and Harrington [1] have observed that the integral of a FIF is also

a FIF, although for a different set of interpolation data, provided the value of the
integral of the FIF at the initial endpoint of the interval is known. This observation
is needed for developing the calculus of C1-FIFs. Thus, let f be the FIF associated
with {(Ln(x), Fn(x, y)), n = 1, 2, . . . , N}, where Fn is defined by (2.4) and let the
value of integral of this FIF be known at x0. If

f̂(x) = ŷ0 +

∫ x

x0

f(τ)dτ,(2.5)

the function f̂ is the FIF associated with IFS {(Ln(x), F̂n(x, y)), n = 1, 2, . . . , N},
where F̂n(x, y) = anαny + q̂n(x), q̂n(x) = ŷn−1 − anαnŷ0 + an

∫ x

x0
qn(τ)dτ ,

ŷn = ŷ0 +

n∑
i=1

ai

{
αi(ŷN − ŷ0) +

∫ xN

x0

qi(τ)dτ

}
, n = 1, 2, . . . , N − 1,

and ŷN = ŷ0 +
∑N

i=1 ai
∫ xN

x0
qi(τ)dτ/1−

∑
i=1 Naiαi. Here, (xn, ŷn), n = 0, 1, 2, . . . , N

are interpolation points of FIF f̂ .
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Fig. 1. FIF and its integrals.

Remarks. 1. If the value of the integral of a FIF is known at the final endpoint
xN instead of the initial endpoint x0, an analogue of the above result can be found
by defining

f̂(x) = ŷN −
∫ xN

x

f(τ)dτ.(2.6)

The function f̂ is the FIF associated with {(Ln(x), F̂n(x, y)), n = 1, 2, . . . , N}, where
F̂n(x, y) = anαny+q̂n(x), q̂n(x) = ŷn−anαnŷN−an

∫ xN

x
qn(τ)dτ and the interpolation

points of f̂ are given by ŷn = ŷN −
∑N

i=n+1 ai{αi(ŷN − ŷ0) +
∫ xN

x0
qi(τ)dτ}, n =

1, 2, . . . , N − 1 with ŷ0 = ŷN −
∑N

i=1ai

∫ xN
x0

qi(τ)dτ

1−
∑N

i=1aiαi
. In general, a Cr-FIF interpolating a

certain different set of data can be constructed when values of r successive integrals
of the FIF are provided at any combination of endpoints.

2. The functional values of FIF f̂ are, in general, different for the same set of
vertical scaling factors even if ŷ0 and ŷN occurring, respectively, in (2.5) and (2.6) are
the same. However, since ŷn− ŷn−1 remains the same for each n in both the cases, the
nature of f̂ remains the same in both the cases as illustrated by the following example.

Example. Let f be a FIF associated with the data {(0, 0), ( 2
5 , 1), ( 3

4 ,−1), (1, 2)}
with vertical scaling factor αn = 0.8 for n = 1, 2, 3 (Figure 1(a)). Choosing ŷ0 = 0,

f̂(x) =
∫ x

x0
f interpolates the set of points {(0, 0), ( 2

5 ,
−22
25 ), ( 3

4 ,
−73
40 ), (1, −19

8 )}. FIF f̂

is associated with the IFS generated by L1(x) = 2
5x, L2(x) = 7

20x+ 2
5 , L3(x) = 1

4x+ 3
4

and F̂1(x, y) = 8
25y−

3
25x

2, F̂2(x, y) = 7
25y−

63
100x

2 + 7
20x−

22
25 , F̂3(x, y) = 1

5y+ 7
40x

2−
1
4x + 73

40 . The graph of FIF f̂ is shown in Figure 1(b). Next, choosing ŷN = 0,

f̂(x) = −
∫ xN

x
f interpolates the set of points {(0, 19

8 ), ( 2
5 ,

299
200 ), ( 3

4 ,
11
20 ), (1, 0)} (Figure

1(c)). In this case, the corresponding IFS contains the same Ln(x) for n = 1, 2, 3
and F̂1(x, y) = 8

25y − 3
25x

2 + 323
100 , F̂2(x, y) = 7

25y − 63
100x

2 + 7
20x + 83

100 , F̂3(x, y) =
1
5y+ 7

40x
2− 1

4x+ 3
40 . The nature of FIFs f̂ in Figure 1(b)–(c) remains the same, since

the functional values of FIF f̂ in Figure 1(c) are shifted by 19
8 from the functional

values of f̂ in Figure 1(b) so that ŷn− ŷn−1 remains the same. It is interesting to note
that the corresponding functions F̂n(x, y) for IFS of Figure 1(b)–(c) are not shifted

by equal amount although the function f̂ is shifted by the fixed amount 19
8 .

In general, the relation between the IFS of FIF f and the IFS of its integral f̂ is
given as follows [18].

Proposition 2.3. Let f̂ be the FIF defined by (2.5) or (2.6) for a FIF f with

Ln(x) and Fn(x, y) given by (2.4). Then, f is primitive of f̂ if and only if f̂ is the
FIF associated with the IFS {R

2; ŵn(x, y) = (Ln(x), F̂n(x, y)), n = 1, 2, . . . , N}, where
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F̂n(x, y) = α̂ny+ q̂n(x), α̂n = anαn, and the polynomial q̂n(x) satisfies q̂′n = anqn for
n = 1, 2, . . . , N.

2.2. Principle of construction of a Cr-FIF. Our approach for the construc-
tion of a Cr-FIF that interpolates the given data is based on finding the solution of
a system of equations in which any type of boundary conditions are admissible. Such
a construction is more general than that of Barnsley and Harrington [1] wherein all
the relevant derivatives of the FIF are restricted to be known at the initial endpoint
only. The Cr-FIF interpolating prescribed set of data is found as the fixed point of a
suitably chosen IFS by using the following procedure.

Let {(x0, y0), (x1, y1), . . . , (xN , yN )}, x0 < x1 < · · · < xN , be the given data
points and Fr = {g ∈ Cr(I,R) | g(x0) = y0 and g(xN ) = yN}, where r is some
nonnegative integer and σ is the Cr-norm on Fr. Define the Read–Bajraktarević
operator T on (Fr, σ) as

Tg(x) = αng(L
−1
n (x)) + qn(L−1

n (x)), x ∈ In, n = 1, 2, . . . , N,

where Ln(x) = anx + bn satisfies (2.1), qn(x) is a suitably chosen polynomial, and
|αn| < arn for n = 1, 2, . . . , N. The condition |αn| < arn < 1 gives that T is a contractive
operator on (Fr, σ). The fixed point f of T is a FIF that satisfies the functional
relation, f(Ln(x)) = αnf(x) + qn(x) for n = 1, 2, . . . , N. Using Proposition 2.3, it
follows that f ′ satisfies the functional relation

f ′(Ln(x)) =
αnf

′(x) + q′n(x)

an
, n = 1, 2, . . . , N.

Since |αn|
an

≤ |αn|
ar
n

< 1, f ′ is a fractal function. Inductively, using the above arguments,

the following relations are obtained:

f (k)(Ln(x)) =
αnf

(k)(x) + q
(k)
n (x)

akn
, n = 1, 2, . . . , N, k = 0, 1, 2, . . . , r,(2.7)

where f (0) = f and q(0) = q. Since |αn|
ak
n

≤ |αn|
ar
n

< 1, the derivatives f (k), k = 2,

3, . . . , r are fractal functions. In general f (k), k = 1, 2, 3, . . . , r, interpolates a data
different than the given data. In particular, f (r) is an affine FIF if the polynomial

q
(r)
n occurring in (2.7) with k = r is affine. Thus, qn(x) is chosen as a polynomial of

degree (r + 1). Let qn(x) =
∑r+1

k=0 qknx
k, n = 1, 2, . . . , N, where the coefficients qkn

are chosen suitably such that f interpolates the prescribed data. The continuity of
f (k) on I implies

f (k)(Ln+1(x0)) = f (k)(Ln(xN )), k = 0, 1, . . . , r, n = 1, 2, . . . , N − 1.

Therefore, (2.7) results in the following (r + 1)(N − 1) join-up conditions for
k = 0, 1, . . . , r, n = 1, 2, . . . , N − 1:

αn+1f
(k)(x0) + q

(k)
n+1(x0)

akn+1

=
αnf

(k)(xN ) + q
(k)
n (xN )

akn
.(2.8)

In addition, at the endpoints of the interval, (2.7) implies that the values of f (k)

satisfy the following 2r-conditions:

f (k)(x0) =
α1f

(k)(x0) + q
(k)
1 (x0)

ak1
, k = 1, 2, . . . , r,(2.9)
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and

f (k)(xN ) =
αNf (k)(xN ) + q

(k)
N (xN )

akN
, k = 1, 2, . . . , r.(2.10)

Let the prescribed interpolation conditions be

f(xn) = yn, n = 0, 1, . . . , N.(2.11)

In view of (2.8)–(2.11), the total number of conditions for f to interpolate the given
data are (r + 1)(N − 1) + 2r + (N + 1) = (r + 2)N + r. In (2.8)–(2.10), f (k)(x0)
and f (k)(xN ) for k = 1, 2, . . . , r are 2r unknowns and qkn, k = 0, 1, . . . , r + 1, n =
1, 2, . . . , N , in the polynomials qn(x) are additional (r+2)N unknowns. Consequently,
in total (r+2)N+2r number of unknowns are to be determined. The principle of con-
struction of a Cr-FIF is to determine these unknowns by choosing additional suitable
r conditions in the form of restrictions on the values of the Cr-FIF or the values of
its derivatives at the boundary points of [x0, xN ] such that (2.8)–(2.11) together with
these additional conditions are linearly independent. The above unknowns are deter-
mined uniquely as the solution of these linear independent system of equations. Thus,
the desired Cr-FIF f interpolating the given data is constructed as the attractor of
the following IFS:

{R
2;ωn(x, y) = (Ln(x), Fn(x, y) = αny + qn(x)), n = 1, 2, . . . , N},

where |αn| < arn and qn(x), n = 1, 2, . . . , N , are the polynomials with coefficients
qkn computed by solving the linear independent system of equations, given by the
above procedure. The flexibility of these choices of boundary conditions allows for
the construction of a wide range of spline FIFs. Even for a given choice of boundary
conditions, depending upon the nature of the problem or simply at the discretion of
the user, an infinite number of suitable spline FIFs may be constructed due to the
freedom of choices for vertical scaling factors in our construction.

Remarks. 1. Barnsley and Harrington’s construction [1] of a Cr-FIF f is done
by restricting the choice of boundary values f (k)(x) for k = 1, 2, . . . , r, at the initial
endpoint. In our above construction of Cr-FIFs, all kinds of boundary conditions are
admissible.

2. It seems that Barnsley and Harrington’s question—“whether there exists a
FIF as a fixed point of an IFS wherein horizontal scalings are allowed in the reverse
direction”—is raised [1], since the construction of a Cr-FIF is based upon restricting
boundary values of f (k) at only initial end point of I. Such a question does not arise
in our construction since the boundary values of f (k) for Cr-FIF f are admissible at
any combination of boundary points of I.

Since the classical cubic splines play a significant role in CAGD, surface analysis,
differential equation, FEM, and other applications (see, e.g., [13, 14, 15]), in the sequel
a detailed construction for such cubic spline FIFs based on the above approach is given
in the following section.

3. Construction of cubic spline FIFs through moments. In the present
section, cubic spline FIFs fΔ are constructed through the moments Mn = f

′′

Δ(xn) for
n = 0, 1, 2, . . . , N .

Definition 3.1. A function fΔ(x) ≡ fΔ(Y ;x) is called a cubic spline FIF
interpolating a set of ordinates Y : y0, y1, y2, . . . , yN with respect to the mesh Δ :
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x0 < x1 < x2 < · · · < xN if (i) fΔ ∈ C2[x0, xN ], (ii) fΔ satisfies the interpo-
lation conditions fΔ(xn) = yn, n = 0, 1, . . . , N and (iii) the graph of fΔ is fixed
point of a IFS, {R

2;ωn(x, y), n = 1, 2, . . . , N}, where for n = 1, 2, . . . , N, ωn(x, y) =
(Ln(x), Fn(x, y)), Ln(x) is defined by (2.4), Fn(x, y) = a2

nαny+a2
nqn(x), 0 < |αn| <

1, and qn(x) is a suitable cubic polynomial.

Using the moments Mn, n = 0, 1, 2, . . . , N , a rectangular system of equations is
formed for determining the polynomial qn(x) by employing the following procedure.

Using property (iii) and (2.3), it follows that f
′′

Δ satisfies the functional equation

f
′′

Δ(Ln(x)) = αnf
′′

Δ(x) +
cn(x− x0)

xN − x0
+ dn, n = 1, 2, . . . , N.(3.1)

By (2.1) and (3.1), cn = Mn−Mn−1 −αn(MN −M0) and dn = Mn−1 −αnM0. Thus,
for n = 1, 2, . . . , N , (3.1) can be rewritten as

f
′′

Δ(Ln(x)) = αnfΔ
′′(x) +

(Mn − αnMN )(x− x0)

xN − x0
+

(Mn−1 − αnM0)(xN − x)

xN − x0
.

(3.2)

The function f
′′

Δ being continuous on I could be twice integrated to obtain

fΔ(Ln(x)) =a2
n

{
αnfΔ(x) +

(Mn − αnMN )(x− x0)
3

6(xN − x0)
+

(Mn−1 − αnM0)(xN − x)3

6(xN − x0)

+ c∗n(xN − x) + d∗n(x− x0)

}
, n = 1, 2, . . . , N.

(3.3)

Now using interpolation conditions and (2.1), the constants c∗n and d∗n are determined
as

c∗n =
1

xN − x0

(
yn−1

a2
n

− αny0

)
− (Mn−1 − αnM0)(xN − x0)

6
,

d∗n =
1

xN − x0

(
yn
a2
n

− αnyN

)
− (Mn − αnMN )(xN − x0)

6
.

Thus, the functional equation (3.3) for the cubic spline FIF in terms of moments can
be written as

fΔ(Ln(x)) = a2
n

{
αnfΔ(x) +

(Mn − αnMN )(x− x0)
3

6(xN − x0)
+

(Mn−1 − αnM0)(xN − x)3

6(xN − x0)

− (Mn−1 − αnM0)(xN − x0)(xN − x)

6
− (Mn − αnMN )(xN − x0)(x− x0)

6

+

(
yn−1

a2
n

− αny0

)
xN − x

xN − x0
+

(
yn
a2
n

− αnyN

)
x− x0

xN − x0

}
, n = 1, 2, . . . , N.

(3.4)

It follows by (3.4) that fΔ(x) is continuous on [x0, xN ] and satisfies the interpolating
conditions fΔ(xn) = yn, n = 0, 1, 2, . . . , N. Further, (3.4) gives that, on [xi−1, xi],
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i = 1, 2, . . . , N,

f ′
Δ(Li(x)) = ai

{
αif

′
Δ(x) +

(Mi − αiMN )(x− x0)
2

2(xN − x0)
− (Mi−1 − αiM0)(xN − x)2

2(xN − x0)

− [Mi −Mi−1 − αi(MN −M0)](xN − x0)

6
+

[
yi − yi−1

a2
i

− αi(yN − y0)

]
1

xN − x0

}
.

(3.5)

Denote xn − xn−1 by hn = for n = 1, 2, . . . , N. Since, by property (i), f ′
Δ(x) is

continuous at x1, x2, . . . , xN−1, limx→x−
n
f ′
Δ(x) = limx→x+

n
f ′
Δ(x), n = 1, 2, . . . , N −1.

Thus, using (3.5) for i = n and i = n + 1, we have

(3.6)
−an+1αn+1f

′
Δ(x0) −

αnhn + 2αn+1hn+1

6
M0 +

hn

6
Mn−1 +

hn + hn+1

3
Mn

+
hn+1

6
Mn+1 −

2αnhn + αn+1hn+1

6
MN + anαnf

′
Δ(xN )

=
yn+1 − yn

hn+1
− yn − yn−1

hn
− (an+1αn+1 − anαn)

yN − y0

xN − x0
, n = 1, 2, . . . , N − 1.

Introducing the notations,

A∗
n =

−6an+1αn+1

hn + hn+1
, An =

−(αnhn + 2αn+1hn+1)

hn + hn+1
, λn =

hn+1

hn + hn+1
,

μn = 1 − λn, Bn =
−(2αnhn + αn+1hn+1)

hn + hn+1
, B∗

n =
6anαn

hn + hn+1
,

for n = 1, 2, . . . , N − 1, the continuity relation (3.6) reduces to

A∗
nf

′
Δ(x0) + AnM0 + μnMn−1 + 2Mn + λnMn+1 + BnMN + B∗

nf
′
Δ(xN )

=
6[(yn+1 − yn)/hn+1 − (yn − yn−1)/hn]

hn + hn+1
− 6(an+1αn+1 − anαn)

hn + hn+1

yN − y0

xN − x0
.(3.7)

Next, (3.5) with x = x0 and i = 1 gives the following functional relation for f ′
Δ(x0):

6(1−a1α1)f
′
Δ(x0) + 2(1 − α1)h1M0 + h1M1 − α1h1MN

= 6/h1[y1 − y0 − α1a
2
1(yN − y0)].

(3.8)

Similarly, (3.5) with x = xN and i = N gives

− αNhNM0 + hNMN−1 + 2(1 − αN )hNMN − 6(1 − aNαN )f ′
Δ(xN )

= −6/hN [yN − yN−1 − αNa2
N (yN − y0)].

(3.9)

To write the system of equations given by (3.7)–(3.9) in matrix from, we introduce
the following notations:

A∗
0 =6(1 − a1α1), A0 = 2(1 − α1)h1, λ0 = h1, B0 = −α1h1,

AN =−αNhN , μN = hN , BN = 2(1 − αN )hN , B∗
N = −6(1 − aNαN ),

d0 =6/h1[y1 − y0 − α1a
2
1(yN − y0)], dN = −6/hN [yN − yN−1 − αNa2

N (yN − y0)].
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Thus, the matrix form of defining (3.7)–(3.9) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
0 A0 λ0 0 0 ... 0 0 0 B0 0

A∗
1 A1+μ1 2 λ1 0 ... 0 0 0 B1 B∗

1

A∗
2 A2 μ2 2 λ2 ... 0 0 0 B2 B∗

2

A∗
3 A3 0 μ3 2 ... 0 0 0 B3 B∗

3

...
...

...
...

...
...

...
...

...
...

A∗
N−3 AN−3 0 0 0 ... 2 λN−3 0 BN−3 B∗

N−3

A∗
N−2 AN−2 0 0 0 ... μN−2 2 λN−2 BN−2 B∗

N−2

A∗
N−1 AN−1 0 0 0 ... 0 μN−1 2 λN−1+BN−1 B∗

N−1

0 AN 0 0 0 ... 0 0 μN BN B∗
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′
Δ(x0)
M0

M1

M2

...
MN−2

MN−1

MN

f ′
Δ(xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

...
dN−3

dN−2

dN−1

dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.10)

where dn, n = 1, 2, . . . , N − 1, is given by the right side expression of (3.7) and
f ′
Δ(x0),M0, M1, . . . ,MN , f ′

Δ(xN ) are unknowns. Equation (3.10), consisting of a
coefficient matrix of order (N+1)×(N+3), is the desired rectangular matrix equation
for computing the unknowns coefficients qkn of the polynomial qn(x).

Boundary Conditions. By prescribing suitable boundary conditions as in the
case of classical cubic splines, the rectangular matrix system of equations (3.10)
reduces to a square matrix system of equations. Let the data {(xn, yn) : n =
0, 1, 2, . . . , N} be generated by a continuous function Φ that is to be approximated
by cubic spline FIF fΔ. The following kinds of boundary conditions are admissible.

Boundary conditions of Type-I: In this case, the values of the first derivative are
prescribed at the endpoints of the interval [x0, xN ], i.e., f ′

Δ(x0) = Φ′(x0), f ′
Δ(xN ) =

Φ′(xN ). So, (3.10) reduces to the following system of equations:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A0 λ0 0 0 ... 0 0 0 B0

A1+μ1 2 λ1 0 ... 0 0 0 B1

A2 μ2 2 λ2 ... 0 0 0 B2

A3 0 μ3 2 ... 0 0 0 B3

...
...

...
...

...
...

...
...

AN−3 0 0 0 ... 2 λN−3 0 BN−3

AN−2 0 0 0 ... μN−2 2 λN−2 BN−2

AN−1 0 0 0 ... 0 μN−1 2 λN−1+BN−1

AN 0 0 0 ... 0 0 μN BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M0

M1

M2

M3

...
MN−3

MN−2

MN−1

MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1
0

d1
1

d1
2

...
d1
N−2

d1
N−1

d1
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(3.11)

where d1
0 = d0 −A∗

0f
′
Δ(x0), d

1
n = dn −A∗

nf
′
Δ(x0)−B∗

nf
′
Δ(xN ) for n = 1, 2, . . . , N − 1,

and d1
N = dN − B∗

Nf ′
Δ(xN ). Thus, boundary conditions of Type-I result in determi-

nation of the complete cubic spline FIF by using (3.11).
Boundary conditions of Type-II: In this case, the values of the second derivative

given at the endpoints of the segment [x0, xN ] are prescribed as f
′′

Δ(x0) = Φ
′′
(x0) =

M0, f
′′

Δ(xN ) = Φ
′′
(xN ) = MN . With these boundary conditions, (3.10) reduces to⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
0 λ0 0 0 ... 0 0 0 0

A∗
1 2 λ1 0 ... 0 0 0 B∗

1

A∗
2 μ2 2 λ2 ... 0 0 0 B∗

2

A∗
3 0 μ3 2 ... 0 0 0 B∗

3

...
...

...
...

...
...

...
...

A∗
N−3 0 0 0 ... 2 λN−3 0 B∗

N−3

A∗
N−2 0 0 0 ... μN−2 2 λN−2 B∗

N−2

A∗
N−1 0 0 0 ... 0 μN−1 2 B∗

N−1

0 0 0 0 ... 0 0 μN B∗
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′
Δ(x0)
M1

M2

M3

...
MN−3

MN−2

MN−1

f ′
Δ(xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d2
0

d2
1

d2
2

...
d2
N−2

d2
N−1

d2
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(3.12)

where d2
1 = d1−(A1+μ1)M0−B1μN , d2

N−1 = dN−1−AN−1M0−(BN−1+λN−1)MN ,
and d2

n = dn−AnM0−BnMN for n = 0, 2, 3, . . . , N−2, N . Taking free end conditions
M0 = 0 and MN = 0, the natural cubic spline FIF is computed by using (3.12).
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Boundary conditions of Type-III: In this case, the boundary conditions involve
the functional values, the values of first and second derivatives of the cubic splines
at both endpoints, i.e., fΔ(x0) = fΔ(xN ), f ′

Δ(x0) = f ′
Δ(xN ), f

′′

Δ(x0) = f
′′

Δ(xN ).
With these boundary conditions, (3.10) takes the following form:

(3.13)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
0 λ0 0 0 ... 0 0 0 A0+B0

A∗
1+B∗

1 2 λ1 0 ... 0 0 0 A1+B1+μ1

A∗
2+B∗

2 μ2 2 λ2 ... 0 0 0 A2+B2

A∗
3+B∗

3 0 μ3 2 ... 0 0 0 A3+B3

...
...

...
...

...
...

...
...

A∗
N−3+B∗

N−3 0 0 0 ... 2 λN−3 0 AN−3+BN−3

A∗
N−2+B∗

N−2 0 0 0 ... μN−2 2 λN−2 AN−2+BN−2

A∗
N−1+B∗

N−1 0 0 0 ... 0 μN−1 2 AN−1+BN−1+λN−1

B∗
N 0 0 0 ... 0 0 μN AN+BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f ′
Δ(x0)
M1

M2

M3

...
MN−3

MN−2

MN−1

MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

...
dN−3

dN−2

dN−1

dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The periodic cubic spline FIF is computed by using (3.13).
We confine ourselves to the boundary conditions of Type-I, Type-II, and Type-III

only for the convergence results in section 4 although, in addition to the above kinds
of boundary conditions, the following types of boundary conditions are also admissible
in our approach.

Boundary conditions of Type-IV: In this case, the values of derivatives of given
function are known at either initial or final endpoint of the interval, i.e., f ′

Δ(x0) =

Φ′(x0), f
′′

Δ(x0) = Φ′′(x0) = M0 or f ′
Δ(xN ) = Φ′(xN ), f

′′

Δ(xN ) = Φ′′(xN ) = MN .
Barnsley and Harrington [1] used the former set of conditions to obtain the cubic
spline FIF by employing an involved algebraic method.

Boundary conditions of Type-V: In this type of boundary condition, two sets of
conditions are possible depending on the values of different order of the derivatives
at both endpoints, i.e., f ′

Δ(x0) = Φ′(x0), f
′′

Δ(xN ) = Φ′′(xN ) = MN or f ′
Δ(xN ) =

Φ′(xN ), fΔ
′′(x0) = Φ′′(x0) = M0. In order to find the respective unknowns, the

square matrix of order (N + 1) for the boundary conditions of Type-IV and Type-V
can be obtained from (3.10).

Boundary conditions of Type-VI: Two linear equations involving M0, f ′
Δ(x0),

f ′
Δ(xN ), and MN are considered in this case such that these and (3.10) form a linearly

independent system of equations. The resulting square matrix of order (N + 3) can
be solved to find all (N + 3) unknowns simultaneously.

Using one of the above types of boundary conditions and solving the corresponding
system of equations, the values f ′

Δ(x0),M0,M1, . . . ,MN and f ′
Δ(xN ) are determined.

These values of Mn, n = 0, 1, 2, . . . , N , are used in the construction of an associated
IFS given by

{R
2;ωn(x, y) = (Ln(x), Fn(x, y)), n = 1, 2, . . . , N},(3.14)

where Ln(x) = anx + bn and

Fn(x, y) = a2
n

{
αnfΔ(x) +

(Mn − αnMN )(x− x0)
3

6(xN − x0)
+

(Mn−1 − αnM0)(xN − x)3

6(xN − x0)

− (Mn−1 − αnM0)(xN − x0)(xN − x)

6
− (Mn − αnMN )(xN − x0)(x− x0)

6

+

(
yn−1

a2
n

− αny0

)
xN − x

xN − x0
+

(
yn
a2
n

− αnyN

)
x− x0

xN − x0

}
.

(3.15)
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The graph of the desired cubic spline is the fixed point of the IFS given by (3.14).
Remarks. 1. If the vertical scaling factor αn = 0 for n = 1, 2, . . . , N , Fn(x, y)

reduces to a cubic polynomial in each subinterval of I so that in this case the resulting
FIF is a classical cubic spline.

2. By the fixed point theorem, with prescribed ordinates at mesh points, the
nonperiodic spline FIF always exists and is unique for a given choice of vertical scaling
factors. This spline FIF has simple end supports (M0 = 0,MN = 0), prescribed end
moments or simple supports at points beyond mesh extremities. Similarly, the periodic
spline FIF exists and is unique for a given data and a given choice of vertical scaling
factors. Since the moments depend upon the vertical scaling factors αn, by changing
αn, infinitely many nonperiodic splines or periodic splines having the same boundary
conditions can be constructed. This gives an additional advantage for the applications
of the cubic spline FIF over the applications of the classical cubic spline since there
is no flexibility in choosing the latter once the boundary conditions are fixed.

3. Clearly, the replacement of yn by yn + c does not affect the right-hand sides
of (3.7)–(3.9). Thus, fΔ(Y ;x) + η = fΔ(Ȳ ;x), where Ȳ : ȳ0, ȳ1, . . . , ȳN and ȳn =
yn + η, n = 0, 1, 2, . . . , N , with η being a constant. Since the moments Mn do not
change by the translation of the ordinates by a constant η, it follows that it is possible
to associate more than one cubic spline FIF for a given set of moments Mn. This
property of cubic spline FIF fΔ is analogous to the corresponding property of the
periodic classical spline [19].

4. The existence of spline FIF fΔ gives (3.7)–(3.9). Further, if spline FIF fΔ is
periodic, adding (3.7) to (3.9) gives

N∑
n=1

[(hn + hn+1)Mn − 2αnhnMN ] = 0.(3.16)

The condition (3.16) is therefore a necessary condition for the existence of the periodic
cubic spline FIF for prescribed moments Mn. With αn = 0 for n = 1, 2, . . . , N,
the condition (3.16) reduces to the necessary condition for the existence of periodic
classical cubic spline associated with Mn [19, p. 17].

5. For a prescribed set of data and a suitable choice of αn satisfying 0 ≤ |αn| < 1,
it follows from (3.15) that, on the space F∗ = {f ∈ C2(I,R) | f(x0) = y0 and f(xN ) =
yN}, cubic spline FIF fΔ is the fixed point of Read–Bajraktarević operator T ∗ defined
by

T ∗f(x) = a2
n

{
αnf(L−1

n (x)) +
(Mn − αnMN )(L−1

n (x) − x0)
3

6(xN − x0)

+
(Mn−1 − αnM0)(xN − L−1

n (x))3

6(xN − x0)
− (Mn−1 − αnM0)(xN − x0)(xN − L−1

n (x))

6

− (Mn − αnMN )(xN − x0)(L
−1
n (x) − x0)

6

+

(
yn−1

a2
n

− αny0

)
xN − L−1

n (x)

xN − x0
+

(
yn
a2
n

− αnyN

)
L−1
n (x) − x0

xN − x0

}
,

(3.17)

where x ∈ In for n = 1, 2, . . . , N. Since (3.10) is derived from the fixed point relation
T ∗fΔ = fΔ, the solution of each of the equations (3.11)–(3.13) is unique due to
uniqueness of the fixed point. Hence, the coefficient matrices in the systems (3.11)–
(3.13) are invertible.
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6. The moment integral Φm =
∫
I
xmΦ(x) dx, m = 0, 1, 2, . . . , of the data

generating function Φ can be approximately calculated by integral moments fm
Δ ≡∫

I
xmfΔ(x) dx of the cubic spline FIF. One can evaluate explicitly the moment inte-

gral fm
Δ in terms of fm−1

Δ , fm−2
Δ , . . . , f0

Δ, the data points, the vertical scaling factors
αn, n = 1, 2, . . . , N , and Qm =

∫
I
xmQ(x) dx, where Q(x) = qn ◦ L−1

n (x), x ∈ In.
Thus, Barnsley and Harrington’s query [1] regarding the moment integrals in case of
reverse horizontal scaling is already taken into account in our construction.

4. Convergence of cubic spline FIFs. Define a sequence {Δk} of meshes on
[x0, xN ] as Δk : x0 = xk,0 < xk,1 < · · · < xk,Nk

= xN , then set hk,n = xk,n − xk,n−1

and ‖Δk‖ = max1≤n≤Nk
hk,n.

We establish that sequences of cubic spline FIFs {fΔk
(x)} converge to Φ(x) on

suitable sequences of meshes {Δk} at the rate of square of the mesh norm ‖Δk‖,
where Φ ∈ Cr(I), r = 2, 3, or 4, is the data generating function. Since the matrices
associated with the cubic spline FIF, satisfying the boundary conditions of Type-I,
Type-II, or Type-III (periodic), are not, in general, diagonally dominant and f

′′

Δ(x) is
not piecewise linear, the convergence procedure for classical cubic spline [19] cannot
be adopted for establishing the convergence of the cubic spline FIF. Our convergence
results for cubic spline FIFs are in fact derived by using the convergence results for
classical splines.

Let F∗ be the set of cubic spline FIFs on the given mesh Δ, interpolating the
values yn at the mesh points. From (3.17), it is clear that for x ∈ I = [x0, xN ],

fΔ(Ln(x)) = a2
nαnfΔ(x) + a2

nqn(x),(4.1)

where qn(x) is a cubic polynomial for n = 1, 2, . . . ,N. Throughout the sequel, we
assume |αn| ≤ s < 1 for a fixed s and denote qn(αn, x) ≡ qn(x) for n = 1, 2, . . . , N.

Lemma 4.1. Let fΔ(x) and SΔ(x), respectively, be the cubic spline FIF and the
classical cubic spline with respect to the mesh Δ : x0 < x1 < · · · < xN , interpolating a
set of ordinates {y0, y1, . . . , yN} at the mesh points. Let the cubic polynomial qn(αn, x)
associated with the IFS for FIF fΔ(x) satisfy∣∣∣∣∂1+rqn(τn, x)

∂αn∂xr

∣∣∣∣ ≤ Kr(4.2)

for |τn| ∈ (0, sarn), x ∈ In, r = 0, 1, 2, and n = 1, 2, . . . , N. Then,

‖f (r)
Δ − S

(r)
Δ ‖∞ ≤ ‖Δ‖2−r max1≤n≤N |αn|

|I|2−r − ‖Δ‖2−r max1≤n≤N |αn|
(‖S(r)

Δ ‖∞ + Kr), r = 0, 1, 2,

(4.3)

where |I| = |xN − x0|.
Proof. Denote Br = [−sar1, sa

r
1]×[−sar2, sa

r
2]×· · ·×[−sarN , sarN ] ≡

⊗N
n=1[−sarn, sa

r
n].

Let α = (α1, α2, . . . , αN ) ∈ B0 and r = 0. Since cubic spline FIF fΔ is unique for
a set of scaling factors α ∈ B0 and a prescribed boundary condition, using (3.17) the
Read–Bajraktarević operator T ∗

α : F∗ → F∗ can be rewritten as

T ∗
αf

∗(x) = a2
nαnf

∗(L−1
n (x)) + a2

nqn(αn, L
−1
n (x)), x ∈ In, n = 1, 2, . . . , N.(4.4)

For a given α ∈ B0 and at least one αn 	= 0 in (4.4), cubic spline FIF fΔ is the fixed
point of T ∗

α. For α∗ = (0, 0, . . . , 0) ∈ B0, the classical cubic spline SΔ is the fixed
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point of T ∗
α∗ , since in this case qn(αn, x) is a polynomial only in x for n = 1, 2, . . . , N.

Therefore, using (4.4), for x ∈ In,

|T ∗
αfΔ(x) − T ∗

αSΔ(x)| = |a2
nαnfΔ(L−1

n (x)) + a2
nqn(αn, L

−1
n (x))

−[a2
nαnSΔ(L−1

n (x)) + a2
nqn(αn, L

−1
n (x))]|

≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| ‖fΔ − SΔ‖∞.

Since the above inequality holds for n = 1, 2, . . . , N, it follows that

‖T ∗
αfΔ − T ∗

αSΔ‖∞ ≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| ‖fΔ − SΔ‖∞.(4.5)

Further, for x ∈ In, using (4.4) and Mean Value Theorem,

|T ∗
αSΔ(x) − T ∗

α∗SΔ(x)| = |a2
nαnSΔ(L−1

n (x)) + a2
nqn(αn, L

−1
n (x)) − a2

nqn(0, L−1
n (x))|

≤ a2
n|αn|‖SΔ‖∞ + a2

n|αn|
∣∣∣∣∂qn(τn, L

−1
n (x))

∂αn

∣∣∣∣
≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| (‖SΔ‖∞ + K0).

Since the above inequality holds for n = 1, 2, . . . , N,

‖T ∗
αSΔ − T ∗

α∗SΔ‖∞ ≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| (‖SΔ‖∞ + K0).(4.6)

Using (4.5)–(4.6) together with the inequality

‖fΔ − SΔ‖∞ = ‖T ∗
αfΔ − T ∗

α∗SΔ‖∞ ≤ ‖T ∗
αfΔ − T ∗

αSΔ‖∞ + ‖T ∗
αSΔ − T ∗

α∗SΔ‖∞

gives that

‖fΔ − SΔ‖∞ ≤ ‖Δ‖2 max1≤n≤N |αn|
|I|2 − ‖Δ‖2 max1≤n≤N |αn|

(‖SΔ‖∞ + K0).

This proves Lemma 4.1 for r = 0. For r = 1, 2, the proof of the lemma is analo-
gous to the proof given above for r = 0, by taking B1, B2, respectively, in place of
B0 and defining Read–Bajraktarević operator on F∗

r = {f ∈ C2−r(I,R) | f(x0) =
y0 and f(xN ) = yN} by

T ∗f (r)(x) = a2−r
n f (r)(L−1

n (x)) + a2−r
n q(r)

n (αn, L
−1
n (x)), r = 1, 2,

in place of (4.4).
For studying the convergence of cubic spline FIFs to a data generating function

through sequences of meshes {Δk} on [x0, xN ], define the following types of meshes
depending upon vertical scaling factors αk,n.
Class A {{Δk} : For each k,max1≤n≤Nk

|αk,n| ≤ ‖Δk‖ < 1}.
Class B {{Δk} : For each k, |αk,i| > ‖Δk‖ for some i, 1 ≤ i ≤ Nk}.

The convergence of a suitable sequence of cubic spline FIFs to the function Φ in
C2[x0, xN ] generating the interpolation data is described by the following theorem.
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Theorem 4.2. Let Φ ∈ C2[x0, xN ] and cubic spline FIFs fΔk
(x) satisfy boundary

conditions of Type-I, Type-II, or Type-III (periodic) on a sequence of meshes {Δk} on
[x0, xN ] with limk→∞ ‖Δk‖ = 0. If {Δk} is in Class A, then

‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r), r = 0, 1, 2.(4.7)

Further, if {Δk} is in Class B, then

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r), r = 0, 1, 2.(4.8)

Proof. By Lemma 4.1, each element of the sequence {Δk} satisfies

‖f (r)
Δk

− S
(r)
Δk

‖∞ ≤ ‖Δk‖2−r max1≤n≤Nk
|αk,n|

|I|2−r − ‖Δk‖2−r max1≤n≤Nk
|αk,n|

(‖S(r)
Δk

‖∞ + Kr), r = 0, 1, 2.

(4.9)

Further, it is known that [19, 20]

‖Φ(r) − S
(r)
Δk

‖∞ ≤ 5‖Δk‖2−rω(Φ(r); ‖Δk‖) (r = 0, 1, 2),(4.10)

where ω(Φ;x) is the modulus of continuity of Φ(x). By using the triangle inequality
and (4.10), it follows that

‖S(r)
Δk

‖∞ ≤ ‖Φ(r)‖∞ + 5‖Δk‖2−rω(Φ(r); ‖Δk‖).(4.11)

The inequality

‖Φ(r) − f
(r)
Δk

‖∞ ≤ ‖Φ(r) − S
(r)
Δk

‖∞ + ‖S(r)
Δk

− f
(r)
Δk

‖∞(4.12)

together with (4.9)–(4.11) gives

‖Φ(r) − f
(r)
Δk

‖∞ ≤‖Δk‖2−r

{
5ω(Φ(r); ‖Δk‖)

+
(‖Φ(r)‖∞ + 5‖Δk‖2−rω(Φ(r); ‖Δk‖) + Kr) max1≤n≤Nk

|αk,n|
|I|2−r − ‖Δk‖2−r max1≤n≤Nk

|αk,n|

}
.

(4.13)

Since Φ ∈ C2(I) and max1≤n≤Nk
|αk,n| ≤ ‖Δk‖ < 1, the right-hand side of (4.13)

tends to zero as k → ∞. The convergence result (4.7) for Class A therefore follows
from the error estimate (4.13).

Next, we obtain the convergence result (4.8) for Class B. Since max1≤nk≤Nk
|αnk

| ≤
s < 1 (cf. definition (4.1)), (4.9) reduces to

‖f (r)
Δk

− S
(r)
Δk

‖∞ ≤ ‖Δk‖2−rs

|I|2−r − ‖Δk‖2−rs
(‖S(r)

Δ ‖∞ + Kr), r = 0, 1, 2.(4.14)

The inequalities (4.10), (4.11), and (4.14) together with (4.12) give

‖Φ(r) − f
(r)
Δk

‖∞ ≤ ‖Δk‖2−r

{
5ω(Φ(r); ‖Δk‖)(4.15)

+
(‖Φ(r)‖∞ + 5‖Δk‖2−rω(Φ(r); ‖Δk‖) + Kr)s

|I|2−r − ‖Δk‖2−rs

}
.
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The convergence result (4.8) for Class B now follows from (4.15).

The convergence of a suitable sequence of cubic spline FIFs to the function Φ in
C3[x0, xN ] generating the interpolation data is given by the following theorem.

Theorem 4.3. Let Φ ∈ C3[x0, xN ] and cubic spline FIFs fΔk
(x) satisfy boundary

conditions of Type-I, Type-II, or Type-III(periodic) on a sequence of meshes {Δk} on

[x0, xN ] with limk→∞ ‖Δk‖ = 0 and ‖Δk‖
min1≤n≤Nk

hk,n
≤ β < ∞. If {Δk} is in Class A,

then

‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r), r = 0, 1, 2.(4.16)

Further, if {Δk} is in Class B, then

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r), r = 0, 1, 2.(4.17)

Proof. It is known that [19, 21], for r = 0, 1, 2,

‖Φ(r) − S
(r)
Δk

‖∞ ≤ 5

3
‖Δk‖3−r(3 + K̄)ω(Φ(3); ‖Δk‖),(4.18)

where K̄ = 8β2(1 + 2β)(1 + 3β).

Now, (4.9) and (4.18) together with (4.12) give

‖Φ(r)−f
(r)
Δk

‖∞ ≤ ‖Δk‖2−r

{
5

3
‖Δk‖(3 + K̄)ω(Φ(3); ‖Δk‖)

+
(‖Φ(r)‖∞ + 5

3‖Δk‖(3 + K̄)ω(Φ(3); ‖Δk‖) + Kr) max1≤n≤Nk
|αk,n|

|I|2−r − ‖Δk‖2−r max1≤n≤Nk
|αk,n|

}
.

For the sequence of meshes in Class A or Class B, the relations (4.16)–(4.17) now
follow immediately from the above error estimate.

The convergence of a suitable sequence of cubic spline FIFs to the function Φ in
C4[x0, xN ] generating the interpolation data is described by the following theorem.

Theorem 4.4. Let Φ ∈ C4[x0, xN ] and cubic spline FIFs fΔk
(x) satisfy bound-

ary conditions of Type-I or Type-II on a sequence of meshes {Δk} on [x0, xN ] with

limk→∞ ‖Δk‖ = 0 and ‖Δk‖
min1≤n≤Nk

hk,n
≤ β < ∞. If {Δk} is in Class A, then

‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r), r = 0, 1, 2.(4.19)

Further, if {Δk} is in Class B, then

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r), r = 0, 1, 2.(4.20)

Proof. It is known that [22]

‖Φ(r) − S
(r)
Δk

‖∞ ≤ Lr‖Φ(4)‖∞‖Δk‖4−r, r = 0, 1, 2, 3,(4.21)
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where L0 = 5/384, L1 = 1/24, L2 = 3/8, and L3 = (β + β−1)/2. The inequalities
(4.9) and (4.21) together with (4.12) give the error estimate

‖Φ(r) − f
(r)
Δk

‖∞ ≤‖Δk‖2−r

{
Lr‖Φ(4)‖∞‖Δk‖2

+
(‖Φ(r)‖∞ + Lr‖Φ(4)‖∞‖Δk‖4−r + Kr) max1≤n≤Nk

|αk,n|
|I|2−r − ‖Δk‖2−r max1≤n≤Nk

|αk,n|

}
.

(4.22)

The convergence results (4.19) and (4.20) now follow from (4.22).
Remarks. 1. Theorem 4.4 generalizes a result of Navascués and Sebastián [23]

proved only for uniform meshes with fixed vertical scaling factors.
2. If Φ(2) satisfies a Hölder condition of order τ, 0 < τ ≤ 1, Theorem 4.2

gives that, for r = 0, 1, 2, ‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r) if Δk is in Class A and

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r) if Δk is in Class B. This provides an analogue of
the corresponding result for classical cubic splines [19, Theorem 2.3.3]. The same

estimates on ‖Φ(r) − f
(r)
Δk

‖∞ follow from Theorem 4.3 or Theorem 4.4 if Φ(3) or Φ(4),
respectively, satisfies the Hölder condition of order τ, 0 < τ ≤ 1.

3. It follows from Theorems 4.2–4.4 that the sequence of cubic spline FIFs f
(r)
Δk

converges uniformly to Φ(r) for r = 0, 1 and if Δk is in Class A, f
(2)
Δk

(x) converges

uniformly to Φ(2)(x), since, for r = 2, the vertical scaling factors can be chosen
suitably depending on the mesh norm.

5. Examples of cubic spline FIFs. Using the IFS given by (3.14), we first
computationally generate examples of cubic spline FIFs with the set of vertical scaling
factors as αn = 0.8, n = 1, 2, 3, and the interpolation data as {(0, 0), ( 2

5 , 1), ( 3
4 ,−1),

(1, 2)} for the nonperiodic splines and as {(0, 0), ( 2
5 , 1), ( 3

4 ,−1), (1, 0)} for the periodic

splines. These interpolation data give L1(x) = 2
5x, L2(x) = 7

20x + 2
5 , and L3(x) =

1
4x + 3

4 in the IFS (3.14) for all our examples of cubic spline FIFs. For constructing
an example of the cubic spline FIF with a boundary condition of Type-I, we choose
f ′
Δ(x0) = 2 and f ′

Δ(xN ) = 5. With these choices, the system of equations (3.11) is
solved to get the values of moments M0,M1,M2,M3 (Table 1). These moments are
now used in (3.15) for the construction of Fn(x, y) (Table 2). Iterations of this IFS
code generate the desired cubic spline FIF (Figure 2(a)) with a boundary condition
of Type-I. Again, to construct an example of the cubic spline FIF with a boundary
condition of Type-II, we choose M0 = 2 and M3 =5. The values of M1 and M2 (Table
1) are computed by solving the system (3.12). Using (3.15), the coefficients of Fn(x, y),
n =1,2,3, are computed (Table 2). The iterations of the resulting IFS code generate
the cubic spline FIF (Figure 2(c)) with a boundary condition of Type-II. An example
of the cubic spline FIF with a boundary condition of Type-III (periodic), i.e., f ′

Δ(x0) =
f ′
Δ(x3) is constructed and M0 = M3. The values of moments M0,M1,M2,M3 (Table

1) are computed by solving the system (3.13). The associated IFS code for the periodic
cubic spline is obtained from the resulting (3.14). The desired example of the periodic
cubic spline FIF (Figure 2(e)) is generated through iterations of this IFS. Similarly,
with a 2nd set of vertical scaling factors as α1 = α3 = −0.9 and α2 = 0.9, the
examples of cubic spline FIFs (Figure 2(b), (d), (f)) with boundary conditions of
Type-I, Type-II, and Type-III are generated. We note that cubic spline FIFs given
by Figure 2(a)–(b) have completely different shapes though they are generated with
the same boundary conditions of Type-I, whereas the same boundary conditions give
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Table 1

Data for cubic spline FIFs with different boundary conditions.

Figures α1 α2 α3 f′Δ(x0) M0 M1 M2 M3 f′Δ(x3)

2(a) 0.8 0.8 0.8 2 −77.8748 −331.3818 −59.6840 −462.5397 5

2(b) −0.9 0.9 −0.9 2 26.2835 −31.5521 81.3627 −67.5836 5

2(c) 0.8 0.8 0.8 9.4232 2 −65.0164 93.8441 5 19.4085

2(d) −0.9 0.9 −0.9 3.4589 2 −34.3620 79.1610 5 13.5633

2(e) 0.8 0.8 0.8 8.1939 5.4523 −43.8970 63.5040 5.4523 8.1939

2(f) −0.9 0.9 −0.9 4.2258 −3.7995 −30.8481 46.0958 −3.7995 4.2258

2(g) 0.8 0.8 0.8 2 5 −219.5278 25.0565 −281.2847 9.7366

2(h) −0.9 0.9 −0.9 2 5 −38.5155 79.6443 30.0172 16.9051

2(i) 0.8 0.8 0.8 −49.6 1066.0 111.1 610.8 5 2

2(j) −0.9 0.9 −0.9 61.5792 −334.8459 59.9983 42.3613 5 2

2(k) 0.8 0.8 0.8 2 129.4060 −44.2624 155.5007 5 17.3112

2(l) −0.9 0.9 −0.9 2 11.6444 −36.7487 79.9084 5 13.8840

2(m) 0.8 0.8 0.8 −1.4427 2 −297.1132 −11.3357 −423.6607 5

2(n) −0.9 0.9 −0.9 5.9477 2 −25.6023 78.7498 −61.1447 5

2(o) 0.8 0.8 0.8 9.7621 −14.1432 −79.5646 80.6184 −16.9354 18.9354

2(p) −0.9 0.9 −0.9 5.7448 −8.1171 −29.6265 77.9665 −9.3573 11.3573

just one interpolating classical cubic spline. Thus, in our approach, an added flexibility
is offered to an experimenter depending upon the need of a problem for the choice of a
suitable cubic spline FIF. Similarly, Figure 2(c)–(d) gives a comparison of shape and
nature of cubic spline FIFs with a boundary condition of Type-II and Figure 2(e)–(f)
gives such a comparison for periodic cubic spline FIFs to see the effect of vertical
scaling factors on their shapes.

For construction of IFS for cubic spline FIFs (Figure 2(g) and 2(i)) with boundary
conditions of Type-IV with first set of vertical scaling factors as αn = 0.8, n = 1, 2, 3,
we choose f ′

Δ(x0) = 2, M0 = 5, and f ′
Δ(x3) = 2, M3 = 5, respectively. The examples

of cubic spline FIFs (Figure 2(k) and 2(m)) with boundary conditions of Type-V
are constructed with αn = 0.8, n = 1, 2, 3, by choosing f ′

Δ(x0) = 2, M3 = 5, and
M0 = 2, f ′

Δ(x3) = 5, respectively. Finally, for constructing the cubic spline FIF
(Figure 2(o)) with a boundary condition of Type-VI, the associated IFS is generated
by choosing αn = 0.8, n = 1, 2, 3, and f ′

Δ(x0),M0,M3, and f ′
Δ(x3) are chosen such

that 3f ′
Δ(x0) + 2M0 = 1 and f ′

Δ(x3) + M3 = 2. The examples of cubic spline FIFs
(Figure 5.1(h), (j), (l), (n), (p)) with boundary conditions of Type-IV, V, or VI are
analogously constructed by computing the associated IFS with α1 = α3 = −0.9 and
α2 = 0.9. The effect of vertical scaling factors on the shape and nature of cubic spline
FIFs with boundary conditions of Type-IV, V, or VI is demonstrated in Figure 2(g)–
(p). Thus, infinitely many cubic spline FIFs with different shapes can be generated
by varying scaling factor sets for any prescribed boundary conditions. This gives a
vast flexibility in the choice of cubic spline FIF according to the need of the problem.

A normal-size font entry in Table 1 is for the value assumed for a parameter in
a particular example. An entry in script-size font in Table 1 is for the value of the
parameters that are computed by using (3.10). The entries for the coefficients of
Fn(x, y) in Table 2 are computed by using (3.15). All the entries in these tables are
rounded off up to four decimal places.

6. Conclusion. A new method is introduced in the present work for the con-
struction of Cr-FIFs so that the complex algebraic method in [1] for construction of
Cr-FIFs using complicated matrices is no longer needed. Our method allows admis-
sibility of any kind of boundary conditions while the boundary conditions in [1] are
restricted to only at the initial endpoint x0 of the interval [x0, xN ]. In our approach,
r equations involving the spline values or the values of its derivatives at the boundary
points are chosen such that the resulting (r + 2)N + 2r equations are linearly inde-
pendent. This results in generation of a unique Cr-FIF for a prescribed data and a
suitable set of vertical scaling factors. This answers a query of Barnsley and Harring-
ton [1, p. 33], regarding uniqueness of the Cr-FIF for a suitable set of vertical scaling
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Fig. 2. Cubic spline FIFs with different boundary conditions.
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factors. The construction of cubic spline FIFs, using the moments Mn = f
′′

Δ(xn), is
initiated for the first time in the present work, resulting in a satisfactory generalization
of the classical cubic spline theory.

For the data generating function Φ ∈ Cr[x0, xn], r = 2, 3, or 4, it is proved
that (cf. Theorems 4.2–4.4), the sequence of cubic spline FIFs {fΔk

} converges to Φ
with arbitrary degree of accuracy for the sequences of meshes in Class A or Class B
for boundary conditions of Type-I, Type-II, or Type-III. Our convergence results in
section 4 are obtained with more general conditions than those in [23] wherein only
uniform meshes are considered in the case Φ ∈ C(4)[x0, xn]. The upper bounds on error
in approximation of Φ and its derivatives by cubic spline FIFs fΔ and its derivatives,
respectively, with different boundary conditions are also obtained by results in section
4. As a consequence of our results, the data generating function Φ that satisfies
Φ(2) ∈ Lip τ, 0 < τ < 1, can be approximated satisfactorily by a fractal function fΔ

by choosing vertical scaling factors suitably such that f
(2)
Δ ∈ Lip τ.

The vertical scaling factors αn are important parameters in the construction of
Cr-FIFs or cubic spline FIFs. For given boundary conditions, in our approach an
infinite number of Cr-FIFs or cubic spline FIFs can be constructed interpolating the
same data by choosing different sets of vertical scaling factors. Thus, according to
the need of an experiment for simulating objects with smooth geometrical shapes,
a large flexibility in the choice of a suitable interpolating smooth fractal spline is
offered by our approach. As in the case of vast applications of classical splines in
CAM, CAGD, and other mathematical, engineering applications [12, 13, 14, 15], it is
felt that cubic spline FIFs generated in the present work can find rich applications in
some of these areas. Since the cubic spline FIF is invariant in all scales, it can also be
applied to image compression and zooming problems in image processing. Further, as
classical cubic splines are a special case of cubic spline FIFs, it should be possible to
use cubic spline FIFs for mathematical and engineering problems where the classical
spline interpolation approach does not work satisfactorily.
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DISCRETE MAXIMAL Lp REGULARITY FOR
FINITE ELEMENT OPERATORS∗

MATTHIAS GEISSERT†

Abstract. Let {Ah}h>0 be a family of elliptic finite element operators. Let I = [0, T ] and
consider the problem u′

h(t) − Ahuh(t) = fh(t), t ∈ I, uh(0) = 0. In this paper, we show that for
1 < p < ∞ the solution of that problem satisfies the estimate

‖u′
h‖Lp(I;Lp(Ω)) + ‖Ahuh‖Lp(I;Lp(Ω)) ≤ C‖fh‖Lp(I;Lp(Ω)),

where C is independent of the parameter h and fh. In this case {Ah}h>0 is said to have discrete
maximal Lp regularity.

Key words. finite elements, maximal regularity
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1. Introduction. For T > 0, set I = [0, T ] and consider the Galerkin finite
element method for the approximate solution of

u′(t) − ΔDu(t) = f(t), t ∈ I,
u(0) = 0,

(1)

where ΔD is the Dirichlet–Laplacian in L2(Ω). Here, Ω ⊂ R
N is a bounded, convex

domain with C2 boundary. Then the corresponding problem for the discrete Dirichlet–
Laplacian ΔD

h acting on some finite element space Sh, i.e., continuous, piecewise linear
functions defined on a family of quasi-uniform triangulations with parameter h, reads
as:

u′
h(t) − ΔD

h uh(t) = fh(t), t ∈ I,
uh(0) = 0.

(2)

The solution uh of (2) is given by the variation of constants formula, i.e.,

uh(t) :=

∫ t

0

Th(t− s)fh(s) ds,(3)

where (Th(t))t≥0 := (etΔ
D
h )t≥0 denotes the semigroup generated by ΔD

h . In [Tho97]
stability estimates for uh together with stability estimates for the corresponding Ritz
projections are used to derive error estimates for u − uh in L2(Ω) and L∞(Ω). In
order to prove this stability estimates for uh representation (3) and uniform estimates
in h for (Th(t))t≥0, i.e.,

‖Th(t)‖L(Sh,q) ≤ C, ‖tΔD
h Th(t)‖L(Sh,q) ≤ C, t ∈ I, h > 0,(4)
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were very useful. Here, Sh,q denotes the space Sh equipped with the Lq(Ω)-norm and
1 ≤ q ≤ ∞.

In this paper, we consider the property of maximal Lp regularity for finite element
operators. Although our approach is not at all restricted to the Dirichlet–Laplacian
(see Definition 2.1), for notational reasons we restrict our considerations for the time
being to this case. Since ΔD

h is a bounded operator on Sh,q, it immediately follows
from (3) that ΔD

h has maximal Lp regularity on Sh,q, i.e., for h > 0 there exists Ch > 0
such that

‖u′
h‖Lp(I;Sh,q) + ‖ΔD

h uh‖Lp(I;Sh,q) ≤ Ch‖fh‖Lp(I;Sh,q), fh ∈ Lp(I;Sh,q),(5)

where uh denotes the unique solution of (2) and ‖uh‖qLp(I;Sh,q)
:=
∫ T
0
‖uh(t)‖pSh,q

dt. If

the family {Ch}h>0 is uniformly bounded, we say that {ΔD
h }h>0 has discrete maximal

Lp regularity on Sh,q. In terms of numerical analysis, discrete maximal Lp regularity
means that the numerical scheme is stable. Tracing constants in [DHP03, Remark
3.2(3)], [DHP03, Theorem 4.4], and [HP97, Proposition 2.4], it follows that {Δh}h>0

has discrete maximal Lp regularity on Sh,q for 1 < p < ∞ and q = 2. In this paper,
we show that various families of finite element operators (see Definition 2.1) have
discrete maximal Lp regularity on Sh,q for 1 < p = q < ∞.

In [Gei04] it is shown that discrete maximal Lp regularity on Sh,q and the stability
of the Ritz projections lead to an elegant proof for error estimates of the form

‖u− uh‖Lp(I;Lq(Ω)) ≤ Ch2‖f‖Lp(I;Lq(Ω)), f ∈ Lp(I;Lq(Ω)), h > 0,(6)

where uh denotes the solution of (2) with fh = Phf . Here, Ph denotes the orthogonal
projection from L2(Ω) onto Sh. The approach therein also allows one to treat initial
values in certain interpolation spaces. Furthermore, applications of discrete maximal
Lp regularity on Sh,q to various nonlinear problems are considered. More precisely,
if the solution of the linearized problem satisfies (5), there exists a strong solution
to the nonlinear problem on a small interval. Since the length of the interval is
reciprocally proportional to the constant Ch appearing in (5), uniform estimates for
Ch, i.e., discrete maximal Lp regularity, are extremely useful. Finally, error estimates
of the type ‖u− uh‖Lp(I;Lq(Ω)) ≤ Chs for such problems are proven. Here, s depends
on the nonlinearity.

Whereas discrete maximal Lp regularity has not been considered previously, quite
a few authors have dealt with estimates of the form (4) for q = ∞. For instance, in
[CLT94] it is shown that (4) holds for elliptic operators subject to Dirichlet boundary
conditions in one dimension. In fact, the authors gave resolvent estimates which imply
(4). A completely different approach was used in [STW98], where (4) is shown for self-
adjoint operators subject to Neumann boundary conditions in space dimension N ≥ 2
by establishing bounds on the semigroup (Th(t))t≥0 itself. A similar approach is used
in [TW00] in order to show (4) for the Dirichlet–Laplacian in space dimension N ≥ 2.
This result is also proven in [BTW03] with a much simpler proof. By interpolation
of the results for q = 2, which is trivial, and q = ∞, and by duality arguments (see
[STW98, Corollary 2.2]), we obtain (4) for 1 ≤ q ≤ ∞.

By [Dor93, Theorem 2.2], it follows that discrete maximal Lp regularity on Sh,q

implies (4). But the converse is not true except for q = 2. In this sense the present
paper is a generalization and extension of the results mentioned above. However,
observe that we cannot expect discrete maximal Lp regularity on Sh,∞, since even the
Dirichlet–Laplacian does not have maximal Lp regularity on L∞(Ω). Nevertheless we
show that (5) holds with Ch = C| log(h)| for q = ∞.
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2. Preliminaries. Let Ω ⊂ R
N , N ≥ 2 be a bounded, convex domain with C2

boundary. For a parameter h > 0 we introduce finite element operators AD
h or AN

h

subject to Dirichlet or Neumann boundary conditions. To do this we construct finite
element spaces SD

h ⊂ H1
0 (Ω) and SN

h ⊂ H1(Ω).
We start with SD

h . Let T D
h = {τh1 , . . . , τhn} be a finite set of disjoint, face-to-face,

open simplexes of diameter less than h such that the set ΩD
h := ˚∪n

i=1τi is convex
and any vertex belonging to the boundary of ΩD

h belongs to ∂Ω. In the follow-
ing, we always assume that (T D

h )h>0 is quasi-uniform. We set SD
h := {u ∈ C(Ω) :

u|τ is linear for all τ ∈ T D
h , u|Ω\Ωh

= 0}.
Next, we construct SN

h . Contrary to above we construct a triangulation that fits
Ω exactly. In order to do so, we introduce wedge shaped pieces, i.e., C ∩ Ω where C
is an open infinite cone with vertex e ∈ Ω. For wedge-shape pieces, we call e and the
elements of the intersection of the edges of C and ∂Ω vertices. Clearly all vertices
but e meet the boundary ∂Ω. Let T N

h = {τh1 , . . . , τhn} be a finite set of disjoint,
face-to-face, open simplexes or wedge-shaped pieces of diameter less than h such that

Ω = ΩN
h := ˚∪n

i=1τi. Similar to above, we assume that (T N
h )h>0 is quasi-uniform and

we set SN
h := {u ∈ C(Ω) : u|τ is linear for all τ ∈ T N

h }.
In what follows we write Sh instead of SD

h or SN
h , where Sh ⊂ H for H = H1

0 (Ω)
or H = H1(Ω), respectively. Furthermore, we always denote the quasi-uniform family
of triangulations associated to the family (Sh)h>0 of finite element spaces by (Th)h>0.
Moreover, we write Ωh for ΩD

h and ΩN
h .

Next, we introduce the finite element operators Ah associated to a sesquilinear
form defined as follows: Let H = H1

0 (Ω) or H1(Ω) and denote by a : H ×H → C a
sesquilinear form given by

a(u, v) :=
N∑

i,j=1

(
aij∂iu, ∂jv

)
Ω

+

N∑
i=1

(
bi∂iu, v

)
Ω

+

N∑
i=1

(
ciu, ∂iv

)
Ω

+
(
c0u, v

)
Ω

(7)

with aij , bi, ci, c0 ∈ L∞(Ω), i, j = 1, . . . , N . Here, (·, ·)Ω denotes the usual L2(Ω)
scalar product. We say that a is sectorial of angle ϕ ∈ (0, π

2 ) if | arg a(u, u)| ≤ ϕ for
u ∈ H. A form a satisfying

N∑
i,j=1

aij(x)ξiξj ≥ μ|ξ|2, a.a. x ∈ Ω, ξ ∈ C
N ,(8)

for some μ > 0 is called elliptic.
Definition 2.1. Let a : H × H → C be a sesquilinear form of the form (7).

Assume that a is sectorial of angle ϕ < π
2 , aij(x) = aji(x) for x ∈ Ω, i, j = 1, . . . , N

and that a is elliptic.
(a) For H = H1

0 (Ω) let (SD
h )h>0 be a family of finite element spaces. We then

define the finite element operators AD
h by

a(uh, vh) = −
(
AD

h uh, vh
)
Ω
, uh, vh ∈ SD

h .

(b) For H = H1(Ω) let (SN
h )h>0 be a family of finite element spaces. We then

define the finite element operators AN
h by

a(uh, vh) = −
(
AN

h uh, vh
)
Ω
, uh, vh ∈ SN

h .

In the following we write Ah instead of AD
h or AN

h . The operators Ah are called
the finite element operators associated to a.
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3. Main result. Let Ω ⊂ R
N , N ≥ 2 be a bounded, convex domain with C2

boundary and let A : D(A) → L2(Ω) be the operator associated to the form a, where
a is as in Definition 2.1, and denote the semigroup generated by A by (T (t))t≥0. The
following definition states assumptions on (T (t))t≥0 needed for the proof of our main
theorem. Let T > 0 and set for a multi-index α

∂α
1 :=

∂α1

∂xα1
1

· · · ∂αN

∂xαN

N

and ∂α
2 :=

∂α1

∂yα1
1

· · · ∂αN

∂yαN

N

.

Definition 3.1. Let T > 0 and let (T (t))t≥0 be a semigroup on L2(Ω). We
say that the semigroup (T (t))t≥0 satisfies the kernel estimate (KEMax) if T (t) is an

integral operator, the derivatives ∂α
1 ∂

β
2 K of its kernel K(t, ·, ·) exist in Ω × Ω for

0 < t ≤ 2T and there exist C, c > 0 such that

|∂α
1 ∂

β
2 K(t, x, y)| ≤ Ct−

N+|α|+|β|
2 exp

(
−c

|x− y|2
t

)
, 0 < t ≤ 2T, x, y ∈ Ω,

whenever |α| = 0, |β| ≤ 2 or |α| ≤ 2, |β| = 0.
Consider the problem

u′
h(t) −Ahuh(t) = fh(t), t ∈ I,

uh(0) = 0
(9)

for fh ∈ Lp(I;Sh,q). The main result of this paper is the following theorem.
Theorem 3.2. Let N ≥ 2, 2 ≤ p < ∞ and let a, (Ah)h>0 be as in Definition 2.1.

Assume that the domain D(A) of the operator A associated to a satisfies D(A) ↪→
H2(Ω) and that the semigroup (T (t))t≥0 on L2(Ω) generated by A satisfies the kernel
estimate (KEMax). Then there exists C > 0 such that

‖u′
h‖Lp(I;Sh,p) + ‖Ahuh‖Lp(I;Sh,p) ≤ C‖fh‖Lp(I;Sh,p), h > 0, fh ∈ Lp(I;Sh,p),

where uh denotes the solution of problem (9).
Before we start to prove Theorem 3.2 we state several consequences.
Remark 3.3. The symmetry of the principal part, i.e., aij(x) = aji(x) for x ∈ Ω,

i, j = 1, . . . , N , is only used for the proof of Lemma 5.7.
By [ÈdI70, Theorem 3], [DHP03, Theorem 8.2], and duality, the following corol-

lary follows easily.
Corollary 3.4. Assume that Ω ⊂ R

N , N ≥ 2, is a bounded, convex domain of
class C3+γ and that the coefficients of the form a satisfy

aij , ci ∈ C2+γ(Ω) and bi, c0 ∈ C1+γ(Ω), i, j = 1, . . . , N,

for some 0 < γ < 1. Then for 1 < p < ∞ there exists C > 0 such that

‖u′
h‖Lp(I;Sh,p) + ‖Ahuh‖Lp(I;Sh,p) ≤ C‖fh‖Lp(I;Sh,p), h > 0, fh ∈ Lp(I;Sh,p),

where uh denotes the solution of (9).
Here, Cγ denotes the space of all γ-Hölder continuous functions. Furthermore,

the proof of Theorem 3.2 implies the following corollary.
Corollary 3.5. Let {Ah}h>0 be as in Theorem 3.2. Then

‖u′
h‖L∞(I;Sh,∞) + ‖Ahuh‖L∞(I;Sh,∞) ≤ C| log(h)|‖fh‖L∞(I;Sh,∞),

h > 0, fh ∈ L∞(I;Sh,∞),

where uh denotes the solution of (9).
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4. Proof of Theorem 3.2. We start this section with the idea of the proof of
Theorem 3.2. For h > 0 set Qh := I × Ωh. Let Kh(t, ·, ·) : Ω × Ω → C denote the
kernel of Th(t) for t > 0. Note that Th(t) is an integral operator for t > 0, since Sh is
a finite dimensional space. Moreover, Kh(t, x, ·) ∈ Sh and Kh(t, ·, y) ∈ Sh for t > 0,
x, y ∈ Ω. We thus have the representation(
T ∗
h (t)Phδ̃x0

)
(y) =

∫
Ω

Kh(t, z, y)
(
Phδ̃x0

)
(z) dz = Kh(t, x0, y), t > 0, x0 ∈ Ωh, y ∈ Ω,

where δ̃x0
is the discrete delta function, introduced in Lemma 5.4. Furthermore, the

solution uh of (9), is given by the variation of constants formula. Indeed,

Ahuh(t) =

∫ t

0

AhTh(t− s)fh(s) ds =

∫ t

0

∫
Ωh

∂tKh(t− s, ·, y)fh(s, y) dy ds

=:
(
∂tKh ∗ f

)
(t, ·), t ∈ I, fh ∈ Lp(I;Sh,p).

In order to estimate ‖Ahuh‖Lp(I;Lp(Ω)), we compare the kernels ∂tKh with a suitable
truncation ∂tkTr of ∂tK, where K(t, ·, ·) : Ω × Ω → C is the kernel of T (t) for t > 0.
The precise meaning of truncation will follow in Step 2 of the proof. For the time
being, we merely stress that the truncation has to be related to h. In [TW00] and
[STW98] the authors introduced the approximate kernel ka : R+ ×Ωh ×Ω defined by

ka(t, x0, y) := kha(t, x0, y) :=
(
T ∗(t)δ̃x0

)
(y), t > 0, x0 ∈ Ωh, y ∈ Ω.

Our approach to the proof of Theorem 3.2 relies on the representation of ∂tKh as

∂tKh = ∂tKh − ∂tka + ∂tka − ∂tkTr + ∂tkTr.

Thomée et al. showed in [TW00] and [STW98] that there exists C > 0 such that

‖∂tka(·, x0, ·) − ∂tKh(·, x0, ·)‖L1(Qh) ≤ C, h > 0, x0 ∈ Ωh,

for the Dirichlet–Laplacian and self-adjoint operators subject to Neumann boundary
conditions. We will extend these results to elliptic operators A given by a form a as
above. Furthermore, we will show that

‖∂tka(·, x0, ·) − ∂tkTr(·, x0, ·)‖L1(Qh) ≤ C, h > 0, x0 ∈ Ωh.

In this way, it is possible to compare ∂tKh with ∂tkTr. Finally, we show that for
2 ≤ p < ∞ there exists C > 0 such that

‖∂tkTr ∗ f‖Lp(I;Lp(Ωh)) ≤ C‖f‖Lp(I;Lp(Ωh)), h > 0, f ∈ Lp(I;Lp(Ωh)).

This will complete the proof of Theorem 3.2.
Since an easy calculation shows that

‖∂tkTr‖L1(Qh) ≤ C| log(h)|, h > 0,

Corollary 3.5 will also follow.
Proof of Theorem 3.2. Let K, ka and Kh be as above. Adding sufficiently large

λ0 to the coefficient c0 of the form a, we obtain

Re

(
N∑

i,j=1

aij(x)ξiξj +
N∑
i=1

bi(x)ξiη +
N∑
i=1

ci(x)ηξi + (c0(x) + λ0)|η|2
)

≥ μ0

(
|ξ|2 + |η|2

)
,

a.a. x ∈ Ω, ξ ∈ C
N , η ∈ C,

(10)
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for some μ0 > 0. Since shifting the operator does not affect the property of maximal
regularity, we may assume that the form a satisfies (10).

We firstly fix some notation. For simplicity, we identify u ∈ Lp(I;Lp(Ω)) for some
1 < p < ∞ with a function ũ : Q → C by ũ(t, x) =

(
u(t)
)
(x). For convenience, we also

denote this function ũ by u. If u ∈ Lp(I;Lp(Ω)) is differentiable, we analogously write
u′(t, x) for

(
u′(t)
)
(x). Moreover, for s ∈ N we set ‖Dsu‖Lq(Ω) =

∑
|α|=s ‖Dαu‖Lq(Ω),

where Dα = ∂α1

∂x
α1
1

· · · ∂αN

∂x
αN
N

and we write D = D1. We need two different interpolation

operators Ih and Ĩh. As Ih acts on continuous functions Ĩh acts on Sobolev spaces.
Details and error estimates for the interpolation operators are given in Lemmas 5.1,
5.2, and 5.3.

Step 1. ‖∂t(Kh − ka
)
∗ f‖L∞(Qh) ≤ C‖f‖L∞(Qh), h > 0, fh ∈ L∞(I;Sh,∞).

Let h > 0 and x0 ∈ Ωh. Throughout this step we use the notation

e(t, y) = Kh(t, x0, y) − ka(t, x0, y), (t, y) ∈ Q.

By Hölder’s inequality, it clearly suffices to show that ‖e′‖L1(Q) ≤ C, where C is
independent of x0 and h. We therefore decompose Q in parabolic anulli. More
precisely, for μ∗ ≥ 2(N +4) we choose Jh such that μ∗h/2 ≤ 2−Jh ≤ μ∗h and J0 such
that 2−J0 ≥ diam Q. We then set

Q∗ :=
{

(s, y) ∈ Q : max
{
|y − x0|, s

1
2

}
≤ d∗

}
, d∗ := 2−Jh ,

Qj :=
{

(s, y) ∈ Q : dj ≤ max
{
|y − x0|, s

1
2

}
≤ 2dj

}
, j ∈ Z, dj = 2−j .

Obviously, Q =
⋃Jh

j=J0
Qj ∪Q∗. Analogously, we define Ωj := {y ∈ Ω : dj ≤ |y−x0| ≤

2dj} and Ω∗ := {y ∈ Ω : |y−x0| ≤ d∗}. Furthermore, we set Q′
j := Qj−1∪Qj ∪Qj+1,

Q′′
j = (Q′

j)
′, Q′

∗ = Q∗ ∪ QJh
, and Ω′

j , Ω′′
j and Ω′′′

j , analogously. We also need some
weighted, local norms, i.e.,

‖u‖Qj ,s1,s2 :=

s1∑
s=0

d−2+s
j ‖Dsu‖Qj +

s2∑
s=0

dsj‖Dsu′‖Qj , j = ∗ or j ∈ Z, 0 ≤ s1, s2 ≤ 1,

for u smooth enough. Here, ‖·‖Qj denotes the usual L2(Qj)-norm. In order to simplify
notation, throughout this step, C and c denote constants which are independet of h,
μ∗, and x0.

Hölder’s inequality yields

‖e′‖L1(Q) ≤ C

Jh∑
j=∗,j=J0

d
N
2 +1
j ‖e‖Qj ,1,0.

We will show

Jh∑
j=∗,j=J0

d
N
2 +1
j ‖e‖Qj ,1,0 ≤ Cμ

N
2 +1
∗ + C + Cμ−1

∗

Jh∑
j=∗,j=J0

d
N
2 +1
j ‖e‖Qj ,1,0.(11)

Subtracting Cμ−1
∗
∑Jh

j=∗,j=J0
d

N
2 +1
j ‖e‖Qj ,1,0 for sufficiently large μ∗ on both sides com-

pletes Step 1.



DISCRETE MAXIMAL Lp REGULARITY FOR FE OPERATORS 683

The estimate d
N
2 +1
∗ ‖e‖Q∗,1,0 ≤ Cμ

N
2 +1
∗ follows from Lemma 5.5(a). Since dj ≥

2(N + 2)h for J0 ≤ j ≤ Jh, we may apply Lemma 5.7 to ‖e‖Qj ,1,0. Hence there exists
C > 0 such that

‖e‖Qj ,1,0 ≤ C(‖
(
De
)
(0)‖Ω′

j
+ d−1

j ‖e(0)‖Ω′
j
+ d−2

j ‖e‖Q′
j

+(hd−1
j )

N
2 +2‖e′‖Q′

j
+ ‖ka − Ihka‖Q′

j ,1,1

)
for J0 ≤ j ≤ Jh. We start by showing

Jh∑
j=J0

d
N
2 +1
j

(
‖
(
De
)
(0)‖Ω′

j
+ d−1

j ‖e(0)‖Ω′
j
+ (hd−1

j )
N
2 +2‖e′‖Q′

j
+ ‖ka − Ihka‖Q′

j ,1,1

)
≤C.

(12)

As h
∑Jh

j=J0
d−1
j ≤ C, it suffices to show

‖
(
De
)
(0)‖Ω′

j
+ d−1

j ‖e(0)‖Ω′
j
+ (hd−1

j )
N
2 +2‖e′‖Q′

j
+ ‖ka − Ihka‖Q′

j ,1,1
≤ Chd

−N
2 −2

j ,

J0 ≤ j ≤ Jh.

We first consider ‖
(
De
)
(0)‖Ω′

j
. Note that e(0) �Ω′

j
= (Phδ̃x0 − δ̃x0) �Ω′

j
= Phδ̃ �Ω′

j
.

Therefore, by the inverse estimate (16) in the next section,

‖
(
De
)
(0)‖Ω′

j
≤ C‖DPhδ̃x0

‖Ω′
j
≤ Ch−1‖Phδ̃x0

‖Ω′
j
, J0 ≤ j ≤ Jh.

Since, by assumption,

cdj ≤ dist (Ω′
j , supp δ̃x0) ≤ Cdj , J0 ≤ j ≤ Jh,(13)

the exponential decay of Ph on Ω (see [Tho97, Lemma 5.1] or [Gei03, Lemma 2.2.9])
and Lemma 5.4 yields

‖
(
De
)
(0)‖Ω′

j
≤ Ch−1 exp

(
−c

dj
h

)
‖δ̃x0‖τ0 ≤ Ch−1 exp

(
−c

dj
h

)
h−Nh

N
2

≤ Chd
−N

2 −2
j d

N
2 +2
j h−N

2 −2 exp

(
−c

dj
h

)
≤ Chd

−N
2 −2

j , J0 ≤ j ≤ Jh.

Analogously, d−1
j ‖e(0)‖Ω′

j
≤ Chd

−N
2 −2

j , J0 ≤ j ≤ Jh.

Next, by Lemma 5.5(a), we obtain

(hd−1
j )

N
2 +2‖e′‖Q′

j
≤ (hd−1

j )
N
2 +2h−N

2 −1 ≤ Chd
−N

2 −2
j , J0 ≤ j ≤ Jh.

Finally, we consider dj‖D(k′a − Ihk
′
a)‖Q′

j
. By the error estimate for the interpo-

lation operators Ĩh and Lemma 5.5(b), we obtain

dj‖D(k′a − Ihk
′
a)‖Q′

j
≤ Cdjh‖D2k′a‖Q′′

j
≤ Chd

−N
2 −2

j , J0 ≤ j ≤ Jh.

The remaining terms of ‖ka − Ihka‖Q′
j ,1,1

are similary bounded and the proof of (12)
is complete.

Therefore, the proof of inequality (11) will be finished once we have shown

Jh∑
j=J0

d
N
2 −1
j ‖e‖Q′

j ,1,0
≤ C + Cμ−1

∗

Jh∑
j=J0

d
N
2 +1
j ‖e‖Qj ,1,0.(14)
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Note that ‖e‖Q′
j

= sup
{ ∫

Q
v(t, x)e(t, x) d(t, x) : v ∈ C∞

c (Q′
j), ‖v‖Q′

j
= 1
}
. Let

v ∈ C∞
c (Q′

j) with ‖v‖Q′
j

= 1 and set w(t) :=
∫ T
t
T (s− t)v(s) ds. A simple calculation

shows that w is the solution of the problem{
−w′(t) −Aw(t) = v(t), 0 ≤ t < T,

w(T ) = 0.

Multiplying this equation by e and integrating by parts, we obtain∫ T

0

(
v(t), e(t)

)
Ω

dt =
(
w(0), e(0)

)
Ω

+

∫ T

0

(
w(t), e′(t)

)
Ω

dt +

∫ T

0

a(w(t), e(t)) dt

=
(
w(0), e(0)

)
Ω

+

∫ T

0

(
w(t) − Ĩhw(t), e′(t)

)
Ω

+ a(w(t)

− Ĩhw(t), e(t)) dt

=: Ij1 + Ij2 , J0 ≤ j ≤ Jh.

Here, we have used that
(
χ(t), e′(t)

)
Ω

+ a(χ(t), e(t)) = 0 for t ∈ I and χ ∈ Sh.

We start by showing
∑Jh

j=J0
d

N
2 −1
j Ij1 ≤ C. Since Ph is the orthogonal projection

on Sh in L2(Ω), we obtain

Ij1 =
(
w(0), Phδ̃x0

− δ̃x0

)
Ωh

=
(
w(0) − χ, Phδ̃x0

− δ̃x0

)
Ωh

=
(
w(0) − χ, Phδ̃x0

)
Ω′′′

j

+
(
w(0) − χ, Phδ̃x0 − δ̃x0

)
Ωh\Ω′′′

j

=: Ij11 + Ij12, χ ∈ Sh, J0 ≤ j ≤ Jh.

We choose χ := Ĩh(w(0)). By the error estimate for Ĩh and Lemma 5.5(c)(1), we
obtain

Ij11 ≤ Ch‖
(
Dw
)
(0)‖Ω‖Phδ̃x0‖Ω′′′

j

≤ Ch‖w‖Q‖Phδ̃x0
‖Ω′′′

j
≤ Ch‖Phδ̃x0

‖Ω′′′
j
, J0 ≤ j ≤ Jh.

Now, inequality (13), the exponential decay of Ph on Ω, and Lemma 5.4 yield

Ij11 ≤ Ch exp

(
−c

dj
h

)
‖δ̃x0

‖τ0 ≤ Ch exp

(
−c

dj
h

)
h−Nh

N
2 ≤ Chd

−N
2

j , J0 ≤ j ≤ Jh.

Since (Ph)h>0 is stable in L(L1(Ω)), we get ‖Phδ̃x0
− δ̃x0

‖L1(Ωh) ≤ C. By the error

estimate for Ĩh, we thus obtain

Ij12 ≤ C‖Ihw(0) − w(0)‖L∞(Ωh\Ω′′′
j ) ≤ Ch‖

(
Dw
)
(0)‖L∞(Ω\Ω′′

j ), J0 ≤ j ≤ Jh.

Therefore,
∑Jh

j=J0
d

N
2 −1
j Ij1 ≤ C follows from ‖Dw(0)‖L∞(Ω\Ω′′

j ) ≤ Cd
−N

2
j , J0 ≤ j ≤ Jh,

which is a consequence of the kernel estimate (KEMax).
We will show

Jh∑
j=J0

d
N
2 −1
j Ij2 ≤ Cμ−1

∗

Jh∑
j=∗,j=J0

d
N
2 +1
j ‖e‖Qj ,1,0.(15)

This proves (14) and so (11) which completes Step 1.



DISCRETE MAXIMAL Lp REGULARITY FOR FE OPERATORS 685

By Hölder’s inequality and the error estimate for Ĩh, there exists C > 0 such that
for J0 ≤ j ≤ Jh,

Ij2 ≤ C

Jh∑
∗,i=J0

‖w − Ĩhw‖Qi
‖e′‖Qi

+ C

Jh∑
∗,i=J0

‖D(w − Ĩhw)‖Qi
‖De‖Qi

+ C

Jh∑
∗,i=J0

‖D(w − Ĩhw)‖Qi
‖e‖Qi

+ C

Jh∑
∗,i=J0

‖w − Ĩhw‖Qi
‖De‖Qi

+ C

Jh∑
∗,i=J0

‖w − Ĩhw‖Qi‖e‖Qi

≤ C

Jh∑
∗,i=J0

(
‖D2w‖Q′

i
+ ‖Dw‖Q′

i

)(
h2‖e′‖Qi + h‖e‖Qi

+ h‖De‖Qi

)
.

Since h ≤ μ−1
∗ di and di is bounded from above, we have

h2‖e′‖Qi + h‖e‖Qi + h‖De‖Qi ≤ Cμ−1
∗ d2

i ‖e‖Qi,1,0, i = ∗, J0 ≤ i ≤ Jh.

Now, inequality (15) follows from Lemma 5.5(c)(2). Indeed, we have

Jh∑
j=J0

d
N
2 −1
j Ij2 ≤ Cμ−1

∗

Jh∑
i=∗,i=J0

d2
i ‖e‖Qi,1,0

Jh∑
j=J0

d
N
2 −1
j min

{
d

N
2 +1
i−j , d

N
2 +1
j−i

}

≤ Cμ−1
∗

Jh∑
i=∗,i=J0

d
N
2 +1
i ‖e‖Qi,1,0

⎛
⎝∑

i≥j

d2
i−j +

∑
j>i

dNi−j

⎞
⎠

≤ Cμ−1
∗

Jh∑
i=∗,i=J0

d
N
2 +1
i ‖e‖Qi,1,0.

Step 2. ‖∂t(ka − kTr) ∗ fh‖L∞(Qh) ≤ C‖fh‖L∞(Qh), h > 0, fh ∈ L∞(I;Sh,∞).
Let x0 ∈ Ωh, τ0 ∈ Th with x0 ∈ τ0 and μ∗, J0, Jh, Qj and Q∗ as above. We define

the truncated kernel kTr : I × Ωh × Ω → C by

kTr(t, x0, y) := khTr(t, x0, y) := K(t, x0, y)χ(Q∗)c(t, y), (t, y) ∈ Q, x0 ∈ Ωh.

As in Step 1, C denotes some constant which is independet of x0, μ∗, and h. We will
show that

‖∂tka(·, x0, ·) − ∂tkTr(·, x0, ·)‖L1(Qh) ≤ C.

By the representation ka(t, x0, y) =
∫
τ0
K(t, z, y)δ̃x0(z) dz and

∫
Ωh

δ̃x0(x) dx = 1 (see

Lemma 5.4), we obtain

|∂tka(t, x0, y) − ∂tkTr(t, x0, y)| =

∣∣∣∣
∫
τ0

∂tK(t, z, y)δ̃x0(z) dz − ∂tK(t, x0, y)

∣∣∣∣
=

∣∣∣∣
∫
τ0

(
∂tK(t, z, y) − ∂tK(t, x0, y)

)
δ̃x0(z) dz

∣∣∣∣ , J0 ≤ j ≤ Jh, (t, y) ∈ Qj .
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Fig. 1. Correlation between x0, y, and z.

Due to the mean value theorem there exists η(z) in the segment zx0 joining z and x0

such that

|∂tka(t, x0, y) − ∂tkTr(t, x0, y)| ≤
∑
|α|=1

∣∣∣∣
∫
τ0

|z − x0|∂t∂α
1 K(t, η(z), y)δ̃x0

(z) dz

∣∣∣∣ .
Now, by Lemma B.1, there exits C > 0 such that for J0 ≤ j ≤ Jh and (t, y) ∈ Qj ,

|∂tka(t, x0, y) − ∂tkTr(t, x0, y)| ≤C

∫
τ0

|z − x0|
(
max

{
min
η∈zx0

{|y − η|}, t 1
2

})−N−3

|δ̃x0
(z)| dz.

Since (see Figure 1) |z − x0| ≤ h and |x0 − y| ≤ C|y − η| for z ∈ τ0 and η ∈ zx0, we
obtain

|∂tka(t, x0, y) − ∂tkTr(t, x0, y)| ≤ Chd−N−3
j

∫
τ0

|δ̃x0(z)| dz ≤ Cd−N−2
j hd−1

j ,

J0 ≤ j ≤ Jh, (t, y) ∈ Qj .

Summing, we get

Jh∑
j=J0

‖∂tka(·, x0, ·) − ∂tkTr(·, x0, ·)‖L1(Qj) ≤ C

Jh∑
j=J0

∫
Qj

d−N−2
j (hd−1

j ) d(s, y) ≤ C.

Finally, by Lemma 5.5(a), we obtain ‖∂tka(·, x0, ·)‖L1(Q∗) ≤ C. Step 2 is complete.
Step 3. Final Step.
Recall that Ah has discrete maximal L2 regularity on Sh,2. By (KEMax) and

[HP97, Theorem 3.1], the operator associated to ∂tK satisfies the assumptions of
Lemma A.2. Therefore, the operators associated to ∂tkTr are uniformly bounded in
h in L(L2(Q)), and we obtain

‖
(
∂tKh − ∂tkTr

)
∗ fh‖Qh

≤ C‖fh‖Qh
, h > 0, fh ∈ L2(I;Sh,2).

Due to Step 1 and Step 2 the operators associated to ∂tKh − ∂tka + ∂tka − ∂tkTr are
uniformly bounded in h in L(L∞(I;Sh,∞)). Marcinkiewicz’ interpolation theorem
and the identity ∂tKh − ∂tka + ∂tka − ∂tkTr = ∂tKh − ∂tkTr yields that the operators
associated to the right-hand side are uniformly bounded in h in L(Lp(I;Sh,p)), 2 ≤
p < ∞. Since ∂tKh = ∂tKh − ∂tkTr + ∂tkTr, Theorem A.2 completes the proof.
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5. Technical estimates. In this section we proof technical estimates needed
to complete the proof of Theorem 3.2. Throughout this section we use the same
notation as therein. We start by some basic properties of the finite element spaces Sh

and interpolation operators.
Since we use a quasi-uniform family of triangulations, we have the following in-

verse inequalities:

‖ωhD
αuh‖τ ≤ Ch−1‖ωhuh‖τ , h > 0, τ ∈ Th, ωh, uh ∈ Sh, |α| = 1(16)

‖ωhuh‖L∞(τ) ≤ Ch−N
2 ‖ωhuh‖τ , h > 0, τ ∈ Th, ωh, uh ∈ Sh.(17)

Next, we define the standard interpolant Ih : C(Ω) ∩H → Sh by u �→ uh, where
uh(ξ) = u(ξ) for all vertices ξ of Th, i.e., ξ is a vertex of τ for some τ ∈ Th. Since
we are dealing with piecewise linear functions, the operator Ih is well defined. The
following lemma is an easy consequence of Taylor’s theorem.

Lemma 5.1. There exists C > 0 such that, for h > 0 and τ ∈ Th,

‖Ihu− u‖L∞(τ) + h‖D(Ihu− u)‖L∞(τ) ≤ Ch2‖D2u‖L∞(τ),

u ∈ C(Ω) ∩H with u �τ∈ C2(τ).

We also need interpolation operators acting on Sobolev spaces W 1
1 (Ω) or W 1

1,0(Ω),

where W 1
1,0(Ω) denotes the closure of C∞

c (Ω) in W 1
1 (Ω). We call them ĨDh and ĨNh ,

respectively.
For the definition of ĨDh we refer to [TW00, Lemma 2.1]. Set U(τ) := {x ∈ Ω :

dist (x, τ) ≤ h} for τ ∈ Th. Then the following lemma is proved therein.
Lemma 5.2. Let 1 ≤ q ≤ ∞. Then there exists C > 0 such that, for h > 0 and

τ ∈ T D
h ,

(a) ‖ĨDh u− u‖Lq(τ) ≤ Ch‖Du‖Lq(U(τ)), u ∈ W 1
q,0(Ω),

(b) ‖ĨDh u− u‖Lq(τ) ≤ Ch2
∑2

s=1 ‖Dsu‖Lq(U(τ)), u ∈ W 1
q,0(Ω)

with u �U(τ)∈ W 2
q (U(τ)),

(c) ‖D(ĨDh u− u)‖Lq(τ) ≤ Ch
∑2

s=1 ‖Dsu‖Lq(U(τ)), u ∈ W 1
q,0(Ω)

with u �U(τ)∈ W 2
q (U(τ)).

Further, we define ĨNh : W 1
1 (Ω) → SN

h . For a boundary vertex ξ choose τ ∈ Th
such that τ has N vertices on the boundary and let Fbdy denote the (N − 1)-simplex
given by those vertices. By [SZ90] there exists an affine mapping βξ, which is bounded
on Fbdy, uniformly in h and ξ, such that

1

|Fbdy|

∫
Fbdy

βξ(x)u(x) dx = u(ξ), u ∈ C(Ω) linear.

Moreover, by quasiuniformity, there exists c > 0, independent of h, such that the ball
B(ξ, ch) with radius ch does not intersect the boundary of Ωh for vertices ξ ∈ Ωh.
For u ∈ W 1

1 (Ω) we now define ĨNh u := uh, where

uh(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1

|Fbdy|

∫
Fbdy

βξ(x)u(x) dx, vertices ξ ∈ ∂Ωh,

1

|B(ξ, Ch)|

∫
B(ξ,Ch)

u(x) dx, vertices ξ ∈ Ωh.

Then, by the Bramble–Hilbert lemma, we obtain the following lemma.
Lemma 5.3. Let 1 ≤ q ≤ ∞. Then there exists C > 0 such that for h > 0 and

τ ∈ T N
h
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(a) ‖ĨNh u− u‖Lq(τ) ≤ Ch‖Du‖Lq(U(τ)), u ∈ W 1
q (Ω),

(b) ‖ĨNh u− u‖Lq(τ) ≤ Ch2‖D2u‖Lq(U(τ)), u ∈ W 1
q (Ω) with u �U(τ)∈ W 2

q (U(τ)),

(c) ‖D(ĨNh u− u)‖Lq(τ) ≤ Ch‖D2u‖Lq(U(τ)), u ∈ W 1
q (Ω) with u �U(τ)∈ W 2

q (U(τ)).

We write Ĩh for ĨDh and ĨNh . We next introduce a discrete version of the delta
distribution.

Lemma 5.4. For k ∈ N there exist C, c > 0, independent of h, such that for any
x0 ∈ τ0, where τ0 ∈ Th, there exists a function δ̃x0 := δ̃hx0

∈ C∞
c (Ω) with support in τ0

such that
(a)
∫
τ0
χ(x)δ̃x0(x) dx = χ(x0), χ ∈ Sh,

(b)
∫
τ0
δ̃x0

(x) dx = 1,

(c) diam supp δ̃x0
≤ Ch,

(d) dist (supp δ̃x0
, ∂τ0) ≥ ch,

(e) ‖δ̃x0
‖Wk

∞(τ0) ≤ C|h|−N−k.
A proof may be found in [TW00, Lemma 2.2]. The next lemma states a priori

estimates for e, ka, and w.
Lemma 5.5.

(a) There exists C > 0, independent of x0 and h, such that

‖e‖Q,1,0 ≤ C‖δ̃x0‖H1(Ω) ≤ Ch−N
2 −1.

(b) There exists C > 0, independent of x0 and h, such that

‖∂k
t D

αka(·, x0, ·)‖Qj ≤ Cd
−N

2 +1−2k−|α|
j ,

j = J0, . . . , Jh + 2, 0 ≤ k ≤ 1, |α| ≤ 2.

(c) For v ∈ L2(Q) let w :=
∫ T
t
T (s− t)v(s) ds.

(1) Then there exists C > 0, independent of v, such that ‖w(0)‖H1(Ω) ≤
C‖v‖Q.

(2) Assume that supp v ⊂ Q′
j with ‖v‖Qj = 1. Then there exists C > 0,

independent of v, such that

‖Dαw‖Q′
i
≤ C min

{
d

N
2 +1
j−i , d

N
2 +1
i−j

}
, i, j = J0, . . . , Jh, i = ∗, |α| ≤ 2.

Proof.
(a) The estimate ‖δ̃x0‖H1(Ω) ≤ Ch−N

2 −1 follows by Lemma 5.4(c) and (e). It
thus remains to prove the first inequality of (a). We will prove ‖Kh(·, x0, ·)‖Q,1,0 ≤
C‖δ̃x0‖H1(Ω) only since ‖ka(·, x0, ·)‖Q,1,0 ≤ C‖δ̃x0‖H1(Ω) follows in a similar way.
By assumption, Kh(·, x0, ·) satisfies K ′

h(t, x0, ·) − A∗Kh(t, x0, ·) = 0 for 0 < t ≤ T .
Multiplying this equation by Kh(·, x0, ·) and K ′

h(·, x0, ·) and integrating by parts yields

‖Kh(·, x0, ·)‖Q,1,0 + ‖Kh(T, x0, ·)‖Ω ≤ C‖Phδ̃x0‖H1(Ω)

and

‖K ′
h(·, x0, ·)‖Q ≤ C‖Phδ̃x0‖H1(Ω) + ‖Kh(·, x0, ·)‖Q,1,0 + ‖Kh(T, x0, ·)‖Ω,

where we have used Kh(0, x0, ·) = Phδ̃x0 . Since Ph is stable in H1(Ω), assertion (a)
follows.

(b) This follows from the representation of the approximate kernel ka and the
kernel estimates given in Lemma B.1.
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(c) Let ṽ : R+ → L2(Ω) be given by t �→ v(T − t, ·), t ∈ I, and t �→ 0, t > T .
Then the solution w̃ of

w̃′(t) −Aw̃(t) = ṽ(t), t > 0,

w̃(0) = 0,

satisfies w̃(t) = w(T − t), t ∈ I. By the assumption D(A) ↪→ H2(Ω), there exists
C > 0, independent of w, such that

‖w‖H1(Ω) ≤ C‖w‖(L2(Ω),H2(Ω)) 1
2
,2
≤ C‖w‖(L2(Ω),D(A)) 1

2
,2
.

Therefore, by [Ama95, Theorem 4.10.2] there exists C > 0, independent of v, such
that

‖w̃‖L∞(I;(L2(Ω),D(A)) 1
2
,2

) ≤ C‖ṽ‖L2(R+×Ω) = C‖v‖Q,

which proves (c)(1).
By the kernel estimate (KEMax), there exists C > 0 such that for i = ∗, j ≤ Jh−3

or |i− j| ≥ 3, and |α| ≤ 2,

‖Dαw‖Q′
i
≤ Cd

N
2 +1
i ‖Dα

1 w‖L∞(Q′
i)

≤ Cd
N
2 +1
i ‖v‖L1(Q′

j)
sup

(t,x)∈Qi,(s,y)∈Qj ,s>t

|DαK(s− t, x, y)|

≤ Cd
N
2 +1
i+j min{d−N−2

j , d−N−2
i } ≤ C min

{
d

N
2 +1
i−j , d

N
2 +1
j−i

}
.

For i = ∗, j > Jh − 3 or |i − j| < 3 it suffices to show that ‖Dαw‖Qi is uniformly
bounded in i and j. In fact, the assumption D(A) ↪→ H2(Ω) and maximal L2 regu-
larity on L2(Ω) of A yields

‖Dαw‖Qi ≤ ‖Dαw‖Q ≤ C‖v‖Q ≤ C, |α| ≤ 2.

This proves (c)(2).
We conclude this section with local estimates for e. However, for the proof we

need superconvergent-type estimates given in the next lemma.
Lemma 5.6 (superconvergent-type estimate). There exists some C > 0 such that

for h > 0, τ ∈ Th zh, ω ∈ Sh satisfying ‖ω‖L∞(Ω) ≤ 1

‖ω4zh − Ih(ω4zh)‖τ ≤ C(h2‖Dω‖2
L∞(Ω) + h‖Dω‖L∞(Ω))‖ω2zh‖τ ,(18)

‖D(ω4zh − Ih(ω4zh))‖τ ≤ Ch‖Dω‖2
L∞(Ω)‖zh‖τ + Ch‖Dω‖L∞(Ω)‖Dzh‖τ ,(19)

‖ω8zh − Ih(ω8zh)‖τ ≤ C(h2‖Dω‖2
L∞(Ω) + h‖Dω‖L∞(Ω))‖ω6zh‖τ ,(20)

‖D(ω8zh − Ih(ω8zh))‖τ ≤ C(h‖Dω‖2
L∞(Ω) + ‖Dω‖L∞(Ω))‖ω6zh‖τ .(21)

In particular, inequalities (18)–(21) hold with τ replaced by Ω.
Proof. For h > 0 let τ ∈ Th and set χ := Ih(ω4zh) for ω, zh ∈ Sh. Note that

D2zh = 0. By the error estimate for the standard interpolant Ih, there exists C > 0,
independent of h, zh, ω, and τ , such that

‖ω4zh − χ‖τ ≤ h
N
2 ‖ω4zh − χ‖L∞(τ) ≤ Ch

N
2 +2‖D2(ω4zh)‖L∞(τ)

≤ C
(
h

N
2 +2‖Dω‖2

L∞(Ω)‖ω2zh‖L∞(τ) + h
N
2 +2‖Dω‖L∞(Ω)‖ω2Dzh‖L∞(τ)

)
.
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Now, by the inverse estimates (17) and (16) for zh, we obtain

‖ω4zh − χ‖τ ≤ C(h2‖Dω‖2
L∞(Ω)‖ω2zh‖τ + h2‖Dω‖L∞(Ω)‖ω2Dzh‖τ )

≤ C(h2‖Dω‖2
L∞(Ω)‖ω2zh‖τ + h‖Dω‖L∞(Ω)‖ω2zh‖τ ).

Similarly, we get (19)–(21).
Lemma 5.7. There exists C > 0, independent of x0 and h, such that for dj >

2(N + 4)h,

‖e‖Qj ,1,0 ≤ C
(
‖
(
De
)
(0)‖Ω′

j
+ d−1

j ‖e(0)‖Ω′
j

+ d−2
j ‖e‖Q′

j
+ (hd−1

j )
N
2 +2‖e′‖Q′

j
+ ‖ka − Ihka‖Q′

j ,1,1

)
.

Proof. Since e = ka− Ihka = ka on Q\Qh, it suffices to consider the contribution
of e in Qj ∩Qh. Let h and j be fixed and set for n = 0, . . . , N + 4

Qn
j :=

{
(t, x) ∈ Q′

j ∩Qh : dj −
n

N + 4
dj−1 < max

{
|x− x0|, t

1
2

}
< dj +

n

N + 4
dj

}
.

Clearly, Q0
j = Qj ∩ Qh and QN+4

j = Q′
j ∩ Qh. Throughout this proof M,C,C1, C2

denote constants independent of j, n, x0, and h. By quasiuniformity there exist cut-
off functions ωn : Q → [0, 1], n = 1, . . . , N + 4, such that ωn(t, ·) ∈ Sh, ωn(·, x) is
continuously differentiable, ωn ≡ 1 on Qn−1

j , ωn ≡ 0 outside Qn
j , ‖Dωn‖L∞(Q) ≤

Md−1
j , and ‖ω′

n‖L∞(Q) ≤ Md−2
j . Throughout this proof we set z(t) = ka(t)− Ihka(t)

and zh(t) = Kh(t)−Ihka(t) for t ∈ I to shorten notation. Note that e(t) = zh(t)−z(t).
We will use the coercivity of the form a, the equation(

χ, e′(t)
)
Ω

+ a(χ, e(t)) = 0, χ ∈ Sh, 0 < t ≤ T,(22)

and superconvergent-type estimates to prove

d−1
j ‖ω2

nDe‖Q + d−2
j ‖e‖Qj + d−1

j ‖
(
ω2
ne
)
(T )‖Ω(23)

≤C1

(
d−1
j ‖e(0)‖Ω′

j
+ d−2

j ‖e‖Q′
j
+ (hd−1

j )
1
2 (‖e′‖Qn

j
+ d−1

j ‖De‖Qn
j
) + ε−1‖z‖Q′

j ,1,1
+ ε‖ω4

ne
′‖Q
)
,

for ε > 0 and

‖ω4
ne

′‖Q ≤ C2

(
‖(De)(0)‖Ω′

j
+ d−1

j ‖e(0)‖Ω′
j
+ d−2

j ‖e‖Q′
j
+ (hd−1

j )
1
2 ‖e′‖Qn

j
(24)

+ ‖z‖Q′
j ,1,1

+ d−1
j ‖ω2

nDe‖Q + d−1
j ‖
(
ω2
ne
)
(T )‖Ω

)
.

Then, we multiply inequality (24) by 1/(2C2) and add it to (23) with ε = 1/(4C2).
By subtracting ε‖ω4e′‖Q, 1/2d−1

j ‖
(
ω2e
)
(T )‖Ω and 1/2d−1

j ‖ω2De‖Q on both sides, we
obtain

‖e′‖Qn−1
j

+ d−1
j ‖De‖Qn−1

j
+ d−2

j ‖e‖Qj ≤ C
(
‖(De)(0)‖Ω′

j
+ d−1

j ‖e(0)‖Ω′
j
+ d−2

j ‖e‖Q′
j

+(hd−1
j )

1
2

(
‖e′‖Qn

j
+ d−1

j ‖De‖Qn
j

)
+ ‖z‖Q′

j ,1,1

)
.

(25)

Since hd−1
j ≤ 2(N + 4), by iteration we get

‖e‖Qj ,1,0 ≤ C
(
‖
(
De
)
(0)‖Ω′

j
+ d−1

j ‖e(0)‖Ω′
j
+ d−2

j ‖e‖Q′
j
+ (hd−1

j )
N
2 +2‖e′‖Q′

j

+ ‖z‖Q′
j ,1,1

+ hd−2
j ‖De‖Q′

j
).(26)
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The last term on the right-hand side of inequality (26) may be omitted since

hd−2
j ‖De‖Q′

j
≤ hd−2

j ‖Dz‖Q′
j
+ hd−2

j ‖Dzh‖Q′
j
≤ Cd−1

j ‖Dz‖Q′
j
+ Cd−2

j (‖e‖Q′
j
+ ‖z‖Q′

j
).

Therefore, it remains to prove inequalities (23) and (24). For readability we
suppress the dependency on t and introduce the notation

a#
ω (u, v) :=

N∑
i,j=1

(ωaij∂iu, ∂jv)Ω, a#(u, v) :=

N∑
i,j=1

(aij∂iu, ∂jv)Ω u, v ∈ H,

where ω is smooth enough. The term aω(u, v) is defined in an analogous way. Note
that a#

ω is the principal part of a with some weight ω. For inequality (24), we start
with the identity∫

I

‖ω4
ne

′‖2
Ω +

1

2

d

dt
a#
ω8

n
(e, e) dt

=

∫
I

(
ω8
ne

′, e′
)
Ω

+
1

2
a#
(ω8

n)′(e, e) + Re a#
ω8

n
(e′, e) + Re a(ω8

nz
′
h, e) − Re a(ω8

nz
′
h, e) dt

=

∫
I

(
− Re (ω8

nz
′, e′)Ω +

1

2
a#
(ω8

n)′(e, e) − Re a#
ω8

n
(z′, e)

)
dt

+ Re

∫
I

a#
ω8

n
(z′h, e) − a(ω8

nz
′
h, e) dt + Re

∫
I

(
ω8
nz

′
h, e

′)
Ω

+ a(ω8
nz

′
h, e) dt

=: J1 + J2 + J3.

Noting that d−1
j > C, where C depends on Ω only, we obtain

|J1| ≤ C‖z‖2
Q′

j ,1,1
+

1

16
‖ω4

ne
′‖2

Q′
j
+ Cd−2

j ‖ω2
nDe‖2

Q,

|J2| ≤
∣∣∣∣∣
∫
I

a#
z′
h
(ω8

n, e) +

N∑
i=1

(
ciω

8
nz

′
h, ∂ie

)
Ω

+
(
c0ω

8
nz

′
h, e
)
Ω

dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
I

N∑
i=1

(
bi∂i(ω

8
nz

′
h), e
)
Ω

dt

∣∣∣∣∣
=: J21 + J22.

We start with the first term of J21∣∣∣∣
∫
I

a#
z′
h
(ω8

n, e) dt

∣∣∣∣ ≤ Cd−2
j ‖ω2

nDe‖2
Q +

1

16
‖ω4

nz
′
h‖2

Q

≤ C‖z′‖2
Q′

j
+ Cd−2

j ‖ω2
nDe‖2

Q +
1

16
‖ω4

ne
′‖2

Q.

By similar estimates for the two remaining terms of J21, we obtain

J21 ≤ Cd−4
j ‖e‖2

Q′
j
+ C‖z′‖2

Q′
j
+ Cd−2

j ‖ω2
nDe‖2

Q +
1

8
‖ω4

ne
′‖2

Q.

In order to estimate J22, we use integration by parts in time. Recall that μ denotes
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the constant appearing in (8).

J22 =

∣∣∣∣∣
N∑
i=1

∫
I

(
bi
[
(∂iω

8
n)(e′ + z′) + ω8

n∂i(e
′ + z′)

]
(t), e(t)

)
Ω

dt

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

∫
I

(
bi
(
(∂iω

8
n)(e′ + z′)

)
(t), e(t)

)
Ω

dt +

N∑
i=1

∫
I

(
bi
(
ω8
n∂iz

′)(t), e(t))
Ω

dt

−
N∑
i=1

∫
I

(
bi
(
∂ie
)
(t),
(
ω8
ne
)′

(t)
)
Ω

dt +

N∑
i=1

(
bi
(
ω8
n∂ie
)
(t), e(t)

)
Ω

∣∣T
0

∣∣∣∣∣
≤ Cd−1

j ‖ω4
ne

′‖Q‖e‖Q′
j
+ Cd−1

j ‖z′‖Q′
j
‖e‖Q′

j
+ C‖Dz′‖Q′

j
‖e‖Q′

j

+ Cd−2
j ‖ω2

nDe‖Q‖e‖Q′
j
+ C‖ω2

nDe‖Q‖ω4
ne

′‖Q + C‖
(
ω4
nDe
)
(T )‖Ω‖

(
ω2
ne
)
(T )‖Ω

+ C‖(De)(0)‖Ω′
j
‖e(0)‖Ω′

j

≤ 1

16
‖ω4

ne
′‖2

Q + Cd−4
j ‖e‖2

Q′
j
+ C‖z′‖2

Q′
j
+ Cd2

j‖Dz′‖2
Q′

j
+ Cd−2

j ‖ω2
nDe‖2

Q′
j

+
μ

4
‖
(
ω4
nDe
)
(T )‖2

Ω + Cd−2
j ‖
(
ω2
ne
)
(T )‖2

Ω + C‖(De)(0)‖2
Ω′

j
+ Cd−2

j ‖e(0)‖2
Ω′

j
.

Next, we apply equality (22) with χ = Ih(ω8
nz

′
h) to J3.

J3 =

∣∣∣∣
∫
I

(
ω8
nz

′
h − χ, e′

)
Ω

+ a(ω8
nz

′
h − χ, e) dt

∣∣∣∣
≤
(
‖ω8

nz
′
h − χ‖Q‖e′‖Qn

j
+ ‖D(ω8

nz
′
h − χ)‖Q‖e‖Q′

j
+ ‖ω8

nz
′
h − χ‖Q‖e‖Q′

j

)
+ C

(
N∑
i=1

∣∣∣∣
∫
I

(ci(ω
8
nz

′
h − χ), ∂ie)Ω + a#(ω8

nz
′
h − χ, e) dt

∣∣∣∣
)

=: J31 + J32.

By inequality (20),

‖ω8
nz

′
h − χ‖Q ≤ Chd−1

j ‖ω6
nz

′
h‖Q ≤ Chd−1

j ‖z′‖Q′
j
+ Chd−1

j ‖e′‖Qn
j
.

Since ‖D(ω8
nz

′
h − χ)‖Q may be estimated in a similar way, we obtain

J31 ≤ Cd−4
j ‖e‖2

Q′
j
+ C‖z′‖2

Q′
j
+ Chd−1

j ‖e′‖2
Qn

j
+

1

8
‖ω4

ne
′‖2

Q.

Estimating J32 is more involved. In fact, since Dzh is constant on each τ ∈ Th,
by inverse estimates we get

‖Dzh‖τ‖ω2
n‖L∞(τ)≤ h

N
2 ‖Dzh‖L∞(τ)‖ω2

n‖L∞(τ) = h
N
2

∣∣Dzh �τ
∣∣‖ω2

n‖L∞(τ)

= h
N
2 ‖ω2

nDzh‖L∞(τ) ≤ C‖ω2
nDzh‖τ , τ ∈ Th,

which implies |
∫
I
(ci(ω

8
nz

′
h−χ), ∂izh)Ω dt| ≤ C‖ω4

nz
′
h‖Q‖ω2

nDzh‖Q by inequality (20).
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Hence, by inequality (20) again and elementary estimates,

N∑
i=1

∣∣∣∣
∫
I

(ci(ω
8
nz

′
h − χ), ∂ie)Ω dt

∣∣∣∣ = N∑
i=1

∣∣∣∣∣
∫
I

(ci(ω
8
nz

′
h − χ), ∂iz)Ω

+ (ci(ω
8
nz

′
h − χ), ∂izh)Ω dt

∣∣∣∣∣
≤ C‖ω4

nz
′
h‖Q‖Dz‖Q′

j
+ C‖ω4

nz
′
h‖Q‖ω2

nDzh‖Q

≤ 1

16
‖ω4e′‖2

Q + C‖z′‖2
Q′

j
+ C‖Dz‖2

Q′
j
+ C‖ω2Dzh‖2

Q

≤ 1

16
‖ω4

ne
′‖2

Q + C‖z′‖2
Q′

j
+ Cd−2

j ‖Dz‖2
Q′

j

+ Cd−2
j ‖ω2

nDe‖2
Q.

Moreover, by inequality (21),

∣∣∣∣
∫
I

a#(ω8z′h − χ, zh) dt

∣∣∣∣ ≤ Cd−1
j

∑
τ∈Th

‖ω6
nz

′
h‖τ‖Dzh‖τ ≤ Cd−1

j

∑
τ∈Th

‖ω4
nz

′
h‖τ‖ω2

nDzh‖τ

≤ Cd−1
j

(∑
τ∈Th

‖ω4
nz

′
h‖2

τ

) 1
2
(∑

τ∈Th

‖ω2
nDzh‖2

τ

) 1
2

≤ 1

32
‖ω4

nz
′
h‖2

Q + Cd−2
j ‖ω2

nDzh‖2
Q.

Using inequality (21) again, we thus obtain

∣∣∣∣
∫
I

a#(ω8z′h − χ, e) dt

∣∣∣∣ ≤
∣∣∣∣
∫
I

a#(ω8
nz

′
h − χ, zh) + a#(ω8

nz
′
h − χ, z) dt

∣∣∣∣
≤ 1

32
‖ω4

nz
′
h‖2

Q + Cd−2
j ‖ω2

nDzh‖2
Q + Cd−1

j ‖ω6
nz

′
h‖Q‖Dz‖Q′

j

≤ 1

16
‖ω4

ne
′‖2

Q + C‖z′‖2
Q′

j
+ Cd−2

j ‖Dz‖2
Q′

j
+ Cd−2

j ‖ω2
nDe‖2

Q.

Summing J1 + J2 + J3, we have

‖ω4
ne

′‖Q +
μ

2
‖(ω4

nDe)(T )‖Ω ≤ C‖(De)(0)‖2
Ω′

j
+ Cd−2

j ‖e(0)‖2
Ω′

j
+ Cd−4

j ‖e‖2
Q′

j

+ Chd−1‖e′‖2
Qn

j
+ C‖z‖2

Q′
j ,1,1

+ Cd−2
j ‖ω2

nDe‖2
Q

+ Cd−2
j ‖
(
ω2
ne
)
(T )‖2

Ω +
1

2
‖ω4e′‖2

Q +
μ

4
‖
(
ω4
nDe
)
(T )‖2

Ω.

(27)

Finally, subtracting the terms 1
2‖ω4e′‖2

Q and μ
4 ‖ω4De(T )‖Ω on both sides and taking

square roots yields (24).
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Starting with the identity

1

2

d

dt
‖ω2e‖2

Ω + Re aω4(e, e)

= Re
(
ω4e, e′

)
Ω

+
1

2

(
(ω4)′e, e

)
Ω

+ Re
(
aω4(zh, e) − aω4(z, e) + a(ω4zh, e)

− a(ω4zh, e)
)

=
1

2

(
(ω4)′e, e

)
Ω

+ Re
(
−
(
ω4z, e′

)
Ω

+ aω4(zh, e) − aω4(z, e) − a(ω4zh, e)
)

+ Re
((
ω4zh, e

′)Ω + a(ω4zh, e)
)

and using (18) and (19), we similarly prove

‖
(
ω2e
)
(T )‖2

Ω − ‖e(0)‖2
Ω′

j
+ ‖ω2De‖2

Q + ‖e‖2
Q′

j

≤ Cε−2d−2
j ‖z‖2

Q′
j ,1,1

+ ε2d2
j‖ω4e′‖2

Q + Cd−2
j ‖e‖2

Q′
j

+Ch2‖e′‖2
Qn

j
+ Chd−1‖De‖2

Qn
j
, ε > 0.

Taking square roots and multiplying by d−1
j yields (23).

Appendix A. Truncation of singular integral operators. For 1 < p < ∞
let S ∈ L(Lp(R

N )) be an integral operator with a kernel K : R
N ×R

N → C satisfying

|K(x, y)| ≤ C

|x− y|N , x, y ∈ R
N , x �= y.(28)

Kernel estimates of this form are well known for solutions to elliptic problems. For
ε > 0 set Ωε

x := {y ∈ R
N : |x − y| < ε} and define kε : R

N × R
N → C by kε(x, y) :=

χ(Ωε
x)c(y)K(x, y) for x, y ∈ R

N . The function kε is called truncated kernel of S. Since

‖kε‖L∞(RN×RN ) ≤ C
εN

, the operator Sε associated to the kernel kε is well defined on

Lp(R
N ). In [Ste93, Chapter I.7] it is shown that the family of operators (Sε)ε>0 is

uniformly bounded in L(Lp(R
N )).

Let Q := I × Ω, where Ω ⊂ R
N and I := [0, τ ] for some τ > 0. We will adapt

this result to parabolic problems in Q. In order to do so, we adapt the kernel esti-
mate stated above to parabolic problems. More precisely, we introduce the following
definition.

Definition A.1. Let 1 < p < ∞. We say that T ∈ L(Lp(Q)) satisfies the kernel
estimate (KETr) if there exists a measurable function K : Q× Ω → C such that

(Tf)(t, x) =

∫
Q

K(t− s, x, y)f(s, y) d(s, y), (t, x) /∈ supp f, a.a. (t, x),

for f ∈ L∞(Q) and there exist constants C, c > 0 such that

|K(t, x, y)| ≤ Ct−N−2 exp

(
−c

|x− y|2
t

)
, 0 < t ≤ τ, a.a. x, y ∈ Ω.(29)

If T satisfies the kernel estimate (KETr) we set

Qε
t,x := {(s, y) ∈ Q : max{|t− s| 12 , |x− y|} ≤ ε}

and

kε(t, s, x, y) := K(t− s, x, y)χ(Qε
t,x)c(s, y), (s, x), (t, y) ∈ Q,
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where K denotes the kernel of T . Then for any ε > 0 the truncated operator Tε, given
by

(Tεf)(t, x) :=

∫
Q

kε(t, s, x, y)f(s, y) d(s, y), (t, x) ∈ Q,(30)

is well defined.
Theorem A.2. Let 1 < p < ∞. Assume that T ∈ L(Lp(Q)) satisfies the kernel

estimate (KETr). Then the family of the truncated operators
(
Tε

)
ε>0

is uniformly

bounded in L(Lp(Q)).
Proof. Denote the kernel of T by K. Extending K by 0 outside Q×Ω, we restrict

ourselves to the case Q = R+ ×R
N . Since the rational numbers are dense in R, there

exists {(ti, xi)}i∈N such that

Q =
⋃
i∈N

Q
ε/8
ti,xi

.

We choose a maximal disjoint subset {Qε/8
tij ,xij

}j∈N of {Qε/8
ti,xi

}i∈N. This implies

⋃
j∈N

Q
ε/4
tik ,xik

= Q.

For T̃ε := T − Tε we show that there exists C > 0 such that∥∥∥∥χQ
ε/4
tij

,xij

T̃εf

∥∥∥∥Lp(Q) ≤ C

∥∥∥∥χQ2ε
tij

,xij

f

∥∥∥∥Lp(Q), f ∈ Lp(Q), j ∈ N, ε > 0.(31)

Let f ∈ Lp(Q). Note that

(T̃εf)(t, x) ≡ 0 if supp f ⊂
(
Qε

t,x

)c
,(32)

(T̃εf)(t, x) = (Tf)(t, x) if supp f ⊂ Qε
t,x,(33)

for a.a. (t, x) ∈ Q. Following [Ste93, Chapter I.7], we write(
χ
Q

ε/4
tij

,xij

T̃εf

)
(t, x) =

(
χ
Q

ε/4
tij

,xij

T̃εχQ
ε/2
tij

,xij

f

)
(t, x) +

(
χ
Q

ε/4
tij

,xij

T̃εχ(Q2ε
tij

,xij
)cf

)
(t, x)

+

(
χ
Q

ε/4
tij

,xij

T̃ε

(
χQ2ε

tij
,xij

− χ
Q

ε/2
tij

,xij

)
f

)
(t, x)

=: Iεj,1(t, x)+Iεj,2(t, x) + Iεj,3(t, x), a.a. (t, x) ∈ Q, j ∈ N, ε > 0.

By (33), we obtain

‖Iεj,1‖Lp(Q) ≤
∥∥∥∥T̃ χQ

ε/2
tij

,xij

f

∥∥∥∥Lp(Q) ≤ ‖T‖L(Lp(Q))

∥∥∥∥χQ
ε/2
tij

,xij

f

∥∥∥∥Lp(Q)

≤ C

∥∥∥∥χQ2ε
tij

,xij

f

∥∥∥∥Lp(Q), f ∈ Lp(Q), j ∈ N, ε > 0.

Since suppχ(Q2ε
tij

,xij
)cf ⊂ (Q2ε

tij ,xij
)c⊂ (Qε

tij ,xij
)c, it follows by (32) that Iεj,2(t, x) =

0, (t, x) ∈ Q, j ∈ N, ε > 0.
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We use the representation (30) and the kernel estimate (KETr) to estimate
‖Iεj,3‖Lp(Q). By definition of Qε

t,x, there exists C > 0, independent of j ∈ N and
ε, such that

|K(t− s, x, y)| ≤ C
( ε

4

)−N−2

, (s, y) ∈ Q2ε
tij ,xij

\Qε/2
tij ,xij

, (t, x) ∈ Q
ε/4
tij ,xij

.

Since suppχ
Q2ε

tij
,xij

\Qε/2
tij

,xij

f ⊂ Q2ε
tij ,xij

, we obtain

‖Iεj,3‖Lp(Q) ≤
∣∣∣Qε/4

tij ,xij

∣∣∣ 1p ‖Iεj,3‖L∞(Q)

≤ C
∣∣∣Qε/4

tij ,xij

∣∣∣ 1p ∣∣∣Q2ε
tij ,xij

∣∣∣1− 1
p

ε−N−2

∥∥∥∥χQ2ε
tij

,xij

f

∥∥∥∥Lp(Q)

≤ C

∥∥∥∥χQ2ε
tij

,xij

f

∥∥∥∥Lp(Q), f ∈ Lp(Q), j ∈ N, ε > 0.

Therefore, inequality (31) is proved.

We finally obtain

‖T̃εf‖pLp(Q) ≤ C
∑
j∈N

‖T̃εf‖p
Lp(Q

ε/4
tij

,xij
)
≤ C
∑
j∈N

‖f‖p
Lp(Q2ε

tij
,xij

)
.

To conclude the proof, we will show that no (t, x) ∈ Q belongs to more than M ∈ N

of the Q2ε
tij ,xij

, where M does not depend on ε. This would imply

∑
j∈N

‖f‖p
Lp(Q2ε

tij
,xij

)
≤ M‖f‖pLp(Q).

Let (t, x) ∈ Q. Since Q2ε
tij ,xij

⊂ Q4ε
t,x for all (tij , xij ) with (t, x) ∈ Q2ε

tij ,xij
, it suffices

to estimate the maximal number of Q
ε/8
tij ,xij

in Q4ε
t,x , independent of (t, x) ∈ Q and ε.

Now, the maximal number of Q
ε/8
tij ,xij

in Q4ε
t,x is bounded by

|Q4ε
t,x |

|Qε/8
t,x |

=
(4ε)N+2

( ε
8 )N+2

= 32N+2, (t, x) ∈ Q, ε > 0,

since the Q
ε/8
tij ,xij

are mutually disjoint. The proof is complete.

Appendix B. Kernel estimates of analytic semigroups. Analytic semi-
groups satisfying a heat kernel estimate allow us to prove estimates for time deriva-
tives of their kernels as well. The proof of the following lemma uses techniques due
to E. B. Davies (see [Dav97]).

Lemma B.1. Let (T (t))t≥0 satisfy (KEMax). Then

|∂k
t ∂

α
1 ∂

β
2 K(t, x, y)| ≤ Ct−

N+2k+|α|+|β|
2 exp

(
−c

|x− y|2
t

)
, 0 < t ≤ T, x, y ∈ Ω,

whenever 0 ≤ k ≤ 1, |α| = 0, |β| ≤ 2 or 0 ≤ k ≤ 1, |α| ≤ 2, |β| = 0.
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Proof. Writing Dα
1 D

β
2T (z) = (Dα

1 D
β
2T (Re z

2 ))T (z − Re z
2 ), we obtain

‖Dα
1 D

β
2T (z)‖L(L1(Ω),L∞(Ω)) ≤ C(Re z)−

N+|α|+|β|
2 ‖T (z − Re z

2 )‖L(L1(Ω))

≤ C(Re z)−
N+|α|+|β|

2

for z ∈ Σθ,2T := {z ∈ C : | arg z| < θ, |z| < 2T} and some θ ∈ (0, π
2 ). Thus Dα

1 D
β
2T (z)

is an integral operator for z ∈ Σθ,2T . Since Dα
1 D

β
2T : Σθ,2T → L(L2(Ω)) is analytic,

by [AB94, Theorem 3.1], there exists Kα,β(·, x, y) : Σθ,2T → C, analytic for x, y ∈ Ω,

such that Kα,β(z, ·, ·) is the kernel of Dα
1 D

β
2T (z). Moreover, by [DR96, Proposition

3.3], which is a variant of [Dav97, Theorem 4], we obtain

|Kα,β(z, x, y)| ≤ C(Re z)−
N+|α|+|β|

2 exp

(
−c

|x− y|2
|z|

)
, z ∈ Σθ,T , x, y ∈ Ω.(34)

Choosing r = min{ 1
2 , tan θ}, by Cauchy’s theorem, we have

∂tK
α,β(t, x, y) =

1

2πi

∫
B(t,rt)

Kα,β(z, x, y)

(z − t)2
dz, 0 < t < T,

which implies (see [Dav97, Theorem 3])

∂tK
α,β(t, x, y)| ≤ Ct−

N+|α|+|β|+2
2 exp

(
−c

|x− y|2
t

)
, z ∈ Σθ,T , x, y ∈ Ω.

Since ∂tK
α,β(t, ·, ·) is the kernel of d

dtT (t), the proof is complete.

Acknowledgments. The author would like to thank Matthias Hieber for many
discussions and suggestions to improve this paper. Very special thanks go to Stig
Larsson for the idea for the present paper which was born during a research visit in
Gothenburg.

REFERENCES

[AB94] W. Arendt and A. V. Bukhvalov, Integral representations of resolvents and semi-
groups, Forum Math., 6 (1994), pp. 111–135.

[Ama95] H. Amann, Linear and Quasilinear Parabolic Problems, Vol. I, Birkhäuser Boston,
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OPTIMIZED SCHWARZ METHODS∗

MARTIN J. GANDER†

Abstract. Optimized Schwarz methods are a new class of Schwarz methods with greatly en-
hanced convergence properties. They converge uniformly faster than classical Schwarz methods
and their convergence rates dare asymptotically much better than the convergence rates of classical
Schwarz methods if the overlap is of the order of the mesh parameter, which is often the case in
practical applications. They achieve this performance by using new transmission conditions between
subdomains which greatly enhance the information exchange between subdomains and are motivated
by the physics of the underlying problem. We analyze in this paper these new methods for symmetric
positive definite problems and show their relation to other modern domain decomposition methods
like the new Finite Element Tearing and Interconnect (FETI) variants.

Key words. optimized Schwarz methods, optimized transmission conditions, domain decompo-
sition, parallel preconditioning

AMS subject classifications. 65N55, 65F10, 65N22.
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1. Introduction. The convergence properties of the classical Schwarz methods
are well understood for a wide variety of problems; see, for example, the books [37], [35]
or the survey articles [4], [40], [41] and references therein. Over the last decade, peo-
ple have looked at different transmission conditions for the classical Schwarz method.
There were three main motivations: the first motivation for different transmission
conditions came from the nonoverlapping variant of the Schwarz method proposed by
Lions, since without overlap the classical Schwarz method does not converge. Lions
proposed to use Robin conditions to obtain a convergent algorithm in [31]. At the
end in his paper, we find the following remark: “First of all, it is possible to replace
the constants in the Robin conditions by two proportional functions on the interface,
or even by local or nonlocal operators.” Lions then gives a simple example in one
dimension and shows that the optimal choice for the parameters in the Robin trans-
mission conditions of the algorithm are constants in that case. In higher dimensions,
however, the optimal choice involves a nonlocal transmission operator, as was shown
for a two-dimensional convection diffusion problem by Charton, Nataf, and Rogier in
[5], where a parabolic factorization of the operator was used to derive the optimal
transmission conditions. Since nonlocal operators are not convenient to implement
and costly (“ils se prêtent peu au calcul numérique” [5]), the authors propose for
the convection dominated convection-diffusion problem to expand the symbols of the
nonlocal operators in the small viscosity parameter to obtain local approximations. A
different approximation using a Taylor expansion in the frequency parameter to obtain
local transmission conditions for the convection diffusion equation is proposed in [33];
see also [34] and [32]. For symmetric coercive problems, a formulation of the nonover-
lapping Schwarz method with Robin transmission conditions which avoids the explicit
use of normal derivatives was introduced independently in [7], and convergence of the
resulting algorithm was proved using energy estimates. A first optimization of the
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transmission conditions for the performance of the algorithm was done by Japhet in
[26] for convection diffusion problems, where one coefficient in a second order trans-
mission condition was optimized, which led to the first optimized Schwarz method in
this context. This approach was further developped and refined in [29], [27], and [28]
for convection diffusion problems.

The second motivation for changing the transmission conditions came from acous-
tics. For problems of Helmholtz type, the classical Schwarz algorithm is not conver-
gent, even with overlap. Després therefore proposed in [8] to use radiation conditions
instead for the Helmholtz equation and proved convergence of a nonoverlapping vari-
ant of the Schwarz algorithm with these transmission conditions using energy esti-
mates; see also [9]. The radiation conditions used were again Robin conditions, and
the same conditions were also used in an overlapping context in [3]. Higher order
local transmission conditions for the Helmholtz equation were introduced in [6] and
a first attempt was made to optimize the free parameter in the transmission condi-
tions for the performance of the algorithm, leading to the first optimized Schwarz
method without overlap for the Helmholtz equation. The optimization problem for
the Robin transmission conditions was then completely solved for this case in [22]
and a simple strategy to optimize the second order transmission conditions was also
presented. For a complete optimization of the second order transmission conditions
for Helmholtz problems, see [14] for the case without overlap and [21] for the case
with overlap.

The third motivation was that the convergence rate of the classical Schwarz
method is rather slow and very much dependent on the size of the overlap. In a
short note on nonlinear problems [24], Hagstrom, Tewarson, and Jazcilevich intro-
duced Robin transmission conditions between subdomains and suggested, “Indeed, we
advocate the use of nonlocal conditions.” Later and independently, Tang introduced
in [39] the generalized Schwarz alternating method, which uses a weighted average of
Dirichlet and Neumann conditions at the interfaces, which is equivalent to a Robin
condition. Numerically, optimal values for the weighting parameter were determined,
and it was shown that a good choice of the parameter leads to a significant speedup
of the algorithm. The main difficulty remaining in this approach is the determina-
tion of these parameters on the interfaces, like for successive overrelaxation (SOR)
methods. Even stronger coupling was proposed in [38], where the authors introduced
the overdetermined Schwarz algorithm, which enforces the coupling not only on the
interfaces but also in the overlap itself, in so-called artificial boundary layers, and the
relaxation parameter is now a function depending on space, as proposed earlier by
Lions [31]. But the link with absorbing boundary conditions was only made later in
[10], where an overlapping version of the Schwarz algorithm for Laplace’s equation was
analyzed with Robin and second order transmission conditions and a first attempt was
made to determine asymptotically optimal parameters. In the waveform relaxation
community, a link made with Schwarz methods in [23] opened up the way for better
transmission conditions in the Schwarz waveform relaxation algorithms; see [19]. This
led to optimized Schwarz algorithms for evolution problems, where one can clearly see
that the optimal transmission conditions are absorbing boundary conditions. For the
case of the wave equation with discontinuous coefficients, a nonoverlapping optimized
Schwarz method is introduced and analyzed in detail at both the continuous and the
discrete level in [20]. For the heat equation, see [17].

Optimized Schwarz methods have several key features:
1. They converge necessarily faster than classical Schwarz methods, at the same

cost per iteration.
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2. There are simple optimization procedures to determine the best parameters
to be used in the transmission conditions, sometimes even closed formulas,
depending on the problem solved.

3. Classical Schwarz implementations need only a small change in the implemen-
tation, in the information exchange routine, to benefit from the additional
performance.

4. Optimized Schwarz methods can be used with or without overlap.
We present here a complete analysis of optimized Schwarz methods for a symmetric
positive definite model problem and analyze in detail the optimization problems and
the asymptotic performance of different approximations to the optimal transmission
conditions. We restrict our analysis to the simple case of two subdomains, because
optimized Schwarz method are greatly enhancing the local coupling between subdo-
mains. Once optimized coupling conditions are found, they can be used in the general
context of many subdomains, as we show with numerical examples at the end (see also
[22]). As for classical Schwarz methods, a coarse grid is necessary as soon as many
subdomains are used, if a convergence rate independent of the number of subdomains
is desired, but we do not consider this issue here.

2. The classical Schwarz algorithm for a model problem. We use through-
out the paper the model problem

L(u) = (η − Δ)(u) = f on Ω = R
2, η > 0,(2.1)

where we require the solution to decay at infinity. To introduce the ideas behind
optimized Schwarz methods, we start by analyzing a parallel variant of the classical
alternating Schwarz method introduced by Lions [30], applied to the model problem
(2.1). We decompose the domain Ω into the two overlapping subdomains

Ω1 = (−∞, L) × R, Ω2 = (0,∞) × R.(2.2)

The Jacobi–Schwarz method for the two subdomains and the model problem is then
given by

(η − Δ)un
1 = f in Ω1, (η − Δ)un

2 = f in Ω2,
un

1 (L, y) = un−1
2 (L, y), y ∈ R, un

2 (0, y) = un−1
1 (0, y), y ∈ R,

(2.3)

and we require the iterates to decay at infinity. By linearity it suffices to consider
only the case f = 0 and analyze convergence to the zero solution. Our analysis is
based on the Fourier transform,

f̂(k) = F(f) :=

∫ ∞

−∞
e−ikxf(x)dx, f(x) = F−1(f̂) :=

1

2π

∫ ∞

−∞
eikxf̂(k)dk, k ∈ R.

(2.4)
Taking a Fourier transform of the Schwarz algorithm (2.3) in the y direction, and using
the property of the Fourier transform that derivatives in y become multiplications by
ik, we obtain

(η + k2 − ∂xx)ûn
1 = 0, x < L, k ∈ R, (η + k2 − ∂xx)ûn

2 = 0, x > 0, k ∈ R,
ûn

1 (L, k) = ûn−1
2 (L, k), k ∈ R, ûn

2 (0, k) = ûn−1
1 (0, k), k ∈ R.

(2.5)
Hence subdomain solutions in the Fourier transformed domain are of the form

ûn
j (x, k) = Aj(k)eλ1(k)x + Bj(k)eλ2(k)x, j = 1, 2,(2.6)
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where the λj(k), j = 1, 2 satisfy the characteristic equation η−λ2
j +k2 = 0 and hence

λ1(k) =
√
k2 + η and λ2(k) = −

√
k2 + η. By the condition on the iterates at infinity,

we obtain for the subdomain solutions

ûn
1 (x, k) = ûn−1

2 (L, k)e
√

k2+η (x−L), ûn
2 (x, k) = ûn−1

1 (0, k)e−
√

k2+η x.

Inserting these solutions into algorithm (2.5), we obtain by induction

û2n
1 (0, k) = ρnclaû

0
1(0, k), û2n

2 (L, k) = ρnclaû
0
2(L, k),(2.7)

where the convergence factor ρcla(k, η, L) of the classical Schwarz algorithm is given
by

ρcla = ρcla(k, L, η) := e−2
√

k2+ηL < 1 ∀k ∈ R.(2.8)

Note that we have chosen here to define the convergence factor over two iterations,
which would correspond to one iteration of the Gauss–Seidel–Schwarz method in this
two-subdomain case. From (2.8), we see that the iterates converge to zero on the line
x = 0 and x = L. Since with zero boundary conditions the solution vanishes identi-
cally, we have shown that the classical Schwarz method converges for all frequencies,
provided η > 0. The convergence factor depends on the problem parameter η, the size
of the overlap L, and the frequency parameter k: the top curve in Figure 4.1 shows
the dependence of ρcla on k for an overlap L = 1

100 and η = 1. One can see that the
Schwarz algorithm is a smoother; it damps high frequencies effectively, whereas for
low frequencies the convergence factor is close to one and hence the algorithm is very
slow.

3. The optimal Schwarz algorithm. We now introduce the key modification
in the classical Schwarz method: new transmission conditions between the subdo-
mains. The new algorithm is given by

(η − Δ)un
1 = f in Ω1, (η − Δ)un

2 = f in Ω2,
(∂x + S1)(u

n
1 )(L, ·) = (∂x + S1)(u

n−1
2 )(L, ·), (∂x + S2)(u

n
2 )(0, ·) = (∂x + S2)(u

n−1
1 )(0, ·),

(3.1)
where Sj , j = 1, 2, are linear operators along the interface in the y direction which
we will determine in what follows to get the best possible performance of the new
Schwarz algorithm. As for the classical Schwarz method, taking a Fourier transform
in the y direction for f = 0, we obtain

ηûn
1 − ∂xxû

n
1 + k2ûn

1 = 0, x < L, k ∈ R,
(∂x + σ1(k))(ûn

1 )(L, k) = (∂x + σ1(k))(ûn−1
2 )(L, k), k ∈ R,

(3.2)

where σ1(k) denotes the symbol of the operator S1, and

ηûn
2 − ∂xxû

n
2 + k2ûn

2 = 0, x > 0, k ∈ R,
(∂x + σ2(k))(ûn

2 )(0, k) = (∂x + σ2(k))(ûn−1
1 )(0, k), k ∈ R,

(3.3)

where σ2(k) is the symbol of S2. The solutions on the subdomains are again of
the form (2.6), and using the condition on the iterates at infinity, the transmission
conditions, and the fact that

∂ûn
1

∂x
=

√
k2 + η ûn

1 ,
∂ûn

2

∂x
= −

√
k2 + η ûn

2 ,



OPTIMIZED SCHWARZ METHODS 703

we find the subdomain solution in Fourier space to be

ûn
1 (x, k) =

σ1(k) −
√
k2 + η

σ1(k) +
√
k2 + η

e
√

k2+η(x−L)ûn−1
2 (L, k),

ûn
2 (x, k) =

σ2(k) +
√
k2 + η

σ2(k) −
√
k2 + η

e−
√

k2+η xûn−1
1 (0, k).

Inserting these solutions into algorithm (3.1), we obtain by induction

û2n
1 (0, k) = ρnoptû

0
1(0, k), û2n

2 (L, k) = ρnoptû
0
2(L, k),(3.4)

where the new convergence factor ρopt is given by

ρopt = ρopt(k, L, η, σ1, σ2) :=
σ1(k) −

√
k2 + η

σ1(k) +
√
k2 + η

· σ2(k) +
√
k2 + η

σ2(k) −
√
k2 + η

e−2
√

k2+ηL.(3.5)

The only difference between the new convergence factor ρopt and the one of the classi-
cal Schwarz method, ρcla given in (2.8), is the factor in front of the exponential. But
this factor has a tremendous influence on the performance of the method: choosing
for the symbols

σ1(k) :=
√
k2 + η, σ2(k) := −

√
k2 + η,(3.6)

the new convergence factor vanishes identically, ρopt ≡ 0, and the algorithm converges
in two iterations, independently of the initial guess, the overlap L, and the problem
parameter η. This is an optimal result, since the solution in one subdomain depends
on the forcing function f in the other subdomain and hence a first solve is necessary
to incorporate the influence of f into the subdomain solution, then one information
exchange is performed to give this information to the neighboring subdomain and a
second solve on the subdomains incorporates this information into the new subdomain
solution. Convergence in less than two steps is not possible. One can also see from
(3.6) that the optimal choice depends on the problem. The optimal convergence result
for two subdomains in two iterations can be generalized to J > 2 subdomains and
convergence in J iterations (see, for example, [33] or [16]), provided the subdomains
are arranged in a sequence. In addition, with this choice of σj , the exponential
factor in the convergence factor becomes irrelevant and we can have Schwarz methods
without overlap.

To use the optimal choice of σj in practice, we need to back-transform the trans-
mission conditions involving σ1 and σ2 from the Fourier domain into the physical
domain to obtain the transmission operators S1 and S2. Hence we need

S1(u
n
1 ) = F−1

k (σ1û
n
1 ), S2(u

n
2 ) = F−1

k (σ2û
n
2 ),(3.7)

and thus for the optimal choice of σj we have to evaluate a convolution in each
step of the algorithm, because the σj contain a square root and thus the optimal
Sj are nonlocal operators, as advocated in [24]. If the symbols σj were, however,
polynomials in ik, then the operators Sj would consist of derivatives in y and thus be
local operators. We will therefore approximate the optimal choice of σj by polynomials
in the following sections, which leads to the new class of optimized Schwarz methods.



704 MARTIN J. GANDER

4. Optimized Schwarz algorithms. We approximate the symbols of the op-
timal transmission conditions found in (3.6) by polynomial symbols in ik which cor-
responds to local approximations. We choose polynomials of degree two here,

σapp
1 (k) = p1 + q1k

2, σapp
2 (k) = −p2 − q2k

2.(4.1)

Note that we do not consider a first order term, because the operator of the underlying
problem is self-adjoint. Higher order approximations would be possible as well, as
long as the subdomain problems remain well posed. With the approximation (4.1),
the convergence factor of the optimized Schwarz algorithm becomes

ρ = ρ(k, L, η, p1, p2, q1, q2) =

√
k2 + η − p1 − q1k

2√
k2 + η + p1 + q1k2

·
√
k2 + η − p2 − q2k

2√
k2 + η + p2 + q2k2

e−2
√

k2+ηL.

(4.2)
Theorem 4.1. The optimized Schwarz method (3.1) with transmission conditions

defined by the symbols (4.1) converges for pj > 0, qj ≥ 0, j = 1, 2, faster than the
classical Schwarz method (2.3), |ρopt(k)| < |ρcla(k)| for all k.

Proof. The only difference between ρcla in (2.8) and ρopt in (4.2) is the additional
factor in front of the exponential, which satisfies for pj > 0 and qj ≥ 0∣∣∣∣∣

√
k2 + η − p1 − q1k

2√
k2 + η + p1 + q1k2

·
√
k2 + η − p2 − q2k

2√
k2 + η + p2 + q2k2

∣∣∣∣∣ < 1 ∀k,

and hence |ρ(k)| < |ρcla(k)| for all k.
The goal of optimized Schwarz methods is now to choose the free parameters

pj , qj ≥ 0 for j = 1, 2 to further improve the performance of the method.

4.1. Low-frequency approximations. As we have seen, the classical Schwarz
method is effective, due to the overlap, for high frequencies but ineffective for low
frequencies. The low frequencies can, however, be treated in the new Schwarz algo-
rithm with the transmission conditions: expanding the symbols σj(k) of the optimal
operators Sj in a Taylor series, we find

σ1(k) =
√
η +

1

2
√
η
k2 + O(k4), σ2(k) = −√

η − 1

2
√
η
k2 + O(k4),(4.3)

and hence a second order Taylor approximation would lead to the values p1 = p2 =√
η, q1 = q2 = 1

2
√
η , whereas a zeroth order approximation could be obtained by

setting q1 = q2 = 0 for the same values of pj . The corresponding optimized Schwarz
methods have the convergence factors

ρT0(k, L, η) =

(√
k2 + η −√

η√
k2 + η +

√
η

)2

e−2
√

k2+ηL,

ρT2(k, L, η) =

⎛
⎝√

k2 + η −√
η − 1

2
√
ηk

2√
k2 + η +

√
η + 1

2
√
ηk

2

⎞
⎠2

e−2
√

k2+ηL,

(4.4)

where we used the index T0 to denote a Taylor approximation of order zero and T2 to
denote a Taylor approximation of order two of the optimal symbol in the transmission
condition. Figure 4.1 shows on the left the convergence factors obtained with this
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Fig. 4.1. Convergence factor ρcla of the classical Schwarz method (top curve) as a function of k,
compared on the left to ρT0 (middle curve) and ρT2 (bottom curve) of the optimized Schwarz methods
with zeroth and second order transmission conditions, respectively, obtained by Taylor expansion,
and on the right compared to the OO0 and OO2 Schwarz methods, and the optimized Schwarz method
with two-sided optimized Robin transmission conditions, which lies in between OO0 and OO2.

choice of transmission conditions for the model problem with two subdomains, overlap
L = 1

100 and problem parameter η = 1, together with the classical convergence factor
ρcla. First one can clearly see that the optimized Schwarz methods are uniformly
better than the classical Schwarz method; in particular the low-frequency behavior
is greatly improved. The maximum of the convergence factor of classical Schwarz
is about 0.980, whereas the maximum of the convergence factor with zeroth order
Taylor condition is 0.568 and the maximum with second order Taylor condition is
0.449 in this example. Hence the classical Schwarz method needs about 28 iterations
to obtain the contraction factor of one iteration of the optimized Schwarz method
with zeroth order Taylor conditions, and about 40 iterations are needed to obtain
the contraction of one iteration of the optimized Schwarz method with second order
transmission conditions from Taylor expansion.

As we mentioned earlier, the classical Schwarz method does not converge without
overlap: for L = 0 we obtain ρcla(k, 0, η) = 1 and hence convergence is lost for all
modes. Optimized Schwarz methods, however, can be used without overlap, and
nonoverlapping Schwarz methods can be of great interest, if the physical properties
in the subdomains differ, for example, when there are jumps in the coefficients of the
equation as in [20] or the nature of the equations changes, like in the case of coupling
of hyperbolic and parabolic problems; see, for example, [18] and references therein.
If we set L = 0 in the convergence factor (4.4) of the optimized Schwarz method, the
exponential term becomes one, but the factor in front remains unchanged, and thus
ρT0(k, 0, η) < 1 and ρT2(k, 0, η) < 1 for all k. In a numerical implementation there is
a maximum frequency which can be represented on a grid with grid spacing h. An
estimate for this maximum frequency is kmax = π

h . Hence the slowest convergence for
the optimized Schwarz method without overlap and Taylor transmission conditions
is obtained for the highest frequency: the method is a rougher as opposed to the
smoother the classical Schwarz method is.

In practice, even when using the Schwarz method with overlap, the overlap is
often only a few grid cells wide, and thus L = O(h). In that case the convergence
factor of the classical Schwarz method deteriorates as well as one refines the mesh and
h goes to zero and we have the following comparison theorem.

Theorem 4.2. The optimized Schwarz methods with Taylor transmission con-
ditions and overlap L = h have an asymptotically superior performance than the
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classical Schwarz method with the same overlap. As h goes to zero, we have

max
|k|≤π

h

|ρcla(k, h, η)| = 1 − 2
√
ηh + O(h2),(4.5)

max
|k|≤π

h

|ρT0(k, h, η)| = 1 − 4
√

2η
1
4

√
h + O(h),(4.6)

max
|k|≤π

h

|ρT2(k, h, η)| = 1 − 8η
1
4

√
h + O(h).(4.7)

Without overlap, the optimized Schwarz methods with Taylor transmission conditions
are asymptotically comparable to the classical Schwarz method with overlap L = h.
As h goes to zero, we have

max
|k|≤π

h

|ρT0(k, 0, η)| = 1 − 4

√
η

π
h + O(h2),(4.8)

max
|k|≤π

h

|ρT2(k, 0, η)| = 1 − 8

√
η

π
h + O(h2).(4.9)

Proof. For the second result it suffices to expand the convergence factors (4.4)
for L = 0 at k = kmax = π

h for h small. Similarly for the classical Schwarz method
one expands the convergence factor (2.8) with L = h for h small at k = 0. For the
optimized Schwarz methods with Taylor transmission conditions and overlap L = h,
the convergence factors (4.4) attain their maximum in the interior, at

k̄T0 =

√
2η

1
4

√
L

and k̄T2 =
2η

1
4

√
L
,

respectively, as a direct computation shows. Hence with overlap L = h, these max-
ima are in the range of the computational frequencies, since they are smaller than
kmax = π

h and thus relevant for the convergence factor. Expanding the corresponding
convergence factor at these maxima for L = h as h goes to zero leads to the results
(4.8) and (4.9).

Hence already for Taylor expansions of the optimal symbols in the transmission
conditions the asymptotic performance of the new Schwarz method is better than the
one of the classical Schwarz method when the overlap is of the order of the mesh
parameter, which is often the case in applications. One can, however, also see that
increasing the order of the Taylor approximation does not increase the asymptotic
performance further—there is only an initial gain from h to

√
h. This changes with

the approach described in the next subsection.

4.2. Uniformly optimized approximations. We now develop an even better
choice for the transmission conditions: one can choose the parameters pj and qj to
optimize the performance of the new Schwarz method, which means minimizing the
convergence factor over all frequencies relevant to the problem. For the zeroth order
transmission condition we have the min-max problem

min
pj≥0

(
max

kmin≤k≤kmax

∣∣∣∣∣
√
η + k2 − p1√
η + k2 + p1

∣∣∣∣∣
∣∣∣∣∣
√
η + k2 − p2√
η + k2 + p2

∣∣∣∣∣ e−2
√

η+k2L

)
,(4.10)

and for the second order optimized Schwarz method the min-max problem is

min
pj ,qj≥0

(
max

kmin≤k≤kmax

∣∣∣∣∣
√
η + k2 − p1 − q1k

2√
η + k2 + p1 + q1k2

∣∣∣∣∣
∣∣∣∣∣
√
η + k2 − p2 − q2k

2√
η + k2 + p2 + q2k2

∣∣∣∣∣ e−2
√

η+k2L

)
,

(4.11)
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where we have also introduced a lower bound kmin on the frequency range. This is
useful for bounded subdomains: if, for example, the subdomains Ωj were strips of
width 1 in the y direction with homogeneous Dirichlet boundary conditions, then the
lowest possible frequency on those domains would be kmin = π, as one can see from a
sine expansion. More general, if one uses a coarse grid, which is necessary as soon as
one has many subdomains for good performance on elliptic problems, then the highest
frequency representable on the coarse grid would be an estimate for kmin, since the
subdomain iteration does not need to be effective on the coarse grid frequencies.

Since the optimal transmission conditions (3.6) are of the same size with opposite
signs, we first analyze the simpler optimization problems when the approximation of
the optimal transmission conditions is also of the same size with opposite signs, which
means p1 = p2 = p and q1 = q2 = q. In subsection 4.3 we will analyze how much is
lost in performance due to this simplifying assumption.

4.2.1. Zeroth order optimized transmission conditions. Using the same
zeroth order transmission condition on both sides of the interface, p1 = p2 = p and
q1 = q2 = 0, the expression (4.2) of the convergence factor simplifies to

ρOO0(k, L, η, p) :=

(√
k2 + η − p√
k2 + η + p

)2

e−2
√

k2+ηL.(4.12)

To determine the optimal parameter p of the associated optimized Schwarz method
(which we call OO0 for “Optimized of Order 0”), we have to solve the min-max
problem

min
p≥0

(
max

kmin≤k≤kmax

|ρOO0(k, L, η, p)|
)

= min
p≥0

⎛
⎝ max
kmin≤k≤kmax

(√
η + k2 − p√
η + k2 + p

)2

e−2
√

η+k2L

⎞
⎠.

(4.13)

The following Lemma will be needed for several of the results on the min-max problems
that arise in the optimization of the new Schwarz methods.

Lemma 4.3. Let f(x, γ) be a continuously differentiable function, f : [a, b] ×
[c, d] �→ R, with a unique interior maximum in x at x∗(γ) ∈ (a, b) for each γ ∈ [c, d],
∂f
∂x (x∗(γ), γ) = 0, and assume that x∗(γ) is differentiable and ∂f

∂γ < 0 for x ∈ [a, b],

γ ∈ [c, d]. Then

df

dγ
(x∗(γ), γ) < 0 ∀γ ∈ [c, d].

Proof. Since ∂f
∂x (x∗(γ), γ) = 0 for all γ ∈ [c, d], we have

df

dγ
(x∗(γ), γ) =

∂f

∂γ
(x∗(γ), γ) +

∂f

∂x
(x∗(γ), γ)

∂x∗

∂γ
(γ) =

∂f

∂γ
(x∗(γ), γ) < 0

by assumption on the partial derivative with respect to γ.
Theorem 4.4 (optimal Robin parameter). For L > 0 and kmax = ∞, the

solution p∗ of the min-max problem (4.13) is given by the unique root of the equation

ρOO0(kmin, L, η, p
∗) = ρOO0(k̄(p∗), L, η, p∗), k̄(L, η, p) =

√
L(2p + L(p2 − η))

L
.

(4.14)
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For L = 0 and kmax finite, the optimal parameter p∗ is given by

p∗ = ((k2
min + η)(k2

max + η))
1
4 .(4.15)

Proof. The key idea is to use a transformation: the partial derivative of ρOO0

with respect to p is

∂ρOO0

∂p
= 4

(p−
√
k2 + η)

√
k2 + ηe−2

√
k2+ηL

(
√
k2 + η + p)3

,

which shows that as long as p <
√
k2
min + η, increasing p decreases ρOO0 for all

k ∈ [kmin,∞). Hence one can restrict the range for p in the min-max problem to
p ≥

√
k2
min + η, the solution cannot lie outside this range. This implies that for the

new range of p, ρOO0 has a unique zero in [kmin,∞), namely, at k = k1 =
√
p2 − η. We

can thus transform the min-max problem into a new, equivalent one in the parameter
k1. Defining the function

R(k, L, η, k1) :=
(
√
k2 + η −

√
k2
1 + η)√

k2 + η +
√

k2
1 + η

e−
√

k2+ηL,(4.16)

which is negative for k ∈ [kmin, k1) and positive for k > k1, the new min-max problem
which is equivalent to (4.13) is

min
k1≥kmin

(
max

kmin≤k≤kmax

|R(k, L, η, k1)|
)
.

Now in the case of overlap, L > 0, the derivative with respect to k,

∂R

∂k
=

ke−
√

k2+ηL(2
√
k2
1 + η − Lk2 + Lk2

1)

(
√
k2 + η +

√
k2
1 + η)2

√
k2 + η

shows that the function has a maximum at

k̄ = k̄(k1) =

√
2
√
k2
1 + η

L
+ k2

1 > k1.

Hence the maximum in the min-max problem can be attained either at k = kmin or
at k = k̄. Since

∂R

∂k1
= −2

k1e
−
√

k2+ηL
√
k2 + η

(
√
k2 + η +

√
k2
1 + η)2

√
k2
1 + η

< 0,(4.17)

the function R decreases monotonically with k1. For k1 = kmin we have 0 = |R(kmin,
L, η, kmin)| < R(k̄, L, η, kmin) and for k1 large, we have |R(kmin, L, η, k1)| > R(k̄, L, η,
k1), since in the limit as k1 goes to infinity, R(k̄(k1), L, η, k1) goes to zero. By conti-
nuity there exists at least one k∗1 such that −R(kmin, L, η, k

∗
1) = R(k̄, L, η, k∗1). Using

now that R decreases monotonically in k1, we have that |R(kmin, L, η, k1)| increases
monotonically with k1 and by Lemma 4.3 that R(k̄(k1), L, η, k1) decreases monoton-
ically with k1. Hence k∗1 is unique and therefore the unique solution of the min-max
problem. Back-transforming to the p variable gives the first result of the theorem.
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In the case without overlap, L = 0, the function R has no interior maximum, hence
the maximum can be attained only on the boundary at either k = kmin or at k = kmax.
Since the sign of the derivative (4.17) remains the same for L = 0, the function R
decreases monotonically with k1. For k1 = kmin we have 0 = |R(kmin, 0, η, kmin)| <
R(kmax, 0, η, kmin) and for k1 = kmax, we have |R(kmin, L, η, kmax)| > R(kmax, L, η,
kmax) = 0. By continuity there exists at least one k∗1 such that

−R(kmin, 0, η, k
∗
1) = R(kmax, 0, η, k

∗
1)(4.18)

and since R decreases monotonically in k1, we have that |R(kmin, L, η, k1)| increases
monotonically with k1 and R(kmax, L, η, k1) decreases monotonically with k1. Hence
k∗1 is unique and thus the unique solution of the min-max problem. Solving (4.18)
and back-transforming the result to the p variable leads then to the second result of
the theorem.

Figure 4.1 shows on the right the convergence factors obtained with the optimized
Robin transmission condition for the model problem with overlap L = 1

100 and η = 1,
comparing the classical Schwarz method and the OO0 Schwarz method. The max-
imum of the convergence factor of the OO0 Schwarz method is 0.332, which means
that about 55 iterations of the classical Schwarz method with convergence factor 0.980
are needed to attain the performance of the OO0 Schwarz method.

Theorem 4.5 (Robin asymptotics). The asymptotic performance of the new
Schwarz method with optimized Robin transmission conditions and overlap L = h, as
h goes to zero, is given by

max
kmin≤|k|≤π

h

|ρOO0(k, h, η, p
∗)| = 1 − 4 · 2 1

6 (k2
min + η)

1
6h

1
3 + O(h

2
3 ).(4.19)

The asymptotic performance without overlap, L = 0, is given by

max
kmin≤|k|≤π

h

|ρOO0(k, 0, η, p
∗)| = 1 − 4

(k2
min + η)

1
4

√
π

√
h + O(h).(4.20)

Proof. For the first result, we need to find an asymptotic expansion for the optimal
parameter p∗ for small h from (4.14). We make the ansatz p∗ = Chα for α < 0, since
we know from Theorem 4.4 that the optimal parameter is growing when h diminishes.
Inserting this ansatz into (4.14) satisfied by p∗ and expanding for small h, we find

the leading order terms in the equation to be 4C
√
k2
min + ηhα−4

√
2C

5
2h

5
2α+ 1

2 . Since
(4.14) holds for all h, this expression must vanish and hence both the exponents and
the coefficients must match, which leads to

α = −1

3
, C =

(4(k2
min + η))

1
3

2

and hence the optimal parameter p∗ behaves asymptotically like

p∗ =
(4(k2

min + η))
1
3

2
h− 1

3 .(4.21)

With this asymptotic behavior of p∗, the interior maximum k̄ behaves asymptotically
like

k̄ = (4(k2
min + η2)

1
6h− 2

3 ,(4.22)
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which is less than kmax = π
h for h small and hence the optimal result given for kmax =

∞ in (4.14) is indeed asymptotically the relevant one on the bounded frequency range
|k| ≤ kmax = π

h for L = O(h). Now inserting the asymptotic value of the optimal
parameter p∗ from (4.21) into the convergence factor (4.12) and expanding at k = kmin

leads to (4.19).
For the second result where L = 0, the optimal parameter p∗ is known in closed

form from (4.15) and hence it suffices to insert this p∗ into the convergence factor
(4.12), to set kmax = π

h , and to expand the result at k = kmin in a series for small h
to find (4.20).

4.2.2. Second order optimized transmission conditions. Using the same
second order transmission condition on both sides of the interface, p1 = p2 = p and
q1 = q2 = q, the expression (4.2) of the convergence factor simplifies to

ρOO2(k, L, η, p, q) :=

(√
k2 + η − p− qk2√
k2 + η + p + qk2

)2

e−2
√

k2+ηL.(4.23)

To determine the optimal parameters p and q for the associated Schwarz method
(which we call OO2 for “Optimized of Order 2,” a term introduced in [25]), we have
to solve the min-max problem

min
p,q≥0

(
max

kmin≤k≤kmax

|ρOO2(k, L, η, p, q)|
)

= min
p,q≥0

⎛
⎝ max

kmin≤k≤kmax

(√
η + k2 − p− qk2√
η + k2 + p + qk2

)2

e−2
√

η+k2L

⎞
⎠ .

(4.24)

We need a second technical lemma for the analysis of the optimal parameters.
Lemma 4.6. Let R1(k1, k2) and R2(k1, k2) be two continuously differentiable

functions, Rj : R
+ × R

+ → R, j = 1, 2, such that the partial derivatives satisfy

∂R1

∂k1
< 0,

∂R1

∂k2
< 0,

∂R2

∂k1
< 0,

∂R2

∂k2
> 0(4.25)

and assume that there exists a unique differentiable k∗1(k2) such that

R1(k
∗
1(k2), k2) + R2(k

∗
1(k2), k2) = 0.(4.26)

Then we must have

dR2

dk2
(k∗1(k2), k2) > 0.(4.27)

Proof. Using implicit differentiation of (4.26), we find

dk∗1
dk2

(k2) = −
∂R1

∂k2
(k∗1(k2), k2) + ∂R2

∂k2
(k∗1(k2), k2)

∂R1

∂k1
(k∗1(k2), k2) + ∂R2

∂k1
(k∗1(k2), k2)

and inserting this result into the total derivative, we obtain

dR2

dk2
(k∗1(k2), k2) =

∂R2

∂k1
(k∗1(k2), k2)

dk∗1
dk2

(k2) +
∂R2

∂k2
(k∗1(k2), k2)

=
−∂R2

∂k1
(k∗1(k2), k2)

∂R1

∂k2
(k∗1(k2), k2) + ∂R2

∂k1
(k∗1(k2), k2)

∂R1

∂k1
(k∗1(k2), k2)

∂R1

∂k1
(k∗1(k2), k2) + ∂R2

∂k1
(k∗1(k2), k2)

> 0

using the assumption on the signs of the partial derivatives.



OPTIMIZED SCHWARZ METHODS 711

Theorem 4.7 (optimal second order parameters). For L > 0 and kmax = ∞,
the solution p∗, q∗ of the min-max problem (4.24) is given by the unique root of the
system of equations

ρOO2(kmin, L, η, p
∗, q∗) = ρOO2(k̄1, L, η, p

∗, q∗) = ρOO2(k̄2, L, η, p
∗, q∗),(4.28)

where the locations of the maxima k̄1 and k̄2 are given by

k̄1,2(L, η, p, q)

=
1

q

√
L + 2q − 2Lpq ∓

√
L2 + 4Lq − 4L2pq + 4q2 − 16Lpq2 + 16Lq3η + 4L2q2η

2L
.

(4.29)
For L = 0 and kmax finite, the optimal parameters p∗ and q∗ are given by

p∗ =
k2
max

√
k2
min

+η−k2
min

√
k2
max+η

√
2(k2

max−k2
min

)
((√

k2
max+η−

√
k2
min

+η
)(

(k2
max+η)

√
k2
min

+η−(k2
min

+η)
√

k2
max+η

)) 1
4
,

q∗ =

(√
k2
max+η−

√
k2
min

+η
) 3

4

√
2(k2

max−k2
min

)
(
(k2

max+η)
√

k2
min

+η−(k2
min

+η)
√

k2
max+η

) 1
4
.

(4.30)

Proof. The argument is again based on a transformation: the partial derivatives
of ρOO2 with respect to p and q are

∂ρOO2

∂p
= 4

√
k2 + η

p + qk2 −
√
k2 + η

(p + qk2 +
√
k2 + η)3

e−2
√

k2+ηL,
∂ρOO2

∂q
= k2 ∂ρOO2

∂p
,(4.31)

and hence ρOO2 is monotonically decreasing when p and q are decreased for all k >
kmin as long as p+ qk2 >

√
k2 + η. This implies that at the solution of the min-max

problem ρOO2 must have at least one zero k1 > kmin. Then instead of using the
parameter p, we can use equivalently the parameter k1 in the min-max problem by
setting p :=

√
k1 + η − qk2

1, which leads to the new form of the convergence factor

ρ′OO2 =
(
√
k2
1 + η −

√
k2 + η + q(k2 − k2

1))
2

(
√
k2 + η +

√
k2
1 + η + q(k2 − k2

1))
2
e−2

√
k2+ηL,

which has now necessarily a zero at k1 > kmin. If we suppose that k1 is the only zero
at the optimum, we reach again a contradiction, because a partial derivative with
respect to q gives

∂ρ′OO2

∂q
= 4

√
k2 + η(k2 − k2

1)

√
k2
1 + η −

√
k2 + η + q(k2 − k2

1)

(
√
k2 + η +

√
k2
1 + η + q(k2 − k2

1))
3
e−2

√
k2+ηL,

where the denominator is positive, since
√
k1 + η − qk2

1 = p ≥ 0, and the numerator
changes sign only at k = k1 by assumption, which together with the factor (k2 − k2

1)
in front makes the sign of the derivative negative for all q > 0 as long as there is only
one zero at k1. Thus increasing q the convergence factor ρ′OO2 can be decreased for
all k > kmin as long as there is no second zero. Hence at the optimum, ρ′OO2 must
have a second zero, without loss of generality at k2 ≥ k1 > kmin. Thus we can use the
parameter k2 instead of q, which leads to the change of variables

p =

√
k2
1 + ηk2

2 − k2
1

√
k2
2 + η

k2
2 − k2

1

, q =

√
k2
2 + η −

√
k2
1 + η

k2
2 − k2

1

(4.32)
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and the new min-max problem, which is equivalent to (4.24), is

min
kmin<k1≤k2

(
max

kmin≤k≤kmax

|R(k, L, η, k1, k2)|
)
,(4.33)

with the new function R(k, L, η, k1, k2), representing the square root of the conver-
gence factor, given by

R(k, L, η, k1, k2)

=

√
k2 + η(k2

2 − k2
1) − (

√
k2
1 + ηk2

2 −
√
k2
2 + ηk2

1) − (
√
k2
2 + η −

√
k2
1 + η)k2√

k2 + η(k2
2 − k2

1) + (
√
k2
1 + ηk2

2 −
√
k2
2 + ηk2

1) + (
√
k2
2 + η −

√
k2
1 + η)k2

e−
√

k2+ηL.

(4.34)
Taking the partial derivatives with respect to k1 and k2, we find

∂R

∂k1

=
2k1(k

2 − k2
2)
√
k2 + η

(√
k2
2 + η −

√
k2
1 + η

)2

√
k2
1 + η

(√
k2 + η(k2

1 − k2
2) +

√
k2
1 + η(k2 − k2

2) + (k2
1 − k2)

√
k2
2 + η

)2 e
−
√

k2+ηL,

(4.35)

∂R

∂k2

=
2k2(k

2 − k2
1)
√
k2 + η

(√
k2
2 + η −

√
k2
1 + η

)2

√
k2
2 + η

(√
k2 + η(k2

1 − k2
2) +

√
k2
1 + η(k2 − k2

2) + (k2
1 − k2)

√
k2
2 + η

)2 e
−
√

k2+ηL,

(4.36)
which shows that for k < k2, the function R is decreasing when k1 is increasing and
for k > k2 it is increasing with k1. Similarly for k < k1, the function R is decreasing
when k2 is increasing, and for k > k1 it is increasing with k2.

Now for L > 0, R = (−1 + O( 1
k ))e−Lk as k goes to infinity. Hence the max-

imum in the min-max problem can be attained, by continuity of R and knowing
that there are two zeros at k1, k2 > kmin, either at kmin, where R is negative,
or at k = k̄1 given in (4.29), where R has a maximum, k1 ≤ k̄1 ≤ k2, or at
k = k̄2 given in (4.29), where R has a negative minimum, k2 ≤ k̄2. To show
that the solution of the min-max problem is indeed when the three are balanced,
we first note that for any fixed k2, there exists a unique k∗1 = k∗1(k2) ∈ [kmin, k2]
such that |R(kmin, L, η, k

∗
1(k2), k2)| = R(k̄1, L, η, k

∗
1(k2), k2), because of continuity

and 0 = |R(kmin, L, η, kmin, k2)| < R(k̄1, L, η, kmin, k2) and |R(kmin, L, η, k2, k2)| >
R(k̄1, L, η, k2, k2) = R(k2, L, η, k2, k2) = 0, and |R(kmin, L, η, k1, k2)| is monotonically
increasing with k1 by (4.35) and R(k̄1, L, η, k1, k2) is monotonically decreasing in k1

by (4.35) and Lemma 4.3. Hence denoting by R1(k1, k2) := R(kmin, L, η, k1, k2) and
R2(k1, k2) := R(k̄1, L, η, k1, k2) Lemma 4.6 applies and therefore |R(kmin, L, η, k

∗
1(k2),

k2)| = R(k̄1, L, η, k
∗
1(k2), k2) is monotonically increasing with k2. Now for k2 = kmin,

we have k∗1(kmin) = kmin and thus 0 = |R(kmin, L, η, kmin, kmin)| < |R(k̄2, L, η, kmin,
kmin)| and for large k2 we have |R(kmin, L, η, k

∗
1(k2), k2)| > |R(k̄2, L, η, k

∗
1(k2), k2)|

(since the right-hand term goes to zero in the limit). Therefore by continuity, Lemma
4.6 for |R(kmin, L, η, k

∗
1(k2), k2)| and Lemma 4.3 for |R(k̄2, L, η, k

∗
1(k2), k2)| (note that

(k∗1)′ ≥ 0), there exists a unique k∗2 where these two expressions are equal, |R(kmin, L, η,
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k∗1(k∗2), k∗2)| = |R(k̄2, L, η, k
∗
1(k∗2), k∗2)|, which is the unique solution of the min-max

problem. Back-transforming to the p and q variables using (4.32) we obtain the equa-
tions for the solution of the min-max problem given in (4.28).

In the case without overlap, L = 0, the function R behaves for large k like
−1+O( 1

k ) and hence the maximum in the min-max problem for L = 0 can be attained
either at kmin, kmax, or at the interior maximum k̄1 which satisfies k1 ≤ k̄1 ≤ k2 and
is given in the p and q variables by

k̄1 =

√
q(p− 2qη)

q
.

The same argument used for the case L > 0 is still valid, and hence there exists a
unique solution p∗, q∗ of the min-max problem which is characterized by the system
of equations

ρOO2(kmin, 0, η, p
∗, q∗) = ρOO2(k̄1, 0, η, p

∗, q∗) = ρOO2(kmax, 0, η, p
∗, q∗).(4.37)

This system can be solved in closed form by first solving ρOO2(kmin, 0, η, p, q
∗) =

ρOO2(kmax, 0, η, p, q
∗) for q∗ = q∗(p), which leads to

q∗(p) =
p(
√

k2
max + η −

√
k2
min + η)√

k2
min + ηk2

max − k2
min

√
k2
max + η

.

Inserting this solution into the remaining equation ρOO2(kmin, 0, η, p
∗, q∗(p∗)) = ρOO2

(k̄1, L, η, p
∗, q∗(p∗)) and solving for p∗ leads to the closed form solution (4.30) of the

min-max problem for L = 0.
Figure 4.1 shows on the right the convergence factor obtained with the second

order optimized transmission conditions for our model problem with overlap L = 1
100

and η = 1, comparing it to the convergence factor of the classical Schwarz method.
The maximum of the convergence factor of the new Schwarz method with optimized
second order transmission conditions is 0.0704, which means that about 131 iterations
of the classical Schwarz method with convergence factor 0.980 are needed to attain
the performance of the second order optimized Schwarz method.

Theorem 4.8 (OO2 asymptotics). The asymptotic performance of the new
Schwarz method with optimized second order transmission conditions and overlap
L = h, as h goes to zero, is given by

max
kmin≤k≤π

h

|ρOO2(k, h, η, p
∗, q∗)| = 1 − 4 · 2 3

5 (k2
min + η)

1
10h

1
5 + O(h

2
5 ).(4.38)

The asymptotic performance without overlap, L = 0, is for h small given by

max
kmin≤k≤π

h

|ρOO2(k, 0, η, p
∗, q∗)| = 1 − 4

√
2(k2

min + η)
1
8

π
1
4

h
1
4 + O(h

1
2 ).(4.39)

Proof. To obtain the first result, we need to solve the nonlinear equations (4.28)
asymptotically in h for the optimal parameters p∗ and q∗. We make the ansatz
p = C1h

α and q = C2h
β , insert this together with L = h into the nonlinear equations

(4.28), and expand for small h. The search for the lowest order terms is simplified
by the knowledge that α < 0 and β > 0 since p is growing when h is decaying
and q is diminishing with h. Expanding for h small, we find from the equation
ρOO2(kmin, h, η, p

∗, q∗) = ρOO2(k̄1, h, η, p
∗, q∗) the leading order terms

−4
√

2C1h
α
√
h + 8C2h

β
√
C1hαC1h

α
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and from the equation ρOO2(kmin, h, η, p
∗, q∗) = ρOO2(k2, h, η, p

∗, q∗) the leading order
terms

−4
√

2C2
1h

2α
√
h + 4

√
k2
min + η

√
C2hβC1h

α.

Since the equations hold at the optimum, the leading order terms must match, which
leads to a system of equations for the unknown exponents α and β,

3

2
α + β = α +

1

2
, 2α +

1

2
= α +

β

2
,

whose solution is α = − 1
5 and β = 3

5 , and a system of equations for the constants C1

and C2, whose solution is

C1 = 2−
3
5 (k2

min + η)
2
5 , C2 = (2(k2

min + η))−
1
5 .

Hence asymptotically the optimal parameters p∗ and q∗ are

p∗ = 2−
3
5 (k2

min + η)
2
5h− 1

5 , q∗ = (2(k2
min + η))−

1
5h

3
5 .(4.40)

To see that the min-max solution given in (4.38) on the infinite frequency domain
k ∈ [kmin,∞) is really the relevant one asymptotically on the bounded frequency
domain |k| < kmax = π

h , we must have that the second maximum k̄2 given in (4.29)
satisfies asymptotically k̄2 ≤ kmax. Inserting the asymptotic expressions of p∗ and q∗

from (4.40) into the expression of k̄2 in (4.29), setting L = h and expanding for h
small, we find

k̄2 =
2

3
5 (k2

min + η)
1
10

h
4
5

+ O(h− 2
5 )(4.41)

and hence indeed asymptotically k̄2 ≤ kmax = π
h . Inserting now the asymptotically

optimal parameters p∗ and q∗ from (4.40) into the convergence factor ρOO2 and ex-
panding as h goes to zero, we obtain the result (4.38).

For the second result without overlap, we have the closed formulas (4.30) for the
optimal parameters p∗ and q∗. It suffices therefore to insert them into the convergence
factor and to expand it in h for kmax = π

h at k = kmin to find the result (4.39).

4.3. A two-sided optimized Robin transmission condition. We now in-
vestigate how the simplifying assumption p1 = p2 and q1 = q2 in the min-max problem
(4.11) affects the performance of the optimized Schwarz methods. We do this only
for the case of Robin transmission conditions to illustrate the change. We thus have
q1 = q2 = 0 and the optimization problem (4.10).

Theorem 4.9 (optimal two-sided Robin conditions). If there is overlap, L > 0,
then the optimal two-sided Robin parameters are given by

p∗1 =
1 −

√
1 + 4η(q∗)2 − 4p∗q∗

2q∗
, p∗2 =

1 +
√

1 + 4η(q∗)2 − 4p∗q∗

2q∗
,(4.42)

where p∗ and q∗ are solutions of (4.28) with L replaced by 2L. If there is no overlap,
L = 0, then the optimal two-sided Robin parameters are (4.42), where p∗ and q∗ are
given by (4.30).
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Proof. Multiplying the two factors in the optimization problem (4.10), we obtain
the optimization problem

min
pj≥0

(
max

kmin<k<kmax

∣∣∣∣∣
√
η + k2 − η+p1p2

p1+p2
− k2

p1+p2√
η + k2 + η+p1p2

p1+p2
+ k2

p1+p2

∣∣∣∣∣ e−2
√

η+k2L

)
(4.43)

and hence in the new parameters

p =
η + p1p2

p1 + p2
, q =

1

p1 + p2
,(4.44)

this optimization problem is equivalent to the optimization problem (4.24) provided
L is replaced by 2L. The solution for this problem is given for L > 0 in (4.28)
and for L = 0 in (4.30). Back-transforming these results using (4.44) concludes the
proof.

The preceding theorem shows that one can generate the performance of higher
order transmission conditions using lower order transmission conditions which are not
equal on both sides. In the case without overlap, one needs to perform two iterations
of the two-sided optimized Robin transmission algorithm to attain an error reduction
equivalent to the one from one iteration of the optimized second order transmission
conditions algorithm. With overlap, two iterations of the algorithm with optimized
two-sided Robin transmission conditions is even a bit better than one iteration of
the algorithm with second order transmission conditions, since the overlap has been
effective twice.

Figure 4.1 shows on the right the convergence factors obtained with the two-sided
optimized Robin conditions for our model problem with overlap L = 1

100 and η = 1,
comparing it to the convergence factor of the classical and the optimized zeroth and
second order Schwarz methods. The maximum of the convergence factor of the new
Schwarz method with two-sided optimized Robin conditions is 0.208, which means
that about 78 iterations of the classical Schwarz method with convergence factor
0.980 are needed to attain the performance of the two-sided optimized Robin Schwarz
method.

Corollary 4.10. The asymptotic performance of the two-sided optimized Schwarz
method with L = h is

max
kmin≤k≤π

h

|ρ(k, h, η, p∗1, p∗2)| = 1 − 2 · 2 4
5 (k2

min + η)
1
10h

1
5 + O(h

2
5 ).(4.45)

Without overlap, L = 0, the asymptotic performance is given by

max
kmin≤k≤π

h

|ρ(k, 0, η, p∗1, p∗2)| = 1 − 2

√
2(k2

min + η)
1
8

π
1
4

h
1
4 + O(h

1
2 ).(4.46)

Hence asymptotically, the second order optimized algorithm and the two-sided
optimized Robin algorithm are equivalent: one can get the same asymptotic perfor-
mance from Robin transmission conditions that one gets from second order trans-
mission conditions, provided one uses different parameters in the two transmission
conditions.

The idea of not using the same parameters on each side can be generalized by
not using the same parameter in each iteration: one uses a sequence of transmission
conditions with Robin parameters pi, i = 1, 2, . . . , I, where I is a number of param-
eters chosen and one cycles through the transmission conditions from 1 to I in the
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Schwarz iteration. This adds more degrees of freedom in the optimization problem
and leads to Schwarz algorithms that have an arbitrarily weak dependence of the
convergence factor on h, even without overlap (see [15]), but at the cost of having to
solve subdomain problems with varying transmission conditions per interation.

5. Optimized Schwarz methods compared to Schur and FETI methods.
We now investigate what the relation is between optimized Schwarz methods, which
can be used without overlap, to other domain decomposition methods without overlap,
like the Schur methods and FETI (Finite Element Tearing and Interconnect [13]). To
this end we will address two questions:

1. What conditions can one impose to couple subdomain problems ?
2. Which of these conditions are good to build efficient domain decomposition

algorithms ?
Although the ideas in this section hold for general second order elliptic problems, we
will use our self-adjoint coercive model problem (2.1) to fix ideas.

5.1. Classical coupling conditions between subdomains. There are two
classical ways to couple subdomain problems. For the first one, one uses an overlap-
ping decomposition of Ω, say, Ω1 = (−∞, L) and Ω2 = (0,∞) for L > 0, and the
coupled subproblems are given by

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(L, y) = u2(L, y), y ∈ R, u2(0, y) = u1(0, y), y ∈ R.

(5.1)

Note that we do not introduce an algorithm to find the solution of the coupled sub-
problems here; we only define coupled subdomain problems which are equivalent to the
original problem. The equivalence can be seen in this case, for example, by studying
the associated Schwarz algorithm.

For the second approach, one uses subdomains without overlap, for example,
Ω1 = (−∞, 0) and Ω2 = (0,∞), and the coupled subdomain problems are

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(0, y) = u2(0, y), y ∈ R, ∂xu2(0, y) = ∂xu1(0, y), y ∈ R.

(5.2)

Note the key difference: in the decomposition without overlap, both the solution
values as well as the normal derivatives are imposed to agree on the interface for this
second order problem, whereas in the approach with overlap, only solution values
are imposed to agree, but at two different locations, which implies the agreement of
normal derivatives.

The classical algorithm to find a solution for the case of an overlapping decom-
position is the one given by Schwarz in [36],

L(un
1 ) = f in Ω1, L(un

2 ) = f in Ω2,
un

1 (L, y) = un−1
2 (L, y), y ∈ R, un

2 (0, y) = un−1
1 (0, y), y ∈ R,

(5.3)

and we have derived the linear convergence factor of this algorithm in (2.8).
Can a similar iterative method be used for the nonoverlapping decomposition?

This would lead, for example, to

L(un
1 ) = f in Ω1, L(un

2 ) = f in Ω2,
un

1 (0, y) = un−1
2 (0, y), y ∈ R, ∂xu

n
2 (0, y) = ∂xu

n−1
1 (0, y), y ∈ R.

(5.4)

In general not, because this algorithm does not converge, as one can see with Fourier
analysis. Setting for the convergence analysis f = 0 by linearity and taking a Fourier
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transform in y with parameter k of (5.4) leads to the transformed iterates

ûn
1 (x, k) = ûn−1

2 (0, k)e
√

η+k2x, ûn
2 (x, k) = −ûn−1

1 (0, k)e−
√

η+k2x.

Thus inserting ûn−1
2 (0, k) from the second equation into the first one and evaluating

at x = 0, we find

ûn
1 (0, k) = −ûn−2

1 (0, k) and similarly ûn
2 (0, k) = −ûn−2

2 (0, k).

Hence the convergence factor of this algorithm is ρ = −1 and thus it does not converge.
A first remedy consists of introducing relaxation parameters γj , j = 1, 2, which

leads to the transmission conditions

un
1 (0, y) = γ1u

n−1
2 (0, y) + (1 − γ1)u

n−1
1 (0, y),

∂xu
n
2 (0, y) = γ2∂xu

n−1
1 (0, y) + (1 − γ2)∂xu

n−1
2 (0, y),

(5.5)

for which convergence results have been established. In [1] we find that for the so-
called Dirichlet–Neumann method, γ2 = 1, there exist γ1 for which the algorithm
converges, and in [35] we find that for the Neumann–Dirichlet method, γ1 = 1, there
exist γ2 for which the algorithm converges. For our model problem, we find for the
interface system in the Fourier domain(

ûn
1 (0, k)

∂xû
n
2 (0, k)

)
=

[
1 − γ1

−γ1√
η+k2

γ2

√
η + k2 1 − γ2

](
ûn−1

1 (0, k)
∂xû

n−1
2 (0, k)

)
.(5.6)

The asymptotic convergence factor of this matrix iteration is governed by the spectral
radius of the 2 × 2 matrix, which is given by the larger eigenvalue in modulus,

ρ =

∣∣∣∣1 − 1

2
(γ1 + γ2) +

1

2

√
(γ1 − γ2)2 − 4γ1γ2

∣∣∣∣ .(5.7)

Note that ρ is independent of the frequency parameter k, which implies that the con-
vergence factor is independent of the mesh parameter h if the algorithm is discretized.
In the case of the Dirichlet–Neumann algorithm, where γ2 = 1, the asymptotic con-
vergence factor for our model problem is

ρ =
1

2

∣∣∣∣1 − γ1 +
√
γ2
1 − 6γ1 + 1

∣∣∣∣ ,
which is less than 1 for 0 < γ1 < 1. The optimal value which minimizes the con-
vergence factor is γ1 = 3 − 2

√
2 ≈ 0.1716, for which the convergence factor becomes

ρ ≈ 0.4142. The same results we find by the symmetry of the parameters γi also
in the case of the Neumann–Dirichlet algorithm, where γ1 = 1. But one could also
use both relaxation parameters simultaneously to minimize the convergence factor.
With both parameters, we can achieve that both eigenvalues vanish simultaneously
by setting the term under the square root and the one outside of the square root in
(5.7) equal to zero. We find that for the choice

γ1 = 1 ± 1√
2
, γ2 = 1 ∓ 1√

2
,

the spectral radius vanishes identically, ρ ≡ 0. Hence this method will converge in
at most two iterations for any initial guess. (The matrix is not normal; otherwise
convergence would be in one iteration, which we know is not possible.)
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In a Gauss–Seidel version of this iteration, subdomain Ω2 would use directly the
newest values at the interface from subdomain Ω1. In that case the relaxed interface
iteration can be found after a short calculation to be(

ûn
1 (0, k)

∂xû
n
2 (0, k)

)
=

[
1 − γ1

−γ1√
η+k2

γ2(1 − γ1)
√
η + k2 1 − γ2 − γ1γ2

](
ûn−1

1 (0, k)
∂xû

n−1
2 (0, k)

)
.(5.8)

As before the asymptotic convergence of this matrix iteration is governed by the
spectral radius of the 2×2 matrix and the term depending on the frequency parameter
k cancels; the convergence factor is independent of k. In this case, however, both
the Dirichlet–Neumann and the Neumann–Dirichlet algorithm can achieve already
a convergence factor ρ = 0; one parameter suffices. The optimal choice is γ1 =
1
2 for the Dirichlet–Neumann case, where γ2 = 1, and γ2 = 1

2 for the Neumann–
Dirichlet case, where γ1 = 1, results found already in [1] and [35]. Unfortunately
all these results depend strongly on the symmetry in the problem; otherwise the
two symbols depending on the frequency parameter k and containing the square root
would not cancel. Hence for a more general situation with uneven domains or variable
coefficients, convergence in two steps will not be possible with this approach. The
optimal Schwarz method using the exact Dirichlet-to-Neumann map, however, does
still converge in two iterations also in these more general cases.

A second remedy, and this is really the classical approach for subdomain problems
coupled without overlap, consists of avoiding an iteration first. One keeps the coupled
problem and introduces a name for the quantities at the interface,

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(0, y) = u2(0, y) =: λ(y), ∂xu2(0, y) = ∂xu1(0, y) =: λx(y).

(5.9)

The primal Schur method then works as follows: supposing that λ(y) is known, one
computes u1(x, y, λ) and u2(x, y, λ) and then sets

∂xu1(0, y, f, λ) − ∂xu2(0, y, f, λ) = 0,

which is a linear equation to determine the interface function λ. Solving this linear
problem with a Krylov method requires at each step two subdomain solves with
Dirichlet conditions,

Apλ := ∂xu1(0, y, 0, λ)−∂xu2(0, y, 0, λ) = −∂xu1(0, y, f, 0)+∂xu2(0, y, f, 0) =: bp.
(5.10)
To learn more about the conditioning of the primal Schur complement system Apλ =
bp, we take a Fourier transform of Apλ to find the symbol of Ap,

Âpλ̂ = v̂x(0, y, 0, λ̂) − ŵx(0, y, 0, λ̂) = 2
√

η + k2λ̂.(5.11)

This symbol is symmetric in k and hence the condition number of the corresponding
operator can be estimated using the ratio of the symbol at the maximum and minimum
frequencies occurring in a given computation. Estimating the minimum frequency by
0 and the maximum frequency by kmax = π

h as before, where h is the mesh parameter,
we find the asymptotic condition number for h small to be

K(Ap) =
π

√
ηh

+ O(h).(5.12)
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Note that the original operator (η − Δ)u = f had a condition number estimate of
O( 1

h2 ) and thus the primal Schur method improves the condition number by a square
root. On the negative side the matrix vector product is now more expensive, since it
involves subdomain solves.

The dual Schur method, which became famous under the name FETI, is similar,
although the key feature of a natural coarse space cannot be seen in this simple setting:
supposing that λx is known, we compute u1(x, y, f, λx) and u2(x, y, f, λx) and then
set

u1(0, y, f, λx) − u2(0, y, f, λx) = 0,

which is now a linear equation for λx. Solving this linear problem with a Krylov
method requires at each step two subdomain solves with Neumann conditions,

Adλx := u1(0, y, 0, λx) − u2(0, y, 0, λx) = −u1(0, y, f, 0) + u2(0, y, f, 0) =: bd.(5.13)

The Fourier transform of the dual Schur complement system Adλx = bd leads to

Âdλ̂x = v̂(0, y, 0, λ̂x) − ŵ(0, y, 0, λ̂x) =
2√

η + k2
λ̂x,(5.14)

which shows that the operator Ad has the symbol 2√
η+k2

. This symbol is also sym-

metric in k and as in the case of the primal Schur complement, we find the condition
number for h small to be

K(Ad) =
π

√
ηh

+ O(h).(5.15)

Now note that the dual Schur complement with the symbol 2√
η+k2

is the inverse

of the primal Schur complement that had the symbol 2
√
η + k2, up to the constant

4, and hence one is the ideal preconditioner for the other. This led to the famous
Neumann–Neumann preconditioner for the primal Schur complement, with condition
number independent of the mesh parameter [2]. Similarly, one could use a Dirichlet–
Dirichlet preconditioner for the dual Schur complement or FETI to obtain a mesh
independent domain decomposition method.

But why should one give preference to either the Dirichlet or the Neumann con-
dition when formulating a Schur method? And why should we impose the same type
of interface conditions on each subdomain? In the recent FETI-DP method [11], for
some parts of the interfaces continuity of the dual variables is imposed, and for other
parts continuity of the primal variables. One could go a step further and first assume
that both λ and λx are known, then solve for u1(x, y, f, λ) and u2(x, y, f, λx), for
example, and set

u1(0, y, f, λ) − u2(0, y, f, λx) = 0,
∂xu1(0, y, f, λ) − ∂xu2(0, y, f, λx) = 0,

which is now a two-field formulation for the two unknown fields, λ and λx. Solving
this linear problem with a Krylov method requires at each step one subdomain solve
with Dirichlet and one with Neumann conditions,

Apd

(
λ
λx

)
:=

[
1 −u2(0, y, 0, ·)

−∂xu1(0, y, 0, ·) 1

](
λ
λx

)

=

(
u2(0, y, f, 0)

∂xu1(0, y, f, 0)

)
=: bpd.

(5.16)
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Taking a Fourier transform of the operator Apd, we find

Âpd =

[
1 1√

η+k2

−
√
η + k2 1

]
,(5.17)

which is precisely the matrix to which we have applied a Richardson iteration trying
simply to relax the interface conditions in (5.4), an iteration which did not converge.
By applying a Krylov method to solve the problem directly, however, it would converge
in two steps, since the eigenvalues are independent of k, there are only two distinct
points in the spectrum.

We can also write the coupled subdomain problems with overlap in substructured
form. If we give the unknown functions at the interfaces the names λ0(y) and λL(y),
we get

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(L, y) = u2(L, y) =: λL(y) u2(0, y) = u1(0, y) =: λ0(y).

(5.18)

If we assume that both λL and λ0 are known, then we can compute u1(x, y, f, λL)
and u2(x, y, f, λ0) and then set

u2(0, y, f, λ0) − u1(0, y, f, λL) = 0,
−u2(L, y, f, λ0) + u1(L, y, f, λL) = 0,

which is a linear system of equations for the unknowns λ0 and λL. Solving this
linear problem with a Krylov method requires at each step two subdomain solves
with Dirichlet conditions,

As

(
λ0

λL

)
:=

[
1 −u1(0, y, 0, ·)

−u2(L, y, 0, ·) 1

](
λ0

λL

)
=

(
u1(0, y, f, 0)
u2(L, y, f, 0)

)
=: bs.

(5.19)
In Fourier the symbol of the operator As is given by

Âs =

[
1 −e−

√
η+k2L

−e−
√

η+k2L 1

]
,(5.20)

and we see that the operator is symmetric in this case. If one applies a Richardson
iteration to this operator, one recovers the classical Schwarz method for which we have
seen that it converges independently of the discretization parameter. The eigenvalues

in Fourier are 1±e−
√

η+k2L, which shows that the eigenvalues are clustering for large
k around 1, a very desirable property when a Krylov method is used to solve the
corresponding linear system. The condition number of this symmetric operator can
be estimated by the ratio of the largest and smallest eigenvalue,

K(As) =
1 + e−

√
ηL

1 − e−
√
ηL

,(5.21)

and it is independent of the mesh parameter h, as long as the overlap L is independent
of h. For an overlap which depends on h, L = h, we have for h small

K(As) =
2

√
ηh

+ O(h)(5.22)

as for the primal and dual Schur methods.
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5.2. Coupling conditions optimized for the computation. Optimized Schwarz
methods bring the overlapping and nonoverlapping strategies together. They do not
use either Dirichlet or Neumann conditions, and they work with or without overlap.
The fundamental idea is that the coupled problem can be written with any set of
conditions that implies the classical coupling conditions. The coupled problems

L(u1) = f in Ω1, L(u2) = f in Ω2,
(∂x + S1)(u1)(L) = (∂x + S1)(u2)(L), (∂x + S2)(u2)(0) = (∂x + S1)(u1)(0),

(5.23)

are equivalent to the original, unpartitioned problem, as long as the choice of Sj ,
j = 1, 2, leads to well-posed subdomain problems and implies, for L > 0, u1(0) = u2(0)
and u1(L) = u2(L), and for L = 0, u1(0) = u2(0) and ∂xu1(0) = ∂xu2(0). To write
this system in substructured form, we assume again that the interface functions λ1(y)
and λ2(y) are known,

(∂x + S1)(u1)(L, y) = (∂x + S1)(u2)(L, y) =: λ1(y),

(∂x + S2)(u2)(0, y) = (∂x + S1)(u1)(0, y) =: λ2(y),

solve the subdomain problems, and then set

−(∂x + S1)(u2(0, y, f, λ2)) + λ1 = 0,
λ2 − (∂x + S2)(u1(L, y, f, λ1)) = 0.

This is again a linear system to be solved for λ1 and λ2. Using a Krylov method, at
each iteration two problems with the new transmission conditions need to be solved,

A
(
λ1

λ2

)
:=

[
1 −(∂x + S1)(u2(0, y, 0, ·))

−(∂x + S2)(u1(L, y, 0, ·)) 1

](
λ0

λL

)

=

(
(∂x + S1)(u2(0, y, f, 0))
(∂x + S2)(u1(L, y, f, 0))

)
=: b.

(5.24)

In the Fourier domain, the symbol of the operator A becomes for our model problem

Â =

⎡
⎢⎣ 1 −

√
η+k2−σ1(k)√
η+k2−σ2(k)

e−
√

η+k2L

−
√

η+k2+σ2(k)√
η+k2+σ1(k)

e−
√

η+k2L 1

⎤
⎥⎦ .(5.25)

For well-posedness of the subdomain problems, we need that S1 is a positive operator
and S2 a negative one, as one can also see from the denominators in the symbol of the
operator A. The iterative optimized Schwarz method is obtained when a Richardson
iteration is applied to this system, and we have seen that this iteration converges in
two steps, if = σ2 = −σ1 =

√
η + k2, or very fast, if the symbols approximate this

choice. If we choose σ2 = −σ1 > 0, then the operator becomes symmetric and its con-
dition number equals one for the optimal choice, or it can be made small choosing good
approximations. This is the heart of the optimized Schwarz methods: the optimal
choice always exists, it is the Dirichlet-to-Neumann map, and good approximations
lead to the optimized Schwarz methods with superior performance. The FETI meth-
ods have also started to incorporate these ideas; see, for example, the variant FETI-H
presented in [12], where the authors state, “The modified Lagrangian formulation pre-
sented here can be related to alternative transmission conditions for the subdomain
interfaces.” FETI-H constructs (5.25) using optimized Robin conditions.
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Table 6.1

Number of iterations of the classical Schwarz method compared to the different optimized
Schwarz methods with fixed small overlap of the size L = 1

50
between subdomains.

Classical Taylor 0 Taylor 2 Optimized 0 Two-sided optimized 0 Optimized 2
h Schwarz as an iterative solver

1/50 65 16 11 7 6 4
1/100 77 17 12 7 6 4
1/200 86 16 11 7 6 4
1/400 91 16 12 7 6 4
1/800 93 16 11 7 6 4

Schwarz use as a preconditioner
1/50 11 8 7 5 5 3
1/100 12 8 7 5 5 3
1/200 13 8 7 5 5 3
1/400 13 8 7 5 5 3
1/800 13 8 7 5 5 3

6. Numerical experiments. We perform numerical experiments for our model
problem on the unit square, Ω = (0, 1) × (0, 1),

(η − Δ)(u) = f in Ω,
u = 0 on ∂Ω.

(6.1)

We decompose the unit square Ω into two subdomains Ω1 = (0, β) × (0, 1) and Ω2 =
(α, 1) × (0, 1), where 0 < α ≤ β < 1 and hence the overlap is L = β − α. Note that
we explicitly allow α = β such that the method does not have any overlap, L = 0.
We use a finite difference discretization with the classical five-point discretization for
the Laplacian and a uniform mesh with mesh parameter h.

6.1. Overlapping optimized Schwarz methods. Classically the overlap in
the Schwarz method is held constant as the mesh is refined to obtain mesh independent
convergence factors for the method. The same is true for optimized Schwarz methods
because of Theorem 4.1, as iteration counts to reach an error reduction of 1e−6 show in
Table 6.1 for a fixed overlap L = β−α = 1

50 . We simulate directly the error equations,
f = 0, and use a random initial guess so that all the frequency components are present.
The results show clearly how important transmission conditions are for this algorithm.
Note also that while the Krylov method has a big impact on the classical Schwarz
method, for the second order optimized Schwarz method the acceleration with the
Krylov method does not reduce the iteration count significantly. This situation is
well known for multigrid methods, which do not need Krylov acceleration either when
applied to a Poisson problem. The Krylov acceleration is then used to improve the
performance of the method on more complex problems.

In practical computations, one can often not afford many mesh cells to overlap,
so the overlap depends on the mesh parameter h. In the following experiments we
choose therefore the overlap L = β − α = h. Table 6.2 shows the iteration counts for
this case. It is interesting to note that the second order optimized Schwarz method
without Krylov acceleration is already six times faster than classical Schwarz with
Krylov acceleration at high resolution.

In Figure 6.1, we show the number of iterations on a log-log plot so they can be
compared to the theoretical asymptotic results. On the top, the Schwarz methods
are used as iterative solvers and the numerical results show the asymptotic behavior
predicted by the theory. On the bottom, the Schwarz methods are used as precon-
ditioners. This improves the asymptotic performance by a square root, as one can
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Table 6.2

Number of iterations of the classical Schwarz method compared to the different optimized
Schwarz methods with overlap L = h between subdomains.

Classical Taylor 0 Taylor 2 Optimized 0 Two-sided optimized 0 Optimized 2
h Schwarz as an iterative solver

1/50 65 16 11 7 6 4
1/100 127 22 16 8 7 4
1/200 257 31 21 11 9 5
1/400 510 42 30 13 10 6
1/800 1020 60 41 16 12 7

Schwarz use as a preconditioner
1/50 11 8 7 5 5 3
1/100 16 9 8 6 6 4
1/200 21 11 9 6 6 4
1/400 31 13 11 7 7 4
1/800 42 16 13 8 8 5
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Fig. 6.1. Number of iterations required by the classical and the optimized Schwarz methods,
with overlap L = h. On the top the methods are used as iterative solvers, and on the bottom they
are used as preconditioners for a Krylov method.
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show in ideal situations, since a square root is taken off the condition number of the
preconditioned system. This is also visible in our numerical results.

We now investigate how well the continuous analysis predicts the optimal param-
eters to be used in the numerical setting. To this end we vary the parameter p in the
Robin transmission conditions for a fixed problem of mesh size h = 1

100 and count for
each value of p the number of iterations to reach a residual of 1e− 6. The results for
both optimized Schwarz used as an iterative solver and as a preconditioner are shown
in Figure 6.2 on the top. The analysis predicts very well the optimal parameter, and
when the method is used as a preconditioner, the area where the optimum is attained
is widened considerably, which shows that the optimized Schwarz method is robust
with respect to the optimal parameter. Similar results hold for the second order opti-
mized Schwarz method, as one can see in Figure 6.2 in the middle when the method
is used iteratively and on the bottom when used as a preconditioner.

6.2. Nonoverlapping optimized Schwarz methods. Nonoverlapping
Schwarz methods are of interest if the physical properties vary from subdomain to
subdomain and one has formulated the subdomain decomposition motivated by this
fact; see, for example, [20]. They also facilitate the construction of nonmatching grids
per subdomain and the formulation of algorithms in that case. We illustrate the
performance of the optimized Schwarz methods without overlap, α = β or L = 0,
by choosing for the mesh parameter diminishing values and counting the number of
iterations the methods take to reduce the error by a factor 1e−6. Table 6.3 shows the
performance of the different optimized Schwarz methods in that case. Note that the
classical Schwarz method is not shown because classical Schwarz does not converge
without overlap. Comparing with the performance of the methods with overlap h,
one can see that the number of iterations is by a factor 1.5–1.7 higher for the second
order optimized Schwarz method, whereas the cost per subdomain is only slightly
higher for the method with overlap; there are m more variables in one subdomain for
matrices of size m2. Hence a physical motivation must outweigh the increased cost of
a nonoverlapping Schwarz method.

In Figure 6.3 we show the number of iterations on a log-log plot so they can be
compared to the theoretical asymptotic factors.

On the left the methods are used as iterative solvers and one can see that again
the numerical results show the asymptotic behavior predicted by the analysis. On the
right the results are shown when the Schwarz methods are used as preconditioners,
and one can see again that Krylov acceleration improves the performance by about a
square root.

We finally show in Figure 6.4 how well the analysis predicts the optimization
parameters in the nonoverlapping case.

6.3. An application. We now show how a nonoverlapping optimized Schwarz
method can be used to compute the temperature distribution in our apartment on
Durocher in Montreal. In Figure 6.5, we show on top the floor plan of our apartment
with a finite element discretization and a decomposition into the different rooms: on
the left is the living room, connected to the kitchen and with a long hallway to the
bathroom and bedroom on the right. Insulated walls are shown in blue, the windows
on top are shown in black, where we assume −20 degrees Celsius for a regular Montreal
winter day, and the doors at the bottom and on the right are also shown in black.
They lead to a heated public hallway, at about 15 degrees Celsius. The interfaces
are shown in red, and we introduced curved interfaces and nonrectangular domains,
so that the Fourier analysis presented in this paper cannot be applied any more. In
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Fig. 6.2. Optimal parameter (*) found by the analytical optimization compared to the perfor-
mance of other values of the parameters: on the top for the Robin case, in the middle for the second
order case used iteratively, and on the bottom used as a preconditioner.
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Table 6.3

Number of iterations of different optimized Schwarz methods without overlap between subdomains.

Taylor 0 Taylor 2 Optimized 0 Two-sided optimized 0 Optimized 2
h Optimized Schwarz as an iterative solver

1/50 425 109 23 13 6
1/100 847 217 31 16 7
1/200 1702 434 44 20 9
1/400 3432 875 62 25 10
1/800 6824 1746 88 30 12

Optimized Schwarz as a preconditioner
1/50 21 15 9 8 5
1/100 28 20 11 10 5
1/200 35 26 13 11 6
1/400 46 34 15 12 6
1/800 59 45 18 13 7
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Fig. 6.3. Asymptotic number of iterations required by the nonoverlapping optimized Schwarz
methods: on the top the methods are used as iterative solvers, and on the bottom they are used as
preconditioners for a Krylov method.
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Fig. 6.5. On top the decomposition of a two-dimensional cross section of an apartment in
Montreal, in the middle the first iteration, and at the bottom the final temperature distribution
computed in winter with an optimized Schwarz method.

the middle in Figure 6.5 we show the first iteration of the optimized Schwarz method
with Robin transmission conditions, where one can clearly see the isolated effect of the
heaters and warm doors in each subdomain: the iterate is discontinuous. In Figure 6.5
at the bottom we show the final result of the simulation, which is now continuous. The
method took 25 iterations to converge to a relative residual of 1e− 3 in the iterative
case and 12 iterations when used as a preconditioner, using the optimal parameter
p∗ = 2.7207 from the two-subdomain theory. Refining once more, the method took
32 iterations in the iterative case and 13 in the preconditioned case, with the optimal
parameter p∗ = 3.8576 from the two-subdomain theory. The ratio in the iterative
case is 32/25 = 1.28 ≈ 21/3 = 1.26, as predicted by the two-subdomain theory for the
simple two-subdomain case with straight interfaces, and in the preconditioned case,
the ratio is 13/12 = 1.08 ≈ 21/6 = 1.12. This shows that although the Fourier analysis
cannot be applied in the more general case, the results predicted by the theory for
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the two-subdomain case are also observed in more practical situations.
The results of this simulation were interesting to us: one can see that while the

heaters in the living room on the left and the bedroom on the right are well placed to
block the cold from the windows, the heater on the left wall in the bathroom is not
effective to keep the room warm, a fact we strongly felt in winter. Also, the kitchen
is not heated and stays cold, except when cooking and baking.

7. Conclusion. We introduced the reader to a new class of Schwarz methods,
the optimized Schwarz methods. The algorithm is the same as for the classical Schwarz
method and it can be used either iteratively or as a preconditioner. The difference
is a new type of transmission conditions between subdomains, instead of the classical
Dirichlet condition. We analyzed for a symmetric positive definite model problem
and two subdomains the influence of the transmission conditions on the convergence
factor of the Schwarz algorithm. We showed both analytically and numerically that
the optimized Schwarz methods have a greatly improved performance compared to
the classical Schwarz method. The number of iterations required to achieve a certain
accuracy is by a factor smaller, often more than an order of magnitude. This perfor-
mance is achieved without an increased cost for the subdomain solves, since the same
type of matrix problem has to be solved in the subdomains, and the new subdomain
matrices have the same bandwidth as the original ones. We also proved that the
optimized Schwarz methods are always faster than the classical Schwarz method and
since their implementation is not more difficult than the implementation of a classical
Schwarz method, they represent a very attractive alternative. We finally showed in
numerical experiments that the results derived for the simple two-subdomain configu-
ration with a straight interface also apply in more complicated situations in practice,
where Fourier analysis cannot be applied any more.
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[37] B. F. Smith, P. E. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cam-
bridge, UK, 1996.

[38] H. Sun and W.-P. Tang, An overdetermined Schwarz alternating method, SIAM J. Sci. Com-
put., 17 (1996), pp. 884–905.

[39] W. P. Tang, Generalized Schwarz splittings, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 573–
595.

[40] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992),
pp. 581–613.

[41] J. Xu and J. Zou, Some nonoverlapping domain decomposition methods, SIAM Rev., 40
(1998), pp. 857–914.



SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 2, pp. 732–752

L2-PROJECTED LEAST-SQUARES FINITE ELEMENT
METHODS FOR THE STOKES EQUATIONS∗

HUO-YUAN DUAN† , PING LIN† , P. SAIKRISHNAN† , AND ROGER C. E. TAN†

Abstract. Two new L2 least-squares (LS) finite element methods are developed for the velocity-
pressure-vorticity first-order system of the Stokes problem with Dirichlet velocity boundary condition.
A key feature of these new methods is that a local or almost local L2 projector is applied to the
residual of the momentum equation. Such L2 projection is always defined onto the linear finite
element space, no matter which finite element spaces are used for velocity-pressure-vorticity variables.
Consequently, the implementation of this L2-projected LS method is almost as easy as that of the
standard L2 LS method. More importantly, the former has optimal error estimates in L2-norm,
with respect to both the order of approximation and the required regularity of the exact solution for
velocity using equal-order interpolations and for all three variables (velocity, pressure, and vorticity)
using unequal-order interpolations. Numerical experiments are given to demonstrate the theoretical
results.
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1. Introduction. The least-squares (LS) mixed finite element method is widely
used in seeking numerical solution of partial differential equations arising from fluid
and solid mechanics; cf. [13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32]. In a
broad sense, the LS method minimizes the residual, measured in some Sobolev norms,
of a mixed first-order system of partial differential equations. The mixed first-order
system is obtained by introducing one or more additional physically important fields
such as stress/pressure/vorticity besides displacement/velocity as unknown variables.
There are many advantages to LS methods. The LS method may be viewed as a
classical Ritz’s method of coercive type [29] and is not subject to the so-called inf-
sup condition [2, 9]. Its resulting linear system is symmetric positive definite and
can be solved by standard iterative methods such as the conjugate gradient method.
In addition, the standard finite element spaces can be employed for each unknown
variable. Readers may refer to [12, 13] for more details on LS methods. In this
paper we shall introduce and study new LS methods for the Stokes problem written
as a system of equations of first order, where velocity, pressure, and vorticity appear
as unknown variables. This system involves relatively few unknowns and is widely
employed in engineering practice.

Let us first review several LS methods developed in the last decade for the velocity-
pressure-vorticity Stokes system. The most widely used LS method is the standard L2

LS method [13, 15], where the LS functional is the squared L2-norms of the residual
of the first-order system. This method is easy to implement and performs very well in
many engineering applications (cf. [13, 19, 20, 30, 31]). However, for the important
case of Dirichlet velocity boundary condition, this method is not optimal in the usual
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sense [16, 17]; for example, for equal-order continuous interpolations, the L2-error
bound for velocity is not optimal with respect to both the order of approximation
and the required regularity. In the case of convex polygon, no error estimates are
available. Also, no improved error estimates are obtained for unequal-order continuous
interpolations (see [33] for some numerical results).

The reason that the standard L2 LS method suffers from suboptimal error es-
timates in the case of velocity Dirichlet boundary condition may be the following:
the coercivity for vorticity and pressure is measured in L2-norm, whereas their first-
order derivatives having appeared in the term resulting from the momentum equa-
tion suggests that the continuity condition cannot be obtained in the same measure,
which prevents us from obtaining optimal error estimates. To recover the optimal
error estimates one has to do some modifications to that term of the momentum
equation.

There have been two important methods which can overcome the difficulty from
the term of the momentum equation. One is the Bochev–Gunzburger (BG) method,
where a factor h2 is put in front of the term of the momentum equation. Alternatively,
the BG method may be scaled as the one with a factor h−2 put in front of terms of
the incompressibility condition and of the vorticity equation [18]. The other is the
H−1 LS method, which may be viewed as a modified version of the BG method by
introducing an additional term of the momentum equation, where a preconditioner
Bh (or an operator of the finite element solution) for the Dirichlet problem of a
second-order elliptic equation is applied [14, 21, 32]. In the BG method the effects
from the term of the momentum equation can be eliminated because of the factor h2,
and optimal error estimates can be derived with the use of unequal-order continuous
interpolations [16, 18]. In the H−1 method, when Bh satisfies a spectral equivalence
(see equation (2.15) in [21, p. 941]), the coercivity and the optimal error estimates
can be established. These are excellent efforts in achieving optimal error estimates of
LS methods. However, there is still room for improvement. The BG method does not
give optimal L2-error estimates for the velocity, excludes the use of linear elements
[16, 18, 33], and has a condition number O(h−4). This is due to the fact that it
lacks a coercivity uniform in mesh sizes or that in its scaled version the scale factor
h−2 worsens its continuity condition. The H−1 method can provide optimal L2-error
bounds for the velocity, but there is a restriction on Bh (see equation (3.24) in [21,
p. 947]). There are few examples of Bh known to satisfy that restriction. Also, due
to the fact that Bh is defined onto Uh (the approximating space for the velocity), Bh

varies with Uh accordingly. This may complicate implementation issues when Uh is
of higher-order elements.

Our new idea presented in the paper is to add an L2-projected term of the momen-
tum equation to the BG method or to use an L2 projector to replace the preconditioner
in the H−1 method. With the L2 projection term, the uniform coercivity holds (see
Theorem 3.1), and the error estimates are optimal (see Theorem 3.3 and Theorem 4.1),
for velocity using equal-order interpolations and for all three variables (velocity, pres-
sure, and vorticity) using unequal-order interpolations. Also, the condition number is
of O(h−2) (see Corollary 3.2) and the implementation of this L2-projected LS method
is almost as easy as that of the standard L2 LS method, since the L2 projection is
local or almost local and is always defined onto the linear finite element space, no
matter which finite element spaces are used for velocity-pressure-vorticity variables.
Note that although the L2 projection is “fixed” onto the linear element space, this
does not cause any consistency problem and does not affect the order of the error
estimates.
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We provide two methods according to the definitions of L2 projectors applied to
the term of the momentum equation. One is called the local L2 projection method
(I) and the other the mass-lumping L2 projection method (II). The L2 projection in
method (I) is always element-by-element defined onto the discontinuous linear element
space; in method (II) the L2 projection is always defined by using the mass-lumping
technique [1] onto the continuous linear element space. Note that the L2 projection
in method (II) is almost local because the resulting matrix of this L2 projection is di-
agonal. Standard equal-order or unequal-order finite elements, with lower-order finite
elements for pressure and vorticity enriched with element or edge (face) bubbles or
both, are employed for approximating velocity, pressure, and vorticity variables. Note
that the role of the bubbles for lower-order elements for pressure and vorticity is to
make Assumption (A2) (see (3.35) and (3.36)) hold (cf. Remark 3.2 and Theorem 3.4).

Our L2 projection plays a critical role (see (3.24)) in the derivation of a uniform
coercivity (see (3.6)). All the first-order derivatives of pressure and vorticity appear
only in L2-projected and h2-weighted terms. Due to Assumption (A2), the errors
associated with the L2-projected term can be made zero (see (3.47)), while the h2-
weighted term is obviously consistent in terms of both the order of approximation
and the regularity of the exact solution. Therefore, optimal error estimates can be
achieved. Also, an O(h−2) condition number is obtained.

Of course, we may project onto a higher-order element space. But obviously
the linear element is simpler and the L2 projection can be easily implemented. For
method (I) we could even consider defining the local L2 projection onto a piecewise
constant space and almost all our techniques of analysis might still work. However,
an optimal L2-error bound for velocity cannot be obtained because the interpolation
result of the linear element has to be used in the derivation (see (4.20)).

Finally, we remark that in deriving the L2-error estimates for the velocity we
assume that the domain is a convex polygon as usual [5, 29]. For such a domain some
known regularity results for Stokes and elasticity problems (cf. [6, 7, 8, 10]) are used.

The outline of this paper is as follows. In section 2, we recall the first-order
system of the velocity-pressure-vorticity Stokes problem and formulate L2-projected
methods. In section 3, we establish coercivity and error bounds and verify an im-
portant assumption (Assumption (A2)). In section 4, the L2-error bound for velocity
is obtained. In section 5, numerical results are presented to support our theoretical
analysis.

2. Problem formulation.

2.1. First-order system of the Stokes problem. Let Ω ⊂ R
d (d = 2, 3) be

a bounded domain with boundary Γ and f ∈ (L2(Ω))d. We consider the following
Stokes problem: Find velocity u and pressure p such that

−Δu + �p = f , � · u = 0 in Ω, u = 0 on Γ.(2.1)

Let �× denote the curl operator. Introducing the vorticity ω = � × u ∈
(L2(Ω))2d−3 and noting that −Δu = � × � × u − � � ·u and � · u = 0, we
can write (2.1) as the first-order system

�× ω + � p = f , ω = �× u, � · u = 0 in Ω,(2.2)

along with a Dirichlet boundary condition and a pressure mean-zero condition

u|Γ = 0,

∫
Ω

p = 0.(2.3)
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Below we shall use the standard Sobolev spaces H1
0 (D) and Hs(D), with norm

‖ · ‖s,D and seminorm | · |s,D, where D is some Lipschitz subdomain of Ω; D will
be omitted from the notation when D = Ω. We shall use (·, ·)0,D for the inner
product of L2(D) (= H0(D)). When D = Ω, (·, ·) := (·, ·)0,Ω. We shall also define
L2

0(Ω) := {q ∈ L2(Ω);
∫
Ω
q = 0}. Throughout this paper we always assume that Ω

is a Lipschitz polygon (polyhedron in R
3) and that Ch is a regular triangulation of Ω

(tetrahedrons in R
3), with diameters hK ≤ h for all triangular elements K ∈ Ch.

2.2. Local L2 projection method (I). Introduce

Zh := {v ∈ (L2(Ω))d;v|K ∈ (P1(K))d ∀K ∈ Ch},(2.4)

where P1(K) denotes the space of linear polynomials on K. For given g ∈ (L2(Ω))d

we define a function R̆h(g) ∈ Zh by∫
K

R̆h(g)v =

∫
K

g v ∀v ∈ (P1(K))d, ∀K ∈ Ch.(2.5)

Let

Uh ⊂ (H1
0 (Ω))d, Ph ⊂ L2

0(Ω), Wh ⊂ (L2(Ω))2 d−3(2.6)

be continuous piecewise polynomial spaces on Ch for velocity, pressure, and vorticity,
respectively. We define an LS functional on Uh × Ph ×Wh by

J I
h (u, p, ω; f) := ‖R̆h(�× ω + � p− f)‖2

0 +
∑

K∈Ch

h2
K ‖� ×ω + � p− f‖2

0,K

+ ‖ω −�× u‖2
0 + ‖� ·u‖2

0.(2.7)

We consider a minimization problem: Find (uh, ph, ωh) ∈ Uh × Ph ×Wh such that

J I
h (uh, ph, ωh; f) = inf

(vh,qh,zh)∈Uh×Ph×Wh

J I
h (vh, qh, zh; f).(2.8)

Taking variations in (2.7) with respect to (vh, qh, zh), we obtain the weak statement
of problem (2.8): Find (uh, ph, ωh) ∈ Uh × Ph ×Wh such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LI
h((uh, ph, ωh); (vh, qh, zh)) := (R̆h(�× ωh + � ph), R̆h(�× zh + � qh))

+
∑

K∈Ch

h2
K (�× ωh + � ph,�× zh + � qh)0,K

+ (ωh −�× uh, zh −�× vh) + (� · uh,� · vh)

= (f , R̆h(�× zh + � qh)) +
∑

K∈Ch

h2
K (f ,�× zh + � qh)0,K

(2.9)

holds for all (vh, qh, zh) ∈ Uh × Ph ×Wh.

2.3. Mass-lumping L2 projection method (II). Introduce

V0,h := Zh ∩ (H1
0 (Ω))d,(2.10)

where Zh is defined in (2.4). Let (·, ·)h denote an inner product in V0,h and the
induced norm in V0,h be given by

‖v‖h := (v,v)
1/2
h .(2.11)
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Remark 2.1. (·, ·)h is usually taken as an approximation of (·, ·). For exam-
ple, when Ch consists of two-dimensional (2D) triangles, we may take (·, ·)h as the
quadrature scheme

(u, v)h :=
∑

K∈Ch

area(K)

3

3∑
i=1

u(i) v(i),(2.12)

where i = 1, 2, 3 denote vertices of the triangle K. In the literature [1], (·, ·)h replacing
(·, ·) is called mass-lumping. The matrix associated with (·, ·)h is diagonal.

For given w ∈ (L2(Ω))2d−3 and p ∈ L2(Ω) we define two functions Rh(�× w) ∈
V0,h and Sh(� p) ∈ V0,h, respectively, by

(Rh(�× w),vh)h = (w,�× vh) ∀vh ∈ V0,h,(2.13)

(Sh(� p),vh)h = −(p,� · vh) ∀vh ∈ V0,h.(2.14)

For given g ∈ (L2(Ω))d we define a function R̄h(g) ∈ V0,h by

(R̄h(g),vh)h = (g,vh) ∀vh ∈ V0,h.(2.15)

Remark 2.2. Clearly, Rh, Sh, and R̄h are all linear operators. In addition, if
w ∈ (H1(Ω))2d−3 and p ∈ H1(Ω), we have

Rh(�× w) + Sh(� p) = R̄h(�× ω) + R̄h(� p) = R̄h(�× w + � p).(2.16)

We consider the case of Ph and Wh possibly being discontinuous or being linear
and quadratic continuous elements, and we define an LS functional on Uh×Ph×Wh:

J II
h (u, p, ω; f) := ‖Rh(�× ω) + Sh(� p) − R̄h(f)‖2

h

+
∑

K∈Ch

h2
K ‖� ×ω + � p− f‖2

0,K

+
∑
E∈Eh

hE

∫
E

|[p]|2 +
∑
E∈Eh

hE

∫
E

|[w]|2 + ‖ω −�× u‖2
0 + ‖� ·u‖2

0,

(2.17)

where Eh denotes the collection of interior edges (faces in R
3), [p] is the jump in p

across E, and hE is the length or diameter of E. With J II
h , in the same way as that

for (2.8) and (2.9), we can consider an LS minimization problem and then obtain its
weak statement: Find (uh, ph, ωh) ∈ Uh × Ph ×Wh such that

(2.18)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LII
h ((uh, ph, ωh); (vh, qh, zh)) := (Rh(�×ωh)+Sh(� ph), Rh(�× zh)+Sh(� qh))h

+
∑

K∈Ch

h2
K (�× ωh + � ph,�× zh + � qh)0,K

+
∑

E∈Eh

hE

∫
E

[ωh] [zh] +
∑

E∈Eh

hE

∫
E

[ph] [qh]

+ (ωh −�× uh, zh −�× vh) + (� · uh,� · vh)

= (f , Rh(�× zh) + Sh(� qh)) +
∑

K∈Ch

h2
K (f ,�× zh + � qh)0,K

holds for all (vh, qh, zh) ∈ Uh × Ph ×Wh.
Remark 2.3. Method (I) is simpler than method (II), but the latter applies to

lower-order continuous elements and discontinuous elements for pressure and vorticity.
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Note that using linear or quadratic elements for pressure and vorticity without the R̆h

term and the h2 factor, method (I) is the standard L2 LS method [15] which does not
have optimal error estimates. In addition, we remark that without the L2 projection,
our method reduces to the BG method [18], and when replacing the L2 projector by a
preconditioner (or an operator of the finite element solution) for the Dirichlet problem
of a second-order elliptic equation, the H−1 method [14, 32] is obtained.

3. Coercivity and error bounds in energy norm. We shall give a unified
analysis for coercivity and error bounds in energy norm for methods (I) and (II). In
what follows, C represents a generic positive constant independent of h and may take
different values at different occurrences.

3.1. Coercivity analysis. In this subsection we investigate the coercivity.
Proposition 3.1 (see [2, 11]). Let Ω be a bounded connected domain with a

Lipschitz-continuous boundary Γ. Then

‖v‖2
1 ≤ C {‖� ×v‖2

0 + ‖� ·v‖2
0} ∀v ∈ (H1

0 (Ω))d.(3.1)

Proposition 3.2 (see [25]). Under the assumption on Ω as in Proposition 3.1,
we have

inf
q∈L2

0(Ω)
sup

0 �=v∈(H1
0 (Ω))d

(� · v, q)
‖v‖1 ‖q‖0

≥ C.(3.2)

Lemma 3.1. Let X be a given Hilbert space, with inner product (·, ·)X and cor-
responding norm ‖ · ‖X =

√
(·, ·)X . For any two elements A ∈ X,B ∈ X and for any

α ∈ R, we have

‖A−B‖2
X ≥ α(1 − α/2) (‖A‖2

X + ‖B‖2
X) − 2α(A,B)X .(3.3)

Proof. Equation (3.3) follows from the sum of the two equations

‖A−B‖2
X = ‖A− αA−B‖2

X + α(2 − α) ‖A‖2
X − 2α (A,B)X ,

‖A−B‖2
X = ‖A−B + αB‖2

X + α(2 − α) ‖B‖2
X − 2α (A,B)X .

For the following analysis we recall the well-known Young’s inequality

|a| |b| ≤ ε |a|2 +
1

4 ε
|b|2 ∀a, b ∈ R, ∀ε > 0

and Green’s formulae of integrating by parts

(�× v, φ)0,D − (v,�× φ)0,D =

∫
∂ D

φv × n ∀v ∈ (H1(D))d, φ ∈ (H1(D))2 d−3,

(� · v, q)0,D + (v,� q)0,D =

∫
∂D

q v · n ∀v ∈ (H1(D))d, q ∈ H1(D),

where n denotes the exterior unit normal to ∂ D, and D is a Lipschitz subdomain
of Ω. We also introduce a notation

|(p, ω)|2(Ch,Eh) :=
∑

K∈Ch

h2
K‖� ×ω + � p ‖2

0,K +
∑
E∈Eh

hE

(∫
E

|[p]|2 + |[ω]|2
)
.(3.4)
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Assumption (A1). There exists C1 > 0, C2 > 0 independent of h such that

C1 ‖vh‖0 ≤ ‖vh‖h ≤ C2 ‖vh‖0 ∀vh ∈ V0,h.(3.5)

Remark 3.1. Taking (2.12) as an example. Assumption (A1) can be easily shown
by considering each triangle separately (see also [5, p. 157]).

Theorem 3.1. Assuming (A1) for method (II), let Jh stand for J I
h or J II

h .
Then, for all (u, p, ω) ∈ Uh × Ph ×Wh,

Jh(u, p, ω;0) ≥ C {‖u‖2
1 + ‖p‖2

0 + ‖ω‖2
0}.(3.6)

Proof. We consider method (II) here. The argument remains unchanged for
method (I). One needs only to note that, in method (I), Ph ×Wh are continuous and
(·, ·) is in place of (·, ·)h.

In the proof we need only to deal with ‖ω−�×u‖2
0 and ‖Rh(�×ω)+Sh(� p)‖2

h.
The proof is divided into three steps. In the first two steps we find lower bounds for
‖ω−�×u‖2

0 +‖Rh(�×ω)+Sh(� p)‖2
h. In the last step we use the mesh-dependent

terms to obtain (3.6).
Step 1. Let α > 0 be a constant to be determined. From Lemma 3.1 we have

‖ω −�× u‖2
0 ≥ α (1 − α/2) {‖� ×u‖2

0 + ‖ω‖2
0} − 2α (ω,�× u).(3.7)

We take ũ ∈ V0,h as the Clément-interpolant [2, 4] of u ∈ Uh and have( ∑
K∈Ch

h−2
K ‖ũ − u‖2

0,K +
∑
E∈Eh

h−1
E

∫
E

|ũ − u|2
)1/2

+ ‖ũ‖1 ≤ C ‖u‖1.(3.8)

We also have

−2α (ω,�× u) = −2α (ω,�× ũ) − 2α (ω,�× (u − ũ))

= −2α (Rh(�× ω), ũ)h − 2α (ω,�× (u − ũ)),
(3.9)

and

− 2α (Rh(�× ω), ũ)h + ‖Rh(�× ω) + Sh(� p)‖2
h

= ‖Rh(�× ω) + Sh(� p) − α ũ‖2
h − α2 ‖ũ‖2

h + 2α (Sh(� p), ũ)h,
(3.10)

where

−α2 ‖ũ‖2
h ≥ −α2 C ‖ũ‖2

0 (by Assumption (A1))

≥ −α2 C ‖u‖2
1 (by (3.8))

≥ −α2 C ‖� ×u‖2
0 − α2 C ‖� ·u‖2

0 (by Proposition 3.1),

(3.11)

2α (Sh(� p), ũ)h = −2α (p,� · ũ)

= −2α (p,� · u) + 2α (p,� · (u − ũ)),
(3.12)

and

−2α(p,� · u) ≥ −ε1‖p‖2
0 −

α2 C

ε1
‖� ·u‖2

0(3.13)

(by Young’s inequality). Here ε1 > 0 is a constant to be determined later.
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Therefore, summarizing (3.7) and (3.9)–(3.13), we get⎧⎪⎪⎨
⎪⎪⎩

‖ω −�× u‖2
0 + ‖Rh(�× ω) + Sh(� p)‖2

h

≥ α(1 − α/2) ‖ω‖2
0 + α [1 − α (1/2 + C)] ‖� ×u‖2

0

+ 2α {−(ω,�× (u − ũ)) + (p,� · (u − ũ))}
− ε1 ‖p‖2

0 − (α
2 C
ε1

+ α2 C) ‖� ·u‖2
0,

(3.14)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2α {−(ω,�× (u − ũ)) + (p,� · (u − ũ))}
= −2α

∑
K∈Ch

(�× ω + � p,u − ũ)0,K

−2α
∑

E∈Eh

∫
E

[ω] (u − ũ) × nE + 2α
∑

E∈Eh

∫
E

[p] (u − ũ) · nE ,

≥ −2αC |(p, ω)|(Ch,Eh)

×
( ∑

K∈Ch

h−2
K ‖u − ũ‖2

0,K +
∑

E∈Eh

h−1
E

∫
E

|u − ũ|2
)1/2

≥ −2αC ‖u‖1 |(p, ω)|(Ch,Eh) ≥ −α2 ‖u‖2
1 − C |(p, ω)|2(Ch,Eh)

≥ −α2 C ‖� ×u‖2
0 − α2 C ‖� ·u‖2

0 − C |(p, ω)|2(Ch,Eh).

(3.15)

Thus, (3.14) becomes⎧⎪⎨
⎪⎩

‖ω −�× u‖2
0 + ‖Rh(�× ω) + Sh(� p)‖2

h

≥ α(1 − α/2) ‖ω‖2
0 + α [1 − α (1/2 + 2C)] ‖� ×u‖2

0

− ε1 ‖p‖2
0 − C |(p, ω)|2(Ch,Eh) −

(
α2 C
ε1

+ α2 2C
)
‖� ·u‖2

0.
(3.16)

Step 2. Let β > 0 be a constant to be determined. From Proposition 3.2 we can
find v∗ ∈ (H1

0 (Ω))d such that

(� · v∗, p) = ‖p‖2
0, ‖v∗‖1 ≤ C ‖p‖0.(3.17)

We take ṽ∗ ∈ V0,h as the Clément-interpolant [2, 4] of v∗ and have( ∑
K∈Ch

h−2
K ‖ṽ∗ − v∗‖2

0,K +
∑
E∈Eh

h−1
E

∫
E

|ṽ∗ − v∗|2
)1/2

+ ‖ṽ∗‖1 ≤ C ‖v∗‖1.(3.18)

We can write

‖Rh(�× ω) + Sh(� p)‖2
h = ‖Rh(�× ω) + Sh(� p) + β ṽ∗‖2

h

−β2 ‖ṽ∗‖2
h − 2β {(Rh(�× ω), ṽ∗)h + (Sh(� p), ṽ∗)h},(3.19)

where

−β2 ‖ṽ∗‖2
h ≥ −β2 C ‖ṽ∗‖2

0 ≥ −β2 C ‖v∗‖2
1 ≥ −β2 C ‖p‖2

0,(3.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2β {(Rh(�× ω), ṽ∗)h + (Sh(� p), ṽ∗)h}
= − 2β {(ω,�× ṽ∗) − (p,� · ṽ∗)}
= 2β (p,� · v∗) − 2β (ω,�× v∗)

+ 2β {(ω,�× (v∗ − ṽ∗)) − (p,� · (v∗ − ṽ∗))}
= 2β ‖p‖2

0 − 2β (ω,�× v∗) + 2β
∑

K∈Ch

(�× ω + � p,v∗ − ṽ∗)0,K

+ 2β
∑

E∈Eh

∫
E

[ω] (v∗ − ṽ∗) × nE − 2β
∑

E∈Eh

∫
E

[p] (v∗ − ṽ∗) · nE

(3.21)
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2β
∑

K∈Ch

(�× ω + � p,v∗ − ṽ∗)0,K

+2β
∑

E∈Eh

∫
E

[ω] (v∗ − ṽ∗) × nE − 2β
∑

E∈Eh

∫
E

[p] (v∗ − ṽ∗) · nE

≥ −2β C |(p, ω)|(Ch,Eh)

( ∑
K∈Ch

h−2
K ‖ṽ∗ − v∗‖2

0,K +
∑

E∈Eh

h−1
E

∫
E

|ṽ∗ − v∗|2
)1/2

≥ −2β C |(p, ω)|(Ch,Eh) ‖v∗‖1

≥ −2β C |(p, ω)|(Ch,Eh) ‖p‖0 ≥ −β2 ‖p‖2
0 − C |(p, ω)|2(Ch,Eh),

(3.22)

and

−2β (ω,�× v∗) ≥ −2β C ‖ω‖0 ‖v∗‖1 ≥ −ε2 ‖ω‖2
0 −

C β2

ε2
‖p‖2

0.(3.23)

Here ε2 > 0 is also a constant to be determined later.
Summarizing (3.19)–(3.23), we get

‖Rh(�× ω) + Sh(� p)‖2
h ≥ β [2 − β (C + 1 + C/ε2)] ‖p‖2

0

−ε2 ‖ω‖2
0 − C |(p, ω)|2(Ch,Eh).(3.24)

Step 3. From (3.16) and (3.24), taking

0 < α <
1

1/2 + 2C
, 0 < ε2 < α (1 − α/2),(3.25)

0 < β <
2

C + 1 + C/ε2
, 0 < ε1 < β [2 − β (C + 1 + C/ε2)] ,(3.26)

we have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖ω −�× u‖2
0 + 2 ‖Rh(�× ω) + Sh(� p)‖2

h

≥ [α(1 − α/2) − ε2] ‖ω‖2
0 + α [1 − α (1/2 + 2C)] ‖� ×u‖2

0

+ {β [2 − β (C + 1 + C/ε2)] − ε1} ‖p‖2
0

− 2C |(p, ω)|2(Ch,Eh) − (α
2 C
ε1

+ α2 2C) ‖� ·u ‖2
0.

(3.27)

Now we take positive constants Li, i = 1, 2, such that

L1 > 2C, L2 >
α2 C

ε1
+ α2 2C,(3.28)

and we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(2, L1, L2)J II
h (u, p, ω;0) ≥ ‖ω −�× u‖2

0

+2 ‖Rh(�× ω) + Sh(� p)‖2
h + L1 |(p, ω)|2(Ch,Eh) + L2 ‖� ·u‖2

0

≥ [α(1 − α/2) − ε2] ‖ω‖2
0 + α [1 − α (1/2 + 2C)] ‖� ×u‖2

0

+ {β [2 − β (C + 1 + C/ε2)] − ε1} ‖p‖2
0

+(L1 − 2C) |(p, ω)|2(Ch,Eh) + [L2 − (α
2 C
ε1

+ α2 2C)] ‖� ·u‖2
0

≥ C{‖ω‖2
0 + ‖p‖2

0 + ‖� ×u‖2
0 + ‖� ·u‖2

0 + |(p, ω)|2(Ch,Eh)}
≥ C{‖u‖2

1 + ‖p‖2
0 + ‖ω‖2

0 + |(p, ω)|2(Ch,Eh)}.

(3.29)

Hence, we obtain (3.6) for J II
h .
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Using Theorem 3.1 and the Lax–Milgram lemma [3, 5, 29] we can easily obtain
the following.

Corollary 3.1. Under the same assumptions as in Theorem 3.1, the finite
element problems (2.9) and (2.18) have a unique solution.

Corollary 3.2. Under the same assumptions as in Theorem 3.1 and assuming
a quasi-uniform Ch, we can conclude that the condition number of the linear system
from the finite element problem is O(h−2).

Proof. We take method (I) as an example. Since R̆h is an L2 projector, we have

‖R̆h(g)‖0 ≤ C ‖g‖0;

then by the inverse estimation [5, 29] we have, for all (vh, qh, zh) ∈ Uh × Ph ×Wh,

‖R̆h(�× zh + � qh)‖0 ≤ C ‖� ×zh + � qh‖0 ≤ C h−1 {‖qh‖0 + ‖zh‖0},

and thus

LI
h((vh, qh, zh); (vh, qh, zh)) ≤ C h−2 {‖vh‖2

0 + ‖qh‖2
0 + ‖zh‖2

0},

which, together with (3.6) and the symmetry of LI
h, completes the proof.

3.2. Error bounds in energy norm. Since Lh is symmetric and positive def-
inite (see Theorem 3.1), we introduce a norm ‖| · ‖| on Uh × Ph ×Wh by

‖|(vh, qh, zh)‖|2 := Lh((vh, qh, zh); (vh, qh, zh)),(3.30)

where Lh stands for LI
h or LII

h . ‖| · ‖| will be referred to as energy norm. We can also
easily show the generalized Cauchy–Schwarz inequality

Lh((u, p, ω); (v, q, z)) ≤ ‖|(u, p, ω)‖| ‖|(v, q, z)‖|(3.31)

for all (u, p, ω), (v, q, z) ∈ ((H1
0 (Ω))d + Uh) × (H1(Ω) + Ph) × ((H1(Ω))2 d−3 + Wh).

Here x ∈ Y + T means that x ∈ Y or x ∈ T or x = y + t with y ∈ Y and t ∈ T.
Lemma 3.2. Let (u, p, ω) ∈ (H1(Ω))d ×H1(Ω)× (H1(Ω))2d−3 and (uh, ph, ωh) ∈

Uh × Ph × Wh be the exact and approximate solutions, respectively. Then, for all
(vh, qh, zh) ∈ Uh × Ph ×Wh,

Lh((u − uh, p− ph, ω − ωh); (vh, qh, zh)) = 0.(3.32)

Proof. Equation (3.32) can be easily shown, due to (2.2), (2.16), and

(f , R̆h(�× zh + �qh)) = (R̆h(f), R̆h(�× zh + �qh))

= (R̆h(�× ω + �p), R̆h(�× zh + �qh)),
(3.33)

(f , Rh(�× zh) + Sh(� qh))

= (R̄h(f), Rh(�× zh) + Sh(� qh))h

= (R̄h(�× ω + �p), Rh(�× zh) + Sh(� qh))h

= (Rh(�× ω) + Sh(�p), Rh(�× zh) + Sh(� qh))h.

(3.34)

Assumption (A2). For ω ∈ (H l+1(Ω))2d−3 and p ∈ Hm+1(Ω) ∩ L2
0(Ω), with

l,m ≥ 0, there exist ω̃ ∈ Wh and p̃ ∈ Ph such that

Rh(�× (ω − ω̃)) + Sh(�(p− p̃)) = 0 (for method (II))(3.35)
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or

R̆h(�× (ω − ω̃) + �(p− p̃)) = 0 (for method (I))(3.36)

with

‖ω̃ − ω‖0 + |(0, ω̃ − ω)|(Ch,Eh) ≤ C hs ‖ω‖s, 1 ≤ s ≤ l + 1(3.37)

and

‖p̃− p‖0 + |(p̃− p, 0)|(Ch,Eh) ≤ C hs ‖p‖s, 1 ≤ s ≤ m + 1.(3.38)

Remark 3.2. To make Assumption (A2) hold, the approximation spaces for pres-
sure and vorticity are required to have either interior or edge (face) degrees of freedom
or both with respect to each element. All standard approximation spaces satisfy this
requirement, with lower-order approximation spaces enriched by suitable artificial ele-
ment bubbles or edge (face) bubbles or both. Here we briefly consider method (II) for
2D problems. Assumption (A2) holds for method (II), using continuous Pr elements
with r ≥ 3 or discontinuous Pr elements with r ≥ 0 or P+

1 (= P1 + bK) or P+
2 , where

bK ∈ H1
0 (K) is a bubble λ1λ2λ3 and λi is the ith bary-coordinate on a triangle. See

Theorem 3.4 for details of the verification of Assumption (A2).
Theorem 3.2. Assuming the assumptions of Theorem 3.1 and Assumption (A2),

let (u, p, ω) ∈ (H1(Ω))d ×H1(Ω) × (H1(Ω))2 d−3 and (uh, ph, ωh) ∈ Uh × Ph ×Wh be
the exact and approximate solutions. We have

‖|(u − uh, p− ph, ω − ωh)‖| ≤ C Λ(ũ − u, p̃− p, ω̃ − ω),(3.39)

where ũ ∈ Uh is any given function, p̃ and ω̃ come from Assumption (A2), and

Λ(ũ − u, p̃− p, ω̃ − ω) := ‖ũ − u‖1 + ‖p̃− p‖0

+ ‖ω̃ − ω‖0 + |(p̃− p, ω̃ − ω)|(Ch,Eh).(3.40)

We further have

‖p− ph‖0 + ‖ω − ωh‖0 + ‖u − uh‖1 ≤ C Λ(ũ − u, p̃− p, ω̃ − ω),(3.41)

|(p− ph, ω − ωh)|(Ch,Eh) ≤ C Λ(ũ − u, p̃− p, ω̃ − ω),(3.42)

‖Rh(�× (ω − ωh)) + Sh(�(p− ph))‖h ≤ C Λ(ũ − u, p̃− p, ω̃ − ω)(3.43)

or

‖R̆h(�× (ω − ωh) + �(p− ph))‖0 ≤ C Λ(ũ − u, p̃− p, ω̃ − ω).(3.44)

Proof. It suffices to show (3.39) with (3.40). From (3.30), Lemma 3.2, and (3.31),
we have

‖|(ũ − uh, p̃− ph, ω̃ − ωh)‖| ≤ ‖|(ũ − u, p̃− p, ω̃ − ω)‖|.(3.45)

Using the triangle inequality, we then get

‖|(u − uh, p− ph, ω − ωh)‖| ≤ C ‖|(ũ − u, p̃− p, ω̃ − ω)‖|.(3.46)
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By Assumption (A2) we have

‖|(ũ − u, p̃− p, ω̃ − ω)‖|2 = Lh((ũ − u, p̃− p, ω̃ − ω); (ũ − u, p̃− p, ω̃ − ω))

= |(p̃− p, ω̃ − ω)|2(Ch,Eh) + ‖ω̃ − ω −�× (ũ − u)‖2
0

+ ‖ � · (ũ − u)‖2
0,

(3.47)

which completes the proof.

As a concrete application, we consider the 2D case and state the error estimates
for methods (I) and (II) in the following.

Theorem 3.3. Assuming the same hypotheses as in Theorem 3.2, when em-
ploying equal-order continuous interpolation Pr − Pr − Pr with r ≥ 3 for meth-
ods (I) and (II), or for method (II) employing Pr − P+

r − P+
r with r = 1, 2 or

employing Pr(continuous)-Pr−1(discontinuous)-Pr−1(discontinuous) with r ≥ 1 for
(u, p, ω) ∈ (Hr+1(Ω))2 ×Hr(Ω) ×Hr(Ω), we have

‖u − uh‖1 + ‖p− ph‖0 + ‖ω − ωh‖0 ≤ C hr (‖u‖r+1 + ‖p‖r + ‖ω‖r).(3.48)

When employing unequal-order continuous interpolation Pr+1 − Pr − Pr with r ≥ 3
for methods (I) and (II), or for method (II) employing Pr+1 −P+

r −P+
r with r = 1, 2

for (u, p, ω) ∈ (Hr+2(Ω))2 ×Hr+1(Ω) ×Hr+1(Ω), we have

‖u − uh‖1 + ‖p− ph‖0 + ‖ω − ωh‖0 ≤ C hr+1 (‖u‖r+2 + ‖p‖r+1 + ‖ω‖r+1).(3.49)

Proof. Let Uh be the piecewise Pl continuous element with l ≥ 1 and let ũ ∈ Uh

be an interpolant of u ∈ (Hk(Ω))2 satisfying (see [2, 3, 5, 29])

‖ũ − u‖1 ≤ C hs−1 ‖u‖s, 1 ≤ s ≤ min(k, l + 1).(3.50)

From Theorem 3.2 and Assumption (A2) we immediately have (3.48) and (3.49).

Remark 3.3. Note that for lower-order approximation spaces (r = 1, 2), the error
estimates for method (I) are not optimal and are the same as those of the standard LS
method [16], because Assumption (A2) does not hold. However, we can understand
P3 as the enrichment of P1 or P2 with suitable element bubbles and edge bubbles.
Denoting P3 as P#

1 (the enrichment of P1) or P�
2 (the enrichment of P2), we have

(3.48) for method (I) with r = 1 or r = 2, using P1 −P#
1 −P#

1 or P2 −P�
2 −P�

2 for

(u, p, ω), and we have (3.49) for method (I) with r = 1 or r = 2, using P2 −P#
1 −P#

1

or P3 − P�
2 − P�

2 for (u, p, ω).

Before closing this section we verify Assumption (A2) using triangular finite ele-
ments in a 2D domain. For rectangular elements in a 2D or three-dimensional (3D)
domain and tetrahedrons in a 3D domain the verification is similar. In the following
we use the P3 element as an example to show how to verify Assumption (A2).

Theorem 3.4. If ω ∈ H l+1(Ω) and p ∈ Hm+1(Ω), with l,m ≥ 0, then there exist
p̃ ∈ Ph and ω̃ ∈ Wh such that (3.35)–(3.38) hold. Here

Wh := {q ∈ H1(Ω); q|K ∈ P3(K) ∀K ∈ Ch}, Ph := Wh ∩ L2
0(Ω).(3.51)

Proof. Consider ω as an example. We shall follow the idea of [2, Lemma A.3,
p. 100]. In order to include the less regular case l = m = 0, we first let ω0 ∈ Wh be
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an interpolation which satisfies [2, p. 111]

‖ω − ω0‖0 +

( ∑
K∈Ch

h2
K |ω − ω0|21,K

)1/2

≤ C hs ‖ω‖s(3.52)

and ( ∑
K∈Ch

h−2
K ‖ω − ω0‖2

0,K

)1/2

+ |ω − ω0|1 ≤ C hs−1 ‖ω‖s,(3.53)

where 1 ≤ s ≤ min(4, l + 1). We then define ω̃ ∈ Wh in (3.54)–(3.56):

ω̃(i) = ω0(i), 1 ≤ i ≤ 3 ∀K ∈ Ch,(3.54)

∫
E

(ω̃ − ω) v = 0 ∀v ∈ P1(E) ∀E ∈ ∂K ∀K ∈ Ch,(3.55)

where P1(E) is the space of linear polynomials on E,∫
K

(ω̃ − ω) = 0 ∀K ∈ Ch.(3.56)

We show that

R̆h(�× (ω̃ − ω)) = 0, Rh(�× (ω̃ − ω)) = 0.(3.57)

In fact, from the definition (2.5) of R̆h, (3.55), and (3.56) we have∫
K

R̆h(�× (ω − ω̃))v =

∫
K

�× (ω − ω̃)v

=

∫
K

(ω − ω̃) �×v −
∑

E∈∂K

∫
E

(ω − ω̃)v × nE

= 0 ∀v ∈ (P1(K))2, ∀K ∈ Ch,

(3.58)

where we have used the fact that � × v|K ∈ P0(K), v × nE |E ∈ P1(E), since

v|K ∈ (P1(K))2. It follows that R̆h(� × (ω̃ − ω)) = 0. Similarly, since V0,h is a
piecewise linear polynomial space and

(Rh(�× (ω − ω̃)),v)h = (ω − ω̃,�× v) =
∑

K∈Ch

(ω − ω̃,�× v)0,K = 0 ∀v ∈ V0,h,

we have Rh(�×(ω̃−ω)) = 0. The approximation property (3.37) follows the standard
routine and (3.52)–(3.56); cf. [2, Lemma A.4, p. 101 or pp. 136–138] for a similar
argument. Similarly, we can construct p̃ ∈ Ph, satisfying similar properties as ω̃. We
proceed as follows: first let p̄ be constructed as above, and then let p̃ = p̄− 1

|Ω|
∫
Ω
p̄ =

p̄− 1
|Ω|

∫
Ω

(p̄− p), because of
∫
Ω
p = 0.

Remark 3.4. Methods (I) and (II) and their analysis cover nonaffine families
of finite elements such as quads and hexes. In the analysis, only the verification of
Assumption (A2) may involve the mapping. In the case of nonaffine mapping families,
such verification can be done on the reference element through the mapping. We
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consider 2D quadrilaterals. Let FK denote the mapping from the reference element
K̂ to K, which associates the function q defined on K with the function q̂ defined on
K̂ by q = q̂ ◦ F−1

K . We define Zh = {v ∈ (L2(Ω))2;v|K ◦ FK ∈ (Q1(K̂))2 ∀K ∈ Ch},
with Qr(K̂), r ≥ 1, being the standard element [3, 5, 29]. As approximating spaces
of the pressure and vorticity, for example, we take Ph = Wh = {q ∈ H1(Ω); q|K ◦
FK ∈ Q4(K̂) ∀K ∈ Ch} for method (I) and Ph = Wh = {q ∈ H1(Ω); q|K ◦ FK ∈
Q1(K̂) + b̂ Q−

2 (K̂) ∀K ∈ Ch} for method (II), where b̂ is a bubble on K̂ and Q−
2 (K̂)

is the standard reduced biquadratic element. We can easily verify Assumption (A2)
through FK by following the argument in Theorem 3.4 and the interpolation theory
in [2, p. 108].

4. L2-error bound. In this section we establish the L2-error bound for velocity.

4.1. Additional assumptions. We first make a few more assumptions.
Assumption (A3). For all uh,vh ∈ V0,h, there holds

|(uh,vh) − (uh,vh)h| ≤ C h ‖uh‖1 ‖vh‖0.(4.1)

Remark 4.1. Taking (2.12) as an example, Assumption (A3) holds (see [1, 3, 29]).
Lemma 4.1. Let Assumptions (A1) and (A3) hold. For any given u ∈ V0,h, we

have

‖u − R̄h(u)‖h ≤ C h ‖u‖1.(4.2)

Proof. By Assumptions (A1) and (A3) and (2.15) we have (4.2), since

‖R̄h(u) − u‖2
h = (R̄h(u) − u, R̄h(u) − u)h

= (R̄h(u), R̄h(u) − u)h − (u, R̄h(u) − u)h

= (u, R̄h(u) − u) − (u, R̄h(u) − u)h

≤ C h ‖u‖1 ‖R̄h(u) − u‖0 ≤ C h ‖u‖1 ‖R̄h(u) − u‖h.

(4.3)

Assumption (A4). For any given f ∈ (L2(Ω))d and v ∈ (H2(Ω) ∩ H1
0 (Ω))d, the

problem

−Δu + � p = f , � · u = � · v in Ω, u = 0 on Γ(4.4)

has a solution (u, p) satisfying

‖u‖2 + ‖p‖1 ≤ C {‖f‖0 + ‖� ·v‖1}.(4.5)

Proposition 4.1. For a convex polygon, Assumption (A4) holds.
Proof. From [6, 8] we know that for v ∈ (H2(Ω) ∩ H1

0 (Ω))2 we can find a z ∈
(H2(Ω) ∩H1

0 (Ω))2 such that

� · z = � · v, ‖z‖2 ≤ C ‖� ·v‖1.(4.6)

We then consider the Stokes problem

−Δw + � p = f + Δ z, � · w = 0 in Ω, w = 0 on Γ.(4.7)

From [2, 7] we know that the problem (4.7) has a solution (w, p) satisfying

‖w‖2 + ‖p‖1 ≤ C {‖f‖0 + ‖Δ z‖0} ≤ C {‖f‖0 + ‖� ·v‖1}.(4.8)
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We therefore define

u := z + w.(4.9)

Clearly, such (u, p) satisfies (4.4) and (4.5).
Assumption (A5). For any given f ∈ (L2(Ω))d and for all λ ≥ 0, the elasticity

problem

−Δu − λ �� · u = f in Ω, u = 0 on Γ(4.10)

has a solution u satisfying

‖u‖2 + λ ‖� ·u‖1 ≤ C ‖f‖0,(4.11)

where C is independent of λ.
Remark 4.2. When Ω is a convex polygon in R

2, Assumption (A5) holds (see
[6, 10]).

4.2. L2-error bound for velocity. We can now establish the L2-error bound.
Theorem 4.1. Under the assumptions of Theorem 3.2 and Assumptions (A3)–

(A5), if V0,h ⊆ Uh, we then have

‖u − uh‖0 ≤ C hΛ,(4.12)

where Λ = Λ(ũ − u, p̃− p, ω̃ − ω) is defined by (3.40).
Proof. We consider only method (II). The same argument for method (I) is

straightforward. In principle, we follow the Aubin–Nitsche duality technique [29].
We consider the following auxiliary problem: Given u − uh ∈ (L2(Ω))d, find ρ

such that

−Δ ρ− λ � � · ρ = u − uh in Ω, ρ = 0 on Γ,(4.13)

which can also be expressed as the mixed form equivalently:

−Δ ρ−�κ = u − uh, � · ρ− λ−1 κ = 0 in Ω, ρ = 0 on Γ.(4.14)

From Assumption (A5) we have

‖ρ‖2 + ‖κ‖1 + λ ‖� · ρ‖1 ≤ C ‖u − uh‖0,(4.15)

which holds for any λ ≥ 0. We shall take

λ :=
1

h
.(4.16)

Let

eu := u − uh, ep := p− ph, eω := ω − ωh.(4.17)

From (4.14) we have

‖eu‖2
0 = (−Δ ρ−�κ, eu)

= (�×�× ρ− h � κ, eu) + (κ,� · eu)

= (�× ρ,�× eu) + h (κ,� · eu) + (κ,� · eu)

= (eω −�× eu,−�×ρ) + (eω,�× ρ)

+ h (κ,� · eu) + (κ,� · eu)

:= I1 + I2 + I3 + I4,

(4.18)
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where, by (3.41),

I3 ≤ |h (κ,� · eu)| ≤ C h‖κ‖0‖eu‖1 ≤ C h ‖κ‖1 Λ.(4.19)

Let ρ̄ ∈ V0,h be such that (see [2, 3, 4, 29])

( ∑
K∈Ch

h−2
K ‖ρ̄− ρ‖2

0,K +
∑
E∈Eh

h−1
E

∫
E

|ρ̄− ρ|2
)1/2

+ ‖ρ̄− ρ‖1 ≤ C h ‖ρ‖2.(4.20)

We have

I2 = (eω,�× ρ̄) + (eω,�× (ρ− ρ̄)),(4.21)

where, by (3.41) and (4.20),

|(eω,�× (ρ− ρ̄))| ≤ C‖eω‖0‖ρ− ρ̄‖1 ≤ Ch ‖ρ‖2Λ,(4.22)

(eω,�× ρ̄) = (Rh(�× eω), ρ̄)h

= (Rh(�× eω) + Sh(� ep), ρ̄)h − (Sh(� ep), ρ̄)h

= (Rh(�× eω) + Sh(� ep), ρ̄− R̄h(ρ̄))h

+ (Rh(�× eω) + Sh(� ep), R̄h(ρ̄))h

+ (ep,� · (ρ̄− ρ) + hκ),

(4.23)

and

⎧⎪⎨
⎪⎩

|(Rh(�× eω) + Sh(� ep), ρ̄− R̄h(ρ̄))h + (ep,� · (ρ̄− ρ) + hκ)|
≤ ‖Rh(�× eω) + Sh(� ep)‖h ‖ρ̄− R̄h(ρ̄)‖h + C ‖ep‖0 {‖ρ̄− ρ‖1 + h ‖κ‖0}
≤ C h {‖ρ‖2 + ‖κ‖1}Λ (by (3.43), Lemma 4.1, (3.41), and (4.20)).

(4.24)

From (4.18), (4.19), and (4.21)–(4.24) we need only to estimate⎧⎨
⎩

I0 := I1 + I4 + (Rh(�× eω) + Sh(� ep), R̄h(ρ̄))h
= (eω −�× eu,−�×ρ) + (κ,� · eu)

+ (Rh(�× eω) + Sh(� ep), R̄h(ρ̄))h.
(4.25)

To do so, we consider an auxiliary problem: Find (u∗, p∗) such that

−Δu∗ + � p∗ = ρ̄ + eu + h � κ, � · u∗ = κ in Ω, u∗ = 0 on Γ.(4.26)

Since κ = h−1 � · ρ = � · (h−1 ρ) and h−1 ρ ∈ (H2(Ω) ∩H1
0 (Ω))d, from Assumption

(A4), (4.20), and (4.15) we have

‖u∗‖2 + ‖p∗‖1 ≤ C {‖ρ̄‖0 + ‖eu‖0 + ‖κ‖1} ≤ C ‖eu‖0.(4.27)

Inserting

�×�× ρ− h � κ−�κ = eu (by the first equation of (4.14))(4.28)
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into the first equation of (4.26) we get

�× (�× u∗ −�× ρ) + � p∗ = ρ̄.(4.29)

Let

φ := �× u∗ −�× ρ,(4.30)

and we have

�× φ + � p∗ = ρ̄, ‖φ‖1 ≤ C ‖eu‖0.(4.31)

Therefore, noting that

R̄h(ρ̄) = R̄h(�× φ + � p∗) = Rh(�× φ) + Sh(� p∗) (by (2.16)),(4.32)

we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I0 = (eω −�× eu, φ−�× u∗) + (� · u∗,� · eu)

+ (Rh(�× eω) + Sh(� ep), Rh(�× φ) + Sh(� p∗))h

= (eω −�× eu, φ− φ̃−�× (u∗ − ũ∗)) + (� · (u∗ − ũ∗),� · eu)

+ (Rh(�× eω) + Sh(� ep), Rh(�× (φ− φ̃)) + Sh(� (p∗ − p̃∗)))h

+ (eω −�× eu, φ̃−�× ũ∗) + (� · ũ∗,� · eu)

+ (Rh(�× eω) + Sh(� ep), Rh(�× φ̃) + Sh(� p̃∗))h,

(4.33)

where we have chosen (ũ∗, p̃∗, φ̃) ∈ Uh × Ph × Wh such that ũ∗ ∈ V0,h ⊆ Uh and
Assumption (A2) is satisfied with s = 1:

‖u∗ − ũ∗‖0 + h ‖u∗ − ũ∗‖1 ≤ C h2 ‖u∗‖2,(4.34)

Rh(�× (φ− φ̃)) + Sh(� (p∗ − p̃∗)) = 0,(4.35)

‖φ̃− φ‖0 + ‖p̃∗ − p∗‖0 + |(p̃∗ − p∗, φ̃− φ)|(Ch,Eh)

≤ C h {‖p∗‖1 + ‖φ‖1}.(4.36)

We also have{
|(eω −�× eu, φ− φ̃−�× (u∗ − ũ∗)) + (� · (u∗ − ũ∗),� · eu)|
≤ C h {‖u∗‖2 + ‖φ‖1}Λ (by (3.41), (4.36), and (4.34)),

(4.37)

(Rh(�× eω) + Sh(� ep), Rh(�× (φ− φ̃)) + Sh(� (p∗ − p̃∗)))h = 0(4.38)

(by (4.35)), ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(eω −�× eu, φ̃−�× ũ∗) + (� · ũ∗,� · eu)

+(Rh(�× eω) + Sh(� ep), Rh(�× φ̃) + Sh(� p̃∗))h

= Lh((eu, ep, eω); (ũ∗, p̃∗, φ̃))

−
∑

K∈Ch

h2
K (�× eω + � ep,�× φ̃ + � p̃∗)0,K

−
∑

E∈Eh

hE

∫
E

[eω] [φ̃− φ] −
∑

E∈Eh

hE

∫
E

[ep] [p̃
∗ − p∗],

(4.39)
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where we have used the regularity of φ ∈ (H1(Ω))2d−3 and p∗ ∈ H1(Ω),

Lh((eu, ep, eω); (ũ∗, p̃∗, φ̃)) = 0 (by Lemma 3.2),(4.40)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∣− ∑
K∈Ch

h2
K (�× eω + � ep,�× φ̃ + � p̃∗)0,K

−
∑

E∈Eh

hE

∫
E

[eω] [φ̃− φ] −
∑

E∈Eh

hE

∫
E

[ep] [p̃
∗ − p∗]

∣∣∣
≤ C |(ep, eω)|(Ch,Eh) {|(p̃∗ − p∗, φ̃− φ)|(Ch,Eh) + h (‖φ‖1 + ‖p∗‖1)}
≤ C h {‖φ‖1 + ‖p∗‖1}Λ (by (3.42) and (4.36)).

(4.41)

Therefore, summarizing (4.18), (4.19), (4.21)–(4.25), (4.33), and (4.37)–(4.41) and
(4.15), (4.27), and (4.31), we finally obtain

‖eu‖2
0 ≤ C hΛ {‖ρ‖2 + ‖κ‖1 + ‖u∗‖2 + ‖p∗‖1 + ‖φ‖1}(4.42)

≤ C h ‖eu‖0 Λ.

This completes the proof.
Remark 4.3. We now clarify the assumptions involved for the two methods. For

the two methods the common trivial assumptions are that Ch is regular and Ω is a
Lipschitz convex polygon (polyhedron in R

3) and V0,h ⊆ Uh with (3.50) for Uh. For
method (I) the additional assumptions are (A2), (A4), and (A5). For method (II) the
additional assumptions are (A1)–(A5).

5. Numerical experiments. In this section we report some numerical experi-
ments to illustrate the theoretical error bounds. We shall consider only method (II) in
(2.18), employing continuous Uh × Ph ×Wh, with hK taken as h and Rh = Sh = R̄h.
We shall use the two lower-order elements: P1-P+

1 -P+
1 approximation and P2 -P+

1 -P+
1

approximation. We take Ω := [0, 1] × [0, 1] and partition it into uniform triangles.
We consider a 2D Stokes problem

−Δu + � p = f , � · u = 0 in Ω, u = 0 on Γ.(5.1)

We take the example from [17]. The exact solution (u, p, ω) of (5.1) is⎛
⎜⎜⎝

u1

u2

ω
p

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

x2(1 − x)2(2y − 6y2 + 4y3)
y2(1 − y)2(−2x + 6x2 − 4x3)

x2(1 − x)2(−2 + 12y − 12y2) + y2(1 − y)2(−2 + 12x2 − 12x2)
x2 + y2 − 20

3 xy + x + y

⎞
⎟⎟⎠.

The right-hand side f is generated by evaluating the equations on the given exact
solution. In our experiment we set ph(0, 0) = 0 to replace

∫
Ω
ph = 0 to ensure the

uniqueness. We employ the conjugate gradient method, with the stopping criterion
tolerance 10−9 and with a zero initial guess, to solve the resulting linear system. We
employ the Pr −P+

1 −P+
1 approximations, r = 1, 2. We list the relative errors in L2-

and H1-norms in Tables 1 and 2 and Tables 3 and 4, respectively.
Tables 1 and 2 show that the relative errors in L2-norm and H1-norm for velocity

are O(h2) and O(h), respectively, the same as predicted by Theorems 3.3 and 4.1.
Tables 1 and 2 show that the relative errors in L2-norm and H1-norm for vorticity
and pressure are also O(h2) and O(h), respectively, higher than predicted.
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Table 1

Relative errors in L2-norm for P1-P+
1 -P+

1 approximation.

h=0.25 h=0.125 h=0.0625 h=0.03125

‖u1−u1,h‖0

‖u1‖0
1.169467 0.314805 0.035818 0.007337

‖u2−u2,h‖0

‖u2‖0
1.645415 0.422441 0.051579 0.010812

‖ω−ωh‖0
‖ω‖0

2.515323 0.5050733 0.0576332 0.0101290

‖p−ph‖0
‖p‖0

0.951209 0.257992 0.007156 0.001472

Table 2

Relative errors in H1-norm for P1-P+
1 -P+

1 approximation.

h=0.25 h=0.125 h=0.0625 h=0.03125

‖u1−u1,h‖1

‖u1‖1
1.681586 0.526141 0.177909 0.006571

‖u2−u2,h‖1

‖u2‖1
1.641017 0.486311 0.175564 0.086430

‖ω−ωh‖1
‖ω‖1

2.349043 0.597976 0.176431 0.076122

‖p−ph‖1
‖p‖1

0.439165 0.175217 0.080606 0.039919

Table 3

Relative errors in L2-norm for P2-P+
1 -P+

1 approximation.

h=0.25 h=0.125 h=0.0625

‖u1−u1,h‖0

‖u1‖0
2.296299 0.404793 0.029696

‖u2−u2,h‖0

‖u2‖0
2.470892 0.500211 0.061050

‖ω−ωh‖0
‖ω‖0

2.967468 0.583148 0.074835

‖p−ph‖0
‖p‖0

1.198191 0.364830 0.097487

Table 4

Relative errors in H1-norm for P2-P+
1 -P+

1 approximation.

h = 0.25 h = 0.125 h = 0.0625

‖u1−u1,h‖1

‖u1‖1
2.393610 0.460135 0.057460

‖u2−u2,h‖1

‖u2‖1
2.493563 0.522751 0.073181

‖ω−ωh‖1
‖ω‖1

2.717344 0.754938 0.249759

‖p−ph‖1
‖p‖1

0.528725 0.198494 0.085175
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Tables 3 and 4 show that relative errors in L2- and H1-norms for velocity are
O(h3) and O(h2), respectively, and also show that the relative errors in L2- and
H1-norms for vorticity and pressure are O(h2) and O(h), respectively. These are
consistent with what was predicted.

Acknowledgement. The authors would like to thank the referees for their valu-
able suggestions which helped to improve the content and presentation of the paper.
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DISCONTINUOUS GALERKIN METHODS FOR FRIEDRICHS’
SYSTEMS. I. GENERAL THEORY∗
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Abstract. This paper presents a unified analysis of discontinuous Galerkin methods to ap-
proximate Friedrichs’ systems. An abstract set of conditions is identified at the continuous level
to guarantee existence and uniqueness of the solution in a subspace of the graph of the differential
operator. Then a general discontinuous Galerkin method that weakly enforces boundary conditions
and mildly penalizes interface jumps is proposed. All the design constraints of the method are fully
stated, and an abstract error analysis in the spirit of Strang’s Second Lemma is presented. Fi-
nally, the method is formulated locally using element fluxes, and links with other formulations are
discussed. Details are given for three examples, namely, advection-reaction equations, advection-
diffusion-reaction equations, and the Maxwell equations in the so-called elliptic regime.

Key words. Friedrichs’ systems, finite elements, partial differential equations, discontinuous
Galerkin method
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1. Introduction. Discontinuous Galerkin (DG) methods were introduced in the
1970s, and their development has since followed two somewhat parallel routes depend-
ing on whether the PDE is hyperbolic or elliptic.

For hyperbolic PDEs, the first DG method was introduced by Reed and Hill in
1973 [28] to simulate neutron transport, and the first analysis of DG methods for
hyperbolic equations in an already rather general and abstract form was performed
by Lesaint and Raviart in 1974 [23, 24]. The analysis was subsequently improved by
Johnson, Nävert, and Pitkäranta who established that the optimal order of conver-
gence in the L2-norm is p+ 1

2 if polynomials of degree p are used [21]. More recently,
DG methods for hyperbolic and nearly hyperbolic equations experienced a significant
development based on the ideas of numerical fluxes, approximate Riemann solvers,
and slope limiters; see, e.g., Cockburn et al. [9] and references therein for a thorough
review. This renewed interest in DG methods is stimulated by several factors includ-
ing the flexibility offered by the use of nonmatching grids and the possibility to use
high-order hp-adaptive finite element methods; see, e.g., Süli et al. [30].

For elliptic PDEs, DG methods originated from the early work of Nitsche on
boundary-penalty methods [25] and the use of interior penalties (IP) to weakly enforce
continuity conditions imposed on the solution or its derivatives across the interfaces
between adjoining elements; see, e.g., Babuška [4], Babuška and Zlámal [3], Douglas
and Dupont [13], Baker [6], Wheeler [31], and Arnold [2]. DG methods for elliptic
problems in mixed form were introduced more recently. Initially, a discontinuous
approximation was used solely for the primal variable, the flux being still discretized in
a conforming fashion; see, e.g., Dawson [11, 12]. Then, a discontinuous approximation

∗Received by the editors February 9, 2005; accepted for publication (in revised form) October 6,
2005; published electronically April 12, 2006.

http://www.siam.org/journals/sinum/44-2/62413.html
†CERMICS, Ecole nationale des ponts et chaussées, Champs sur Marne, 77455 Marne la Vallée

Cedex 2, France (ern@cermics.enpc.fr).
‡Department of Mathematics, Texas A&M, College Station, TX 77843-3368 (guermond@math.

tamu.edu) and LIMSI (CNRS-UPR 3251), BP 133, 91403, Orsay, France.

753



754 A. ERN AND J.-L. GUERMOND

of both the primal variable and its flux has been introduced by Bassi and Rebay
[7] and further extended by Cockburn and Shu [10] leading to the so-called local
discontinuous Galerkin (LDG) method. Around the same time, Baumann and Oden
[8] proposed a nonsymmetric variant of DG for elliptic problems. This method was
further developed and analyzed by Oden, Babus̆ka, and Baumann [26] and by Rivière,
Wheeler, and Girault [29].

The fact that several DG methods (including IP methods) share common features
and can be tackled by similar analysis tools called for a unified analysis. A first
important step in that direction has been recently accomplished by Arnold et al.
[1] for elliptic equations. It is shown in [1] that it is possible to cast many DG
methods for the Poisson equation with homogeneous Dirichlet boundary conditions
into a single framework amenable to a unified error analysis. The main idea consists
of using the mixed formulation of the Poisson equation to define numerical fluxes and
to locally eliminate these fluxes so as to derive a method involving only the primal
variable.

The goal of the present paper is to propose a unified analysis of DG methods
that goes beyond the traditional hyperbolic/elliptic classification of PDEs by making
systematic use of the theory of Friedrichs’ systems [17] to formulate DG methods and
to perform the convergence analysis. This paper, which concentrates on first-order
PDEs, is the first part of a more comprehensive study on DG methods for Friedrichs’
systems. The forthcoming second part will deal more specifically with Friedrichs’
systems associated with second-order PDEs. Some preliminary results on Friedrichs’
systems related to this work can be found in [15, p. 227].

The paper is organized as follows. In section 2 we investigate the well posedness
of Friedrichs’ systems in graph spaces. Originally, Friedrichs addressed the ques-
tion of the uniqueness of strong solutions in C1 and that of the existence of weak
solutions in L2 [17]. The analysis of Friedrichs’ systems in graph spaces has been
undertaken by Rauch [27] and more recently by Jensen [20]. The main novelty of
the present approach is that we avoid invoking traces at the boundary by introducing
a bounded linear operator from the graph space to its dual that satisfies sufficient
conditions ensuring well posedness. In section 3 we illustrate the abstract results
of section 2 on three important examples of Friedrichs’ systems, namely, advection-
reaction equations, advection-diffusion-reaction equations, and a simplified version
of the Maxwell equations in the so-called elliptic regime. Drawing on earlier ideas
by Lesaint and Raviart [23, 24] and Johnson et al. [21], we propose in section 4
a general framework for DG methods. This section contains three main contribu-
tions. First, the generic DG method is formulated in terms of a boundary operator
enforcing boundary conditions weakly and in terms of an interface operator penal-
izing the jumps of the solution across the mesh interfaces. Second, the convergence
analysis is performed in the spirit of Strang’s Second Lemma by using two different
norms, namely, a stability norm for which a discrete inf-sup condition holds and an
approximability norm ensuring the continuity of the DG bilinear form. All the de-
sign constraints to be fulfilled by the boundary and the interface operators for the
error analysis to hold are clearly stated. Finally, using integration by parts, the DG
method is reinterpreted locally by introducing the concept of element fluxes and el-
ement adjoint-fluxes, thus providing a direct link with engineering practice where
approximation schemes are often designed by specifying such fluxes. Finally, section
5 reviews various DG approximations for the model problems investigated in sec-
tion 3. In all the cases, the degrees of freedom in the design of the DG method are
underlined.
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2. Friedrichs’ systems. The goal of this section is to reformulate Friedrichs’
theory by giving special care to the meaning of the boundary conditions. The main
results of this section are Theorems 2.5 and 2.8. Theorem 2.8 will be the starting
point of the DG method developed in section 4.

2.1. The setting. Let Ω be a bounded, open, and connected Lipschitz domain
in R

d. We denote by D(Ω) the space of C∞ functions that are compactly supported
in Ω. Let m be a positive integer. Let K and {Ak}1≤k≤d be (d + 1) functions on Ω
with values in R

m,m. Following Friedrichs [17], we assume that

K ∈ [L∞(Ω)]m,m,(A1)

∀k ∈ {1, . . . , d}, Ak ∈ [L∞(Ω)]m,m and

d∑
k=1

∂kAk ∈ [L∞(Ω)]m,m,(A2)

∀k ∈ {1, . . . , d}, Ak = (Ak)t a.e. in Ω,(A3)

Z := K + Kt −
d∑

k=1

∂kAk ≥ 2μ0Im a.e. on Ω,(A4)

where Im is the identity matrix in R
m,m. Set L = [L2(Ω)]m. We say that a function

u in L has an A-weak derivative in L if the linear form

[D(Ω)]m � ϕ �−→ −
∫

Ω

d∑
k=1

ut∂k(Akϕ) ∈ R,(2.1)

is bounded on L, and we denote by Au the function in L that can be associated with
the above linear form by means of the Riesz representation theorem. Clearly, if u is
smooth enough, e.g., u ∈ [C1(Ω)]m,

Au =

d∑
k=1

Ak∂ku.(2.2)

Define the graph space

W = {w ∈ L; Aw ∈ L},(2.3)

and equip W with the graph norm

‖w‖W = ‖Aw‖L + ‖w‖L,(2.4)

and the associated scalar product. W is a Hilbert space. Indeed, let vn be a Cauchy
sequence in W ; i.e., vn and Avn are Cauchy sequences in L. Let v and w be the
corresponding limits in L. Let ϕ ∈ [D(Ω)]m. Then, using the symmetry of Ak and
an integration by parts yields

∫
Ω

d∑
k=1

vt∂k(Akϕ) ←
∫

Ω

d∑
k=1

vtn∂k(Akϕ) = −
∫

Ω

ϕtAvn → −
∫

Ω

ϕtw,

which means that v has an A-weak derivative in L and Av = w. Since [D(Ω)]m ⊂ W
and [D(Ω)]m is dense in L, W is dense in L; as a result, we shall henceforth use L
as a pivot space, i.e., W ⊂ L ≡ L′ ⊂ W ′. Note that owing to (A2), [H1(Ω)]m is a
subspace of W .
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Let K ∈ L(L;L) be defined such that K : L � v �→ Kv ∈ L and set

T = A + K.(2.5)

Then, T ∈ L(W ;L). Let K∗ ∈ L(L;L) be the adjoint operator of K, i.e., for all
v ∈ L, K∗v = Ktv. Let T̃ ∈ L(W ;L) be the formal adjoint of T ,

T̃w = −
d∑

k=1

∂k(Akw) + K∗w ∀w ∈ W.(2.6)

In this definition
∑d

k=1 ∂k(Akw) is understood in the weak sense. It can easily be
verified that this weak derivative exists in L whenever w is in W . Moreover, the usual
rule for differentiating products applies. In particular, upon introducing the operator
∇·A ∈ L(L;L) such that (∇·A)w = (

∑d
k=1 ∂kAk)w for all w ∈ L, the following holds

∀w ∈ W, Tw + T̃w = (K + K∗ −∇·A)w.(2.7)

Observe that (A4) means that

∀w ∈ W, (Tw,w)L + (w, T̃w)L ≥ 2μ0‖w‖2
L.(2.8)

Definition 2.1. Let D ∈ L(W ;W ′) be the operator such that

∀(u, v) ∈ W ×W, 〈Du, v〉W ′,W = (Tu, v)L − (u, T̃ v)L.(2.9)

This definition makes sense since both T and T̃ are in L(W ;L). Note that D is
a boundary operator in the sense that [D(Ω)]m ⊂ Ker(D); see also Remark 2.1. A
more precise result (see [14]) is that Ker(D) = W0 and Im(D) = W⊥

0 , where W0 is
the closure of [D(Ω)]m in W and for any subset E ⊂ W ′ we denote by E⊥ the polar
set of E, i.e., the set of the continuous linear forms in W ′′ ≡ W that are zero on E.

Lemma 2.2. The operator D is self-adjoint.
Proof. Let (u, v) ∈ W × W and set Z = K + K∗ − ∇·A. A straightforward

calculation yields

〈Du, v〉W ′,W − 〈Dv, u〉W ′,W = (Tu, v)L − (u, T̃ v)L − (Tv, u)L + (v, T̃ u)L

= (Zu, v)L − (u, Zv)L = 0,

since Z is self-adjoint.
Remark 2.1. Let n = (n1, . . . , nd)

t be the unit outward normal to ∂Ω. The usual
way of presenting Friedrichs’ systems consists of assuming that the fields {Ak}1≤k≤d

are smooth enough so that the matrix D =
∑d

k=1 nkAk is meaningful at the boundary.
Then, the operator D can be represented as follows

〈Du, v〉W ′,W =

∫
∂Ω

d∑
k=1

vtnkAku =

∫
∂Ω

vtDu,

whenever u and v are smooth functions. Provided [C1(Ω)]m is dense in [H1(Ω)]m

and in W , it can be shown that Du ∈ [H− 1
2 (∂Ω)]m. Further characterization and

regularity results on Du can be found in [27] and in [20].
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2.2. The well posedness result. Consider the following problem: For f in L,
seek u ∈ W such that Tu = f . In general, boundary conditions must be enforced for
this problem to be well posed. In other words, one must find a closed subspace V of
W such that the restricted operator T : V → L is an isomorphism.

The key hypothesis introduced by Friedrichs to select boundary conditions con-
sists of assuming that there exists a matrix-valued field at the boundary, say, M :
∂Ω −→ R

m,m, such that a.e. on ∂Ω,

M is positive, i.e., (Mξ, ξ)Rm ≥ 0 for all ξ in R
m,(2.10)

R
m = Ker(D −M) + Ker(D + M),(2.11)

where D is defined in Remark 2.1. Then, it is possible to prove uniqueness of the
so-called strong solution u ∈ [C1(Ω)]m of the PDE system Tu = f supplemented with
the boundary condition (D − M)u|∂Ω = 0. Moreover, it is also possible to prove
existence of a weak solution in L, namely, of a function u ∈ L such that the relation
(u, T̃ v)L = (f, v)L holds for all v ∈ [C1(Ω)]m such that (D + Mt)v|∂Ω = 0; see [27].
In this paper, we want to investigate the bijectivity of T in a subspace V of the graph
W , and it is not possible to set V = {v ∈ W ; (D −M)v|∂Ω = 0} since the meaning
of traces is not clear.

To overcome this difficulty, we modify Friedrichs’ hypothesis by the following
assumption: there exists an operator M ∈ L(W ;W ′) such that

M is positive, i.e., 〈Mw,w〉W ′,W ≥ 0 for all w in W,(M1)

W = Ker(D −M) + Ker(D + M).(M2)

Let M∗ ∈ L(W ;W ′) be the adjoint operator of M , i.e., for all (u, v) ∈ W × W ,
〈M∗u, v〉W ′,W = 〈Mv, u〉W ′,W . Then, one can prove (see [14]) that (M1)–(M2) imply
that Ker(D) = Ker(M), Im(D) = Im(M), and

W = Ker(D −M∗) + Ker(D + M∗).(2.12)

Since Ker(D) = Ker(M), M is a boundary operator. Set

V = Ker(D −M) and V ∗ = Ker(D + M∗),(2.13)

and equip V and V ∗ with the graph norm (2.4). The following result is proven in [14].
Lemma 2.3. Assume (M1)–(M2). Then,

D(V )⊥ = V ∗ and D(V ∗)⊥ = V.(2.14)

Lemma 2.4. Assume (A1)–(A4) and (M1)–(M2). Then, T is L-coercive on V
and T̃ is L-coercive on V ∗.

Proof. Using (2.8) and (2.9) yields

(Tw,w)L ≥ μ0‖w‖2
L +

1

2
〈Dw,w〉W ′,W ,

(T̃w, w)L ≥ μ0‖w‖2
L − 1

2
〈Dw,w〉W ′,W .

Use (2.13) and (M1) to conclude.
Theorem 2.5. Assume (A1)–(A4) and (M1)–(M2). Let V and V ∗ be defined

in (2.13). Then,
(i) T : V → L is an isomorphism.
(ii) T̃ : V ∗ → L is an isomorphism.
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Proof. We only prove (i) since the proof of (ii) is similar.
(1) Owing to (2.13), V is closed in W ; hence, V is a Hilbert space. As a result,

showing that T : V → L is an isomorphism amounts to proving statement (ii) in
Theorem 2.6 below with L ≡ L′.

(2) Proof of (2.15). Let u ∈ V . Observe that supv∈L\{0}
(Tu,v)L
‖v‖L

= ‖Tu‖L.

Lemma 2.4 implies ‖Tu‖L ≥ μ0‖u‖L. Furthermore,

‖Tu‖L ≥ ‖Au‖L − ‖K‖L(L;L)‖u‖L ≥ ‖Au‖L −
‖K‖L(L;L)

μ0
‖Tu‖L.

This readily yields ‖Au‖L ≤ c‖Tu‖L and thus ‖u‖W ≤ c‖Tu‖L.
(3) Proof of (2.16). Assume that v ∈ L is such that (Tu, v)L = 0 for all u ∈ V .

Since [D(Ω)]m ⊂ V , a standard distribution argument shows that T̃ v = 0 in [D′(Ω)]m.

Still in the distribution sense, this means that
∑d

k=1 Ak∂kv = K∗v − (∇·A)v. Since
the right-hand side is a bounded linear functional on L, v has an A-weak derivative
in L, i.e., v ∈ W . As a result, 〈Du, v〉W ′,W = 0 for all u ∈ V , i.e., v ∈ D(V )⊥. Owing

to Lemma 2.3, v ∈ V ∗. Finally, since (T̃ v, v)L = 0 and v ∈ V ∗, Lemma 2.4 implies
that v is zero.

Theorem 2.6 (Banach–Nečas–Babuška (BNB)). Let V, L be two Banach spaces,
and denote by 〈·, ·〉L′,L the duality pairing between L′ and L. The following statements
are equivalent:

(i) T ∈ L(V ;L) is bijective.
(ii) There exists a constant α > 0 such that

∀u ∈ V, sup
v∈L′\{0}

〈v, Tu〉L′,L

‖v‖L′
≥ α‖u‖V ,(2.15)

∀v ∈ L′, (〈v, Tu〉L′,L = 0 ∀u ∈ V ) =⇒ (v = 0).(2.16)

As an immediate consequence of Theorem 2.5, the following problems are well
posed: For f in L,

seek u ∈ V such that Tu = f,(2.17)

seek u∗ ∈ V ∗ such that T̃ u∗ = f.(2.18)

Remark 2.2. To guarantee that T : V → L and T̃ : V ∗ → L are isomorphisms,
it is also possible to specify assumptions on the spaces V and V ∗ without using the
boundary operator M . Introduce the cones C± = {w ∈ W ; ± 〈Dw,w〉W ′,W ≥ 0}.
Then, under the following assumptions:

V ⊂ C+ and V ∗ ⊂ C−,(V1)

V ∗ = D(V )⊥ and V = D(V ∗)⊥,(V2)

T : V → L and T̃ : V ∗ → L are isomorphisms [14]. This way of introducing Friedrichs’
systems seems to be new. We think that assumptions (V1)–(V2) are more natural
than (M1)–(M2) since they do not involve the somewhat ad hoc operator M .

2.3. Boundary conditions weakly enforced. As we have in mind to solve
(2.17) by means of DG methods with the boundary conditions weakly enforced, we
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now propose alternative formulations of (2.17) and (2.18). Define the bilinear forms

a(u, v) = (Tu, v)L +
1

2
〈(M −D)u, v〉W ′,W ,(2.19)

a∗(u, v) = (T̃ u, v)L +
1

2
〈(M∗ + D)u, v〉W ′,W .(2.20)

It is clear that a and a∗ are in L(W ×W ; R). A remarkable property is the following
lemma.

Lemma 2.7. Under assumption (A4), the following holds for all w ∈ W ,

a(w,w) ≥ μ0‖w‖2
L +

1

2
〈Mw,w〉W ′,W ,(2.21)

a∗(w,w) ≥ μ0‖w‖2
L +

1

2
〈Mw,w〉W ′,W .(2.22)

As a result, a and a∗ are L-coercive on W whenever (A4) and (M1) hold.
Proof. Let w ∈ W . Owing to (2.9),

a(w,w) = (Tw,w)L − 1

2
〈Dw,w〉W ′,W +

1

2
〈Mw,w〉W ′,W

=
1

2
((T + T̃ )w,w)L +

1

2
〈Mw,w〉W ′,W .

Hence, (2.21) follows from (2.8). The proof of (2.22) is similar.
Consider the following problems: For f ∈ L,

seek u ∈ W such that a(u, v) = (f, v)L ∀v ∈ W,(2.23)

seek u∗ ∈ W such that a∗(u∗, v) = (f, v)L ∀v ∈ W.(2.24)

Theorem 2.8. Assume (A1)–(A4) and (M1)–(M2). Then,
(i) There is a unique solution to (2.23) and this solution solves (2.17);
(ii) There is a unique solution to (2.24) and this solution solves (2.18).
Owing to Theorem 2.5, there is a unique u ∈ V solving Tu = f . Moreover, since u

is in V , (D−M)u = 0. Hence, a(u, v) = (f, v)L for all v ∈ W , i.e., u solves (2.23). In
addition, since a is L-coercive on W owing to Lemma 2.7, it is clear that the solution
to (2.23) is unique. This proves statement (i). The proof of the second statement is
similar.

Remark 2.3. Neither the bilinear form a nor the bilinear form a∗ induce an isomor-
phism between W and W ′. In particular, there is no guarantee that (2.23) or (2.24)
has a solution if the right-hand side is replaced by 〈f, v〉W ′,W whenever f ∈ W ′.

3. Examples. This section discusses admissible boundary conditions for three
important examples of Friedrichs’ systems: advection-reaction equations, advection-
diffusion-reaction equations, and a simplified version of the Maxwell equations in the
elliptic regime. We stress the fact that the existence of an operator M ∈ L(W ;W ′)
such that (M1)–(M2) hold provides sufficient conditions for well posedness. Although
the existence of M ∈ L(W ;W ′) may not be granted in all cases (this is reflected,
for instance, in the necessity to make assumption (H2) to treat advection–reaction
equations; see section 3.1), the formalism appears to be general enough to treat
advection-diffusion-reaction equations, and Maxwell’s equations in the elliptic regime;
see sections 3.2 and 3.3.
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3.1. Advection-reaction. Let β be a vector field in R
d, assume β ∈ [L∞(Ω)]d,

∇·β ∈ L∞(Ω), and define

∂Ω± = {x ∈ ∂Ω; ± β(x)·n(x) > 0},(3.1)

as well as ∂Ω0 = ∂Ω\(∂Ω− ∪ ∂Ω+); ∂Ω− is the inflow boundary, ∂Ω+ the outflow
boundary, and ∂Ω0 the interior of the set {x ∈ ∂Ω; β(x)·n(x) = 0}.

Let μ be a function in L∞(Ω) such that

μ(x) − 1

2
∇·β(x) ≥ μ0 > 0 a.e. in Ω,(3.2)

and consider the advection-reaction equation

μu + β·∇u = f.(3.3)

This PDE falls into the category studied above by setting Kv = μv for all v ∈ L2(Ω),
and Ak = βk for k ∈ {1, . . . , d}. It is clear that (A1)–(A4) hold with m = 1. The
graph space is W = {w ∈ L2(Ω); β·∇w ∈ L2(Ω)}.

Henceforth, we assume that

C
1
0(R

d) is dense in W,(H1)

∂Ω− and ∂Ω+ are well separated, i.e., dist(∂Ω−, ∂Ω+) > 0.(H2)

Hypothesis (H1) is a regularity assumption on Ω. It can be shown to hold by using
Friedrichs’ mollifier whenever Ω and β are smooth. Let L2(∂Ω; |β·n|) be the space of
real-valued functions that are square integrable with respect to the measure |β·n|dx
where dx is the Lebesgue measure on ∂Ω.

Lemma 3.1. Provided (H1)–(H2) hold,
(i) The trace operator γ : C1

0(R
d) � v −→ v ∈ L2(∂Ω; |β·n|) extends uniquely to a

continuous operator on W ;
(ii) The operator D has the following representation: for all u, v ∈ W ,

〈Du, v〉W ′,W =

∫
∂Ω

uv(β·n).(3.4)

Proof. Since ∂Ω− and ∂Ω+ are well separated, there are two nonnegative functions
ψ− and ψ+ in C1

0(R
d) such that

ψ− + ψ+ = 1 on Ω, ψ−|∂Ω+ = 0, ψ+|∂Ω− = 0.(3.5)

Let u be a function in C1
0(R

d). Then,∫
∂Ω

u2|β·n| =

∫
∂Ω

u2(ψ− + ψ+)|β·n| =

∫
∂Ω−∪∂Ω0

u2ψ−|β·n| +
∫
∂Ω+∪∂Ω0

u2ψ+|β·n|

= −
∫
∂Ω

u2ψ−(β·n) +

∫
∂Ω

u2ψ+(β·n) = −
∫

Ω

∇·(u2ψ−β) +

∫
Ω

∇·(u2ψ+β).

Hence, 0 ≤
∫
∂Ω

u2|β·n| ≤ c(ψ+, ψ−)‖u‖2
W . Statement (i) follows from the density of

C1
0(R

d) in W . The proof of (ii) is an immediate consequence of the existence of traces
in L2(∂Ω; |β·n|).

To specify boundary conditions, define for u, v ∈ W ,

〈Mu, v〉W ′,W =

∫
∂Ω

uv|β·n|.(3.6)
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Lemma 3.2. Let M ∈ L(W ;W ′) be defined in (3.6). Then,
(i) (M1)–(M2) hold;
(ii) V = {v ∈ W ; v|∂Ω− = 0} and V ∗ = {v ∈ W ; v|∂Ω+ = 0}.
Proof of (i). (M1) directly results from (3.6). Let ψ+, ψ− be the partition of unity

introduced in (3.5). Let w ∈ W and write w = ψ+w + ψ−w. It is clear that ψ+w ∈
Ker(D−M) since for all v ∈ W , 〈(D−M)ψ+w, v〉W ′,W =

∫
∂Ω+ ψ+vw(β·n−|β·n|) = 0.

Similarly, ψ−w ∈ Ker(D + M). Hence, (M2) holds.
Proof of (ii). Let v ∈ Ker(D −M). Then, for all w ∈ W , −2

∫
∂Ω− |β·n|vw = 0.

Take w = v to infer v|∂Ω− = 0; thus, Ker(D − M) ⊂ V . Conversely, if v|∂Ω− = 0,
it is clear that for all w ∈ W , 〈(D − M)v, w〉W ′,W = −2

∫
∂Ω− |β·n|vw = 0, i.e.,

v ∈ Ker(D −M). Proceed similarly to prove that V ∗ = {v ∈ W ; v|∂Ω+ = 0}.

3.2. Advection-diffusion-reaction equations. Let β : Ω −→ R
d be a vector

field such that β ∈ [L∞(Ω)]d and ∇·β ∈ L∞(Ω). Let μ be a function in L∞(Ω) such
that (3.2) holds, and consider the advection-diffusion-reaction equation

−Δu + β·∇u + μu = f.(3.7)

This equation can be written as a system of first-order PDEs in the form{
σ + ∇u = 0,
μu + ∇·σ + β·∇u = f.

(3.8)

The above differential operator can be cast into the form of a Friedrichs’ operator by
setting K(σ, u) = (σ, μu) for all (σ, u) ∈ [L2(Ω)]d+1, and for k ∈ {1, . . . , d},

Ak =

[
0 ek

(ek)t βk

]
,(3.9)

where ek is the kth vector in the canonical basis of R
d. It is clear that hypotheses

(A1)–(A4) hold with m = d + 1. Upon observing the norm equivalence

c1(‖∇u‖L2(Ω) + ‖∇·σ‖L2(Ω)) ≤ ‖∇u‖L2(Ω) + ‖β·∇u + ∇·σ‖L2(Ω)

≤ c2(‖∇u‖L2(Ω) + ‖∇·σ‖L2(Ω)),

it is inferred that the graph space is W = H(div; Ω)×H1(Ω). Moreover, the boundary
operator D is such that for all (σ, u), (τ, v) ∈ W ,

〈D(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 ,

1
2

+ 〈τ ·n, u〉− 1
2 ,

1
2

+

∫
∂Ω

(β·n)uv,(3.10)

where 〈, 〉− 1
2 ,

1
2

denotes the duality pairing between H− 1
2 (∂Ω) and H

1
2 (∂Ω). Note that

(3.10) makes sense since functions in H1(Ω) have traces in H
1
2 (∂Ω) and vector fields

in H(div; Ω) have normal traces in H− 1
2 (∂Ω).

3.2.1. Dirichlet boundary conditions. A suitable operator M to weakly en-
force Dirichlet boundary conditions is such that for all (σ, u), (τ, v) ∈ W ,

〈M(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 ,

1
2
− 〈τ ·n, u〉− 1

2 ,
1
2
.(3.11)
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Lemma 3.3. Let M ∈ L(W ;W ′) be defined in (3.11). Then,
(i) (M1)–(M2) hold;
(ii) V = V ∗ = {(σ, u) ∈ W ; u|∂Ω = 0}.
Proof of (i). (M1) clearly holds since M + M∗ = 0. Let w = (σ, u) ∈ W and

write w = w+ + w− with w+ = (− 1
2βu, u) and w− = (σ + 1

2βu, 0). By assumption
on β, the vector-valued field βu is in H(div; Ω) if u ∈ H1(Ω); hence, w± are in W .
Moreover, a straightforward calculation shows that w± ∈ Ker(D ±M). Hence, (M2)
holds.

Proof of (ii). The identity V = V ∗ results from the fact that M + M∗ = 0.
Moreover, observe that for all (σ, u), (τ, v) ∈ W ,

〈(D −M)(σ, u), (τ, v)〉W ′,W = 2〈τ ·n, u〉− 1
2 ,

1
2

+

∫
∂Ω

(β·n)uv.

Let (σ, u) ∈ Ker(D −M). Let γ ∈ H− 1
2 (∂Ω). There exists τ ∈ H(div; Ω) such that

τ ·n = γ in H− 1
2 (∂Ω). Then, using (τ, 0) in the above equation yields 〈γ, u〉− 1

2 ,
1
2

= 0.

Since γ is arbitrary, this implies u|∂Ω = 0. Hence, V ⊂ {(σ, u) ∈ W ; u|∂Ω = 0}.
Conversely, let (σ, u) ∈ W be such that u|∂Ω = 0. Then, the above equation shows
that (σ, u) ∈ Ker(D −M) = V .

Remark 3.1. The choice of the operator M to enforce homogeneous Dirichlet
boundary conditions is not unique. For instance, one can take 〈M(σ, u), (τ, v)〉W ′,W =
〈σ·n, v〉− 1

2 ,
1
2
− 〈τ ·n, u〉− 1

2 ,
1
2

+
∫
∂Ω

ςuv, where ς is a nonnegative real number.

3.2.2. Neumann and Robin boundary conditions. Let � ∈ L∞(∂Ω) be
such that 2� + β·n ≥ 0 a.e. on ∂Ω. Neumann and Robin boundary conditions are
treated simultaneously, the choice � = 0 yielding a Neumann boundary condition (in
this case, β·n ≥ 0 a.e. on ∂Ω corresponding to an outflow boundary). A suitable
operator M to weakly enforce Neumann or Robin boundary conditions is such that
for all (σ, u), (τ, v) ∈ W ,

〈M(σ, u), (τ, v)〉W ′,W = 〈τ ·n, u〉− 1
2 ,

1
2
− 〈σ·n, v〉− 1

2 ,
1
2

+

∫
∂Ω

(2� + β·n)uv.(3.12)

Lemma 3.4. Let M ∈ L(W ;W ′) be defined in (3.12). Then,
(i) (M1)–(M2) hold;
(ii) V ={(σ, u) ∈ W ; σ·n=�u|∂Ω} and V ∗={(σ, u) ∈ W ; σ·n=−(� + β·n)u|∂Ω}.
Proof. (M1) holds since 2� + β·n ≥ 0 a.e. on ∂Ω. Furthermore, observe that

〈(D −M)(σ, u), (τ, v)〉W ′,W = 2〈σ·n, v〉− 1
2 ,

1
2
− 2

∫
∂Ω

�uv,

〈(D + M)(σ, u), (τ, v)〉W ′,W = 2〈τ ·n, u〉− 1
2 ,

1
2

+ 2
∫
∂Ω

(� + β·n)uv,

〈(D + M∗)(σ, u), (τ, v)〉W ′,W = 2〈σ·n, v〉− 1
2 ,

1
2

+ 2
∫
∂Ω

(� + β·n)uv.

Let w = (σ, u) ∈ W . Since �u|∂Ω ∈ H− 1
2 (∂Ω), there is σ0 ∈ H(div; Ω) such that

σ0·n = �u|∂Ω. Then, setting w+ = (σ − σ0, 0) and w− = (σ0, u), it is easily verified
that w± ∈ Ker(D ±M) and, hence, (M2) holds. Finally, proceed as in the proof of
Lemma 3.3 to prove (ii).

3.3. Maxwell’s equations in the elliptic regime. We close this series of ex-
amples by considering a simplified form of Maxwell’s equations in R

3 in the elliptic
regime, i.e., when displacement currents are negligible. Let σ and μ be two posi-
tive functions in L∞(Ω) uniformly bounded away from zero. Consider the following
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problem {
μH + ∇×E = f,
σE −∇×H = g.

(3.13)

This problem can be cast into the form of a Friedrichs’ system by setting K(H,E) =
(μH, σE) for all (H,E) ∈ [L2(Ω)]3 × [L2(Ω)]3 and for k ∈ {1, 2, 3},

Ak =

[
0 Rk

(Rk)t 0

]
.(3.14)

The entries of the matrices Rk ∈ R
3,3 are those of the Levi–Civita permutation tensor,

i.e., Rk
ij = εikj for 1 ≤ i, j, k ≤ 3. Hypotheses (A1)–(A4) hold with m = 6. The graph

space is W = H(curl; Ω)×H(curl; Ω), and the boundary operator D is such that for
all (H,E), (h, e) ∈ W ,

〈D(H,E), (h, e)〉W ′,W = (∇×E, h)[L2(Ω)]3 − (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .
(3.15)

When H and E are smooth the above duality product can be interpreted as the
boundary integral

∫
∂Ω

(n×E)·h + (n×e)·H.
Let us now define acceptable boundary conditions for (3.13). One possibility

(among many others) consists of setting for all (H,E), (h, e) ∈ W ,

〈M(H,E), (h, e)〉W ′,W = − (∇×E, h)[L2(Ω)]3 + (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .
(3.16)

Lemma 3.5. Let M be defined in (3.16). Then,
(i) (M1)–(M2) hold;
(ii) V = V ∗ = {(H,E) ∈ W ; (E×n)|∂Ω = 0}.
Proof of (i). Observe that M +M∗ = 0; hence, M is positive. Let w = (H,E) ∈

W . Write w = w+ + w− with w+ = (0, E) and w− = (H, 0). One easily verifies that
w± ∈ Ker(D ±M), i.e., (M2) holds.

Proof of (ii). The identity V = V ∗ results from the fact that M + M∗ = 0. Let
(H,E) ∈ Ker(D −M). Then, for all (h, e) ∈ W ,

〈(D −M)(H,E), (h, e)〉W ′,W = 2(∇×E, h)[L2(Ω)]3 − 2(E,∇×h)[L2(Ω)]3 = 0.

Since vector fields in H(curl; Ω) have tangential traces in [H− 1
2 (∂Ω)]3, we infer that

for all h ∈ [H1(Ω)]3, 〈(E×n), h〉− 1
2 ,

1
2

= 0. Since h is arbitrary and the traces of

vector fields in [H1(Ω)]3 span [H
1
2 (∂Ω)]3, we conclude that (E×n)|∂Ω = 0. Con-

versely, let (H,E) ∈ W be such that (E×n)|∂Ω = 0. Then, it is clear that 〈(D −
M)(H,E), (h, e)〉W ′,W = 0 for all h ∈ [H1(Ω)]3 and all e ∈ H(curl; Ω). Since
[H1(Ω)]3 is dense in H(curl; Ω) and both D and M are in L(W ;W ′), it follows that
(H,E) ∈ Ker(D −M).

4. Discontinuous Galerkin. The goal of this section is to introduce a generic
DG method to approximate the abstract problem (2.23). The fact that the boundary
conditions are enforced weakly through the boundary operator M is a key to the
theory. The discrete problem is stated in (4.12)–(4.13). The design constraints of the
method are (DG1) to (DG8). The main convergence result is stated in Theorem 4.6.
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4.1. The discrete setting. Let {Th}h>0 be a family of meshes of Ω. The meshes
are assumed to be affine to avoid unnecessary technicalities, i.e., Ω is assumed to be
a polyhedron. However, we do not make any assumption on the matching of element
interfaces.

Let p be a nonnegative integer. Define

Wh = {vh ∈ [L2(Ω)]m; ∀K ∈ Th, vh|K ∈ [Pp]
m},(4.1)

W (h) = [H1(Ω)]m + Wh.(4.2)

We denote by F i
h the set of interior faces (or interfaces), i.e., F ∈ F i

h if F is a
(d−1)-manifold and there are K1(F ), K2(F ) ∈ Th such that F = K1(F )∩K2(F ). We
denote by F∂

h the set of the faces that separate the mesh from the exterior of Ω, i.e.,
F ∈ F∂

h if F is a (d−1)-manifold and there is K(F ) ∈ Th such that F = K(F ) ∩ ∂Ω.
Finally, we set Fh = F i

h ∪ F∂
h . Since every function v in W (h) has a (possibly two-

valued) trace almost everywhere on F ∈ F i
h, it is meaningful to set

v1(x) = lim
y→x

y∈K1(F )

v(y), v2(x) = lim
y→x

y∈K2(F )

v(y), for a.e. x ∈ F ,(4.3)

[[v]] = v1 − v2, {v} =
1

2
(v1 + v2), a.e. on F .(4.4)

The arbitrariness in the choice of K1(F ) and K2(F ) could be avoided by choosing
an intrinsic notation that would, however, unnecessarily complicate the presentation.
For instance, we could have chosen to set [[v]] = v1⊗n1 + v2⊗n2 where n1, n2 are the
unit outward normals of K1(F ) and K2(F ), respectively. Although having to choose
K1(F ) and K2(F ) may seem cumbersome, nothing that is said hereafter depends on
the choice that is made.

For any measurable subset of Ω or Fh, say E, (·, ·)L,E denotes the scalar product
induced by [L2(Ω)]m or [L2(Fh)]m on E, respectively, and ‖ · ‖L,E the associated
norm. Similarly, ‖ · ‖Ld,E denotes the norm induced by [L2(Ω)]m×d or [L2(Fh)]m×d

on E. For K ∈ Th (resp., F ∈ Fh), hK (resp., hF ) denotes the diameter of K (resp.,
F ).

The mesh family {Th}h>0 is assumed to be shape-regular so that there is a con-
stant c, independent of h = maxK∈Th

hK , such that for all vh ∈ Wh and for all
K ∈ Th,

‖∇vh‖Ld,K ≤ c h−1
K ‖vh‖L,K ,(4.5)

‖vh‖L,F ≤ c h
− 1

2

K ‖vh‖L,K ∀F ⊂ ∂K.(4.6)

4.2. Boundary operators. Henceforth we denote D∂Ω =
∑d

k=1 nkAk and we
assume that the boundary operator M is associated with a matrix-valued field M :
∂Ω −→ R

m,m. Hence, for all functions u, v smooth enough (e.g., u, v ∈ [H1(Ω)]m),
the following holds:

〈Du, v〉W ′,W =

∫
∂Ω

vtD∂Ωu, 〈Mu, v〉W ′,W =

∫
∂Ω

vtMu.(4.7)

To enforce boundary conditions weakly, we introduce for all F ∈ F∂
h a linear oper-

ator MF ∈ L([L2(F )]m; [L2(F )]m). The design of the boundary operators {MF }F∈F∂
h
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must comply with the following conditions: For all F ∈ F∂
h and for all v, w ∈ [L2(F )]m,

(MF (v), v)L,F ≥ 0,(DG1)

(Mv = D∂Ωv) =⇒ (MF (v) = D∂Ωv),(DG2)

|(MF (v) −D∂Ωv, w)L,F | ≤ c|v|M,F ‖w‖L,F ,(DG3)

|(MF (v) + D∂Ωv, w)L,F | ≤ c‖v‖L,F |w|M,F ,(DG4)

where c is a mesh-independent constant and where we have introduced for all v ∈ W (h)
the following seminorms:

|v|2M =
∑

F∈F∂
h

|v|2M,F with |v|2M,F = (MF (v), v)L,F .(4.8)

Remark 4.1.
(i) Examples of boundary operators MF are presented in section 5 for all the

model problems introduced in section 3.
(ii) Assumption (DG2) is a consistency assumption while assumptions (DG3)

and (DG4) are related to the stability and continuity of the discrete bilinear form; see
the analysis in section 4.5.

4.3. Interface operators. For K ∈ Th, define the matrix-valued field D∂K :
∂K → R

m,m as

D∂K(x) =

d∑
k=1

nK,kAk(x) a.e. on ∂K,(4.9)

where nK = (nK,1, . . . , nK,d)
t is the unit outward normal to K on ∂K. Note that this

definition is compatible with that of D∂Ω in (4.7) if ∂K ∩ ∂Ω �= ∅. Moreover, observe
that for all u, v in W (h) and for all K ∈ Th,

(D∂Ku, v)L,∂K = (Tu, v)L,K − (u, T̃ v)L,K .(4.10)

We denote by D the matrix-valued field defined on Fh = F i
h ∪ F∂

h as follows. On
F∂

h , D is single-valued and coincides with D∂Ω. On F i
h, D is two-valued and for all

F ∈ F i
h, its two values are D∂K1(F ) and D∂K2(F ). Note that {D} = 0 a.e. on F i

h.
To control the jumps of functions in Wh across mesh interfaces, we introduce

for all F ∈ F i
h a linear operator SF ∈ L([L2(F )]m; [L2(F )]m). The analysis below

will show that the design of the interface operators {SF }F∈F i
h

must comply with the

following conditions. For all F ∈ F i
h and for all v, w ∈ [L2(F )]m,

(SF (v), v)L,F ≥ 0,(DG5)

‖SF (v)‖L,F ≤ c‖v‖L,F ,(DG6)

|(SF (v), w)L,F | ≤ c|v|S,F |w|S,F ,(DG7)

|(D∂K(F )v, w)L,F | ≤ c|v|S,F ‖w‖L,F ,(DG8)

where c is a mesh-independent constant, K(F ) denotes any of the two elements sharing
F and ∂K(F ) its boundary, and where we have introduced for all v ∈ W (h) the
following seminorms:

|v|2S =
∑

F∈F i
h

|v|2S,F with |v|2S,F = (SF (v), v)L,F .(4.11)
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Remark 4.2.
(i) Examples of interface operators SF are presented in section 5 for all the model

problems introduced in section 3.
(ii) Since SF is positive, a sufficient condition for (DG7) to hold with c = 1 is SF

be self-adjoint.

4.4. The discrete problem. We now turn our attention to the construction of
a discrete counterpart of (2.23). To this end we introduce the bilinear form ah such
that for all v, w in W (h),

ah(v, w) =
∑

K∈Th

(Tv,w)L,K +
∑

F∈F∂
h

1

2
(MF (v) −Dv, w)L,F

−
∑

F∈F i
h

2({Dv} , {w})L,F +
∑

F∈F i
h

(SF ([[v]]), [[w]])L,F .
(4.12)

Then, we construct an approximate solution to (2.23) as follows. For f ∈ L,{
seek uh ∈ Wh such that
ah(uh, vh) = (f, vh)L ∀vh ∈ Wh.

(4.13)

Remark 4.3. In the definition of ah, the second term weakly enforces the boundary
conditions. The purpose of the third term is to ensure that a coercivity property
holds, see Lemma 4.1. The last term controls the jump of the discrete solution across
interfaces. Some user-dependent arbitrariness appears in the second and fourth term
through the definition of the operators MF and SF . The design constraints on MF

and SF are (DG1)–(DG4) and (DG5)–(DG8), respectively.

4.5. Convergence analysis. To perform the error analysis we introduce the
following discrete norms on W (h),

‖v‖2
h,A = ‖v‖2

L + |v|2J + |v|2M +
∑

K∈Th

hK‖Av‖2
L,K ,(4.14)

‖v‖2
h, 12

= ‖v‖2
h,A +

∑
K∈Th

[h−1
K ‖v‖2

L,K + ‖v‖2
L,∂K ],(4.15)

where we have introduced the jump seminorms

|v|2J =
∑

F∈F i
h

|v|2J,F with |v|J,F = |[[v]]|S,F .(4.16)

The norm ‖ · ‖h,A is used to measure the approximation error, and the norm ‖ · ‖h, 12
serves to measure the interpolation properties of the discrete space Wh.

Throughout this section, we assume that:
• Problem (2.23) is well-posed.
• The mesh family {Th}h>0 is shape-regular so that (4.5) and (4.6) hold.
• The design assumptions (DG1)–(DG8) on MF and SF hold.

• For all k ∈ {1, . . . , d}, Ak ∈ [C0, 12 (Ω)]m,m.
Lemma 4.1 (L-coercivity). For all h and for all v in W (h),

ah(v, v) ≥ μ0‖v‖2
L + |v|2J +

1

2
|v|2M .(4.17)
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Proof. Let v in W (h). Using (4.10) and summing over the mesh elements yields

∑
F∈F∂

h

1

2
(Dv, v)L,F +

∑
F∈F i

h

∫
F

{
vtDv

}
=

1

2

∑
K∈Th

[(Tv, v)L,K − (v, T̃ v)L,K ].

Subtracting this equation from (4.12) and using the fact that {vtDv} = 2 {vt} {Dv}
leads to

ah(v, v) =
1

2

∑
K∈Th

[
(Tv, v)L,K + (v, T̃ v)L,K

]
+ |v|2J +

1

2
|v|2M .

Then, the desired result follows using (A4).
Lemma 4.2. There is c > 0, independent of h, such that for all F in F i

h and for
all v, w ∈ W (h),

|(SF ([[v]]), [[w]])L,F | + |({Dv} , {w})L,F | ≤ c|v|J,F (‖ {w} ‖L,F + ‖[[w]]‖L,F ).(4.18)

Proof.
(1) Owing to (DG7), (SF ([[v]]), [[w]])L,F ≤ c|v|J,F |w|J,F , and owing to (DG6),

|w|J,F ≤ c‖[[w]]‖L,F . Hence, (SF ([[v]]), [[w]])L,F ≤ c|v|J,F ‖[[w]]‖L,F .

(2) Let K1(F ) and K2(F ) be the two mesh elements such that F = K1(F )∩K2(F ).
Then, 2 {Dv} = DK1(F )[[v]] since {D} = 0. Using (DG8) yields

|({Dv} , {w})L,F | = |(DK1(F )[[v]], {w})L,F | ≤ c|v|J,F ‖ {w} ‖L,F .

The proof is complete.
Lemma 4.3 (stability). There is c > 0, independent of h, such that

inf
vh∈Wh\{0}

sup
wh∈Wh\{0}

ah(vh, wh)

‖vh‖h,A‖wh‖h,A
≥ c.(4.19)

Proof.

(1) Let vh be an arbitrary element in Wh. Let K ∈ Th. Denote by Ak
K the

mean-value of Ak on K; then,

‖Ak −Ak
K‖[L∞(K)]m,m ≤ ‖Ak‖

[C0, 1
2 (Ω)]m,m

h
1
2

K .(4.20)

Set AKvh =
∑d

k=1 Ak
K∂kvh and πh =

∑
K∈Th

hKAKvh. Clearly, πh ∈ Wh. Using
(4.20), together with the inverse inequalities (4.5) and (4.6), leads to

{
‖AKvh‖L,F ≤ c h

− 1
2

K ‖AKvh‖L,K if F ∈ F∂
h ,

‖
{
AKvh

}
‖L,F + ‖[[AKvh]]‖L,F ≤ c h

− 1
2

K ‖AKvh‖L,K1∪K2
if F ∈ F i

h,
(4.21)

‖AKvh‖L,K ≤ c min(‖Avh‖L,K + h
− 1

2

K ‖vh‖L,K , h−1
K ‖vh‖L,K).(4.22)
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Note that (4.22) implies ‖πh‖L ≤ c‖vh‖L. From the definition of ah it follows that

∑
K∈Th

hK‖Avh‖2
L,K = ah(vh, πh) − (Kvh, πh)L −

∑
F∈F∂

h

1

2
(MF (vh) −Dvh, πh)L,F

+
∑

F∈F i
h

[2({Dvh} , {πh})L,F − (SF ([[vh]]), [[πh]])L,F ]

+
∑

K∈Th

hK(Avh, (A−AK)vh)L,K

= ah(vh, πh) + R1 + R2 + R3 + R4,

where R1, R2, R3, and R4 denote the second, third, fourth, and fifth term in the
right-hand side of the above equation, respectively. Each of these terms is bounded
from above as follows. Using (4.22) yields ‖πh‖L ≤ c‖vh‖L and hence,

|R1| ≤ c‖vh‖L‖πh‖L ≤ c‖vh‖2
L.

Using (DG3) together with (4.21) and (4.22) leads to

|R2| ≤
∑

F∈F∂
h

[cγ(MF (vh), vh)L,F + γ‖πh‖2
L,F ]

≤ c(‖vh‖2
L + |vh|2M ) + γ

∑
K∈Th

hK‖Avh‖2
L,K ,

where γ > 0 can be chosen as small as needed. For the third term, use Lemma 4.2,
together with inequalities (4.21) and (4.22), as follows:

|R3| ≤
∑

F∈F i
h

cγ |vh|2J,F + γ
∑

K∈Th

hK‖AKvh‖2
L,K

≤ c(‖vh‖2
L + |vh|2J) + γ

∑
K∈Th

hK‖Avh‖2
L,K .

For the last term, (4.5) and (4.20) yield

|R4| ≤
∑

K∈Th

hK‖Avh‖L,Kch
1
2

K‖∇vh‖Ld,K

≤ c
∑

K∈Th

h
1
2

K‖Avh‖L,K‖vh‖L,K ≤ c‖vh‖2
L + γ

∑
K∈Th

hK‖Avh‖2
L,K .

Using the above four bounds, γ = 1
6 , and Lemma 4.1 leads to

1

2

∑
K∈Th

hK‖Avh‖2
L,K ≤ ah(vh, πh) + c ah(vh, vh).(4.23)

(2) Let us now prove that ‖πh‖h,A ≤ c ‖vh‖h,A. We have already seen that
‖πh‖L ≤ c‖vh‖L. Using (4.5), together with inequalities (4.20) and (4.22), leads to∑

K∈Th

hK‖Aπh‖2
L,K ≤ c

∑
K∈Th

h−1
K ‖πh‖2

L,K ≤ c
∑

K∈Th

[hK‖Avh‖2
L,K + ‖vh‖2

L,K ].
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Moreover, the inverse inequality (4.6), assumption (DG6), and inequalities (4.21) and
(4.22) yield

|πh|2J =
∑

F∈F i
h

|πh|2J,F ≤ c
∑

K∈Th

h−1
K ‖πh‖2

L,K ≤ c
∑

K∈Th

[hK‖Avh‖2
L,K + ‖vh‖2

L,K ].

Proceed similarly to control |πh|M . In conclusion,

‖πh‖h,A ≤ c ‖vh‖h,A.(4.24)

(3) Owing to (4.17) and (4.23), there is c1 > 0 such that

‖vh‖2
h,A ≤ c1ah(vh, vh) + ah(vh, πh) = ah(vh, πh + c1vh).

Then, setting wh = πh + c1vh and using (4.24) yields

‖vh‖h,A‖wh‖h,A ≤ c ‖vh‖2
h,A ≤ c ah(vh, wh).

The conclusion is straightforward.
Remark 4.4. Note that (4.5) and (4.17) readily imply coercivity in the weaker

norm ‖v‖2
h,A− = ‖v‖2

L + |v|2J + |v|2M +
∑

K∈Th
h2
K‖Av‖2

L,K , but this property is not

sufficient to prove an optimal convergence rate in the broken graph norm; see (4.32).
Lemma 4.4 (continuity). There is c, independent of h, such that

∀(v, w) ∈ W (h) ×W (h), ah(v, w) ≤ c ‖v‖h, 12 ‖w‖h,A.(4.25)

Proof. The general principle of the proof is to integrate by parts ah(v, w) by
making use of the formal adjoint T̃ . Observing that

∑
K∈Th

[(Tv,w)L,K − (v, T̃w)L,K ] =
∑

F∈F∂
h

(Dv, w)L,F +
∑

F∈F i
h

∫
F

2
{
wtDv

}
,

and 2 {wtDv} = 2 {wt} {Dv} + 1
2 [[wt]][[Dv]], it is clear that

ah(v, w) =
∑

K∈Th

(v, T̃w)L,K +
∑

F∈F∂
h

1

2
(MF (v) + Dv, w)L,F

+
∑

F∈F i
h

1

2
([[Dv]], [[w]])L,F +

∑
F∈F i

h

(SF ([[v]]), [[w]])L,F .

(4.26)

Let R1 to R4 be the four terms in the right-hand side. Using the Cauchy–Schwarz
inequality yields

|R1| ≤ c
∑

K∈Th

‖v‖L,K(‖w‖L,K + ‖Aw‖L,K) ≤ c‖v‖h, 12 ‖w‖h,A.

Use (DG4) together with the Cauchy–Schwarz inequality to infer

|R2| ≤ c
∑

F∈F∂
h

‖v‖L,F |w|M,F ≤ c‖v‖h, 12 ‖w‖h,A.
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For the third and fourth term, use (DG6) and (DG7), together with the fact that
[[Dv]] = 2D∂K1(F ) {v}, to obtain

|R3| + |R4| ≤ c
∑

F∈F i
h

(‖ {v} ‖L,F + ‖[[v]]‖L,F )|w|J,F ≤ c‖v‖h, 12 ‖w‖h,A.

The result follows easily.
Lemma 4.5 (consistency). Let u solve (2.23) and let uh solve (4.13). If u ∈

[H1(Ω)]m, then,

∀vh ∈ Wh, ah(u− uh, vh) = 0.(4.27)

Proof. Since u ∈ [H1(Ω)]m solves (2.23), Mu = Du a.e. on ∂Ω and Tu = f in L.
Assumption (DG2) yields MF (u|F ) = Du|F for all F ∈ F∂

h . Moreover, u ∈ [H1(Ω)]m

implies that {Du} = 0 and [[u]] = 0 a.e. on F i
h. As a result,

∀vh ∈ Wh, ah(u, vh) = (Tu, vh)L = (f, vh)L = ah(uh, vh).

The conclusion follows readily.
Theorem 4.6 (convergence). Let u solve (2.23) and let uh solve (4.13). Assume

that u ∈ [H1(Ω)]m. Then, there is c, independent of h, such that

‖u− uh‖h,A ≤ c inf
vh∈Wh

‖u− vh‖h, 12 .(4.28)

Proof. Simple application of Strang’s Second Lemma; see, e.g., [15, p. 94]. Let
vh ∈ Wh. Owing to Lemmas 4.3, 4.4, and 4.5,

‖vh − uh‖h,A ≤ c sup
wh∈Wh\{0}

ah(vh − uh, wh)

‖wh‖h,A

≤ c sup
wh∈Wh\{0}

ah(vh − u,wh)

‖wh‖h,A
≤ c ‖u− vh‖h, 12 .

Conclude using the triangle inequality.
Owing to the definition of Wh, and the regularity of the mesh family {Th}h>0,

the following interpolation property holds. There is c, independent of h, such that for
all v ∈ [Hp+1(Ω)]m, there is vh ∈ Wh satisfying

‖v − vh‖h, 12 ≤ chp+ 1
2 ‖v‖[Hp+1(Ω)]m .(4.29)

Corollary 4.7. If u is in [Hp+1(Ω)]m, there is c, independent of h, such that

‖u− uh‖h,A ≤ c hp+ 1
2 ‖u‖[Hp+1(Ω)]m .(4.30)

In particular,

‖u− uh‖L ≤ c hp+ 1
2 ‖u‖[Hp+1(Ω)]m ,(4.31)

and if the mesh family {Th}h>0 is quasi-uniform,( ∑
K∈Th

‖A(u− uh)‖2
L,K

) 1
2

≤ c hp‖u‖[Hp+1(Ω)]m .(4.32)

The above estimates show that, provided the exact solution is smooth enough, the
method yields optimal order convergence in the broken graph norm and (p+ 1

2 )-order
convergence in the L-norm.
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Remark 4.5. The estimates (4.30) to (4.32) are identical to those that can be
obtained by other stabilization methods like GaLS [5, 19, 21] or subgrid viscosity [18]
and many other methods.

Finally, when the exact solution is not smooth enough to be in [H1(Ω)]m but only
in the graph space W , we use a density argument to infer the convergence of the DG
approximation in the L-norm.

Corollary 4.8. Let u solve (2.23) and let uh solve (4.13). Assume that
[H1(Ω)]m ∩ V is dense in V . Then,

lim
h→0

‖u− uh‖L = 0.(4.33)

Proof. Let ε > 0. There is uε ∈ [H1(Ω)]m ∩ V such that ‖u − uε‖W ≤ ε
2 . Let

uεh be the unique solution in Wh such that ah(uεh, vh) = (Tuε, vh)L for all vh ∈ Wh.
From the regularity of uε together with Theorem 4.6 and Corollary 4.7 applied with
p = 0, it is inferred that limh→0 ‖uεh − uε‖h,A = 0. Furthermore, using the discrete
inf-sup condition (4.19) yields

‖uεh − uh‖L ≤ sup
vh∈Wh\{0}

ah(uεh, vh) − ah(uh, vh)

‖vh‖h,A
= sup

vh∈Wh\{0}

(T (uε − u), vh)L
‖vh‖h,A

≤ ‖T (uε − u)‖L sup
vh∈Wh\{0}

‖vh‖L
‖vh‖h,A

≤ ‖u− uε‖W ≤ ε

2
,

where we have used the fact that for all vh ∈ Wh, ah(uh, vh) = (Tu, vh)L. Finally,
using the triangle inequality

‖u− uh‖L ≤ ‖u− uε‖L + ‖uε − uεh‖L + ‖uεh − uh‖L,

it is deduced that lim suph→0 ‖u− uh‖L ≤ ε.

4.6. Localization, fluxes, and adjoint-fluxes. The purpose of this section is
to discuss briefly some equivalent formulations of the discrete problem (4.13) in order
to emphasize the link with other formalisms derived previously for DG methods,
namely that of Lesaint and Raviart [23, 24] and Johnson et al. [21, 22] for Friedrichs’
systems. To this end, we rewrite the bilinear form (4.12) in various equivalent ways
and introduce the concept of element fluxes and that of element adjoint-fluxes.

Let K ∈ Th. Define the operator ML
∂K ∈ L([L2(∂K)]m; [L2(∂K)]m) as follows.

For v ∈ [L2(∂K)]m and a face F ⊂ ∂K, set

ML
∂K(v)|F =

{
MF (v|F ) if F ∈ F∂

h ,

2SF (v|F ) if F ∈ F i
h.

(4.34)

Furthermore, for v ∈ W (h) and x ∈ ∂K, set

vi(x) = lim
y→x
y∈K

v(y), ve(x) = lim
y→x
y �∈K

v(y),(4.35)

[[v]]∂K(x) = vi(x) − ve(x), {v}∂K (x) =
1

2
(vi(x) + ve(x)),(4.36)

with ve(x) = 0 if x ∈ ∂Ω. Then, a straightforward calculation shows that the bilinear
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form ah defined in (4.12) can be rewritten as follows:

ah(u, v) =
∑

K∈Th

(Tu, v)L,K +
∑

K∈Th

1

2
(ML

∂K([[u]]∂K) −D∂K [[u]]∂K , vi)L,∂K(4.37)

=
∑

K∈Th

(u, T̃ v)L,K +
∑

K∈Th

1

2
(ML

∂K([[u]]∂K) + 2D∂K {u}∂K , vi)L,∂K .(4.38)

The bilinear form (4.37) is that analyzed by Lesaint and Raviart [24, 23] and further
investigated by Johnson et al. [21] in the particular case where the operator ML

∂K

is defined pointwise using a matrix-valued field on ∂K; see section 5.1 for further
discussion.

Definition 4.9. Let K ∈ Th and let v ∈ W (h). The element flux of v on ∂K,
say φ∂K(v) ∈ [L2(∂K)]m, is defined on a face F ⊂ ∂K by

φ∂K(v)|F =

⎧⎨
⎩

1

2
MF (v|F ) +

1

2
D∂Ωv if F ⊂ ∂K∂ ,

SF ([[v]]∂K |F ) + D∂K{v}∂K if F ⊂ ∂K i,

(4.39)

where ∂K i denotes that part of ∂K that lies in Ω and ∂K∂ denotes that part of ∂K that
lies on ∂Ω. Likewise, the element adjoint-flux of v on ∂K, say, φ̃∂K(v) ∈ [L2(∂K)]m,
is defined on a face F ⊂ ∂K by

φ̃∂K(v)|F =

⎧⎪⎨
⎪⎩

1

2
MF (v|F ) − 1

2
D∂Ωv if F ⊂ ∂K∂ ,

SF ([[v]]∂K |F ) − 1

2
D∂K [[v]]∂K if F ⊂ ∂K i.

(4.40)

The relevance of the notion of flux and adjoint-flux is clarified by the following
proposition.

Proposition 4.10. The discrete problem (4.13) is equivalent to each of the
following two local formulations.{

Seek uh ∈ Wh such that ∀K ∈ Th and ∀vh ∈ [Pp(K)]m,
(uh, T̃ vh)L,K + (φ∂K(uh), vh)L,∂K = (f, vh)L,K .

(4.41) {
Seek uh ∈ Wh such that ∀K ∈ Th and ∀vh ∈ [Pp(K)]m,
(Tuh, vh)L,K + (φ̃∂K(uh), vh)L,∂K = (f, vh)L,K .

(4.42)

Proof. Localize the test functions in (4.13) to the mesh elements and use the
fact that φ∂K(v)|F = 1

2M
L
∂K([[v]]∂K) + D∂K{v}∂K and φ̃∂K(v)|F = 1

2M
L
∂K([[v]]∂K) −

1
2D∂K [[v]]∂K .

Let v be a function in W (h). We define the interface fluxes (resp., interface
adjoint-fluxes) of v, say, φi(v), (resp., say, φ̃i(v)), to be the two-valued function defined
on F i

h that collects all the element fluxes (resp., adjoint-fluxes) of v on the interior
faces. Likewise we define the boundary fluxes (resp., boundary adjoint-fluxes) of v,
say, φ∂(v), (resp., say, φ̃∂(v)), to be the single-valued function defined on F∂

h that
collects all the element fluxes (resp., adjoint-fluxes) of v on the boundary faces.

Remark 4.6.
(i) The link between DG methods and the concept of element fluxes has been

explored recently by Arnold et al. [1] for the Poisson equation (in [1], the terminology
“numerical fluxes” is employed instead).
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(ii) In engineering practice, approximation schemes such as (4.41) are often de-
signed by a priori specifying the element fluxes. The above analysis then provides a
practical means to assess the stability and convergence properties of the scheme. In-
deed, once the element fluxes are given, the boundary operators MF and the interface
operators SF can be directly retrieved from (4.39). Then, properties (DG1)–(DG8)
provide sufficient conditions to analyze the scheme.

(iii) The interface fluxes are such that
{
φi(v)

}
= 0 a.e. on F i

h. Approximation
schemes where the interface fluxes satisfy this property are often termed conservative.
Note that the concept of conservativity as such does not play any role in the present
analysis of the method, although it can play a role when deriving improved L2-error
estimates by using the Aubin–Nitsche lemma; see, e.g., Arnold et al. [1] and the sec-
ond part of this work [16].

(iv) The following relation links the element fluxes and the element adjoint-fluxes

φ∂K(v) − φ̃∂K(v) = D∂Kvi.(4.43)

In particular, the element adjoint-fluxes are not conservative.
(v) Both the element fluxes and the element adjoint-fluxes are associated with the

operator T , i.e., they are derived from a DG discretization of (2.23). It is also possible
to design a DG discretization of the adjoint problem (2.24) involving the operator T̃
and the bilinear form a∗. This would lead to two new families of fluxes, the element
fluxes for T̃ and the element adjoint-fluxes for T̃ . It should be noted that the element
adjoint-fluxes for T are not the element fluxes for T̃ . In particular, the former are not
conservative whereas the latter are conservative.

5. Applications. This section shows how the conditions (DG1)–(DG8) can be
used to design DG approximations of the model problems introduced in section 3.

5.1. Pointwise boundary and interface operators. For ease of presenta-
tion, the boundary and interface operators discussed in this section are constructed
from matrix-valued fields defined on all the mesh faces. This simpler construction
is sufficient to recover several DG methods considered in the literature. Examples
where a more general form for the boundary and interface operators is needed will be
presented in a forthcoming work [16].

For all F ∈ F∂
h , let MF be a matrix-valued field such that for all ξ, ζ ∈ R

m,

MF is positive,(DG1a)

Ker(M−D∂Ω) ⊂ Ker(MF −D∂Ω),(DG2a)

|ζt(MF −D∂Ω)ξ| ≤ c(ξtMF ξ)
1
2 ‖ζ‖Rm ,(DG3a)

|ζt(MF + D∂Ω)ξ| ≤ c(ζtMF ζ)
1
2 ‖ξ‖Rm ,(DG4a)

where ‖ · ‖Rm denotes the Euclidean norm in R
m. Similarly, for all F ∈ F i

h, let SF be
a matrix-valued field such that for all ξ, ζ ∈ R

m,

SF is positive,(DG5a)

SF is uniformly bounded,(DG6a)

|ζtSF ξ| ≤ c(ξtSF ξ)
1
2 (ζtSF ζ)

1
2 ,(DG7a)

|ζtDξ| ≤ c(ξtSF ξ)
1
2 ‖ζ‖Rm .(DG8a)

A straightforward verification yields the following proposition.
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Proposition 5.1. For all F ∈ F∂
h , define MF : [L2(F )]m � v �→ MF |F v ∈

[L2(F )]m, and for all F ∈ F i
h, define SF : [L2(F )]m � v �→ SF |F v ∈ [L2(F )]m. Then,

(DG1)–(DG8) hold.
Remark 5.1.
(i) Whenever the matrix-valued field M defined in (4.7) satisfies (DG3a)–(DG4a),

one simply sets MF = M; otherwise, it is necessary to strengthen M. This last situ-
ation occurs, for instance, when approximating advection-diffusion-reaction problems
and the Maxwell equations in the elliptic regime; see sections 5.3 and 5.4.

(ii) One possible way of constructing SF follows. Since D is symmetric, D is
diagonalizable; hence, the absolute value of D, say, |D|, can be defined. Moreover,
observing that |D| is single-valued on F i

h, one can set SF = |D|.
5.2. Advection-reaction. Consider the advection-reaction problem introduced

in section 3.1. Assume that all the faces in F∂
h are in ∂Ω−, in ∂Ω+, or in ∂Ω\ (∂Ω−∪

∂Ω+). The integral representation (4.7) holds with

D∂Ω = β·n and M = |β·n|.(5.1)

Let α > 0 (this design parameter can vary from face to face) and for all F ∈ Fh, set

MF = M = |β·n| and SF = α|β·nF |,(5.2)

where nF is a unit normal vector to F (its orientation is clearly irrelevant). It is
straightforward to verify the following proposition.

Proposition 5.2. Properties (DG1a)–(DG8a) hold.
Remark 5.2. The specific value α = 1

2 has received considerable attention in the
literature. When working with the local formulation (4.42), the interface and bound-
ary fluxes are given by

φ̃i(uh)|∂K =

(
α|β·nK | − 1

2
β·nK

)
[[uh]]∂K ,

φ̃∂(uh) = −|β·n|uh1∂Ω− ,

where 1∂Ω− denotes the characteristic function of ∂Ω−. Setting α = 1
2 , one obtains

the DG method analyzed by Lesaint and Raviart [24, 23]; in this case the interface
adjoint-flux φ̃i is nonzero only on that part of the boundary ∂K where β·nK < 0.
Similarly, when working with the local formulation (4.41), the interface and boundary
fluxes are given by

φi(uh)|∂K = (β·nK) {uh} + α|β·nK |[[uh]]∂K ,

φ∂(uh) = |β·n|uh1∂Ω+ ,

where 1∂Ω+ denotes the characteristic function of ∂Ω+. Setting α = 1
2 leads to

φi(uh)|∂K = (β·nK)u↑
h, where u↑

h = ui
h if β·nK > 0 and u↑

h = ue
h otherwise, i.e.,

the well-known upwind flux is recovered as a particular case of the above analysis
which is valid for any α > 0. This coincidence has led many authors to believe
that DG methods are methods of choice to solve hyperbolic problems. Actually DG
methods, as presented herein, are tailored to solve symmetric positive systems of
first-order PDEs, and as pointed out by Friedrichs, the notion of symmetric systems
goes beyond the hyperbolic/elliptic traditional classification of PDEs. Moreover, the
presence of the user-dependent interface operator SF (see (DG5)–(DG8)) points to
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the fact that DG methods are merely stabilization techniques. This fact is even clearer
when one realizes that the error estimates (4.30)–(4.32) are identical to those that can
be obtained by using other stabilization techniques like GaLS (also sometimes called
streamline diffusion) [5, 19, 21] or subgrid viscosity [18] methods.

5.3. Advection-diffusion-reaction. Consider the advection-diffusion-reaction
problem introduced in section 3.2. The integral representation (4.7) for D holds with

D∂Ω =

[
0 n

nt β·n

]
.(5.3)

To simplify, we assume that the parameters β and μ are of order 1, i.e., we hide the
dependency on these coefficients in the constants. Special cases such as advection-
dominated problems go beyond the scope of the present work. We begin with the
interface operator since its design is independent of the boundary conditions imposed.
Let α > 0, η > 0, and δ ∈ R

d. For all F ∈ F i
h, define

SF =

⎡
⎣ αnF⊗nF (δ·nF )nF

−(δ·nF )nt
F η

⎤
⎦ .(5.4)

Proposition 5.3. Properties (DG5a)–(DG8a) hold.
Proof. For ξ ∈ R

d+1, denote by ξ = (ξσ, ξu) its decomposition in R
d × R and

use a similar notation for ζ = (ζσ, ζu) ∈ R
d+1. The field SF is clearly positive and

bounded, i.e., (DG5a) and (DG6a) hold. Moreover, for ξ, ζ ∈ R
d+1,

ζtSF ξ = α(ξσ·n)(ζσ·n) + (δ·n)(ζσ·n)ξu − (δ·n)(ξσ·n)ζu + ηξuζu,

and ξtSF ξ = α(ξσ·n)2 + ηξ2
u, when (DG7a) is readily deduced. Finally, since

ζtD∂Kξ = (ξσ·nK)ζu + (ζσ·nK)ξu + (β·nK)ξuζu,

(DG8a) holds.
Remark 5.3.
(i) We stress the fact that the above DG method yields (p + 1

2 )-order estimates
in the L-norm for both uh and σh.

(ii) The σ- and u-component of the interface fluxes are given by

φσ,i(σh, uh)|∂K = ({uh} + αnK ·[[σh]]∂K + (δ·nK)[[uh]]∂K)nK ,

φu,i(σh, uh)|∂K = nK · {σh} − (δ·nK)nK ·[[σh]]∂K + η[[uh]]∂K + β·nK {uh} .

Owing to the fact that α �= 0, the local formulation (4.41) or (4.42) cannot be used
to derive a local reconstruction formula where σh|K is expressed solely in terms of
uh. To this end, the coefficient α has to be set to zero, and this requires a nontrivial
modification of the analysis that will be reported in [16]. With this modification,
the DG approximation does no longer yield a (p + 1

2 )-order estimate for σh in the
L-norm.

(iii) The design parameters α, δ, and η can vary from face to face. In particular,
one can take δ to be any bounded vector-valued field on F i

h; δ = 0 is a suitable
choice. Other particular choices lead to DG methods already reported in the literature
for advection-diffusion-reaction problems. A more detailed discussion, including a
comparison with methods where the unknown σh|K is eliminated locally, is postponed
to [16].
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5.3.1. Dirichlet boundary conditions. The integral representation (4.7) of
the boundary operator M defined in (3.11) holds with

M =

[
0 −n

nt 0

]
.(5.5)

Let ς > 0 (this design parameter can vary from face to face). For all F ∈ F∂
h , define

MF =

[
0 −n

nt ς

]
.(5.6)

It is straightforward to verify the following proposition.
Proposition 5.4. Properties (DG1a)–(DG4a) hold.
Remark 5.4. Observe that setting MF = M is not adequate here since with this

choice (DG3a) does not hold.

5.3.2. Neumann and Robin boundary conditions. The integral represen-
tation (4.7) of the boundary operator M defined in (3.12) holds with

M =

[
0 n

−nt 2� + β·n

]
.(5.7)

Consider first Neumann boundary conditions, i.e., � = 0. Let λ > 0 (this design
parameter can vary from face to face). For all F ∈ F∂

h , define

MF =

[
λn⊗n n

−nt 0

]
.(5.8)

It is straightforward to verify the following proposition.
Proposition 5.5. Properties (DG1a)–(DG4a) hold.
Consider next Robin boundary conditions and assume that � + min(β·n, 0) ≥ 0

(this assumption is not restrictive since Robin boundary conditions are often enforced
on inflow boundaries by setting � = −β·n). Let λ ∈ ]0, 1

ρ [ (λ ∈ ]0,+∞) if � = 0),

θ = 1 − λ�, and α = −λ�2. For all F ∈ F∂
h , define

MF =

[
λn⊗n θn

−θnt 2� + β·n + α

]
.(5.9)

Proposition 5.6. Properties (DG1a)–(DG4a) hold.
Proof. Since � + β·n ≥ 0 by assumption and since � + α > 0 by construction, it

is inferred that for all ξ ∈ R
d+1, ξtMF ξ ≥ c((ξσ·n)2 + ξ2

u) with c > 0. The rest of the
proof is straightforward.

Remark 5.5. The bilinear forms (u, v) �−→
∫
∂Ω

vtMFu considered above cannot
be extended to W × W due to the presence of the upper-left block in MF . The
difficulty stems from the fact that vector fields in H(div; Ω) may not have normal
traces in L2(∂Ω). As a consequence, the approximate method is meaningful only if
the exact solution is smooth enough; see the definition of W (h) in (4.2).

5.4. Maxwell’s equations in the elliptic regime. We close this series of
applications with Maxwell’s equations in the elliptic regime; see section 3.3. The
integral representation (4.7) holds with the R

6,6-valued fields

D∂Ω =

[
0 N
N t 0

]
and M =

[
0 −N
N t 0

]
,(5.10)
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where N =
∑3

k=1 nkRk ∈ R
3,3 and n = (n1, n2, n3)

t is the unit outward normal to Ω
on ∂Ω. Observe that N ξ = n×ξ for all ξ ∈ R

3.
Let ς > 0, α1 > 0, and α2 > 0 (these design parameters can vary from face to

face) and set

MF =

[
0 −N
N t ςN tN

]
and SF =

⎡
⎣α1N t

FNF 0

0 α2N t
FNF

⎤
⎦ ,(5.11)

where NF is defined as N by replacing n by nF . It is straightforward to verify the
following proposition.

Proposition 5.7. Properties (DG1a)–(DG8a) hold.
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Abstract. In this article the numerical approximation of solutions of Itô stochastic differential
equations is considered, in particular for equations with a small parameter ε in the noise coeffi-
cient. We construct stochastic linear multistep methods and develop the fundamental numerical
analysis concerning their mean-square consistency, numerical stability in the mean-square sense and
mean-square convergence. For the special case of two-step Maruyama schemes we derive conditions
guaranteeing their mean-square consistency. Further, for the small noise case we obtain expansions
of the local error in terms of the step size and the small parameter ε. Simulation results using several
explicit and implicit stochastic linear k-step schemes, k = 1, 2, illustrate the theoretical findings.
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1. Introduction. We consider Itô stochastic differential equations (SDEs) of
the form

X(s)
∣∣∣t
t0

=

∫ t

t0

f(X(s), s) ds +

∫ t

t0

G(X(s), s) dW (s), X(t0) = X0,(1.1)

for t ∈ J , where J = [t0, T ] . The drift and diffusion functions are given as
f : R

n × J → R
n , G = (g1, . . . , gm) : R

n × J → R
n×m, respectively. The process

W is an m-dimensional Wiener process on the given probability space (Ω,F ,P) with
a filtration (Ft)t∈J , and X0 is a given Ft0-measurable initial value, independent of
the Wiener process and with finite second moment. We assume that there exists a
pathwise unique strong solution X(·) of (1.1).

The aim of this article is to analyze the mean-square convergence properties of,
in general, drift-implicit linear multistep methods (LMMs) for the approximation of
the solution of (1.1). An advantage LMMs have in deterministic numerics is that
they require less evaluations of the right-hand side in comparison with Runge–Kutta
schemes with the same order of convergence which makes them often preferable for
problems with an expensive right-hand side. We recall that in the deterministic case
a high order of convergence is always based on sufficient smoothness of the solution
of the differential equation. In contrast, the solution of an SDE is not smooth in
the ordinary sense and a high order of convergence is achievable only by including
more information on the driving Wiener process, i.e., a sufficient number of multiple
stochastic integrals. In the case of general systems of SDEs, some of these integrals are
difficult to simulate; in several special settings, such as additive or diagonal noise, the
situation is less difficult. Our interest in stochastic linear multistep methods (SLMMs)
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stems from applications with small noise in circuit simulation [11, 12, 25, 30, 31], where
especially the backward differentiation formulae (BDF) have proven valuable in the
deterministic case. An application in the geosciences has been reported in [13].

Stochastic two-step methods already appear in [24] (methods of order 3/2 for
equations with additive noise), in [18], and in the recent book [22]. In [2, 3], two-
step methods for Itô SDEs are analyzed. Stochastic versions of Adams methods for
order up to 5 have been implemented and tested for SDEs with additive noise in [11].
Consistency of SLMMs for Stratonovich SDEs has been considered in [5]; in addition
stochastic Adams methods have been implemented as predictor-corrector schemes
and tested. A stochastic version of Adams–Bashforth methods, which involves higher
order multiple Wiener integrals, is considered in [13]. For small noise SDEs the authors
considered SLMMs incorporating mixed classical stochastic integrals in [7].

The current article provides a unified treatment of the mean-square convergence
analysis of a general class of SLMMs. This class generalizes all deterministic multi-
step schemes as well as all Itô schemes considered in the papers cited above. We aim
at understanding when and why these schemes converge in the mean-square sense.
This includes understanding the relation between local and global errors. To this
end we introduce the fundamental notions of mean-square consistency, stability and
convergence. The fundamental results in this respect are Theorems 3.2 and 3.3.

As an application of this result, we recapture some of the properties of determin-
istic LMMs for SDEs with small noise, i.e., SDEs that can be written in the form

X(s)
∣∣∣t
t0

=

∫ t

t0

f(X(s), s) ds +

∫ t

t0

εĜ(X(s), s) dW (s), t ∈ J , X(t0) = X0,(1.2)

where ε � 1 is a small parameter, and Ĝ = (ĝ1, . . . , ĝm) : R
n × J → R

n×m and its
derivatives are assumed to have moderate values. For this we will derive expansions
of the error in terms of the small parameter ε and the step size, as has been done for
one-step methods in [21]. Then the small diffusion term makes it unnecessary to use
high order multiple stochastic integrals, and Wiener increments will be sufficient if
the step-size is not too small.

In section 2 we introduce the class of SLMMs considered and provide necessary
definitions and useful facts. In section 3 we consider the solvability of the discrete
system and the boundedness of the iterates. We then establish two fundamental
results, the first one concerns the relation between mean-square numerical stability of
the SLMM and Dahlquist’s root condition, and the second one concerns the relation
between mean-square convergence, mean-square numerical stability, and mean-square
consistency of the SLMM. This mirrors the results and the essential role of zero-
stability in the deterministic analysis of discretization schemes, see, e.g., [10, 15, 17,
19]. In section 4 we consider two-step Maruyama methods and give conditions for
their mean-square consistency. These conditions allow determining the parameters
for the stochastic part from the parameters of the deterministic scheme and reduce
to those of the underlying deterministic schemes when there is no noise. We then
apply the two-step Maruyama methods to the SDE with small noise (1.2) and derive
expansions of the local error in a manner similar to that in [21]. In section 5 we
provide illustrative examples. The appendix contains the proof of Theorem 3.2.

2. Definitions and preliminary results. We denote by | · | the Euclidian
norm in R

n and by ‖ · ‖ the corresponding induced matrix norm. The mean-square
norm of a vector-valued square-integrable random variable Z ∈ L2(Ω,Rn) , with E
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the expectation with respect to P, will be denoted by

‖Z‖L2
:= (E|Z|2)1/2 .

We define a deterministic grid on J as t0 < t1 < · · · < tN = T with (for simplicity)
a constant step-size h := T/N and t� = t0 + � · h, � = 0, . . . , N . We consider a
stochastic linear k-step method, which for � = k, . . . , N, takes the form

k∑
j=0

αj X�−j = h

k∑
j=0

βj f(X�−j , t�−j) +

k∑
j=1

Γj(X�−j , t�−j) I
t�−j ,t�−j+1 .(2.1)

We set α0 = 1. We require given initial values X0, . . . , Xk−1 ∈ L2(Ω,Rn) such that
X� is Ft� -measurable for � = 0 . . . , k−1. As in the deterministic case, usually only
X0 = X(t0) is given by the initial value problem and the values X1, . . . , Xk−1 need to
be computed numerically. This can be done by suitable one-step methods, where one
has to be careful to achieve the desired accuracy. Every diffusion term Γj(x, t) I

t,t+h is
a finite sum of terms, each containing an appropriate function G of x and t multiplied
by a multiple Wiener integral over [t, t + h], i.e., it takes the general form

Γj(x, t) It,t+h =

m∑
r=1

Gr
j (x, t) It,t+h

r +

m∑
r1,r2=0

r1+r2>0

Gr1,r2
j (x, t) It,t+h

r1,r2 + . . . .

A general multiple Wiener integral is given by

It,t+h
r1,r2,...,rj (y) =

∫ t+h

t

∫ s1

t

. . .

∫ sj−1

t

y(X(sj), sj) dWr1(sj) . . . dWrj (s1),(2.2)

where ri ∈ {0, 1, . . . ,m} and dW0(s) = ds. If y ≡ 1 we write It,t+h
r1,r2,...,rj . Note that

the integral It,t+h
r is simply the increment Wr(t + h) − Wr(t) of the scalar Wiener

process Wr. The term It,t+h denotes the collection of multiple Wiener integrals
associated with the interval [t, t + h]. We emphasize that an explicit discretization is
used for the diffusion term. For β0 = 0, the SLMM (2.1) is explicit; otherwise it is
drift-implicit. We give two examples of two-step methods.

Example 2.1. The first is a stochastic variant of the implicit two-step backward
differentiation formula (BDF) method, which we term the BDF2-Maruyama method.
For � = 2, . . . , N, it takes the form

X� −
4

3
X�−1 +

1

3
X�−2 = h

2

3
f(X�, t�)

+
m∑
r=1

gr(X�−1, t�−1) It�−1,t�
r − 1

3

m∑
r=1

gr(X�−2, t�−2) It�−2,t�−1
r .

Here one has α0 = 1, α1 = − 4
3 , α2 = 1

3 , β0 = 2
3 , β1 = β2 = 0, and

Γ1(x, t) It,t+h =

m∑
r=1

gr(x, t) It,t+h
r , Γ2(x, t) It,t+h = −1

3

m∑
r=1

gr(x, t) It,t+h
r .

Example 2.2. The second example is a Milstein variant of the two-step Adams–
Bashforth method (we refer to [28, 29] for possibilities to simulate the double Wiener
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integrals if the SDE is not of a type that allows simplifications in their simulation):

X� −X�−1 = h

(
3

2
f(X�−1, t�−1) −

1

2
f(X�−2, t�−2)

)
+

m∑
r=1

gr(X�−1, t�−1) It�−1,t�
r

+

m∑
q,r=1

(gq)
′
xgr(X(t�−1), t�−1) It�−1,t�

q,r .

For this method one has α0 = 1, α1 = −1, α2 = 0, β0 = 0, β1 = 3
2 , β2 = − 1

2 and

Γ2(x, t) It,t+h ≡ 0, Γ1(x, t) It,t+h =

m∑
r=1

gr(x, t) It,t+h
r +

m∑
q,r=1

(gq)
′
xgr(x, t) It,t+h

q,r .

A further example of a stochastic Adams–Bashforth method, which is covered by
the general form of (2.1), is studied in [13].

We will consider mean-square convergence of SLMMs in the sense discussed by
Milstein and others [1, 24, 22, 30]. Note that in the literature the term strong conver-
gence is sometimes used synonymously for our expression mean-square convergence.

Definition 2.3. We call the SLMM (2.1) for the approximation of the solution
of the SDE (1.1) mean-square convergent if the global error X(t�) −X� satisfies

max
�=1,...,N

‖X(t�) −X�‖L2 → 0 as h → 0

We say it is mean-square convergent with order γ (γ > 0) if the global error satisfies

max
�=1,...,N

‖X(t�) −X�‖L2 ≤ C · hγ ,

with constant C > 0 which is independent of the step size h.
In the following we will define what we understand by local errors. We would

like to point out that for the analysis of one-step schemes essentially two different but
related concepts are used in the literature. In the first one the local error is defined
as the defect that is obtained when the exact solution values are inserted into the
numerical scheme. In the second one the local error is defined as the difference after
one step of the exact and the numerical solution started at an arbitrary deterministic
value. These concepts differ in the way the error is transported to the end of the
integration interval, in the first via the numerical method, in the second via the exact
solution. The second definition has been used in the fundamental work of Milstein in
[23, 24], where for the first time the relation between local and global errors of one-step
methods for SDEs has been clarified. However, only the first definition extends easily
to multistep methods; hence we will use it here. For comparison of these principles
in the deterministic setting see [16, Chapters II.3, III.4].

Definition 2.4. We define the local error of the SLMM (2.1) for the approxi-
mation of the solution of the SDE (1.1), for � = k, . . . , N , as

(2.3)

L� :=

k∑
j=0

αjX(t�−j)− h

k∑
j=0

βjf(X(t�−j), t�−j)−
k∑

j=1

Γj(X(t�−j), t�−j) I
t�−j ,t�−j+1 .

We aim to conclude mean-square convergence from local properties of the SLMM
by means of numerical stability in the mean-square sense. Numerical stability concerns
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the influence of perturbations of the right-hand side of the discrete scheme on the
global solution of that discrete scheme. Sources of perturbations may be the local
error, round-off errors or defects in the approximate solution of implicit schemes. The
mean-square stability estimate of the global error is based on the mean-square norm
and on the conditional mean of the perturbations. In the case of one-step schemes
this appears, e.g., in [1, 30]; we refer in particular to the discussion in [24, Chapter
1.4]. We remark that in the case of k-step schemes the conditional mean has to be
taken with respect to the σ-algebra Ft�−k

.
In our analysis we thus consider the following discrete system, the perturbed form

of (2.1), for � = k, . . . , N ,

k∑
j=0

αjX̃�−j = h

k∑
j=0

βjf(X̃�−j , t�−j) +

k∑
j=1

Γj(X̃�−j , t�−j) I
t�−j ,t�−j+1 + D�,(2.4)

with initial values X̃� = X� +D�, � = 0, . . . , k−1. We suppose that the perturbations
D� are Ft� -measurable and that D� ∈ L2(Ω,Rn).

Remark 2.5. It is useful to represent the perturbations in the form

D� = R� + S� =: R� +

k∑
j=1

Sj,�−j+1, � = k, . . . , N,(2.5)

where each Sj,� is Ft� -measurable with E(Sj,�|Ft�−1
) = 0. The representation (2.5) is

not unique. One extreme possibility is R� = D�, S� = 0; another, more useful one, is
given by

R∗
� = E(D�|Ft�−k

), S∗
� = D� −R∗

� ,

S∗
j,�−j+1 = E(D� −R∗

� −
∑k

i=j+1 S
∗
i,�−i+1|Ft�−j+1

), j = k, k − 1, . . . , 1 .
(2.6)

This construction guarantees the required measurability conditions in (2.5). We also
note that this decomposition is orthogonal in L2(Ω), i.e.,

‖D�‖2
L2

= ‖R∗
�‖2

L2
+

k∑
j=1

‖S∗
j,�−j+1‖2

L2
.(2.7)

As an example one obtains for k = 3,

R∗
� = E(D�|Ft�−3

)

S∗
3,�−2 = E(D� −R∗

� |Ft�−2
)

S∗
2,�−1 = E(D� −R∗

� − S∗
3,�−2|Ft�−1

)

S∗
1,� = D� −R∗

� − S∗
3,�−2 − S∗

2,�−1.

Here, in the hypothetical case that D� = c0I
t�−1,t�
r + c1I

t�−2,t�−1
r + c2I

t�−3,t�−2
r + c3,

we have R∗
� = c3, S

∗
3,�−2 = c2I

t�−3,t�−2
r , S∗

2,�−1 = c1I
t�−2,t�−1
r , S∗

1,� = c0I
t�−1,t�
r .

Now we give the precise definition of mean-square stability and consistency that
we consider in this paper.

Definition 2.6. We call the SLMM (2.1) numerically stable in the mean-
square sense if there exist constants h0 > 0 and S > 0 such that for all step sizes
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h < h0 and for all Ft�-measurable perturbations D� ∈ L2(Ω,Rn) (� = 0, . . . , N) and
all their representations (2.5), the following inequality holds

max
�=0,...,N

‖X� −X̃�‖L2 ≤ S

{
max

�=0,...,k−1
‖D�‖L2 + max

�=k,...,N

(
‖R�‖L2

h
+

‖S�‖L2

h1/2

)}
,

(2.8)

where (X�)
N
�=1 and (X̃�)

N
�=1 are the solutions of the SLMM (2.1) and the perturbed

discrete system (2.4), respectively.
We refer to S as the stability constant and to (2.8) as the stability inequality.
Definition 2.7. We call the SLMM (2.1) for the approximation of the solution

of the SDE (1.1) mean-square consistent if the local error L� satisfies

h−1 ‖E(L�|Ft�−k
)‖L2 → 0 for h → 0 and h−1/2 ‖L�‖L2

→ 0 for h → 0.

We call the SLMM (2.1) for the approximation of the solution of the SDE (1.1) mean-
square consistent of order γ(γ > 0) if the local error L� satisfies

‖E(L�|Ft�−k
)‖L2

≤ c̄ · hγ+1 and ‖L�‖L2
≤ c · hγ+ 1

2 , � = k, . . . , N,

with constants c , c̄ > 0 only depending on the SDE and its solution.
We remind the reader that consistency is only concerned with the local error. In

the case that we disregard other sources of errors in (2.4), we only have to deal with
perturbations D� = L�.

Lemma 2.8. The SLMM (2.1) is mean-square consistent of order γ if

‖R�‖L2
≤ c̄ · hγ+1 and ‖S�‖L2

≤ c · hγ+ 1
2 , � = k, . . . , N

for any representation (2.5) of the local error D� = L�. The SLMM (2.1) is mean-
square consistent of order γ if and only if

‖R∗
�‖L2 ≤ c̄ · hγ+1 and ‖S∗

� ‖L2 ≤ c · hγ+ 1
2 , � = k, . . . , N,

where the representation (2.6) is chosen for the local error D� = L�.

Proof. First, let L� = R� + S� =: R� +
∑k

j=1 Sj,�−j+1 be a representation (2.5)

with ‖R�‖L2 ≤ c̄ · hγ+1, and ‖S�‖L2 ≤ c · hγ+ 1
2 , � = k, . . . , N . By the conditions

E(Sj,�|Ft�−1
) = 0 we conclude

‖E(L�|Ft�−k
)‖L2 = ‖E(R�|Ft�−k

)‖L2 ≤ ‖R�‖L2 ≤ c̄ · hγ+1.

Further, we have, for h ≤ 1,

‖L�‖L2
= ‖R� + S�‖L2

≤ ‖R�‖L2
+ ‖S�‖L2

≤ c̄ · hγ+1 + c · hγ+ 1
2 ≤ (c̄ + c) · hγ+ 1

2 .

Second, let the SLMM (2.1) be mean-square consistent of order γ, i.e., ‖E(L�|Ft�−k
)‖L2

≤ c̄ · hγ+1, and ‖L�‖L2
≤ c · hγ+ 1

2 , � = k, . . . , N . Because of R∗
� = E(L�|Ft�−k

), we
then, obviously, have ‖R∗

�‖L2
≤ c̄ · hγ+1, and, further

‖S∗
� ‖L2 = ‖L�‖L2 − ‖R∗

�‖L2 ≤ ‖L�‖L2 ≤ c · hγ+ 1
2 .

For further reference we state the following definitions and results.
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Definition 2.9. A function f : R
n × J → R

n satisfies a uniform Lipschitz
condition with respect to x if there exists a positive constant Lf such that

|f(x, t) − f(y, t)| ≤ Lf |x− y| ∀x, y ∈ R
n, t ∈ J .(2.9)

A function Γ : R
n × J → R

n×mΓ satisfies a uniform Lipschitz condition with respect
to x if there exists a positive constant LΓ such that

‖Γ(x, t) − Γ(y, t)‖ ≤ LΓ|x− y| ∀x, y ∈ R
n, t ∈ J .(2.10)

Let Cs,s−1 denote the class of all functions from R
n × J to R

n having continuous
partial derivatives up to order s − 1 and, in addition, continuous partial derivatives
of order s with respect to the first variable.

Let CK denote the class of functions y from R
n × J to R

n that satisfy a linear
growth condition in the form

|y(x, t)| ≤ K(1 + |x|2) 1
2 ∀x ∈ R

n, t ∈ J .(2.11)

Definition 2.10. The characteristic polynomial of (2.1) is given by

ρ(ζ) = α0 ζ
k + α1ζ

k−1 + · · · + αk.(2.12)

The SLMM (2.1) is said to fulfill Dahlquist’s root condition if
(i) the roots of ρ(ζ) lie on or within the unit circle;
(ii) the roots on the unit circle are simple.
Lemma 2.11 (A discrete version of Gronwall’s lemma). Let a�, � = 1, . . . , N ,

and C1, C2 be nonnegative real numbers and assume that the inequalities

a� ≤ C1 + C2
1

N

�−1∑
i=1

ai, � = 1, . . . , N,

are valid. Then we have max�=1,...,N a� ≤ C1 exp(C2).
To estimate the multiple integrals (2.2) we will use the following lemma (cf. Lem-

mas 2.1 and 2.2 in [24]).
Lemma 2.12. For any function y belonging to the class CK , and any t ∈ J , h >

0, such that t+h ∈ J , we have that

E(It,t+h
r1...rj (y)|Ft) = 0 if ri 	= 0 for some i ∈ {1, . . . , j},(2.13)

‖E(It,t+h
r1,...,rj (y)|Ft)‖L2 ≤ ‖It,t+h

r1,...,rj (y)‖L2 = O(hl1+l2/2),(2.14)

where l1 is the number of zero indices ri, and l2 the number of nonzero indices ri.

3. Global properties of stochastic LMMs. In this section we will first es-
tablish the solvability of the recurrence equations (2.4) (and thus of (2.1)), then we
will discuss numerical stability and mean-square convergence of the SLMM (2.1). The
former characterizes the robustness of a numerical scheme with respect to small per-
turbations such as rounding errors. As a property of the numerical scheme alone,
it is not a priori giving evidence on the approximation power of the scheme (which
may very well approximate a different problem than intended). However, numerical
stability and consistency together yield convergence of the numerical solution to the
exact solution. In order to distinguish this stability concept from others, it is some-
times called zero-stability or, in honor of Dahlquist, also D-stability. It should not
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be mistaken for properties like asymptotic stability, which guarantee that for fixed
step sizes (and long or unbounded time intervals) qualitative properties of the exact
solutions like damping behavior in dissipative systems are preserved by the discrete
approximations. For further discussions we refer the reader to the deterministic lit-
erature (see, e.g., [10, 19, 20]). In the stochastic literature mean-square numerical
stability for one-step schemes has been considered in [1, 3, 4, 14, 27, 30]. In the first
four of these works only perturbations in the initial data have been treated.

We now turn to the solvability of the recurrence equations. If in (2.1) and (2.4) the
parameter β0 = 0, the discrete systems are explicit and every iterate X̃�, � ≥ k, can
be obtained explicitly for given It�,t�+1 , i.e., the recurrence equations (2.1) and (2.4)
obviously have unique solutions. In the case of implicit systems we need to consider
the solvability of the systems of nonlinear equations (2.1) and (2.4). In addition, we
have to verify that the mean-square norm of the iterates exists. (The straightforward
extension to fully implicit systems would serve as an example where the mean-square
norm of the iterates does not exist.)

Theorem 3.1. Suppose that β0 	= 0 and the drift-coefficient f satisfies (2.9)
and assume that 2hβ0 Lf < 1. Then the perturbed discrete scheme (2.4) and, in
consequence, the SLMM (2.1) have a unique solution. If, in addition, the coefficients
Γj satisfy (2.10), then the mean-square norm of the iterates exists.

Proof. The proof of the existence of unique solutions of the perturbed discrete
system (2.4) (and thus of (2.1)) follows the line of proofs used in the deterministic
analysis of multistep schemes. The idea is to express (2.4) as

X̃� = hβ0f(X̃�, t�) + B̃� ,(3.1)

where

B̃� := −
k∑

j=1

αjX̃�−j + h

k∑
j=1

βjf(X̃�−j , t�−j) +

k∑
j=1

Γj(X�−j , t�−j) I
t�−j ,t�−j+1 + D̃�

is a known Ft� -measurable random variable, when we suppose that X̃�−j are known
Ft�−j

-measurable random variables for j = 1, . . . , k. We can then view (2.4) as a
fixed-point equation in x,

x = hβ0f(x, t�) + b�

and apply the contraction mapping principle. We refer, e.g., to [15, Thm. 6.1.1] for
more details.

It remains to be shown that the second moments of the iterates exist. We start
from the assumption E|X̃�−j |2 < ∞ , j = 1, . . . , k on the initial values. Recursively,

we conclude that E|X̃�|2 < ∞ , � = k, . . . , N by comparing X̃� with the solution of
the fixed-point equation (3.1) for B̃� = 0, i.e., with the solution of the deterministic
implicit equation x = hβ0f(x, t�), and applying Lipschitz continuity arguments. For
more details we refer to [30, Thm. 5].

We now formulate our main theorem on numerical stability. The proof is given
in the appendix.

Theorem 3.2. The stochastic linear multistep method (2.1) is numerically stable
in the mean-square sense for every continuous f and Γj satisfying (2.9) and (2.10),
respectively, if and only if its characteristic polynomial ρ(ζ) (2.12) satisfies Dahlquist’s
root condition given in Definition 2.10.
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With the powerful notion of numerical stability in the mean-square sense, to-
gether with mean-square consistency, the mean-square convergence follows almost
immediately.

Theorem 3.3. A mean-square consistent SLMM (2.1) for the approximation
of the solution of SDE (1.1) is mean-square convergent for all continuous f and Γj

satisfying (2.9) and (2.10), respectively, if and only if it is numerically stable in the
mean-square sense. If, in addition, it is mean-square consistent with order γ > 0 ,
then the SLMM (2.1) is mean-square convergent with order γ .

Proof. First, let us assume that the mean-square consistent numerical method
(2.1) is mean-square convergent. Then the necessity of stability can essentially be
proved as in the deterministic case. Set f ≡ 0, Γj ≡ 0, X0 = 0. Then (2.1) reduces to∑k

j=1 αjX�−j = 0, l = k, k+ 1, . . . , a deterministic homogeneous difference equation,
and stability follows by standard arguments, see, e.g., [15].

Second, let us assume that the numerical method (2.1) is mean-square stable and
consistent with order γ > 0 . Then mean-square convergence with order γ follows by
applying the stability estimate (2.8) to {X̃� := X(t�)} related to the perturbations
{D� := L� = R∗

� + S∗
� }.

4. Two-step Maruyama schemes. In this section we consider linear two-step
Maruyama schemes; thus, we have for � = 2, . . . , N

2∑
j=0

αjX�−j = h

2∑
j=0

βjf(X�−j , t�−j) +

2∑
j=1

γj

m∑
r=1

gr(X�−j , t�−j) I
t�−j ,t�−j+1
r .(4.1)

For drift and diffusion coefficients f, g1, . . . , gm, which are continuous and satisfy
(2.9), Theorem 3.2 applies and the two-step scheme (4.1) is mean-square stable if the
coefficients α0, α1, α2 satisfy Dahlquist’s root condition. If, additionally, the scheme
is mean-square consistent of order γ, which in general requires more smoothness of
the coefficient functions, then the scheme (4.1) is mean-square convergent of that or-
der. Thus we will be concerned with mean-square consistency of the above scheme
and derive order conditions in terms of the coefficients α0, α1, α2, β0, β1, β2, γ1, γ2. In
general, the mean-square order of convergence will be only 1

2 , since the only infor-
mation about the driving noise process that the Maruyama-type schemes include are
the Wiener increments. We note that the simple Euler–Maruyama method would suf-
fice to obtain the same order of convergence. However, convergence is an asymptotic
property, i.e., it holds for h → 0 and a result concerning the order of convergence
may not provide sufficient information about the size of the actual error that arises
for reasonable choices of the step size. In particular when one considers equations
with a small noise term as in (1.2), one may find that the influence of the noise is not
dominant and properties of the methods in the deterministic setting are recovered to
a certain extent.

From the deterministic theory we know that for linear k-step methods

k∑
j=0

αj x�−j = h

k∑
j=0

βj f(x�−j , t�−j), applied to x′(t) = f(x(t), t),

the local error is of order p + 1 for sufficiently smooth functions f if

k∑
j=0

αj = 0 and

k∑
j=0

αj(k − j)q = q

k∑
j=0

βj(k − j)q−1 for q = 1, . . . , p.
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In the first part of this section we derive consistency conditions for the two-step scheme
(4.1) applied to the general SDE (1.1). We establish a representation of the local
error L� in terms of certain multiple stochastic integrals obtained by the Itô–Taylor
expansion. It turns out that consistency is guaranteed under the above conditions for
deterministic order 1 and additional conditions that determine the method parameters
γ1 and γ2.

In the second part of this section we consider the application of the scheme (4.1)
in the case that the noise is small. The smallness of the noise is measured by means of
the parameter ε in the diffusion coefficient G(x, t) = εĜ(x, t). We emphasize that the
numerical schemes include only values of G, the explicit dependence of the diffusion
coefficient on the parameter ε is used only for a discussion of the errors. We follow
the ideas of [21] and develop the local error in powers of the step size h and the small
parameter ε. The expansion yields the deterministic conditions for order 2, and we
discuss for which choices of ε and h the stochastic component in the error estimates
becomes small compared to these order-2 terms.

4.1. Two-step schemes for general SDEs. To analyze the local error L� of
the scheme (4.1) for the SDE (1.1) and to achieve a suitable representation (2.5) we
will derive appropriate Itô–Taylor expansions, where we take special care to separate
the stochastic integrals over the different subintervals of integration. We introduce
operators Λ0 and Λr, r = 1, . . . ,m, defined on C2,1 and C1,0, respectively, by

Λ0y = y′t + y′xf +
1

2

m∑
r=1

y′′xx[gr, gr] , Λry = y′xgr , r = 1, . . . ,m(4.2)

and remind the reader of the notation for multiple Wiener integrals (2.2). Using these
operators the Itô formula for a function y in C2,1 and the solution X of (1.1) reads

y(X(t), t) = y(X(t0), t0) + It0,t0 (Λ0y) +

m∑
r=1

It0,tr (Λry), t ∈ J .(4.3)

Applying the Itô formula (4.3) on the corresponding intervals to the drift coefficient
f as well as to the diffusion coefficients gr yields for s ∈ [t�−j , t�−j+1], j = 1, 2

f(X(s), s) = f(X(t�−j), t�−j) + I
t�−j ,s
0 (Λ0f) +

m∑
r=1

I
t�−j ,s
r (Λrf),(4.4)

gr(X(s), s) = gr(X(t�−j), t�−j) + I
t�−j ,s
0 (Λ0gr) +

m∑
q=1

I
t�−j ,s
q (Λqgr).(4.5)

We trace back the values of the drift coefficient to the point t�−2 to obtain

f(X(t�−1), t�−1) = f(X(t�−2), t�−2) + I
t�−2,t�−1

0 (Λ0f) +

m∑
r=1

It�−2,t�−1
r (Λrf),(4.6)

f(X(t�), t�) = f(X(t�−2), t�−2) + I
t�−2,t�−1

0 (Λ0f) + I
t�−1,t�
0 (Λ0f)

+

m∑
r=1

It�−2,t�−1
r (Λrf) +

m∑
r=1

It�−1,t�
r (Λrf).(4.7)

For the general SDE (1.1) we have the following result.
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Lemma 4.1. Assume that the coefficients f, gr, r = 1, . . . ,m of the SDE (1.1)
belong to the class C2,1 with Λ0f,Λ0gr,Λrf,Λqgr ∈ CK for r, q = 1, . . . ,m. Then the
local error (2.3) of the stochastic two-step scheme (4.1) allows the representation

L� = R◦
� + S◦

1,� + S◦
2,�−1, � = 2, . . . , N,(4.8)

where R◦
� , S

◦
j,�, j = 1, 2 are Ft�-measurable with E(S◦

j,�|Ft�−1
) = 0 and

R◦
� =

⎡
⎣ 2∑
j=0

αj

⎤
⎦X(t�−2) +

⎡
⎣2α0 + α1 −

2∑
j=0

βj

⎤
⎦hf(X(t�−2), t�−2) + R̃◦

� ,

S◦
1,� =

[
α0 − γ1

] m∑
r=1

gr(X(t�−1), t�−1)I
t�−1,t�
r + S̃◦

1,�,

S◦
2,�−1 =

[
(α0 + α1) − γ2

] m∑
r=1

gr(X(t�−2), t�−2)I
t�−2,t�−1
r + S̃◦

2,�−1

with

‖R̃◦
�‖L2 = O(h2), ‖S̃◦

1,�‖L2 = O(h), ‖S̃◦
2,�−1‖L2 = O(h).(4.9)

Corollary 4.2. Let the coefficients f, gr, r = 1, . . . ,m, of the SDE (1.1) satisfy
the assumptions of Lemma 4.1 and suppose they are Lipschitz continuous with respect
to their first variable. Let the coefficients of the stochastic linear two-step scheme
(4.1) satisfy Dahlquist’s root condition and the consistency conditions

2∑
j=0

αj = 0, 2α0 + α1 =

2∑
j=0

βj , α0 = γ1, α0 + α1 = γ2.(4.10)

Then the global error of the scheme (4.1) applied to (1.1) allows the expansion

max
�=2,...,N

‖X(t�) −X�‖L2 = O(h1/2) + O(max
�=0,1

‖X(t�) −X�‖L2) .

Proof of Corollary 4.2. By Lemma 4.1 we have the representation (4.8) for the
local error. Applying the consistency conditions (4.10) yields

R◦
� = R̃◦

� , S◦
1,� = S̃◦

1,�, S◦
2,�−1 = S̃◦

2,�−1, � = 2, . . . , N.

As the scheme (4.1) satisfies Dahlquist’s root condition, it is numerically stable in the
mean-square sense. Now the assertion follows from the estimates (4.9) by means of
the stability inequality.

Proof of Lemma 4.1. To derive a representation of the local error in the form
(4.8) we evaluate and resume the deterministic parts at the point (X(t�−2), t�−2) and
separate the stochastic terms carefully over the different subintervals [t�−2, t�−1] and
[t�−1, t�]. This ensures the independence of the random variables. It does make the
calculations more messy, though. By rewriting

2∑
j=0

αjX(t�−j) = α0

(
X(t�) −X(t�−1)

)
+ (α0 + α1)

(
X(t�−1) −X(t�−2)

)
+
( 2∑
j=0

αj

)
X(t�−2),
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we can express the local error (2.3) as

L� = α0

(
X(t�) −X(t�−1)

)
+ (α0 + α1)

(
X(t�−1) −X(t�−2)

)
+

2∑
j=0

αjX(t�−2)

−h

2∑
j=0

βjf(X(t�−j), t�−j) −
2∑

j=1

γj

m∑
r=1

gr(X(t�−j), t�−j)I
t�−j ,t�−j+1
r .

The SDE (1.1) implies the identities

X(t�−1) −X(t�−2) = hf(X(t�−2), t�−2) + I
t�−2,t�−1

00 (Λ0f) +

m∑
r=1

I
t�−2t�−1

r0 (Λrf)

+

m∑
r=1

gr(X(t�−2), t�−2)I
t�−2,t�−1
r +

m∑
r=1

I
t�−2,t�−1

0r (Λ0gr) +

m∑
r,q=1

It�−2,t�−1
qr (Λqgr),

and, additionally using (4.6),

X(t�) −X(t�−1) = h
{
f(X(t�−2), t�−2) + I

t�−2,t�−1

0 (Λ0f) +

m∑
r=1

It�−2,t�−1
r (Λrf)

}

+I
t�−1,t�
00 (Λ0f) +

m∑
r=1

I
t�−1t�
r0 (Λrf) +

m∑
r=1

gr(X(t�−1), t�−1)I
t�−1,t�
r

+

m∑
r=1

I
t�−1,t�
0r (Λ0gr) +

m∑
r,q=1

It�−1,t�
qr (Λqgr).

Inserting this and the expansions (4.6, 4.7) into the local error formula and reordering
the terms, yields

L� =

⎡
⎣ 2∑
j=0

αj

⎤
⎦X(t�−2) +

⎡
⎣2α0 + α1 −

2∑
j=0

βj

⎤
⎦hf(X(t�−2), t�−2) + R̃◦

�

+
[
α0 − γ1

] m∑
r=1

gr(X(t�−1), t�−1)I
t�−1,t�
r + S̃◦

1,�

+
[
(α0 + α1) − γ2

] m∑
r=1

gr(X(t�−2), t�−2)I
t�−2,t�−1
r + S̃◦

2,�−1,

where

R̃◦
� = α0

{
hI

t�−2,t�−1

0 (Λ0f) + I
t�−1,t�
00 (Λ0f)

}
+ (α0 + α1)I

t�−2,t�−1

00 (Λ0f)

−hβ0

{
I
t�−2,t�−1

0 (Λ0f) + I
t�−1,t�
0 (Λ0f)

}
− hβ1I

t�−2,t�−1

0 (Λ0f),(4.11)

S̃◦
1,� =

m∑
r=1

(
α0I

t�−1,t�
r0 (Λrf) − hβ0I

t�−1,t�
r (Λrf)

)
+ α0

m∑
r=1

I
t�−1,t�
0r (Λ0gr)

+α0

m∑
r,q=1

It�−1,t�
qr (Λqgr)),(4.12)
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S̃◦
2,�−1 = h(α0 − β0 − β1)

m∑
r=1

It�−2,t�−1
r (Λrf) + (α0 + α1)

m∑
r=1

I
t�−2,t�−1

r0 (Λrf)

+(α0 + α1)

m∑
r=1

I
t�−2,t�−1

0r (Λ0gr) + (α0 + α1)

m∑
r,q=1

It�−2,t�−1
qr (Λqgr).(4.13)

Finally, the estimates (4.9) are derived by means of Lemma 2.12, where the last terms
in (4.12) and (4.13) determine the order O(h).

4.2. Two-step schemes for small noise SDEs. For the numerical integration
of ODEs two-step schemes of order 2 or higher are particularly interesting. They offer
a high order of convergence for low computational cost per step. In this section
we discuss the special case of small noise SDEs (1.2) where the parameter ε in the
diffusion coefficients gr = εĝr, r = 1, . . . ,m measures the smallness of the noise.
Lemma 4.1 provides a representation for the local error (2.3) of the stochastic linear
two-step scheme (4.1) applied to (1.2). Starting from this expression we will further
analyze the local error by expanding the term Λ0f appearing in R̃◦

� (4.11). Naturally,
this requires more smoothness of the coefficients. A sufficient condition would be
Λ0f ∈ C2,1, for which, in general, one needs the existence of fourth order derivatives
of f with respect to x. However, for small noise SDEs, the term f ′

xf + f ′
t dominates

Λ0f . This allows weakening the smoothness assumptions again. The expansion of Λ0f
also yields additional multiple Itô integrals whose conditional expectation vanishes.
By moving these terms from R̃◦

� into the stochastic parts of the representation of the
local error we achieve better estimates. With this analysis we are able to prove that
some of the potential of deterministic two-step schemes can be recovered in the special
case of small noise SDEs.

To be able to exploit the effect of the small parameter ε in the expansions of the
local error we introduce operators Λf

0 , Λ̂0 and Λ̂r, r = 1, . . . ,m defined on C2,1 and
C1,0, respectively, by

Λf
0y := y′t + y′xf, Λ̂0y :=

1

2

m∑
r=1

y′′xx[ĝr, ĝr], Λ̂ry := y′xĝr .(4.14)

In terms of the original definition (4.2) we have

Λ0y = Λf
0y + ε2Λ̂0y and Λry = εΛ̂ry.(4.15)

Lemma 4.3. Assume that the coefficients f, ĝr, r = 1, . . . ,m of the small noise
SDE (1.2), as well as Λf

0f = f ′
xf + f ′

t belong to the class C2,1 with Λ0f,Λ0ĝr, Λ̂rf,

Λ̂q ĝr,Λ0Λ
f
0f, Λ̂rΛ

f
0f ∈ CK for r, q = 1, . . . ,m. Let the stochastic two-step scheme

(4.1) satisfy the consistency conditions (4.10). Then the local error (2.3) of the method
(4.1) for the small noise SDE (1.2) allows the representation

L� = R�
� + S�

1,� + S�
2,�−1, � = 2, . . . , N,(4.16)

where R�
� , S

�
j,�, j = 1, 2 are Ft�-measurable with E(S�

j,�|Ft�−1
) = 0, and

R�
� =

[
(4α0 + α1) − (4β0 + 2β1)

]h2

2
(f ′

t + f ′
xf)(X(t�−2), t�−2) + R̃�

� ,

S�
1,� = S̃◦

1,� + S̃�
1,�,

S�
2,�−1 = S̃◦

2,�−1 + S̃�
2,�−1,
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where

‖R̃�
� ‖L2

= O(h3 + ε2h2), ‖S̃�
1,�‖L2

= O(εh5/2), ‖S̃�
2,�−1‖L2

= O(εh5/2).(4.17)

The terms S̃◦
1,�, S̃

◦
2,�−1 are given by (4.12, 4.13) in the proof of Lemma 4.1 and satisfy

here

‖S̃◦
1,�‖L2 = O(ε2h + εh3/2), ‖S̃◦

2,�‖L2 = O(ε2h + εh3/2).(4.18)

Proof. We have from Lemma 4.1, if the consistency conditions (4.10) are satisfied,
the representation

L� = R̃◦
� + S̃◦

1,� + S̃◦
2,�−1, � = 2, . . . , N,

where R̃◦
� , S̃

◦
1,�, S̃

◦
2,�−1 are given by (4.11, 4.12, 4.13). Splitting Λ0f = Λf

0f + ε2Λ̂0f

immediately yields R̃◦
� = R̃◦f

� + ε2R̂◦
� with

R̃◦f
� := (α0 − β0 − β1)hI

t�−2,t�−1

0 (Λf
0f) + (α0 + α1)I

t�−2,t�−1

00 (Λf
0f)

+α0I
t�−1,t�
00 (Λf

0f) − hβ0I
t�−1,t�
0 (Λf

0f)(4.19)

R̂◦
� := (α0 − β0 − β1)hI

t�−2,t�−1

0 (Λ̂0f) + (α0 + α1)I
t�−2,t�−1

00 (Λ̂0f)

+α0I
t�−1,t�
00 (Λ̂0f) − hβ0I

t�−1,t�
0 (Λ̂0f).(4.20)

We note that (4.20) appears with the factor ε2 in the local error representation, thus
yielding the O(ε2h2) term in the estimate of ‖R̃�

� ‖L2 in (4.17). We concentrate on

developing R̃◦f
� in more detail. Applying the Itô formula (4.3) to Λf

0f(X(s), s) for

s ∈ [t�−2, t�−1] and integrating yields I
t�−2,s
0 (Λf

0f) = (s − t�−2)Λ
f
0f(X(t�−2), t�−2) +

I
t�−2,s
00 (Λ0Λ

f
0f) + ε

∑m
r=1 I

t�−2,s
r0 (Λ̂rΛ

f
0f).

For s = t�−1 we obtain an expression for the first integral in (4.19) . Integrating

again we have for the second integral in (4.19) I
t�−2,t�−1

00 (Λf
0f) = h2

2 Λf
0f(X(t�−2), t�−2)+

I
t�−2,t�−1

000 (Λ0Λ
f
0f) + ε

∑m
r=1 I

t�−2,t�−1

r00 (Λ̂rΛ
f
0f).

Both the other integrals are over the interval [t�−1, t�]. In the analogous expres-

sions for these the term Λf
0f(X(t�−1), t�−1) must be substituted by Λf

0f(X(t�−1), t�−1)=

Λf
0f(X(t�−2), t�−2) + I

t�−2,t�−1

0 (Λ0Λ
f
0f) + ε

∑m
r=1 I

t�−2,t�−1
r (ΛrΛ

f
0f).

Then we obtain from (4.19)

R̃◦f
� =

[
(4α0 + α1) − (4β0 + 2β1)

]h2

2
Λf

0f(X(t�−2), t�−2) + R̃�f
� + S̃�

1,� + S̃�
2,�,
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where

R̃�f
� = (α0 − 2β0)

h2

2
I
t�−2,t�−1

0 (Λ0Λ
f
0f)

+ (α0 − β0 − β1)hI
t�−2,t�−1

00 (Λ0Λ
f
0f) − β0hI

t�−1,t�
00 (Λ0Λ

f
0f)

+ (α0 + α1)I
t�−2,t�−1

000 (Λ0Λ
f
0f) + α0I

t�−1,t�
000 (Λ0Λ

f
0f),

S̃�
1,� = α0ε

m∑
r=1

I
t�−1,t�
r00 (Λ̂rΛ

f
0f) − hβ0ε

m∑
r=1

I
t�−1,t�
r0 (Λ̂rΛ

f
0f),

S̃�
2,� = (α0− 2β0)

h2

2
ε

m∑
r=1

It�−2,t�−1
r (Λ̂rΛ

f
0f) + (α0− β0− β1)hε

m∑
r=1

I
t�−2,t�−1

r0 (Λ̂rΛ
f
0f)

+ (α0 + α1)ε

m∑
r=1

I
t�−2,t�−1

r00 (Λ̂rΛ
f
0f).

We arrive at R̃�
� = R̃�f

� + ε2R̂◦
� . Finally, the estimates (4.17) are derived by means of

Lemma 2.12.
Corollary 4.4. Let the coefficients f, ĝr, r = 1, . . . ,m, of the SDE (1.2) satisfy

the assumptions of Lemma 4.3 and suppose they are Lipschitz continuous with respect
to their first variable. Let the coefficients of the stochastic linear two-step scheme
(4.1) satisfy Dahlquist’s root condition and the consistency conditions (4.10) and

(4α0 + α1) − (4β0 + 2β1) = 0.(4.21)

Then the global error of the scheme (4.1) applied to (1.2) allows the expansion

max
�=2,...,N

‖X(t�) −X�‖L2
= O(h2 + εh + ε2h1/2) + O(max

�=0,1
‖X(t�) −X�‖L2

) .

Proof. Lemma 4.3 stated the representation (4.16) for the local error. Applying
the consistency condition (4.21) yields R�

� = R̃�
� and by (4.17) we have ‖R�

� ‖L2
=

O(h3 + ε2h2). The stochastic terms S�
1,�, S�

2,�−1 are dominated by S̃◦
1,�, S̃◦

2,�−1

and thus are of order of magnitude O(ε2h + εh3/2). As the scheme (4.1) satisfies
Dahlquist’s root condition, it is numerically stable in the mean-square sense. Apply-
ing the stability inequality (2.8) to the representation (4.16) of the local error yields the
assertion.

Remark 4.5. We note that R�
� is responsible for the O(h2) term in the expansion

of the global error. In the limit ε → 0 this is the only remaining term. It reflects the
convergence properties of the scheme in the deterministic setting. On the other hand,
for asymptotically small step sizes h → 0 and fixed parameter ε, even if it is small, the
term of order O(ε2h1/2) causes the low order 1

2 of convergence. The question arises
for which choices of ε and h the schemes still show the order 2 behavior. Thus we are
interested in when the term O(h2) dominates the term O(εh + ε2h1/2). Clearly both
these terms depend on the actual coefficients f, ĝr, r = 1, . . . ,m, of the SDE (1.2)
and their derivatives. Assuming moderate function values, the term O(h2) dominates
O(εh + ε2h1/2), if h2 � ε2h1/2, i.e., h � ε4/3, and h2 � εh, i.e., h � ε. Obviously,
in general, the second condition is stronger. Summarizing, we can expect order 2
behavior if h � ε.

However, even if the chosen step size does not satisfy this condition for a given ε,
schemes satisfying the consistency condition (4.21) often show a better performance
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Table 5.1

Coefficients of two-step schemes.

Method α0 α1 α2 β0 β1 β2 γ1 γ2

Unstable method 1 −3 2 0 1/2 −3/2 1 −2

Explicit Euler 1 −1 0 0 1 0 1 0

Implicit Euler 1 −1 0 1 0 0 1 0

Trapezoidal rule 1 −1 0 1/2 1/2 0 1 0

BDF 2 1 −4/3 1/3 2/3 0 0 1 −1/3

Adams–Bashforth 2 1 −1 0 0 3/2 −1/2 1 0

Adams–Moulton 2 1 −1 0 5/12 8/12 −1/12 1 0

Milne–Simpson 1 0 −1 1/3 4/3 1/3 1 1

than other schemes. The reason is that their error is dominated by O(εh) instead
of O(ε2h1/2), resulting in an order 1 behavior with the small parameter ε in the
error constant. Again assuming moderate function values, one may expect this for
εh � ε2h1/2, i.e., h � ε2.

5. Test results. We report results for several explicit and implicit stochastic
linear k-step schemes for k = 1, 2, applied to two examples of SDEs. Table 5.1
summarizes the methods we have implemented and tested. All methods, including the
one-step schemes, satisfy the consistency conditions (4.10) and all methods, excluding
the Euler schemes, satisfy the consistency condition (4.21). Further, all methods,
exept the first one, are zero-stable. The Milne–Simpson method is the only linear two-
step method with deterministic order of convergence 4. However, its characteristic
polynomial possesses the second root α2 = −1 on the unit circle which easily causes
weak instabilities in the integration of decaying solutions, such that this scheme is
generally not recommended.

The first example is the simple bilinear scalar SDE

X(t) = 1 +

∫ t

0

αX(s) ds +

∫ t

0

βX(s) dW (s), t ∈ [0, 1](5.1)

with coefficients f(x, t) := αx, G(x, t) = (g(x, t)) = (βx), parameters α, β ∈ R, and a
scalar Wiener process W . This example has the advantage that an explicit solution
is available to compare with the numerical approximations. This solution is given by
the geometric Brownian motion X(t) = exp

(
(α− 1

2β
2)t + βW (t)

)
.

The second example is a two-dimensional system of SDEs which is taken from
[8, 9, Problem P1], where it is given in Stratonovich notation. For the purpose of
using it as a test equation for small noise SDEs in the form (1.2) we have transformed
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it into Itô notation and included a parameter ε. We arrive at

X(t) = X(0) +

∫ t

0

FX(s) ds +

∫ t

0

G1X(s)dW1(s) +

∫ t

0

G2X(s)dW2(s),(5.2)

F =

(
−0.9 0
0.25 −0.5

)
+

ε2

2

(
0.752 + 0.92 0

0 0.752 + 0.92

)
,

G1 = ε

(
0.75 0
0 −0.75

)
, G2 = ε

(
0 0.9

0.9 0

)
, t ∈ [0, 2] .

The above system is fully noncommutative, i.e., [F,G1], [F,G2], [G1, G2] are all nonzero,
where [A,B] = AB −BA for matrices A, B. Here we cannot use an explicit formula
for the solution of the system; thus we have computed a “reference solution” with the
trapezoidal rule on a very fine grid by using 262144 steps.

Results for another example, a scalar SDE with polynomial drift and diffusion
coefficients, are reported in [6].

In our experiments we have investigated the relation between step size h and
achieved accuracy for several choices of parameters for the two test examples. The
accuracy is measured as the maximum approximate L2-norm of the global errors in
the time interval [0, 1] and [0, 2], respectively:

max
�=1,...,N

⎛
⎝ 1

M

M∑
j=1

|X(t�, ωj) −X�(ωj)|2
⎞
⎠1/2

≈ max
�=1,...,N

‖X(t�) −X�‖L2 ,

where N denotes the number of steps and M the number of computed paths. In our
computations we used M = 100, unless specified otherwise.

The results are presented as figures, where we have plotted the achieved accuracy
versus the step sizes in logarithmic scale with base 10. Then the slope of the resulting
lines corresponds to the observed order of the schemes. Lines with slopes 0.5, 1, 2, 3
are provided in some figures to enable comparisons with convergence of these orders.

Our first test concerned the effect of applying a method which is not numerically
stable in the mean-square sense, i.e., the coefficients of the method do not satisfy
Dahlquist’s root condition. For the method considered (the parameters are given in
the first row of Table 5.1), one of the roots of the characteristic polynomial ρ (2.12)
is 2. Figure 1 shows the behavior of the error of this method applied to the SDE
(5.1) with α = −1, β = 0.01, when the step size decreases. We note that the scale is
logarithmic!

Next we report results for the other methods listed in Table 5.1, applied to the
simple linear SDE (5.1). To start off the integration with the two-step schemes we
needed a second starting value X1. In this example we used the exact solution value
X(t1), thus avoiding introducing additional errors. In computational practice, the
starting value X1 could be computed, e.g., by means of the trapezoidal rule. Then
the error structure of the two-step Maruyama schemes is maintained. For reasons
of space restriction we present only results for one set of parameters, α = −1 and
β = 0.01, where β takes the role of the parameter ε. The results are given in Figure 2
and illustrate the observations made in Remark 4.5 very well. We see that the error
of the other schemes is smaller than that of the Euler schemes. Their error appears
to be of the size max(c1β

2h
1
2 , c2βh, c3h

2), c3 being an error constant particular to the
scheme. The constants c1, c2 appear to coincide for the considered schemes.
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Fig. 1. Simulation results for the SDE (5.1) with the unstable scheme.
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Fig. 2. Simulation results for the SDE (5.1) with the stable schemes of Table 5.1.

Results of experiments with several methods of Table 5.1 applied to the second
example (5.2) are presented in Figures 3 to 5. The second starting value X1 has
been taken as the corresponding value of the reference solution, which amounts to
a computation by the trapezoidal rule with very small step sizes. In Figures 3 and
4 we show simulation results with the parameter ε = 10−4, 10−2. Again we have
plotted the achieved accuracy versus the step size in logarithmic scale. The results are
qualitatively the same as for the simple example above. The error of the Euler schemes
is larger than that of the other schemes and the error of the schemes with deterministic
order 2 (trapezoidal rule, Adams–Bashforth2 and BDF2) appears to be of the size

max(c1β
2h

1
2 , c2βh, c3h

2), whereas for the Adams–Moulton2 with deterministic order

3 one even observes errors of the size max(c1β
2h

1
2 , c2βh, c4h

3).
Figure 5 relates to the case where the parameter in the diffusion coefficient is

not small. Here the order h1/2 term dominates the error for all chosen step sizes.
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Fig. 3. Simulation results for the SDE (5.2), ε = 10−4, with schemes of Table 5.1.

ε=0.01

−11

−10

−9

−8

−7

−6

−5

−4

−3

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1

lo
g(

||e
rr

or
||_

L
2)

log(h)

ex Eul
im Eul

trap
BDF2

AB2
AM2

slope 1
slope 2

Fig. 4. Simulation results for the SDE (5.2), ε = 10−2, with schemes of Table 5.1.

Furthermore, due to the larger noise the statistical error in the approximation is more
visible, which we partly compensated by using 500 paths instead of only 100. In this
case one can clearly see that the Euler schemes perform as well as the other schemes
and investing the higher effort for the two-step schemes does not pay.

Appendix A. Proof of Theorem 3.2.
Proof. Necessity: This part can be proved as in the deterministic case, i.e., we

take the equation X ′(t) = 0, then f and Γj satisfy obviously (2.9) and (2.10). We
then follow in principle the proof of [15, Thm. 6.3.3].

Sufficiency: Since the SLMM (2.1) contains the stochastic part related to the
Γj , we cannot rely on the theory of difference equations and the representations of
their solutions. Instead, we will follow the route of rewriting the k-step recurrence
equation as a one-step recurrence equation in a higher dimensional space (see, e.g.,
[16, Chap. III.4][26, Chap. 8.2.1]).
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Fig. 5. Simulation results for the SDE (5.2), ε = 1, with schemes of Table 5.1.

For X� and X̃� being the solutions of (2.1) and (2.4), respectively, let the n-
dimensional vector E� be defined as the difference X�−X̃�. We have with E0, . . . , Ek−1

∈ L2(Ω,Rn) for � = k, . . . , N, the recursion

E� = −
k∑

j=1

αj E�−j + h

k∑
j=0

βj Δf�−j

︸ ︷︷ ︸
=:Δφ�

+

k∑
j=1

ΔΓj,�−j It�−j ,t�−j+1

︸ ︷︷ ︸
=:Δψ�

−D�,(A.1)

where

Δf�−j := f(X�−j , t�−j) − f(X̃�−j , t�−j)

ΔΓj,�−j := Γj(X�−j , t�−j) − Γj(X̃�−j , t�−j).

We rearrange this k-step recursion in the space L2(Ω,Rn) to a one-step recursion in
L2(Ω,Rk×n). Together with the trivial identities E�−1 = E�−1, . . . E�−k+1 = E�−k+1

we obtain⎛
⎜⎜⎜⎝

E�

E�−1

...
E�−k+1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=: E�

=

⎛
⎜⎜⎜⎝
−α1I · · · · · · −αkI

I 0
. . .

. . .

I 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=: A

⎛
⎜⎜⎜⎝

E�−1

E�−2

...
E�−k

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=: E�−1

+

⎛
⎜⎜⎜⎝

Δφ�

0
...
0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=: ΔΦ�

+

⎛
⎜⎜⎜⎝

Δψ�

0
...
0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=: ΔΨ�

+

⎛
⎜⎜⎜⎝

−D�

0
...
0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=: D�

or, in compact form,

E� = AE�−1 + ΔΦ� + ΔΨ� + D� , � = k, . . . , N and Ek−1 = (−Dk−1,−Dk−2, . . . ,−D0)
T ,

where E� ∈ L2(Ω,Rk×n), � = k − 1, k, . . . , N . The vector Ek−1 consists of the per-
turbations to the initial values. We now trace back the recursion in E� to the initial
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vector Ek−1. For � = k, . . . , N we have

E� = AE�−1 + ΔΦ� + ΔΨ� + D�

= A(AE�−2 + ΔΦ�−1 + ΔΨ�−1 + D�−1) + ΔΦ� + ΔΨ� + D�

= A2E�−2 + (ΔΦ� + AΔΦ�−1) + (ΔΨ� + AΔΨ�−1) + (D� + AD�−1)

...

= A�−k+1Ek−1 +

�−k∑
i=0

AiΔΦ�−i +

�−k∑
i=0

AiΔΨ�−i +

�−k∑
i=0

AiD�−i

= A�−k+1Ek−1 +

�∑
i=k

A�−iΔΦi +

�∑
i=k

A�−iΔΨi +

�∑
i=k

A�−iDi .

A crucial point for the subsequent calculations is to find a scalar product inducing
a matrix norm such that this norm of the matrix A is less than or equal to 1 (see,
e.g., [16, Chap. III.4, Lemma 4.4]. This is possible if the eigenvalues of the Frobenius
matrix A lie inside the unit circle of the complex plane and are simple if their modulus
is equal to 1. The eigenvalues of A are the roots of the characteristic polynomial ρ
(2.12) and due to the assumption that Dahlquist’s root condition is satisfied they
have the required property. Then there exists a nonsingular matrix C with a block
structure like A such that ‖C−1AC‖2 ≤ 1, where ‖ · ‖2 denotes the spectral matrix
norm that is induced by the Euclidian vector norm in R

k×n. We can thus choose a
scalar product for X ,Y ∈ R

k×n as

〈X ,Y〉∗ := 〈C−1X , C−1Y〉2

and then have |.|∗ as the induced vector norm on R
k×n and ‖ · ‖∗ as the induced

matrix norm with ‖A‖∗ = ‖C−1AC‖2 ≤ 1. We also have

〈X ,Y〉∗ = X TC−TC−1Y = X TC∗Y with C∗ = C−TC−1 = (c∗ijIn)i,j=1,...,k.

Due to the norm equivalence there are constants c∗, c∗ > 0 such that

|X |22 ≤ c∗|X |2∗ and |X |2∗ ≤ c∗|X |2∞ ∀X ∈ R
k×n ,

where |X |22 =
∑

j=1,...,k |xj |2, |X |∞ = maxj=1,...,k |xj | for X = (xT
1 , . . . , x

T
k )T . For

the special vectors X =(xT , 0, . . . , 0)T and Y=(yT , 0, . . . , 0)T with X ,Y ∈ R
k×n and

x, y ∈ R
n, one has 〈X ,Y〉∗ = c∗11〈x, y〉2 = c∗11x

T y, where c∗11 is given by the matrix
C∗.

We now apply |.|2∗ to estimate |E�|2∗ and, later, E|E�|2∗. We start with

|E�|2∗ ≤ 4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
|A�−k+1Ek−1|2∗︸ ︷︷ ︸

(1)

+ |
�∑

i=k

A�−iΔΦi|2∗︸ ︷︷ ︸
(2)

+ |
�∑

i=k

A�−iΔΨi|2∗︸ ︷︷ ︸
(3)

+ |
�∑

i=k

A�−iDi|2∗︸ ︷︷ ︸
(4)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

For the term labeled (1) we have |A�−k+1Ek−1|2∗ ≤ |Ek−1|2∗, and thus

E|A�−k+1Ek−1|2∗ ≤ E|Ek−1|2∗ .(A.2)
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For the term labeled (2) we have

∣∣∣∣∣
�∑

i=k

A�−iΔΦi

∣∣∣∣∣
2

∗

≤ (�− k + 1)

�∑
i=k

|A�−iΔΦi|2∗ ≤ N

�∑
i=k

|ΔΦi|2∗ =
T

h
c∗11

�∑
i=k

|Δφi|2

≤ h T c∗11 (k+1)

�∑
i=k

k∑
j=0

|βj Δfi−j |2 ≤ h T c∗11 (k+1) L2
f

�∑
i=k

k∑
j=0

β2
j |Ei−j |2

≤ h T c∗11 (k+1) L2
f

⎧⎨
⎩β2

0 |E�|2 +

�∑
i=k

⎧⎨
⎩β2

0 |Ei−1|2 +

k∑
j=1

β2
j |Ei−j |2

⎫⎬
⎭
⎫⎬
⎭

≤ h T c∗11 (k+1) L2
f

{
c∗ β2

0 |E�|2∗ + Cβ c∗
�−1∑

i=k−1

|Ei|2∗

}
,

where Cβ = 2 maxj=0,...,k βj . Hence,

E|
�∑

i=k

A�−iΔΦi|2∗ ≤ h T c∗11 (k+1) L2
f

{
c∗ β2

0 E|E�|2∗ + Cβ c∗
�−1∑

i=k−1

E|Ei|2∗

}
.(A.3)

We will now treat the term labeled (3). For that purpose we introduce the notation
ΔΨj,i−j := ((ΔΓj,i−jI

ti−j ,ti−j+1)T , 0, . . . , 0)T . Using this we can write

ΔΨi = ((Δψi)T , 0, . . . , 0)T =

⎛
⎜⎝
⎛
⎝ k∑

j=1

ΔΓj,i−j Iti−j ,ti−j+1

⎞
⎠T

, 0, . . . , 0

⎞
⎟⎠

T

=

k∑
j=1

ΔΨj,i−j

and

∣∣∣∣∣
�∑

i=k

A�−iΔΨi

∣∣∣∣∣
2

∗

=

∣∣∣∣∣∣
�∑

i=k

A�−i
k∑

j=1

ΔΨj,i−j

∣∣∣∣∣∣
2

∗

.

Every ΔΨj,i−j is Fti−j+1
-measurable and E(ΔΨj,i−j |Fti−j

) = 0. We can now
reorder the last term above such that we have a sum of terms where each term
contains all multiple Wiener integrals over just one subinterval. The expectation of
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products of terms from different subintervals vanishes; hence we obtain

E

∣∣∣∣∣
�∑

i=k

A�−iΔΨi

∣∣∣∣∣
2

∗

= E|A�−kΔΨk,0|2∗
+ E|A�−k−1ΔΨk,1 + A�−kΔΨk−1,1|2∗
...

+ E|A�−2k+1ΔΨk,k−1 + A�−2k+2ΔΨk−1,k−1 + . . . + A�−kΔΨ1,k−1|2∗
...

+ E|A0ΔΨk,�−k + A1ΔΨk−1,�−k + . . . + Ak−1ΔΨ1,�−k|2∗
...

+ E|A0ΔΨ2,�−2 + A1ΔΨ1,�−2|2∗
+E|A0ΔΨ1,�−1|2∗

≤ k

�∑
i=k

k∑
j=1

E|ΔΨj,i−j |2∗ ≤ k c∗11

�∑
i=k

k∑
j=1

E‖ΔΓj,i−j‖2
E|Iti−j ,ti−j+1 |2

≤ h k c∗11 L2
Γ

�∑
i=k

k∑
j=1

E|Ei−j |2 ≤ h k c∗11 L2
Γ c∗

�∑
i=k

|Ei−1|2∗.

Thus, for the term labeled (3), we obtain

E|
�∑

i=k

A�−iΔΨi|2∗ ≤ h k c∗11 L2
Γ c∗

�−1∑
i=k−1

|Ei|2∗.(A.4)

We will, for a shorter notation, deal with the term labeled (4), i.e., the perturbations
Di in Di, after obtaining an intermediate result. Using (A.2), (A.3), and (A.4), and
setting L0 := L2

f (k + 1) c∗11 T c∗ β2
0 and L := L2

f (k + 1) c∗11 T c∗β + L2
Γ k c∗11 c∗,

we have now arrived at

E|E�|2∗ ≤ 4

{
E|Ek−1|2∗ + hL0E|E�|2 + hL

�−1∑
i=k−1

E|Ei|2∗ + E|
�∑

i=k

A�−iDi|2∗

}
, � = k, . . . , N.

If necessary, we choose a bound h0 on the step size such that 4 h L0 < 1
2 holds for all

h < h0 and conclude that

E|E�|2∗ ≤ 8 E|Ek−1|2∗ + 8 E

∣∣∣∣∣
�∑

i=k

A�−iDi

∣∣∣∣∣
2

∗

+ 8 L T
1

N

�−1∑
i=k−1

E|Ei|2∗.

We now apply Lemma 2.11 with a� := 0, � = 1, . . . , k − 2, and a� := E|E�|2∗, � =
k − 1, . . . , N , and obtain the intermediate result

max
�=k−1,...,N

E|E�|2∗ ≤ Ŝ

⎧⎨
⎩E|Ek−1|2∗ + max

�=k,...,N
E

∣∣∣∣∣
�∑

i=k

A�−iDi

∣∣∣∣∣
2

∗

⎫⎬
⎭ , Ŝ := 8 exp(8LT ) .

(A.5)
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It remains to deal with the term labeled (4), i.e., the perturbations Di in Di. We de-

compose Di, and, analogously, Di, into Di =Ri+Si = Ri+
∑k

j=1 Sj,i−j+1,Di = Ri+

Si = Ri+
∑k

j=1 Sj,i−j+1, where Sj,i−j+1 is Fti−j+1 -measurable with E(Sj,i−j+1|Fti−j )=

0 for i = k, . . . , N and j = 1, . . . , k. Then E〈A�1Sj1,i1 ,A�2Sj2,i2〉∗ = 0 for i1 	= i2, and
by similar computations as above, we obtain

E

∣∣∣∣∣
�∑

i=k

A�−iDi

∣∣∣∣∣
2

∗

≤ 2 (�−k+1)

�∑
i=k

E|A�−iRi|2∗ + 2 k

�∑
i=k

k∑
j=1

E|A�−iSj,i−j+1|2∗

≤ 2

�∑
i=k

⎛
⎝T

h
E|Ri|2∗ + k

k∑
j=1

E|Sj,i−j+1|2∗

⎞
⎠ .

Inserting this into the intermediate result (A.5) we obtain

max
�=k−1,...,N

E|E�|2∗ ≤ Ŝ

⎧⎨
⎩E|Ek−1|2∗ + 2

�∑
i=k

⎛
⎝T

h
E|Ri|2∗ + k

k∑
j=1

E|Sj,i−j+1|2∗

⎞
⎠
⎫⎬
⎭ ,

and

max
�=k−1,...,N

E|E�|2≤ c∗Ŝ

⎧⎨
⎩c∗ max

�=0,...,k−1
E|E�|2+2 c∗11 max

�=k,...,N

⎛
⎝T 2

h2
E|R�|2+

kT

h

k∑
j=1

E|Sj,�−j+1|2
⎞
⎠
⎫⎬
⎭.

Taking the square root yields the final estimate

max
�=k−1,...,N

‖E�‖L2

≤
√
c∗Ŝ

⎧⎨
⎩√c∗ max

�=0,...,k−1
‖E�‖L2 +

√
2c∗11 max

�=1,...,N

⎛
⎝T

h
‖R�‖L2 +

√√√√kT

h

k∑
j=1

‖Sj,�−j+1‖2
L2

⎞
⎠
⎫⎬
⎭

≤ S

⎧⎨
⎩ max
�=0,...,k−1

‖E�‖L2 + max
�=1,...,N

⎛
⎝‖R�‖L2

h
+

√∑k
j=1 ‖Sj,�−j+1‖2

L2√
h

⎞
⎠
⎫⎬
⎭ ,

which completes the proof.
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[16] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I:

Nonstiff Problems, 2nd rev. ed., Springer Ser. Comput. Math. 8, Springer, New York,
1993.

[17] E. Isaacson and H. Keller, Analysis of Numerical Methods, John Wiley and Sons, New York,
1966.

[18] P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer,
Berlin, 1992.

[19] J. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem,
John Wiley & Sons, Chichester, 1991.

[20] P. Lax and R. Richtmyer, Survey of the stability of linear finite difference equations, Comm.
Pure Appl. Math., 9 (1956), pp. 267–293.

[21] G. Milstein and M. Tretyakov, Mean-square numerical methods for stochastic differential
equations with small noise, SIAM J. Sci. Comput., 18 (1997), pp. 1067–1087.

[22] G. Milstein and M. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer-
Verlag, Berlin, 2004.

[23] G. Milstein, Theorem on the order of convergence for mean-square approximations of solu-
tions of stochastic differential equations, Theory Probab. Appl., 32 (1987), pp. 738–741.

[24] G. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer, Norwell, MA,
1995.

[25] C. Penski, A new numerical method for sdes and its application in circuit simulation, J.
Comput. Appl. Math., 115 (2000), pp. 461–470.

[26] R. Plato, Numerische Mathematik Kompakt. Grundlagenwissen für Studium und Praxis,
Vieweg, Braunschweig, Germany, 2000.

[27] W. Römisch and R. Winkler, Stochastic DAEs in circuit simulation, in Modeling, Simulation
and Optimization of Integrated Circuits, A. G. K. Antreich, R. Bulirsch and P. Rentrop,
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Abstract. In this paper, a linearized backward Euler method is discussed for the equations of
motion arising in the Oldroyd model of viscoelastic fluids. Some new a priori bounds are obtained
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1. Introduction. The motion of an incompressible fluid in a bounded domain
Ω in R

2 is described by the system of partial differential equations

∂u

∂t
+ u · ∇u −∇ · σ + ∇p = F(x, t), x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

with appropriate initial and boundary conditions. Here, σ = (σik) denotes the stress
tensor with trσ = 0, u represents the velocity vector, p is the pressure of the fluid,
and F is the external force. The defining relation between the stress tensor σ and
the rate of deformation tensor D = (Dik) = 1

2 (uixk
+ ukxi), called the equation of

state or sometimes the rheological equation, in fact, establishes the type of fluids
under consideration. When σ = 2νD (using Newton’s law) with ν the kinematic
coefficient of viscosity, we obtain Newton’s model of incompressible viscous fluid and
the corresponding system is widely known as Navier–Stokes equations. This has been
a basic model for describing the flow at moderate velocities of the majority of the
incompressible viscous fluids encountered in practice. However, there are many fluids
with complex microstructure, such as biological fluids, polymeric fluids, suspensions,
and liquid crystals, which are used in the current industrial processes and show (non-
linear) viscoelastic behavior that cannot be described by the classical linear viscous
Newtonian models. The deparature from the Navier–Stokes behavior manifests itself
in a variety of ways, such as non-Newtonian viscosity, stress relaxation, and nonlin-
ear creeping. The model of rate type such as Oldroyd fluids (see [4], [23], [32] ) can
predict the stress relaxation as well as the retardation of deformation and, therefore,
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have become popular for describing polymeric suspension. In order to model the be-
havior of a dilute polymer solution in a Newtonian solvent, the extra stress tensor is
often split into two components: a viscoelastic one and a purely viscous one. So the
Oldroyd fluids of order one as it is known in the Russian literature (see [23], [2], [18])
are described by the defining relation(

1 + λ
∂

∂t

)
σ = 2ν

(
1 + κν−1 ∂

∂t

)
D,

where λ, ν, κ are positive constants with (ν−κλ−1) > 0. Here, ν denotes the kinematic
viscocity, λ is the relaxation time, and κ represents the retardation time. In the form
of an integral equation, we write the above defining relation as

σ(x, t) = 2κλ−1D(x, t) + 2λ−1(ν − κλ−1)

∫ t

0

exp(−λ−1(t− τ))D(x, τ) dτ

+(σ(x, 0) − 2κλ−1D(x, 0)) exp(−λ−1t).

Now the equation of motion of the Oldroyd fluids of order one can be described most
naturally by the system of integrodifferential equations

∂u

∂t
+ u · ∇u − μΔu −

∫ t

0

β(t− τ)Δu(x, τ) dτ + ∇p = f , x ∈ Ω, t > 0,(1.1)

and incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0,(1.2)

with initial and boundary conditions

u(x, 0) = u0, x ∈ Ω, and u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.(1.3)

Here, Ω is a bounded domain in two-dimensional Euclidean space R
2 with smooth

boundary ∂Ω, μ = κλ−1 > 0 and the kernel β(t) = γ exp(−δt), where γ = λ−1(ν −
κλ−1) and δ = λ−1. For details of the physical background and its mathematical
modeling, see [4], [17], [23], [24], and [32].

Throughout this paper, we shall assume that μ = 1 and the nonhomogeneous
term f = 0. In fact, assuming conservative force, the function f can be absorbed in
the pressure term.

As in Temam [28], we recast the above problem (1.1)–(1.3) as an abstract evolu-
tion equation in an appropriate function space setting. Let us denote by Hm(Ω) the
standard Hilbert–Sobolev space and by ‖·‖m the norm defined on it. When m = 0, we
call H0(Ω) as the space of square integrable functions L2(Ω) with the usual norm ‖ · ‖
and inner product (·, ·). Further, let H1

0 (Ω) be the completion of C∞
0 (Ω) with respect

to H1(Ω)-norm. In fact, the seminorm ‖∇φ‖ on H1
0 (Ω) is a norm and is equivalent to

H1-norm. We also use the following function spaces for the vector valued functions.
Define

D(Ω) := {φ ∈ (C∞
0 (Ω))2 : ∇ · φ = 0 in Ω},

H := the closure of D(Ω) in (L2(Ω))2 − space,

and

V := the closure of D(Ω) in (H1
0 (Ω))2 − space.
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Note that under some smoothness assumptions on the boundary ∂Ω, it is possible to
characterize V as

V := {φ ∈ (H1
0 )2 : ∇ · φ = 0 in Ω}.

The spaces of vector functions are indicated by boldface letters, for instance, H1
0 =

(H1
0 (Ω))2. The inner product on H1

0 is denoted by

(∇φ,∇w) =
2∑

i=1

(∇φi,∇wi)

and the norm by

‖∇φ‖ =

(
2∑

i=1

‖∇φi‖2

) 1
2

.

Using the Poincaré inequality, it can be shown that the norm on H1
0 is equivalent

to H1 = (H1(Ω))2- norm. Let P denote the orthogonal projection of L2(Ω) (=
(L2(Ω))2) onto H. Now the orthogonal complement V⊥ of V in L2(Ω) consists
of functions φ such that φ = ∇p for some p ∈ H1(Ω)/R. We define the Stokes
operator Av = −PΔv, v ∈ D(A) = H2

⋂
V. The Stokes operator is a closed

linear self-adjoint and positive operator on H with densely defined domain D(A)
in H. Note that its inverse is compact in H; see [28]. Moreover, we set the sth
power of A as As for every s ∈ R. For 0 ≤ s ≤ 2, D(As/2) is a Hilbert space
with the inner product (As/2v, As/2w) and norm ‖As/2v‖ := (As/2v, As/2v)1/2. For
v ∈ D(As/2), 0 ≤ s ≤ 2, we note that ‖v‖s and ‖As/2v‖ are equivalent. We also
define a bilinear operator B(u,v) = P((u · ∇)v), u,v ∈ V.

With the notations described above, we now rewrite the problem (1.1)–(1.3) in
its abstract form as follows.

Find u(t) ∈ D(A) such that for t ≥ 0

du

dt
(t) + Au(t) + B(u(t),u(t)) +

∫ t

0

β(t− s)Au(s) ds = 0, t > 0,(1.4)

u(0) = u0.

In an Oldroyd fluid, the stresses after instantaneous cessation of the motion decay
like exp(−λ−1t), while the velocities of the flow after instantaneous removal of the
stresses die out like exp(−κ−1t). Therefore, it is of interest to discuss the exponential
decay property of the solution of (1.4), and we derive these results in section 2. For
some related studies in the decay of solution of the linear parabolic equations with
memory, see [30] and [3].

The main focus of this paper is to discuss the linearized backward Euler method
for time discretization of the system of equations (1.4). For the temporal discretization
of the above abstract problem (1.4), let k denote the time step and tn = nk. For
smooth function φ defined on [0,∞), set φn = φ(tn) and ∂̄tφ

n = (φn − φn−1)/k. For
the integral term, we apply the right rectangle rule as

qn(φ) = k

n∑
j=1

βn−jφ
j ≈

∫ tn

0

β(tn − s)φ(s) ds,(1.5)

where βn−j = β(tn − tj).
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Now the linearized version of the backward Euler method applied to the problem
(1.4) determines a sequence of functions {Un}n≥0 ⊂ D(A) as solutions of

∂̄tU
n + AUn + B(Un−1,Un) + qn(AU) = 0, n > 0,(1.6)

U0 = u0.

The main objective of this paper is to derive the following result.
Theorem 1. Let u0 ∈ D(A) and let Un satisfy (1.6). Then there is a positive

constant C independent of k but that may depend on ‖u0‖2 and Ω such that for some
k0 > 0 with 0 < k < k0 and for positive α with 0 < α < min(δ, λ1)

‖u(tn) − Un‖1 ≤ C(‖u0‖2)e
−αtnk

(
t−1/2
n + log

1

k

)
,

where λ1 is the least eigenvalue of the Stokes operator A.
Once Theorem 1 is proved, the proof of the following theorem becomes routine

work. However, we shall indicate only the major steps without proving it in detail in
the end of section 3.

Theorem 2. Under the assumptions of Theorem 1, there is a positive constant
C independent of k but that may depend on ‖u0‖2 and Ω such that for some k0 > 0
with 0 < k < k0 and 0 < α < min(δ, λ1)

‖u(tn) − Un‖ ≤ C(‖u0‖2)e
−αtnk.

Based on the analysis of Ladyzenskaya [20] for the solvability of the Navier–Stokes
equations, Oskolkov [24] proved the global existence of unique “almost” classical so-
lutions in finite time interval for the initial and boundary value problem (1.1)–(1.3).
The invesigations on solvability were further continued by the coworkers of Oskolkov
[19] and Agranovich and Sobolevskii [1] under various sufficient conditions. In these
articles, the regularity results are proved which are, in principle, based on some non-
local compatibility conditions for the data at t = 0. Note that these compatibility
conditions are either hard to verify or difficult to meet in practice. In case of Navier–
Stokes equations, we refer to Heywood and Rannacher [14] for a similar kind of non-
local conditions. In the present article, we have obtain some new a priori bounds
for the solutions of (1.4) under realistically assumed conditions on the initial data.
Recently, Sobolevskii [27] discussed the long-time behavior of solution under some
stabilizing conditions on the nonhomogeneous forcing function using a combination
of energy arguments and semigroup theoretic approach. When the forcing function
is zero, we have derived, in sections 2 and 3, the exponential decay properties for the
exact solution as well as for the discrete solution using only energy arguments.

For earlier works on the numerical approximations to the solutions of the prob-
lem (1.1)–(1.3), see [2] and [5]. While Akhmatov and Oskolkov [2] applied a finite
difference scheme to the equation of motion arising in the Oldroyd model, Cannon et
al. [5] analyzed a modified nonlinear Galerkin scheme for a periodic problem using
spectral Galerkin procedure and discussed the rates of convergence for the semidis-
crete approximations. Recently, Pani and Yuan [26] and He et al. [12] applied finite
element methods to discretize the spatial variables and derived optimal error esti-
mates for the problems (1.1)–(1.3) without using nonlocal compatibility conditions.
In all these pappers [5], [26], [12], only semidiscrete approximations are discussed
keeping the time variable continuous. In this article, we have proposed and analyzed
a time discretization scheme based on linearized modification of the backward Euler
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method. Note that the results on higher order time discretization can easily be proved
under the assumption that the exact solutions are sufficiently smooth when t is near
0. These regularity results as we have mentioned earlier entail nonlocal compatibility
conditions for the initial data which cannot be verified in practice. Recently, in the
context of Oldroyd B fluid, which is a generalization of Oldroyd fluid of order one,
a second order Crank–Nicolson scheme [8] is used for the temporal discetization in
conjuction with the finite element methods for spatial discretization under regularity
requirements on the solutions which cannot be realistically assumed. Therefore, an
attempt has been made in this paper to discuss the error estimates for the linearized
modified backward Euler scheme (1.6) applied to (1.4) under realistically assumed
conditions on the initial data. Finally, in section 4, we conclude with a summary and
possible extensions.

The approach of the present article is influenced by the earlier results of Fujita and
Mizutani [10], Thomée [29], and references therein on the approximation of semigroups
for the parabolic problems; Okamoto [22] on the spatial discretization and Geveci [11]
on the time discretization of the Navier–Stokes equations; and Thomée and Zhang
[31] for the time discretization of the linear parabolic integrodifferential equations
with nonsmooth initial data.

2. Some a priori estimates. For our future use, we make use of the positive
definite property (see [21], for a definition) of the kernel β of the integral operator in
(1.1). This can be seen as a consequence of the following lemma. For a proof, see
Sobolevskii [27, p. 1601] and McLean and Thomeé [21].

Lemma 3. For arbitrary α > 0, t∗ > 0, and φ ∈ L2(0, t∗), the following positive
definite property holds:∫ t∗

0

(∫ t

0

exp [−α(t− s)]φ(s) ds

)
φ(t) dt ≥ 0.

Since β(t) = γe−δt with γ > 0, therefore, the above result is true for β(t).
Below, we discuss some a priori bounds for the solution u of (1.4).
Lemma 4. Let 0 < α < min (δ, λ1) and u0 ∈ L2(Ω). Then, the following estimate

holds:

‖u(t)‖ ≤ e−αt‖u0‖, t > 0.

Moreover,

2

(
1 − α

λ1

)∫ t

0

e2ατ‖A1/2u(τ)‖2dτ ≤ ‖u0‖2.

Proof. Setting û(t) = eαtu(t) for some α > 0, we rewrite (1.4) as

d

dt
û − αû + e−αtB(û, û) + Aû +

∫ t

0

β(t− τ)eα(t−τ)Aû(τ) dτ = 0.(2.1)

Form L2-inner product between (2.1) and û. Note that (B(û, û), û) = 0, (Au,v) =

(A
1
2 u, A1/2v), and ‖û‖2 ≤ λ−1

1 ‖A1/2û‖2, where λ1 is the least eigenvalue of the Stokes
operator A. Then

d

dt
‖û‖2 + 2

(
1 − α

λ1

)
‖A1/2û‖2(2.2)

+ 2

∫ t

0

β(t− τ)eα(t−τ)(A1/2û(τ), A1/2û(τ))dτ ≤ 0.
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After integrating (2.2) with respect to time, the third term becomes nonnegative,
since δ > α, and the second term on the left-hand side of (2.2) is also nonnegative if
α < λ1. With 0 < α < min (δ, λ1), we find that

‖û‖ ≤ ‖u0‖.

Moreover,

2

(
1 − α

λ1

)∫ t

0

e2ατ‖A1/2u(τ)‖2dτ ≤ ‖u0‖2.

This completes the rest of the proof.
Lemma 5. Under the hypothesis of Lemma 4, the solution u of (1.4) satisfies

‖A1/2u(t)‖2 + e−2αt

∫ t

0

e2ατ‖Au(τ)‖2 dτ ≤ C(‖A1/2u0‖)e−2αt.

Proof. Forming L2-inner product between (2.1) and Aû, we obtain

(ût, Aû) + ‖Aû‖2 +

∫ t

0

β(t− τ)eα(t−τ)(Aû(τ), Aû) dτ = α(û, Aû)(2.3)

− e−αt(B(û, û), Aû).

Note that

(ût, Aû) =
1

2

d

dt
‖A1/2û‖2.

On integration of (2.3) with respect to time and using Lemma 3 along with the
definition of β, it follows for 0 < α ≤ δ that

‖A1/2û(t)‖2 + 2

∫ t

0

‖Aû(τ)‖2 dτ ≤ ‖A1/2u0‖2 + 2α

∫ t

0

(û, Aû) dτ(2.4)

− 2

∫ t

0

e−ατ (B(û, û), Aû) dτ

= ‖A1/2u0‖2 + I1 + I2.

To estimate |I1|, we apply the Poincaré inequality and Cauchy–Schwarz inequality
with ab ≤ 1

2εa
2 + ε

2b
2, a, b ≥ 0, ε > 0. Then the use of Lemma 4 yields

|I1| ≤ C(α, λ1, ε)

∫ t

0

‖A1/2û(τ)‖2 dτ + ε

∫ t

0

‖Aû(τ)‖2 dτ(2.5)

≤ C(α, λ1, ε)‖u0‖2 + ε

∫ t

0

‖Aû(τ)‖2 dτ.

For the estimation of I2, we apply Hölder’s inequality repeatedly with the form of the
Sobolev inequality (see Temam [28])

‖φ‖L4(Ω) ≤ C‖φ‖ 1
2 ‖A1/2φ‖ 1

2 , φ ∈ H1(Ω),

to obtain

|(B(û, û), Aû)| ≤ ‖B(û, û)‖‖Aû‖
≤ C‖û‖ 1

2 ‖A1/2û‖‖Aû‖ 3
2 .
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Thus,

|I2| ≤ C

∫ t

0

e−ατ‖û‖ 1
2 ‖A1/2û‖ ‖Aû‖ 3

2 dτ.

An application of Young’s inequality ab ≤ ap

εp/q
+ εbq

q , a, b ≥ 0, ε > 0, and 1
p + 1

q = 1

with p = 4 and q = 4
3 yields

|I2| ≤ C(ε)

∫ t

0

e−4ατ‖û‖2‖A1/2û‖4 dτ + ε

∫ t

0

‖Aû‖2 dτ.(2.6)

Substituting (2.5)–(2.6) in (2.4), and using ε = 1
2 , we find that

‖A1/2û(t)‖2 +

∫ t

0

‖Aû(τ)‖2 dτ ≤ C(α, λ1, ‖A1/2u0‖) + C

∫ t

0

e−4ατ‖û‖2‖A1/2û‖4 dτ.

An application of Gronwall’s lemma yields

‖A1/2û(t)‖2+

∫ t

0

‖Aû(τ)‖2 dτ≤ C(α, λ1, ‖A1/2u0‖) exp

{
C

∫ t

0

e−4ατ‖û‖2‖A1/2û‖2 dτ

}
.

Using the a priori bounds in Lemma 4 for 0 < α < min (δ, λ1), we obtain the desired
result. This completes the proof.

Remark 1. Based on the Faedo–Galerkin method and the a priori bounds derived
in the above two lemmas, it is possible to prove the existence of global strong solu-
tions to the problem (1.1)–(1.3). For a similar analysis in the case of Navier–Stokes
equations, see Heywood [13], Temam [28], and Ladyzenskaya [20]. Since the analysis
is quite standard, we state without proof the global existence theorem [25].

Theorem 6. Assume that u0 ∈ D(A). Then for any given time T > 0 with
0 < T ≤ ∞, there exists a unique strong solution u of (1.4) satisfying

u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V) ∩H1(0, T ;H),

and the initial condition in the sense that

‖A1/2(u(t) − u0)‖ −→ 0, as t −→ 0.

Recently, Cannon et al. [5] proved existence of a global weak solution u satisfying

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V), T > 0,

for a periodic problem, under the assumption that the forcing function f ∈ L∞(0,∞;L2)
and u0 ∈ H. It is easy to extend our analysis to (1.1)–(1.3) with periodic boundary
conditions and f = 0.

Below, we derive some new regularity results without nonlocal assumptions on
the data.

Lemma 7. Under the assumptions of Lemma 4, there is a positive constant C
such that

‖Au(t)‖ + ‖ut‖ ≤ C(‖Au0‖)e−αt, t > 0,(2.7)

and (∫ t

0

e2αs‖A1/2ut(s)‖2 ds

)1/2

≤ C(‖Au0‖).(2.8)
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Further, the following estimate holds:

‖A1/2ut(t)‖ +

(
σ(t)

∫ t

0

σ(s)‖Aut(s)‖2 ds

)1/2

≤ C(‖Au0‖)
(τ∗(t))1/2

e−αt, t > 0,(2.9)

where σ(t) = τ∗(t)e2αt and τ∗(t) = min(t, 1).
Proof. From (2.1), we obtain

eαt‖ut‖ ≤ ‖Aû‖ + e−αt‖B(û, û)‖ +

∫ t

0

β(t− s)eα(t−s)‖Aû(s)‖ ds.(2.10)

Using the form of B and the Sobolev inequality, it follows that

‖B(û, û)‖ ≤ C‖û‖ 1
2 ‖A1/2û‖‖Aû‖ 1

2(2.11)

≤ C‖û‖‖A1/2û‖2 + C‖Aû‖.

On squaring (2.10) and integrating with respect to time, we find from (2.11) that∫ t

0

e2αs‖ut‖2 ds ≤ C

[∫ t

0

‖Aû‖2 ds +

∫ t

0

e−2αs‖û‖2‖A1/2û‖4 ds(2.12)

+

∫ t

0

(

∫ s

0

β(s− τ)eα(s−τ)‖Aû(τ)‖ dτ)2 ds

]
.

For the last term on the right-hand side of (2.12), use the form of β and Hölder’s
inequality to obtain

I =

∫ t

0

(∫ s

0

β(s− τ)eα(s−τ)‖Aû(τ)‖ dτ

)2

ds

= γ2

∫ t

0

(∫ s

0

e−(δ−α)(s−τ)‖Aû(τ)‖ dτ

)2

ds

≤ γ2

∫ t

0

(∫ s

0

e−(δ−α)(s−τ) dτ

)(∫ s

0

e−(δ−α)(s−τ)‖Aû(τ)‖2 dτ

)
ds

≤ γ2

δ − α

∫ t

0

(∫ s

0

e−(δ−α)(s−τ)‖Aû‖2 dτ

)
ds.

Using a change of variable, we find that

I ≤ γ2

δ − α

∫ t

0

(∫ s

0

e−(δ−α)τ‖Aû(s− τ)‖2 dτ

)
ds.

Now a change in the order of integration yields

I ≤ γ2

δ − α

∫ t

0

e−(δ−α)τ

(∫ t

τ

‖Aû(s− τ)‖2 ds

)
dτ

≤ γ2

(δ − α)2

∫ t

0

e−(δ−α)(t−τ)

(∫ t

0

‖Aû‖2 ds

)
dτ,

and hence,

I ≤
(

γ

δ − α

)2 ∫ t

0

‖Aû(s)‖2 ds.(2.13)
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Using (2.13) in (2.12), we arrive at∫ t

0

e2αs‖ut‖2 ds ≤ C

[∫ t

0

‖Aû‖2 ds +

∫ t

0

e−2αs‖û‖2‖A1/2û‖4 ds

]
(2.14)

≤ C(‖A1/2u0‖).

Differentiate (1.4) with respect to time, and integrate by parts with respect to the
temporal variable for the integral term to obtain

utt + Aut +

∫ t

0

β(t− s)Aus(s) ds = −(B(ut,u) + B(u,ut)) − β(t)Au0.(2.15)

Forming an inner product between (2.15) and e2αtut, we arrive at

1

2

d

dt
‖eαtut‖2 + e2αt‖A1/2ut‖2 +

∫ t

0

β(t− s)eα(t−s)(A1/2eαsus, A
1/2eαtut) ds

= α‖eαtut‖2 − e2αt ((B(ut,u) + B(u,ut),ut) − β(t)(Au0,ut)) .(2.16)

Note that (B(û, eαtut), e
αtut) = 0. Thus, it follows after integration of (2.16) with

respect to time and using the positivity property of the kernel, i.e., Lemma 3 that

e2αt‖ut‖2 + 2

∫ t

0

e2αs‖A1/2ut‖2 ds ≤ ‖ut(0)‖2 + 2α

∫ t

0

e2αs‖ut‖2 ds

+ 2

∫ t

0

e−αs|B(eαsût, û), eαsut)| ds + 2γ‖Au0‖
∫ t

0

e−(δ−α)s‖eαsut‖ ds.(2.17)

The last term on the right-hand side of (2.17) is bounded by

≤ C(α, δ, γ)

[
‖Au0‖2 +

∫ t

0

e2αs‖ut‖2 ds

]
.(2.18)

For the second term on the right-hand side of (2.17), we note with the help of Sobolev
inequality that

2

∫ t

0

e−αs|(B(eαsût, û), eαsut)| ds ≤ C sup
0≤s≤t

‖A1/2û(s)‖4

∫ t

0

e−4αs(e2αs‖ut‖2) ds

+

∫ t

0

e2αs‖A1/2ut‖2 ds.(2.19)

On substitution of (2.18)–(2.19) in (2.17) and using Lemmas 4 and 5, we obtain

e2αt‖ut‖2 +

∫ t

0

e2αs‖A1/2ut‖2 ds(2.20)

≤ C(δ, α)

[
‖ut(0)‖2 + ‖Au0‖2 +

∫ t

0

e2αs‖ut‖2 ds

]
.

From the main equation (1.4), we have at t = 0, ‖ut(0)‖ ≤ C(‖Au0‖), and hence,
using (2.14) we find that

‖ut‖2 + e−2αt

∫ t

0

e2αs‖A1/2ut(s)‖2 ds ≤ C(‖Au0‖)e−2αt.(2.21)
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To estimate ‖Au(t)‖, we now form an inner product between (2.1) and Aû(t) to obtain

‖Aû‖2 ≤ eαt‖ut‖‖Aû‖ + e−αt|(B(û, û), Aû)| + α‖û‖‖Aû‖(2.22)

+

∫ t

0

β(t− s)eα(t−s)‖Aû(s)‖‖Aû(t)‖ ds.

The first three terms on the right-hand side of (2.22) are bounded by

≤ C(ε)[‖û‖2 + e2αt‖ut‖2 + e−4αt‖û‖2‖A1/2û‖4] + ε‖Aû‖2.

For the last term on the right-hand side of (2.22), we have applied the Hölder’s
inequality with Sobolev inequality. Then the last term is bounded by

C(γ, δ, α, ε)

∫ t

0

e2ατ‖Au(τ)‖2 dτ + ε‖Aû‖2.

Note that we have used e−2(δ−α)(t−s) ≤ 1. On substituting in (2.22), we choose ε = 1
4 .

An appeal to Lemmas 4 and 5 with the estimate (2.21) yields

‖Aû‖2 ≤ C(‖Au0‖),

and thus we complete the proof of (2.7)–(2.8).
In order to derive (2.9), we now differentiate (1.4) with respect to time and then

form an inner product with σ(t)Aut, where σ(t) = τ∗(t)e2αt, to obtain

1

2

d

dt
(σ(t)‖A1/2ut‖2) + σ(t)‖Aut‖2 = −σ(t)(Au, Aut) +

1

2
σt‖A1/2ut‖2(2.23)

−σ(t)

∫ t

0

βt(t− s)(Au(s), Aut(t)) ds− τ∗(t)e−αt
(
B(eαtut, û)

+ B(û, eαtut), e
αtAut

)
= I1 + I2 + I3 + I4.

For I1, we use Young’s inequality to arrive at

|I1| ≤
γ2

2ε
τ∗(t)‖Aû‖2 +

ε

2
σ(t)‖Aut‖2.(2.24)

Since σt = τ∗t e
2αt + 2ατ∗e2αt with τ∗, τ∗t ≤ 1, we obtain

|I2| ≤ C(α)e2αt‖A1/2ut‖2.(2.25)

To estimate I4, a use of Sobolev inequality with Young’s inequality yields

|I4| ≤ C(ε)e2αt‖A1/2ut‖2(‖A1/2û‖‖Aû‖ + ‖A1/2û‖2) + εσ(t)‖Aut‖2.(2.26)

Since βt(t− s) = − 1
δβ(t− s), we obtain a bound for I3 as

|I3| ≤
γ2

2εδ2
τ∗

(∫ t

0

e−(δ−α)(t−s)‖Aû(s)‖ ds
)2

+
ε

2
σ(t)‖Aut‖2,(2.27)

and hence, integrating with respect to time and using the estimate (2.3) for I term,
we find that∫ t

0

|I3| ds ≤
γ2

2εδ2
τ∗I +

ε

2

∫ t

0

σ(s)‖Aut‖2 ds(2.28)

≤ C(γ, δ, α, ε)τ∗(t)

∫ t

0

‖Aû(s)‖2 ds +
ε

2

∫ t

0

σ(s)‖Aut(s)‖2 ds.
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Multiply (2.23) by 2 and integrate with respect to time. Substitute (2.24)–(2.28) in
(2.23). With ε = 1

4 , it now follows that

σ(t)‖A1/2ut‖2 +

∫ t

0

σ(s)‖Aut(s)‖2 ds ≤ C(γ, δ, α)

[
τ∗

∫ t

0

‖Aû(s)‖2 ds(2.29)

+

∫ t

0

e2αs‖A1/2ut‖2(‖A1/2û‖‖Aû‖ + ‖A1/2û‖4) ds

]

+

∫ t

0

e2αs‖A1/2ut(s)‖2 ds.

Using Lemmas 4 and 5 and the estimates (2.7) and (2.8) in (2.29), we obtain the
required result (2.9), and this completes the rest of the proof.

Remark 2. The estimate for ‖A1/2ut‖ shows the singular behavior near t = 0 and
also indicates the exponential decay property as t −→ ∞. In Lemma 7, the regularity
results are derived without any nonlocal compatibility conditions.

3. Decay properties for the discrete solution and error estimates. In this
section, we discuss the decay properties for the solution of the linearized backward
Euler method. Finally, we derive a priori bounds for the error in H1-norm and present
briefly the error estimate in L2-norm.

The right-hand rectangle rule qn which is used to discretize the integral in (1.4)
is positive in the sense that

k

J∑
n=1

qn(φ)φn ≥ 0 ∀φ = (φ1, . . . , φJ)T .

For a proof, we refer to McLean and Thomée [21, pp. 40–42]. Moreover, the following
Lemma is easy to prove using the line of proof of [21].

Lemma 8. For any α ≥ 0, J > 0, and sequence {φn}∞n=1, the following positivity
property holds:

k2
J∑

n=1

⎛
⎝ n∑

j=1

e−α(tn−tj)φj

⎞
⎠φn ≥ 0.

Lemma 9. With 0 < α < min (δ, λ1), choose k0 > 0 small so that for 0 < k ≤ k0

(λ1k + 1) > eαk.

Then the discrete solution UJ , J ≥ 1 of (1.6) is exponentially stable in the following
sense:

‖UJ‖ + e−αtJ

(
k

J∑
n=1

‖A1/2Ûn‖2

)1/2

≤ C(λ1, α) ‖U0‖e−αtJ , J ≥ 1,(3.1)

and

‖A1/2UJ‖ ≤ C(λ1, α, ‖A1/2U0‖)e−αtJ , J ≥ 1.(3.2)

Proof. Setting Ûn = eαtnUn, we rewrite (1.6) as

eαtn ∂̄tU
n + AÛn + e−αtn−1B(Ûn−1, Ûn) + eαtnqn(AU) = 0.
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Note that

eαtn ∂̄tU
n = eαk∂̄tÛ

n −
(
eαk − 1

k

)
Ûn.

On substitution and then multiplying the resulting equation by e−αk, we obtain

∂̄tÛ
n −

(
1 − e−αk

k

)
Ûn + e−αkAÛn + e−αtnB(Ûn−1, Ûn)(3.3)

+ γe−αkk

n∑
j=1

e−(δ−α)(tn−tj)AÛj = 0.

Forming an inner product between (3.3) and Ûn, use

(B(Ûn−1, Ûn), Ûn) = 0, ‖Ûn‖2 ≤ 1

λ1
‖A1/2Ûn‖2, and (∂̄tÛ

n, Ûn) ≥ 1

2
∂̄t‖Ûn‖2

to obtain

1

2
∂̄t‖Ûn‖2 +

(
e−αk −

(
1 − e−αk

k

)
λ−1

1

)
‖A1/2Ûn‖2(3.4)

+ γe−αkk

n∑
j=1

e−(δ−α)(tn−tj)(A1/2Ûj , A1/2Ûn) ≤ 0.

With 0 < α < min (λ1, δ), choose 0 < k0 such that for 0 < k < k0

(λ1k + 1) ≥ eαk.

Then for 0 < k ≤ k0, the coefficient of the second term on the left-hand side of (3.4),(
e−αk − ( 1−e−αk

k )λ−1
1

)
, becomes positive. Multiplying (3.4) by 2k and summing from

n = 1 to J , the last term becomes nonnegative by Lemma 8 and thus we obtain the
estimate (3.1).

For the estimate (3.2), we form an inner product between (3.3) and AÛn and
observe that

(∂̄tÛ
n, AÛn) = (∂̄tA

1/2Ûn, A1/2Ûn) ≥ 1

2
∂̄t‖A1/2Ûn‖2.

Altogether, we find that

1

2
∂̄t‖A1/2Ûn‖2 + e−αk‖AÛn‖2 + γe−αkk

n∑
j=1

e−(δ−α)(tn−tj)(AÛj , AÛn)(3.5)

≤
(

1 − e−αk

k

)
(Ûn, AÛn) − e−αtn(B(Ûn−1, Ûn), AÛn).

Multiplying (3.5) by 2k and summing from n = 1 to J , the third term on the left-hand
side becomes nonnegative by applying Lemma 8 as 0 < α < δ. Then, we obtain

‖A1/2ÛJ‖2 + 2ke−αk
J∑

n=1

‖AÛn‖2 ≤ ‖A1/2U0‖2 + 2(1 − e−αk)k

J∑
n=1

|(Ûn, AÛn)|

+ 2e−αkk

J∑
n=1

e−αtn−1 |(B(Ûn−1, Ûn−1), AÛn)|(3.6)

≤ ‖A1/2U0‖2 + I1 + I2.
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To estimate I1, we have by the mean value theorem 1−e−αk

k = αe−αk∗
for some

0 < k∗ < k, and hence, using (3.1), we find that

|I1| ≤ 2αe−αk∗
k

J∑
n=1

‖A1/2Ûn‖2 ≤ C(λ1, α)‖U0‖2.

For I2, a repeated use of Hölder’s inequality with Sobolev inequality yields

e−αtn−1 |(B(Ûn−1, Ûn), AÛn)| ≤ Ce−αtn−1‖Ûn−1‖1/2‖A1/2Ûn−1‖1/2

‖A1/2Ûn‖1/2‖AÛn‖3/2.

By an application of Young’s inequality, it follows that

|I2| ≤ Cke−αk
J∑

n=1

e−4αtn−1(‖Ûn−1‖2‖A1/2Ûn−1‖2)‖A1/2Ûn‖2

+ ke−αk
J∑

n=1

‖AÛn‖2.

Using the estimate ‖Ûn−1‖ and

k‖A1/2ÛJ−1‖2 ≤ k

J∑
n=1

‖A1/2Ûn‖2,

we easily find that from (3.1)

|I2| ≤ C(λ, α)‖U0‖2ke−αk
J−1∑
n=1

e−4αtn−1‖A1/2Ûn−1‖2‖A1/2Ûn‖2

+ C‖U0‖4e−αke−4αtJ−1 ‖A1/2ÛJ‖2 + ke−αk
J∑

n=1

‖AÛn‖2.

Now substitute the estimates of I1 and I2 in (3.6). For small k, we note that (1 −
C‖U0‖4e−4αk) can be made positive. Then apply discrete Gronwall’s lemma with
estimate (3.1) to complete the rest of the proof.

3.1. Error analysis. Now we are ready to discuss the proof of our main result
that is the proof of Theorem 1.

Let εn be the quadrature error associated with the quadrature rule (1.5) and for
φ ∈ C1[0, tn], let it be given by

εn(φ) :=

∫ tn

0

β(tn − s)φ(s) ds− qn(φ).

Note that the quadrature error εn satisfies

|εn(φ)| ≤ Ck

∫ tn

0

∣∣∣∣ ∂∂s (β(tn − s)φ(s))

∣∣∣∣ ds(3.7)

≤ Ck

∫ tn

0

(|βs(tn − s)| |φ(s)| + |β(tn − s)| |φs(s)|) | ds.
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For the proof of the main Theorem, we appeal to the semigroup theoretic ap-
proach; see Thomée [29], Fujita and Kato [9], and Okamoto [22]. It is well known
that the Stoke’s operator −A generates an analytic semigroup, say, E(t), t > 0 on H;
see [28] or [9]. Moreover, the following estimates are also satisfied:

‖ArE(t)‖ ≤ Ct−re−λ1t, t > 0, r > 0,(3.8)

and for r ∈ (0, 1], and v ∈ D(Ar), the domain of Ar,

‖(E(t) − I)v‖ ≤ Crt
r‖Arv‖, t > 0,(3.9)

where Cr is a positive constant. For a proof, see [6, p. 383]. Further, we use the
discrete semigroup Ek, which is given by

Ek = (I + kA)
−1

.

Using spectral representation of A [29], the following estimate is easy to derive:

‖ArEn
k ‖ ≤ Ct−r

n e−λ1tn , tn > 0, 0 < r ≤ 1.(3.10)

Now, using Duhamel’s principle, (1.4) is written in an equivalent form as

u(t) = E(t)u0 −
∫ t

0

E(t− s)Ãu(s) ds−
∫ t

0

E(t− s)B(u(s),u(s)) ds,

where for simplicity of symbol, we denote

Ãu(t) =

∫ t

0

β(t− τ)Au(τ) dτ.

Similarly, using discrete semigroup Ek = (I + kA)−1, we rewrite (1.6) as

Un = En
ku0 −

n∑
j=1

kEn−j+1
k qj(AU) −

n∑
j=1

kEn−j+1
k B(Uj−1,Uj).

Proof of Theorem 1. Note that the error en := u(tn)−Un is written in the form

en = (E(tn) − En
k )u0 −

⎛
⎝∫ tn

0

E(tn − s)Ãu(s) ds−
n∑

j=1

kEn−j+1
k qj(AU)

⎞
⎠

−

⎛
⎝∫ tn

0

E(tn − s)B(u(s),u(s)) ds−
n∑

j=1

kEn−j+1
k B(Uj−1,Uj)

⎞
⎠(3.11)

= In1 − In2 − In3 .

Since Fn
k := (E(tn)−En

k ) denotes the error operator for the purely parabolic problem,
then following Thomée [29], we estimate A1/2In1 as

‖A1/2In1 ‖ = ‖A1/2Fn
k u0‖ ≤ C(‖Au0‖,Ω)

e−αtn

t
1/2
n

k.(3.12)
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In order to estimate ‖A1/2In2 ‖, i.e., the memory term, we first rewrite In2 as

In2 =

⎛
⎝∫ tn

0

E(tn − s)
(
Ãu(s) − Ãu(tn)

)
ds−

n∑
j=1

kEn−j+1
k

(
qj(Au) − Ãu(tn)

)⎞⎠

+

⎛
⎝∫ tn

0

E(tn − s) ds−
n∑

j=1

kEn−j+1
k

⎞
⎠ Ãu(tn)(3.13)

+
n∑

j=1

kEn−j+1
k qj(Ae) = In2,1 + In2,2 + In2,3.

For In2,2, we obtain using the semigroup property

∫ tn

0

E(tn − s) −
n∑

j=1

kEn−j+1
k = −Fn

k A
−1,

and hence, using the definition of β, we arrive at

‖A1/2In2,2‖ = ‖A1/2Fn
k A

−1Ãu(tn)‖

≤ Ck
e−λ1tn

t
1/2
n

e−αtn‖
∫ tn

0

e−(δ−α)(tn−τ)Aû(τ) dτ‖

≤ Ck
e−λ1tn

t
1/2
n

e−αtn

(∫ tn

0

‖Aû(τ)‖2 dτ

)1/2

.

An application of Lemma 5 yields for 0 < α < min(λ1, δ, )

‖A1/2In2,2‖ ≤ C(‖A1/2u0‖)k
e−αtn

t
1/2
n

.

For estimating In2,3, we first use the change of variable and then the change of sum-
mation to obtain

A1/2In2,3 =

n−1∑
j=0

kAEn−j
k A−1/2

j+1∑
i=1

kβj+1−iAei =

n−1∑
j=0

kAEn−j
k

j∑
i=0

kβj−iA
1/2ei+1

= k

n−1∑
i=0

⎛
⎝n−1∑

j=i

kβj−iAEn−j
k

⎞
⎠A1/2ei+1

= k

n−1∑
i=0

⎛
⎝n−1∑

j=i

kβn−iAEn−j
k

⎞
⎠A1/2ei+1

−k

n−1∑
i=0

⎛
⎝n−1∑

j=i

k(βn−i − βj−i)AEn−j
k

⎞
⎠A1/2ei+1.
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For the first term on the right-hand side of A1/2In2,3, we have from the spectral property
of the Stoke’s operator and r(λ) = (1 + λ)−1:∥∥∥∥∥∥k

n−1∑
j=i

AEn−j
k

∥∥∥∥∥∥ = sup
λ∈Sp(A)

∣∣∣∣∣∣
n−1∑
j=i

kλr(kλ)n−j

∣∣∣∣∣∣ ≤ sup
λ>0

n−1∑
j=i

λr(λ)n−j

≤ sup
λ>0

λr(λ)

1 − r(λ)
= 1,

where Sp(A) is the spectrum of the Stokes operator A. For the second term on the
right-hand side of A1/2In2,3, we use the smoothing property (3.8) of En

k , and therefore
we obtain

‖A1/2In2,3‖

≤ γk
n−1∑
i=0

e−δ(tn−ti)

∥∥∥∥∥∥k
n−1∑
j=i

AEn−j
k

∥∥∥∥∥∥ ‖A1/2ei+1‖

+ γk

n−1∑
i=0

⎛
⎝n−1∑

j=i

k|(e−δtn−i − e−δtj−i)| ‖AEn−j
k ‖

⎞
⎠ ‖A1/2ei+1‖

≤ Cke−αtn

n−1∑
i=0

eαti‖A1/2ei+1‖

+Cke−αtn

n−1∑
i=0

eαti

⎛
⎝n−1∑

j=i

ke−(δ−α)(tj−ti)
e−δ(tn−tj) − 1

(tn − tj)
e−(λ1−α)(tn−tj)

⎞
⎠ ‖A1/2ei+1‖.

Using the meanvalue property of the exponential function, we find that⎛
⎝n−1∑

j=i

ke−(δ−α)(tj−ti)
e−δ(tn−tj) − 1

(tn − tj)
e−(λ1−α)(tn−tj)

⎞
⎠ ≤ C,

and hence we arrive at

‖A1/2In2,3‖ ≤ Ce−αtne−αkk

n∑
i=0

eαti‖A1/2ei‖.

Now for the term In2,1, we first rewrite it as

In2,1 =

n∑
j=1

∫ tj

tj−1

(E(tn − s) − E(tn−j+1))
(
Ãu(s) − Ãu(tn)

)
ds

+

n∑
j=1

∫ tj

tj−1

E(tn−j+1)
(
Ãu(s) − Ãu(tj)

)
ds

+

n∑
j=1

kFn−j+1
k

(
Ãu(tj) − Ãu(tn)

)
+

n∑
j=1

kEn−j+1
k εj(Au)

= Mn
1 + Mn

2 + Mn
3 + Mn

4 .
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For Mn
1 , we write it as

A1/2Mn
1 =

n∑
j=1

∫ tj

tj−1

A3/2E(tn − s)A−1 (I − E(s− tj−1))
(
Ãu(s) − Ãu(tn)

)
ds.

Thus, using (3.8)–(3.9), we obtain

‖A1/2Mn
1 ‖ ≤

n∑
j=1

∫ tj

tj−1

‖A3/2E(tn − s)‖ ‖A−1 (I − E(s− tj−1))
(
Ãu(s) − Ãu(tn)

)
‖ ds

≤ Ck

∫ tn

0

e−λ1(tn−s)

(tn − s)3/2
‖Ãu(s) − Ãu(tn)‖ ds.

In order to estimate ‖Ãu(s) − Ãu(tn)‖, we note that

Ãu(s) − Ãu(tn) =

∫ s

0

(β(s− τ) − β(tn − τ))Au(τ) dτ −
∫ tn

s

β(tn − τ)Au(τ) dτ,

and hence, using the definition of β, the mean value theorem, 0 < α < min (λ1, δ),
and Lemma 7, we now obtain

‖Ãu(s) − Ãu(tn)‖ ≤ γe−δs
(
1 − e−δ(tn−s)

)∫ s

0

eδτ‖Au(τ)‖ dτ

+ γ

∫ tn

s

e−δ(tn−τ)‖Au(τ)‖ dτ

≤ δγ(tn − s)e−αse−δs∗
∫ s

0

e−(δ−α)(s−τ)‖eατAu(τ)‖ dτ

+ C(‖Au0‖, γ)

∫ tn

s

e−δ(tn−τ)e−ατ dτ

≤ δγ(tn − s)e−αs

(∫ s

0

e−2(δ−α)(s−τ) dτ

)1/2(∫ s

0

e2ατ‖Au(τ)‖2 dτ

)1/2
+ C(‖Au0‖, γ)(tn − s)e−αs.

Using Lemma 5 and the boundedness of∫ s

0

e−2(δ−α)(s−τ) dτ ≤ 1

2(δ − α)
,

we arrive at

‖Ãu(s) − Ãu(tn)‖ ≤ C(‖Au0‖)(tn − s)e−αs.

Therefore,

‖A1/2Mn
1 ‖ ≤ C(‖Au0‖)ke−αtn

∫ tn

0

e−(λ1−α)(tn−s)

(tn − s)1/2
ds

≤ C(‖Au0‖)ke−αtn

∫ tn

0

e−(λ1−α)τ

τ1/2
dτ

≤ C(‖Au0‖)ke−αtn

∫ ∞

0

e−(λ1−α)τ

τ1/2
dτ ≤ C(‖Au0‖)ke−αtn .
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To estimate Mn
2 , we use the definition of Ã and the property (3.8) to find that

‖A1/2Mn
2 ‖ ≤

n∑
j=1

∫ tj

tj−1

‖A1/2E(tn−j+1)‖‖Ãu(s) − Ãu(tj)‖ ds

≤ C

n∑
j=1

∫ tj

tj−1

e−λ1(tn−tj−1)

(tn − tj−1)1/2
‖Ãu(s) − Ãu(tj)‖ ds.

Since

‖Ãu(s) − Ãu(tj)‖ ≤ C(‖Au0‖)(tj − s)e−αs ≤ C(‖Au0‖)ke−αs,

we now obtain

‖A1/2Mn
2 ‖ ≤ C(‖Au0‖)ke−αtn

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

(
eαtj−1

∫ tj

tj−1

e−αs ds

)

≤ C(‖Au0‖)ke−αtn

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

⎞
⎠

≤ C(‖Au0‖)ke−αtn .

Note that we have used the boundedness of the summation term within the bracket.
In order to estimate Mn

3 , we use the property of Fn
k and obtain

‖A1/2Mn
3 ‖ ≤ Ck2

n∑
j=1

e−λ1(tn−tj−1)

(tn − tj−1)3/2
‖Ãu(tj) − Ãu(tn)‖.

As in the estimate of ‖A1/2Mn
1 ‖, we now find that

‖A1/2Mn
3 ‖ ≤ C(‖Au0‖)ke−αtne−αk

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

⎞
⎠

≤ C(‖Au0‖)ke−αtn .

Finally for Mn
4 , we note that

‖A1/2Mn
4 ‖ ≤

n∑
j=1

k‖AEn−j+1
k ‖ ‖εj(A1/2u)‖.

Using (3.8), we obtain

‖A1/2Mn
4 ‖ ≤

n∑
j=1

k
e−λ1(tn−tj−1)

(tn − tj−1)
‖εj(Au)‖.

To complete the estimate, we use (3.7) to compute the quadrature error ‖εj(Au)‖ as

‖εj(Au)‖ ≤ Ck

∫ tj

0

(
|βs(tj − s)‖A1/2u(s)‖ + |β(tj − s)|‖A1/2us(s)‖

)
ds,
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and hence we find from Lemma 6 that

‖εj(Au)‖ ≤ C(‖Au0‖)ke−αtj

∫ tj

0

e−(δ−α)(tj−s) ds

+ Cke−αtj

(∫ tj

0

e−2(δ−α)(tj−s) ds

)1/2 (∫ tj

0

e2αs‖A1/2us(s)‖2 ds

)1/2

≤ C(‖Au0‖)ke−αtj .

Thus, we arrive at

‖A1/2Mn
4 ‖ ≤ C(‖Au0‖)ke−αtne−αk

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn−j+1)

⎞
⎠

≤ C(‖Au0‖)ke−αtne−αk

⎛
⎝k

n∑
j=1

1

(tn−j+1)

⎞
⎠

≤ C(‖Au0‖)k
(

log
1

k

)
e−αtn .

All together, we therefore obtain

‖A1/2In2 ‖ ≤ C(‖Au0‖)e−αtnk

(
1 + log

1

k

)
+ C(‖A1/2u0‖)

e−αtn

t
1/2
n

k(3.14)

+ Ce−αtnk

n−1∑
i=0

eαti‖A1/2ei‖ + Cke−αk‖A1/2en‖.

Finally, in order to estimate In3 involving the nonlinear term, we may split it as in
Geveci [11] and apply Hölder’s inequality, Sobolev imbedding theorem with Sobolev
inequality. Lastly, with the help of Lemmas 4, 5, 7, and 9, we obtain

‖A1/2In3 ‖ ≤ C(‖Au0‖)
e−αtn

t
1/2
n

k + C(‖A1/2u0‖)e−αtnk1/4‖A1/2en‖(3.15)

+ Ce−αtnk

n−1∑
i=0

eαti

(tn − ti)3/4
‖A1/2ei‖.

On substituting (3.12), (3.14), and (3.15) in (3.9), we obtain, for sufficiently small k,

eαtn‖A1/2en‖ ≤ C(‖Au0‖)
[
k

(
t−1/2
n + log

1

k

)
(3.16)

+ k
n−1∑
i=0

(
1

(tn − ti)3/4
+ 1

)
eαti‖A1/2ei‖

]
.

Using the generalized discrete Gronwall’s lemma (see Lemma 7.1 in [7]) and the ar-
guments of Okamoto [22, p. 635], we complete the rest of the proof.

The convergence in L2-norm now becomes a routine work. However, we indicate,
below, only the major steps in the proof for achieving this result.

Proof of Theorem 2. From (3.9), the error en satisfies

en = In1 − In2 − In3 .
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Since a straightforward modification of H1-estimates of Geveci [11] yields the L2-
estimates of In1 and In3 , it remains to estimate ‖In2 ‖. Note that the L2-estimates of
In2.2 and In2,3 in (3.13) follow easily as

‖In2,2‖ = ‖Fn
k A

−1Ãu(tn)‖

≤ Cke−λ1tn‖
∫ tn

0

β(tn − s)Au(s) ds‖

≤ Cke−αtn

(∫ tn

0

‖Au(s)‖2 ds

)1/2

≤ C(‖A1/2u0‖)ke−αtn

and

‖In2,3‖ = ‖k
n−1∑
j=0

AEn−j
k

j∑
i=0

kβj−ie
i+1‖.

We repeat the analysis for estimating A1/2In2,3 in Theorem 1, but now ei+1 is made

free of A1/2. Thus, we obtain

‖In2,3‖ ≤ Ce−αtnk

n−1∑
i=0

eαti‖ei‖ + Ck‖en‖.

In order to estimate In2,1, it is a routine matter to derive the estimates of ‖Mn
1 ‖, ‖Mn

2 ‖,
and ‖Mn

3 ‖. To complete the rest of the proof, we therefore need an estimate for ‖Mn
4 ‖.

Note that

‖Mn
4 ‖ ≤

n∑
j=1

k‖A1/2En−j+1
k ‖ ‖εj(A1/2u)‖

≤ Ck

n∑
j=1

e−λ1(tn−tj−1)

(tn − tj−1)1/2
‖εj(A1/2u)‖.

Using the estimate of ‖εj(A1/2u)‖ as in the proof of Theorem 1, we now obtain

‖Mn
4 ‖ ≤ C(‖Au0‖)ke−αtn

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

⎞
⎠

≤ C(‖Au0‖)ke−αtn .

Note that the summation in the bracket is bounded by a constant which is independent
of k. This completes the rest of the proof.

4. Conclusion. In this paper, we have proved new regularity results for the
solutions which are valid for all time t > 0 without nonlocal compatibility conditions
for the data and established the exponential decay property for the exact solution.
Further, we have derived optimal error estimates in H1 and L2-norms for the linearized
backward Euler scheme under realistically assumed conditions on the initial data.
Here, the analysis is not complete as at each time level, we have still to solve an
infinite dimensional problem. However, we can easily derive the error estimates for a
completely discrete scheme by combining the present analysis with the semidiscrete
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results obtained in [26]. Since the problem (1.1)–(1.3) can be thought of as an integral
perturbation of the Navier–Stokes equations, we would like to investigate how far the
results on finite element analysis combined with higher order time discretizations of
the Navier–Stokes equations [15], [16], [22] can be carried over to the present case. We
shall pursue this in future. Finally, we note that we have discussd our results only for
the two-dimensional problem and we can easily generalize the analysis of this paper
to the problem in three-dimensional bounded domain under smallness conditions on
the initial data.
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SPECTRAL DISCRETIZATION OF THE VORTICITY, VELOCITY,
AND PRESSURE FORMULATION OF THE STOKES PROBLEM∗

CHRISTINE BERNARDI† AND NEJMEDDINE CHORFI‡

Abstract. We consider the Stokes problem in a square or a cube provided with nonstandard
boundary conditions which involve the normal component of the velocity and the tangential com-
ponents of the vorticity. We write a variational formulation of this problem with three independent
unknowns: the vorticity, the velocity, and the pressure. Next, we propose a discretization by spectral
methods which relies on this formulation and, since it leads to an inf-sup condition on the pressure
in a natural way, we prove optimal error estimates for the three unknowns. We present numerical
experiments which are in perfect coherence with the analysis.

Key words. Stokes problem, vorticity-velocity-pressure formulation, spectral method
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1. Introduction. We consider the Stokes problem in a two- or three-dimensional
bounded domain when provided with boundary conditions on the normal component
of the velocity and the vorticity in dimension 2 and on the normal component of the
velocity and the tangential components of the vorticity in dimension 3. The well-
posedness of this problem is first proved in the pioneering paper [6]; however, the
formulation that is considered in this work deals with the velocity and the pressure as
only unknowns and requires the convexity or some regularity of the domain. As first
proposed in [18] and [26] (see also [19] and [1]), this problem admits an equivalent
variational formulation where the unknowns are the vorticity, the velocity, and the
pressure. This formulation involves the domains of the divergence and curl operators,
as first suggested in [25]. We also refer the reader to [21] for a different formulation
where the unknowns are the vorticity, the vector potential, and the pressure and to
[20] for a comparison between different formulations. The aim of this paper is to
propose and analyze a discrete problem which relies on the vorticity, velocity, and
pressure formulation and is constructed by spectral methods.

Indeed, it seems that the numerical analysis of discretizations relying on this
formulation has been performed only for finite element methods; see [26], [2], and
[11]. We refer the reader to [8] for the analysis of a spectral discretization of the same
problem relying on the velocity and pressure formulation. However, the formulation
that we consider here leads naturally to a more accurate approximation of the pressure.
One of the difficulties in the discretization consists in handling both the two- and three-
dimensional cases. Indeed, the vorticity is a scalar function in dimension 2 and can be
approximated in a standard polynomial space while it is a vector field in dimension 3:
This requires the introduction of appropriate polynomial spaces which are the spectral
analogues of Nédélec’s finite elements; see [24]. The discretization that we propose
takes into account these considerations, and its numerical analysis leads to optimal
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error estimates on the three unknowns. This is the main advantage of this formulation
since, in most usual spectral discretizations of the Stokes problem, a lack of optimality
appears in the estimate concerning the pressure; see [13, sects. 24–26], and [14] for
a possible but less natural improvement. We present numerical experiments which
confirm the optimality of the discretization and its efficiency for the Stokes problem
provided with this type of boundary condition, both in the two- and three-dimensional
situations.

The extension of this study to the case of the nonlinear Navier–Stokes equations
is presently under consideration. The main difficulty here is the choice of variational
spaces in order to preserve the compactness of the nonlinear term. We also intend to
treat more complex geometries by using a spectral element discretization.

An outline of the paper is as follows.
• In section 2, we write the variational formulation of the problem in the case of

homogeneous boundary conditions.
• Section 3 is devoted to the description of the spectral discrete problem. We

also prove its well-posedness.
• Optimal error estimates are derived in section 4.
• The extension to the case of nonhomogeneous boundary conditions on the

velocity is explained in section 5.
• In section 6, we present some numerical experiments which turn out to be in

good agreement with the analysis.

2. The velocity, vorticity, and pressure formulation. Let Ω be a bounded
connected domain in R

d, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω. We
assume for simplicity that Ω is simply connected and has a connected boundary. The
generic point in Ω is denoted by x = (x, y) or x = (x, y, z) according to the dimension
d. We introduce the unit outward normal vector n to Ω on ∂Ω and consider the
Stokes problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ν Δu + grad p = f in Ω,

div u = 0 in Ω,

u · n = 0 on ∂Ω,

γt(curlu) = 0 on ∂Ω.

(2.1)

To make precise the sense of the operator γt, we recall the following.
• In dimension d = 2, for any vector field v with components vx and vy, curlv

stands for the scalar function ∂xvy−∂yvx, so that the operator γt is the trace operator
on ∂Ω.

• In dimension d = 3, for any vector field v with components vx, vy, and vz,
curlv stands for the vector field with components ∂yvz − ∂zvy, ∂zvx − ∂xvz, and
∂xvy − ∂yvx, and the operator γt is the tangential trace operator on ∂Ω, defined by
γt(w) = w × n.
Of course, the operator γt is only defined on smooth enough functions as will be made
precise later on.

In system (2.1), the unknowns are the velocity u and the pressure p, while the
data f represents a density of body forces. The viscosity ν is a positive constant. To
go further, we introduce the vorticity ω = curlu and observe that system (2.1) is
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fully equivalent to ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ν curlω + grad p = f in Ω,

div u = 0 in Ω,

ω = curlu in Ω,

u · n = 0 on ∂Ω,

γt(ω) = 0 on ∂Ω.

(2.2)

Note that the operator curl in the first line of this system coincides with the previous
one in dimension d = 3 while, in dimension d = 2, it is applied to scalar functions ϕ:
curlϕ here denotes the vector field with components ∂yϕ and −∂xϕ.

In order to write the variational formulation of problem (2.2), we consider the full
scale of Sobolev spaces Hs(Ω). As usual, we denote by L2

0(Ω) the space of functions in
L2(Ω) with a null integral on Ω. Let also D(Ω) be the space of infinitely differentiable
functions with a compact support in Ω. We introduce the domain H(div,Ω) of the
divergence operator, namely

H(div,Ω) =
{
v ∈ L2(Ω)d; div v ∈ L2(Ω)

}
.(2.3)

A consequence of the Stokes formula, valid for smooth enough vector fields v and
scalar function ϕ,∫

Ω

(div v)(x)ϕ(x) dx = −
∫

Ω

v(x) · (gradϕ)(x) dx +

∫
∂Ω

(v · n)(τ )ϕ(τ ) dτ ,(2.4)

is that the normal trace operator v �→ v · n can be defined from H(div,Ω) into

H− 1
2 (∂Ω). This leads us to introduce its kernel

H0(div,Ω) =
{
v ∈ H(div,Ω); v · n = 0 on ∂Ω

}
.(2.5)

Similarly, we introduce the domain of the curl operator

H(curl,Ω) =
{
ϑ ∈ L2(Ω)

d(d−1)
2 ; curlϑ ∈ L2(Ω)d

}
.(2.6)

The Stokes formula here reads, for smooth enough functions ϑ in L2(Ω)
d(d−1)

2 and v
in L2(Ω)d,

∫
Ω

(curlϑ)(x) ·v(x) dx =

∫
Ω

ϑ(x) · (curlv)(x) dx −
∫
∂Ω

γt(ϑ)(τ ) · γ̃t(v)(τ ) dτ ,

(2.7)

where γ̃t(v) is equal to v in dimension d = 3 and to vynx − vxny in dimension d = 2.
This allows us to define the kernel

H0(curl,Ω) =
{
ϑ ∈ H(curl,Ω); γt(ϑ) = 0 on ∂Ω

}
.(2.8)

Remark 2.1. Note that the spaces H(curl,Ω) and H0(curl,Ω) coincide with the
spaces H1(Ω) and H1

0 (Ω) in dimension d = 2, so that their approximation relies on
more standard discrete spaces than in dimension d = 3.
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We now consider the following variational problem:
Find (ω,u, p) in H0(curl,Ω) ×H0(div,Ω) × L2

0(Ω) such that

∀v ∈ H0(div,Ω), a(ω,u; v) + b(v, p) = 〈f ,v〉,
∀q ∈ L2

0(Ω), b(u, q) = 0,

∀ϑ ∈ H0(curl,Ω), c(ω,u; ϑ) = 0,

(2.9)

where 〈·, ·〉 denotes the duality pairing between H0(div,Ω) and its dual space. The
bilinear forms a(·, ·; ·), b(·, ·), and c(·, ·; ·) are defined by

a(ω,u; v) = ν

∫
Ω

(curlω)(x) · v(x) dx, b(v, q) = −
∫

Ω

(div v)(x)q(x) dx,

c(ω,u; ϕ) =

∫
Ω

ω(x) · ϕ(x) dx −
∫

Ω

u(x) · (curlϕ)(x) dx.

(2.10)

It can be noted that the boundary conditions that appear in (2.2) are treated as
essential ones in (2.9). So a direct consequence of the density of D(Ω)d in H0(div,Ω)

and of D(Ω)
d(d−1)

2 in H0(curl,Ω) (see [22, Chap. I, sect. 2]) is the following statement.
Proposition 2.2. Problems (2.2) and (2.9) are equivalent, in the sense that any

triple (ω,u, p) in H(curl,Ω)×H(div,Ω)×L2
0(Ω) is a solution of problem (2.2) if and

only if it is a solution of problem (2.9).
We briefly recall from [26] (see also [11, sect. 3]) the main arguments for the

analysis of problem (2.9), in view of their discrete analogues. Let V be the kernel

V =
{
v ∈ H0(div,Ω); ∀q ∈ L2

0(Ω), b(v, q) = 0
}
.(2.11)

Since the divergence of any function in H0(div,Ω) belongs to L2
0(Ω), it is readily

checked that V coincides with the space of divergence-free functions in H0(div,Ω).
We also introduce the kernel

W =
{
(ϑ,v) ∈ H0(curl,Ω) × V ; ∀ϕ ∈ H0(curl,Ω), c(ϑ,v; ϕ) = 0

}
.(2.12)

As can easily be derived from the previously quoted density result, W coincides with
the space of pairs (ϑ,v) in H0(curl,Ω) × V such that ϑ is equal to curlv in the
distribution sense. Moreover, it follows from the continuity properties of the forms
b(·, ·) and c(·, ·; ·) that both V and W are Hilbert spaces.

We observe that, for any solution (ω,u, p) of problem (2.9), the pair (ω,u) is a
solution of the following reduced problem:

Find (ω,u) in W such that

∀v ∈ V, a(ω,u; v) = 〈f ,v〉.(2.13)

So we first investigate its well-posedness.
Lemma 2.3. There exists a positive constant α such that the form a(·, ·; ·) satisfies

∀v ∈ V \ {0}, sup
(ω,u)∈W

a(ω,u; v) > 0,

∀(ω,u) ∈ W, sup
v∈V

a(ω,u; v)

‖v‖L2(Ω)d
≥ α

(
‖ω‖H(curl,Ω) + ‖u‖L2(Ω)d

)
.

(2.14)
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Proof. It is performed in two steps, only in the case d = 3 for brevity.
(1) Let v be a function in V such that a(ω,u; v) cancels for all (ω,u) in W.

Since Ω is simply connected, and v is divergence-free and satisfies v · n = 0 on
∂Ω, it follows from [3, Thm. 3.17] that there exists a divergence-free function ψ
in H0(curl,Ω) such that v is equal to curlψ. Similarly, since Ω has a connected
boundary and ψ is divergence-free, it follows from [3, Thm. 3.12] that there exists
a function z in V such that ψ is equal to curl z. So the pair (ψ,z) belongs to W.
Taking (ω,u) equal to (ψ,z) thus yields that v is zero, whence the first part of (2.14).

(2) For any (ω,u) in W, we observe that the function v = curlω + u belongs to
V . With this choice, we have

a(ω,u; v) = ν ‖curlω‖2
L2(Ω)d + ν

∫
Ω

(curlω)(x) ·u(x) dx.

Since ω is equal to curlu, we obtain by integrating by parts

a(ω,u; v) = ν ‖curlω‖2
L2(Ω)d +

ν

2
‖ω‖2

L2(Ω)
d(d−1)

2

+
ν

2
‖curlu‖2

L2(Ω)
d(d−1)

2

.

Next, using [3, Cor. 3.16] yields that, since Ω is simply connected,

∀w ∈ V, ‖w‖L2(Ω)d ≤ c ‖curlw‖
L2(Ω)

d(d−1)
2

.(2.15)

Inserting this inequality applied to u into the previous line gives

a(ω,u; v) ≥ ν

2
‖ω‖2

H(curl,Ω) +
ν

2c2
‖u‖2

L2(Ω)d .

This, combined with the bound

‖v‖L2(Ω)d ≤
√

2
(
‖curlω‖2

L2(Ω)d + ‖u‖2
L2(Ω)d

) 1
2 ,

leads to the inf-sup condition in (2.14).
The next result is now a direct consequence of (2.14); see [22, Chap. I, Lem. 4.1].
Corollary 2.4. For any data f in the dual space of H0(div,Ω), problem (2.13)

has a unique solution (ω,u) in W. Moreover, this solution satisfies:

‖ω‖H(curl,Ω) + ‖u‖L2(Ω)d ≤ c ‖f‖H0(div,Ω)′ .(2.16)

We recall the inf-sup condition, which is easily derived by taking v equal to
gradμ, where μ is the unique solution in H1(Ω)∩L2

0(Ω) of the Laplace equation with
data q and zero Neumann boundary condition:

∀q ∈ L2
0(Ω), sup

v∈H0(div,Ω)

b(v, q)

‖v‖H(div,Ω)
≥ β ‖q‖L2(Ω),(2.17)

where β is a positive constant. We are now in a position to prove the main result of
this section.

Theorem 2.5. For any data f in the dual space of H0(div,Ω), problem (2.9)
has a unique solution (ω,u, p) in H0(curl,Ω) ×H0(div,Ω) × L2

0(Ω). Moreover, this
solution satisfies:

‖ω‖H(curl,Ω) + ‖u‖H(div,Ω) + ‖p‖L2(Ω) ≤ c ‖f‖H0(div,Ω)′ .(2.18)
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Proof. We prove separately the existence and the uniqueness.
(1) With any data f in H0(div,Ω)′, we associate the unique solution (ω,u) of

problem (2.13) by applying Corollary 2.4. It follows from the definition of V and W
that the second and third lines in (2.9) are satisfied by this solution. Moreover, since
the norms ‖ · ‖L2(Ω)d and ‖ · ‖H(div,Ω) coincide on V , this solution satisfies the first
part of (2.18). On the other hand, the pressure p must now satisfy

∀v ∈ H0(div,Ω), b(v, p) = 〈f ,v〉 − a(ω,u; v).

Since the right-hand side of the previous line vanishes for all v in V (see (2.13)), the
existence of a solution p of this equation in L2

0(Ω), together with the second part of
(2.18), is a consequence of condition (2.17); again see [22, Chap. I, Lem. 4.1].

(2) Let (ω,u, p) be a solution of (2.9) with data f equal to zero. Then (ω,u) is
a solution of (2.13) with f = 0, so that it is zero thanks to Corollary 2.4. Then the
pressure p satisfies

∀v ∈ H0(div,Ω), b(v, p) = 0,

so that it is zero due to the inf-sup condition (2.17). This yields the uniqueness of
the solution of (2.9).

We refer the reader to [10] for the characterization of the dual space of H0(div,Ω)
to which the data f must belong. To conclude, we state some regularity properties of
the solution of problem (2.9) which can easily be derived from [3, sect. 2], [16], and
[17].

Proposition 2.6. The mapping f �→ (ω,u, p), where (ω,u, p) is the solution

of problem (2.9) with data f , is continuous from Hmax{0,s−1}(Ω)d into Hs(Ω)
d(d−1)

2 ×
Hs(Ω)d ×Hs(Ω) for

(i) all s ≤ 1
2 in the general case,

(ii) all s ≤ 1 when Ω is convex,
(iii) all s < π

ω in dimension d = 2 when Ω is a polygon with largest angle equal
to ω.

Moreover, when the data f belongs to L2(Ω)d, the pressure p belongs to H1(Ω), to-
gether with the vorticity ω in dimension d = 2.

We refer the reader to [16] and [17] for more details about the previous statement.
These properties seem weaker than the corresponding ones for the Stokes problem with
Dirichlet boundary conditions on the velocity. But they are the appropriate ones for
proving the convergence of the discretization.

3. The spectral discrete problem. From now on, we assume that Ω is the
square or cube ] − 1, 1[d, d = 2 or 3. The discrete spaces are constructed from the
finite elements proposed by Nédélec on cubic three-dimensional meshes; see [24, sect.
2]. In order to describe them and for any triple (	,m, n) of nonnegative integers, we
introduce

• in dimension d = 2, the space P�,m(Ω) of restrictions to Ω of polynomials with
degree ≤ 	 with respect to x and ≤ m with respect to y,

• in dimension d = 3, the space P�,m,n(Ω) of restrictions to Ω of polynomials with
degree ≤ 	 with respect to x, ≤ m with respect to y, and ≤ n with respect to z.
When 	 and m are equal to n, these spaces are simply denoted by Pn(Ω).

Let N be an integer ≥ 2. The space DN which approximates H0(div,Ω) is defined



832 CHRISTINE BERNARDI AND NEJMEDDINE CHORFI

by

DN = H0(div,Ω) ∩

⎧⎪⎨
⎪⎩

PN,N−1(Ω) × PN−1,N (Ω) if d = 2,

PN,N−1,N−1(Ω) × PN−1,N,N−1(Ω) × PN−1,N−1,N (Ω)

if d = 3.

(3.1)

In contrast, the space CN which approximates H0(curl,Ω) is rather different accord-
ing to the dimension, for the reasons explained in Remark 2.1; it is defined by

CN =

{
H1

0 (Ω) ∩ PN (Ω) if d = 2,

H0(curl,Ω) ∩
(
PN−1,N,N (Ω) × PN,N−1,N (Ω) × PN,N,N−1(Ω)

)
if d = 3.

(3.2)

Finally, for the approximation of L2
0(Ω), we consider the space MN :

MN = L2
0(Ω) ∩ PN−1(Ω).(3.3)

Setting ξ0 = −1 and ξN = 1, we introduce the N − 1 nodes ξj , 1 ≤ j ≤ N − 1,
and the N + 1 weights ρj , 0 ≤ j ≤ N , of the Gauss–Lobatto quadrature formula.
Denoting by Pn(−1, 1) the space of restrictions to [−1, 1] of polynomials with degree
≤ n, we recall that the following equality holds:

∀Φ ∈ P2N−1(−1, 1),

∫ 1

−1

Φ(ζ) dζ =

N∑
j=0

Φ(ξj) ρj .(3.4)

We also recall [13, form. (13.20)] the property, which is useful in what follows,

∀ϕN ∈ PN (−1, 1), ‖ϕN‖2
L2(−1,1) ≤

N∑
j=0

ϕ2
N (ξj) ρj ≤ 3 ‖ϕN‖2

L2(−1,1).(3.5)

Relying on this formula, we introduce the discrete product, defined on continuous
functions u and v by

(u, v)N =

{∑N
i=0

∑N
j=0 u(ξi, ξj)v(ξi, ξj) ρiρj if d = 2,∑N

i=0

∑N
j=0

∑N
k=0 u(ξi, ξj , ξk)v(ξi, ξj , ξk) ρiρjρk if d = 3.

(3.6)

It follows from (3.5) that it is a scalar product on PN (Ω). Finally, let IN denote
the Lagrange interpolation operator at the nodes (ξi, ξj), 0 ≤ i, j ≤ N , in dimension
d = 2 and at the nodes (ξi, ξj , ξk), 0 ≤ i, j, k ≤ N , in dimension d = 3, with values in
PN (Ω).

From now on, we assume that the data f are continuous on Ω. The discrete prob-
lem is constructed from (2.9) by using the Galerkin method combined with numerical
integration. It reads as follows:

Find (ωN ,uN , pN ) in CN × DN × MN such that

∀vN ∈ DN , aN (ωN ,uN ; vN ) + bN (vN , pN ) = (f ,vN )N ,

∀qN ∈ MN , bN (uN , qN ) = 0,

∀ϑN ∈ CN , cN (ωN ,uN ; ϑN ) = 0,

(3.7)
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where the bilinear forms aN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) are defined by

aN (ωN ,uN ; vN ) = ν (curlωN ,vN )N , bN (vN , qN ) = −(div vN , qN )N ,

cN (ωN ,uN ; ϕN ) = (ωN ,ϕN )N − (uN , curlϕN )N .
(3.8)

It follows from (3.5) combined with Cauchy–Schwarz inequalities that the forms
aN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) are continuous on

(
CN × DN

)
× DN , DN × MN ,

and
(
CN × DN

)
× CN , respectively, with norms bounded independently of N . More-

over, as a consequence of the exactness property (3.4), the forms b(·, ·) and bN (·, ·)
coincide on DN × MN .

The somewhat complex choice of the discrete spaces is justified by the following
lemma (its finite element analogue is well known; see [24]).

Lemma 3.1. The range of DN by the divergence operator is contained in MN .
The range of CN by the curl operator is contained in DN .

Proof. For any vN in DN , div vN belongs to PN−1(Ω) and the fact that it has
a zero integral is derived from the property vN · n = 0 on ∂Ω together with the
Stokes formula. This yields the first part of the lemma. Similarly, for any ϑN in
CN , each component of curlϑN is a polynomial of the right degree and the boundary
conditions γt(ϑN ) = 0 on ∂Ω imply that curlϑN · n vanishes on ∂Ω, which concludes
the proof.

In analogy with the continuous case, in order to investigate the properties of
problem (3.7), we introduce the kernel

VN =
{
vN ∈ DN ; ∀qN ∈ MN , bN (vN , qN ) = 0

}
.(3.9)

The following result is easily derived from Lemma 3.1 by taking qN equal to div vN

in the previous line.
Corollary 3.2. The kernel VN is the space of divergence-free polynomials in

DN ; i.e., it coincides with DN ∩ V .
We now introduce the kernel

WN =
{
(ϑN ,vN ) ∈ CN × VN ; ∀ϕN ∈ CN , cN (ϑN ,vN ; ϕN ) = 0

}
,(3.10)

and we consider the following reduced discrete problem:
Find (ωN ,uN ) in WN such that

∀vN ∈ VN , aN (ωN ,uN ; vN ) = (f ,vN )N .(3.11)

We must now establish the analogues of (2.14) for the form aN (·, ·; ·) on the discrete
spaces. This requires several preliminary lemmas. We refer the reader to among
others [15, Thm. 2.1] and [23] for analogous results in the finite element case.

Lemma 3.3. The kernel of the curl operator in CN is reduced to {0} in dimension
d = 2 and equal to the range of H1

0 (Ω)∩PN (Ω) by the gradient operator in dimension
d = 3.

Proof. Since the lemma is obvious in dimension d = 2, we prove it only in
dimension d = 3. Let ϑN be a curl-free polynomial in CN . Using [22, Chap. I,
Thm. 2.9] yields that it is the gradient of a function μ. It follows from the identity
ϑN = gradμ that μ belongs to PN (Ω). Moreover, the two tangential derivatives of
μ vanish on all faces of Ω: Indeed, for instance on the faces contained in the planes
x = ±1, the second and third components of ϑN are equal to zero thanks to the
definition of CN , so that ∂yμ and ∂zμ vanish. So μ is constant on ∂Ω and, since it is
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defined up to an additive constant, it can be taken equal to zero on ∂Ω. The converse
imbedding is readily checked.

The next lemma makes the second part of Lemma 3.1 more precise.
Lemma 3.4. The range of CN by the curl operator is equal to VN .
Proof. Let vN be any polynomial in VN . We treat only the more complex case

of dimension d = 3. Denoting the components of vN by vNx, vNy, and vNz, we first
define a function ψN = (ψNx, ψNy, ψNz) by

ψNx(x, y, z) =

∫ z

−1

vNy(x, y, ζ) dζ,

ψNy(x, y, z) = −
∫ z

−1

vNx(x, y, ζ) dζ, ψNz = 0.

(3.12)

The first two components of ψN belong to PN−1,N,N (Ω) and PN,N−1,N (Ω), respec-
tively. This function is such that the first two components of its curl are equal to vNx

and vNy. Moreover, since vN belongs to VN . we have

(∂xψNy − ∂yψNx)(x, y, z) = −
∫ z

−1

(∂xvNx + ∂yvNy)(x, y, ζ) dζ

=

∫ z

−1

(∂zvNz)(x, y, ζ) dζ = vNz(x, y, z).

So curlψN is equal to vN . Moreover, it is readily checked that γt(ψN ) vanishes on
all faces of Ω but on the face Γ is contained in the plane z = 1. In a second step, we
look for a function μN in PN (Ω) such that γt(gradμN ) is equal to zero on ∂Ω\Γ and
to γt(ψN ) on Γ. Denoting by gNx and gNy the functions defined on Γ by

gNx(x, y) =

∫ 1

−1

vNy(x, y, ζ) dζ, gNy(x, y) = −
∫ 1

−1

vNx(x, y, ζ) dζ,

we observe that the function gN = (gNx, gNy) belongs to PN−1,N (Γ) × PN,N−1(Γ),
with obvious notation for these new spaces, has its tangential component equal to
zero on the four edges of Γ, and satisfies, for the same reasons as previously,

(∂xgNy − ∂ygNx)(x, y) =

∫ 1

−1

(∂zvNz)(x, y, ζ) dζ = 0.

Again applying [22, Chap. I, Thm. 2.9] yields that gN is the tangential gradient of a
function kgN , which is defined up to an additive constant. When choosing this constant
such that kgN (−1,−1) is zero, we easily derive that kgN belongs to H1

0 (Γ) ∩ PN (Γ).
Then, using an appropriate lifting operator of polynomial traces as proposed in [9,
Chap. II, Thm. 4.1], we derive the existence of a μN in PN (Ω) equal to 0 on ∂Ω \ Γ
and to kgN on Γ. The function ψN − gradμN now belongs to CN and has its curl
equal to vN , whence the desired result.

It follows from Lemmas 3.3 and 3.4 that, for any function vN in VN , there exists
a unique function ψ∗

N in CN such that curlψ∗
N is equal to vN and which, moreover,

satisfies in dimension d = 3

∀μN ∈ H1
0 (Ω) ∩ PN (Ω), (ψ∗

N ,gradμN )N = 0.(3.13)

Let AN be the operator defined from VN into CN by AN (vN ) = ψ∗
N .
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Lemma 3.5. There exists a constant c independent of N such that the following
inequality holds:

∀vN ∈ VN , ‖AN (vN )‖H(curl,Ω) ≤ c ‖vN‖L2(Ω)d .(3.14)

Proof. Since curlAN (vN ) is equal to vN , it suffices to bound ‖AN (vN )‖
L2(Ω)

d(d−1)
2

.

There also, we consider only the case d = 3. The function ψN defined in (3.12) obvi-
ously satisfies

‖ψN‖L2(Ω)3 ≤ 2 ‖vN‖L2(Ω)3 .(3.15)

For the same reason, the function kgN introduced in the proof of Lemma 3.4 satisfies,
thanks to the Poincaré–Friedrichs inequality,

‖kgN‖H1(Γ) ≤ c ‖gN‖L2(Γ)2 ≤ c
√

2‖vN‖L2(Ω)3 .

Thus applying [9, Chap. II, Thm. 4.1] leads to the estimate

‖gradμN‖L2(Ω)3 ≤ c ‖kgN‖H1(Γ),

whence

‖gradμN‖L2(Ω)3 ≤ c′ ‖vN‖L2(Ω)3 .(3.16)

Finally, the Lax–Milgram lemma combined with (3.5) and the Poincaré–Friedrichs
inequality yields that there exists a unique μ̃N in H1

0 (Ω) ∩ PN (Ω) such that

∀ρN ∈ H1
0 (Ω) ∩ PN (Ω), (grad μ̃N ,grad ρN )N = (ψN − gradμN ,grad ρN )N .

Moreover, this function satisfies

‖grad μ̃N‖L2(Ω)3 ≤ 3
3
2 (‖ψN‖L2(Ω)3 + ‖gradμN‖L2(Ω)3).(3.17)

The choice of μ̃N yields that the function ψN − gradμN − grad μ̃N is equal to
AN (vN ), so that the desired estimate follows from (3.15) to (3.17).

We are now in a position to prove successively the two analogues of (2.14).
Lemma 3.6. The form aN (·, ·; ·) satisfies the following positivity property:

∀vN ∈ VN \ {0}, sup
(ωN ,uN )∈WN

aN (ωN ,uN ; vN ) > 0.(3.18)

Proof. Let vN be a polynomial in VN such that aN (ωN ,uN ; vN ) vanishes for all
pairs (ωN ,uN ) in WN . We set ϑN = AN (vN ) and consider the equation:

Find zN in VN such that

∀wN ∈ VN , (zN ,wN )N = (ϑN , AN (wN ))N .(3.19)

Since the norms ‖ · ‖H(div,Ω) and ‖ · ‖L2(Ω)3 are equal on VN , it follows from (3.5) that
the bilinear form in the left-hand side is elliptic on VN , so that this problem has a
unique solution zN . Moreover, this function satisfies for any ϕN in CN

(zN , curlϕN )N =
(
ϑN , AN (curlϕN )

)
N
.
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Note that AN (curlϕN ) is the sum of ϕN and of the gradient of a function μN in
H1

0 (Ω) ∩ PN (Ω). Then it follows from the choice of ϑN (see (3.13)) that

(zN , curlϕN )N = (ϑN ,ϕN )N .

So the pair (ϑN ,zN ) belongs to WN and taking (ωN ,uN ) equal to (ϑN ,zN ) yields,
thanks to (3.5), that vN = curlϑN is zero, which concludes the proof.

Lemma 3.7. There exists a positive constant α∗ independent of N such that the
form aN (·, ·; ·) satisfies the following inf-sup condition:

∀(ωN ,uN ) ∈ WN ,

sup
vN∈VN

aN (ωN ,uN ; vN )

‖vN‖L2(Ω)d
≥ α∗

(
‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d

)
.

(3.20)

Proof. For any (ωN ,uN ) in WN , we set vN = uN + curlωN . Thanks to the
definition of WN , this gives

aN (ωN ,uN ; vN ) ≥ ν ‖ωN‖2
H(curl,Ω).

On the other hand, again using the definition of WN and (3.5), we write

‖uN‖2
L2(Ω)d ≤

(
uN , curlAN (uN )

)
N

= (ωN , AN (uN )
)
N

≤ 3d ‖ωN‖
L2(Ω)

d(d−1)
2

‖AN (uN )‖
L2(Ω)

d(d−1)
2

.

So by using Lemma 3.5 we obtain

‖uN‖L2(Ω)d ≤ 3d c ‖ωN‖
L2(Ω)

d(d−1)
2

.

By combining these two inequalities and noting that

‖vN‖L2(Ω)d ≤
√

2
(
‖ωN‖2

H(curl,Ω) + ‖uN‖2
L2(Ω)d

) 1
2 ,

we derive the desired inf-sup condition.
The following result is a direct consequence of Lemmas 3.6 and 3.7; see [22, Chap.

I, Lem. 4.1]. Note also from (3.5) that if IN denotes the Lagrange interpolation
operator introduced at the beginning of this section, the following property holds for
any vN in DN (note that this requires the continuity of f):

(f ,vN )N = (INf ,vN )N ≤ 3d ‖INf‖L2(Ω)d‖vN‖L2(Ω)d .

Corollary 3.8. For any data f continuous on Ω, problem (3.11) has a unique
solution (ωN ,uN ) in WN . Moreover, this solution satisfies for a constant c indepen-
dent of N :

‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d ≤ c ‖INf‖L2(Ω)d .(3.21)

To go further, we now state an inf-sup condition on the form bN (·, ·). We refer
the reader to [4, Lem. 3.1] for the main arguments of the proof in a slightly different
case (and to [5] and [13, Thm. 24.6] for the basic ideas).
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Lemma 3.9. There exists a positive constant β∗ independent of N such that the
form bN (·, ·) satisfies the following inf-sup condition:

∀qN ∈ MN , sup
vN∈DN

bN (vN , qN )

‖vN‖H(div,Ω)
≥ β∗ ‖qN‖L2(Ω).(3.22)

Note that Lemma 3.9 makes the first part of Lemma 3.1 more precise: Indeed, it
implies that the range of DN by the divergence operator is equal to MN . We skip the
proof of the next theorem since it relies on exactly the same arguments as Theorem
2.5 with Corollary 2.4 replaced by Corollary 3.8 and (2.17) replaced by (3.22).

Theorem 3.10. For any data f continuous on Ω, problem (3.7) has a unique
solution (ωN ,uN , pN ) in CN × DN × MN . Moreover, this solution satisfies for a
constant c independent of N :

‖ωN‖H(curl,Ω) + ‖uN‖H(div,Ω) + ‖pN‖L2(Ω) ≤ c ‖INf‖L2(Ω)d .(3.23)

4. Error estimates. We now wish to derive the error estimates between the
solution (ω,u, p) of problem (2.9) and the solution (ωN ,uN , pN ) of problem (3.7).
The proof is rather technical and requires several lemmas. In all that follows, c
stands for a generic constant which can vary from one line to the next one but is
always independent of N .

Lemma 4.1. The following estimate holds for the error between the solution
(ω,u, p) of problem (2.9) and the solution (ωN ,uN , pN ) of problem (3.7):

‖ω − ωN‖H(curl,Ω) + ‖u − uN‖H(div,Ω)

≤ c inf
(ϑN ,wN )∈WN

(
‖ω − ϑN‖H(curl,Ω) + ‖u − wN‖L2(Ω)d

+ Ef
N + Ea

N (ϑN ,wN )
)
,

(4.1)

where the quantities Ef
N and Ea

N (ϑN ,wN ) are defined by

Ef
N = sup

vN∈DN

〈f ,vN 〉 − (f ,vN )N
‖vN‖L2(Ω)d

,

Ea
N (ϑN ,wN ) = sup

vN∈DN

(a− aN )(ϑN ,wN ; vN )

‖vN‖L2(Ω)d
.

(4.2)

Proof. Let (ϑN ,wN ) be an approximation of (ω,u) in WN . By using (3.11), we
have, for all vN in VN ,

aN (ωN − ϑN ,uN − wN ; vN ) = (f ,vN )N − aN (ϑN ,wN ; vN ).

Then using problem (2.13) (we recall that VN is contained in V ) leads to

aN (ωN − ϑN ,uN − wN ; vN ) = (f ,vN )N − 〈f ,vN 〉 + a(ω − ϑN ,u − wN ; vN )

+ (a− aN )(ϑN ,wN ; vN ).

By combining this identity with the inf-sup condition (3.20), we derive

‖ωN − ϑN‖H(curl,Ω) + ‖uN − wN‖L2(Ω)d

≤ c
(
‖curl (ω − ϑN )‖L2(Ω)d + Ef

N + Ea
N (ϑN ,wN )

)
.
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We conclude thanks to a triangle inequality, by noting that both u and uN are exactly
divergence-free.

Lemma 4.2. The following estimate holds for the error between the solution
(ω,u, p) of problem (2.9) and the solution (ωN ,uN , pN ) of problem (3.7):

‖p− pN‖L2(Ω) ≤ c inf
qN∈MN

‖p− qN‖L2(Ω)

+ c inf
(ϑN ,wN )∈WN

(
‖ω − ϑN‖H(curl,Ω) + ‖u − wN‖L2(Ω)d

+ Ef
N + Ea

N (ϑN ,wN )
)
,

(4.3)

where the quantities Ef
N and Ea

N (ϑN ,wN ) are defined in (4.2).
Proof. It follows from problems (2.9) and (3.7) (note also that b(·, ·) and bN (·, ·)

coincide on DN × MN ) that, for any vN in DN and qN in MN ,

bN (vN , pN − qN ) = (f ,vN )N − 〈f ,vN 〉 + a(ω − ωN ,u − uN ; vN )

+ (a− aN )(ωN ,uN ; vN ) + b(vN , p− qN ).

Moreover, we use the identity

(a−aN )(ωN ,uN ; vN ) = (a−aN )(ϑN ,wN ; vN )+ (a−aN )(ωN −ϑN ,uN −wN ; vN ).

Combining the inf-sup condition (3.22) with Lemma 4.1 and a triangle inequality
leads to (4.3).

In order to evaluate the distance from (ω,u) to WN , we now prove an inf-sup
condition on the form cN (·, ·; ·).

Lemma 4.3. There exists a positive constant γ∗ independent of N such that the
form cN (·, ·; ·) satisfies the following inf-sup condition:

∀ϕN ∈ CN , sup
(ωN ,uN )∈CN×VN

cN (ωN ,uN ; ϕN )

‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d
≥ γ∗ ‖ϕN‖H(curl,Ω).

(4.4)

Proof. For any ϕN in CN , we take (ωN ,uN ) equal to (ϕN ,−curlϕN ) and note
that it belongs to CN × VN ; see Lemma 3.1. Next, we derive from (3.5) that

cN (ωN ,uN ; ϕN ) = (ϕN ,ϕN )N + (curlϕN , curlϕN )N ≥ ‖ϕN‖2
H(curl,Ω).

On the other hand, we have

‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d ≤ 2 ‖ϕN‖H(curl,Ω),

which leads to the desired inf-sup condition.
Corollary 4.4. The following estimate holds:

inf
(ϑN ,wN )∈WN

(
‖ω − ϑN‖H(curl,Ω) + ‖u − wN‖L2(Ω)d

)
≤ c inf

ζN∈CN

inf
zN∈VN

(
‖ω − ζN‖H(curl,Ω) + ‖u − zN‖L2(Ω)d + Ec

N (ζN ,zN )
)
,

(4.5)
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where the quantity Ec
N (ζN ,zN ) is defined by

Ec
N (ζN ,zN ) = sup

ϕN∈CN

(c− cN )(ζN ,zN ; ϕN )

‖ϕN‖H(curl,Ω)
.(4.6)

Proof. For any (ζN ,zN ) in CN × VN , we derive from the inf-sup condition (4.4)
the existence of a pair (ζ̃N , z̃N ) also in CN × VN which satisfies, for all ϕN in CN ,

cN (ζ̃N , z̃N ; ϕN ) = cN (ζN ,zN ; ϕN ),

and, moreover,

‖ζ̃N‖H(curl,Ω) + ‖z̃N‖L2(Ω)d ≤ (γ∗)
−1 sup

ϕN∈CN

cN (ζN ,zN ; ϕN )

‖ϕN‖H(curl,Ω)
.

We also note that

cN (ζN ,zN ; ϕN ) = −c(ω − ζN ,u − zN ; ϕN ) − (c− cN )(ζN ,zN ; ϕN ).

Since the pair (ϑN ,wN ) with ϑN = ζN − ζ̃N and wN = zN − z̃N belongs to WN ,
the desired estimate is easily derived from the two previous lines.

Remark 4.5. The same argument as in the previous proof, combined with the
inf-sup condition (3.22), leads to the estimate

inf
zN∈VN

‖u − zN‖L2(Ω)d ≤ c inf
vN∈DN

‖u − vN‖H(div,Ω).(4.7)

However, we prefer to avoid dealing with the approximation error in the H(div,Ω)-
norm and directly estimate the distance from u to VN .

By combining Lemmas 4.1 and 4.2 and Corollary 4.4, we observe that the full
error

‖ω − ωN‖H(curl,Ω) + ‖u − uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

is bounded by the sum of the three terms of approximation error,

inf
ζN∈CN

‖ω − ζN‖H(curl,Ω), inf
zN∈VN

‖u − zN‖L2(Ω)d , inf
qN∈MN

‖p− qN‖L2(Ω),

plus the three quantities Ef
N , Ea

N (ϑN ,wN ), and Ec
N (ζN ,zN ) which are issued from

numerical integration.
In order to estimate these last ones, we introduce the orthogonal projection op-

erator ΠN−1 from L2(Ω) onto PN−1(Ω). Indeed, we derive from (3.4) that, for any
vN in DN ,

〈f ,vN 〉 − (f ,vN )N = 〈f − ΠN−1f ,vN 〉 − (f − ΠN−1f ,vN )N

= 〈f − ΠN−1f ,vN 〉 − (INf − ΠN−1f ,vN )N ,

so that, owing to (3.5),

Ef
N ≤ (1 + 3d) ‖f − ΠN−1f‖L2(Ω)d + 3d ‖f − INf‖L2(Ω)d .(4.8)

Similarly, we have, for any vN in DN ,

(a− aN )(ϑN ,zN ; vN ) = ν

∫
Ω

(
curlϑN − ΠN−1(curlω)

)
(x) · zN (x) dx

− ν
(
curlϑN − ΠN−1(curlω),zN

)
N
,
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so that

Ea
N (ϑN ,wN ) ≤ (1 + 3d)

(
‖curl (ω − ϑN )‖L2(Ω)d + ‖curlω − ΠN−1(curlω)‖L2(Ω)d

)
.

(4.9)

Note that a bound for the quantity ‖curl (ω−ϑN )‖L2(Ω)d is provided by Corollary 4.4.
Finally, the same arguments lead to

Ec
N (ζN ,zN ) ≤ (1 + 3d)

(
‖ω − ζN‖

L2(Ω)
d(d−1)

2
+ ‖ω − ΠN−1ω‖

L2(Ω)
d(d−1)

2

+ ‖u − zN‖L2(Ω)d + ‖u − ΠN−1u‖L2(Ω)d
)
.

(4.10)

We now recall from [13, Thms. 7.1 and 14.2] the approximation properties of the
operators ΠN−1 and IN : For any function g in Hs(Ω), s ≥ 0,

‖g − ΠN−1g‖L2(Ω) ≤ cN−s ‖g‖Hs(Ω),(4.11)

and, for any function g in Hs(Ω), s > d
2 ,

‖g − INg‖L2(Ω) ≤ cN−s ‖g‖Hs(Ω).(4.12)

Estimates (4.11) and (4.12), when applied to each component of f and combined with

(4.8), lead to the desired bound for Ef
N . When combined with (4.9) and (4.10), they

allow us to reduce the evaluation of Ea
N (ϑN ,wN ) and Ec

N (ζN ,zN ) to a bound for
the approximation error.

The approximation error for the pressure can also be estimated from (4.11). To
go further we recall the following:

• In dimension d = 2, the orthogonal projection operator Π1,0
N from H1

0 (Ω) onto
CN satisfies, for all functions ϕ in Hs(Ω) ∩H1

0 (Ω), s ≥ 1,

‖ϕ − Π1,0
N ϕ‖L2(Ω) + N−1 |ϕ − Π1,0

N ϕ|H1(Ω) ≤ cN−s ‖ϕ‖Hs(Ω).(4.13)

• In dimension d = 3, a spectral analogue RN of the Nédélec operator [24, sect.
2] has been constructed in [7, sect. 4]. It maps smooth functions in H0(curl,Ω) onto
CN and satisfies, for all functions ϕ in Hs(Ω)3 ∩H0(curl,Ω), s ≥ 2,

‖ϕ −RNϕ‖L2(Ω)3 ≤ cN−s ‖ϕ‖Hs(Ω)3 ,(4.14)

and, for all functions ϕ in H0(curl,Ω) such that curlϕ belongs to Hs(Ω)3, s ≥ 1,

‖curl (ϕ −RNϕ)‖L2(Ω)3 ≤ cN−s ‖curlϕ‖Hs(Ω)3 .(4.15)

Applying these estimates leads to a bound for the approximation error on ω. More-
over, since the velocity u is divergence-free and has a zero normal trace on ∂Ω, it is
equal to curlψ for a function ψ in H0(curl,Ω). Thus, thanks to Lemma 3.1, its best
approximation in VN can be bounded from (4.13) or (4.15).

To state the final estimate, we introduce the scale of spaces, for s ≥ 0,

Hs(curl,Ω) =
{
ϕ ∈ Hs(Ω)

d(d−1)
2 ; curlϕ ∈ Hs(Ω)d

}
.(4.16)

Note that this space coincides with Hs+1(Ω) in dimension d = 2.
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Theorem 4.6. Assume that the data f belong to Hσ(Ω)d for a real number σ > d
2

and that the solution (ω,u, p) of problem (2.9) belongs to Hs(curl,Ω) × Hs(Ω)d ×
Hs(Ω) for a real number s ≥ d− 1. Then the following error estimate holds between
this solution and the solution (ωN ,uN , pN ) of problem (3.7):

‖ω − ωN‖H(curl,Ω) + ‖u − uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

≤ c
(
N−s

(
‖ω‖Hs(curl,Ω) + ‖u‖Hs(Ω)d + ‖p‖Hs(Ω)

)
+ N−σ ‖f‖Hσ(Ω)d

)
.

(4.17)

Estimate (4.17) is fully optimal, which is especially interesting as far as the pres-
sure is concerned since this optimality is not obtained for most spectral discretizations
of the Stokes problem.

The regularity which is required (s ≥ d − 1) concerns only the vorticity ω and
seems reasonable at least in the case of a square. Moreover, it follows from [16] and
[17] that both ω and u can be written as a sum of a regular part and the gradient of
a linear combination of the singular functions associated with the Laplace operator.
These two terms can be approximated separately and, as usual in spectral methods
[12], the approximation of the singular part is better than can be hoped from the
general theory. This leads to the following result, where, in dimension d = 2, σΩ is
equal to 4 − ε for any ε > 0.

Corollary 4.7. Assume that the data f belong to Hσ(Ω)d for a real number
σ > d

2 . Then the following error estimate holds between the solution (ω,u, p) of
problem (2.9) and the solution (ωN ,uN , pN ) of problem (3.7):

‖ω − ωN‖H(curl,Ω) + ‖u − uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

≤ cN−min{σ,σΩ} ‖f‖Hσ(Ω)d ,
(4.18)

where σΩ is a real number ≥ 1 depending only on Ω.

5. Case of nonhomogeneous boundary conditions. We briefly explain how
the results of the previous sections can be extended to the problem⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν curlω + grad p = f in Ω,

div u = 0 in Ω,

ω = curlu in Ω,

u · n = g on ∂Ω,

γt(ω) = 0 on ∂Ω,

(5.1)

where the function g belongs to H− 1
2 (∂Ω) and satisfies the compatibility condition

(here 〈·, ·〉∂Ω obviously denotes the duality pairing between H− 1
2 (∂Ω) and H

1
2 (∂Ω))

〈g, 1〉∂Ω = 0.(5.2)

We consider the following variational problem:
Find (ω,u, p) in H0(curl,Ω) ×H(div,Ω) × L2

0(Ω) such that

u · n = g on ∂Ω(5.3)

and that

∀v ∈ H0(div,Ω), a(ω,u; v) + b(v, p) = 〈f ,v〉,
∀q ∈ L2

0(Ω), b(u, q) = 0,

∀ϑ ∈ H0(curl,Ω), c(ω,u; ϑ) = 0.

(5.4)
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Thanks to the arguments given in section 2, it can be checked that problems (5.1)
and (5.3)–(5.4) are equivalent, in the sense made precise in Proposition 2.2. To prove
the well-posedness of problem (5.3)–(5.4), we need a lifting of the boundary condition
(5.3).

Lemma 5.1. For any g in H− 1
2 (∂Ω) satisfying (5.2), there exists a divergence-free

and curl-free function ub in L2(Ω)d such that ub ·n is equal to g on ∂Ω. Moreover,
this function satisfies

‖ub‖H(div,Ω) ≤ c ‖g‖
H− 1

2 (∂Ω)
.(5.5)

Proof. The following variational problem,
Find μ in H1(Ω) ∩ L2

0(Ω) such that

∀ρ ∈ H1(Ω) ∩ L2
0(Ω),

∫
Ω

gradμ ·grad ρ dx = 〈g, ρ〉∂Ω,

admits a unique solution μ which satisfies

|μ|H1(Ω) ≤ c ‖g‖
H− 1

2 (∂Ω)
.

Then the function ub = gradμ satisfies all the properties stated in the lemma.
Theorem 5.2. For any data f in the dual space of H0(div,Ω) and g in H− 1

2 (∂Ω)
satisfying (5.2), problem (5.3)–(5.4) has a unique solution (ω,u, p) in H0(curl,Ω) ×
H(div,Ω) × L2

0(Ω). Moreover, this solution satisfies

‖ω‖H(curl,Ω) + ‖u‖H(div,Ω) + ‖p‖L2(Ω) ≤ c
(
‖f‖H0(div,Ω)′ + ‖g‖

H− 1
2 (∂Ω)

)
.(5.6)

Proof. Using the function ub introduced in Lemma 5.1 and setting u0 = u − ub,
we note that (ω,u, p) is a solution of problem (5.3)–(5.4) if and only if (ω,u0, p) is
a solution of a problem similar to (2.9). So the existence and uniqueness of (ω,u, p)
follow from Theorem 2.5, and estimate (5.6) is derived by combining (2.18) and (5.5).

In order to write the discrete problem, we introduce the space

DN =

{
PN,N−1(Ω) × PN−1,N (Ω) if d = 2,

PN,N−1,N−1(Ω) × PN−1,N,N−1(Ω) × PN−1,N−1,N (Ω) if d = 3.
(5.7)

Assuming that the function g belongs to L2(∂Ω), we define an approximation gN of g
as follows: On each edge (d = 2) or face (d = 3) Γr of Ω, 1 ≤ r ≤ 2d, gN |Γr

is equal to
the image of g|Γr

by the orthogonal projection operator from L2(Γr) onto PN−1(Γr).
Then we consider the following problem:

Find (ωN ,uN , pN ) in CN × DN × MN such that

uN · n = gN on ∂Ω(5.8)

and that

∀vN ∈ DN , aN (ωN ,uN ; vN ) + bN (vN , pN ) = (f ,vN )N ,

∀q ∈ MN , bN (uN , qN ) = 0,

∀ϑN ∈ CN , cN (ωN ,uN ; ϑN ) = 0.

(5.9)

Remark 5.3. The choice of gN as the discrete boundary condition is justified at
least in a first step by the following reasons:
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(i) The normal trace operator on each Γr, 1 ≤ r ≤ 2d, maps DN onto PN−1(Γr),
so that each gN |Γr

belongs to the right space.
(ii) In dimension d = 2, on two adjacent edges (i.e., that share a vertex), the

normal trace operator involves different components of any function in H(div,Ω), so
that gN does not have to satisfy any compatibility conditions at the common vertex.
The same remark holds in dimension d = 3 for two adjacent faces (i.e., that share an
edge).

(iii) Property (5.2) is still satisfied with g replaced by gN , which is essential since
we intend to work with exactly divergence-free discrete velocities.
Moreover, the computation of gN is not too expensive.

Theorem 5.4. For any data f continuous on Ω and g in L2(∂Ω) satisfying (5.2),
problem (5.8)–(5.9) has a unique solution (ωN ,uN , pN ) in CN × DN × MN .

Proof. It is readily checked that problem (5.8)–(5.9) can be written as a square
linear system. Moreover, it follows from Theorem 3.10 that the unique solution of
this problem when the data f and gN are zero is (0,0, 0). This yields the existence
and uniqueness property.

We briefly recall the arguments that can be used in order to derive the same error
estimates as in section 4.

(1) It follows from [7, sect. 4] that, in dimension d = 3, an extension RN of the
operator RN introduced in section 4 can be constructed such that estimate (4.15)
still holds but now for s ≥ 3

2 and that, for any smooth enough function ϕ, the normal

traces of curl (RNϕ) on each Γr coincides with the images of the normal traces of
curlϕ by the projection operator from L2(Γr) onto PN−1(Γr). A similar operator
can obviously be constructed in dimension d = 2.

(2) Since the velocity u is divergence-free and thanks to (5.2), there exists a
function ψ such that curlψ = u. Then the function zN = curl (RNψ) belongs to
DN , is divergence-free, and has its normal trace equal to gN on ∂Ω. Moreover, the
distance of u to zN in L2(Ω)d can easily be evaluated from (4.15).

(3) Let V N denote the space of divergence-free functions in DN . Thanks to
Lemma 4.3 (see also the proof of Corollary 4.4), for the previous function zN and any
ζN in CN , there exists a (ϑN ,wN ) in CN ×V N such that the pair (ϑN ,wN ) satisfies
(4.5), the normal traces of wN and zN coincide on ∂Ω, and, moreover,

∀ϕN ∈ CN , cN (ϑN ,wN ; ϕN ) = 0.

(4) The pair (ωN − ϑN ,uN − zN ) now belongs to WN . So exactly the same
arguments as in the proof of Lemma 4.1 lead to estimate (4.1).

Theorem 5.5. If the assumptions of Theorem 4.6 hold and the data g satisfies
condition (5.2) and is such that each g|Γr

, 1 ≤ r ≤ 2d, belongs to Hτ (Γr) for a
nonnegative real number τ , the following error estimate holds between the solution
(ω,u, p) of problem (5.3)–(5.4) and the solution (ωN ,uN , pN ) of problem (5.8)–(5.9):

‖ω − ωN‖H(curl,Ω) + ‖u − uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

≤ c
(
N−s

(
‖ω‖Hs(curl,Ω) + ‖u‖Hs(Ω)d + ‖p‖Hs(Ω)

)
+ N−σ ‖f‖Hσ(Ω)d + N−τ− 1

2

2d∑
r=1

‖g‖Hτ (Γr)

)
.

(5.10)

Corollary 5.6. Assume that the data (f , g) belong to Hσ(Ω)d×Hσ− 1
2 (∂Ω) for

a real number σ > d
2 and that condition (5.2) is satisfied. Then the following error
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estimate holds between the solution (ω,u, p) of problem (5.3)–(5.4) and the solution
(ωN ,uN , pN ) of problem (5.8)–(5.9) for the same real number σΩ as in Corollary 4.7:

‖ω − ωN‖H(curl,Ω) + ‖u − uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

≤ cN−min{σ,σΩ} (‖f‖Hσ(Ω)d + ‖g‖
Hσ− 1

2 (∂Ω)

)
.

(5.11)

6. Some numerical experiments. Before presenting the numerical experi-
ments, we briefly describe how problem (3.7) is implemented. Let ϕj , 0 ≤ j ≤ N ,
denote the Lagrange polynomials in PN (−1, 1) associated with the nodes ξj . We fix
an integer j∗ between 0 and N (usually equal to the integer part of N

2 ), define J∗ as
the set {0, . . . , N} \ {j∗}, and set

ϕ∗
j (ζ) = ϕj(ζ)

ξj − ξj∗

ζ − ξj∗
, j ∈ J∗.(6.1)

Then the unknowns ωN and uN and a pseudopressure p̃N admit the expansions, in
dimension d = 2 for simplicity,

ωN (x, y) =

N−1∑
i=1

N−1∑
j=1

ωij ϕi(x)ϕj(y),

uNx(x, y) =

N−1∑
i=1

∑
j∈J∗

ux
ij ϕi(x)ϕ∗

j (y), uNy(x, y) =
∑
i∈J∗

N−1∑
j=1

uy
ij ϕ

∗
i (x)ϕj(y),

p̃N (x, y)=
∑

i∈J∗,j∈J∗,(i,j) �=(0,0)

pij ϕ
∗
i (x)ϕ∗

j (y).

The function p̃N vanishes in (−1,−1) but no longer belongs to L2
0(Ω); however, the

real pressure pN can easily be recovered in a postprocessing step, thanks to the formula

pN (x, y) = p̃N (x, y) − 1

2d
(p̃N , 1)N .(6.2)

We denote by Ω�, U , and P the vectors made of these coefficients. Their dimen-

sions are equal to d(d−1)
2 Nd−2(N − 1)2, dNd−1(N − 1), and Nd − 1, respectively.

Problem (3.7) can thus be written equivalently as the square linear system⎛
⎝ A 0 B

0 BT 0
Cω Cu 0

⎞
⎠

⎛
⎝Ω�

U
P

⎞
⎠ =

⎛
⎝F

0
0

⎞
⎠,(6.3)

where BT denotes the transposed matrix of B. The global matrix is not symmetric,
even if the subblocks ( 0

BT
B
0 ) and Cω are symmetric. Note that, up to the multiplica-

tive constant −ν−1, the matrix Cu coincides with AT . The system is very similar in
the case of nonhomogeneous boundary conditions, except that a further vector −B̃TG
appears in the second line of the right-hand side.

In what follows, system (6.3) is solved via the GMRES method, so that it has not
to be assembled. As a preconditioner, we use the matrix issued from an incomplete
LU factorization of the global matrix in (6.3). Moreover, as standard in spectral
methods, it follows from the tensorization properties of the polynomial spaces that
each product of this matrix by a vector is realized with cNd+1 operations, which
highly reduces the cost of the inversion.
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Fig. 1. Error curves for the solution defined from (6.4).

Two-dimensional experiments. We first work in the square Ω =] − 1, 1[2, with
ν = 1. We consider a given solution constructed thanks to the formulas u = curlψ
and ω = curlu in the two situations

(i) of functions ψ and p of class C∞, defined by

ψ(x, y) = sin(πx) sin(πy), p(x, y) = xy,(6.4)

and
(ii) of functions ψ and p of limited regularity, defined by

ψ(x, y) = (1 − x2)3(1 − y2)
7
2 , p(x, y) = x(1 − x2)

3
2 (1 + y2)−

1
2 .(6.5)

Figure 1 for the solution issued from (6.4) and Figure 2 for the solution issued from
(6.5) present the convergence curves of the relative errors on ω, u, and p in the
corresponding norms, both in standard and logarithmic scales, for N varying from 5
to 30.

In Figure 1, the convergence is exponential and the three errors are smaller than
10−10 from N = 15. The convergence is, of course, slower in Figure 2. It can be
noted that the vorticity and the pressure have the same regularity near the edges of
Ω contained in the lines x = ±1 (they behave like (1−x2)

3
2 ) and that the error slopes

are the same.



846 CHRISTINE BERNARDI AND NEJMEDDINE CHORFI

Convergence of the vorticity

Convergence of the vorticity

Error in H(curl)−norm

Error in H(curl)−norm

log(N)
10

0
10

1
10

2

lo
g(

er
ro

r)

10
0

10
−2

10
−4

0.2

0.15

0.1

er
ro

r

0.05

0
5 10 15 20

N
25 30

Convergence of the velocity

Convergence of the velocity

Error in H(div)−norm

Error in H(div)−norm

log(N)
10

0
10

1
10

2

lo
g(

er
ro

r)

10
0

10
−2

10
−4

0.8

0.6

0.4

er
ro

r

0.2

0
5 10 15 20

N
25 30

Convergence of the pressure

Convergence of the pressure

Error in L2−norm

Error in L2−norm

log(N)
10

0
10

1
10

2

lo
g(

er
ro

r)

10
2

10
0

10
−4

10
−2

3

2

1

er
ro

r

0
5 10 15 20

N
25 30

Fig. 2. Error curves for the solution defined from (6.5).

Figure 3 presents, from left to right and top to bottom, the values of the vorticity
of the two components of the velocity and of the pressure corresponding to the data
f = (fx, fy), with

fx = 0, fy = xy2,(6.6)

in the case g = 0 of homogeneous boundary conditions, obtained with N = 40.
Figure 4 presents, from left to right and top to bottom, the values of the vorticity

of the two components of the velocity and of the pressure corresponding to the data
f = (fx, fy), given in (6.6) and with g given by

g(−1, y) = −(1 − y2)
3
2 , g(1, y) = (1 − y2)

3
2 , g(x,±1) = 0,(6.7)

obtained with N = 40. It can be noted that the vorticity ωN and pressure pN are
nearly the same in Figures 3 and 4.
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Fig. 3. The solution (ω, ux, uy , p) for the data f defined in (6.6) and g = 0.
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Fig. 4. The solution (ω, ux, uy , p) for the data (f , g) defined in (6.6)–(6.7).

Three-dimensional experiments. We now work in the cube Ω =]−1, 1[3, with ν = 1
and always in the case g = 0 of homogeneous boundary conditions. We consider a
given solution constructed thanks to the formulas u = curlψ and ω = curlu, with
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Fig. 5. Error curves for the solution defined from (6.8).

ψ = (ψx, ψy, ψz) and p defined by

ψx(x, y, z) = (1 − y2)3(1 − z2)
7
2 , ψy(x, y, z) = (1 − x2)

7
2 (1 − z2)3,

ψz(x, y, z) = (1 − x2)3(1 − y2)
7
2 , p(x, y, z) =

x(1 − x2)
3
2

(1 + y2)
1
2 (1 + z2)

1
2

.
(6.8)

Figure 5 presents the convergence curves of the relative errors on ω, u, and p,
both in standard and logarithmic scales, for N varying from 5 to 18. It can be noted
that the regularity of the solution is the same as for the two-dimensional solution
defined from (6.5) and that the slopes of the error are very similar to those in Figure
2. We do not present the convergence curves for a solution of class C∞ since they are
exactly the same as in Figure 1.

Figure 6 presents, from left to right and top to bottom, the curves of isovalues in
the plane x = 0 of the three components of the vorticity and the velocity and of the
pressure corresponding to the data f = (fx, fy, fz), with

fx = x, fy = 0, fz = yz2,(6.9)

obtained with N = 18.
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Fig. 6. The solution (ωx, ωy , ωz , ux, uy , uz , p) for the data f defined in (6.9).

As a conclusion, both two- and three-dimensional experiments are in perfect
agreement with the error estimates derived in sections 4 and 5 and bring to light
the efficiency of the spectral discretization for this type of problem.
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A FOURTH-ORDER
COMMUTATOR-FREE EXPONENTIAL INTEGRATOR FOR

NONAUTONOMOUS DIFFERENTIAL EQUATIONS∗

MECHTHILD THALHAMMER†

Abstract. In the present work, we study the convergence behavior of commutator-free expo-
nential integrators for abstract nonautonomous evolution equations

u′(t) = A(t)u(t), 0 < t ≤ T.

In particular, we focus on a fourth-order scheme that relies on the composition of two exponentials
involving the values of the linear operator family A at the Gaussian nodes

u1 = eh(a2A1+a1A2) eh(a1A1+a2A2) u0, ai = 1
4
±

√
3

6
, ci = 1

2
∓

√
3

6
, Ai = A(cih), i = 1, 2.

We prove that the numerical scheme is stable and derive an error estimate with respect to the norm of
the underlying Banach space. The theoretically expected order reduction is illustrated by a numerical
example for a parabolic initial-boundary value problem subject to a homogeneous Dirichlet boundary
condition.

Key words. exponential integrators, commutator-free methods, nonautonomous differential
equations, parabolic evolution equations, stability, convergence
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1. Introduction. In the present paper, we consider a nonautonomous differen-
tial equation involving a time-dependent linear operator A

u′(t) = A(t)u(t), 0 < t ≤ T, u(0) given.(1.1)

Our setting includes parabolic initial-boundary value problems that take the form
(1.1) when written as an abstract initial value problem on a Banach space. The
objective of this work is to analyze the error behavior of the fourth-order commutator-
free exponential integrator

u1 = eh(a2A1+a1A2) eh(a1A1+a2A2) u0,

ai = 1
4 ±

√
3

6 , ci = 1
2 ∓

√
3

6 , Ai = A(cih), i = 1, 2,
(1.2)

to explain the substantial order reduction for problems of parabolic type. For that
purpose, we derive a representation for the defect of (1.2) which remains valid within
the framework of sectorial operators and analytic semigroups. In situations where A(t)
is a bounded linear operator, the Campbell–Baker–Hausdorff formula is a powerful
tool for the error analysis of (1.2) and higher-order schemes, respectively. However,
it is problematic to justify its validity in the context of parabolic evolution equations.
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Therefore, in this paper, we follow a different approach based on the variation-of-
constants formula.

Numerical schemes that involve the evaluation of the exponential and related func-
tions were proposed in the middle of the past century; for a historical review, see [24].
At present, a variety of works confirms the renewed interest in such exponential inte-
grators; as a small selection, we mention the recent works [5, 8, 14, 16, 19, 20] and refer
to the references given therein. A reason for these research activities are advances
in the computation of the product of a matrix exponential with a vector; see, for
instance, [10, 15, 25]. As a consequence, numerical integrators based on the Magnus
expansion [23] and related method classes [2, 3, 6, 7, 17, 21] are practicable in the
numerical solution of nonautonomous stiff differential equations; see also [11, 12, 30]
and references cited therein.

The excellent error behavior of interpolatory Magnus integrators for time-depen-
dent Schrödinger equations is explained in Hochbruck and Lubich [14]. There, it
is proved that the exponential midpoint rule applied to ordinary differential equa-
tions (1.1)

u1 = ehA1 u0, A1 = A
(
h
2

)
,(1.3)

is convergent of order 2 without any restriction on the size of h
∥∥A(t)

∥∥. Moreover,
under a mild stepsize restriction, a fourth-order error bound is valid for the Magnus
integrator

u1 = eha1(A1+A2)+h2a2[A2,A1] u0,

a1 = 1
2 , a2 =

√
3

12 , ci = 1
2 ∓

√
3

6 , Ai = A(cih), i = 1, 2,

where [A1, A2

]
= A1A2−A2A1 denotes the matrix commutator. In [11], we considered

the numerical scheme (1.3) in the context of parabolic evolution equations and showed
that the full convergence order 2 is obtained when the error is measured in the norm
of the underlying Banach space, provided that the data and the exact solution of (1.1)
are sufficiently smooth in time.

The purpose of the present work is to investigate the convergence properties of
higher-order methods for linear nonautonomous parabolic problems (1.1). Provided
that the time-dependent sectorial operator A(t) is Hölder-continuous with respect to t,
it is ensured that any linear operator defined through B = αA(ξ1)+(1−α)A(ξ2) with
α, ξ1, ξ2 ∈ R generates an analytic semigroup

(
etB

)
t≥0

, that is, numerical schemes

such as (1.2) remain well defined for abstract evolution equations (1.1). For that
reason, we focus on commutator-free exponential integrators that rely on the compo-
sition of exponentials involving linear combinations of values of A. We show that the
fourth-order scheme (1.2) is stable; however, unless the operator familiy A fulfills un-
natural requirements, a substantial order reduction is encountered. For instance, for
one-dimensional initial-boundary value problems subject to a homogeneous Dirichlet
boundary condition, the order of convergence with respect to a discrete Lp-norm is
2 + κ, where 0 ≤ κ < (2p)−1, in general.

The present work is organized as follows. In section 2, we first state the funda-
mental hypotheses on the nonautonomous evolution equation (1.1). The considered
commutator-free exponential integration scheme is then introduced in section 3. The
numerical approximation is based on the composition of two exponentials that in-
volve the values of A at certain nodal points. Sections 4 and 5 are concerned with a
stability and convergence analysis for parabolic problems. In section 5.1, we derive
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an expansion of the numerical solution defect which remains well defined for abstract
differential equations (1.1) involving an unbounded linear operator A(t), provided
that the data and the exact solution of the problem are sufficiently many times dif-
ferentiable with respect to time. The main result, a convergence estimate for the
fourth-order scheme (1.2), is given in section 5.2. Important tools for its proof are
the stability bound and the representation of the defect derived before. Section 6 is
devoted to a numerical example that illustrates the expected order reduction.

2. Parabolic problems. Henceforth, we denote by (X, ‖·‖X) the underlying
Banach space. Our basic requirements on the unbounded linear operator family A
defining the right-hand side of the differential equation in (1.1) are that of [11, 30].
For a detailed treatise of time-dependent evolution equations we refer to [22, 29].
The monographs [13, 27] delve into the theory of sectorial operators and analytic
semigroups.

Hypothesis 1. We assume that the densly defined and closed linear operator
A(t) : D ⊂ X → X is uniformly sectorial for 0 ≤ t ≤ T . Thus, there exist constants
a ∈ R, 0 < φ < π

2 , and M > 0 such that for all 0 ≤ t ≤ T the resolvent of A(t)
satisfies the condition ∥∥∥(λI −A(t)

)−1
∥∥∥
X←X

≤ M

|λ− a|(2.1)

for any complex number λ �∈ Sφ(a) =
{
λ ∈ C : |arg(a− λ)| ≤ φ

}
∪ {a}. The graph

norm of A(t) and the norm in D fulfill the following relation with a constant K > 0:

K−1‖x‖D ≤ ‖x‖X +
∥∥A(t)x

∥∥
X

≤ K‖x‖D, x ∈ D, 0 ≤ t ≤ T.

Moreover, it holds A ∈ C ϑ
(
[0, T ], L(D,X)

)
for some 0 < ϑ ≤ 1, i.e., the bound∥∥A(t) −A(s)

∥∥
X←D

≤ L(t− s)ϑ, 0 ≤ s ≤ t ≤ T,(2.2)

is valid with a constant L > 0.
For any 0 ≤ s ≤ T the sectorial operator Ω = A(s) generates an analytic

semigroup
(
etΩ

)
t≥0

on X which is defined by means of the integral formula of Cauchy

etΩ =
1

2πi

∫
Γ

eλ
(
λI − tΩ

)−1
dλ, t > 0, etΩ = I, t = 0.(2.3)

Here, Γ denotes a path that surrounds the spectrum of Ω.
Henceforth, for 0 < μ < 1, we denote by Xμ some intermediate space between

the Banach spaces D = X1 and X = X0 such that the norm in Xμ satisfies the bound

‖x‖Xμ ≤ K‖x‖μD‖x‖1−μ
X with a constant K > 0 for all elements x ∈ D. Examples

for intermediate spaces are real interpolation spaces (see Lunardi [22]) or fractional
power spaces (see Henry [13]). Then, for all 0 ≤ μ ≤ ν ≤ 1 and integers k ≥ 0 the
following bound is valid:∥∥tk+ν−μ Ωk etΩ

∥∥
Xν←Xμ

≤ M, 0 ≤ t ≤ T,(2.4)

with a constant M > 0. As a consequence, the linear operator ϕm which is given by

ϕm(tΩ) =
1

(m− 1)! tm

∫ t

0

e(t−τ)Ω τm−1dτ, t > 0, ϕm(0) =
1

(m− 1)!
I,(2.5a)
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for integers m ≥ 1, remains bounded on Xμ for any 0 ≤ t ≤ T and 0 ≤ μ ≤ 1. In the
subsequent sections, we make use of the identities

etΩ = I + tΩϕ1(tΩ), ϕm−1(tΩ) =
1

(m− 1)!
I + tΩϕm(tΩ), m ≥ 1.(2.5b)

Furthermore, it is substantial that the relation

ϕm(tΩ) − ϕm(0) = tΩχ(tΩ)(2.5c)

holds with a linear operator χ(tΩ) that is bounded on Xμ; see [13, 22] and also [11, 30].

3. Commutator-free exponential integrator. In this section, we introduce
an integration method for linear nonautonomous parabolic problems (1.1) which relies
on the composition of two exponentials. We note that the considered scheme is an
example of a Crouch–Grossman method [9].

For a constant stepsize h > 0 the associated grid points are denoted by tj = jh
for j ≥ 0. The numerical approximation un+1 ≈ u(tn+1) to the true solution of (1.1)
is given by the recurrence formula

un+1 = eζ̃hCn eζhBn un, n ≥ 0.(3.1a)

Here, we employ the following abbreviations:

Ani = A(tn + cih), i = 1, 2,

Bn = αAn1 + βAn2, Cn = γAn1 + δAn2.
(3.1b)

Throughout, we assume that the nodal points ζ, ζ̃, c1, c2 ∈ R and the coefficients
α, β, γ, δ ∈ R satisfy

0 < ζ < 1, ζ̃ = 1 − ζ, 0 ≤ c1 ≤ c2 ≤ 1, α + β = 1, γ + δ = 1.(3.1c)

The following remark shows that relation (3.1a) remains well defined within the ana-
lytical framework of section 2.

Remark 1. Under the assumptions of Hypothesis 1, the linear operator

αAn1 + (1 − α)An2 = An2 + α
(
An1 −An2

)
, α ∈ R,

is sectorial; see also [13, Theorem 1.3.2]. Therefore, the commutator-free exponential
integrator (3.1) is well defined for abstract evolution equations (1.1).

4. Stability. The stability properties of the commutator-free exponential inte-
grator (3.1) are determined by the behavior of the evolution operator

n∏
i=m

eζ̃hCi eζhBi = eζ̃hCn eζhBn eζ̃hCn−1 eζhBn−1 · · · eζ̃hCm eζhBm ,(4.1)

where n ≥ m ≥ 0. The following result implies that the numerical solution un remains
bounded for arbitrarily chosen stepsizes h > 0 as long as nh ≤ T .

Theorem 1 (stability). Under the requirements of Hypothesis 1 on A, the dis-
crete evolution operator (4.1) fulfills the bound∥∥∥∥∥

n∏
i=m

eζ̃hCi eζhBi

∥∥∥∥∥
X←X

≤ M, 0 ≤ mh ≤ nh ≤ T,
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with a constant M > 0 that does not depend on n and h.
Proof. As in our preceeding works [11, 30], the proof of the above stability result

relies on the telescopic identity and the integral formula of Cauchy. In the present
situation, it is useful to compare the discrete evolution operator (4.1) with the linear
operator

n∏
i=m

eζ̃hAm2 eζhAm2 =

n∏
i=m

ehAm2 = e(tn+1−tm)Am2 ,

which satisfies the well-known bound∥∥∥e(tn+1−tm)Am2

∥∥∥
X←X

+
∥∥∥(tn+1 − tm)Am2 e(tn+1−tm)Am2

∥∥∥
X←X

≤ C

for 0 ≤ tm ≤ tn ≤ T . Therefore, it suffices to estimate the difference

Δn
m =

n∏
i=m

eζ̃hCi eζhBi − e(tn+1−tm)Am2

=

n−1∑
j=m

Δn
j+1

(
eζ̃hCj eζhBj − ehAm2

)
e(tj−tm)Am2

+

n∑
j=m

e(tn+1−tj+1)Am2

(
eζ̃hCj eζhBj − ehAm2

)
e(tj−tm)Am2 .

For this purpose, it is notable that the following relation holds true:

eζ̃hCjeζhBj − ehAm2 =
(
eζ̃hCj − eζ̃hAm2

)
eζhBj + eζ̃hAm2

(
eζhBj − eζhAm2

)
.

By means of the integral formula of Cauchy, the resolvent identity

(λI − Ω1)
−1 − (λI − Ω2)

−1 = (λI − Ω1)
−1(Ω1 − Ω2)(λI − Ω2)

−1,

and the relations given in (3.1), we receive(
eζ̃hCj eζhBj − ehAm2

)
e(tj−tm)Am2

=
ζ̃h

2πi

∫
Γ

eλ (λ− ζ̃hCj)
−1

(
γ(Aj1 −Aj2) + Aj2 −Am2

)
× (λ− ζ̃hAm2)

−1 eζhBj e(tj−tm)Am2 dλ

+
ζh

2πi

∫
Γ

eλ eζ̃hAm2 (λ− ζhBj)
−1

(
α(Aj1 −Aj2) + Aj2 −Am2

)
× (λ− ζhAm2)

−1 e(tj−tm)Am2 dλ.

With the help of the resolvent bound (2.1), the Hölder estimate (2.2) for A, and (2.4)
it thus follows∥∥∥(eζ̃hCj eζhBj − ehAm2

)
e(tj−tm)Am2

∥∥∥
X←X

≤ Mhϑ, j = m,∥∥∥(eζ̃hCj eζhBj − ehAm2

)
e(tj−tm)Am2

∥∥∥
X←X

≤ Mh(tj − tm)−1+ϑ, j > m.

Consequently, a further application of (2.4) together with a Gronwall-type inequality
with a weakly singular kernel (see also [4, 26]) yields the desired stability bound.
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5. Convergence. In this section, we analyze the convergence behavior of the
considered commutator-free exponential integrator for parabolic problems (1.1). As
a first step, we next derive a useful relation for the defect of (3.1) by means of a
suitable linearization of the differential equation and an application of the variation-
of-constants formula. Similar techniques have been used in the study of exponential
splitting methods; see [1, 18, 28] and references therein. The following considerations
also explain the definition of the numerical method.

5.1. Expansion of the defect. Replacing in (3.1) the numerical by the exact
solution values defines the defect of the method

u(tn+1) = eζ̃hCn eζhBn u(tn) + dn+1, n ≥ 0.(5.1)

Our basic approach is to consider the initial value problem (1.1) on the subinter-
val [tn, tn+1] and to derive an analogous relation to (3.1a) for the exact solution
values. For that purpose, we set

Gn(t) =
(
A(t) −Bn

)
u(t), Hn(t) =

(
A(t) − Cn

)
u(t).(5.2)

On the one hand, rewriting the right-hand side of the differential equation in (1.1)
as u′(t) = Bnu(t) + Gn(t) and applying the variation-of-constants formula (see [22])
yields the following relation for the solution value at time tn + ζh:

u(tn + ζh) = eζhBn u(tn) +

∫ ζh

0

e(ζh−τ)Bn Gn(tn + τ) dτ.

On the other hand, by linearizing (1.1) around Cn and inserting the above represen-
tation for u(tn + ζh), we further obtain

u(tn+1) = eζ̃hCn eζhBn u(tn) + eζ̃hCn

∫ ζh

0

e(ζh−τ)Bn Gn(tn + τ) dτ

+

∫ ζ̃h

0

e(ζ̃h−τ)Cn Hn(tn + ζh + τ) dτ.

Consequently, the defect of the numerical method (3.1) equals

dn+1 = eζ̃hCn

∫ ζh

0

e(ζh−τ)Bn Gn(tn + τ) dτ +

∫ ζ̃h

0

e(ζ̃h−τ)Cn Hn(tn + ζh + τ) dτ.

(5.3)

In order to derive a suitable expansion of dn+1, it is useful to introduce some additional
notation.

The time derivatives of the linear operator A and the exact solution u of (1.1) at
time tn are denoted by

A(i)
n = A(i)(tn), i ≥ 0, û(j)

n = u(j)(tn), j ≥ 0.(5.4a)

For the coefficients of the numerical scheme, we define

μi = αci1 + βci2, νi = γci1 + δci2, i = 1, 2, 3;(5.4b)
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see (3.1). We note that for a sufficiently differentiable function f : [tn, tn+1] → X a
Taylor series expansion yields

f(tn + τ) =

m∑
i=0

τ i

i!
f (i)
n + R

(
τm+1, f (m+1)

)
, 0 ≤ τ ≤ h,

R
(
τm+1, f (m+1)

)
=

1

m!
τm+1

∫ 1

0

(1 − σ)mf (m+1)(tn + στ) dσ,

(5.5)

where f
(i)
n = f (i)(tn). Thus, provided that the quantity∥∥f (m+1)

∥∥
X,∞ = max

tn≤t≤tn+1

∥∥f (m+1)(t)
∥∥
X

is well defined, the remainder fulfills∥∥R(
τm+1, f (m+1)

)∥∥
X

≤ Mhm+1
∥∥f (m+1)

∥∥
X,∞, 0 ≤ τ ≤ h,

with some constant M > 0. Terms that satisfy an estimate of this form are hence-
forth denoted by R

(
hm+1, f (m+1)

)
. In particular, the abbrevitation R

(
hk, A(i) u(j)

)
signifies that the bound∥∥R

(
hk, A(i) u(j)

)∥∥
X

≤ Mhk max
tn≤s,t≤tn+1

∥∥A(i)(s)u(j)(t)
∥∥
X,∞

holds true.
Provided that the involved derivatives of A and u are well defined, the following

representation is valid for the defect dn+1 given by (5.1). We recall formula (2.5a) for
the linear operator ϕm.

Lemma 1. The numerical solution defect of (3.1) fulfills the relation

dn+1 =
∑

(i,j)∈J

hi+j+1 Φij A
(i)
n û(j)

n + R
(
h5, A(4)u

)
+ R

(
h5, A′′′u′) + R

(
h5, A′′u′′) + R

(
h5, A′u′′′),

where Φij = Φij(hBn, hCn) is defined through

Φij =
1

i!j!

{
ζj+1eζ̃hCn

(
(i + j)! ζiϕi+j+1(ζhBn) − j!μiϕj+1(ζhBn)

)

+

i+j∑
	=j+1

�!
(
i+j
	

)
ζi+j−	ζ̃	+1ϕ	+1(ζ̃hCn)

+

j∑
	=0

�! ζj−	ζ̃	+1
((

i+j
	

)
ζi − νi

(
j
	

))
ϕ	+1(ζ̃hCn)

}

and J =
{
(1, 0), (2, 0), (1, 1), (3, 0), (2, 1), (1, 2)

}
.

Proof. We first derive a useful relation for the maps Gn and Hn defined in (5.2).
With the help of (5.5), by combining the expansions

A(tn + τ) −Bn =

3∑
i=0

1

i!

(
τ i − μih

i
)
A(i)

n + R
(
h4, A(4)

)
,

u(tn + τ) =

2∑
j=0

1

j!
τ j û(j)

n + R
(
τ3, u(3)

)
,
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we receive the following representation:

Gn(tn + τ) =
∑

(i,j)∈J

1

i!j!

(
τ i − μih

i
)
τ jA(i)

n û(j)
n + R

(
h4

)
,

R
(
h4

)
= R

(
h4, A(4)u

)
+ R

(
h4, A′′′u′) + R

(
h4, A′′u′′) + R

(
h4, A′u′′′);

(5.6a)

see also (3.1b)–(3.1c) and (5.4). Similarly, it follows

Hn(tn + ζh + τ) =
∑

(i,j)∈J

1

i!j!

(
(ζh + τ)i − νih

i
)
(ζh + τ)jA(i)

n û(j)
n + R

(
h4

)
.(5.6b)

We next insert the above expansions (5.6) into (5.3) and express the resulting integrals
by means of (2.5a). Altogether, this yields the given result.

In the situation of Section 2, a reasonable smoothness assumption on (1.1) is
that the linear operator A and the exact solution u are sufficiently differentiable with
respect to the variable t. Precisely, we suppose A(4)(t) and u(4)(t) to be bounded in
the underlying Banach space X for all 0 ≤ t ≤ T . The following remark states that
then the expansion of Lemma 1 is well-defined. However, unless the exact solution
satisfies additional (unnatural) requirements such as A′(t)u(t) ∈ D for 0 ≤ t ≤ T , in
general, it is not possible to further expand the defect.

Remark 2. Provided that u′(t) ∈ X it follows from the differential equation
in (1.1) that A(t)u(t) ∈ X and therefore u(t) ∈ D for 0 ≤ t ≤ T . Differentiating (1.1)
with respect to the variable t implies A(t)u′(t) = u′′(t) − A′(t)u(t) ∈ X, and, as a
consequence, u′(t) ∈ D for any 0 ≤ t ≤ T . Similarly, it follows u(j−1)(t) ∈ D if
u(j)(t) ∈ X for 0 ≤ t ≤ T and j = 3, 4. Thus, under the regularity requirements
A ∈ C 4

(
[0, T ], L(D,X)

)
and u ∈ C 4

(
[0, T ], X

)
, the representation of the defect given

in Lemma 1 is well defined.

5.2. Error estimate. With the help of the stability estimate and the expansion
of the defect given in sections 4 and 5.1, we are able to prove the following convergence
result.

Theorem 2 (convergence). Assume that the requirements of Hypothesis 1 are
fulfilled and that further A ∈ C 4

(
[0, T ], L(D,X)

)
and u ∈ C 4

(
[0, T ], X

)
. Then,

provided that A(i)(t)u(j)(t) belongs to the intermediate space Xκ with 0 ≤ κ < 1
for 0 ≤ t ≤ T and (i, j) ∈

{
(1, 0), (2, 0), (1, 1)

}
, the fourth-order commutator-free

exponential integrator (1.2) satisfies the error estimate

‖un − u(tn)‖X ≤ C
(∥∥u0 − u(0)

∥∥
X

+ h2+κ
(
1 + |log h|

))
, 0 ≤ tn ≤ T,

with some constant C > 0 independent of n and h.
Proof. In order to obtain a suitable relation for the global error en = un − u(tn),

we first resolve the recurrence formula (3.1a) for the numerical approximation

un =

n−1∏
i=0

eζ̃hCi eζhBi u0, n ≥ 0.

Furthermore, by using (5.1), we receive en = e
(1)
n + e

(2)
n with

e(1)
n =

n−1∏
i=0

eζ̃hCi eζhBi
(
u0 − u(0)

)
, e(2)

n = −
n−1∑
j=0

n−1∏
i=j+1

eζ̃hCi eζhBi dj+1.(5.7)
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We next estimate the terms in (5.7) with respect to the norm of the underlying
Banach space X. An application of Theorem 1 shows that the first term is bounded
by a constant times the error of the initial value

∥∥e(1)
n

∥∥
X

≤
∥∥∥∥∥
n−1∏
i=0

eζ̃hCi eζhBi

∥∥∥∥∥
X←X

‖u0 − u(0)‖X ≤ C‖u0 − u(0)‖X .

For estimating the second term e
(2)
n , we employ the representation of the defect given

in Lemma 1. Making use of the fact that the sums involving the remainder and the
terms where i + j ≥ 3 are bounded by constant times h3, we receive

∥∥e(2)
n

∥∥
X

≤ h2
n−1∑
j=0

∥∥∥∥∥∥
n−1∏

i=j+1

eζ̃hCi eζhBi Φ10(hBj , hCj)

∥∥∥∥∥∥
X←Xκ

∥∥A′
j ûj

∥∥
Xκ

+ h3
n−1∑
j=0

∥∥∥∥∥∥
n−1∏

i=j+1

eζ̃hCi eζhBi Φ20(hBj , hCj)

∥∥∥∥∥∥
X←Xκ

∥∥A′′
j ûj

∥∥
Xκ

(5.8)

+ h3
n−1∑
j=0

∥∥∥∥∥∥
n−1∏

i=j+1

eζ̃hCi eζhBi Φ11(hBj , hCj)

∥∥∥∥∥∥
X←Xκ

∥∥A′
j û

′
j

∥∥
Xκ

+ Ch3.

We note that the coefficients of the fourth-order scheme (1.2) satisfy the conditions

Φ20(0, 0) = 1
2

{
ζ
(

1
3 ζ

2 − μ2

)
+ ζ̃

(
1
3 ζ̃

2 + ζζ̃ + ζ2 − ν2

)}
= 0,

Φ11(0, 0) = ζ2
(

1
3 ζ −

1
2 μ1

)
+ ζ̃

(
1
3 ζ̃

2 + 1
2 ζ̃(2ζ − ν1) + ζ(ζ − ν1)

)
= 0.

(5.9a)

Therefore, similar arguments as in the proof of Theorem 1 show the refined bounds∥∥∥∥∥∥
n−1∏

i=j+1

eζ̃hCi eζhBi Φ20(hBj , hCj)

∥∥∥∥∥∥
X←Xκ

≤ Mh(tn − tj)
−1+κ,

∥∥∥∥∥∥
n−1∏

i=j+1

eζ̃hCi eζhBi Φ11(hBj , hCj)

∥∥∥∥∥∥
X←Xκ

≤ Mh(tn − tj)
−1+κ;

see also (2.4) and (2.5c). In relation (5.8), it remains to estimate the sum involv-
ing Φ10. For that purpose, we apply (2.5b) together with suitable Taylor expansions
of Bj and Cj . Moreover, the coefficients of (1.2) fulfill

Φ10(0, 0) = ζ
(

1
2 ζ − μ1

)
+ 1

2 ζ̃
2 + ζ̃(ζ − ν1) = 0,

Ψ10(0, 0) = ζ2
(

1
6 ζ −

1
2 μ1

)
+ ζ̃

(
1
6 ζ̃

2 + 1
2 ζ̃(ζ − ν1) + ζ

(
1
2 ζ − μ1

))
= 0.

(5.9b)

As a consequence, we finally obtain the refined estimate

∥∥∥∥∥∥
n−1∏

i=j+1

eζ̃hCi eζhBi Φ10(hBj , hCj)

∥∥∥∥∥∥
X←Xκ

≤ Mh1+κ
(
1 + |log h| + (tn+1 − tm)−1

)
.
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Altogether, this implies

∥∥e(2)
n

∥∥
X

≤ Ch3+κ
n−1∑
j=0

(
1 + |log h| + (tn − tj)

−1
)

+ Ch4
n−1∑
j=0

(tn − tj)
−1+κ + Ch3 ≤ Ch2+κ

(
1 + |log h|

)
,

which proves the given error estimate.

Remark 3. Going over the proof of Theorem 2 shows that the essential conditions
for a fractional convergence order of 2 + κ are (5.9). We note that the conditions
for a classical convergence order 3 are equivalent to the relations in (5.9). However,
it is not possible to construct a commutator-free exponential integrator of classical
order 3 that is based on the evaluation of one exponential only, that is, the validity
of relation (5.9) implies 0 < ζ < 1 in (3.1).

6. Numerical example. In this section, we illustrate the error estimate of The-
orem 2 by a numerical example for a parabolic initial boundary value problem subject
to a homogeneous Dirichlet boundary condition. We start with a brief discussion of
the considered time integration schemes. For notational simplicity, we give only the
first step and denote Ai = A(cih).

Method 1. For parabolic problems (1.1), it follows from the error estimate given
in our previous work [11] that the exponential midpoint rule

u1 = ehA1 u0, c1 = 1
2 ,

is convergent of order 2 with respect to the norm of the underlying Banach space.

Method 2. The commutator-free exponential integration scheme

u1 = e(1−ζ)h(a1A1+(1−a1)A2) eζhA1 u0,

ζ =
√

3
3 , a1 = 1

4 −
√

3
4 , ci = 1

2 ∓
√

3
6 , i = 1, 2,

has a classical convergence order 3.

Method 3. The numerical method

u1 = eh(a2A1+a1A2) eh(a1A1+a2A2) u0, ai = 1
4 ±

√
3

6 , ci = 1
2 ∓

√
3

6 , i = 1, 2,

is the unique scheme of the form (3.1) that satisfies the conditions for a classical
convergence order 4; see also (1.2).

In the numerical example, as an illustration, the fourth-order commutator-free
exponential integrator given before is compared with a fourth-order interpolatory
Magnus integrator. To explain the stability and error behavior of this method for
parabolic problems is beyond the purpose of the present work.

Method 4. The fourth-order interpolatory Magnus integrator

u1 = eha1(A1+A2)+h2a2[A2,A1] u0, a1 = 1
2 , a2 =

√
3

12 ,

requires the evaluation of the linear operator
[
A2, A1

]
= A2A1 −A1A2.
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Table 6.1

Numerical temporal convergence orders in a discrete L1-norm for spatial discretizations of grid
length Δx = (M + 1)−1.

Stepsize h 1/2 1/4 1/8 1/16 1/32

Method 1 (M = 50) 2.0076 1.9632 1.9597 1.9699 1.9822
Method 1 (M = 100) 2.0075 1.9631 1.9595 1.9696 1.9818

Method 2 (M = 50) 1.0924 1.9634 2.2295 2.3162 2.4248
Method 2 (M = 100) 1.0949 1.9604 2.2267 2.3153 2.4181

Method 3 (M = 50) 2.2597 2.1983 2.3386 2.4337 2.4999
Method 3 (M = 100) 2.2591 2.1960 2.3348 2.4227 2.4782

Method 4 (M = 50) 3.3250 3.5115 3.3419 3.0490 2.8486
Method 4 (M = 100) 3.0426 3.4011 3.4838 3.2384 2.9488

Table 6.2

Numerical temporal convergence orders in a discrete L2-norm for spatial discretizations of grid
length Δx = (M + 1)−1.

Stepsize h 1/2 1/4 1/8 1/16 1/32

Method 1 (M = 50) 2.0120 1.9740 1.9723 1.9786 1.9879
Method 1 (M = 100) 2.0120 1.9739 1.9722 1.9785 1.9878

Method 2 (M = 50) 1.1979 1.9223 2.0992 2.1336 2.1732
Method 2 (M = 100) 1.1985 1.9208 2.0977 2.1303 2.1666

Method 3 (M = 50) 2.0197 2.0409 2.1271 2.1917 2.2331
Method 3 (M = 100) 2.0194 2.0397 2.1244 2.1859 2.2210

Method 4 (M = 50) 3.3204 3.5217 2.9654 2.4024 2.3609
Method 4 (M = 100) 3.0341 3.4204 3.3656 2.6010 2.3197

We consider a one-dimensional initial boundary value problem for a real-valued
function U : [0, 1] × [0, T ] → R : (x, t) �→ U(x, t) comprising the partial differential
equation

∂tU(x, t) = A (x, t)U(x, t), 0 < x < 1, 0 < t ≤ T,(6.1a)

subject to a homogeneous Dirichlet boundary condition and an initial condition

U(0, t) = 0 = U(1, t), 0 ≤ t ≤ T, U(x, 0) = U0(x), 0 ≤ x ≤ 1.(6.1b)

The differential equation involves a second-order differential operator

A (x, t) = α(x, t) ∂2
x + β(x, t) ∂x + γ(x, t)(6.1c)

which we assume to satisfy the condition of strong ellipticity. We further suppose
that the space and time-dependent coefficients α, β, and γ fulfill suitable regularity
and boundedness requirements. For v ∈ C ∞

0 (0, 1) we define u(t) and A(t) through(
u(t)

)
(x) = U(x, t) and

(
A(t)v

)
(x) = A (x, t)v(x). Then, problem (6.1) can be cast

into the abstract framework of section 2 for

X = Lp(0, 1), D = W p,2(0, 1) ∩W p,1
0 (0, 1), 1 < p < ∞;

see [11] and references therein. In view of the numerical experiment, we choose

α(x, t) = ex−t, β(x, t) = xt, γ(x, t) = x2
(
1 + et

)
.

The admissible values of κ in Theorem 2 are 0 ≤ κ < (2p)−1. Thus, the expected
fractional convergence order in X = Lp(0, 1) is 2 + κ, where κ < (2p)−1.
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Table 6.3

Numerical temporal convergence orders in a discrete L∞-norm for spatial discretizations of
grid length Δx = (M + 1)−1.

Stepsize h 1/2 1/4 1/8 1/16 1/32

Method 1 (M = 50) 2.0250 2.0065 2.0208 2.0226 2.0149
Method 1 (M = 100) 2.0250 2.0063 2.0207 2.0222 2.0129

Method 2 (M = 50) 1.2328 1.7318 1.8169 1.8604 1.9092
Method 2 (M = 100) 1.2341 1.7313 1.8135 1.8559 1.9072

Method 3 (M = 50) 1.7384 1.8369 1.9113 1.9649 1.9851
Method 3 (M = 100) 1.7391 1.8347 1.9103 1.9604 1.9736

Method 4 (M = 50) 3.3042 3.0169 1.9200 2.0864 2.1880
Method 4 (M = 100) 3.0257 3.4434 2.0132 1.9839 2.0752

In the numerical experiment, we discretize the problem in space by symmetric
finite differences of grid length Δx = (M + 1)−1. In time, we apply the exponential
integrators given above with stepsize h = 2−i for 1 ≤ i ≤ 5 and integrate the problem
up to time T = 1. A reference solution is determined for a temporal stepsize h = 2−10.
The numerical temporal order of convergence with respect to a discrete Lp-norm is
determined in a standard way from the numerical solution values. The obtained num-
bers for p = 2 and the limiting cases p = 1 and p = ∞ are displayed in Tables 6.1,
6.2, and 6.3. The convergence order 2 for the exponential midpoint rule (Method 1) is
explained by a convergence result proved in [11]. For the commutator-free exponential
integrators of classical order 3 (Method 2) and classical order 4 (Method 3), respec-
tively, the values of approximately 2 + (2p)−1 are in accordance with the convergence
orders predicted by Theorem 2.

7. Conclusions. In the present work, we studied the convergence properties of
a commutator-free exponential integrator that relies on the composition of two ex-
ponentials for parabolic initial value problems of the form (1.1). In particular, we
focused on the fourth-order scheme (1.2), which is based on the Gaussian nodes. We
showed that the exponential integration scheme remains stable for arbitrarily large
stepsizes. But, it is seen from the theoretical investigations and as well in a numer-
ical experiment that a substantial order reduction occurs, in general. For instance,
for one-dimensional parabolic initial-boundary value problems under a homogeneous
Dirichlet boundary condition a fractional convergence order of at most 2+(2p)−1 can
be expected in the norm of the function space Lp. The order reduction is explained
by the fact that even if the exact solution of the initial boundary value problem be-
longs to the domain of the differential operator and further is temporally smooth, it
in general does not fulfill additional boundary conditions, that is, combinations of the
form A(s)A(t)u(t) are not well defined for all 0 ≤ s, t ≤ T .

For that reason, concerning the derivation of high-order exponential integrators
for nonautonomous parabolic problems, it seems more promising to employ a suitable
linearization and to base the numerical schemes on explicit exponential methods of
Runge–Kutta or multistep type. Also, the error analysis for nonautonomous parabolic
equations is of theoretical value as it gives insight into how to construct and study
numerical methods for quasi-linear equations which are of particular interest in view
of practical applications. For example, quasi-linear parabolic problems are used in
the modeling of diffusion processes with state-dependent diffusitivity and arise in the
study of fluids in porous media, see [12]. We intend to investigate this approach in a
future work.
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Abstract. Robust quasi-relative Galerkin discretization error estimates are derived for the
eigenvalue problem associated to a nonnegative compact operator K acting in a Hilbert space. Trace
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1. Introduction. We consider a bounded domain D ⊂ R
d and a symmetric

kernel K ∈ L2(D ×D) defining a symmetric, nonnegative compact integral operator

(1.1) K : L2(D) → L2(D), (Ku)(x) =

∫
D

K(x, x′)u(x′) dx′ λ-a.e. x ∈ D,

and for all u ∈ L2(D), where λ denotes here the Lebesgue measure. Such operators
arise frequently in statistics and the theory of random fields as covariance operators
(a typical example is given by the Gaussian kernel K(x, x′) = exp(−|x−x′|2); see [11]
for further examples) and the computation of their spectral decomposition (eigenele-
ments) is relevant for many applications, of which we mention here only the random
field representation via the Karhunen–Loève expansion (see, e.g., [8]). This in turn
has an important impact on the accuracy of all practical algorithms based on the
Karhunen–Loève expansion of a random field, like, e.g., solving PDEs with stochastic
data via polynomial chaos and stochastic Galerkin method. See [4] and the references
therein for details and further examples.

1.1. Problem formulation. The eigenvalue computation for the integral oper-
ator K given by (1.1) using the Galerkin method applied with a finite element space
family S := (S�)�∈H ⊂ L2(D) (� ∈ H stands here and in the following for the dis-
cretization parameter) consists in solving the discrete variational problem of finding
(λ�,m, φ�,m)m∈N+ ⊂ R × S� such that ‖φ�,m‖L2(D) = 1 ∀m ∈ N+ and

(1.2)

∫
D

∫
D

K(x, x′)φ�,m(x′)ψ(x) dx′dx = λ�,m

∫
D

φ�,m(x)ψ(x) dx ∀ψ ∈ S�.

Equation (1.2) shows that (λ�,m, φ�,m)m∈N+ is nothing but the eigenvalue sequence
of the nonnegative compact operator K� := P�KP� in L2(D), where P� denotes the
L2(D) orthogonal projection onto S�.
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The discretization error analysis of the eigenvalue problem (1.2) in the presence
of a Galerkin scheme follows in general from abstract results on compact operators in
Hilbert spaces. (See, e.g., [7], [3], [2], [5], or [9] for similar results in Banach spaces.)
Denoting by (λm, φm)m∈N+/(λ�,m, φ�,m)m∈N+ the exact/discrete eigenelements of K,
the uniform error estimates obtained in an abstract setting in [12], [7] apply

(1.3) 0 ≤ λm − λ�,m ≤ ‖(I − P�)K(I − P�)‖B(L2(D)) ∀m ∈ N+,∀� ∈ H.

On the other hand, due to the positivity of K, it trivially holds

(1.4) 0 ≤ λm − λ�,m ≤ λm ∀m ∈ N+,∀� ∈ H.

While (1.3) describes the exact error asymptotics w.r.t. �, (1.4) retains the correct
scaling with λm. In fact, (1.3) and (1.4) are to some extent (but not fully) generalized
by the following exact error representation formula (see [12], [3])

(1.5) 0 ≤ λm − λ�,m = c�,m‖(I − P�)EK
{λm}φ�,m‖2

L2(D)λm ∀m ∈ N+,∀� ∈ H,

where EK
A denotes the spectral projector of K onto the Borel set A ⊂ R and

∀m ∈ N+ c�,m → 1 as S� ↗ L2(D),

that is, as the finite element space S� gets refined.
However, (1.5) has a rather strong asymptotic character: for a fixed m ∈ N+,

(1.5) becomes sharper than (1.4) and (1.3) only for fine enough finite element spaces
depending on m (� ∈ Hm ⊂ H) and in fact on the size of the spectrum gap around
λm. The estimated constant c�,m scales unfavorably with m (for rough finite element
spaces), as the inverse of the spectrum gap size around λm. Consequently, the smaller
the gap, the larger the estimated preasymptotic domain Hm (that is, the set of those
� ∈ H where (1.3), (1.4) are sharper than (1.5)).

1.2. Main results. The purpose of this work is to provide robust eigenvalue con-
vergence rates of the type (1.5) for the particular case under consideration, that of an
integral operator with smooth kernel, if standard finite element spaces corresponding
to the h version of FEM are employed. The main result reads as follows.

Theorem 1.1. Let K be the integral operator (1.1) with (piecewise, in the sense
of Definition 3.1) smooth kernel K and let T = (Th)h>0 be a regular triangulation of
D with meshwidth h. Setting � := h and defining, for p ∈ N+, S� to be the space of
discontinuous piecewise polynomials of degree p− 1 on Th, we have that for any s > 0
there exists cK,T ,p,s > 0 such that

(1.6) 0 ≤ λm − λ�,m ≤ cK,T ,p,s(h
2pλ1−s

m + h4pλ−2s
m ) ∀m ∈ N+,∀h > 0

and

(1.7) 0 ≤ λm − λ�,m ≤ cK,T ,p,sh
2pλ1/2−s

m ∀m ∈ N+,∀h > 0.

Note that (1.7) follows by interpolation with logarithmic weight 1/2 between (1.4)
and the second term in the upper bound (1.6). Comparing (1.7) to (1.5), we see that

(1.7) retains the correct asymptotic behaviour w.r.t. � and trades a factor λ
1/2
m for

robustness in m ∈ N+.
The proof of Theorem 1.1 is based on the following abstract error estimate we

prove for a symmetric nonnegative compact operator K acting in a separable Hilbert
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space (H, 〈·, ·〉H). Concerning notations, B(H) denotes throughout this work the space
of bounded linear operators acting in the separable Hilbert space (H, 〈, 〉H), and we
occasionally use traditional subscripts (e.g., B∞, Bp, Bsym) for spaces of operators with
additional properties (compactness, compactness and �p summability of the eigenvalue
sequence for p > 0, symmetry). Further, generic constants are denoted by c and all
the variables on which they depend are included as subscripts.

Proposition 1.2. Let K ∈ B(H) be a nonnegative compact operator with
eigenelements (λm, φm)m∈N+

and let S := (S�)�∈H ⊂ H be a finite element space
family. Then the following estimate holds:

(1.8) 0 ≤ λm − λ�,m ≤ cmΨ(m, �)2λm + cK,mΨ(m, �)4 ∀m ∈ N+,∀� ∈ H,

where

Φ(m, �) := ‖(I − P�)φm‖H ,

Ψ(m, �) := max
1≤j≤m

Φ(j, �),(1.9)

and

cm := m3/2 + m, cK,m := m

m∑
j=1

λj .

Here (λ�,m)m∈N+ are the eigenvalues of K� := P�KP�.
Remark 1.3. In general (i.e., for standard finite element spaces), one expects

the maximum in (1.9) to be attained for j = m, that is, Ψ(m, �) = Φ(m, �) for
all m ∈ N+. This is essentially due to the increasing difficulty of approximating
high frequency eigenfunctions, as m → ∞ (or, equivalently, to the larger size of the
estimated preasymptotic range Hm as compared to Hj , for j < m).

Remark 1.4. Note that the first term on the right-hand side of (1.8) corresponds
for any fixed m ∈ N+ to the correct asymptotics of (1.5) w.r.t. �, whereas the second
(corrector) gives a size estimate of the preasymptotic range,

Hm ⊆ {� ∈ H | Ψ(m, �)2 ≥ λm/cK,m}.

The application of Proposition 1.2 to the case of the integral operator (1.1) and in
the context of standard h FEM is then discussed in the second part of this work. Using
the Gagliardo–Nirenberg inequalities (see, e.g., [1]) to bound eigenfunction oscillations
and the standard h FEM error estimate, we prove the following upper bound on the
functional Ψ.

Theorem 1.5. Let K be the integral operator (1.1) with (piecewise, in the sense
of Definition 3.1) smooth kernel K and let T = (Th)h>0 be a regular triangulation of
D with meshwidth h. Setting � := h and defining S� to be the space of discontinuous
piecewise polynomials of degree p − 1 ∈ N on Th, we have that for any s > 0 there
exists cK,T ,p,s > 0 such that

(1.10) Φ(m, �) ≤ Ψ(m, �) ≤ cK,T ,p,sλ
−s
m hp ∀m ∈ N+,∀h > 0.

Further applications of Proposition 1.2 to the case of an operator K with a
weaker/stronger smoothing effect (corresponding to finite Sobolev/analytic regularity
of K), in the context of the h/p FEM, respectively, as well as similar estimates for
eigenspaces (known to be more sensitive to perturbations than the eigenvalues) will
be addressed in a forthcoming paper.
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The article proceeds as follows. We devote section 2 to a proof of Proposition 1.2
and to its consequences (e.g., robust eigenvalue convergence rates for arbitrarily small
positive powers of K). We then discuss, as an application, the case of an integral
operator in section 3. Proposition 1.2 takes a particularly simple form in this case,
due to explicit control of eigenvalue decay and eigenfunction oscillations. Eigenvalue
decay rates (in terms of the kernel regularity) are standard and briefly reviewed in
section 3.1. Eigenfunction oscillations for smooth kernels are investigated in section
3.2 and shown (see Theorem 1.5) to be significantly milder than the eigenvalue decay
rate.

2. Robust eigenvalue error estimates. Here we prove the main abstract
discretization error estimate (1.8) and then discuss its optimality plus some direct
consequences.

2.1. Abstract estimate. The main tool for the proof of Proposition 1.2, as
formulated in the introduction, will be the minimax principle.

Proof of Proposition 1.2. First we note that the lower bound 0 for λm − λ�,m

follows trivially from the minimax principle. To check the upper bound, we fix m ∈ N+

and � ∈ H and write, using again the minimax principle,

λ�,m = max
U⊂H

dim U≥m

min
φ∈U

‖φ‖H=1

〈K�φ, φ〉H

= max
U⊂H

dim U≥m

min
φ∈U

‖φ‖H=1

{〈Kφ, φ〉H + 〈(K� −K)φ, φ〉H} .(2.1)

The identity

P�KP� −K = −(I − P�)K −K(I − P�) + (I − P�)K(I − P�)

and the fact that K is nonnegative ensure then

(2.2) 〈(K� −K)φ, φ〉H ≥ −2|〈Kφ, (I − P�)φ〉H | ∀φ ∈ H.

Using (2.2) in (2.1) we obtain

λ�,m ≥ max
U⊂H

dim U≥m

min
φ∈U

‖φ‖H=1

{〈Kφ, φ〉H − 2|〈Kφ, (I − P�)φ〉H |}

≥ max
U⊂H

dim U≥m

min
φ∈U

‖φ‖H=1

{〈Kφ, φ〉H − 2‖(I − P�)Kφ‖H‖(I − P�)φ‖H} .(2.3)

At this stage we choose U to be the subspace of H spanned by the first m eigen-
functions φ1, φ2, . . . , φm of K. Expanding φ =

∑m
j=1 αjφj with αj ∈ C and using

definition (1.9) we obtain

‖(I − P�)Kφ‖H ≤
m∑
j=1

|αj |λjΦ(j, �) ≤ Ψ(m, �)

m∑
j=1

|αj |λj .(2.4)

On the other hand,

(2.5) ‖(I − P�)φ‖H ≤
m∑
j=1

|αj |Φ(j, �) ≤

⎛
⎝ m∑

j=1

Φ(j, �)2

⎞
⎠1/2

≤
√
mΨ(m, �).
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From (2.3), (2.4), (2.5) we obtain

(2.6) λ�,m ≥ min∑m
j=1 |αj |2=1

⎧⎨
⎩

m∑
j=1

λj |αj |2 − 2
√
mΨ(m, �)2

m∑
j=1

λj |αj |

⎫⎬
⎭ .

Setting ε :=
√
mΨ(m, �)2, we distinguish two cases, as follows.

If ε ≥ 1/
√
m, then it holds

λ�,m ≥ 0 ≥ λm −mΨ(m, �)2λm,

which is in fact a stronger estimate than (1.8).
Otherwise ε < 1/

√
m and we apply Lemma 2.1 below to obtain from (2.6)

λ�,m ≥ λm − (m3/2 + m)Ψ(m, �)2λm − cK,mΨ(m, �)4

with cK,m = m
∑m

j=1 λj , which concludes the proof.
Lemma 2.1. If λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 is a nonincreasing sequence of nonnega-

tive real numbers and ε ∈ [0, 1/
√
m[, then

(2.7) min∑m
j=1 t2j=1

m∑
j=1

λj(t
2
j − 2εtj) ≥ (1 − ε(m +

√
m))λm − ε2

m∑
j=1

λj .

Proof. Obviously, the minimum on the left-hand side (l.h.s.) of (2.7) is attained
at a location t̃ := (t̃1, t̃2, . . . , t̃m) on the unit m dimensional sphere, with nonnegative
coordinates. Using Lagrange multipliers for f, g : R

m → R given by

f(t) :=

m∑
j=1

λj(t
2
j − 2εtj) and g(t) :=

m∑
j=1

t2j − 1 ∀t = (t1, t2, . . . , tm) ∈ R
m,

we obtain the existence of a real λ �= 0 such that for the location t̃ of the minimum
of f restricted to g−1({0}) it holds ∇f − λ∇g = 0, that is,

(2.8) t̃j =
ελj

λj − λ
∀1 ≤ j ≤ m.

Imposing g(t̃) = 0 we obtain that λ solves the equation

(2.9)

m∑
j=1

λ2
j

(λj − λ)2
=

1

ε2
.

In order to estimate λ, we first remark that t̃j ≥ 0 ∀1 ≤ j ≤ m implies that λ is the
unique solution of (2.9) situated in the interval ] − ∞, λm[. Further, the condition
0 ≤ ε < 1/

√
m ensures the positivity of λ, so that λ ∈]0, λm[. As a consequence, the

mth term of the sum in (2.9) is the largest one, which then implies

λ2
m

(λm − λ)2
≤ 1

ε2
≤ mλ2

m

(λm − λ)2

or, equivalently,

(2.10) λm −
√
mελm ≤ λ ≤ λm − ελm.
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Computing f at t̃ given by (2.8) then yields

min
t∈Rm

g(t)=0

f(t) = f(t̃) = λ− ε2
∑

1≤j≤m

λ2
j

λj − λ

= λ− ε2

⎛
⎝mλ +

m∑
j=1

λj + λ2
m∑
j=1

1

λj − λ

⎞
⎠

(2.10)

≥ (1 − ε2m)λ− ε2
m∑
j=1

λj − εmλ2/λm

(2.10)

≥ (1 − εm)λ− ε2
m∑
j=1

λj

(2.10)

≥ (1 − ε(m +
√
m))λm − ε2

m∑
j=1

λj ,

which concludes the proof.
Some comments on the optimality of the estimate (1.8) in Proposition 1.2 are

now in order.
Remark 2.2. If λ1 = λ2 = · · · = λm, then the minimum in (2.7) can be explicitly

computed and equals (1 − 2
√
mε)λm. The lower bound in (2.7) is therefore in this

case suboptimal, due to the O(ε2) term. However, this is a rather special case, since
in general the eigenvalue sequence is not constant, unless K = 0.

We argue in the following that although sharper estimates for cm, cK,m in (1.8) can
be obtained, the upper bound (1.8) obtained through (2.3) is qualitatively optimal,
(and serves our purpose of proving Theorem 1.1), in the sense that the second term
on the right-hand side (r.h.s.) of (1.8) does not scale with (any positive power of) λm.
A careful analysis of the proof presented in this section reveals that its main weakness
lies in the use of the Cauchy–Schwarz inequality twice, to obtain (2.3) and (2.5).

Remark 2.3. Improving on (2.3) seems to be the key point in obtaining a qualita-
tively better eigenvalue error estimate, but this requires further favorable properties
(e.g., diagonal dominance) of the matrix

(〈φj , (I − P�)φj′〉H)1≤j,j′≤m.

Remark 2.4. Improving on (2.5) by using, e.g., ‖(I−P�)φ‖H ≤ Ψ(m, �)
∑m

j=1 |αj |
leads to a sharper eigenvalue error estimate via the (more difficult) minimization
problem

(2.11) λ�,m ≥ λ := min∑m
j=1 |αj |2=1

⎧⎨
⎩

m∑
j=1

λj |αj |2 − 2Ψ(m, �)2
m∑
j=1

λj |αj |
m∑
j=1

|αj |

⎫⎬
⎭ .

Choosing, for m ≥ 2, α2 = α3 = · · · = αm−1 = 0, we have

(2.12) λ ≤ λ̃ := min
t21+t2m=1

{
λ1(1 − 2ε)t21 + λm(1 − 2ε)t2m − 2ε(λ1 + λm)t1tm

}
with ε := Ψ(m, �)2.

From Lemma 2.5 below it follows that if λm < λ1 and 0 ≤ ε ≤ min{1/2, λ1} ≤√
2(λ1 − λm) (which both hold for m large enough depending on K), then λ̃ satisfies,

with some c ∈ [1/2, 1],

λ̃ = (1 − 2ε)λm − cε2 (λ1 + λm)2

(1 − 2ε)(λ1 − λm)
.
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We conclude that if (λj)1≤j≤m is not a constant sequence (and this is always the case
for the eigenvalue sequence of a compact operator if m is large enough), then the
minimization problem (2.11) leads to an estimate qualitatively similar to (1.8). (The
term containing Ψ(m, �)4 does not scale with λm but with a constant bounded away
from 0.)

Lemma 2.5. If 0 < β < α and 0 ≤ γ ≤
√

2(α− β), then

min
x2+y2=1

{αx2 + βy2 − 2γxy} = β − 2γ2

α− β +
√

(α− β)2 + 4γ2
(2.13)

∈
[
β − γ2

α− β
, β − 1

2

γ2

α− β

]
.(2.14)

Proof. Note first that (2.14) follows from (2.13) using the assumption on γ. It
remains to check (2.13). To this end, we note first that for the location (x̃, ỹ) of the
minimum in (2.13) and the Lagrange multiplier λ ∈ R it holds

(2.15)

{
(α− λ)x̃ = γỹ,
(β − λ)ỹ = γx̃,

from which we obtain (assuming also without loss of generality x̃, ỹ > 0) that λ ∈
]−∞, β] solves (α−λ)(β−λ) = γ2, that is, λ equals the r.h.s. of (2.13). The system
(2.15) has then the solution

x̃ =

(
β − λ

α + β − 2λ

)1/2

, ỹ =

(
α− λ

α + β − 2λ

)1/2

.

Upon inserting these values into the quadratic form (2.13) we obtain that the minimum
we look for equals λ, which concludes the proof.

Proposition 1.2 takes a particularly simple form if the operator K satisfies the
following conditions.

Assumption 2.6. K ∈ ∩p>0Bp(H) is nonnegative and for any s > 0 there exists
cK,S,s > 0 such that

(2.16) Φ(m, �) = ‖(I − P�)φm‖H ≤ cK,S,sλ
−s
m Υ(�) ∀m ∈ N+,∀� ∈ H,

where the functional Υ : H → R describes the approximation property of the finite
element space family S.

Keeping in mind the standard h FEM error estimate, we note that (2.16) can be
viewed as a combination of good K-eigenfunction approximability through the finite
elements in S and a mild eigenfunction oscillation condition. We have the next
theorem.

Theorem 2.7. If Assumption 2.6 is satisfied, then for any s > 0 there exists a
constant cK,S,s > 0 such that

(2.17) 0 ≤ λm − λ�,m ≤ cK,S,s(Υ(�)2λ1−s
m + Υ(�)4λ−2s

m ) ∀m ∈ N+,∀� ∈ H,

where (λm)m∈N+ and (λ�,m)m∈N+ are the eigenvalue sequences of K and P�KP�,
respectively.

Proof. Condition (2.16) ensures that

Ψ(m, �) ≤ cK,S,sΥ(�)λ−s
m ∀m ∈ N+,∀� ∈ H,∀s > 0,
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whereas K ∈ ∩p>0Bp(H) gives

cm = m3/2 + m ≤ cK,sλ
−s
m , cK,m = m

m∑
j=1

λj ≤ cK,sλ
−s
m ∀m ∈ N+,∀s > 0,

which concludes the proof via (1.8).
Corollary 2.8. If Assumption 2.6 is satisfied, then for any s > 0 there exists

a constant cK,S,s > 0 such that

(2.18) 0 ≤ λm − λ�,m ≤ cK,S,s(Υ(�)2λ1−s
m + Υ(�)4αλ1−α−2sα

m )

∀m ∈ N+,∀� ∈ H,∀α ∈ [0, 1], where (λm)m∈N+ and (λ�,m)m∈N+ are the eigenvalue
sequences of K and P�KP� respectively. In particular (α = 1/2)

(2.19) 0 ≤ λm − λ�,m ≤ cK,S,sΥ(�)2λ1/2−s
m ∀m ∈ N+,∀� ∈ H.

Proof. The desired estimate (2.18) follows immediately by interpolation with
logarithmic weight α between the second term in the upper bound (2.17) and the
trivial estimate 0 ≤ λm − λ�,m ≤ λm, via the inequality min{x, y + z} ≤ y + xαz1−α

∀x, y, z ≥ 0.
We note next that in contrast to (2.19), the trace discretization error retains the

correct scaling factor (λm and not λ
1/2
m ), in the following sense.

Theorem 2.9. If Assumption 2.6 is satisfied, then for any 0 < s < 1 there exists
a constant cK,S,s > 0 such that

(2.20) 0 ≤ Tr K − Tr P�KP� ≤ cK,S,sΥ(�)2
∑

m∈N+

λ1−s
m ∀� ∈ H.

Proof. The lower bound follows trivially from λ�,m ≤ λm ∀m ∈ N+.
Further, the identity

K − P�KP� = (I − P�)K + K(I − P�) − (I − P�)K(I − P�)

and the fact that K is nonnegative ensure

(2.21) 〈(K − P�KP�)φ, φ〉H ≤ 2|〈Kφ, (I − P�)φ〉H | ∀φ ∈ H.

Using (2.21) and Assumption 2.6 it follows

Tr K − Tr P�KP� =

∞∑
m=1

〈(K − P�KP�)φm, φm〉H ≤ 2

∞∑
m=1

|〈Kφm, (I − P�)φm〉H |

≤ 2

∞∑
m=1

λm‖(I − P�)φm‖2
H ≤ cK,S,sΥ(�)2

∞∑
m=1

λ1−s
m ,

and the proof is concluded.

2.2. Kδ spectrum approximation. For a given δ > 0, a simple argument
based on the Lipschitz continuity of

]0,∞[� x → xδ ∈]0,∞[



ROBUST EIGENVALUE COMPUTATION 873

shows that the computed eigenvalues of Kδ, namely, (λδ
�,m)m∈N+

, are good approxi-

mations of the exact eigenvalues (λδ
m)m∈N+ of Kδ.

Theorem 2.10. If Assumption 2.6 is satisfied, then for any 0 ≤ α < δ ≤ 1,

(2.22) 0 ≤
∞∑

m=1

(λδ
m − λδ

�,m) ≤ cK,S,α,δ max{Υ(�)2,Υ(�)4α} ∀� ∈ H.

Proof. From the Lipschitz condition

λδ
m − λδ

�,m ≤ λδ−1
m (λm − λ�,m)

and (2.17) we obtain that for any s > 0 there exists a constant cK,S,s > 0 such that

(2.23) 0 ≤ λδ
m − λδ

�,m ≤ cK,S,s(Υ(�)2λδ−s
m + Υ(�)4λδ−1−2s

m )

∀m ∈ N+,∀� ∈ H. Interpolation with logarithmic weight α ∈ [0, δ[ between the second
term in the r.h.s. of (2.23) and the trivial estimate λδ

m − λδ
�,m ≤ λδ

m yields

(2.24) 0 ≤ λδ
m − λδ

�,m ≤ cK,S,s(Υ(�)2λδ−s
m + Υ(�)4αλδ−(1+2s)α

m ).

Choosing s > 0 small enough to ensure (1 + 2s)α < δ and summing (2.24) over
m ∈ N+ we obtain (2.22).

3. Application to integral operators. We check the validity of Assumption
2.6 in the case of an integral operator K with piecewise smooth kernel K, if stan-
dard h FEM is used to construct the finite element space family S. We begin with a
review of eigenvalue decay rates in terms of the kernel regularity, which are immedi-
ately seen to ensure K ∈ ∩p>0Bp(H). We then show that (2.16) is a consequence of
standard h FEM error estimates and Gagliardo–Nirenberg inequalities ensuring mild
eigenfunction oscillations for K.

3.1. Eigenvalue decay. The results we present in this section are standard (see,
e.g., [6], [10]), following from the abstract theory of Weyl/approximation/entropy
numbers via approximation of K by discrete, finite rank (separable w.r.t. (x, x′))
kernels. Roughly speaking, the smoother the kernel the faster the eigenvalue decay,
with finite Sobolev regularity implying algebraic decay and analyticity giving rise to
quasi-exponential decay.

Remarkably, all these results hold for piecewise regular kernels on product sub-
domains of D, in the sense of Definition 3.1. Note that general piecewise regularity
allowing singularities on the diagonal set of D × D ensure in general only a slower
eigenvalue decay. (See, e.g., [6] and [4] for examples with known exact eigenelements.)

Definition 3.1. If D is a bounded domain in R
d and p, q ∈ [0,∞[, a measurable

function K : D×D → R is said to be piecewise Hp,q on D×D if there exists a finite
family D = (Dj)j∈J of subdomains of D such that

i. Dj ∩Dj′ = ∅ ∀j, j′ ∈ J with j �= j′,
ii. D \

⋃
j∈J Dj is a null set in R

d,

iii. D ⊂
⋃

j∈J Dj,
iv. K |Dj×Dj′∈ Hp,q(Dj ×Dj′) := Hp(Dj) ⊗Hq(Dj′) ∀j, j′ ∈ J .

We denote by Hp,q
D (D2) the space of piecewise Hp,q functions on D ×D in the sense

given above.
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Moreover, if there exists also a finite family G = (Gj)j∈J of open sets in R
d such

that
v. Dj ⊂ Gj ∀j ∈ J ,
vi. K |Dj×Dj′ has an Hp,q continuation to Gj ×Gj′ ∀j, j′ ∈ J ,

then we say that K is piecewise Hp,q on a covering of D × D and we denote by
Hp,q

D,G(D2) the corresponding space.
Similarly we introduce spaces of piecewise regular functions defined on D, which

we denote by Hp
D(D), Hp

D,G(D), etc.
For kernels with finite Sobolev regularity the next proposition holds.
Proposition 3.2. Let D ⊂ R

d be a bounded domain and K ∈ L2(D × D) be
a symmetric kernel defining a compact nonnegative integral operator K via (1.1). If
K ∈ Hp,0

D,G(D2) for some p ∈ [0,∞[, then there exists a constant cK > 0 such that

(3.1) 0 ≤ λm ≤ cKm−p/d ∀m ∈ N+.

Corollary 3.3. Let D ⊂ R
d be a bounded domain and K ∈ L2(D × D) be a

symmetric kernel defining a compact nonnegative integral operator K via (1.1). If K
is piecewise smooth (i.e., piecewise Hp,q

D,G(D2) ∀p, q ∈ [0,∞[) on a covering of D ×D
and (λm)m∈N+

denotes the eigenvalue sequence of K, then for any s > 0 there exists
a constant cK,s > 0 such that

(3.2) 0 ≤ λm ≤ cK,sm
−s ∀m ∈ N+

so that K ∈ ∩p>0Bp(L
2(D)).

Example 3.4. One is often interested in Gaussian kernels of the form

(3.3) K(x, x′) := σ2 exp(−|x− x′|2/(γ2Λ2)) ∀(x, x′) ∈ D ×D,

where σ, γ > 0 are real parameters (standard deviation, correlation length) and Λ is
the diameter of the domain D. K given by (3.3) has an entire continuation to C

d and
defines a nonnegative compact operator via (1.1).

Note that for piecewise analytic kernels the next proposition holds.
Proposition 3.5. Let K ∈ L2(D×D) be a symmetric kernel defining a compact

nonnegative integral operator via (1.1). If K ∈ AD,G(D2) (defined analogously to
Hp,q

D,G) and (λm)m∈N+
denotes the eigenvalue sequence of K, then there exist constants

c1,K , c2,K > 0 such that

(3.4) 0 ≤ λm ≤ c1,Ke−c2,Km1/d ∀m ∈ N+.

Since K given by (3.3) admits an analytic continuation to the whole complex
space C

d × C
d, the eigenvalue decay is in this case even faster than in (3.4).

Proposition 3.6. If K ∈ L2(D ×D) is given by (3.3), then for the eigenvalue
sequence (λm)m∈N+

of K defined by (1.1) it holds

(3.5) 0 ≤ λm ≤ cσ,γ,D
(1/γΛ)m

1/d

Γ(m1/d/2)
∀m ∈ N+.

3.2. Eigenfunction oscillations. We show next that the piecewise smoothness
assumption on the kernel allows also a good control of the eigenfunctions and their
derivatives in the L∞(D) norm. Roughly speaking, the eigenfunctions are shown to
be bounded from above, asymptotically as m → ∞, by any negative power of the
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corresponding eigenvalue. In other words, the eigenfunction oscillations are much
weaker than the eigenvalue decay rate.

First we note that piecewise regularity of eigenfunctions follows from that of the
kernel K.

Proposition 3.7. If K ∈ Hp,q
D,G(D2), then the eigenfunctions of K given by (1.1)

corresponding to nontrivial eigenvalues belong to Hp
D,G(D).

Proof. The conclusion follows at once from the eigenvalue equation

(3.6) φm(x) =
1

λm

∑
j′∈J

∫
Dj′

K(x, x′)φm(x′) dx′ ∀x ∈ Dj ,

which can be naturally extended to Gj by replacing K by its Hp,q continuation on
Gj ×Gj′ .

Remark 3.8. Similarly, if K ∈ Hp,q
D (D2), then the eigenfunctions of K corre-

sponding to nontrivial eigenvalues belong to Hp
D(D).

The following result due to Ehrling–Nirenberg–Gagliardo (see [1, Theorem 4.14])
is essential for our analysis.

Theorem 3.9. Let D ⊂ R
d be a bounded domain having the uniform cone

property and ε0 ∈ (0,∞), n ∈ N, p ∈ [1,∞). Then there exists cε0,n,p,D > 0 such that
for any ε ∈ (0, ε0], l ∈ {0, 1, . . . , n− 1} and u ∈ Wn,p(D),

(3.7) |u|l,p ≤ cε0,n,p,D

{
ε|u|n,p + ε−l/(n−l)|u|0,p

}
,

where

|u|pl,p :=

∫
D

∑
|α|=l

|∂αu(x)|p dx.

Proposition 3.10. For D ⊂ R
d a bounded domain and K piecewise smooth on

D×D such that the domains Dj in Definition 3.1 all have the uniform cone property,
we denote by (λm, φm)m∈N+

the eigenelements of the associated integral operator K
via (1.1), such that ‖φm‖L2(D) = 1 ∀m ∈ N+. Then for any s > 0 and any multiindex

α ∈ N
d there exists cK,s,α > 0 such that

(3.8) ‖∂αφm‖L∞(Dj) ≤ cK,s,α |λm|−s ∀m ∈ N+,∀j ∈ J .

Proof. We first note that the eigenvalue equation (3.6) implies (by differentiating
and applying the Cauchy–Schwarz inequality to estimate the resulting integrals) for
any α ∈ N

d the existence of a constant cK,α > 0 such that

(3.9) ‖∂αφm‖L∞(Dj) ≤ cK,α|λm|−1 ∀m ∈ N+,∀j ∈ J .

We apply now Theorem 3.9 on Dj with p = 2, ε0 := maxm∈N+ |λm| and choose in (3.7)
ε = λm, u = φm for an arbitrary m ∈ N+ (we assume w.l.o.g. λm �= 0). It follows
that for any n ∈ N there exists cε0,n,Dj > 0 such that for all l ∈ {0, 1, . . . , n− 1}

|φm|Dj ,l,2 ≤ cε0,n,Dj

{
λm|φm|Dj ,n,2 + λ−l/(n−l)

m |φm|Dj ,0,2

}
≤ cε0,n,Dj ,K

{
1 + λ−l/(n−l)

m

}
≤ cε0,n,Dj ,Kλ−l/(n−l)

m ,(3.10)

due to (3.9).



876 RADU ALEXANDRU TODOR

Now, for any s > 0 and α ∈ N
d we choose l = �d/2� + |α| and n > l such that

l/(n− l) < s. From (3.10) and the Sobolev embedding theorems we deduce then

‖∂αφm‖L∞(Dj) ≤ cα,Dj
‖φm‖Hl(Dj) ≤ cα,Dj

l∑
k=0

|φm|Dj ,k,2

≤ cε0,n,Dj ,K,α

l∑
k=0

λ−k/(n−k)
m

≤ cε0,n,Dj ,K,αλ
−l/(n−l)
m ≤ cε0,n,Dj ,K,αλ

−s
m

∀m ∈ N+, and the proof is concluded.
Remark 3.11. Under the regularity assumptions of Proposition 3.10 the estimate

(3.8) is optimal in the sense that for any α it fails to hold with s = 0. This can be
seen, e.g., on D :=]0, 1[ by taking K :=

∑
m≥1 λm φm ⊗ φm with

λm := e−m, φm(x) := mφ(m2x−m) ∀x ∈]0, 1[,∀m ∈ N+,

where φ ∈ C∞
0 (]0, 1[) satisfies ‖φ‖L2(]0,1[) = 1.

Remark 3.12. It can be shown that further assumptions, like stationarity of the
kernel, i.e., K(x, x′) = k(x − x′) for some k : R

d → R, lead to the uniform L∞

boundedness of the eigenfunctions (but not of their derivatives).
Remark 3.13. If K is not piecewise smooth in the sense of Definition 3.1 (for

instance, if the singularities of K lie on the diagonal set of D × D, as it is the case
for some usual stationary kernels like, e.g., K(x, x′) = k(x− x′) = exp(−|x− x′|1+δ)
with 0 ≤ δ < 1), then estimates of type (3.8) hold true only for s > ck > 0, where
the constant ck ∈]0, 1] depends on the Sobolev regularity of k in R

d. (See also [4] for
such examples with known exact eigenelements.)

3.3. h FEM. For the integral operator (1.1) with smooth kernel K we can check
now the validity of Assumption 2.6, if the standard h FEM is used to construct the
finite element space family S. For a fixed p ∈ N+ and with � := h ∈]0,∞] we define
S� = Sh := Sp

h to be the space of discontinuous piecewise polynomials of total degree
at most p− 1 on a regular mesh Th in D of width h and subordinate to D, i.e., to the
covering (Dj)j∈J . With this choice the next proposition holds.

Proposition 3.14. If K ∈ L2(D × D) is piecewise smooth on a covering of
D × D, defining a compact nonnegative integral operator K via (1.1) and p ∈ N+,
S� = Sp

h ∀� = h ∈]0,∞], then Assumption 2.6 holds with Υ(�) := hp.
Proof. The fast eigenvalue decay has been established in Corollary 3.3, so that

we only have to check (2.16). To this end, we note that the standard h FEM approx-
imation property holds for Sh,

(3.11) ‖φ− P�φ‖L2(D) ≤ cp,Dh
p|φ|p ∀h > 0, ∀φ ∈ Hp

D(D),

where

|φ|2p :=
∑
j∈J

∑
|α|=p

‖∂αφ‖2
L2(Dj)

∀φ ∈ Hp
D(D).

The conclusion follows then by applying (3.11) to φ := φm ∈ Hp
D(D) (in view of

Remark 3.8), and using Proposition 3.10 to estimate |φm|p in terms of a given s > 0
and λm.
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Fig. 1. Eigenvalue discretization error for Gaussian kernel K(x, x′) = exp(−|x − x′|2) on
two-dimensional L-shaped domain (top) and unit square (bottom).

Theorem 1.5 is now just a reformulation of Proposition 3.14, whereas Theorem
1.1 follows directly from the main abstract result, Theorem 2.7.

Remark 3.15. For the h FEM applied to the integral operator (1.1) with piecewise
smooth kernel, (2.22) becomes

0 ≤
∞∑

m=1

(λδ
m − λδ

h,m) ≤ cK,S,α,δh
pmin{2,4α} ∀h ∈ ]0, 1],∀α < δ.

3.4. Numerical tests. The results of the eigenvalues computation for the case
of a Gaussian kernel K(x, x′) = exp(−|x − x′|2) on an L-shaped domain and on
the unit square, respectively, are presented in Figure 1. In both cases we employ
piecewise constant elements on a regular mesh, at discretization levels 2, 3, 4, and
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5 (corresponding to 64, 256, 1024, and 4096 elements for the L-shaped and to 32,
128, 512, and 2048 elements for the unit square, respectively). We use the results
of an overkill computation on level 6 (with 16384 and 8192 elements, respectively)
as exact eigenvalues. In Figure 1 we plot the normalized (w.r.t. meshwidth h) dis-
cretization error (λm − λm,�)/h2 versus the corresponding eigenvalue λm for the first
50 eigenvalues (m = 1, 2, . . . , 50) in the case of the L-shaped domain and the first 30
eigenvalues for the unit square. Note that the separability of the Gaussian kernel on
the unit square ensures the existence of multiple eigenvalues. In both cases the slope
of the resulting curve appears to be close to 1, validating thus the theoretical result
(Theorem 1.1), which predicted a slope of at least 1/2. Moreover, Figure 1 and the
exact error representation formula (1.5) suggest the following question.

Open Question 3.16. Is it true that in the case of an analytic (or just smooth)
kernel K, the curve slopes in Figure 1 come arbitrarily close to 1? More precisely,
does the estimate stronger than (1.7),

(3.12) 0 ≤ λm − λ�,m ≤ cK,T ,p,sh
2pλ1−s

m ∀m ∈ N+,∀h > 0,∀s > 0,

hold under the assumptions of Theorem 1.1?

Acknowledgments. The author would like to thank Prof. Christoph Schwab
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Abstract. Convergent numerical schemes for degenerate elliptic partial differential equations
are constructed and implemented. Simple conditions are identified which ensure that nonlinear
finite difference schemes are monotone and nonexpansive in the maximum norm. Explicit schemes
endowed with an explicit CFL condition are built for time-dependent equations and are used to solve
stationary equations iteratively. Explicit and implicit formulations of monotonicity for first- and
second-order equations are unified. Bounds on orders of accuracy are established. An example of a
scheme which is stable, but nonmonotone and nonconvergent, is presented. Schemes for Hamilton–
Jacobi equations, obstacle problems, one-phase free boundary problems, and stochastic games are
built and computational results are presented.
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1. Introduction. We devise practical techniques for building convergent numer-
ical schemes for a class of nonlinear partial differential equations. This is the class of
degenerate elliptic (in the sense of Crandall, Ishii, and Lions [11]) partial differential
equations, for which unique viscosity solutions exist. The class includes Hamilton–
Jacobi equations, which are nonlinear first-order equations; elliptic equations which
may be degenerate; and fully nonlinear second-order equations. It also includes free
boundary problems and the equation for the value function from control and game
theory.

The approximation theory developed by Barles and Souganidis [5] provides the
following criteria for the convergence of approximation schemes: monotone, consistent,
and stable schemes converge to the unique viscosity solution of a degenerate elliptic
equation. Despite the clear requirements of the theory, building monotone schemes
remains a challenge for many important equations. The finite difference method
is the natural method for building monotone schemes, but conditions which ensure
monotonicity are different for first- and second-order equations, and for explicit and
implicit schemes.

For linear elliptic equations, Motzkin and Wasow [28] introduced the notion that
a scheme is of “positive type.” These linear schemes respect the discrete maximum
principle. This formulation of monotonicity was further studied in [7] and later gen-
eralized to nonlinear elliptic equations by Kuo and Trudinger [23, 24, 25, 26]. Related
notions for linear parabolic equations have been studied [1, 21, 35].
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For conservation laws, monotonicity1 is associated with entropy solutions. In
this setting, monotone schemes are contractions in �1 [13] and are at most first-order
accurate [18]. Higher-order accuracy is achieved by essentially nonoscillatory (ENO)
or weighted ENO (WENO) schemes [19], which are not monotone: they selectively
use high-order (nonmonotone) interpolation in smooth regions of the solution and
monotone schemes in nonsmooth regions.

For Hamilton–Jacobi equations, monotonicity is necessary for convergence. Early
numerical papers studied explicit schemes for time-dependent equations on uniform
grids [10, 33]. A number of methods have since been developed, which include fast
marching [32], fast sweeping [34], semi-Lagrangian [16], central [27], and ENO [31].

For certain second-order equations, which include fully nonlinear equations and
degenerate linear elliptic equations, monotonicity is necessary for convergence. An
early result of Motzkin and Wasow illustrated difficulties associated with monotone
schemes: even for linear elliptic equations, in general it is not possible to build mono-
tone schemes using a narrow stencil [28]. Very large stencil schemes for quasi-linear
equations were studied by Crandall and Lions [12]. Wide stencil schemes have been
used to solve certain degenerate second-order equations [29, 30].

We identify a class of nonlinear finite difference schemes which we call degenerate
elliptic. Degenerate elliptic schemes are monotone. They also enjoy a strong form of
stability: they are nonexpansive in the maximum norm. The class includes implicit
or explicit schemes for first- or second-order equations on structured or unstructured
grids.

Degenerate elliptic schemes are built in simple ways from building blocks consist-
ing of schemes for basic equations. They begin with an implicit scheme for the spatial
part of the equation. This scheme may then be extended to an explicit scheme for the
time-dependent equation, or equivalently, to an iterative method for the stationary
equation. The explicit scheme is endowed with a nonlinear CFL condition which is
easily calculated.

A guiding principle of this work is that, in order to build effective numerical
schemes, it is essential to have a thorough understanding of the underlying equa-
tions. In this manner, schemes can be built that inherit desirable properties from the
equations.

Theorem 1. The solution operator of a degenerate elliptic partial differential
equation is monotone and nonexpansive in the maximum norm, provided mild analytic
conditions hold so that it is well defined.

Theorem 2. The solution operator of a degenerate elliptic finite difference
scheme is monotone and nonexpansive in the maximum norm, provided mild ana-
lytic conditions hold so that it is well defined.

Theorem 3. A scheme is monotone and nonexpansive in the �∞ norm if and
only if it is degenerate elliptic.

Remark 1. Monotonicity by itself does not ensure stability. For example, un+1
j =

2un
j is unstable; examples with worse growth rates are easily constructed.

While degenerate ellipticity is stronger than monotonicity for abstract schemes,
the condition occurs naturally for schemes built using the finite difference method;
see section 2.3. For these schemes, the two conditions are equivalent.

Remark 2. Theorem 3 recalls a theorem from [14], which states that monotonic-
ity is equivalent to nonexpansivity in �∞, for mappings which are invariant under

1Not to be confused with “monotonicity preserving,” which means that increasing functions on
the line remain increasing.
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translation by a constant.
Theorem 4. The accuracy of a monotone finite difference scheme is at most first

order for first-order equations and at most second order for second-order equations.
Remark 3. Useful numerical solutions can be obtained with first- or second-order

schemes. Despite the fact that singularities occur, the accuracy requirements are not
as high in this setting are they are for conservation laws.

Contents. Section 1.1 demonstrates the equivalence of the explicit and implicit
formulations of monotonicity. Section 1.2 contains basic examples to illustrate the
definitions. Section 1.3 contains an example which shows monotonicity is necessary
for convergence.

Section 2 is the bulk of the theory. Section 2.1 summarizes relevant aspects of
degenerate elliptic equations. Section 2.2 defines the class of degenerate elliptic equa-
tions, followed by section 2.3, which defines the class of degenerate elliptic schemes.
Section 2.4 provides the nonlinear CFL-type condition for explicit schemes. Sec-
tion 2.5 establishes properties of the solution operator. Section 2.6 contains proofs of
Theorems 1, 2, 3, and 4.

A technique is developed in section 3 to build schemes for complicated equations
using building blocks consisting of schemes for simpler equations. This technique is
used to build schemes for various equations, including Hamilton–Jacobi equations,
obstacle problems, one-phase free boundary problems, and stochastic games. In sec-
tion 4 computational results are presented.

1.1. Equivalent formulations of monotonicity. In its most general formula-
tion, monotonicity means that the comparison principle holds. This global property
was used in [5] to prove convergence of nondiscrete approximation schemes.

For the purpose of building schemes, it is useful to have an easily verified local
condition which guarantees monotonicity. The condition comes in two forms. The
explicit formulation, usually seen for time-dependent equations, is

(1) ui = Hi
(
u|j=N(i)

)
,

where N(i) is the list of neighbors of ui. For example, it appears as un+1
i = H(un

j−1, u
n
j ,

un
j+1) in the case of three-point explicit schemes [10]. The explicit formulation (1) is

monotone if Hi is a nondecreasing function of each variable. The implicit formulation,
usually seen for stationary elliptic equations, is

(2) F i
(
ui, u|j=N(i)

)
= 0.

For example, linear schemes
∑n

i=0 aiu(x + idx) are monotone (of “positive type”) if
a0 ≥ 0 and ai ≤ 0 for i �= 0 [28]. For nonlinear equations, schemes are monotone if F i

is nondecreasing in the first variable and nonincreasing in the remaining variables [24].
Remark 4. The two formulations are formally equivalent. To put the explicit

form into an implicit form is trivial. To go from the implicit form to the explicit
form, differentiate implicitly to obtain DuiF

idui +
∑

j=N(i) DujF
iduj = 0. Fixing all

but neighbor uk, we obtain dui/duk = −Duk
F i/DuiF

i ≥ 0. Use the implicit function
theorem to solve for ui as a nondecreasing function of the neighbors.

1.2. Illustration of the definitions. Consider the standard centered differ-
ence scheme for −uxx, (ui − ui−1 + ui − ui+1) /dx

2. The scheme is degenerate ellip-
tic, since, as in Definition 2, it is a nondecreasing function of the differences between
the reference variable and its neighbors, ui − ui−1 and ui − ui+1. Solving for ui gives
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ui = 1
2 (ui+1 + ui−1). This puts the scheme in the explicit form of monotonicity, since

the righthand side is a nondecreasing function of its arguments.
The implicit Euler scheme for the heat equation, ut − uxx = 0, is also degenerate

elliptic,

1

dt
(un

i − un−1
i ) +

1

dx2

(
un
i − un

i−1 + un
i − un

i+1

)
= 0.

On the other hand, the explicit Euler scheme,

un
i = (1 − 2dt/dx2)un−1

i + (dt/dx2)(un−1
i−1 + un−1

i+1 ),

is monotone if and only if 0 ≤ dt ≤ dx2/2. In this case, the scheme is also degenerate
elliptic, (

1 − 2dt/dx2
) (

un
i − un−1

i

)
+ dt/dx2(un

i − un−1
i−1 + un

i − un−1
i+1 ) = 0.

Remark 5. The restriction on the time step coincides with the usual CFL condi-
tion [9], which is a condition for stability in �2. In general, these conditions do not
coincide.

Remark 6. The example generalizes naturally to nonlinear schemes. As an ex-
ercise for the reader, repeat the example with |ux| instead of −uxx. Use the dis-
cretization max{ui − ui−1, ui − ui+1, 0}/dx. The resulting nonlinear CFL condition
is 0 ≤ dt ≤ dx.

1.3. A stable but nonconvergent scheme. In this section, we give an exam-
ple of a difference scheme which is stable but nonmonotone and nonconvergent. The
example involves the linear, but degenerate, second-order elliptic equation,

−(uxx + 2uxy + uyy) = −d2u

dv2
= 0, v = (1, 1),

along with Dirichlet boundary conditions on the unit square. Continuous functions
of the form f(x− y), whose level sets are straight lines in the direction of v, are vis-
cosity solutions. The equation is degenerate: it has a zero eigenvalue in the direction
perpendicular to v.

Two discretizations. We present two consistent, second-order accurate differ-
ence schemes on a uniform grid with spacing h. For the first scheme, simply use the
centered second difference in the diagonal direction,

1

h2
(u(x + h, y + h) − 2u(x, y) + u(x− h, y − h)).

For the second scheme, use centered differences for uxx and uyy, and a symmetric
centered difference for uxy, to obtain

1

h2
(2u(x + h, y) + 2u(x, y + h) + 2u(x− h, y) + 2u(x, y − h)

− 6u(x, y) − u(x + h, y − h) − u(x− h, y + h)).

The first scheme is degenerate elliptic. The second scheme is not, since the coefficients
of the values at grid points (x + h, y − h) and (x− h, y + h) are negative.
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Fig. 1. Solution and level sets, computed using the first (top) and second (bottom) scheme.

Numerical experiments. The first scheme converges. The second scheme gives
errors of a size comparable to the data, independent of the grid spacing. The solu-
tions were found by an explicit, stable iteration scheme. Computational results using
Dirichlet boundary values sin(6π(x − y)) are presented in Figure 1. Note that the
level sets fail to be straight lines for the second scheme.

Stability analysis. We verify stability in �2 directly. Consider for the sake of
analysis a periodic, 2 × 2 grid. The grid functions

v1 =

(
+ +
+ +

)
, v2 =

(
+ −
+ −

)
, v3 =

(
+ +
− −

)
, v4 =

(
+ −
− +

)
,

which consist of horizontal, vertical, and diagonal stripes, form a simultaneous set
of eigenvectors for the schemes, with eigenvalues {0,−4,−4, 0} and {0,−4,−4,−8},
respectively. Thus the operators are stable. The explicit scheme with time step dt
corresponds to adding the identity to dt times the linear map, so it has the same
eigenvectors, with eigenvalues λ �→ 1 + dtλ. Taking dt ≤ 1/2, 1/4, respectively, gives
a scheme with eigenvalues in the unit circle, and that is thus stable in �2.

Conclusion. Despite the stability of the second scheme, it is nonconvergent.
For this equation, monotonicity is necessary for convergence. We offer a heuristic
explanation: while the equation is sensitive to data only in the diagonal direction, the
second scheme uses data from grid points in other directions.

2. Theory.

2.1. Viscosity solutions. We have endeavored to make this article accessible
to readers who are not familiar with the theory of viscosity solutions. The stan-
dard reference is [11]. An introduction to the first-order case, with applications to
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control theory, is [15]. A readable introductory article with valuable exercises is the
contribution by Crandall [3]. The complete first-order theory can be found in [2, 4].

Viscosity solutions are weak solutions defined for the class of degenerate elliptic
and parabolic equations. In this class, under mild analytic assumptions [20], there
exist unique viscosity solutions. These solutions are stable in the maximum norm
under perturbations: a perturbation to the data of size ε results in an error in the
solution of size at most ε. Solutions are also stable under perturbations of the equation,
as long as the resulting equation is still in the class. For example, adding ε times the
Laplacian regularizes the equation (this is where the term viscosity solutions comes
from). It is also common to add ε time u to the equation. In addition, replacing the
equation with a finite difference approximation is a valid perturbation, as long as the
approximation is monotone [5]. In this case, ε may represent the grid spacing.

Remark 7 (nonsmooth functions). Although solutions need not be smooth (or
even differentiable), the definition of viscosity solutions requires only verifying in-
equalities for smooth test functions. In particular, when verifying consistency for
numerical schemes, we may work freely with smooth functions.

2.2. Degenerate elliptic equations. Let Ω be a domain in R
n, Du and D2u

denote the gradient and Hessian of u, respectively, and F (x, r, p,X) be a continuous
real valued function defined on Ω×R×R

n×S
n, with S

n being the space of symmetric
n× n matrices. Write F [u](x) ≡ F (x, u(x), Du(x), D2u(x)). Consider the nonlinear,
degenerate elliptic partial differential equation with Dirichlet boundary conditions,{

F [u](x) = 0 for x in Ω,

u(x) = g(x) for x on ∂Ω,

or the initial-boundary value problem for the degenerate parabolic partial differential
equation,{

ut(t, x) = −F [u](t, x) for (t, x) in Ω ≡ [0, t) × Ω,

u(t, x) = g(t, x) for (t, x) on ∂Ω ≡ {t = 0} × Ω ∪ [0, t) × ∂Ω.

In both cases, ∂Ω is the correct set on which boundary conditions are set for the
equation, not the topological boundary.

Definition 1. The equation F is degenerate elliptic if

F (x, r, p,X) ≤ F (x, s, p, Y ) whenever r ≤ s and Y ≤ X,

where Y ≤ X means that Y −X is a nonnegative definite symmetric matrix.
Example. The obstacle problem, min(−uxx, u− g(x)) = 0, is degenerate elliptic.

The Hamilton–Jacobi equation, ut − |ux| = 0, is degenerate parabolic.
Given a degenerate elliptic equation, F , consider the solution mapping, S, which

takes continuous boundary data, g, to the continuous solution, u, assuming it is well-
defined. We say that S is monotone if for all continuous functions g, h on ∂Ω,

g(x) ≤ h(x) for all x ∈ ∂Ω implies S(g)(x) ≤ S(h)(x) for all x ∈ Ω.(3)

Likewise, the solution mapping is nonexpansive in the maximum norm if

(4) max
x∈Ω

|S(g)(x) − S(h)(x)| ≤ max
x∈∂Ω

|g(x) − h(x)|.

These conditions generalize the maximum principle, with equivalence when constants
(or zero) are solutions.
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2.3. Degenerate elliptic schemes. We begin with the definition of a finite
difference scheme on an unstructured grid. We regard a scheme as an equation which
holds at each grid point, and thereby study monotonicity and stability properties of
the solution operator.

For the purpose of convergence, we implicitly assume the existence of an inter-
polation operator, which takes grid functions to functions on the domain. We also
require a sequence of grids indexed by a small parameter. Typically, the small param-
eter is dx, the maximum distance between neighboring grid points, but we might want
to allow for dθ, the directional resolution [29, 30]. The interpolation operator and the
sequence of approximations puts us in the framework of the convergence theory in [5].

Define an unstructured grid on the domain Ω as a directed graph consisting of a
set of points, xi ∈ Ω, i = 1, . . . , N , each endowed with a list of neighbors, N(i). A
grid function is a real valued function defined on the grid, with values ui = u(xi).
The scheme is represented at each grid point by an equation of the form

(5) F i[u] ≡ F i

(
ui,

ui − uj

|xi − xj |

∣∣∣∣
j=N(i)

)
, i = 1, . . . , N.

A finite difference scheme is local: it depends only on the value at the reference
points, and on the first-order approximations to the derivatives in the direction of the
neighbors. Higher-order approximations are obtained by taking linear combinations
of the first-order derivatives.

From now on, we suppress the explicit dependence on |xi − xj | and write

F i[u] ≡ F i
(
ui, ui − uj |j=N(i)

)
≡ F i(ui, ui − uj),

where uj is shorthand for the list of neighbors uj |j=N(i).
A boundary point is a grid point with no neighbors. Dirichlet boundary conditions

are imposed at boundary points by setting F i[u] = ui − g(xi). A solution is a grid
function which satisfies F [u] = 0. If, for arbitrary boundary data g, there exists
a unique solution u, we write u = S(g) for the solution operator. We regard the
solution operator as a mapping from the Dirichlet data on the boundary points to
grid functions.

We now define degenerate elliptic schemes.
Definition 2. The scheme F is degenerate elliptic if each component F i is

nondecreasing in each variable.
Remark 8. We emphasize that the scheme is a nondecreasing function of ui and

the differences ui − uj .

2.4. The nonlinear CFL condition. Write ‖x‖∞ for the maximum norm,
maxi |xi|.

While schemes may be nonlinear and nondifferentiable, we assume that they are
globally Lipschitz continuous, with constant K. The resulting restriction on the
time step is simply that dt ≤ K−1. We can also allow for schemes which are only
locally Lipschitz continuous by allowing for the time step to depend on the data,
dt = K(u)−1. Higher-order time-stepping methods which still maintain monotonicity
and nonexpansivity may also be used [17].

Definition 3 (Lipschitz continuity). The finite difference scheme, F , is Lip-
schitz continuous if there is a constant K such that for all i = 1, . . . , N , x, y ∈
R

|N(i)|+1,

(6) |F i(x) − F i(y)| ≤ K‖x− y‖∞.
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Definition 4 (the explicit Euler map). For ρ > 0, define Sρ : R
N → R

N by

(7) Sρ(u) = u− ρF [u].

This map is the explicit Euler discretization, with time step ρ, of the ordinary differ-
ential equation du/dt + F [u] = 0.

Definition 5 (nonlinear CFL condition). Let F be a Lipschitz continuous, de-
generate elliptic scheme, with Lipschitz constant K. The nonlinear CFL condition for
the Euler map Sρ is

(CFL) ρ ≤ 1

K
.

2.5. Existence, uniqueness, and comparison for schemes. Given u, v ∈
R

N , define u ∨ v = max(u, v), u+ = max(u, 0), u− = min(u, 0), componentwise and
define u ≤ v to mean ui ≤ vi for i = 1, . . . , N

Definition 6 (proper schemes). The finite difference scheme is proper if there
exists δ > 0 such that for i = 1, . . . , N and for all x ∈ R

|N(i)| and x0, y0 ∈ R,

(8) x0 ≤ y0 implies that F i(x0, x) − F i(y0, x) ≤ δ(x0 − y0).

Remark 9. If a scheme is not proper, we can consider instead F [u] + εu. By
taking ε to be small enough (for example, smaller than the discretization error), we
can assume the scheme is proper without any loss of generality.

Remark 10. This property is introduced to simplify the existence proof. It can be
relaxed for the proof of comparison. An alternative approach would be to generalize
the “marching to the boundary” argument of [28].

Theorem 5 (comparison of sub- and supersolutions). Let F be a proper, de-
generate elliptic finite difference scheme. If F [u] ≤ F [v], then u ≤ v. In particular,
solutions are unique.

Proof. Suppose u �≤ v and let i be an index for which

(i) ui − vi = max
j=1,...,N

{uj − vj} > 0,

so that

(ii) ui − uj ≥ vi − vj , j = 1, . . . , N.

(See Figure 2.) Then we obtain a contradiction as follows:

F [u]i = F i(ui, ui − uj) ≥ F i(ui, vi − vj) by (ii) and Definition 2,

> F i(vi, vi − vj) = F [v]i by (i) and (8).

Uniqueness follows, since if u, v are solutions, then F [u] = F [v] = 0, so u ≥ v and
u ≤ v, and thus u = v.

The next result combines the Lipschitz continuity property with the degenerate
elliptic property of the scheme to give an ordered Lipschitz continuity property.

Lemma 1 (ordered Lipschitz continuity property). Let F be a Lipschitz continu-
ous, degenerate elliptic scheme, with Lipschitz constant K. Then for all i = 1, . . . , N
and x, y ∈ R

|N(i)|+1,

(9) −K‖(x− y)−‖∞ ≤ F i(x) − F i(y) ≤ K‖(x− y)+‖∞.
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Fig. 2. Discrete local maximum of ui − vi at i = 0.

Proof. Given x, y, use Definition 2 and (6) to compute

F (x) − F (y) ≤ F (x ∨ y) − F (y) ≤ K‖x ∨ y − y‖∞ = K‖(x− y)+‖∞.

The other inequality is similar.
Theorem 6 (the Euler map is monotone). Let F be a Lipschitz continuous,

degenerate elliptic scheme. Then the Euler map (7) is monotone provided (CFL)
holds.

Proof. Suppose u ≤ v. Compute for an arbitrary index i,

Si
ρ(u) − Si

ρ(v) = ui − vi + ρ
(
F i(vi, vi − vj) − F i(ui, ui − uj)

)
≤ ui − vi + ρK‖(vi − ui, vi − ui + uj − vj)

+‖∞ by (9)

≤ (1 − ρK)(ui − vi) since u ≤ v

≤ 0 by (CFL).

Theorem 7 (the Euler map is a contraction). Let F be a Lipschitz continuous,
degenerate elliptic scheme. Then the Euler map (7) is a contraction in R

N equipped
with the maximum norm, provided (CFL) holds. If, in addition, F is proper, and
strict inequality holds in (CFL), then the Euler map is a strict contraction.

Proof. We will show that

(i) ‖Sρ(u) − Sρ(v)‖∞ ≤ r‖u− v‖∞

for r = max(1 − ρδ, ρK). We assume without loss of generality that ρδ, ρK < 1/2.
We proceed to find upper and lower bounds on Sk

ρ (u) − Sk
ρ (v) for an arbitrary

index k. The lower bound will follow easily, while the upper bound will rely on careful
application of the ordered Lipschitz continuity property.

1. Assume uk ≥ vk. The alternative will follow by a similar argument.
2. For the lower bound, use (9) in the definition of the Euler map (7) to obtain

Sk
ρ (u) − Sk

ρ (v) ≥ uk − vk − ρK‖ (uk − vk, uk − vk − (uj − vj))
− ‖∞

≥ −ρK‖u− v‖∞,(ii)

since uk ≥ vk.
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3. For the upper bound, add and subtract ρF k(vk, uk − uj) to Sk
ρ (u) − Sk

ρ (v),

(iii)
Sk
ρ (u) − Sk

ρ (v) = uk − vk − ρ
(
F k(uk, uk − uj) − F k(vk, uk − uj)

)
+ ρ

(
F k(vk, vk − vj) − F k(vk, uk − uj)

)
.

Use (8) to estimate the second to last term in (iii),

(iv) −
(
F k (uk, uk − uj) − F k(vk, uk − uj)

)
≤ −δ(uk − vk).

Next use (9) to estimate the last term in (iii),

F k (vk, vk − vj) − F k(vk, uk − uj) ≤ K‖((uj − vj) − (uk − vk))
+‖∞,

≤ K (‖u− v‖∞ − (uk − vk)) ,(v)

since uk ≥ vk. Combining (iv) and (v) gives

Sk
ρ (u) − Sk

ρ (v) ≤ (1 − ρδ − ρK)(uk − vk) + ρK‖u− v‖∞
≤ (1 − ρδ − ρK)‖u− v‖∞ + ρK‖u− v‖∞
≤ (1 − ρδ)‖u− v‖∞.(vi)

4. Combining (ii) and (vi) gives (i) as desired.
Theorem 8. A proper, Lipschitz continuous degenerate elliptic scheme has a

unique solution. The iterates of the Euler map converge to the solution for arbitrary
initial data, provided strict inequality holds in (CFL).

Proof. By Theorem 7, Sρ is a strict contraction on R
N , equipped with the max-

imum norm. Thus by Banach’s fixed point theorem, iterates of Sρ converges to a
unique fixed point from arbitrary initial data. Such a fixed point is a solution.

Remark 11. Since the error tolerance is on the order of the spatial discretization
error, the number of iterations need not be prohibitive. Experimentally, the number of
iterations is on the order of the diameter of the graph, when the time step is optimal.

2.6. Proofs. We begin by establishing a link between the degenerate ellipticity
condition and the comparison principle.

Lemma 2 (exercise in [3]). The function F (x, r, p,X) is degenerate elliptic if
and only if whenever x is a nonnegative local maximum of u − v, for u, v ∈ C2,
F [u](x) ≥ F [v](x).

Proof. If x is a local maximum, u ≥ v, Dv = Du, and D2u ≤ D2v, at x. Then
F (x, u,Du,D2u) = F (x, u,Dv,D2u) ≥ F (x, v,Dv,D2u) ≥ F (x, v,Dv,D2v).

Lemma 3. The scheme F is degenerate elliptic if and only if whenever xi is a
nonnegative maximum of u− v, for u, v grid functions, F i[u] ≥ F i[v].

Proof. Let i be an index for which ui − vi = maxj=1,...,N{uj − vj} ≥ 0, so that
ui − uj ≥ vi − vj , j = 1, . . . , N. Then F i[u] = F i (ui, ui − uj) ≥ F i (vi, ui − uj) ≥
F i (vi, vi − vj) = F i[v].

Proof of Theorem 1. The proof is formal, but can be made rigorous. Let ε >
0, set F ε[u] = F [u] + εu, and let Sε be the corresponding solution operator. Let
uε = Sε(g), vε = Sε(h). If x is a strict local max of uε − vε, then as in Lemma 2,
F ε[u](x) > F ε[v](x), which contradicts F ε[u] = F ε[v] = 0. So the maximum of uε−vε

occurs on the boundary. Likewise, the minimum of uε − vε occurs on the boundary.
Stability of viscosity solutions implies that uε → u, vε → v, and thus sending ε → 0
allows the same conclusions to hold for u, v. Thus (4) follows; assuming g ≤ h
gives (3).
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Proof of Theorem 2. We can assume without loss of generality that F is proper.
Then as in Lemma 3, we can show that the max and min of S(g), S(h) occur on the
boundary. The conclusion follows as in the proof of Theorem 1.

Proof of Theorem 3. We have already shown that degenerate elliptic schemes
are monotone and nonexpansive. Now, suppose a scheme given in explicit form (1)
is monotone and nonexpansive. Then Hi is a nondecreasing function for each i.
Nonexpansivity means

|Hi(x) −Hi(y)| ≤ ‖x− y‖∞

for all x, y. Estimate |Hi(x) −Hi(y)| ≤ ‖DHi‖1‖x − y‖∞. Since equality may hold
for some x, y, we require ‖DHi‖1 ≤ 1. Locally define F i = (1 −

∑
j=N(i) DjH

i)ui +∑
j=N(i) DjH

i(ui − uj). Applying the implicit function theorem gives F i in the re-
quired form.

Remark 12. The linear scheme un+1 = Mun is monotone if and only if mij ≥
0 and nonexpansive in the �∞ norm if and only if

∑
j |mij | ≤ 1 for each i. The

differentiable scheme, un+1 = F (un), is monotone (respectively, nonexpansive) if the
gradient DF (u) is monotone (nonexpansive) for every u. In the linear case, non-
expansivity in �∞ does not imply nonexpansivity in �2, or in �1, as simple examples
illustrate.

Accuracy. Given the equation F (x, u(x), Du(x), D2u(x)) and the scheme F i(ui,
ui − uj |j=N(i)), fix x = xi and set hj = |xi − xj |, j = N(i). Assume the hj are of the
same order so that the expression O(h) is meaningful. The order of accuracy of the
scheme is the best possible number r in the expression

F (xi, u(xi), Du(xi), D
2u(xi)) − F i(u(xi), u(xi) − u(xj)|j=N(i)) = O(hr),

over all functions u which have all derivatives defined in a neighborhood of xi.
Proof of Theorem 4. It is sufficient to show that higher-order accuracy is im-

possible for functions of a particular form. By considering functions of the form
u(x) = g(n · x), where n is a direction vector, we reduce to an equation in one space
dimension. Considering functions with constant values u(xi) and constant first or
second derivatives further reduces the equation to the form H(ux) or H(uxx). While
some reductions yield trivial equations, any nontrivial equation will give a nontrivial
reduction for some choice of the direction n, u(xi), and the derivatives.

Redefine hj = xj − xi, and expand u in Taylor series, u(xj) =
∑∞

k=0

hk
j

k!
∂ku
∂xk (xi).

Apply the series to each uj in the expression for F i[u], dropping the ui dependence
to give

(i) F i[u] = F i

⎛
⎝−

∞∑
k=1

hk
j

k!

∂ku

∂xk
(xi)

∣∣∣∣∣
j=N(i)

⎞
⎠.

Consider first the case when both the scheme and the equation are linear. Write

F i[u] =
∑|N(i)|

j=1 aj(ui − uj), aj > 0, and insert the Taylor expansion into (i) to

obtain −
∑|N(i)|

j=1

∑∞
k=1

ajh
k
j

k!
∂ku
∂xk (xi). Observe that the coefficients of ∂ku/∂xk have the

same sign for even values of k, and thus no cancellation is possible. In addition, the
coefficients are homogeneous of order k in h. After dividing by the leading coefficient,
a scheme for ux will have a nonzero coefficient of uxx of O(h), and a scheme for uxx

will have a nonzero coefficient of uxxxx of O(h2).
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We now treat the general case. Since F is nondecreasing, there is still no can-
cellation among the terms with even values of k. An expression containing ux to
O(1) appears with a uxx term of O(h), and similarly uxx appears with a uxxxx

term of O(h2). Since the higher derivatives do not appear at all in the expression
for H, the error is O(h) and O(h2) for the first-order and second-order equations,
respectively.

3. Building elliptic schemes. In this section we construct examples of degen-
erate elliptic schemes. Using simple schemes as building blocks, we build schemes for
nontrivial equations. We begin with parallel observations for equations and schemes
which, when taken together, give a technique for building schemes.

Many types of operations (addition, min, max, nondecreasing transformations)
may be used to combine schemes. On the other hand, selection criteria (“if” state-
ments) generally do not preserve ordering properties and must be used with care.

Observation 1 (see [11, p. 8]). Let g : R
2 → R be a nondecreasing function. If

F1 and F2 are degenerate elliptic functions, then so is F = g(F1, F2).
Observation 2. Let g : R

2 → R be a nondecreasing function. If F1 and F2 are
degenerate elliptic finite difference schemes, then so is F = g(F1, F2).

Example (order preserving operations). The constant scheme F [u] = u − g is
degenerate elliptic. If F, F1, F2 are degenerate elliptic, then so are F+ = max(F, 0),
and F− = min(F, 0) as well as min(F1, F2),max(F1, F2), and aF1 + bF2 for a, b ∈
R

N , a, b ≥ 0.
Example (“if” statements). If F1[u], F2[u] are degenerate elliptic, and G[u] is an

equation, then

F [u] =

{
F2[u] = 0 if G[u] > 0,

F1[u] = 0 otherwise

is not usually degenerate elliptic. If, however, G is degenerate elliptic, and F2[u] ≥
F1[u] for all u, then F is degenerate elliptic. This follows by using Lemma 3. If u− v
has a nonnegative local max at i, then Gi[u] ≥ Gi[v], and thus F i[u] ≥ F i[v].

Example (distance function and eikonal equation). Starting from the upwind
schemes ux = (uj − uj−1)/dx and −ux = (uj − uj+1)/dx, which are degenerate ellip-
tic, write |ux| = max(ux,−ux), −|ux| = min(ux,−ux) and apply the observations to
build the schemes

|ux| =
1

dx
max (uj − uj−1, uj − uj+1, 0) , −|ux| =

1

dx
min (uj − uj−1, uj − uj+1, 0),

accurate to O(dx). Next write u2
x = |ux|2 to obtain the scheme

u2
x =

1

dx2
max (uj − uj−1, uj − uj+1, 0)

2
,

which is accurate to O(dx). Schemes for |Du| and |Du|p in higher dimensions are
easily built.

Example (obstacle problems). Let F1 be a degenerate elliptic scheme for F [u].
The obstacle problem

min(F [u], u− g(x)) = 0

is degenerate elliptic, and the scheme min(F1, u − g), is consistent and degenerate
elliptic. This example can be generalized to double obstacle problems.
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Example (finite maxima and minima of schemes [5]). A degenerate elliptic scheme
for minγ∈Γ maxβ∈B {Fγβ} , where the index sets are finite, can be built from schemes
for each Fγβ by taking the corresponding finite minima and maxima over the schemes.

Example (nonlinear one-dimensional equations). The degenerate elliptic equation
F (x, uxx) is nonincreasing in uxx, and thus the scheme F i[u] = F (xi, (2ui − ui+1 −
ui−1)/dx

2) is degenerate elliptic. If H(x, ux) is increasing in ux, then the scheme
F i[u] = H(xi, (ui − ui−1)/dx) is also degenerate elliptic. Likewise, if H(x, ux) is
decreasing in ux, then F i[u] = H(xi, (ui − ui+1)/dx) is degenerate elliptic. Simply
combining the previous two schemes with an if statement will not yield a degenerate
elliptic scheme for general H.

Example (one-phase free boundary problems). Consider

{
F [u] = 0 in {u > 0},
H(x,Du) = 0 on ∂{u = 0},

where F [u] = F (x,Du,D2u) is degenerate elliptic. Time-dependent versions may
also be considered. This one-phase free boundary problem (see [8, 22] for examples)
is degenerate elliptic when the boundary condition is interpreted in the viscosity sense,

min(F,H) ≤ 0 and max(F,H) ≥ 0 on ∂{u = 0}.

Eliminate the free boundary by extending to a computational domain large enough
to contain {u = 0}, and consider instead

{
F [u] = 0 in {u > 0},
min(F [u], H(x,Du)) = 0 on {u ≤ 0}.

Given F1, F2, degenerate elliptic schemes for F and H, respectively, the following
scheme is consistent and degenerate elliptic:

F i[u] =

{
F i

1[u] if ui > 0,

min(F i
1[u], F i

2[u]) if ui ≤ 0.

4. Computations.
Example (front propagation). For ut = |ux|, (CFL) gives ρ ≤ dx. Setting ρ =

dx gives the exact solution for piecewise linear initial data. For |ux|2, the function
F (x, y, 0) = max(x, y, 0)2 is locally, but not globally, Lipschitz, with constant K =
max(x, y, 0). (Simply differentiating overestimates the constant by a factor of 2.) This
leads to dt ≤ dx2/maxj{|uj − uj−1|}. The solution was computed using sinusoidal
initial data and periodic boundary conditions, with 500 grid points. The solutions
are displayed in Figure 3.

Homogenization of Hamilton–Jacobi equations. Next we consider one- and
two-dimensional nonconvex Hamilton–Jacobi homogenization problems. The problem
involves solve H(x,Du) = H, for the function u and the constant H, using periodic
boundary conditions. The value H is unique, although the function u is not. The
solution can be obtained by solving the time-dependent problem ut = H(x,Du) for a
long time, because (see [6]) ut → H,u(t, ·) → u + Ht as t → ∞.
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Fig. 3. Snapshots of the solution of ut = |ux|, and ut = |ux|2.
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Fig. 4. Solutions u plotted with the zig-zag functions.

Example (one-dimensional nonconvex Hamilton–Jacobi equation). Set H(x, ux) =
max(|ux|, 1 − |ux|) + f(x), where f(x) is periodic on [−1, 1]. With f(x) the “zigzag”
function f(x) = 2|2x (mod 1) − .5|, we found H ≈ .48. The solutions were also
computed with f(x) = |2x (mod 1) − .5|. The solutions, along with the functions
f(x), are displayed in Figure 4, plotted so that the average of the solution is H.
In the second case, with the hindsight afforded by the numerical solution, we found
an exact piecewise quadratic solution, with H(u) = .5. Modifying the solution by
reflecting the portion between −.5 and .5 (where ux = 0) in the line y = .5 gives
another solution with H = .5.

Example (two-dimensional nonconvex Hamilton–Jacobi equation). Set H(ux, uy)
= u2

x − u2
y in a periodic domain, with periodic boundary conditions. With initial

data sin(x) sin(y), a nontrivial steady solution was computed, shown in Figure 5.
Examination of the numerical solution reveals an exact solution, which is piecewise
quadratic, with ux, uy as piecewise linear functions with slopes ±1.

Free boundary problems.
Example (two-dimensional double obstacle problem). We have the equation

−max (u− h,min (uxx + uyy, u− g)) = 0,
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Fig. 5. Piecewise quadratic solution of u2
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y = 0, solution of the double obstacle problem.
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Fig. 6. Snapshots in time of the solution to the Stefan problem. Two bumps move together and
merge.

where the obstacle functions h, g are characteristic functions of a square and a line on
different parts of the domain. The solution is displayed in Figure 5.

Example. The one-phase Stefan problem

{
ut − Δu = 0 in {u > 0},
ut − |Du|2 = 0 on ∂{u = 0}

is solved in one dimension with sinusoidal initial data. Snapshots of the solution are
shown in Figure 6.

Example (a nonconvex, fully nonlinear second-order equation). The fully non-
linear, uniformly elliptic second-order equation −max(min(L1u, L2u)L3u) + 1 = 0,
where L1u = uxx + uyy, L

2u = 1
2uxx + 2uyy, L

3u = 1
2uxx + uyy, is solved in the unit

square with Dirichlet boundary values 1
2 max(min(x2 + y2, 1

2x
2 +2y2), 1

2x
2 + y2). The

solution is displayed in Figure 7. The boundary shown is composed of two parts: the
dotted lines correspond to the boundary of the set {L1u ≤ L2u}. The heavy lines
correspond to the boundary of the set L3u ≥ min(L1u, L2u).
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Fig. 7. Solution and free boundary for the fully nonlinear second-order equation
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Abstract. We present a construction for improving numerical cubature formulas with equal
weights and a convolution structure, in particular equal-weight product formulas, using linear error-
correcting codes. The construction is most effective in low degree with extended BCH codes. Using
it, we obtain several sequences of explicit, positive, interior cubature formulas with good asymptotics
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[G. Kuperberg, Adv. in Appl. Math., 34 (2005), pp. 853–870, arXiv:math.PR/0408360], we obtain
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R
n with O(nt−2) points when t is odd. When μ is spherically symmetric and t = 5, we obtain O(n2)

points. For each t ≥ 4, we also obtain explicit, positive, interior formulas for the n-simplex with
O(nt−1) points; for t = 3, we obtain O(n) points. These constructions asymptotically improve the
nonconstructive Tchakaloff bound.
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42 (2004), pp. 209–227], who also noted that the basic construction more directly uses orthogonal
arrays.
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1. General results. Let μ be a normalized measure on R
n with finite moments.

A cubature formula of degree t, or t-cubature formula, for μ is a set of points F =
{�pa} ⊂ R

n and a weight function �pa �→ wa ∈ R such that

∫
P (�x)dμ = P (F ) =

N∑
a=1

waP (�pa)

for polynomials P of degree at most t. (If n = 1, then F is also called a quadrature
formula.) The formula F is equal-weight if the wa are all equal; it is positive if wa > 0
for all a; and otherwise it is negative. Let X be the support of μ. The formula F is
interior if every point �pa is in the interior of X; it is boundary if every �pa is in X and
some �pa ∈ ∂X; and otherwise it is exterior. These properties of cubature formulas
are often abbreviated. For example, PI means positive and interior and EB means
equal-weight and boundary. (Exterior formulas are denoted “O,” for outside.) An
equal-weight formula is abbreviated “E” and is also called a (geometric) t-design or
a Chebyshev-type formula.

The main use of a cubature formula is to numerically integrate a function f
which is approximately a polynomial. In this application, formulas with many points
or nonexplicit points are impractical; exterior formulas are ill-founded if f is defined
only on X; and formulas with large negative weights are ill-conditioned on the class
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of continuous functions [20, Chap. 1]. Thus PI formulas with few points are the best
kind.

By Tchakaloff’s theorem [20, p. 61], every measure μ on R
n has a PI t-cubature

formula with at most
(
n+t
t

)
points, the same as the dimension of the vector space

of relevant polynomials, R[�x]≤t. (If ∂X has nonzero measure, it may be only a PB
formula.) Tchakaloff’s theorem has a short proof, but it is computationally noncon-
structive. Many known formulas with n small, or with n large and t ≤ 2, are better
than the Tchakaloff bound [20, 4]. But if n is large, t ≥ 3, and μ is reasonably natural,
most explicit formulas in the existing literature either are negative, are exterior, or
have exponentially many points.

In this article we present a new method to thin equal-weight cubature formulas
with a convolution structure, in particular product formulas for product measures.
(By thinning a formula, we mean removing some of its points without reducing its cu-
bature degree.) The thinned formulas are efficient in high dimensions and low degree.
The method also applies to some nonproduct measures that are related to product
measures, in particular spheres and simplices with uniform measure. Victoir [21] in-
dependently obtained the basic construction when q = 2 (where q is the prime power
parameter in Theorem 1.1), together with some other generalizations not considered
by this author. However, many of our asymptotic bounds and derived constructions
are new.

If F and G are two cubature formulas, we define their convolution F ∗ G to be
their sum as sets, F + G. The weight wa of �pa in F ∗G is given by a product rule:

wa =
∑

�pa=�pb+�pc

�pb∈F,�pc∈G

wbwc.

Convolution of cubature formulas is related to convolution of measures in two ways:
First, it is convolution of measures if cubature formulas are interpreted as atomic
measures. Second, if F is a t-cubature formula for μ and G is a t-cubature formula
for ν, then F ∗ G is a t-cubature formula for μ ∗ ν. In particular, product formulas
and product measures are convolutions in independent directions.

We also recall some basic facts from coding theory. For each prime power q, there
is a unique finite field Fq with q elements. A linear error-correcting code of length �,
dimension k, and distance t over Fq is a k-dimensional vector subspace of F

�
q such that

each nonzero vector has at least t nonzero coordinates. It is also called an [�, k, t]q
code. A code C is a zero-sum code if the coordinates of every �a ∈ C sum to 0.

Theorem 1.1. Let t, n, and � be positive integers, let q be a prime power, and
let μ be a measure on R

n. For each 1 ≤ i ≤ �, let Fi be an equal-weight formula with
q elements such that the convolution

F = F1 ∗ F2 ∗ · · · ∗ F�

is a t-cubature formula for μ. Then an [�, k, t + 1]q code C yields a thinning G ⊂ F
with q�−k points. In addition, if each Fi is centrally symmetric, t is odd, and either q
is odd or C is a zero-sum code, then C need only be an [�, k, t]q code.

Theorem 1.1 can be strengthened further using the notion of an orthogonal array
[9]. Linear error-correcting codes are dual to linear orthogonal arrays, and the proof
actually uses orthogonal arrays rather than codes. In some cases nonlinear orthogonal
arrays are slightly better than linear ones. See sections 2 and 4.

The most effective case of Theorem 1.1 is in the asymptotic limit n → ∞ with t
and q fixed. Recall that a function f(n) is quasi-linear if f(n) = O((log n)αn) for some
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α. Quasi linearity is also written f(n) = Õ(n). Say that a family {F} of cubature
formulas is quasi-linear (abbreviated “QL”) if the points and weights of each F can
be generated in quasi-linear time in the length of the output.

Theorem 1.2. Assume all variables as in Theorem 1.1. Then G can have O(�α)
points (with the constant depending only on q), where

α = t− 1 −
⌊
t− 1

q

⌋
.

If each G is centrally symmetric and t is odd, then

α = t− 2 −
⌊
t− 2

q

⌋
.

Moreover, G is quasi-linear as � → ∞, assuming precomputation of each Fi.
We can make some comparisons between Theorem 1.2 and other asymptotic

bounds. To properly state these other bounds, we recall that a function f(n) is
of class Ω(g(n)) if f(n) ≥ Cg(n) for some constant C (the reverse of O(g(n))) and
that f(n) is Θ(g(n)) if it is both O(g(n)) and Ω(g(n)).

If μ is an m-fold product with m ∝ n, then we can take � ∝ n in Theorem 1.2,
so that O(�α) = O(nα). In comparison, the Tchakaloff upper bound is O(nt) points,
or it is O(nt−1) points when t is odd and μ is centrally symmetric (section 4). Thus
Theorem 1.2 is asymptotically better than Tchakaloff’s theorem for all such product
measures. Tchakaloff’s theorem also does not guarantee equal weights.

Another comparison is with the cardinality of exact determination. A t-cubature
formula F is overdetermined, underdetermined, or exactly determined if the param-
eters of its points provide fewer, more, or the same number of degrees of freedom,
respectively, as the constraints imposed by integrating all polynomials of degree t.
The cardinality of exact determination is Θ(nt−1) for general μ and Θ(nt−2) when
t is odd and μ is centrally symmetric. Thus for product measures, the formulas in
Theorem 1.2 are asymptotically exactly determined (up to a constant factor that de-
pends on t) when q is large. But when q < t− 1, or q < t− 2 in the odd and centrally
symmetric case, they are asymptotically overdetermined.

A third comparison is with the Stroud lower bound: Any t-cubature formula in n
dimensions, not necessarily interior or positive, requires Ω(n�t/2�) points. Theorem 1.2
achieves the Stroud bound (up to a constant factor) when q = 2.

A final comparison is with an interesting thinning construction of Novak and Rit-
ter for products of quadrature formulas [16]. (It is similar to an earlier construction
due to Grundmann and Möller for the n-simplex [6].) They produce t-cubature for-
mulas with O(n�t/2�) points, which is within a constant factor of the Stroud bound
and better than Theorem 1.2 when q > 2. Crucially, their formulas are not positive,
although they can be made interior. They also require that the factors of μ be 1-
dimensional. The Novak–Ritter construction does generalize to convolutions, as long
as each factor formula has collinear points.

Theorem 1.2 can be used to construct interesting cubature formulas for several
infinite sequences of regions and measures considered by Stroud [20, Chaps. 7 and 8].

Theorem 1.3. For any t:
1. the n-cube Cn with uniform measure has a QLEI t-cubature formula with

O(n�t/2�) points;
2. the cubical shell Cn − rCn has a QLEI t-cubature formula with O(n�t/2�+1)

points.
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For any odd t ≥ 3,
1. R

n with Gaussian weight function has a QLEI t-cubature formula with O(nt−2)
points;

2. any spherically symmetric measure on R
n has a QLPI t-cubature formula with

O(nt−2) points, which includes the n-ball Bn, the spherical shell Bn−rBn, and
the (n−1)-sphere Sn−1 with uniform measure and R

n with radial exponential
weight function exp(−||�x||2).

For any t ≥ 2,
1. the n-simplex Δn has a QLPI t-cubature formula with O(nt−1) points;
2. the n-cross-polytope C∗

n with uniform measure has a QLPI t-cubature formula
with O(n�3t/2�−1) points.

All cases of Theorem 1.3 other than the cross polytope C∗
n improve the Tchakaloff

bound. On the other hand, the construction for the cube Cn matches the Stroud
bound up to a constant factor. We admit that this t-dependent factor is very generous
when t is large: For each t = 2s+1, it approaches 2 · ss · s! as n → ∞ in the favorable
case n = 2m. By contrast, the Novak–Ritter formulas use only 2s more points than
the Stroud bound as n → ∞.

Theorem 1.3 partially solves a problem of Stroud [20, p. 18]: Are there PI 5-
cubature formulas for Cn, Bn, or Δn with O(n2) or O(n3) points? Theorem 1.3
provides QLPI 5-cubature formulas with O(n2) points for Cn, O(n3) points for Bn,
and O(n4) points for Δn. In section 3, we will establish a special QLPI 5-cubature
formula for Bn with O(n2) points and QLPB and QLPI 3-cubature formulas for Δn

with O(n) points. Thus the only remaining case of Stroud’s question is the n-simplex
in degree 4 or 5.

Remark 1. The formula in Theorem 1.3 for Sn−1 is technically a QLPB formula
if we take the definition of boundary in general topology. However, we take boundary
in the sense of geometric topology, so that Theorem 1.3 is correct as stated.

2. Proofs. Proof of Theorem 1.1. First, identify an affinely independent set of
q points in R

q−1 with the finite field Fq. For each 1 ≤ i ≤ �, choose a linear map
πi : R

q → R
n that sends Fq to Fi and define π : R

(q−1)� → R
n to be their direct sum:

π = π1 ⊕ π2 ⊕ · · · ⊕ π�.

Because F1 ∗ F2 ∗ · · · ∗ F� is a t-design for the measure μ on R
n, the identity∫

P (�x)dμ =
1

q�

∑
�p∈F�

q

P (π(�p))

holds for any polynomial P of degree at most t on R
n. Now suppose that we thin the

set F = π(F�
q) to a set G = π(A) for some set A ⊂ F

�
q. Since π is linear, if we want G

to be a t-cubature formula for μ as F is, it suffices that

1

q�

∑
�p∈F�

q

P (�p) =
1

|A|
∑
�p∈A

P (�p)(2.1)

for any polynomial P on R
(q−1)� of degree at most t. If P is a monomial, then as a

function on F
�
q, it depends on at most t coordinates. Conversely, any function on F

�
q

that depends on at most t coordinates is realized by a polynomial of degree at most
t. It follows that (2.1) is equivalent to the statistical property that the projection of
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A onto any t of the I coordinates of F
�
q is constant-to-1. Such a set A is called an

orthogonal array of strength t.

If C is an [�, k, t+ 1]q code, then the dual space C∗ (in the sense of linear algebra
over Fq) is a linear orthogonal array of strength t. Since C has dimension k, C∗ has
dimension �− k and therefore has q�−k points. Thus we can let G = π(C∗).

The refinement when t is odd and each Fi is centrally symmetric is as follows. If
q is odd, we replace R

q−1 by R
(q−1)/2, and we position Fq as a centrally symmetric

set that does not lie in a hyperplane. (In other words, the points of Fq are the
vertices of an affinely regular cross polytope, plus the origin.) We further demand
that negation in Fq coincides with negation in R

(q−1)/2. Then any centrally symmetric
subset A ⊂ F

�
q is centrally symmetric in R

(q−1)�/2. In this case both sides of (2.1)
vanish when P is an odd polynomial. Thus A need only be an orthogonal array of
strength t − 1. In particular, this is so if A = C∗, because C∗ is a vector space over
Fq and vector spaces are centrally symmetric sets.

Finally, if t is odd, q is even, and C is a zero-sum code, then C∗ contains the
vector (1, 1, . . . , 1) and therefore is invariant under addition by this vector. In this
case we replace R

q−1 in the general construction by R
q/2 and realize Fq as a centrally

symmetric set (the vertices of a regular cross polytope). We further demand that
adding 1 in Fq coincides with negation in R

q/2. Then once again C∗ is centrally
symmetric and need only be an orthogonal array of strength t− 1.

The following lemma establishes Theorem 1.2 as a corollary of Theorem 1.1.

Lemma 2.1. Let q be a prime power, let m, t ∈ Z≥0, and let

α = t− 1 −
⌊
t− 1

q

⌋
.

Then there is a [qm, k, u]q zero-sum code C with

u ≥ t + 1, k ≥ qm −mα− 1.

The code in Lemma 2.1 is called an (extended, narrow-sense) BCH code [14, 3,
1, 10]. We will use the duals of BCH codes to thin cubature formulas. As it happens,
the dual of a BCH code of this type is another BCH of the same type.

Proof. It is easier to define the dual code C∗ and show that it is an orthogonal
array. Since it is a linear space, it suffices to show that every coordinate projection
πI : C∗ → F

I
q with |I| ≤ t is onto. There is an important Fq-linear function

Trq : Fqm → Fq

called the trace. (It is analogous to the taking the real part of a complex number.)
First, we interpret F

qm

q as the space of all functions from Fqm to Fq. We define C∗ as
the set of all functions

f : Fqm → Fq, f(x) = Trq(P (x)),

where P is a polynomial of degree at most t−1. If I ⊆ Fqm and |I| ≤ t, the polynomial
P can achieve any desired values on I by Lagrange interpolation. Thus the distance
of C is at least t + 1.

The space of polynomials of degree t−1 on Fqm has Fqm -dimension t, and therefore
Fq-dimension mt. But taking the trace reduces the dimension in two ways. To give
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an explicit example, suppose that q = 2, t = 3, and m is arbitrary. Then C∗ is the
set of all

f(x) = Tr2(ax
2 + bx + c).

The apparent dimension of C∗ is 3m. But f depends only on the trace of c, so c
contributes 1 rather than m to the dimension of C∗. Moreover, Tr2(bx) = Tr2(b

2x2),
so the linear term can be removed from f , with the conclusion that

dimC∗ ≤ m + 1.

In general, the constant term of P contributes 1 to the dimension and the other t− 1
terms contribute m each, except that  t−1

q � terms are superfluous by the Frobenius
automorphism x �→ xq. Thus

dimC∗ ≤ mα + 1,

as desired.
Since constants are polynomials of degree 0, C∗ contains constant vectors. There-

fore C is a zero-sum code.
On the face of it, Lemma 2.1 establishes Theorem 1.2 only when � = qm. If

qm−1 < � < qm, we can project a BCH code from F
qm

q to F
n
q . This preserves the O(tα)

bound at the expense of worsening the constant factor. If � is not much more than
qm−1, we can slightly improve the projected code with a projection that annihilates
up to α− 1 independent vectors in C∗. (See Theorem 3.1 for an example.)

Remark 2. The inequalities for u and k in Lemma 2.1 become sharp as m → ∞.
Proof of Theorem 1.3. The simplest case to consider is with uniform measure and

R
n with Gaussian weight function. This fits Theorem 1.2 with � = n, provided that

for each t we find an EI, centrally symmetric t-quadrature formula with Gaussian
weight and with q points for some prime power q. Since we assume no upper bound
on q, the very general Seymour–Zaslavsky theorem [18] establishes the existence of
such formulas. (The proof of the theorem, but not the statement, shows that there is
a Q such that we can take any q ≥ Q. In particular we can take q = 2k. We can then
symmetrize the formula by taking the multiset union of it and its reflection.) On the
other hand, since q is large, (t − 2)/q� = 0. Thus Theorem 1.2 produces formulas
with O(nt−2) points.

We will need the same construction for the orthant R
n
≥0 with exponential weight

function exp(−||�x||1). This measure does not have central symmetry, and the end
result is formulas with O(nt−1) points, again with � = n.

The next simplest case is the n-simplex Δn. Recall that Δn has barycentric
coordinates

x0 + x1 + · · · + xn = 1

which realize it as a subset of the orthant R
n+1
≥0 . If P (�x) is a polynomial of degree t

on Δn, then it can be homogenized : it can be expressed as a homogeneous polynomial

of degree t by attaching a factor of
(∑

i xi

)t−s
to each term of degree s. In this case∫

Δn

P (�x)d�x =
1

(n + t)!

∫
R

n+1
≥0

P (�x) exp(−||�x||1)d�x.

Therefore we can project any nonexterior cubature formula for R
n+1
≥0 radially onto

Δn without loss of degree, although the weights change. (If the origin happens to
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be a cubature point, discard it.) In particular, we can project the cubature formulas
provided by Theorem 1.2 as explained previously. The formulas still have O(nt−1)
points, although the weights are no longer equal.

The same argument works for the sphere Sn−1 ⊂ R
n for centrally symmetric

formulas. Every polynomial P on Sn−1 can be expressed as PS + PA, where PS is
centrally symmetric and PA is centrally antisymmetric. The integral of PA vanishes,
as does its sum with respect to any centrally symmetric formula. Meanwhile every
term of PS has even degree, so it can be expressed as a homogeneous polynomial on
R

n using the equation

x2
1 + · · · + x2

n = 1

for the unit sphere. Then∫
Sn−1

P (�x)dΩ =
2

(n+t
2 − 1)!

∫
Rn

P (�x) exp(−||�x||22)d�x,

where Ω is usual surface volume on Sn−1. Again, any centrally symmetric cubature
formula can be radially projected and the weights can be adjusted.

Formulas for the ball Bn and the spherical shell Bn − rBn can be derived from
formulas for the sphere Sn−1 using radial separation of variables [20, Thm. 2.8]. The
result is a product formula where the radial factor can be Gaussian quadrature. The
number of points in this factor does not increase with dimension.

The cross-polytope C∗
n is the union of 2n simplices. Thus we can obtain formulas

for C∗
n by repeating formulas for Δn. In degree t, we do not need all 2n copies; instead

we can repeat it in the pattern of the BCH code over F2 defined by polynomials of
degree t− 1 over F2m . Such a code has O(n�t/2�) vectors and the formula for Δn has
O(nt−1) points, so the total is O(n�3t/2�−1) points.

The n-cube Cn = [−1, 1]n is in some ways the most interesting case. As in
the Gaussian case, it is a straight application of Theorem 1.2 using an equal-weight
quadrature formula. But in this case we will carefully choose the quadrature formula
on [−1, 1] to itself be a convolution of s = t/2� formulas with two points. For
example, the Chebyshev 5-quadrature formula has points at

±

√
5 +

√
5

30
±

√
5 −

√
5

30
.

This is evidently a convolution, as is any centrally symmetric, equal-weight formula
with four points. Elsewhere [13] we show that the 2s points

±z1 ± z2 ± · · · ± zs

form a Chebyshev-type (2s + 1)-quadrature formula for [−1, 1] with constant weight
if and only if the zi’s are the roots of the polynomial

Q(x) = xs − xs−1

3
+

xs−2

45
− · · · + (−1)s

1 · 3 · 15 · · · (4s − 1)
.

We also show that all roots of Q are real and that the resulting quadrature formula
is interior. The n-fold product power of this formula is thus a convolution of sn pairs
of points, so we can apply Theorem 1.2 with � = sn and q = 2.

Finally, the O(n�t/2�) formula for the n-cube Cn yields a O(n�t/2�+1) formula for
the cube surface ∂Cn just by repeating the formula for Cn−1 on each facet of Cn.
Then radial separation of variables produces a product formula for the cubical shell
Cn − rCn which also has O(n�t/2�+1) points.
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3. Special constructions and examples. In this section we will consider some
examples and special constructions with concern for constant factors. For this pur-
pose, we spell out more precisely the notion of an orthogonal array. Let A be a
finite set. If a subset T ⊂ An has the property that its projection T → AI is a
constant-to-1 map for every |I| ≤ t, then T is an orthogonal array of strength t, or an
OA(|T |, n, |A|, t) [9]. If A = Fq and T = C∗ is the dual of an [n, k, t]q code, then T
is an OA(qn−k, n, q, t− 1). We will also say that T is an [n, n− k, t∗]q to refer to its
linear structure and indicate its dual distance.

If |A| = q is a prime power and t is fixed, then BCH codes are the best presently
known Fq-linear orthogonal arrays in the limit n → ∞. But a few nonlinear arrays
are slightly better.

A Hadamard matrix of order n is an n×n matrix with entries ±1 and with orthog-
onal rows (and therefore orthogonal columns). It is easy to show that a Hadamard
matrix is equivalent to an OA(2n, n, 2, 3). A [2m,m+ 1, 4∗]2 BCH code, which is also
called a first-order Reed–Muller code, yields a Hadamard matrix of order 2m. But
there are also Hadamard matrices for other values of n, for example when n − 1 is
prime and 4 divides n. The Hadamard conjecture asserts that there is a Hadamard
matrix of every order n divisible by 4.

For any even m ≥ 4, there is a Kerdock code which is a nonlinear OA(22m, 2m, 2, 5).
It has half as many points as the corresponding [2m, 2m + 1, 6∗]2 BCH code [9, 8,
11]. For any even m ≥ 6, there is a Delsarte–Goethals code which is a nonlin-
ear OA(23m−2, 2m, 2, 7) [5]. It has one-fourth as many points as the corresponding
[2m, 3m + 1, 8∗]2 BCH code.

The following result comes from thinning some cubature formulas of Stroud, some
of whose points have a product structure.

Theorem 3.1. Let n ≥ 6, and let

k =

⎧⎪⎨
⎪⎩

4m, 22m−1 < n ≤ 22m,

4m + 2, 22m < n ≤ 22m + 2m,

4m + 3, 22m + 2m < n ≤ 22m+1.

Then the sphere Sn−1, R
n with Gaussian measure, and the ball Bn admit QLPI 5-

cubature formulas with 2k + 2n points.

Proof. The formulas Sn:5-3, Un:5-2, and Er2

n :5-3 listed in Stroud [20, pp. 270,
294, and 317] have 2n + 2n points with 2n of them lying on the vertices of a cube.
These 2n points can be thinned to either the [22m+1, 4m + 3, 6∗]2 BCH code or the
Kerdock OA(24m, 22m, 2, 5) and then projected down to n dimensions.

If 22m < n ≤ 22m+2m, then the [22m+1, 4m+3, 6∗]2 BCH code can be reduced in
half by carefully choosing the projection. The code has a vector of weight 22m − 2m,
so when n is only slightly larger than 22m, we can choose a projection that annihilates
this vector.

In each of the three cases, the result is a formula with 2k + 2n points.

Actually, Theorem 3.1 is not quite optimal, because it uses a convenient set of
good distance-6 linear codes and nonlinear strength-5 orthogonal arrays rather than
the best ones presently known. A complicated map of the best presently known linear
codes over F2 of length n ≤ 256 is provided by the “best codes” functions in Magma
[22]. Undoubtedly this map could be augmented by nonlinear orthogonal arrays, but
we know of no effort to do so. When n is a power of 2, Kerdock and BCH codes are
the best presently known choices.
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Victoir [21] also established Theorem 3.1 (with BCH codes). If n = 2m and
Stroud’s formulas for Sn−1 is thinned using a BCH code, it then has equal weights
and is therefore a 5-design. Interestingly, in this case it has a transitive symmetry
group and was previously found by Calderbank et al. [2]. Similar constructions were
found by König [12], by Sidelnikov [19], and by Schechtman, interpreting the work of
Hajela [7].

We can obtain a good 3-cubature formula for the cube Cn by a straightforward
application of Theorem 1.2 using the 2-point Gaussian quadrature formula for the
interval [−1, 1]. Thinning the product formula using a BCH code yields a 2j+1-point
formula when 2j−1 < n ≤ 2j . When n = 2j , or more generally whenever there is a
Hadamard matrix of order n, the product formula can be thinned to the 2n vertices
of a certain regular cross-polytope inside Cn. A formula due to Stroud, Cn:3-1 (see
[20, p. 230]), also uses the vertices of a regular cross-polytope but not the same one.

We can obtain a 3-cubature formula with O(n) points for Δn−1 with a similar
construction. Using known Hadamard matrices, the formula has 3n + o(n) points; if
the Hadamard conjecture holds, it has between 3n − 1 and 3n + 5 points. First, the
positive ray R≥0 with exponential weight has an equal-weight 2-quadrature formula
with points at 0 and 2. If we apply Theorem 1.1 to this formula and a Hadamard
matrix of order n, the result is a 2n-point formula F on R

n
≥0 which also has degree 2.

However, if our interest is integration on Δn−1, we need only consider homogeneous
polynomials on R

n
≥0. The formula F correctly integrates every degree 3 monomial

other than x3
i . We can fix F for these monomials, without changing its sum for x2

ixj

or xixjxk, by adding a point at (1, 0, 0, . . . ) (and permutations) with weight 2.

The projected formula on Δn−1 consists of these points and weights in barycentric
coordinates:

(1, 0, 0, . . . , 0)S ,
2

n(n+1)(n+2) ,

( 2
n ,

2
n , . . . ,

2
n , 0, 0, . . . , 0)H , n

2(n+1)(n+2) ,

( 1
n ,

1
n , . . . ,

1
n ), 4n

(n+1)(n+2) .

The subscript S denotes full symmetrization, as in Stroud’s notation. The subscript
H denotes symmetrization in the pattern of a Hadamard design. (See section 4.) This
produces a formula with 3n−1 points, provided that there exists a Hadamard matrix
of order n. When there is none, we can use a Hadamard matrix of order � > n. The
formula on Δ�−1 with 3� − 1 points can be projected onto Δn−1, as in the proof of
Theorem 1.3. We can take � = n + o(n) by letting � − 1 be the first prime after n
which is 3 mod 4. If the Hadamard conjecture holds, we can take � = 4�n/4�.

Stroud asked for a practical, PI 5-cubature formula for C100. Following Theo-
rem 1.3, we can find one by thinning the product formula coming from the 4-point
Chebyshev quadrature on [−1, 1]. This product formula is the convolution of 200
pairs of points, so we can thin it using the Kerdock OA(216, 28, 2, 5), projected to
200 dimensions. The cubature formula therefore has 216 = 65536 points, which would
have been fairly practical even in 1971 when Stroud asked the question. (The Kerdock
code used here was discovered shortly afterward [11], but the BCH codes were known
in 1959 [1, 10].)

Victoir [21] found another thinning of the same Chebyshev product formula with
412 = 16777216 points, which the author tied in the first version of this paper.

Note that the Chebyshev–Kerdock 5-cubature formula for C100 is overdetermined.
The threshold of exact determination for centrally symmetric 5-cubature formulas on
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C100 is 87651 points. Meanwhile the centrally symmetric Tchakaloff bound is 8852652
points, while the Stroud lower bound is 5050 points.

Finally, Schürer [17] compared the numerical accuracy of various cubature and
quasi-Monte Carlo methods for the integration of various test functions defined on
Cn with 2 ≤ n ≤ 100. He assumed a more modern limit of 225 evaluations of
the integrand. For much of this test regime we can suggest the following cubature
formulas: Start with the power of the convolutional 7-quadrature formula [13] for
[−1, 1], whose points are approximately at

±.500128 ± .243941 ± .153942.

Then thin the n-fold product power of this formula using a Delsarte–Goethals code.
The result is an EI 7-cubature formula with at most 223 points up to dimension
256/3� = 85.

4. Other comments. Victoir [21] proposes thinning symmetric cubature for-
mulas rather than product or convolution formulas. The enabling result of symmetric
cubature formulas is Sobolev’s theorem: If a linear action of a finite group G pre-
serves μ, then a cubature formula consisting of orbits of G need only be checked for
G-invariant polynomials. Victoir extends Sobolev’s theorem with a G-invariant gen-
eralization of Tchakaloff’s theorem: A PI cubature formula needs only as many orbits
as the dimension of R[�x]G≤t, the space of G-invariant polynomials of degree at most t.
One important special case is when G is the 2-element central symmetry group. If μ
is a measure on R

n with central symmetry and t is odd, the bound from this version
of Tchakaloff’s theorem is O(nt−1) points.

Even if a cubature formula F uses very few orbits of G, some of the orbits might
be very large. Victoir proposes thinning each large orbit separately. He notes that this
can be done using linear programming, among other methods; linear programming
on a set of G-orbits should be much easier than general numerical methods to find
positive cubature formulas for μ. If G = (Z/2)n is the group of independent sign
changes of all n coordinates, then an orbit of Gq can be identified with F

k
2 for some

k ≤ n. In this case Victoir found the constructions of Theorems 1.1 and 1.2. (In
the case of 5-cubature on Cn, he found a special construction with O(n3) points with
elements of both Theorem 1.1 and the n-cube case of Theorem 1.3.)

If G is the group of coordinate permutations, then an orbit whose points have
two distinct coordinates can be identified with the set of k-subsets of an n-set. A
geometric t-design T within this orbit is also a traditional combinatorial t-design, or
an (n, k, t) − λ design. Namely, T is a collection of blocks of size k in a set of n such
that each t-subset is contained in exactly λ blocks. In particular, an (n, n

2 , 3) − n
4

design is called a Hadamard design, because it comes from the rows of a Hadamard
matrix.

These constructions motivate the notion of a weighted orthogonal array. We
define it as a finite set A and a measure μ on An that projects to uniform measure
on each AI with |I| ≤ t. More generally, μ might project to σn for some reference
measure σ on S. Such arrays could improve of Theorem 1.1; the factor formulas would
not need to have equal weights.

Finally, cubature formulas coming from Theorem 1.1 could be viewed as quasi-
Monte Carlo methods. They are similar to some constructions of (t,m, s)-nets, which
are quasi-Monte Carlo methods first defined and largely developed by Niederreiter
[15]. Nonetheless, PI cubature formulas and discrepancy-based quasi-Monte Carlo
methods are thought to have complementary advantages [17]. We believe that the



NUMERICAL CUBATURE USING ERROR-CORRECTING CODES 907

improved asymptotics presented here could change the standing of cubature among
numerical methods for integration.

Acknowledgments. The author would like to thank Hermann König, Eric Rains,
and Hong Xiao for useful discussions. The author is also indebted to the late Arthur
Stroud for his excellent introduction to the cubature problem.
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Abstract. Archimedes’ hat-box theorem states that uniform measure on a sphere projects
to uniform measure on an interval. This fact can be used to derive Simpson’s rule. We present
various constructions of, and lower bounds for, numerical cubature formulas using moment maps as
a generalization of Archimedes’ theorem. We realize some well-known cubature formulas on simplices
as projections of spherical designs. We combine cubature formulas on simplices and tori to make
new formulas on spheres. In particular, Sn admits a 7-cubature formula (and sometimes a 7-design)
with O(n4) points. We establish a local lower bound on the density of a positive interior cubature
formula on a simplex using the moment map.

Along the way we establish other quadrature and cubature results of independent interest. For
each t, we construct a lattice trigonometric (2t + 1)-cubature formula in n dimensions with O(nt)
points. We derive a variant of the Möller lower bound using vector bundles. And we show that
Gaussian quadrature is very sharply locally optimal among positive quadrature formulas.

Key words. cubature formulas, moment maps, projective space, lattices
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1. Introduction. Let μ be a measure on R
n with finite moments. A cubature

formula of degree t for μ is a set of points F = {�pa} ⊂ R
n and a weight function

�pa �→ wa ∈ R such that ∫
P (�x)dμ = P (F )

def
=

N∑
a=1

waP (�pa)

for polynomials P of degree at most t. (If n = 1, then F is also called a quadrature for-
mula.) The formula F is equal-weight if all wa are equal, positive if all wa are positive,
and negative if at least one wa is negative. Let X be the support of μ. The formula F

is interior if every point �pa is in the interior of X; it is boundary if every �pa is in X and
some �pa is in ∂X; and otherwise it is exterior. We will mainly consider positive interior
(PI) and positive boundary (PB) cubature formulas, and we will also assume that μ
is normalized so that total measure is 1. PI formulas are the most useful in numerical
analysis [30, Chap. 1]. This application also motivates the main question of cubature
formulas, which is to determine how many points are needed for a given formula and a
given degree t. Equal-weight formulas that are either interior or boundary (EI or EB)
are important for other applications, in which context they are also called t-designs.

Our starting point is to use Archimedes’ hat-box theorem [2] to relate quadra-
ture on the interval [−1, 1] and cubature on the unit sphere S2, both with uniform
measure. (Lest the reader be misled, this starting point is much simpler and easier
than the generalizations that will eventually follow.) Archimedes’ theorem says that
the orthogonal projection π from S2 to the z coordinate preserves normalized uniform
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π

Fig. 1. Archimedes’ hat-box theorem.

measure. In plainer terms, for any interval I ⊂ [a, b] or other measurable set, the area
of π−1(I) is proportional to the length of I; see Figure 1. (It is called the hat-box
theorem because the surface area of a hemispherical hat equals the area of the side
of a cylindrical box containing it.) Therefore if F is a t-cubature formula on S2, its
projection π(F ) is a t-cubature formula on [−1, 1].

The 2-sphere S2 has five especially nice cubature formulas given by the vertices
of the Platonic solids. Their cubature properties follow purely from a symmetry
argument of Sobolev [27]. Suppose that G is the group of common symmetries of a
putative cubature formula F and its measure μ. If P (�x) is a polynomial and PG(�x)
is the average of its G-orbit, then∫

PG(�x)dμ =

∫
P (�x)dμ, PG(F ) = P (F ).

Therefore it suffices to check F for G-invariant polynomials. In particular, if every
G-invariant polynomial of degree ≤ t is constant, then any G-orbit is a t-design.

By Sobolev’s theorem, the vertices of a regular octahedron form a 3-design on S2.
If we project this formula using Archimedes’ theorem, the result is Simpson’s rule.
Another projection of the same six points yields 2-point Gauss–Legendre quadrature.
Figure 2 shows both projections. The eight vertices of a cube are also a 3-design. One
projection is again 2-point Gauss–Legendre quadrature; another is Simpson’s 3

8 rule.
Finally the twelve vertices of a regular icosahedron form a 5-design by symmetry. One
projection of these twelve points is 4-point Gauss–Lobatto quadrature.

The rest of this article applies toric moment maps, which generalize Archimedes’
theorem to higher dimensions, to the cubature problem. Section 2 shows that several
well-known quadrature formulas on the interval and cubature formulas on simplices
are projections of higher-dimensional symmetric formulas. Section 4 combines formu-
las on tori with formulas on simplices and moment maps to make formulas on spheres
and projective spaces. In particular, it constructs a PI 7-cubature formula on the
sphere Sn with O(n4) points. Finally, section 6 uses moment maps to establish a
local lower bound for the density of points in any PI cubature formula on a simplex.
A similar lower bound holds for an arbitrary simple convex polytope.

Along the way we establish some other quadrature and cubature results that are
not derived from moment maps but are of independent interest. Section 3 establishes
new lattice cubature formulas on tori that are similar to cubature formulas based
on error-correcting codes [18]. In particular, it constructs for each t a trigonometric
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2
3

1
6

1
6

(a) Simpson’s rule

1
2

1
2

(b) 2-point Gauss-Legendre rule

Fig. 2. Two projections of the octahedron rule.

(2t+1)-cubature formula on [0, 2π)n of lattice type with O(nt) points. This improves
a construction of Cools, Novak, and Ritter with O(n2t) points and negative weights
[5], and agrees up to a t-dependent constant factor with the Stroud-type lower bound
[20, 22, 31]. Section 5 presents a refinement of this well-known lower bound in odd
degree. It is similar to the Möller bound [19] but applies to some new cases. Section 6
also establishes that Gaussian quadrature is very sharply locally optimal among all
positive quadrature formulas (Theorem 6.3). This bound might be previously known,
since Gaussian quadrature has been widely studied, but the author could not find it
in the literature.

2. Projection constructions. The immediate higher-dimensional generaliza-
tion of Archimedes’ theorem replaces the sphere S2 by the complex manifold CPn.
This manifold has a natural metric and a natural real algebraic structure. Concretely,
assume that the projective coordinates (z0 : z1 : · · · : zn) of CPn are normalized so
that

|z0|2 + |z1|2 + · · · + |zn|2 = 1.
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1
12

3
4

Fig. 3. A 2-dimensional generalization of Simpson’s rule.

Then the coordinates zkzj together embed CPn into C
(n+1)2 as a real algebraic va-

riety (with C
(n+1)2 interpreted as a 2(n + 1)2-dimensional real vector space) and a

Riemannian manifold. This embedding is familiar in quantum mechanics as the den-
sity matrix (or density operator) formalism [21, sect. 2.4]. The induced metric is
called the Fubini–Study metric. Since the metric yields a measure on CPn, and since
it is a real algebraic variety, we can consider cubature formulas on it.

There is a projection π : CPn → Δn to the n-simplex given by

π(z0 : z1 : · · · : zn) = (|z0|2, |z1|2, . . . , |zn|2),

using normalized coordinates for CPn and barycentric coordinates for Δn. It is linear
and preserves normalized measure. In more abstract terms, π has these properties
because CPn is a projective toric variety and π is its moment map. Archimedes’
theorem is a description of the moment map of CP 1 ∼= S2. Thus, if F is an interior
t-cubature formula on CPn, then π(F ) is a t-cubature formula on Δn.

Ivanović [13] and Wootters and Fields [34] defined one interesting family of 2-
designs on CP q−1 for q = pk a prime power. If p is odd, then the 2-design is the orbit
of a standard basis vector ek in the group generated by cyclic permutation and linear
operators of the form

L(ek) = ωTrp(ak2+bk+c)ek,

where ω is a pth root of unity and Trp is the Fp trace function on Fq. The construction
is more complicated when p = 2. In either case, the standard basis projects to the
vertices of Δq−1, and the other q2 vectors project to the center. The result is a
standard degree 2 generalization of Simpson’s rule for Δq−1, shown in Figure 3 when
q = 3.

Other interesting designs and cubature formulas on CPn−1 come from designs
and formulas on S2n−1. The generalized Hopf fibration

h : S2n−1 → CPn−1

is a quadratic, volume-preserving map from S2n−1 to CPn−1. Namely, if we place
S2n−1 in C

n, h takes each point to the complex line containing it. The map h projects
a 2t- or 2t + 1-cubature formula on S2n−1 to a t-cubature formula on CPn−1.

One interesting example is the 240 roots of the E8 root system, which are a 7-
design as well as the solution to the sphere kissing problem in R

8 [4, sect. 14.2]. The
root system has two natural positions in C

4. In the first position, it is generated from
the two points

(1, 1, 1, 0), (1 − ω, 0, 0, 0)
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1
40

9
40

(a) 8 points

1
60

32
60

4
60

(b) 11 points

Fig. 4. 3-cubature formulas on Δ3 from the E8 root system.

by freely permuting the first three coordinates, applying the map (a, b, c, d) �→ (d, a,−b, c),
and multiplying any one coordinate by ω, a cube root of unity. In the second position,
it is generated from the three points

(1, 1, 1, 1), (2, 0, 0, 0), (1 + i, 1 + i, 0, 0)

by freely permuting the four coordinates and multiplying any two coordinates by i.
These two positions respectively exhibit the Eisenstein and Gaussian lattice structures
of the E8 lattice. The Hopf fibration sends the Eisenstein position of the root system
to a 40-point 3-design in CP 3 and the Gaussian position to a 60-point 3-design.
Then the moment map projects these two 3-designs to 3-cubature formulas for the
tetrahedron Δ3 that appear in Abramowitz and Stegun [1, p. 895]. They have 8 and
11 points, respectively, and are shown in Figure 4.

The composition π ◦ h of the moment map and the Hopf fibration is a torus
fibration τ2 : R

2n → Δn−1 that does not fully depend on the complex structure
R

2n = C
n but only on the decomposition of R

2n into n orthogonal planes. Explicitly,
the map is

τ2(x1, . . . , x2n) = (x2
1 + x2

2, x
2
3 + x2

4, . . . , x
2
2n−1 + x2

2n).
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This projection is analogous to a map τ1 : Sn−1 → Δn−1 defined by Xu [35]:

τ1(x1, . . . , xn) = (x2
1, . . . , x

2
n).

The Xu map does not preserve uniform measure. Rather, it takes uniform measure
on the sphere to the measure with weight function

w1(�y) =
2nπn/2

n
2 !n

√
y0y1y2 . . . yn−1

in barycentric coordinates.
In the case of the E8 root system, one interesting set of orthogonal planes are

the four eigenplanes of the abelian subgroup of Aut(E8) of the form C5 × C5. Rains
[25] has computed the corresponding 3-cubature formula on Δ3 using Magma [37].
In barycentric coordinates on Δ3, its points and weights are the orbits of the two
weighted points

�p1 =
1

10
(0, 0, 5 −

√
5, 5 +

√
5), w1 =

1

24
,

�p2 =
1

10
(2, 2, 3 +

√
5, 3 −

√
5), w2 =

5

24
,

under the action of the coordinate permutations (34) and (13), (24). In particular, it
has eight points. In conclusion, at least three interesting 3-cubature formulas for Δ3

arise as projections of E8 root system. The root system model explains the simple
rational values of the weights.

The E8 lattice is one of four widely studied and highly symmetric lattices in low
dimensions; the other three are the Coxeter–Todd lattice K12 in R

12, the Barnes–
Wall lattice Λ16 in R

16, and the Leech lattice Λ24 in R
24 [4, Chap. 4]. In each case,

the set of short vectors has transitive symmetry, and in each case, Sobolev’s theorem
establishes its degree as a spherical design.

The 756 short vectors of K12 form a 7-design on S11. In one of its several pre-
sentations as an Eisenstein lattice in C

6 (the “3-base” presentation [4, sect. 7.8]), the
short vectors are generated from the two points

(1, 1, 1, 1, 1, 1), (1 − ω, ω − 1, 0, 0, 0, 0)

by freely permuting coordinates, multiplying the coordinates by powers of ω whose
exponents sum to 0, and negating all coordinates. The projection τ2 sends these
points to a 16-point 3-cubature formula on Δ5 generated from the points

�p1 =
1

2
(1, 1, 0, 0, 0, 0), w1 =

1

42
,

�p2 =
1

6
(1, 1, 1, 1, 1, 1), w2 =

27

42
,

by freely permuting coordinates. This formula was found by Stroud [29, 30].
The 4320 short vectors of Λ16 form a 7-design on S15. In its simplest position

(which exhibits its Gaussian lattice structure), the short vectors are generated from
the two vectors

(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

(2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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by permuting coordinates under the group GL(4, 2)� (Z/2)4 of affine automorphisms
of (Z/2)4, together with sign changes that keep the coordinate sums divisible by 4.
The projection τ2 sends these points to a 51-point 3-cubature formula on Δ7 generated
from the points

�p1 = (1, 0, 0, 0, 0, 0, 0, 0), w1 =
1

1080
,

�p2 =
1

2
(1, 1, 0, 0, 0, 0, 0, 0), w2 =

1

270
,

�p3 =
1

4
(1, 1, 1, 1, 0, 0, 0, 0), w3 =

4

135
,

�p4 =
1

8
(1, 1, 1, 1, 1, 1, 1, 1), w4 =

64

135
,

under the action of the affine group GL(3, 2) � (Z/2)3. This is not an optimal PI
3-cubature formula, because the orbit of �p2 can be eliminated, leaving only 23 points.
But it does have a novel property: Instead of full symmetrization, the orbit of �p3 is
in the pattern of the (8, 4, 3) Steiner system. This is as good as full symmetrization
for 3-cubature, because any monomial of degree 3 involves at most three coordinates.
The structure of this Barnes–Wall projection led the author to relate cubature to
combinatorial t-designs and orthogonal arrays [18].

The above position of Λ16 is compatible with its Gaussian lattice structure. Rains
found another interesting position which is compatible with an Eisenstein lattice struc-
ture. The corresponding 3-cubature formula on Δ7 has 50 points. They are generated
from

�p1 = (1, 0, 0, 0, 0, 0, 0, 0), w1 =
1

720
,

�p2 =
1

4
(1, 1, 1, 1, 0, 0, 0, 0), w2 =

1

90
,

�p3 =
1

3
(1, 1, 0, 0, 1, 0, 0, 0), w3 =

1

80
,

�p4 =
1

12
(4, 0, 4, 0, 1, 1, 3, 3), w4 =

1

60
,

�p5 =
1

12
(4, 0, 4, 0, 1, 1, 1, 1), w5 =

1

40
,

�p6 =
1

12
(3, 1, 3, 1, 1, 1, 1, 1), w6 =

1

30
,

�p7 =
1

12
(3, 1, 1, 1, 1, 1, 3, 1), w7 =

1

30
,

by the coordinate permutations (12), (13), (24), (57), (68) and (15), (26), (37), (48).
The 196560 short vectors of the Leech lattice form an 11-design on S23. The lattice

has a space Eisenstein lattice structure, which Conway and Sloane call the complex
Leech lattice [4, sect. 7.8]. The complex basis that they give leads to a 5-cubature



NUMERICAL CUBATURE FROM ARCHIMEDES’ THEOREM 915

formula on Δ11 generated by the points

�p1 =
1

2
(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), w1 =

1

10920
,

�p2 =
1

6
(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0), w2 =

9

3640
,

�p3 =
1

18
(7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), w3 =

27

1820
,

�p4 =
1

18
(4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), w4 =

27

3640
,

by the action of the Mathieu group M12. In other words, the coordinates of �p2 are
permuted in the pattern of the (12, 6, 5) Steiner system, and the points of the other
coordinate are permuted freely. The total is 276 points. Another interesting basis of
the plane consists of the mutual eigenplanes of the (Z/5)3 subgroup of the isometry
group of the Leech lattice. Rains has computed that the corresponding 5-cubature
formula on Δ11 has 498 points, consisting of 22 orbits of the surviving coordinate
permutations. However, since none of the Barnes–Wall formulas on Δ7 is optimal, it
is not clear that the smaller of these formulas is either.

3. Torus constructions. The constructions in the next section depend on an
auxiliary case that generally works out better than cubature on Sn, CPn, and Δn,
namely cubature on algebraic tori. There is a developed theory for a special case of
this problem known as trigonometric cubature [6, 7]. We will describe a more general
class of problems, with one new result for the classic trigonometric cubature problem
(Theorem 3.3).

Consider a torus group T ∼= (S1)n together with a faithful linear action on some
real vector space V ∼= R

N . Then we can identify T with any faithful orbit O to
give it a real algebraic structure. Since T is a compact group, it also comes with
Haar measure (i.e., uniform measure). Given both structures, we can then consider
cubature formulas for T . If a cubature formula F is a t-design and forms a subgroup
of T , then it is called a lattice formula or an additive t-design.

Proposition 3.1. The lattice cubature problem on T is equivalent to a lattice
packing problem as follows:

1. The real algebraic structure on T does not depend on the orbit O or the base
point chosen on O. The ring of polynomials on T is the same as the character
ring R(T ).

2. Every character χ : T → C is homogeneous as a polynomial on T . Its degree
defines a norm on T̂ , the character group of T . The norm is generated by
unit steps corresponding to the characters that appear in V ⊗ C.

3. The characters that are constant on a subgroup F ⊂ T form a sublattice F̂ ⊆
T̂ . This correspondence is a bijection between finite subgroups and sublattices
such that |F | = [T̂ : F̂ ].

4. The subgroup F is a t-design if and only if F̂ has minimum distance d = t+1.
The proof of Proposition 3.1 is lengthy but routine and can be left as an exercise

for the reader. It is essentially established in the literature when T = T (SO(2n)) acts
on R

2n by separate rotations in n orthogonal planes. This case is equivalent to the
(cubic) trigonometric cubature problem, defined as cubature formulas on the n-cube
[0, 2π)n, which are exact for trigonometric polynomials of degree t [7]. All of the
arguments generalize without change.

When T = T (SO(2n)), T̂ is naturally identified with Z
n, and its norm is the �1
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or taxicab norm. Another torus of interest to us is T = T (PSU(n + 1)), the group of

diagonal unitary matrices with determinant 1 modulo its center. It acts on C
(n+1)2 ,

interpreted as the space of (n + 1) × (n + 1) complex matrices, by conjugation. In

this case T̂ = An, the root lattice of PSU(n + 1), and its norm is defined by taking
the roots of An as unit steps.

Theorem 3.2. Given a real algebraic torus T of dimension n, let K ⊂ T̂ ⊗R be
the real convex hull of the unit steps in T̂ . Let δL(K) be the lattice packing density of

K, and let VolK be the volume of K normalized by T̂ . Let t ≥ 0 and let d = t + 1.
Then the best additive t-design F on T has at least

dn(VolK)

2nδL(K)
≤ |F | ≤ dn(VolK)

2nδL(K)
(1 + O(t−1))

points.
Theorem 3.2 has been noted independently by several people for trigonometric

cubature, but may originally be due to Frolov [11]. In outline, a lattice F̂ ⊂ T̂ with
minimum distance d produces a packing of the dilated body d

2K. The packing density

δL(K) then yields a lower bound on the index of F̂ . On the other hand, if Λ is the
center lattice of the best packing of K, then when t is large, d

2Λ can be approximated

by a sublattice of T̂ . This establishes the upper bound.
Note also that the best Λ has rational coordinates relative to T̂ (or they can be

made rational if Λ is not unique), because K is a rational polytope. Thus there exist
special distances d such that the best F has exactly

dn(VolK)

2nδL(K)

points. Also if some d achieves exactitude, then so does kd for every k > 1.
If T = T (SO(2n)) is the standard cubic n-torus, then K is the n-cross polytope

C∗
n. For example, Minkowski established that the lattice packing density of the regular

octahedron C∗
3 is 18

19 . Thus there exists an additive 5-design on T (SO(6)) with 38
points [11, 23].

Since C∗
2 is a square, its packing density is 1. Noskov [23] found the best discrete

approximation to this packing for every distance d to obtain lattice rules for T (SO(4)).
If d = 2s, then the best approximation is exact and there is a (2s − 1)-design with
2s2 points. If d = 2s + 1, then the best approximation corresponds to the tiling of
Z

2 by the discrete �1 ball of radius s, or the tiling of the plane R
2 by certain Aztec

diamonds, as shown in Figure 5(a). The ball and the corresponding 2s-design have
s2 + (s + 1)2 points.

Noskov’s designs have a counterpart for T (PSU(3)), where ̂T (PSU(3)) = A2 is
the triangular lattice. If we identify A2 with the Eisenstein integers Z[ω], then the
highest-density lattice with minimum distance d is the ideal generated by⌊

d

2

⌋
− ω

⌊
d + 1

2

⌋
.

When d = 2s, the dual (d − 1)-design has 3s2 points and exactly matches the tiling
of the plane by regular hexagons. When d = 2s + 1, it has 3s2 + 3s + 1 points and
corresponds to a tiling of the plane by the hexagonal polyhex of order s (an “Afghan
hexagon”), as shown in Figure 5(b).
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(a) Aztec diamonds for T (SO(4)).

(b) Afghan hexagons for T (PSU(3)).

Fig. 5. Polyomino and polyhex tilings that lead to lattice rules.

Theorem 3.3. Let t ≥ 0. The torus T (SO(2n)) has a (2t+1)-design with O(nt)
points. More precisely it has a 2t-design with (2n)t(1 + o(1)) points as n → ∞ and a
(2t + 1)-design with twice as many points. The torus T (PSU(n + 1)) has a t-design
with nt(1 + o(1)) points as n → ∞.

Remark 3.1. Theorem 3.3 can be compared with a prior result by Cools, Novak,
and Ritter [5], who obtained negative interior (NI) t-cubature formulas for T (SO(2n))
with O(nt) points. Another comparison is with the lower bound due to Stroud [31],
Noskov [22], and Mysovskikh [20] for trigonometric 2t-cubature:

|F | ≥ (2n)t(1 − o(1))

t!
.

The Möller bound applies to trigonometric (2t + 1)-cubature in its interpretation as
cubature on T (SO(2n)) because it is a centrally symmetric algebraic variety. It yields
the inequality

|F | ≥ 2(2n)t(1 − o(1))

t!
.



918 GREG KUPERBERG

Section 5 establishes an analogous lower bound for t-cubature on T (PSU(n)) (Corol-
lary 5.4):

|F | ≥ nt(1 − o(1))

�t/2�!�t/2�! .

Thus for each t, Theorem 3.3 is asymptotically optimal to within a constant
factor, even though the lower bounds do not require that F be positive or interior.

Proof. By Proposition 3.1, our task is to find suitable lattices in Z
n = ̂T (SO(2n))

and An = ̂T (PSU(n + 1)). Our task is fulfilled by Craig lattices [4, sect. 8.6] in An

and skew analogues of Craig lattices in Z
n. We describe the An case first.

We can model An as the set of points in Z
n+1 with zero coordinate sum. Let

p ≥ n + 1 be prime, and index the standard basis {�ea} of Z
n+1 by some subset

N ⊂ Z/p. Let p > t > 0, and define a linear map φ : Z
n+1 → (Z/p)t by

φ(�ea) = (a, a2, . . . , at).

We define the lattice

Λ(t)(An) = kerφ ∩An.

Plainly the index of Λ(t)(An) is at most pt = nt(1 + o(1)). (If n is large and p ≈ n, it
is pt, because any lower power of p would violate the Stroud-type bound.)

We claim that the distance of Λ(t)(An) is t + 1. To show this, we will show that

φ is injective on the simplex Δ
(t)
n ⊂ Z

n+1
≥0 of nonnegative vectors with coordinate sum

t. A vector �x ∈ An with root-step length at most t can be expressed as the difference

of two vectors in Δ
(t)
n ; therefore injectivity shows that none of these vectors lie in

Λ(t)(An).

We can interpret a vector �x ∈ Δ
(t)
n as a multiset of S over the set {0, . . . , n} with

|S| = t: if

�x =
∑
a

ma�ea,

then ma is the multiplicity of a ∈ S. In this interpretation, φ(�x) is the list of power
sums ∑

a∈S

ak

for 1 ≤ k ≤ t. By standard inversion formulas [28], these power sums determine
the elementary symmetric functions of the elements of S when p > t, which are the
coefficients of the polynomial ∏

a∈S

(x− a).

Thus φ(�x) determines S as a multiset and the vector �x, and it is injective on Δ
(t)
n .

For Z
n (with the �1 norm), let p > 2n be prime. Index the standard basis {�ea} of

Z
n by some subset N ⊂ Z/p such that N is disjoint from −N . Define φ : Z

n → (Z/p)t

by

φ̂(�ea) = (a, a3, a5, . . . , a2t−1),
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Fig. 6. A Hamming-like “plus” tiling.

and define

Λ(t)(Zn) = ker φ̂.

Then the index of Λ(t)(Zn) is again at most (and usually exactly) pt = n1(1 + o(1)).
Its distance property can be explained by embedding Z

n isometrically into A2n using
the map

α : �ea �→ �ea − �e−a.

Then

Λ(t)(Zn) = α−1(Λ(2t)(An)).

Since Λ(2t)(An) has distance at least 2t + 1, so does Λ(t)(Zn). We can boost the
distance to 2t + 2 by passing to its even-sum sublattice.

Remark 3.2. When t = 1, the number p in the proof of Theorem 3.3 need not
be prime, and the lattices Λ(1)(Zn) and Λ(1)(An) produce lattice tilings of the ball
of �1-radius 1 in Z

n and the combinatorial simplex Λ(1) in An. For example, when
n = 2, these tilings are equivalent to familiar tilings of the plus pentomino (Figure 6)
and the triangle trihex. The plus tiling resembles combinatorial tilings coming from
Hamming codes [4, sect. 3.2]. More generally, Craig lattices resemble low-distance
BCH codes. This resemblance is what led the author to Theorem 3.3.

4. Fibration constructions. The projection construction in section 2, while
instructive, is backwards in a sense: It is harder to make t-cubature formulas for
CPn−1 and S2n−1 than for Δn−1 for most values of n and t. In this section we will
use the same projections to lift cubature formulas to spheres and projective spaces
from simplices. The construction also requires the definition and construction of
cubature formulas on tori from section 3.

Theorem 4.1. Let α : X → Y be one of the three projections h, π, or τ2, and
let T be a generic fiber. Let s = 2t+1 when X = S2n−1 and s = t when X = CPn−1.
Given an interior (or boundary) t-cubature formula F for Y and an interior s-cubature
formula FT for T , there is a twisted product s-cubature formula FX = FT � FY for
X. It satisfies |FX | = |FT | |FY | and it inherits positivity from its factors. In the
boundary case, |FX | ≤ |FT | |FY |.

Note that in the three cases, T is isomorphic to S1, T (SO(2n)), and T (PSU(n)),
respectively.
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Proof. Let σY be the discrete measure on Y corresponding to the cubature formula
FY , and let σX = α∗(σY ) be the pull-back of σY to X. In other words, for each point
p of weight w in FY , σX has a term consisting of uniform measure on the torus fiber
α−1(p). Also let μX and μY be normalized uniform measure on X and Y .

We claim that ∫
X

P (�x)dμX =

∫
X

P (�x)dσX

for any polynomial of P of degree s; in other words μX and σX are s-cubature equiv-
alent [18]. If we assume the natural group structure on T , then T acts on X in each
of the three cases with Y as the set of orbits. Then∫

X

P (�x)dσX =

∫
X

PT (�x)dσX ,

∫
X

P (�x)dμX =

∫
X

PT (�x)dμX ,

where PT is the average of P with respect to the action of T . The polynomial PT

then descends to a polynomial PY on Y of degree t, and∫
X

PT (�x)dσX = P (FY ),

∫
X

PT (�x)dμX =

∫
Y

PY (�y)dμY

because α preserves measure.
The measure σX evidently has a twisted product s-cubature formula FX = FT �

FY given by replacing each fiber by a copy of FT . (A singular fiber corresponding to
a boundary point of T can be replaced by a projection of FT .) Since μX and σX are
s-cubature equivalent, FX is a cubature formula for μX as well.

Remark 4.1. The proof of Theorem 4.1 is analogous to that of Sobolev’s theorem
with the finite group G replaced by the torus T . Indeed, the argument works for any
compact group.

The simplest case of Theorem 4.1 is the Hopf map h. In this case the theorem
says that a t-cubature formula F on CPn−1 lifts to a (2t+1)-cubature formula F ′ on
S2n−1 with (2t + 2)|F | points. This relation was also observed by König [16].

Corollary 4.2. The n-sphere Sn has a 7-cubature formula with O(n4) points
for all n, more precisely 4n4(1+o(1)) points. The 3-sphere S3 has a (2s+1)-cubature
formula with

|F | =

{
(s + 1)(s2 + 3), s odd,

(s + 1)(s2 + s + 2), s even,

points.
Proof. The simplex Δn has a 3-cubature formula with O(n) points [18] constructed

using Hadamard designs. This can be combined with the 7-design on T (SO(2n)) with
O(n3) points provided by Theorem 3.3, for a total of O(n4) points. More precisely,
the formula on Δn has points at the corners, each of which lifts to O(n) points; a point
in the center, which lifts to O(n3) points; and 2n+ o(n) points on �n/2�-dimensional
faces, each of which lift to 2n3(1 + o(1)) points. Only the last family of points is
significant, and it comprises 4n4(1 + o(1)) points.

Noskov’s formulas from section 3 include a (2s + 1)-design on the square torus
T (SO(4)) with 2(s + 1)2 points. When s is odd, this can be combined with the
Gauss–Lobatto s-quadrature formula on the interval Δ2 with s+3

2 points. Two of the
fibers are circles and can be replaced by 2(s + 1) points instead of 2(s + 1)2 points.
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The total is then (s + 1)(s2 + 3) points. When s is even, it can be combined with
the Gauss–Radau s-quadrature formula with s+2

2 points. In this case one fiber is a
circle.

Remark 4.2. The first part of Corollary 4.2 actually yields a 7-design on Sn−1

with O(n6) points whenever there is a Hadamard matrix of order n. In this case the
weights of the 3-cubature formulas on Δn−1 are 2

n(n+1)(n+2) at the corners, n
2(n+1)(n+2)

at the faces, and 4n
(n+1)(n+2) at the center. Thus the weights are all commensurable up

to a factor of 2n2 (note that n is even), and the cubature formula can be interpreted
as a 7-design with this multiplicity factor. Moreover, copies of the lattice formulas on
the torus fibers can be shifted to make the design multiplicity-free. Better yet, the
design need have only O(n4) points if, for example, n = 4 · 7k. In this case the prime
p used in the proof of Theorem 3.3 can be replaced by the prime power 7k+1. The
number of points on each fiber then compensates for all but a bounded part of the
factor of 2n2 in the weights.

The previous best construction of 7-designs on Sn−1 is due to Sidelnikov [26] and
requires O(2k(k+1)/2) points when n = 2k.

A useful variant of Theorem 4.1 involves the moment map τ2 : R
2n → R

n defined
by the same formula as τ2 : S2n−1 → Δn−1, namely,

τ2(x1, . . . , x2n) = (x2
1 + x2

2, x
2
3 + x2

4, . . . , x
2
2n−1 + x2

2n).

This τ2 takes uniform measure on the ball Bn to uniform measure on the simplex

Δ′
n =

{
�x|xk ≥ 0,

∑
xk ≤ 1

}
.

When n = 2, Noskov’s formulas together with some ad hoc cubature formulas for the
triangle yield some economical formulas for the 4-ball B4. For example, there is a
PB 3-cubature formula on the triangle x, y ≥ 0, x + y ≤ 1 with points and weights
generated from

�p1 =

(
2

5
,
2

5

)
, w1 =

25

48
,

�p2 =

(
161 + 17

√
14

1344
, 0

)
, w2 =

16 − 2
√

14

25

by switching the coordinates and negating
√

14. This formula lifts to 1 generic fiber
in B4, which can be replaced with 32 points and 4 singular fibers, which are circles
and can be replaced with 8 points each. The result is a PI 7-cubature formula on B4

with 64 points.
Wandzura and Xiao [33] found competitive PI s-cubature formulas for s up to 30;

Figure 7 shows one example. Most of these yield competitive PI (2s + 1)-cubature
formulas on B4 and S5. The formulas could probably be improved further with a
search on the triangle that favors nodes on the edges.

The map τ2 : R
2n → R

n also takes Gaussian measure on R
2n to exponential

measure on R
n
+. For example, there is a PB exponential 4-cubature formula on R

2
+

with points and weights generated from

�p1 ≈ (1.50766353, 1.50766353), w1 ≈ 0.354104443,

�p2 ≈ (6.29508677, 1.76717584), w2 ≈ 0.00876905581,

�p3 ≈ (0.285606152, 0), w3 ≈ 0.556110610,

�p4 ≈ (3.27491992, 0), w4 ≈ 0.0722468398
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Fig. 7. A 175-point 30-cubature formula found by Wandzura and Xiao [33].

by switching the coordinates. It lifts to 3 generic fibers with 50 points each and
4 singular fibers with 10 points each. The result is a positive Gaussian 7-cubature
formula on R

4 with 190 points.

5. An algebraic lower bound. Let X be the Zariski closure of the support
of a measure μ on R

n, and let A be the ring of polynomial functions on X. (Recall
that the Zariski closure of a set S, or closure in the Zariski topology, is the smallest
algebraic variety containing S.) In other words, A is the quotient of R[�x ] by the ideal
IX of polynomials that vanish on X. The ring A has a degree filtration coming from
the degree filtration of R[�x ]. Stroud [31, 30] established an important lower bound
on an arbitrary 2t-cubature formula F for μ (not necessarily positive or interior), as
follows.

Theorem 5.1 (after Stroud). If F is a 2t-cubature formula for μ, then

|F | ≥ dimA≤t.

Noskov [22] and Mysovskikh [20] observed that this applies to trigonometric cu-
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bature by taking X = T (SO(2n)). (According to Möller [19], the bound was also
noted independently in special cases by other authors, e.g., Radon.)

Proof. Define a bilinear form

b : A≤t ×A≤t → R

by

b(P,Q) =

∫
X

P (�x)Q(�x)dμ.

The form b is positive-definite because the integrand of b(P, P ) is nonnegative; more-
over, if the integrand vanishes on X, then P = 0 as an element of A. Therefore b
is nondegenerate, and its rank is dimA≤t. On the other hand, the integrand lies in
A≤2t, so a 2t-cubature formula F leads to the formula

b(P,Q) =
∑

wkP (�pk)Q(�pk).

This formula realizes b as a sum of |F | rank 1 forms. Therefore |F | is at least the
rank of b, as desired.

An interesting scholium of the proof of Theorem 5.1 is that if F is a 2t-cubature
formula, then its points suffice to interpolate polynomials on X of degree t.

It is curiously difficult to improve the Stroud bound for odd-degree cubature.
However, the inference that lower bounds improve mainly in even degrees is not
consistent with the Hopf fibrations

h : S2n+1 → CPn, h : T (SO(2n + 2)) → T (PSU(n + 1)).

On the one hand, these maps are quadratic and double the degree of cubature in
passing from the target to the domain; in particular, they do not preserve odd and
even. On the other hand, sections 2 and 4 together show that cubature in the domain
and target are comparably difficult when n � t.

The Hopf fibration example suggests a generalization of Stroud’s theorem involv-
ing group actions and degree doubling.

Theorem 5.2. Let μ be a measure on R
n, and let X be the Zariski closure of

its support. Let Y ⊂ R
k be another affine real algebraic variety on which a compact

group G acts. Let A and B be the rings of complex-valued polynomials on X and Y ,
and suppose that there is a ring isomorphism

A
∼=−→ InvG(B)

that doubles the filtration degree of A. Let V be a unitary representation of G, and
define the filtered vector space

M = InvG(B ⊗ V ).

If F is a t-cubature formula for μ, then

|F | ≥ dimM≤t

dimV
.

We will always take Y to be the coordinate ring of another algebraic variety Y ,
which is a principal G-bundle over X, such that the bundle projection α : Y → X
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is quadratic. The A-module M can then be understood as the space of polynomial
sections of a vector bundle E over X with fiber V . The sections in M≤t then behave
like polynomials elements of A, except that their degrees are half-integers. If Y =
X and G is trivial, then E is the trivial line bundle and Theorem 5.2 reduces to
Theorem 5.1. The hypotheses of Theorem 5.2 have been chosen so that the proof of
Theorem 5.1 generalizes to the case when E is not trivial.

Proof. The vector space M (which is naturally an A-module) has an A-valued
Hermitian inner product a induced by the Hermitian inner product on V . More
precisely, let V be the representation conjugate to V and let

M = InvG(V ⊗B)

be the corresponding conjugate of M . (Note that A and B are both self-conjugate by
hypothesis.) Let

ε : V ⊗ V −→ C

be the linearization of the standard Hermitian inner product on V , and let

m : B ⊗B −→ B

be the linearization of multiplication on B. Let a′ be the composition

B ⊗ V ⊗ V ⊗B
I⊗ε⊗I−→ B ⊗B

m−→ B.

We can restrict the domain to

M ⊗M = InvG(B ⊗ V ) ⊗ InvG(V ⊗B).

Since the restricted domain is G-invariant, we can then restrict the target to A. Let
a be this restriction of a′. Although given as a linear map on M ⊗ M , it can be
reinterpreted as a Hermitian inner product on M . In more geometric terms, if M
comes from a bundle E over X with fiber V , then a(f, g) is the pointwise inner
product of two sections f and g of E.

Note that a is positive-definite in the sense that

a(f, f)(�x) ≥ 0

for all �x ∈ X, and if a(f, f) = 0, then f = 0 ∈ M . The rest of the proof follows that
of Theorem 5.1: Define a complex-valued Hermitian inner product b on M≤t by

b(f, g) =

∫
X

a(f(�x), g(�x))dμ.

Then b is also positive-definite, because a is positive-definite and μ is Zariski-dense in
X. Thus, b has rank dimM≤t. A cubature formula F realizes b as a sum of |F | terms
of rank at most dimV .

We state the following three special cases of Theorem 5.2 as corollaries.
Corollary 5.3. If |F | is a (2t + 1)-cubature formula on CPn, then

|F | ≥
(
n + t

n

)(
n + t + 1

n

)
.
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Proof. Let Y be S2n+1, let G be S1 ⊂ C, and let G act by complex rotation on
C

n+1 ⊃ S2n+1. The bundle projection α : Y → X is the Hopf map h. Let V = L1 be
the tautological representation of S1, so that E is the tautological line bundle on CPn.
The space M≤2t+1 is explicitly realized as the space of homogeneous polynomials in
�z and �z of bidegree (t + 1, t). The result follows by noting that

dimM≤2t+1 =

(
n + t

n

)(
n + t + 1

n

)
and that dimL1 = 1.

Corollary 5.4. If |F | is a t-cubature formula on T (PSU(n + 1)), then

|F | ≥ nt(1 − o(1))

�t/2�!�t/2�!

uniformly as n → ∞.
Proof. Let Y be the torus T (SO(2n + 2)), and let G = S1 again act by complex

rotation in C
n+1. In this case M≤2t+1 is spanned by the space of monomials in �z and

�z of bidegree (s + 1, s) with s ≤ t and with the relation

zkzk = 1

for all k. Its dimension is the number of points in the Minkowski difference

Δ(t+1)
n − Δ(t)

n ,

where Δ
(t)
n is the discrete simplex defined in the proof of Theorem 3.3. This is very

similar to Theorem 5.1 for 2t-cubature, because

dimA≤t = |Δ(t)
n − Δ(t)

n |.

There is no concise formula for either number, but there is a concise estimate for fixed
t in the limit n → ∞. If E is either the trivial bundle when t is even or the bundle
L1 (restricted from CPn) when t is odd, then

dimM≤t ≈
(

n + 1

�t/2�, �t/2�, n + 1 − t

)
≈ nt

�t/2�!�t/2�!

as n → ∞, as desired.
Remark 5.1. When F is a lattice formula, Corollary 5.4 is equivalent to Minkowski’s

classic upper bound on the density F̂ as a lattice packing of the discrete simplex Δ
(t)
n .

This and the fact that the Hopf fibration is quadratic led the author to Theorem 5.2.
Corollary 5.5. If μ is a Zariski-dense measure on Sn and F is a (2t + 1)-

cubature formula for μ, then

|F | ≥ 2

(
n + t

t

)
.

Remark 5.2. Corollary 5.5 matches the Möller bound [19] for cubature on Sn,
but it is more general because the measure μ need not be centrally symmetric.

Proof. The idea is to let Y = Spin(n+ 1) and G = Spin(n), where Spin(n) is the
connected double cover of the Lie group SO(n). Then

X = Spin(n + 1)/Spin(n) = SO(n + 1)/SO(n) = Sn.
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Our choice for the representation V is the spinor representation of Spin(n) when n
is odd and a semispinor representation when n is even. The rest of the argument
is a review of standard but nontrivial representation theory. We will borrow some
specific calculations from Koike [15]. For an introduction to representation theory of
Lie groups, see Varadarajan [32] or Fulton and Harris [12].

We divide the argument into steps. It is convenient to postpone the cases with
n ≤ 3 because of notational discrepancies.

1. If G is a compact, connected, and simply connected Lie group of rank n,
then it has an irreducible unitary representation V (an irrep) for every list
of nonnegative integers (a1, a2, . . . , an). The list is usually expressed in the
vector form

�λ = a1
�λ1 + a2

�λ2 + · · · + an�λn,

where �λ is called the highest weight of V . The standard notation for this V
is V (�λ).

Both Spin(2n) and Spin(2n+1) are compact, connected, simply connected
and have rank n when n ≥ 1, except that Spin(2) is not simply connected.

We will denote the irrep V (�λ) of Spin(n) by V (n,�λ).

2. When n ≥ 4, the representation V (n + 1, t�λ1) is realized as the space At of

harmonic polynomials of degree t on Sn. The representation V (2n + 1, �λn)
is the spinor representation of Spin(2n + 1), and its dimension is 2n. The

representations V (2n,�λn−1) and V (2n,�λn) are the semispinor representations
of Spin(2n), and the dimension of each is 2n−1.

3. The matrix entries of V (n,�λ) for all �λ can be viewed as polynomials on
Spin(n). (Indeed, this works for any compact Lie group.) Their span forms

a ring which is generated by the entries of V (n,�λk) for all k. We can define

a degree filtration by giving every matrix entry of every V (n,�λk) degree 2,
except for spinor or semispinor representations, which are given degree 1.

4. For any irrep V (n,�λ), we can define a representation

M(n,�λ) = Ind
Spin(n+1)
Spin(n) V (n,�λ).

There is more than one way to define representation induction in this context.
One way is in terms of the algebraic structure in the previous step. In this
case, M(n,�0 ) is the subring of polynomials on Spin(n+1) which are constant
on left cosets of Spin(n), or in other words the ring of polynomials on

Sn = Spin(n + 1)/Spin(n).

Each M(n,�λ) is not only a representation of Spin(n + 1), but also a filtered
module over M(n,�0). To apply Theorem 5.2, we let

M = M(n,�λ), A = M(n,�0), V = V (n,�λ).

5. The structure of M(n,�λ) can be computed by branching formulas for the
restriction of an irrep of Spin(n + 1) to Spin(n), together with induction-
restriction duality. Induction-restriction duality says in general that if H is
a subgroup of G, V is a unitary irrep of G, and W is a unitary irrep of H,
then the number of times that W appears in the restriction ResHGV equals
the number of times that V appears in the induced representation IndG

HW .
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The restriction formulas were computed by Koike [15, Thms. 11.2 and

11.3]. When �λ = �λn, Koike’s formulas together with the degree filtrations
yield the decompositions

M(2n,�λn)≤2t+1
∼=

⊕
s≤t

V (2n + 1, s�λ1 + �λn)

and

M(2n − 1, �λn)≤2t+1
∼=

⊕
0≤s≤t

(
V (2n, s�λ1 + �λn−1) ⊕ V (2n, s�λ1 + �λn)

)
.

6. By the Weyl dimension formula,

dimV (2n + 1, s�λ1 + �λn) = 2n
(

2n− 1 + s

s

)
,

dimV (2n, s�λ1 + �λn) = 2n−1

(
2n− 2 + s

s

)
,

dimV (2n, s�λ1 + �λn−1) = 2n−1

(
2n− 2 + s

s

)
.

Combining the dimension formulas with the decomposition of M(n,�λ)≤2t+1

yields

|F | ≥ dimM(n,�λ)≤2t+1

dimV

=
∑

0≤s≤t

2

(
n− 1 + s

s

)
= 2

(
n + t

t

)
.

This completes the proof of the result when n ≥ 4.
The proof for n ≥ 3 is not really different, but the notation for the representa-

tions changes because the groups involved have a simplified structure. Nonetheless,
both Spin(1) and Spin(3) have a spinorial representation V , while Spin(2) has two
semispinorial representations, and either one can be called V . In each case, A is the
ring of polynomials on Sn with doubled degrees, the elements of V have degree 1, and

M = Ind
Spin(n+1)
Spin(n) V.

The notation for the calculations changes, but the final answer is the same.
Remark 5.3. The n = 2 case of Corollary 5.5 coincides with the n = 1 case

of Corollary 5.3, and so does the proof. This was the original inspiration for Corol-
lary 5.5.

6. A local lower bound. Our final application of moment maps is to help
establish a local lower bound on the density of points of a PI or PB cubature formula
on the simplex Δn. The bound was originally inspired by PI cubature formulas due to
Wandzura and Xiao [33], which were found by simulated annealing. As in the example
shown in Figure 7, the points in these formulas accumulate transversely at the edges
of the triangle. Another related result is that the limiting density of the points of
Gauss–Legendre quadrature (i.e., the zeros of Legendre polynomials) is 1

π
√

1−x2
[8].
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This density can be interpreted as the linear projection of uniform measure on a circle,
which is related to Archimedes’ moment map (see Figure 9 below).

Theorem 6.1 and Corollary 6.2 establish a lower bound on the limiting density of
any sequence of PI and PB formulas on Δn that generalizes the limiting density of
Legendre zeros. Moreover, if the local density is high in certain regions, in particu-
lar near the vertices of Δn, then the weights there must be low. By this reasoning,
Theorem 6.3 and Corollary 6.4 establish that a t-design on Δn requires many more
points than an efficient t-cubature formula does as t → ∞ (namely, O(t2n) points
versus O(tn) points). Along the way, Theorem 6.3 establishes that Gaussian quadra-
ture for an arbitrary weight function is very sharply locally optimal among all positive
quadrature formulas. Finally Scholium 6.5 generalizes the results for uniform measure
on Δn to uniform measure on an arbitrary simple convex polytope.

Theorem 6.1. A PI or PB 2t− 1-cubature formula F on the simplex Δn is an
ε-net with respect to the metric

ds2 =
dx2

0

2x0
+

dx2
1

2x1
+ · · · + dx2

n

2xn

in barycentric coordinates, where cos 2ε is the highest zero of the Jacobi polynomial

P
(n−1,0)
t (x).

In the proof and later, we will abbreviate (n− 1, 0) as “#” in superscripts.
Proof. The idea of the proof is to find, for each �p ∈ Δn and each ε′ > ε, a P of

degree 2t− 1 on Δn such that ∫
Δn

P (�x)d�x > 0

but P (�x) > 0 only when �x ∈ Δn is in the ε′-ball Bε′(�p ) around �p. We can call this
ball the positive island of P (�x); see Figure 8. The existence of such a polynomial P
forces F to have an evaluation point in Bε(�p ), for otherwise P (F ) ≤ 0.

+

−

−

−
−

Fig. 8. A polynomial on Δn with a small positive island.

We first claim that the stated metric is the distance between fibers of the moment
map π with respect to the Fubini–Study metric on CPn. To see this it suffices to
check the following: The real locus RPn ⊂ CPn is perpendicular to the fibers of π
and meets each generic fiber 2n times. Indeed, π is a bijection on the orthant RPn

≥0

with non-negative projective coordinates. Moreover, RPn
≥0 is isometric to the orthant

Sn
≥0 of a unit n-sphere, and the restriction of π agrees with the restriction of the Xu

map τ1. The metric ds2 on Δn is exactly the push-forward of the standard metric on
Sn
≥0 under τ1. See Figure 9 for an example.
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RP 1
≥0

CP 1

π

Fig. 9. The moment map π restricts to the Xu map τ1.

Consider the linear projection α : Δn → [−1, 1] given by

α(�x) = 2x0 − 1.(1)

The map α sends uniform measure on CPn to the measure

μ(x) = n21−n(1 − x)n−1.

The tth orthogonal polynomial with respect to this measure μ is the Jacobi polynomial

P#
t = P

(n−1,0)
t . Let p#

t be its highest zero.
Define a polynomial Qδ : CPn → R by

Qδ(�z) = Qδ(x) =
P#
t (x)2(x− p#

t + δ)

(x− p#
t )2

,(2)

where x = α(π(�z)) and δ > 0. It has degree 2t− 1 as a polynomial in x, as well as a

polynomial on CPn. Moreover, Qδ vanishes at the zeros of P#
t , except at the highest

zero, at which its value is positive. Therefore by Gaussian quadrature (!) with respect
to the measure μ, ∫

CPn

Qδ(�z)d�z =

∫ 1

−1

Qδ(x)dμ > 0.

At the same time, Q is nonpositive outside of the region

x > p#
t − δ.

This region corresponds to the ball of radius ε′ around (1 : 0 : 0 : · · · : 0), with

2(cos ε′)2 − 1 = cos 2ε′ = p#
t − δ.

This can be confirmed by comparing with the orthant RPn
≥0 mentioned previously.

Note that ε′ → ε as δ → 0.
Given �q ∈ CPn, define Qδ,�q by rotating Qδ by some isometry of CPn that takes

(1 : 0 : 0 : · · · : 0) to �q. Define QT
δ,�p : Δn → R, where �p = π(�q ), by averaging Q over

torus fibers:

QT
δ,�p(�x) =

1

|π−1(�x)|

∫
π−1(�x)

Qδ,�p(�z )d�z.
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Then ∫
Δn

QT
δ,�p(�x)d�x =

∫
CPn

Qδ,�p(�z )d�z > 0,

and QT
δ,�p is nonpositive outside of the ball of radius ε′ around �p = π(�q ) in the induced

metric on Δn. Thus, QT
δ,�p has the desired properties.

Remark 6.1. A somewhat weaker version of Theorem 6.1 holds when F is positive
and exterior, but with real evaluation points. Polynomials similar to QT

δ can be
constructed directly as products of factors that vanish on quadratic surfaces in R

n ⊃
Δn, with only one unsquared factor that vanishes on the boundary of Bε′(�p ). As
it happens, the boundary of Bε′(�p ) is a quadratic surface. We did not refine this
sketched argument into a proof with explicit estimates.

Corollary 6.2. Any sequence of PI or PB t-cubature formulas on Δn has

limiting point density Ω(tn
∏

k x
−1/2
k ), where �x ∈ Δn is fixed and given in barycentric

coordinates, and t → ∞.
Proof. The corollary follows from computing the volume form corresponding to

the metric ds2 in the statement of Theorem 6.1 and estimating the covering radius ε.
The asymptotic behavior of zeros of Jacobi polynomials is given in Abramowitz and
Stegun [1, p. 787]. The key step in the estimate is the limit

lim
t→∞

P
(a,b)
t (cos θ

t )

P
(a,b)
t (1)

= 2aθ−aa!Ja(θ),(3)

where Ja(z) is the ordinary Bessel function of the first kind. Convergence to the limit
is analytic in θ. Thus

lim
t→∞

tθ
(a,b)
t,t+1−k = ja,k

for every fixed k, where cos θ
(a,b)
t,k /t is the kth zero of P

(a,b)
t (x) and ja,k is the kth zero

of Ja(x). The estimate can be established directly in our geometry by noting that

P#
t (2|z0|2 − 1) is a harmonic function on CPn. The harmonic equation on CPn is

then locally approximated by the harmonic (or Helmholtz) equation on R
2n, whose

radial solutions are derived from Bessel functions.
In our case,

cos 2ε = cos
θ#
t,t

t

for (2t− 1) cubature. Thus

ε =
jn−1,1

2t
(1 + o(1)) = Θ(t−1),

which is also Θ(t−1) for t-cubature.
Theorem 6.3. Let μ be an arbitrary normalized measure on R whose support has

at least 2t points. Let p1, . . . , pt and w1, . . . , wt be the points and weights of Gaussian
t-quadrature for the measure μ. Let F be a positive t-quadrature formula for μ. Then
for each 1 ≤ k ≤ t, F has at least one point in the half-open interval (pk−1, pk], where
p0 = −∞. Moreover, the total weight of all points in (−∞, p1] is at most w1, with
equality if and only if F is the Gaussian quadrature formula.
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Note that Theorem 6.3 is further sharpened by symmetry: F must also have at
least one point in each half-open interval [pk, pk+1), with pt+1 = ∞, and its total
weight in [pt,∞) is at most wt.

Proof. Let φt(x) be the tth orthonormal polynomial with respect to μ (with either
sign), and let At be the leading coefficient of φt(x). If k = 1, let

P (x) =
φt(x)2(p1 + δ1 − x)

(x− p1)2

with δ1 > 0. If k > 1, let

P (x) =
φt(x)2(x− pk−1 − δ0)(pk + δ1 − x)

(x− pk−1)2(x− pk)2

with δ1 � δ0 > 0. In both cases, ∫
R

P (x)dμ > 0

by Gaussian quadrature, while P is positive only on the interval (pk−1 + δ0, pk + δ1).
Therefore F has at least one point in this interval. Since F has only finitely many
points, the limit δ1 → 0 establishes that F has a point in (pk−1, pk].

For the second claim, let

P (x) =
φt(x)2

(x− p1)2
.

Then by Gaussian quadrature, ∫
R

P (x)dμ = w1P (p1).

Let q1, . . . , qk be the points of F which are at most p1, and let v1, . . . , vk be their
weights. Then

∫
R

P (x)dμ = P (F ) ≥
k∑

j=1

wjP (qj) ≥ P (p1)

k∑
j=1

wj .

The first inequality holds because P is nonnegative, the second because P decreases
on (−∞, p1].

Corollary 6.4. The least weight of any positive t-cubature formula on Δn (with
uniform measure) is O(t−2n), uniformly in t. Any t-design on Δn has Ω(t2n) points.

Proof. If F is a t-cubature formula on Δn, the map α (see (1)) sends it to a t-
quadrature formula α(F ) on [−1, 1] with Jacobi-polynomial measure. If F is positive,
then the least weight of α(F ) is at least that of F . On the other hand, Theorem 6.3
establishes that the least weight α(F ) is at least the last Christoffel weight wt.

The first claim follows by estimating this weight. One of the standard formulas
for the general Christoffel weight wk is

wk = −
At+1||φt(x)||2μ

Atφ′
t(pk)φt+1(pk)

,
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where φt(x) is the tth orthogonal polynomial, At is its leading coefficient, and pk is

its kth root. In our case, φt = P#
t , pk = p#

t,k, and k = t. We compute

‖P#
t ‖2

μ =
n

2t + n
= Θ(t−1),

At = 2−t

(
n− 1 + 2t

t

)
= Θ(2t).

To estimate (P#
t )′(p#

t,t) and P#
t+1(p

#
t,t), we again appeal to the limit in (3). Differen-

tiating both sides by θ, we obtain

lim
t→∞

− (P#
t )′(cos θ/t)(sin θ/t)

tP#
t (1)

= −a2aθ−aa!J ′
a(θ).

Note that P#
t (1) =

(
t+n−1

t

)
= Θ(tn−1). For a fixed value of θ, the various parts of

the limit yield

(P#
t )′

(
cos

θ

t

)
= Θ(tn+1).

By the same token

(P#
t )′

(
cos

θt
t

)
= Θ(tn+1)

when θt approaches a fixed value of θ, as is the case when θt = θ#
t,t is given by

p#
t,t = cos

θ#
t,t

t
.

By a similar calculation,

(P#
t+1)(p

#
t,t) = Θ(tn−2).

The conclusion is that

wt = Θ(t2n),

as desired.
Scholium 6.5. Let K ⊂ R

n be a convex n-polytope with N facets. Let F be a
t-cubature formula on K with uniform measure. If F is PI or PB and if K is simple,
then F is an ε-net with respect to the metric

ds2 =
dx2

0

x1
+

dx2
2

x2
+ · · · + dx2

N

xN
,

where ε = O(1/t). If F is positive, then its least weight is O(t−2n). If it is a t-design,
then it has at least O(t2n) points.

Proof sketch. The proof of Theorem 6.1 retains its strength if K ⊆ Δn and we
pass from Δn to K, provided that the positive island of the polynomial QT

δ,�p lies within
K. In this case ∫

K

QT
δ,�p(�x)d�x ≥

∫
Δn

QT
δ,�p(�x)d�x > 0.
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In order to properly position QT
δ,�p for all �p ∈ K, we need several embeddings of K

into Δn. For each vertex �x ∈ K, choose a linear embedding L that sends �x to some
vertex of Δn, and that sends the facets incident to �x to facets of Δn. (Equivalently,
for each vertex �x ∈ K, choose a simplex L−1(Δn) ⊇ K whose facets include all facets
of K that meet at �x. See Figure 10.) Then there exists a finite set of L such that the
positive islands of polynomials of the form QT

δ,vq ◦ L together cover K. The formula
F must have a point in each island, which establishes that F is an ε-net.

K

L−1(Δn)

�x

Fig. 10. A simplex L−1(Δn) whose facets contain facets of K that meet at �x.

Similarly, the proofs of Theorem 6.3 and Corollary 6.4 retain their strength if
a uniform measure on K projects by a map α to a measure ν on [−1, 1] which is
dominated by

μ(x) = 2−nn(1 − x)n−1

and which agrees with μ in a neighborhood of 1. (Of course, μ cannot dominate ν if
ν is normalized, so this condition on ν must be dropped.) In this case∫

R

P (x)dν ≥
∫

R

P (x)dμ > 0

for the first half of Theorem 6.3 for the interval (−∞, p1), while∫
R

P (x)dν ≤
∫

R

P (x)dμ

for the second half of Theorem 6.3. A suitable projection α can be realized by posi-
tioning K in Δn so that it touches the vertex x0 = 1, and then restricting the usual
map α to K.

7. Other comments. In this article we have studied the toric moment map on
CPn and on C

n restricted to S2n−1 (which can be interpreted as the level surface
of an invariant Hamiltonian on C

n) as it applies to the cubature problem. Many
of the constructions apply equally well to arbitrary toric varieties. To begin with,
every complex projective variety X inherits both a metric and an affine real structure
from CPn. If X is toric, it also has a volume-preserving moment map whose image
is a centrally symmetric polytope. However, the variety X rarely has much more
symmetry than its moment map image.

The duality between toric cubature (particularly trigonometric cubature) and
lattice packings explored in section 3 suggests a different limit of the cubature problem.
Let K ⊂ R

n be a centrally symmetric convex body. For simplicity let F = {�pa} be
a periodic discrete subset of R

n with a periodic weight function �pa �→ wa. Since
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it is periodic, it has a well-defined Fourier transform F̂ . In this setting, F is a
Fourier K-cubature formula if and only if F̂ is disjoint from the interior of K. The
(continuous) Fourier cubature problem is to minimize the density of F among all K-
cubature formulas or all positive K-cubature formulas. If F is a lattice with equal
weights, then F̂ has the same property, and the Fourier K-cubature problem reduces
to finding the best lattice packing of K. It would be interesting to find examples of
nonlattice formulas that are better than the best lattice formula.

We conjecture that a version of Corollary 5.5 holds, using Theorem 5.2 and the
same spinor bundles, for any centrally symmetric subvariety X ⊂ Sn. That is, we
conjecture Möller’s bound for these varieties, even when the measure μ is not centrally
symmetric.

Theorem 6.1 shows why some tempting approaches to constructing efficient PI or
PB formulas on the simplex Δn, even the triangle Δ2, are bound to fail. For example,
if the points of a putative cubature formula F are fixed in advance, the question of
whether it admits nonnegative weights for t-cubature reduces to linear programming.
But if the points are arranged in some lattice with spacing 1/k, Theorem 6.1 shows
that the weights can only be nonnegative if k = Ω(t2), so that |F | = Ω(t2n).

We believe that the requirement that K be simple in Scholium 6.5 is not essential.
More generally we conjecture that similar results hold if K is not convex. We also
conjecture that the bounds in Theorem 6.1 and Scholium 6.5 are sharp to within a
constant factor. The cubature formulas found by Wandzura and Xiao support this
conjecture, at least when K = Δn.

The proof of Theorem 6.1 was partly inspired by the linear programming method
for bounding kissing numbers, t-designs, and sphere packings [3, 9, 10, 14, 24]. Xu
observed that the method for t-designs also yields bounds on PI t-cubature [36]. In
fact, it yields an upper bound on the �2 norm of the weights of a PI t-cubature
formula, which implies a lower bound on the number of points. We conjecture that
linear programming methods could be used to improve the constants in Theorem 6.1.

Krylov [17] established that if {Ft} is a sequence of interior t-cubature formulas
for a measure μ, then {f(Ft)} converges to

∫
X
f(�x)dμ for every continuous f if and

only if the �1 norm of the weights of Ft is bounded as t → ∞. We conjecture then
that Theorem 6.1 still holds, assuming a bound on the �1 norm of the coefficients of
F instead of assuming that F is positive.
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HOW DATA DEPENDENT IS A NONLINEAR SUBDIVISION
SCHEME? A CASE STUDY BASED ON CONVEXITY

PRESERVING SUBDIVISION∗
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Abstract. The regularity of the limit function of a linear subdivision scheme is essentially
irrelevant to the initial data. How data dependent, then, is the regularity of the limit of a nonlinear
subdivision scheme? The answer is the most obvious—it depends. In this paper, we prove that the
nonlinear convexity preserving subdivision scheme developed independently by Floater and Micchelli
[M. S. Floater and C. A. Micchelli, Approximation Theory, Marcel Dekker, New York, 1998, pp. 209–
224] and Kuijt and van Damme [F. Kuijt and R. van Damme, Constr. Approx., 14 (1998), pp. 609–
630] exhibits a rather strong nonlinear, data-dependent, behavior: For any ν ∈ (1, 2), there exists
initial convex data such that the critical Hölder regularity of the limit curve is exactly ν. We also
show that the limit function of any initial data always has Hölder regularity less than 2, unless if
restricted to a subset of the domain at which the initial data is sampled from the convex branch of
a rational polynomial of degree 2 over degree 1.

This result stands in contrast to what is reported in several recent publications on nonlinear
subdivision schemes [I. Ur Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schröder, SIAM
J. Multiscale Modeling and Simulation, submitted, 2005; G. Xie and T. P.-Y. Yu, Constr. Approx.,
22 (2005), pp. 219–254; G. Xie and T. P.-Y. Yu, Advances in Constructive Approximation, 2004,
pp. 519–533; I. Daubechies, O. Runborg, and W. Sweldens, Constr. Approx., 3 (2004), pp. 399–463;
T. P.-Y. Yu, Cutting corners on the sphere, preprint available at http://www.rpi.edu/∼yut/Papers/
CuttingCorners.pdf, 2005], in which various families of nonlinear subdivision schemes are either
proved or empirically observed to have rather weak nonlinearity in the sense that they produce limit
curves with smoothness insensitive to initial data.

Key words. subdivision/refinement scheme, nonlinear subdivision scheme, convexity preserving
subdivision, Hölder regularity, homogeneous map, real projective plane
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1. Introduction. Subdivision is a method for taking coarsely described data and
recursively generating (typically smooth) data at finer and finer resolution. It can be
used to rapidly generate curves and surfaces with built-in multiple level-of-details.
Linear subdivision in the regular grid setting is also well known to be connected to
wavelet construction via the MRA framework due to Mallat and Meyer; and this
connection had been explored and exploited in various nonlinear settings [8, 17, 2,
18, 5] to construct various nonlinear “wavelet” transforms. Despite the interest in
both wavelets and computer-aided geometric design, there has been little theory on
nonlinear subdivision schemes.

In recent years, it was either observed empirically or proved that certain nonlinear
subdivision schemes exhibit the following weakly nonlinear property: for “most” initial
data, the limit curve produced by the nonlinear subdivision scheme has a critical
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Hölder regularity exactly the same as that produced by a related linear subdivision
scheme. Notable examples include (i) median- and p-mean-interpolating subdivision
schemes [21, 20, 8, 17, 16], (ii) refinement schemes of manifold-valued data [18, 19,
22], and (iii) refinement schemes arising from normal multiresolution analysis [5]. A
conceptually related discovery is reported in [3], where it is shown that an irregular
grid variant of Dubuc’s 4-point interpolatory subdivision scheme [9] has the exact same
critical Hölder regularity as that in the regular grid setting, so long as the irregularity
of the successively refined grids is somehow controlled; and it is conjectured [3, 23] that
a similar phenomenon holds for a wilder class of irregular grid subdivision schemes.

Since the regularity of the limit function of a linear subdivision scheme is essen-
tially irrelevant to the initial data, the aforementioned weakly nonlinear subdivision
schemes share the same property of data-independence.

In this paper, we show that the nonlinear convexity preserving subdivision scheme
(2.1) by [14, 12] produces limit curves with critical Hölder exponents quite heavily
dependent on the initial data, unlike the behavior of a linear or weakly nonlinear
subdivision scheme. Note that the convexity preserving subdivision scheme when
applied to strictly convex data is simply based on the harmonic mean and, similar to
the aforementioned weakly nonlinear schemes, may not occur to be data dependent
at first glance. There exist nonlinear refinement schemes that are more data adaptive
in appearance, e.g., the edge adapted or ENO refinement schemes in [2, 7].

While this paper is intended to be self-contained, the proof of our main result
(Theorem 2.1) uses a key idea from [21], which is described by the commutative
diagram in Figure 1.

We reiterate the lame statement that a lot is known about linear subdivision,
but little is known about their nonlinear counterparts; there are currently many un-
solved open questions in the nonlinear subdivision literature; see the nonexhaustive
list: [18, 19, 5, 21, 20, 8, 17, 13, 16, 15, 14, 12, 2, 22]. Subdivision schemes in vari-
ous geometric and nonlinear settings are of recent practical interest because of their
natural connection with multiscale representations of different data types.

2. Convexity preserving subdivision. In [14, 12], the following nonlinear
subdivision scheme is introduced: fj+1 = Sfj , where S : �(Z) → �(Z) is defined by

fj+1,2k = fj,k, fj+1,2k+1 =
fj,k + fj,k+1

2
− 1

8
H
(
(�2fj)k−1, (�2fj)k

)
.(2.1)

Here Δ is a forward difference operator, and H(·, ·) denotes harmonic mean, i.e.,
H(a, b) = 2ab/(a + b) if ab > 0, and we define H(a, b) = 0 if ab � 0.

It is helpful to bear in mind the linear counterpart of (2.1) based on replacing the
nonlinear harmonic mean by the linear arithmetic mean:

fj+1,2k = fj,k, fj+1,2k+1 =
fj,k + fj,k+1

2
− 1

8
Average

(
(�2fj)k−1, (�2fj)k

)
=

9

16
(fj,k + fj,k+1) −

1

16
(fj,k−1 + fj,k+2).(2.2)

This is the well-known subdivision scheme by Dubuc [9]; we denote its subdivision
operator by S : �(Z) → �(Z).

For r = 1, 2, there exist (nonlinear) subdivision operators S[r] such that

(2.3) S[r] ◦ Δr = Δr ◦ S.
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fj+1 Δfj+1 Δ2fj+1

fj Δfj Δ2fj

(
Δ3fj+1, [Δ2fj+1]∼

)

(
Δ3fj , [Δ2fj ]∼

)
....................................................................................................................................................................................... ............

(Δ, [ ]∼)

............................................................................................. ............
Δ

.............................................................................................................. ............
Δ

........................................................................... ............
Δ

....................................................................................................... ............
Δ

............................................................................................................
.....
.......
.....

S

............................................................................................................
.....
.......
.....

S[1]

............................................................................................................
.....
.......
.....

S[2]

............................................................................................................................................... ............
(Δ, [ ]∼)

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

[S[2]]

......................................................................................................................................................
....
............

Fig. 1. Commutation relations for S.

In particular, S[2]Δ2v = Δ2Sv; if we write w = Δ2v, we have(
S[2]w

)
2k

= (Δ2Sv)2k = (Sv)2k − 2(Sv)2k+1 + (Sv)2k+2

= vk − 2[
vk + vk+1

2
− 1

8
H
(
(�2v)k−1, (�2v)k

)
] + vk+1(2.4)

=
1

4
H(wk−1, wk),

(
S[2]w

)
2k+1

= (Δ2Sv)2k+1 = (Sv)2k+1 − 2(Sv)2k+2 + (Sv)2k+3

=
vk + vk+1

2
− 1

8
H
(
(�2v)k−1, (�2v)k

)
− 2vk+1

+
vk+1 + vk+2

2
− 1

8
H
(
(�2v)k, (�2v)k+1

)
(2.5)

=
wk

2
− 1

8
[H(wk−1, wk) + H(wk, wk+1)].

As a comparison, there exist linear subdivision operators S
[r]

, r = 1, 2, 3, 4, such that

S
[r] ◦ Δr = Δr ◦ S.

It is easy to check, using (2.4)–(2.5), that S[2] is positivity preserving; conse-
quently S[1] is monotonicity preserving and S is convexity preserving. These prop-
erties of S are not shared by its linear counterpart S. More in-depth discussions of
the relationships among convexity preservation, nonlinear means, and rational inter-
polation can be found in [14, 12, 11]. We shall later use the fact that S reproduces
rational polynomials of degree 2 over degree 1.

We denote by R+ the set of positive real numbers, and let �+(Z) := {v | v : Z →
R+} and �∞+ (Z) := �+(Z)∩�∞(Z). By the positivity preserving and locality properties

of S[2], we can view it as operators on either �+(Z) or �∞+ (Z).
By (2.4)–(2.5), we have

(2.6) (S[2]w)2k,2k+1,2k+2 = D(wk−1, wk, wk+1),

where the nonlinear map D : R
3 → R

3 is given by
(2.7)

D(w1, w2, w3) =

(
H(w1, w2)

4
,
w2

2
− 1

8

(
H(w1, w2) + H(w2, w3)

)
,
H(w2, w3)

4

)
.

Since D is homogeneous (i.e., D(λw) = λD(w) for all λ ∈ R and w ∈ R
3), it induces

a quotient map π : P(R3) → P(R3) via the formula π([x]∼) = [Dx]∼. Here if V is a
real vector space, P(V ) := V/ ∼:= {[v]∼ : v ∈ V }, where ∼ is the equivalence relation
defined by v ∼ v′ ⇐⇒ ∃ c �= 0 such that v = cv′.
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Since D leaves R
3
+ invariant, so does π to {[v]∼ : v ∈ R

3
+}. Clearly {[v]∼ : v ∈ R

3
+}

can be identified with R
2
+ by pairing [x, 1, y]T∼ with (x, y) (here x, y > 0.) Viewing π

as a map on R
2
+ under this identification, we have, by (2.7),

(2.8) π(x, y) =

(
2x(1 + y)

2 + x + y
,

2y(1 + x)

2 + x + y

)
.

We have the following facts pertaining to this map:
[P1] (x, x) is a fixed point of π for any x > 0.
[P2] For any x, y > 0, there is a unique x > 0 such that limn→∞ πn(x, y) = (x, x).

Proof. [P1] takes care of the case of x = y. Assume x > y; the other case is
symmetrical. The observation that

(2.9) 1 <
xy + x

xy + y
=

π(x, y)1
π(x, y)2

=
x

y

1 + y

1 + x
<

x

y

implies that as n increases the first component of πn(x, y) decreases monoton-
ically to a limit value x, whereas the second component of πn(x, y) increases
monotonically to the same value.

[P3] For any 0 < a < b, π leaves the square R := [a, b] × [a, b] invariant, i.e.,
π(R) ⊆ R.
Proof. Let (x, y) ∈ R. Without loss of generality, assume x � y. We seek to
show that (x′, y′) := π(x, y) continues to belong to R. By (2.9), we have (i)
x′ � x, (ii) y′ � y, and (iii) x′ � y′. Assume the contrary that (x′, y′) /∈ R;
then either x′ < a or y′ > b. If x′ < a, then y′ < a by (iii), so y < a by (ii),
contradicting the assumption that (x, y) ∈ R. A similar contradiction can be
generated if y′ > b.

The following is a more quantitative version of [P2], and is due to Güntürk.
[P4] L(x, y) := xy/(2 + x + y) is invariant under π, i.e., L(π(x, y)) = L(x, y).

Therefore, for any (x′, y′) ∈ R
2
+, the orbit {πn(x′, y′), : n = 0, 1, 2, . . .} lies on

the level curve C = {(x, y) : L(x, y) = x′y′/(2 + x′ + y′)} and converges (in
a monotonic fashion as described in [P2]) to the limit point (x, x), where x
is the positive root of the quadratic equation L(x, x) = x′y′/(2 + x′ + y′). In
Lemma 2.5 we show that the curve xy/(2 +x+ y) = 1/4 corresponds exactly
to data sampled from rational polynomials of degree 2 over degree 1.

Let Δ : �(Z) → �(Z) or R
N → R

N−1 (N � 2) be the forward differencing operator
defined by (Δm)i = mi+1 −mi. Let

Δ1 := Δ, Δr+1 := Δ ◦ Δr.

(Clearly we are abusing notation when Δ acts on finite vectors. In this case Δr maps
R

N to R
N−r for N � r + 1.)

Next we consider the shrinking factor: for (x, y) �= (1, 1), define

s(x, y) :=
‖ΔD([x, 1, y])‖∞
‖Δ[x, 1, y]‖∞

(2.10)

=
max

( ∣∣ 1
2 − 3

8H(1, x) − 1
8H(1, y)

∣∣ , ∣∣ 12 − 1
8H(1, x) − 3

8H(1, y)
∣∣ )

max(|1 − x|, |1 − y|) .

We define s(1, 1) = 1/4 in order to make s(x, x) = [2(1 + x)]−1 continuous on x > 0.
It is elementary to verify the following:
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[S1] s(x, y) ∈ (0, 1/2) for (x, y) ∈ R
2
+.

[S2] s(x, y) is discontinuous at (and only at) (x, y) = (1, 1). In a small neighbor-
hood of (1, 1), s(x, y) ranges from a little below 1/8 to a little above 1/4;
precisely one can check that

lim
ε→0

inf
‖(x,y)−−(1,1)‖<ε

s(x, y) =
1

8
= lim

(x,y)→(1,1)
xy/(2+x+y)=1/4

s(x, y),(2.11)

lim
ε→0

sup
‖(x,y)−−(1,1)‖<ε

s(x, y) =
1

4
= lim

(x,y)→(1,1)
x=y

s(x, y).

See Figure 2. Warning: The 0.25-contour in Figure 2(b), which is exactly
the curve xy/(2 + x + y) = 1/4, can be misleading due to the discontinu-
ity at (1,1): if (x0, y0) is any point on this curve not equal to (1, 1), then
limn→∞ s(πn(x0, y0)) = 1/8 �= s(limn→∞ πn(x0, y0)) = 1/4.

[S3] s(x, y) � s(π(x, y)) with equality holds iff x = y.
See also Figure 2. Combining [S3] with [P3] and that s(x, x) is decreasing in x, we
have

(2.12) sup
θ∈[a,b]×[a,b]

s(θ) = s(a, a) = [2(1 + a)]−1.
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Fig. 2. (a) Shrinking factor s(x, y). (b) Asymptotic shrinking factor s(limn→∞ πn(x, y)).

Let M , N be integers, M < N . It is well known in approximation theory (see,
e.g., [1, 6]) that for f ∈ C([M,N ]), for α > 0, we have

f ∈ Lip α ⇐⇒ ∃ r ∈ Z+, r > α, s.t. max
2jM�k�2jN−r

|(Δrfj)k| = O(2−jα)(2.13)

⇐⇒ ∀ r ∈ Z+, r > α, max
2jM�k�2jN−r

|(Δrfj)k| = O(2−jα),

where fj is the (length 2j(N −M) + 1) sequence (fj)k = f(2−jk). This equivalence
implies that the critical Hölder regularity exponent of f can be determined from
the exact asymptotic decay rate of max2jM�k�2jN−r |(Δrfj)k| for a large enough
differencing order r, i.e.,

(2.14) sup{α : f ∈ Lip α} = sup
{
α : max

2jM�k�2jN−r
|(Δrfj)k| = O(2−jα)

}
.
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For continuous functions defined on the whole real line instead of a compact
interval, the equivalence in (2.13) with M = −∞ and N = +∞ holds if we assume
that f is bounded. For a (possibly unbounded) continuous function f : R → R, we
say f ∈ Lip α if f |[M,N ] ∈ Lip α for any M < N . Then, under the assumption that
there exists r > α, r ∈ Z+ such that Δrfj ∈ �∞ for all j, we have

f ∈ Lip α ⇐⇒ max
k∈Z

|(Δrfj)k| = O(2−jα).

Remark. Since S is (point-)interpolatory, the subdivision data Sjf0 is exactly the
limit function f sampled on the grid 2−j

Z, so the above result is directly applicable
to analyzing the smoothness of f . For other subdivision schemes, linear or nonlinear,
more subtle arguments related to stability are needed; see [21, section 3] and the
references therein.

As suggested by Figure 1, we shall use r = 3 (i.e., third order differences) to
analyze the limit functions generated by the nonlinear convexity preserving scheme
S.

An essential fact based on the locality property of S is that if we specify the initial
data f0,k at the integers k = M − 2, . . . , N + 2, then the limit function restricted to
the interval [M,N ] is uniquely determined. For v ∈ �(Z), we denote by S∞v or
fv : R → R the limit function; it is shown in [14] that fv is C1 smooth for arbitrary
strictly convex initial data v, i.e., Δ2v ∈ �+(Z).

Remark. Property [S1] already says that ‖Δ3Sjv‖∞ = O((1/2)j) if Δ2v ∈ �∞+ (Z).
With a refined argument, one can prove that

‖Δ3Sjv‖∞ = O((1/2 + ε)j)

for an ε > 0 dependent on v and can be arbitrarily small. This, in turn, implies the
above-mentioned C1 result in [14].

Our main result is the following theorem.
Theorem 2.1. Let v ∈ �(Z) be such that (Δ2v)i−1 = (Δ2v)i+1 and (Δ2v)i > 0

for all i. Assume

(2.15) μ :=
(Δ2v)2i

(Δ2v)2i−1
∈ (0, 1).

(In particular, Δ2v ∈ �∞+ (Z) and is a 2-periodic sequence.) Then

(2.16) sup{α : fv ∈ Lip α} = log2 2(1 + μ).

Therefore, by adjusting the value μ ∈ (0, 1), one can construct strictly convex initial
data v such that the limit function fv has a critical Hölder exponent equal to any
value in (1, 2).

Proof. Write fj := Sjv ∈ �(Z). As r := 3 > 2 > log2 2(1 + μ), it suffices to use
r = 3 in (2.14) and prove

(2.17) ‖Δ3fj‖∞ � [2(1 + μ)]−j , j → ∞.

Note that s(x, x) = [2(1+x)]−1 according to (2.10). The key point here is to relate the
decay rate of ‖Δ3fj‖∞ to the maps π : R

2
+ → R

2
+ and s : R

2
+ → (0, 1/2) introduced

in (2.8) and (2.10).
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Fig. 3. Recursive definition of θj,k.

(1◦) Recall that Δ2fj = (S[2])jw, where w := Δ2v. Recall also that the map
D : R

3 → R
3 in (2.7) describes the operator S[2] via (2.6). Now, if we write

R
3
+ � wj,k :=

(
(S[2])jw

)
k−2, k−1, k

(2.18)

=
(
(Δ2fj)k−2, (Δ

2fj)k−1, (Δ
2fj)k

)
, k = 0, . . . , 2j ,

then, by virtue of (2.6) we have

wj+1,2k = D(wj,k), k = 0, . . . , 2j ,(2.19)

wj+1,2k+1 =
[
(wj+1,2k)2, (wj+1,2k)3 = (wj+1,2k+2)1, (wj+1,2k+2)2

]T
,

k = 0, . . . , 2j − 1.

Define θj,k = ((wj,k)1, (wj,k)3)/(wj,k)2 ∈ R
2
+. Then (2.19) gives

θj+1,2k = π(θj,k), k = 0, . . . , 2j ,(2.20)

θj+1,2k+1 = Ξ(θj+1,2k, θj+1,2k+2), k = 0, . . . , 2j − 1,

where Ξ : R
2
+ × R

2
+ → R

2
+, Ξ

(
(x, y), (x′, y′)

)
= (1/y, 1/x′). (See Figure 3.)

(2◦) Under these notations, the assumption (2.15) of the theorem is equivalent to
saying

(2.21) θ0,0 = (μ, μ) and θ0,1 = (1/μ, 1/μ),

and (2.17) is, by symmetry of the data and the subdivision scheme, equivalent to

(2.22) max
k=0,...,2j

||Δwj,k||∞ � [2(1 + μ)]−j , j → ∞.

By the overlapping properties of wj,k’s (recall (2.18)) we do not need to use all the
spatial indices k for a given scale j, and (2.22) is equivalent to

(2.23) max
k=0,...,2j

||Δwj+1,2k||∞ � [2(1 + μ)]−(j+1), j → ∞.

Let Rμ := [μ, 1/μ] × [μ, 1/μ]. It is clear that Ξ(θ, θ′) ∈ Rμ if θ, θ′ ∈ Rμ, together
with property [P3] (π(Rμ) ⊂ Rμ). We conclude that

(2.24) θj,k ∈ Rμ ∀ j, k.
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So by (2.12), we upper bound all the shrinking factors as

(2.25) s(θj,k) � s(μ, μ) = [2(1 + μ)]−1 ∀ j, k.

Notice also that

(2.26) θj,0 = (μ, μ) ∀ j � 0.

Since

||Δwj+1,2k||∞ = s(θj,k)||Δwj,k||∞,

together with (2.25) we have

(2.27) max
k=0,...,2j

||Δwj+1,2k||∞ = O([2(1 + μ)]−(j+1)).

On the other hand maxk=0,...,2j ||Δwj+1,2k||∞ = Ω([2(1 + μ)]−(j+1)) since

max
k

||Δwj,k||∞ � ||Δwj,0||∞ = ||Δw0,0||∞
j∏

l=1

s(θl,0)
(2.26)
= ||Δw0,0||∞ s(μ, μ)j .

So we have proved (2.17).
In contrast to the nonlinear S, it is well known that for Dubuc’s scheme S,

(2.28) sup{ν : S
∞
v ∈ Lip ν} =

{
2 if v ∈ �(Z)\Π3|Z,
∞ if v ∈ Π3|Z.

In other words, except for initial data sampled from a polynomial of degree 3 or lower,
the critical Hölder regularity of the limit curve is 2.1 This is characteristic of linear
subdivision schemes and of the weakly nonlinear schemes mentioned in section 1.

Note. Both (2.16) and (2.17) are not true if μ = 1. When μ = 1, Δ2v is a constant
sequence. By (2.4)–(2.5), Δ2fj = (1/4)jΔ2v, so Δ3fj is the zero sequence for all j. In
this case, the limit function fv is a quadratic polynomial, which is infinitely smooth.

For general initial strictly convex data, we have the following theorem.
Theorem 2.2. Let w = Δ2v ∈ �+(Z) and k ∈ Z. Write

x =
wk−2

wk−1
, y =

wk

wk−1
, z =

wk+1

wk
.

1. If x y
2+x+y = 1

4 = (1/y) z
2+(1/y)+z , then S∞v|[k,k+1] is a rational polynomial and is

C∞.
2. Otherwise, for any ε > 0,

sup{α : S∞v|[k−ε,k+1+ε] ∈ Lip α} < 2.

To prove this result we need the following facts pertaining to rational functions.
Remark 2.3. If R(t) = (at2 +bt+c)/(t−d), then R′′(t) = 2(ad2 +bd+c)/(t−d)3.

This means R is convex on one side of the pole t = d if and only if it is concave on
the other side. We refer to the open subset of R ({t : t > d} or {t : t < d}) at which

1More precisely: fv satisfies |f ′
v(x+t)−f ′

v(x)| = O(t log(1/t)) and this bound cannot be improved
unless for data sampled from a cubic polynomial.
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R′′(t) � 0 is the convex branch of R. If R(t) = at2 + bt + c, its convex branch is
defined to be the whole of R when a � 0, and ∅ otherwise.

Remark 2.4. Let t0 < t1 < · · · < tn+1, and f0, f1, . . . , fn+1 ∈ R. Let [ti, . . . , tk]f
be the divided difference of fi, . . . , fk at ti, . . . , tk, defined, recursively, by

[t�]f := f�, [t�, . . . , t�+n]f :=
[t�+1, . . . , t�+n]f − [t�, . . . , t�+n−1]f

t�+n − t�
if n � 1.

If Di := [ti, ti+1, . . . , ti+n]f , i = 0, 1, are such that D0D1 > 0, then there is a unique
rational polynomial R(t) of degree n over degree 1 that interpolates fi at ti; moreover,

(2.29) R(t) =
D1 · (tn+1 − t)p0(t) + D0 · (t− t0)p1(t)

D1 · (tn+1 − t) + D0 · (t− t0)
,

where pi is the unique Lagrange interpolant of fi, . . . , fi+n at ti, . . . , ti+n, i = 0, 1.
Recall also Newton’s formula

(2.30) pi(t) =

i+n∑
k=i

[tk, . . . , ti+n]f

i+n∏
�=k+1

(t− t�).

Note that the numerator of R(t) is a polynomial of degree n or lower: by (2.30) the
coefficient of tn in pi is Di, so the coefficient of tn+1 in the numerator of R(t) is
D1D0 −D0D1 = 0. The denominator of R(t) is a constant when D0 = D1.

Note. When D0 �= D1, the rational function (2.29) has a pole at d = (t0D0 −
tn+1D1)/(D0−D1). The condition D0D1 > 0 guarantees that d �= ti, i = 0, . . . , n+1,
as D1(tn+1−ti)+D0(ti−t0) is positive (resp., negative) if both Di are positive (resp.,
negative). However, an example would show that in general there is no guarantee that
d must stay outside the interval [t0, tn+1]. This last comment adds to the subtlety of
the next lemma.

Lemma 2.5. Let f0, f1, . . . , f4 be such that wi := fi+2 − 2fi+1 + fi > 0 for
i = 0, 1, 2. Set x = w0/w1 and y = w2/w1. Let t ∈ R and h > 0.

Then there exists a (unique) rational function R(t) = (at2 + bt + c)/(t− d) such
that R(t + ih) = fi for i = 0, . . . , 4 and [t, t + 4h] ⊂ (convex branch of R) if and only
if

(2.31)
x y

2 + x + y
=

1

4
.

Proof. Without loss of generality, we can assume t = 0 and h = 1.
If fi = (a(i)2 + b(i) + c)/(i − d), i = 0, 1, 2, 3, 4, then x = (f2 − 2f1 + f0)/(f3 −

2f2 + f1) = (−3 + d)/d, y = (f4 − 2f3 + f2)/(f3 − 2f2 + f1) = (−1 + d)/(−4 + d).
One can then verify (2.31) immediately. Notice that the assumption [t, t + 4h] ⊂
(convex branch of R) is the same as saying d < 0 or d > 4, so there is no worry of
division by zero in the definitions of fi’s.

To prove the converse, let

(2.32) Di := [i, i + 1, i + 2, i + 3]f = (wi+1 − wi)/6, i = 0, 1.

(We use the divided difference notation as mentioned in Remark 2.4.) Since D0D1 =
(w1 − w0)(w2 − w1)/36, D0D1 > 0 follows from (2.31) according to the following
calculation: (w1−w0)(w2−w1) = w1(1−x)(y−1) = w1(1−x)((2+x)/(4x−1)−1) =
3w1(1 − x)2/(4x− 1) > 0. (Notice that (2.31) implies that x, y > 1/4.)
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Knowing D0D1 > 0, Remark 2.4 then applies: The unique rational polynomial of
degree 3 over degree 1 that interpolates f0, . . . , f4 at 0, . . . , 4 is given by

(2.33) R(x) =
D1(4 − t)p0(t) + D0tp1(t)

D1(4 − t) + D0t
.

The goal here is to the show that the numerator of the right-hand side of (2.33)
is in fact a polynomial of degree 2 or lower, and also to prove that the pole of R is
outside of the interval [0, 4].

The coefficient of t3 in the numerator of R(x) is

D1(4 (coeff. of t3 in p0) − (coeff. of t2 in p0)) + D0(coeff. of t2 in p1)

= D1(4D0 − (w1/2 − 6D0)) + D0(w2/2 − 9D1)

(2.32)
= 36w1(2 + x + y − 4xy)

(2.31)
= 0.

The denominator is constant if D0 = D1; in this case x = y = 1 under the
condition (2.31). Otherwise, R has its pole at

d =
4D1

D1 −D0
=

4(y − 1)

x + y − 2

(2.31)
=

3

1 − x
,

which stays out of the interval [0, 4] since (2.31) also implies x > 1/4.
Proof of Theorem 2.2. Without loss of generality, assume k = 0.

(1◦) If x y
2+x+y = 1

4 = (1/y) z
2+(1/y)+z , then, by Lemma 2.5, there exists a unique rational

polynomial R(t) of degree 2 over degree 1 such that fi = R(i), i = −2, . . . , 3. It is
known from [12] that the subdivision scheme reproduces R on [0, 1], i.e., S∞v|[0,1] = R.
The pole of R is outside the interval [−2, 3]. So R is certainly C∞ on [0, 1].

(2◦) To prove the second part of the theorem, we need to first recall the basic
setup in part (1◦) of the proof of Theorem 2.1. If we define θj,k k = 0, . . . , 2j according
to (2.20) with

θ0,0 = (x, y), θ0,1 = (1/y, z).

(Recall also Figure 3.) We write C := {(x, y) ∈ R
2
+ : xy/(2 + x + y) = 1/4}, C+ :=

{(x, y) ∈ R
2
+ : xy/(2+x+y) > 1/4}, and C− := {(x, y) ∈ R

2
+ : xy/(2+x+y) < 1/4}.

Note that C+ ⊃ (1,∞)2 and C− ⊃ (0, 1)2.
To prove the theorem, we claim that it suffices to show that

(2.34) ∃ j, k s.t. θj,k ∈ C−.

By properties [P2] and [P4] of π and the identity s(x, x) = [2(1 + x)]−1, (2.34) is
equivalent to saying

(2.35) lim
n→∞

s(πn(θj,k)) = s∗ > 1/4.

Now, recall from part (1◦) of the proof of Theorem 2.1 that

(2.36) s(θj,k) =
max

(
|(Δ3fj+1)2k−2|, |(Δ3fj+1)2k−1|

)
max

(
|(Δ3fj)k−2|, |(Δ3fj)k−1|

)
and

θj,k =

(
(Δ2fj)k−2

(Δ2fj)k−1
,

(Δ2fj)k
(Δ2fj)k−1

)
.
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If θj,k ∈ C−, then at least one of its two components is strictly less than one, which in
turn implies that the denominator of (2.36) is nonzero. So altogether (2.35) implies
that

max
−2�k<2j

|(Δ3fj)k| = Ω(sj−)

for any s− ∈ (1/4, s∗). Consequently, for any ε > 0, S∞v|[−ε,1+ε] has Hölder regularity
strictly less than 2.

(3◦) So it remains to prove (2.34) under the assumption that either (x, y) /∈ C or
(1/y, z) /∈ C.

There is nothing to prove if (x, y) ∈ C− or (1/y, z) ∈ C−. So we can assume
without loss of generality that

θ0,0 = (x, y) ∈ C+ and θ0,1 = (1/y, z) ∈ C ∪ C+.

As a warmup, let us first consider the case y = 1. If y = 1, then 1/y = 1, z � 1 and
x > 1. But then θ1,0 = π((> 1, 1)) = (> 1, > 1), and θ1,2 = π((1,� 1)) = (� 1,� 1),
so

θ1,1 = Ξ(θ1,0, θ1,2) =

(
1

> 1
,

1

� 1

)
=

(
< 1,� 1

)
∈ C−,

and we are done with the special case y = 1.

We now consider the case y < 1; the case of y > 1 is similar.

Assume the contrary that no θj,k ∈ C−.

If y < 1, then x > 1, and 1/y > 1, so we have

(2.37) θ0,0 = (> 1, < 1), θ0,1 = (> 1, ∗).

We know that θ1,0 = (> 1, ∗), θ1,2 = (> 1, ∗). Observe that θ1,0 = (> 1, < 1),
otherwise θ1,0 = (> 1,� 1) and

θ1,1 = Ξ(θ1,0, θ1,2) =
(
1/(� 1), 1/(> 1)

)
= (� 1, < 1) ∈ C−,

violating our assumption. So we now have θ1,0 = (> 1, < 1), θ1,1 = (> 1, ∗). This
brings us back to the same situation as in scale j = 0 (recall (2.37)); this means, by
induction,

θn,0 = (> 1, < 1), θn,1 = (> 1, ∗) ∀ n.

But this contradicts the fact that limn→∞ θn,0 = limn→∞ πn(θ0,0) = (c, c), c > 1.
This completes the proof of the theorem.

Remark. If θ0,0, θ0,1 ∈ C, then all θj,k’s lie on C as well, and are near (1, 1) for
j large enough. So, by (2.11), the shrinking factors s(θj,k) are close to 1/8 for large
j, so ‖Δ3fj‖∞ decays essentially like (1/8)j = 2−3j . In this very case, we can only
say that the critical Hölder regularity is no less than 3, but third order differences
may be too “underpower” to determine the optimal Hölder regularity. In other words,
the critical smoothness can be higher than 3, and this is exactly the case: Part 1 of
Theorem 2.2 says that the smoothness is ∞ (� 3 !).
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Fig. 4. For each θj,k ∈ R
2
+ defined by (2.20), a circle with center θj,k and radius which decreases

linearly with j is drawn. Notice that θj,k tends to cluster at (1, 1).

3. Observations. For linear subdivision schemes, it is typical that the local
Hölder exponents at dyadic irrationals are higher than the global critical Hölder reg-
ularity; see [4, section 4]. (Here we assume that the subdivision scheme is binary.)
A similar property holds for the nonlinear convexity preserving scheme in this paper,
except that it can be more easily explained than those linear examples in [4, section
4]: While Theorem 2.2 says that the global regularity of the limit function fv for any
initial data v is less than 2, a classical result of Alexsandrov (see, e.g., [10]) asserts
that fv, being a convex function on R, must be twice differentiable almost everywhere.
(This also partly explains the observed clustering of θj,k about (1, 1) for arbitrary ini-
tial configuration x, y, z > 0 (see, e.g., Figure 4)—a fact that seems difficult to explain
by elementary means.)

Acknowledgment. The author thanks Sinan Güntürk for discussions on dy-
namical systems.
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Abstract. This paper presents an a posteriori residual error estimator for diffusion-convection-
reaction problems approximated by some cell centered finite volume methods on isotropic or aniso-
tropic meshes in R

d, d = 2 or 3. For that purpose we built a reconstructed approximation, which is
an appropriate interpolant of the finite volume solution. The error is then the difference between the
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derivative of the interpolant. We then prove the equivalence between the energy norm of the error
and the residual error estimator. Some numerical tests confirm our theoretical results.
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1. Introduction. The finite volume method is a well-adapted method for the
discretization of various partial differential equations and is largely used by engineers
[31]. The mathematical analysis of the method has started only recently. Existence
and uniqueness results as well as a priori error estimates are now available for quite
a large class of problems; see [10] and the references cited there. For finite element
methods, a posteriori error estimates are now well understood for a large class of
equations; see, for instance, [34]. On the other hand, for finite volume methods, such
estimates are not well developed and up to now only a few such results had been
obtained. Let us quote [14, 29, 1, 12, 13] for cell centered finite volume methods,
[23, 25, 33, 30] for vertex centered methods, and [4, 5, 21, 22, 20] for finite volume
element methods.

Recently we obtained a posteriori error estimates of residual type for some cell
centered finite volume methods for the Laplace equation in a bounded domain of
R

d, d = 2 or 3 [27, 26]. This estimator is based on the use of a reconstructed approxi-
mation, namely, an interpolant of Morley type of the finite volume solution. The first
goal of the present paper is to extend the previous analysis to diffusion-convection-
reaction problems that eventually develop boundary or interior layers. As for the
Laplace equation, this requires the introduction of an interpolant, also of Morley
type, of the finite volume solution possessing the desired conservation properties. For
that purpose, we introduce new finite elements with appropriate degrees of freedom.
In contrast with [27, 26] our interpolant is in H1(Ω), and therefore the residual error
estimator is naturally based on the jump of normal derivatives of the interpolant of
the solution. We finally show the equivalence between the energy norm of the error
and the residual error estimator. The proof of the upper error bound uses a quasi-
orthogonality relation based on the conservation properties of the interpolant. The
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proof of the lower error bound is more standard and simply uses some Green formulas
and inverse inequalities as for finite element methods [34, 36, 15, 19].

In certain situations the solution of the diffusion-convection-reaction problem ex-
hibits strong directional features. For instance, if the Peclet number (see below) is
large, then boundary or interior layers may occur. Other examples are edge singular-
ities appearing along concave edges in three-dimensional domains. In these cases the
use of anisotropic meshes is recommended. Such meshes consist of elements in which
the aspect ratio can be very large. Our second goal is to present a residual error
estimate valid for anisotropic meshes satisfying minimal assumptions (contrary to the
case of a standard residual error estimate for finite element methods; see [15, 16, 18]).
This estimate is such that the size of the constant appearing in the upper bound is in-
dependent of the coefficients of the operator, while the size of the constant appearing
in the lower bound is explicitly given with respect to the coefficients of the operator.
These facts are further confirmed numerically.

In contrast with standard practice [35, 19], we do not assume a strong coerciveness
assumption (see below), and therefore our residual a posteriori analysis differs from
[35, 19].

The outline of the paper is as follows: In section 2 we describe the so-called “cell
centered” method for the diffusion-convection-reaction model problem on a triangu-
lation of the domain consisting of triangles, rectangles, or tetrahedra. Some inverse
inequalities are recalled in section 3, where we give some further useful interpolation
error estimates. Section 4 is devoted to the introduction of some new finite elements
(of Morley type) used later on. In section 5 we introduce the Morley interpolant
of the approximate solution and prove its main properties. The upper and lower
error bounds are then deduced in section 6. The upper error bound is based on
the properties of the Morley interpolant, while the lower error bound is proved in a
quite standard way. Finally, section 7 is devoted to numerical tests that confirm our
theoretical considerations.

2. Discretization of the diffusion-convection-reaction equation. Let Ω
be a bounded open subset of R

d, d = 2 or 3, with a polygonal (d = 2) or polyhedral
(d = 3) boundary Γ.

We consider the following standard elliptic problem: For f ∈ L2(Ω) let u be the
solution of {

Au := div (−ε∇u + vu) + bu = f in Ω,
u = 0 on Γ,

(2.1)

where ε is a fixed positive constant, v a fixed vector function assumed to be suffi-
ciently regular, namely v ∈ C1(Ω̄,Rd), and b ∈ L∞(Ω,R) is a fixed function. This
problem is a linearized diffusion-convection-reaction problem appearing in many phys-
ical models. In the case of a large Peclet number Pe ≡ ε−1‖v‖∞ and/or large num-
ber Γ ≡ ε−1‖div v + b‖∞, the problem is singularly perturbed and the solution may
generate sharp boundary or interior layers, where the solution of the limit problem
(corresponding to ε = 0) is not smooth or does not satisfy the Dirichlet boundary
condition.

In this paper we further assume that

1

2
div v + b ≥ 0.
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This assumption guarantees that there exists a unique weak solution u ∈ H1
0 (Ω) of

problem (2.1), i.e., satisfying∫
Ω

(ε∇u · ∇v + div (vu)v + buv) dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω).(2.2)

Moreover this solution satisfies

|||u||| � ‖f‖,(2.3)

where ||| · ||| is the natural energy norm defined by

|||u|||2 :=

∫
Ω

(
ε|∇u|2 +

(
1

2
div v + b

)
|u|2

)
.

This norm slightly differs from the one used in [35, 19] since in those papers the
authors assume that the strong coercivity assumption

1

2
div v(x) + b(x) ≥ c0 > 0 ∀x ∈ Ω,

holds. This condition excludes the study of convection-diffusion equations (2.1) with
b = 0 and divv = 0 that we want to consider here. Therefore their residual a posteriori
analysis slightly differs from the one presented here.

As usual, we denote by L2(.) the Lebesgue spaces and by Hs(.), s ≥ 0, the
standard Sobolev spaces. The usual norm and seminorm of Hs(D) are denoted by
‖ · ‖s,D and | · |s,D. For the sake of brevity the L2(D)-norm will be denoted by ‖ · ‖D,
and in the case when D = Ω, we will drop the index Ω. The space H1

0 (Ω) is defined,
as usual, by H1

0 (Ω) := {v ∈ H1(Ω) : v = 0 on Γ}. In what follows, the symbol | · | will
denote either the Euclidean norm in R

d, d = 2 or 3, or the length of a line segment,
or the measure of a domain of R

d. Finally, the notation a � b means here and below
that there exists a positive constant C independent of a and b (of the meshsize of the
triangulation, as well as the diffusion constant ε) such that a ≤ C b. The notation
a ∼ b means that a � b and b � a hold simultaneously.

2.1. Discretization of the domain. To approximate problem (2.1) by a finite
volume scheme we fix a mesh Th of Ω that satisfies the usual conformity conditions;
cf. [6, Chap. 2]. In two dimensions we assume that all elements of Th are triangles
or rectangles, while in three dimensions the mesh is made up of tetrahedra only. For
K ∈ Th we denote by hK the diameter of K, and h = maxK∈Th

hK .
We define Eh as the set of edges (d = 2) or faces (d = 3) of the triangulation,

Eint
h = {E ∈ Eh/E ⊂ Ω} as the set of interior edges/faces of Th, and Eext

h = Eh\Eint
h

as the set of exterior edges/faces of Th.
For an edge E of a two-dimensional element K we introduce nK,E = (nx, ny),

which is the unit outward normal vector to K along E. Similarly, for a face E of a
tetrahedron K let nK,E = (nx, ny, nz) be the unit outward normal vector to K on E.
Furthermore, for each edge/face E we fix one of the two normal vectors and denote
it by nE .

The jump of some function v across an edge/face E at a point y ∈ E is defined as[[
v(y)

]]
E

:=

{
limα→+0 v(y + αnE) − v(y − αnE) ∀E ∈ Eint

h ,
v(y) ∀E ∈ Eext

h .

Finally, we will need local subdomains (also called patches). As usual, let ωK be
the union of all elements having a common edge/face with K. Similarly, let ωE be
the union of both elements having E as an edge/face.
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2.2. The finite volume scheme. Integrating (2.1) on a control volume K and
using the divergence formula, we obtain

∑
E∈EK

∫
E

(−ε∇u + vu) · nK,E ds +

∫
K

bu dx =

∫
K

f(x) dx ∀K ∈ Th,(2.4)

where EK is the set of edges/faces of K. The continuous diffusion flux −ε∇u · nK,E

is approximated using finite differences and the principle of conservation of flux, the
expression vu ·nK,E is approximated by a first order upwind scheme, and the reaction
term

∫
K
bu by a simple quadrature formula (see [10]). These approximations lead to

the following system: Find uh := (uK)K∈Th
(uK being the approximation of u(xK)

for K ∈ Th with xK being the “center” of the box K) that is a solution of

∑
E∈EK

(
−εFD

K,E(uh) + vK,EF
C
E (uh)

)
+ βKFR

K (uh) =

∫
K

f(x) dx ∀K ∈ Th,(2.5)

where vK,E = ME(v · nK,E), βK = MKb; MKg and MEg denote the mean of g on
K and E, respectively, i.e.,

MKg =
1

|K|

∫
K

g(x) dx ∀K ∈ Th, MEg =
1

|E|

∫
E

g(x) dσ(x) ∀E ∈ Eh,

while the quantities FC
E (uh) and FR

K (uh) are defined as

FC
E (uh) := |E|uE,+,(2.6)

where for E ∈ Eint
h , uE,+ = uKE,+

, with KE,+ being the upstream control volume,
i.e., vKE,+,E ≥ 0, while for E ∈ K̄ ∩ Γ, uE,+ = uK if vK,E ≥ 0, and uE,+ = 0
otherwise. Similarly,

FR
K (uh) = |K|uK .

For our purposes, we do not need the exact form of FD
K,E(uh), but the principle

of conservation of flux is required:

FD
K,E(uh) = −FD

L,E(uh) for E = K̄ ∩ L̄.

If the mesh Th is admissible in the sense of [10, Def. 9.1], i.e., satisfies standard
orthogonality conditions (see Figure 2.1), then the numerical diffusion flux is defined
by

FD
K,E(uh) :=

⎧⎨
⎩

|E|
dE

(uL − uK) if E = K ∩ L,

− |E|
dE

uK if E ⊂ K ∩ ∂Ω,
(2.7)

when dE = d(xK , xL) if E = K∩L, with K,L ∈ Th and dE = d(xK ,Γ) if E = ∂K∩Γ.
For general meshes, a possible choice for FD

K,E(uh) is proposed in [7, 8] using the
diamond cell method.

For a restricted admissible mesh in the sense of [10, Def. 9.4], if FD
K,E(uh) is

given by (2.7), then system (2.5) is well defined as proved in [9]; see also [10] in the
particular case when div v ≥ 0 and b a positive constant. For a general mesh, as is
the case here, we simply assume that system (2.5) has a unique solution.
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Fig. 2.1. The standard orthogonality condition.

P0

P1

P2

P3

p1

p2

p3

Fig. 2.2. Notation of tetrahedron K.

2.3. Some anisotropic quantities. As explained in the introduction, anisotropic
discretizations can be very advantageous or, in certain situations, even mandatory.
More information and arguments concerning anisotropy can be found in [2, 15].

In this subsection we introduce and describe anisotropic quantities and present
their basic properties.

We start with an arbitrary (anisotropic) tetrahedron K ∈ Th. We enumerate its
vertices so that P0P1 is the longest edge, meas2(�P0P1P2) ≥ meas2(�P0P1P3), and
meas1(P1P2) ≥ meas1(P0P2). Further, we introduce three orthogonal vectors pi,K of
length hi,K := |pi,K |, as described in Figure 2.2.

The minimal element size is particularly important; thus define

hmin,K := h3,K .

The three main anisotropic directions pi,K play an important role in several proofs.
They span the orthogonal matrix

CK := (p1,K ,p2,K ,p3,K) ∈ R
3×3.

This matrix may be considered as a transformation matrix which defines implicitly
the reference element K̂ via K̂ := C−1

K (K − �P0); cf. Figure 2.3. In order to facilitate
the understanding of this mapping, the circumscribing box of K has been drawn in
Figure 2.2. This box is mapped onto the unit cube given in Figure 2.3. Note in
particular that the reference element K̂ is of size O(1).
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P̂0 P̂1

P̂2

P̂3

Fig. 2.3. Reference tetrahedron K̂.

In two dimensions the notation is similar. For a triangle K the enumeration is as
in the bottom triangle P0P1P2 of Figure 2.2. For a rectangle K we simply take P0P1

as the longest edge of K, P0P2 as the edge perpendicular to P0P1, and simply take
p1,K = P0P1, p2,K = P0P2. In both cases, hmin,K := h2,K , and CK becomes a 2 × 2
matrix.

For an edge/face E of an element K, introduce the height hE,K = |K|
|E| .

3. Analytical tools.

3.1. Bubble functions, extension operator, and inverse inequalities. For
our further analysis we require standard bubble functions and extension operators that
satisfy certain properties recalled here for the sake of completeness.

We need two types of bubble functions, namely, bK and bE associated with an
element K and an edge E, respectively. For a triangle or a tetrahedron K, denoting
by λaK

i
, i = 1, . . . , d+1, the barycentric coordinates of K and by aEi , i = 1, . . . , d, the

vertices of the edge/face E ⊂ ∂K we recall that

bK =

d+1∏
i=1

λaK
i

and bE =

d∏
i=1

λaE
i
.

For a rectangle K, we enumerate its vertices in a clockwise sense here. Denoting
by λaK

i
, i = 1, . . . , 4, the barycentric coordinates of K, namely, λaK

i
is the unique

element in Q1(K) such that λaK
i

(aKj ) = δi,j , we recall that

bK = λaK
1
λaK

3
and bE = λaK

1
(λaK

2
+ λaK

3
)

if the endpoints of the edge E are aK1 and aK2 .
We note that

bK = 0 on ∂K, bE = 0 on ∂ωE , ‖bK‖∞,K = ‖bE‖∞,ωE
∼ 1.

In two dimensions for an edge E ⊂ ∂K, using temporarily the local coordinates
system (x, y) such that E is included in the x-axis, the extension Fext(vE) of vE ∈
C(E) to K is defined by Fext(vE)(x, y) = vE(x). We proceed similarly in three
dimensions.
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Now we may recall the so-called inverse inequalities that are proved using classical
scaling techniques (cf. [34] for the isotropic case and [15] for the anisotropic case).

Lemma 3.1 (inverse inequalities). Let vK ∈ Pk0(K) and vE ∈ Pk1(E) for some
nonnegative integers k0 and k1. Then the following inequalities hold, with the con-
stants in the inequalities depending on the polynomial degrees k0 or k1 but not on K,
E or vK , vE:

‖vKb
1/2
K ‖K ∼ ‖vK‖K ,(3.1)

‖∇(vKbK)‖K � h−1
min,K‖vK‖K ,(3.2)

‖vEb1/2E ‖E ∼ ‖vE‖E ,(3.3)

‖Fext(vE)bE‖K � h
1/2
E,K‖vE‖E ,(3.4)

‖∇(Fext(vE)bE)‖K � h
1/2
E,Kh−1

min,K‖vE‖E .(3.5)

3.2. Anisotropic interpolation error estimates. In order to obtain an ac-
curate discrete solution uh, it is obviously helpful to align the elements of the mesh
according to the anisotropy of the solution. It turns out that this intuitive alignment
is also necessary to prove sharp upper error bounds. In particular the proof employs
specific interpolation error estimates. However, these interpolation estimates do not
hold for general meshes; instead the mesh has to have the aforementioned anisotropic
alignment with the function to be interpolated.

In order to quantify this alignment, we introduce a so-called alignment measure
m1(v, Th) which was originally introduced in [16].

Definition 3.2 (alignment measure). Let v ∈ H1(Ω), and F = {Th} be a family
of triangulations of Ω. Define the alignment measure m1 : H1(Ω) ×F → R by

m1(v, Th) :=

( ∑
K∈Th

h−2
min,K‖C�

K ∇v‖2
K

)1/2/
‖∇v‖.(3.6)

By definition one has m1(v, Th) ≥ 1. For arbitrary isotropic meshes one obtains
that m1(v, Th) ∼ 1. The same is achieved for anisotropic meshes Th that are aligned
with the anisotropic function v. Therefore the alignment measure is not an obstacle
for reliable error estimation.

Since the focus of our work is a posteriori error estimation, we refer to [17, 16]
for discussions concerning this alignment measure.

Lemma 3.3 (local interpolation error bounds). Let v ∈ H1
0 (Ω); then,

‖v −MKv‖K � ‖C�
K∇v‖K ∀K ∈ Th,(3.7)

hE,K‖v −MEv‖2
E � ‖C�

K∇v‖2
K ∀E ∈ EK ,K ∈ Th.(3.8)

Proof. The first inequality (3.7) has been proved in [16, Lemma 4]. The same
scaling argument and the compact embedding of H1(K̂) into L2(Ê) yield the second
estimate.

Lemma 3.4 (global interpolation error bounds). Let v ∈ H1(Ω); then,∑
K∈Th

h−2
min,K‖v −MKv‖2

K � m1(v, Th)2‖∇v‖2,(3.9)

∑
K∈Th

∑
E∈EK∩Eint

h

hE,Kh−2
min,K‖v −MEv‖2

E � m1(v, Th)2‖∇v‖2.(3.10)
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Proof. These are direct consequences of the previous lemma and the definition of
the alignment measure.

For further analysis of our estimator, we need specific interpolation estimates
related to the diffusion-convection-reaction problem [36, 18, 19]. Namely, the error
estimates have to be related to the energy norm ||| · ||| and a local quantity relying on
the local meshsize and the local behavior of the functions involved in the operator.
This quantity is defined by

αK := min{c−1/2
K , ε−1/2hmin,K},

where we set

cK = min
x∈K

(
1

2
div v(x) + b(x)

)
.

Here we use the convention that if cK = 0, then the minimum is the second term,
namely, αK := ε−1/2hmin,K .

We are now able to prove the following error estimate (compare with Lemma 3.9
of [18]).

Lemma 3.5 (global interpolation error bounds). Let v ∈ H1
0 (Ω). Then we have∑

K∈Th

α−2
K ‖v −MKv‖2

K � m1(v, Th)2|||v|||2,(3.11)

ε1/2
∑

K∈Th

α−1
K

∑
E∈EK∩Eint

h

‖v −MEv‖2
E � m1(v, Th)2|||v|||2.(3.12)

Proof. For the first estimate, we split up its left-hand side as follows:∑
K∈Th

α−2
K ‖v −MKv‖2

K =
∑

K∈Th:εh−2
min,K≤cK

cK‖v −MKv‖2
K

+
∑

K∈Th:εh−2
min,K>cK

εh−2
min,K‖v −MKv‖2

K .

By the definition of cK and estimate (3.9), we conclude that

∑
K∈Th

α−2
K ‖v −MKv‖2

K � ‖
(

1

2
div v + b

)1/2

v‖2 + εm1(v, Th)2‖∇v‖2

� m1(v, Th)2|||v|||2.

For the second estimate, we first use the same splitting∑
K∈Th

∑
E∈EK∩Eint

h

α−1
K ‖v −MEv‖2

E =
∑

K∈Th:

εh
−2
min,K≤cK

∑
E∈EK∩Eint

h

α−1
K ‖v −MEv‖2

E

+
∑

K∈Th:

εh
−2
min,K>cK

∑
E∈EK∩Eint

h

α−1
K ‖v −MEv‖2

E .
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As before, this leads to

ε1/2
∑

K∈Th

∑
E∈EK∩Eint

h

α−1
K ‖v −MEv‖2

E � ε1/2
∑

K∈Th:

εh
−2
min,K≤cK

c
1/2
K

∑
E∈EK∩Eint

h

‖v‖2
E

+ ε
∑

K∈Th:

εh
−2
min,K>cK

h−1
min,K

∑
E∈EK∩Eint

h

‖v −MEv‖2
E .

Using the estimate hmin,K � hE,K proved in Lemma 3.1 of [18] and the estimate
(3.10), we obtain

ε1/2
∑

K∈Th

∑
E∈EK∩Eint

h

α−1
K ‖v −MEv‖2

E �
∑

K∈Th:

εh
−2
min,K≤cK

ε1/2c
1/2
K

∑
E∈EK∩Eint

h

‖v‖2
E(3.13)

+ εm1(v, Th)2‖∇v‖2.

For the first term of this right-hand side, using the trace inequality (see, for instance,
Lemma 2.4 of [15] or Lemma 3.5 of [18])

‖v‖2
E � h−1

E,K‖v‖K(‖v‖K + ‖C�
K∇v‖K),

we may write∑
K∈Th:

εh
−2
min,K≤cK

ε1/2c
1/2
K

∑
E∈EK∩Eint

h

‖v‖2
E �

∑
K∈Th:

εh
−2
min,K≤cK

ε1/2c
1/2
K h−1

E,K(‖v‖2
K +‖v‖K‖C�

K∇v‖K).

(3.14)

Fix for a moment an element K such that εh−2
min,K ≤ cK . Using the property

hmin,K � hE,K and Young’s inequality with a parameter ηK > 0, we may write

ε1/2c
1/2
K h−1

E,K(‖v‖2
K + ‖v‖K‖C�

K∇v‖K) � ε1/2c
1/2
K h−1

min,K‖v‖2
K

+
ε1/2c

1/2
K

2ηK
‖v‖2

K +
ε1/2c

1/2
K h−2

min,KηK

2
‖C�

K∇v‖2
K .

Since ε1/2h−1
min,K ≤ c

1/2
K , the first term has the correct factor, namely,

ε1/2c
1/2
K h−1

E,K(‖v‖2
K + ‖v‖K‖C�

K∇v‖K)

� cK‖v‖2
K +

ε1/2c
1/2
K

2ηK
‖v‖2

K +
ε1/2c

1/2
K h−2

min,KηK

2
‖C�

K∇v‖2
K .

For the last two terms we choose ηK = ε1/2

c
1/2
K

which yields

ε1/2c
1/2
K h−1

E,K(‖v‖2
K + ‖v‖K‖C�

K∇v‖K) � cK‖v‖2
K + εh−2

min,K‖C�
K∇v‖2

K .

This estimate in (3.14) leads to∑
K∈Th:

εh
−2
min,K≤cK

ε1/2c
1/2
K

∑
E∈EK∩Eint

h

‖v‖2
E �

∑
K∈Th

(cK‖v‖2
K + εh−2

min,K‖C�
K∇v‖2

K)

� m1(v, Th)2|||v|||2.

Inserting this estimate in (3.13) we arrive at (3.12).
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4. Some finite elements of Morley type. For our further analysis, we need
a continuous interpolant p satisfying∫

E

∂p

∂nK,E
ds = FD

K,E(uh) ∀E ∈ EK ,(4.1)

∫
E

v · nK,Ep ds = vK,EF
C
K,E(uh) ∀E ∈ EK ,(4.2) ∫

K

bp = βKFR
K (uh)(4.3)

for any K ∈ Th. This means that we need to use C0-finite elements having as de-
grees of freedom the three left-hand sides above. Since these left-hand sides clearly
depend on the restriction of v and b on K, the finite elements depend on these re-
strictions. The interpolant’s construction is quite complicated and could be expansive
from a computational point of view. Such elements are even not unique. We therefore
build them in a generic way and also give simpler elements in the case of constant
coefficients.

4.1. Convection-diffusion elements for constant coefficients. For a
convection-diffusion problem with constant coefficients (i.e., for b = 0 and v ∈ R

d,v �=
0) we need an interpolant p satisfying only (4.1) and (4.2). In this case we need finite
elements having as degrees of freedom the mean of p and the normal derivative of p
on each edge. Therefore we need a kind of Morley element [24, 6]. In two dimensions
we modify the element of Nilssen, Tai, and Winther [28] and extend this new element
to rectangles and to tetrahedra.

4.1.1. Triangles. Here K is a (nondegenerate) triangle with vertices aKi , i =
1, 2, Nf := 3.

Now, inspired by [28, sect. 4], we take

PK = P2(K) ⊕ P1(K)bK = {q + pbK : q ∈ P2(K), p ∈ P1(K)},

ΣK = {p(aKi )}i=1,...,Nf
∪
{∫

E

p ds

}
E∈EK

∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

.(4.4)

Lemma 4.1. The above triple (K,PK ,ΣK) is a C0-finite element.
Proof. It suffices to show that w ∈ PK satisfying

l(w) = 0 ∀l ∈ ΣK(4.5)

is equal to zero. But w is of the form w = q + pbK with q ∈ P2(K), p ∈ P1(K), and
since bK is identically equal to zero on the edges E ∈ EK , the conditions w(aKi ) =∫
E
w ds = 0 are equivalent to

q(aKi ) =

∫
E

q ds = 0.

Since the restriction of q to E is of degree 2, these conditions imply that q|E ≡ 0 for
all E ∈ EK and consequently q ≡ 0.

The conclusion follows from Lemma 4.1 of [28] since it is proved there that w =
pbK with p ∈ P1(K) satisfying

∫
E

∂w
∂nK,E

ds = 0 for all E ∈ EK is identically equal to
zero.

The continuity of the element follows from the first part of the proof.
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4.1.2. Rectangles. Here K is a (nondegenerate) rectangle with vertices aKi ,
i = 1, . . . , Nf := 4 with edges parallel to the axes. Now we take

PK = {q + pbK : q ∈ Q2(K), p(x, y) = αx + βy + γy2, α, β, γ ∈ R}.

As before, the degrees of freedom are defined by (4.4).
Lemma 4.2. The above triple (K,PK ,ΣK) is a C0-finite element.
Proof. By an affine transformation, it suffices to show the result on the reference

element K̂ = (0, 1)2. For the sake of brevity we will omit the sign .̂ As dim PK = card
ΣK , it suffices to show that w ∈ PK satisfying (4.5) is equal to zero. But w is of the
form w = q+pbK with q ∈ Q2(K) and p of the form p(x, y) = αx+βy+γy2, α, β, γ ∈ R.
Since bK is identically equal to zero on the edges E ∈ EK , the conditions w(aKi ) =∫
E
w ds = 0 are equivalent to

q(aKi ) =

∫
E

q ds = 0.

Since the restriction of q to E is of degree 2, these conditions imply, as before, that
q|E ≡ 0 for all E ∈ EK . Fix the basis {λi(x)λj(y)}0≤i,j≤2 of Q2(K), where λi ∈
P2(0, 1) satisfy λi(xj) = δij , where xi = i

2 , i = 0, 1, 2. Writing q in this basis, we
observe that the property q|E ≡ 0 for all E ∈ EK implies that q(x, y) = δλ1(x)λ1(y) =
δbK(x, y) for some δ ∈ R.

Returning to w, we conclude that

w(x, y) = (δ + αx + βy + γy2)bK(x, y).

Now, one readily sees that the remainding condition
∫
E

∂w
∂nK,E

ds = 0 for all E ∈ EK

is equivalent to a homogeneous 4× 4 linear system in α, β, γ, δ whose unique solution
is α = β = γ = δ = 0. Therefore w is identically equal to zero.

4.1.3. Tetrahedra. Here K is a (nondegenerate) tetrahedron with vertices aKi ,
i = 1, 2, 3, Nf := 4.

Inspired by the above triangular example, we choose ΣK defined by (4.4) and

PK =

{
q + pbK +

∑
E∈EK

αEbE : p, q ∈ P1(K), αE ∈ R

}
.

As before, we can prove that the above triple (K,PK ,ΣK) is a C0-finite element.

4.2. Diffusion-convection-reaction elements for constant coefficients.
We build our finite elements by slightly modifying the elements from the previous
subsection.

4.2.1. Triangles. We take

PK = {q + (p + αbK)bK : q ∈ P2(K), p ∈ P1(K), α ∈ R},

ΣK = {p(aKi )}i=1,...,Nf
∪
{∫

K

p

}
∪
{∫

E

p ds

}
E∈EK

∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

.(4.6)

Lemma 4.3. The above triple (K,PK ,ΣK) is a C0-finite element.
Proof. It suffices to show that w ∈ PK satisfying (4.5) is equal to zero. Here w

is of the form w = q + (p + αbK)bK with q ∈ P2(K), p ∈ P1(K), and α ∈ R. As in
Lemma 4.1, the conditions w(aKi ) =

∫
E
w ds = 0 imply that q ≡ 0.
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Next, we consider the condition∫
E

∂w

∂nK,E
ds = 0 ∀E ∈ EK ,

which is reduced to ∫
E

∂(pbK)

∂nK,E
ds = 0 ∀E ∈ EK .

Thanks to Lemma 4.1 of [28], p is identically equal to zero.
Finally, the condition

∫
K
w becomes α

∫
K
b2K = 0, which leads to the

conclusion.

4.2.2. Rectangles. In the setting of subsection 4.1.2, we take ΣK defined by
(4.6) and

PK = {q + pbK : q ∈ Q2(K), p(x, y) = αx + βy + γx2 + δy2, α, β, γ, δ ∈ R}.

Arguments similar to those used in the proof of Lemma 4.2 allow one to show
that the above triple (K,PK ,ΣK) is a C0-finite element.

4.2.3. Tetrahedra. Inspired by the above triangular example and the tetrahe-
dral example from subsection 4.1, we choose ΣK defined by (4.6) and

PK =

{
q + pbK + αb2K +

∑
E∈EK

αEbE : p, q ∈ P1(K), αE , α ∈ R

}
.

As before, the above triple (K,PK ,ΣK) is a C0-finite element.

4.3. Reaction-diffusion elements for constant coefficients. If we consider
only reaction-diffusion equations (i.e., v = 0), we may restrict ourselves to an inter-
polant p satisfying (4.1) and (4.3). Therefore we need to use finite elements having
as degrees of freedom the left-hand side of (4.1) and the mean on K. Again we need
to slightly modify the previous elements.

4.3.1. Triangles or tetrahedra. We take

PK = {q + (p + αbK)bK : q ∈ P1(K), p ∈ P1(K), α ∈ R},

ΣK = {p(aKi )}i=1,...,Nf
∪
{∫

K

p

}
∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

.(4.7)

Lemma 4.4. The above triple (K,PK ,ΣK) is a C0-finite element.
Proof. As usual, it suffices to show that w ∈ PK satisfying (4.5) is equal to zero.

Here w is of the form w = q + (p + αbK)bK with q ∈ P1(K), p ∈ P1(K), and α ∈ R.
As in Lemma 4.1, the conditions w(aKi ) = 0 imply that q ≡ 0 since q is of degree at
most 1. The remainder of the proof is the same as the one of Lemma 4.3.

4.3.2. Rectangles. In the setting of subsection 4.1.2, we take ΣK defined by
(4.7) and

PK = {q + pbK : q ∈ Q1(K), p(x, y) = η + αx + βy + γx2 + δy2, α, β, γ, δ, η ∈ R}.

Arguments similar to those used in the proof of Lemma 4.2 allow one to show
that the triple (K,PK ,ΣK) is a C0-finite element.
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4.4. General case.

4.4.1. Triangles or tetrahedra. Inspired by the previous examples, we take

Pv,b
K =

{
q0 +

∑
E∈EK

αE ṽK,EbEbK(4.8)

+

( ∑
E∈EK

βEbE + γbK

)
bK : q0 ∈ P1(K), αE , βE , γ ∈ R

}
,

Σv,b
K = {p(aKi )}i=1,...,Nf

∪
{∫

E

v · nK,Ep ds

}
E∈EK

(4.9)

∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

∪
{∫

K

bp

}
,

where ṽK,E is any extension from E to K of the function v ·nK,E such that ṽK,E ≡ 0
if v · nK,E ≡ 0 on E. Here there is a slight abuse of notation in the sense that the
degree of freedom

∫
E

v ·nK,Ep ds (or
∫
K
bp) disappears if v ·nK,E ≡ 0 on E (or b ≡ 0).

As before, we can prove that the triple (K,Pv,b
K ,Σv,b

K ) is a C0-finite element.

4.4.2. Rectangles. Now we take Pv,b
K defined by (4.8), but with q0 in Q1(K)

and Σv,b
K defined by (4.9). Again this triple (K,Pv,b

K ,Σv,b
K ) is a C0-finite element.

5. The Morley interpolant.

5.1. Definition. For any K ∈ Th, we fix a C0-finite element (K,Pv,b
K ,Σv,b

K ) such
that {∫

E

v · nK,Ep ds

}
E∈EK

∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

∪
{∫

K

bp

}
⊂ Σv,b

K .

We refer to the previous section for its existence.
We now introduce the finite element space:

Vh :=

{
vh ∈H1

0 (Ω) : vh|K ∈ Pv,b
K ∀K ∈ Th,∫

E

∂vh|K
∂nE

ds =

∫
E

∂vh|K
∂nE

ds ∀E ∈ Eh,K, L ∈ Th : E = K ∩ L

}
.

Definition 5.1. For uh = (uK)K∈Th
we define its interpolant (of Morley type)

IMuh as the unique element vh in Vh satisfying∫
E

∂vh|K
∂nK,E

ds = FD
K,E(uh) ∀E ∈ EK ,K ∈ Th,(5.1)

∫
E

v · nK,Evh ds = vK,EF
C
E (uh) ∀E ∈ Eint

h ,(5.2) ∫
K

bvh dx = βKFR
K (uh) ∀K ∈ Th.(5.3)
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5.2. Some useful properties. The key point of our a posteriori analysis is the
following basic property of the Morley interpolant.

Lemma 5.2. If uh is solution of (2.5), then IMuh satisfies∫
K

(A(IMuh) − f) dx = 0 ∀K ∈ Th.(5.4)

Proof. By Green’s formula we have∫
K

A(IMuh) dx =

∫
K

(div (−ε∇IMuh + vIMuh) + bIMuh) dx

=
∑

E∈EK

∫
E

(
−ε

∂(IMuh)

∂nK,E
+ v · nK,EIMuh

)
ds +

∫
K

bIMuh dx.

Using the properties (5.1), (5.2), and (5.3) satisfied by IMuh we obtain∫
K

A(IMuh) dx =
∑

E∈EK

(
−εFD

K,E(uh) + vK,EF
C
E (uh)

)
+ βKFR

K (uh)

and we conclude by using (2.5).
Now we prove a quasi-orthogonality relation that will be used for the upper error

bound. We first define the gradient jump of IMuh in the normal direction by

JE,n(uh) = ε

[[(
∂

∂nE

)
(IMuh)

]]
E

∀E ∈ Eint
h .

Lemma 5.3. If u is a solution of (2.2) and uh is a solution of (2.5), then for any
χ ∈ H1

0 (Ω), setting e = u− IMuh, we have that∫
Ω

(ε∇e · ∇χ + (div (ve) + be)χ) dx =
∑

K∈Th

∫
K

(f −A(IMuh))(χ−MKχ) dx(5.5)

+
∑

E∈Eint
h

∫
E

JE,n(uh)(χ−MEχ) ds.

Proof. For the sake of brevity denote the left-hand side of (5.5) by I1(χ). By
(2.2) and using Green’s formula on each element K we obtain

I1(χ) =

∫
Ω

fχ dx−
∑

K∈Th

∫
K

A(IMuh)χdx−
∑

K∈Th

∫
∂K

ε
∂(IMuh)

∂nK
χds.

The continuity of IMuh and of χ across the edges/faces (in the sense of trace) and
the fact that χ = 0 on Γ lead to

I1(χ) =
∑

K∈Th

∫
K

(f −A(IMuh))χdx +
∑

E∈Eint
h

∫
E

JE,n(uh)χds.

Using the identity (5.4) we arrive at

I1(χ) =
∑

K∈Th

∫
K

(f −A(IMuh))(χ−MKχ) dx +
∑

E∈Eint
h

∫
E

JE,n(uh)χds.
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The conclusion now follows from the fact that∫
E

JE,n(uh) ds = 0 ∀E ∈ Eint
h ,

which is due to (5.1) and the principle of conservation of flux: FD
K,E(uh) = −FD

L,E(uh)
if E = K ∩ L, K,L ∈ Th.

Corollary 5.4. Let the assumptions of Lemma 5.3 be satisfied. Then, the
following estimate holds:

|I1(χ)| �
{ ∑

K∈Th

(
α2
K‖f −A(IMuh)‖2

K(5.6)

+ ε−1/2αK

∑
E∈EK∩Eint

h

‖JE,n(uh)‖2
E

)}1/2

m1(χ, Th)|||χ|||.

Proof. The identity (5.5) and the Cauchy–Schwarz inequality yield

|I1(χ)| �
∑

K∈Th

‖f −A(IMuh)‖K‖χ−MKχ‖K

+
∑

K∈Th

∑
E∈EK∩Eint

h

‖JE,n(uh)‖E‖χ−MEχ‖E .

The discrete Cauchy–Schwarz inequality then leads to

|I1(χ)| �
( ∑

K∈Th

α2
K‖f −A(IMuh)‖2

K

)1/2( ∑
K∈Th

α−2
K ‖χ−MKχ‖2

K

)1/2

+

( ∑
K∈Th

ε−1/2αK

∑
E∈EK∩Eint

h

‖JE,n(uh)‖2
E

)1/2

·
( ∑

K∈Th

ε1/2α−1
K

∑
E∈EK∩Eint

h

‖χ−MEχ‖2
E

)1/2

.

We conclude by applying Lemma 3.5.
Remark 5.5. The fundamental properties above are based only on the definition

of the scheme (2.5), on the continuity of the interpolant, and on the interpolation
properties (5.1), (5.2), and (5.3). Therefore our further analysis is valid for any finite

element (K,Pv,b
K ,Σv,b

K ) such that the associated interpolant satisfies these properties.
But the finite element and the definition of the interpolant should be appropriately
chosen in order to guarantee the convergence of IMuh to the exact solution u. This
convergence analysis is yet to be performed but, in any case, it is outside the scope
of this paper.

6. Error estimators.

6.1. Residual error estimators. The exact element residual is defined by
RK := f − A(IMuh) on K. As usual, this exact residual is replaced by a certain
finite-dimensional approximation rK ∈ Pk(K) called an approximate element residual.

Definition 6.1 (residual error estimator). The local and global residual error
estimators are defined by

η2
K := α2

K‖rK‖2
K + ε−1/2αK

∑
E∈EK∩Eint

h

‖JE,n(uh)‖2
E , η2 :=

∑
K∈Th

η2
K .
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The local and global approximation terms are defined by

ζ2
K := α2

K

∑
K′⊂ωK

‖RK′ − rK′‖2
K′ , ζ2 :=

∑
K∈Th

ζ2
K .

6.2. Upper error bound.
Theorem 6.2. Let u be a solution of (2.2) and uh a solution of (2.5), and denote

the error by e := u− IMuh. Then the error is bounded as follows:

|||e||| � m1(e, Th)(η + ζ).(6.1)

Proof. As e belongs to H1
0 (Ω), Green’s formula yields∫

Ω

(div (ve)e + b|e|2) dx =

∫
Ω

(
1

2
div v + b

)
|e|2 dx.

Therefore we have

|||e|||2 =

∫
Ω

(ε∇e · ∇e + (div (ve) + be)e) dx,

or equivalently, with the notation from Lemma 5.3,

|||e|||2 = I1(e).

The conclusion immediately follows from estimate (5.6).

6.3. Lower error bound.
Theorem 6.3. Assume that there exists δ1 > 2 and δ2 ∈ [3/2, 2) such that{

−div v ≤ δ1b in {x ∈ Ω : div v(x) > 0},
−div v ≤ δ2b in {x ∈ Ω : div v(x) < 0}.(6.2)

Then for all elements K, the following local lower error bound holds:

ηK � (1 + PeωK
+ ΓωK

)|||e|||ωK
+ ζK ,(6.3)

where |||e|||2ω :=
∫
ω
(ε|∇e|2 + ( 1

2div v + b)|e|2); PeωK
= maxK′⊂ωK

PeK′ is the local
patch Peclet number, with the local mesh Peclet number being defined as usual by

PeK = ε−1‖v‖∞,Khmin,K ;

see [11, 2, 19] for anisotropic meshes and [32, 35] for isotropic meshes. The element-
wise quantity ΓωK

is defined similarly; namely, ΓωK
= maxK′⊂ωK

ΓK′ , where (cf.
[3, 2])

ΓK = max{1, αK‖b + div v‖1/2
∞,K}.

Proof. Since b + 1
2div v ≥ 0, we readily see that (6.2) is equivalent to

|b + div v| ≤ γ

(
b +

1

2
div v

)
in Ω,(6.4)

with γ = 2 max{ δ1−1
δ1−2 ,

δ2−1
2−δ2

} > 0.
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Element residual. For a fixed element K define wK = rKbK , which belongs to
H1

0 (Ω). From the definition of RK we have∫
K

rKwK=

∫
K

(rK −RK)wK+

∫
K

RKwK=

∫
K

(rK −RK)wK+

∫
K

A(u− IMuh)wK

=

∫
K

(rK −RK)wK+

∫
K

(div (ve) + be)wK−
∫
K

div (ε∇e)wK .

Integrating by parts in that last term we obtain∫
K

rKwK =

∫
K

(rK −RK)wK +

∫
K

(ε∇e · ∇wK + (div (ve) + be)wK) .

Leibniz’s rule and the Cauchy–Schwarz inequality yield∫
K

rKwK = ‖rK −RK‖K‖wK‖K + (ε‖∇wK‖K + ‖v‖∞,K‖wK‖K)‖∇e‖K

+ ‖(div v + b)e‖K‖wK‖K .

Using property (6.4), we obtain∫
K

rKwK ≤ ‖rK −RK‖K‖wK‖K + (ε‖∇wK‖K + ‖v‖∞,K‖wK‖K)‖∇e‖K

+ γ1/2‖div v + b‖1/2
∞,K‖

(
1

2
div v + b

)1/2

e‖K‖wK‖K .

By the inverse inequalities (3.1), (3.2) we get

αK‖rK‖K � ξK + αK(εh−1
min,K + ‖v‖∞,K)‖∇e‖K

+αK‖div v + b‖1/2
∞,K‖

(
1

2
div v + b

)1/2

e‖K .

Using the property αK ≤ ε−1/2hmin,K , we conclude that

αK‖rK‖K � (1 + PeK + ΓK)|||e|||K + ζK .(6.5)

Normal jump. Fix an arbitrary edge/face E ∈ Eint
h . Recall that JE,n(uh) ∈

Pk(E) for some k ∈ N and let

wE := Fext(JE,n(uh))bE,γE,K
on KE,γE,K

⊂ K ⊂ ωE ,

where KE,γE,K
is the squeezed element associated with K (defined in [36, 15, 19] for

triangles and tetrahedra and easily extended to rectangles; we do not go into detail
here, though we note that the main properties of KE,γE,K

are that it be included in
K to have E as edge/face and be of height ∼ γE,KhE,K) and the parameter γE,K is
fixed and is equal to

γE,K = min

{
1,

hmin,K

hE,K
,

ε1/2

c
1/2
K hE,K

}
.

Here the function bE,γE,K
is the edge/face bubble associated with E in KE,γE,K

.
The difference with the choice made in [19] relies on the factor cK .
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By elementwise partial integration we get∫
E

JE,n(uh)wE = −ε
∑

K⊂ωE

∫
∂K

∂e

∂nK
wE = −

∑
K⊂ωE

∫
K

(ε∇e∇wE + div (ε∇e)wE)

=
∑

K⊂ωE

∫
K

(−ε∇e∇wE + AewE − (div (ve) + be)wE) .

By Leibniz’s rule, the Cauchy–Schwarz inequality, and condition (6.4) we obtain∫
E

JE,n(uh)wE �
∑

K⊂ωE

(
‖RK‖K‖wE‖K + (ε‖∇wE‖K + ‖v‖∞,K‖wE‖K)‖∇e‖K

+ ‖div v + b‖1/2
∞,K‖

(
1

2
div v + b

)1/2

e‖K‖wE‖K
)
.

The inverse inequalities from Lemma 2 of [19] (see our Lemma 3.1 and the above
properties of KE,γE,K

) in the previous estimate lead to

‖JE,n(uh)‖E �
∑

K⊂ωE

γ
1/2
E,Kh

1/2
E,K [(εmin{γE,KhE,K , hmin,K}−1 + ‖v‖∞,K)‖∇e‖K

+ ‖div v + b‖1/2
∞,K‖

(
1

2
div v + b

)1/2

e‖K + ‖RK‖K ].

Multiplying this estimate by ε−1/4α
1/2
K and using the definition of γE,K we arrive at

(6.6)

ε−1/4α
1/2
K ‖JE,n(uh)‖E � (1 + PeωE

)ε1/2‖∇e‖ωE
+ ΓωE

‖
(

1

2
div v + b

)1/2

e‖ωE
+ ζK .

The conclusion follows from estimates (6.5) and (6.6).
Remark 6.4. Condition (6.2) is not restrictive since it is satisfied in the so-called

convection-dominated case b+ 1
2div v ≥ c0 > 0 in Ω. It also holds if divv+ b ≥ 0 and

b ≥ 0 (a.e.) in Ω.

7. Numerical results. In this section we present two examples that illustrate
the efficiency and reliability of our estimator and show that our estimator is appro-
priate for adaptivity. Additionally, for both examples we provide the order of conver-
gence of the error |||u − IMuh|||. In both cases the order is approximately h, which
confirms that IMuh is a good approximation to u. The first and second examples
concern problems with solutions which exhibit boundary layers and for which the use
of anisotropic meshes is recommended. The third example even treats the case when
the meshes are not fully aligned with the solution. Finally, for a convection-diffusion
problem we present two sequences of meshes obtained by an adaptive process. As the
meshes are refined in the region of large variation of the solutions we can verify the
reliability of our estimator.

For both examples we investigate the main theoretical results which are the upper
and lower error bounds. In order to present the inequalities (6.1) and (6.3) appropri-
ately, we consider the ratios

qup :=
|||u− IMuh|||

η + ξ
, qlow := max

K∈Th

ηK
(1 + PeωK

+ ΓωK
)|||e|||ωK

+ ζK
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as a function of the degrees of freedom. The first ratio qup is frequently referred to
as the effectivity index. It measures the reliability of the estimator and is related
to the global upper bound on the error. The second ratio is related to the local
lower error bound and measures the efficiency of the estimator. From our theoretical
considerations, both ratios should be bounded from above, which is confirmed below
experimentally. Hence our estimator is reliable and efficient.

7.1. A reaction-diffusion problem (Test 1). As a particular problem, in
(2.1) we take v = (0, 0)� and b = 1 in the unit square; i.e., we consider

−ε Δu + u = 0 in Ω = (0, 1)2.

We prescribe the exact solution to be

u(x, y) = exp (−x/
√
ε),

with the Dirichlet boundary datum being fixed accordingly. This solution exhibits an
exponential boundary layer of width O(

√
ε| ln ε|) along the y-axis.

To approximate the solution to this problem appropriately we use anisotropic
meshes. Each mesh is the tensor product of a Shishkin-type mesh in the x-direction
and a uniform mesh in the y-direction, both with n subintervals. More precisely we
fix the transition point τ := min{1/2,

√
ε| ln ε|} and define the rectangular mesh of

nodes (xi, yj), 0 ≤ i, j ≤ n, with (n is assumed to be even)

xi = i2τh for 0 ≤ i ≤ n/2,

xi = τ + (2i− n)(1 − τ)h for n/2 ≤ i ≤ n,

yj = jh for 0 ≤ j ≤ n,

where the meshsize h is equal to 1/n. Such a mesh is illustrated in Figure 7.1 (left)
for h = 1/8 and τ ≈ 0.25.

For each triangulation, we compute the finite volume approximation uh as a
solution to (2.5), and then compute its interpolant IMuh using the finite element
of subsection 4.3.2 (with the values of IMuh at any interior node a being fixed by
IMuh(a) = 1

4

∑
a∈K uK). Figure 7.2 presents the energy norm |||u − IMuh||| with

respect to n for different values of ε. The rate of convergence is approximately h,
which confirms that IMuh converges quite well to u.

Now we investigate the upper and lower error bounds. According to previous
results on finite element methods [15, 19], the meshes are appropriately chosen to
resolve the boundary layer, and consequently the alignment measure m1(e, Th) should
be moderated. Figure 7.3 presents the values of qup (top) and of qlow (bottom) with
respect to n for different values of ε. We observe that qup is bounded from above by
0.15 and that qlow is bounded from above by 0.5.

7.2. Convection-diffusion problems (Test 2). Here we consider the convection-
diffusion problem

−ε Δu + div (vu) = 0 in Ω = (0, 1)2,(7.1)

where v is either (−1, 0)� or (−1,−1)�. We prescribe the exact solution to be,
respectively,

u(x, y) = exp (−x/ε) or u(x, y) = exp (−(x + y)/ε),
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Fig. 7.1. Shishkin-type meshes on the unit square with n = 8.
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Fig. 7.2. Illustration of the convergence of ‖∇h(u− IMuh)‖ for Test 1.

with the Dirichlet boundary datum being fixed accordingly. In the first case the
solution exhibits an exponential boundary layer of width O(ε| ln ε|) along the y-axis,
while in the second case, two exponential boundary layers appear along the x and
y axes. Therefore these problems are approximated using similar anisotropic meshes
as before with the transition point τ := min{1/2, ε| ln ε|} (with the tensor product
of two Shishkin type meshes in the second case; see Figure 7.1 (right)). Once we
have computed the finite volume approximation uh, solution of (2.5), we compute its
interpolant IMuh using the finite element of subsection 4.1.2 and the same values at
the nodes as before.

Figure 7.4 shows the energy norm |||u − IMuh||| with respect to n for different
values of ε and confirms a rate of convergence of approximately h.

As before, the meshes are appropriately chosen so the alignment measure m1(e, Th)
should be moderated. The values of qup and of qlow with respect to n for different
values of ε are plotted in Figures 7.5 and 7.6. Here we observe similar values for both
examples; moreover we see that qup is bounded from above by 0.1 and that qlow is
approximately 2.2.

7.3. Meshes not aligned with the solutions (Test 3). Here we consider the
convection-diffusion problem (7.1) with v = (− cos θ, sin θ)�, with θ = 0, 0.1π, and
0.2π, and its prescribed solution given by

u(x, y) = exp ((− cos θx + sin θy)/ε)
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Fig. 7.3. qup (top) and qlow (bottom) with respect to n for Test 1.

and ε = 0.05. This solution has a layer along the line − cos θx + sin θy = 0 (the
case θ = 0 corresponds to the case of the previous subsection but is presented in
order to compare the different results). Here we take the sequence of meshes from
subsection 7.1 with the transition point τ = 4ε = 0.2. This means that for θ = 0.1π
and 0.2π, the meshes are not fully aligned with the solution and are less and less
aligned as θ increases. Nevertheless the convergence rate is h according to Figure 7.7.
Moreover the values of qup and qlow with respect to n for the different values of θ
are plotted in Figures 7.8, where we see that qup varies between 0.1 and 0.14 and
that qlow is bounded from above by 2.75. From this figure, we further remark that
the effectivity index qup grows as θ increases, implying that the matching function
m1(e, Th) grows as well. This phenomenon was expected since the meshes are less
and less aligned as θ increases.

7.4. An adaptive algorithm (Test 4). In view of the upper bound (6.1), we
use the following (standard) adaptive process: Starting from an initial mesh Th0 , we
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Fig. 7.4. Illustration of the convergence of ‖∇h(u− IMuh)‖ for Test 2 for v = (−1, 0)� (top)
and for v = (−1,−1)� (bottom).

mark the elements K for which

ηK > cmax
K′

ηK′ ,

for a chosen constant c ∈ (0, 1). All marked elements are divided into four subelements
(standard regular refinement rule), with the other elements being subdivided only to
guarantee the conformity of the new mesh. We refine the meshes up to the requested
accuracy.

We test this adaptive algorithm for the convection-diffusion problem (7.1) with
v = (1, 1)� and the prescribed solution given by

u(x, y) = exp (−100((x− 0.5)2 + (y − 0.5)2)),

with the right-hand side and the boundary datum being fixed accordingly. This exact
solution is a Gaussian function whose center is the point (0.5, 0.5). For this example
we use either meshes consisting of rectangles satisfying the admissibility condition or
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Fig. 7.5. qup (top) and qlow (bottom) with respect to n for Test 2 for v = (−1, 0)�.

meshes consisting of triangles that do not satisfy the admissibility condition (in which
case we use the diamond cell technique; see subsection 2.2). The Morley interpolant
is computed using the finite elements from subsection 4.1.2 or 4.1.1. The meshes ob-
tained after four iterations are shown in Figure 7.9. In the case of rectangular meshes,
anisotropic meshes appear due to the admissibility condition, but this does not affect
the convergence of our adaptive process. This also underlines the incompatibility be-
tween standard refinement rules and this admissibility condition. From this figure,
we can conclude that the meshes are refined in the region of large variation of the
solution. Again this confirms the reliability of our estimator.

Figure 7.10 shows the energy norm |||u − IMuh||| with respect to the degrees of
freedom for the adaptive algorithm in comparison with uniformly refined meshes. In
both cases, we see that the adaptive algorithm gives rise to better error bounds and
to convergence in h.

The values of qup and qlow with respect to the degrees of freedom are plotted in
Figures 7.11 and 7.12 and are compared with uniformly refined meshes. There we
observe that qup is bounded from above by 0.1 and that qlow is bounded from above
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Fig. 7.6. qup (top) and qlow (bottom) with respect to n for Test 2 for v = (−1,−1)�.

by 1.42 (resp., 3.5). From these figures, we can say that the different values of qup
remain similar for adaptive meshes and for uniformly refined meshes, while the values
of qlow have a different behavior but stay in a relatively small range of variations. For
rectangular meshes, uniform meshes lead to smallest values of qlow, probably due to
the overrefinement of adaptive meshes, while the converse holds for triangular meshes
because adaptive triangular meshes fit the solution well.

8. Conclusions. We have proposed and rigorously analyzed a new a posteriori
error estimate for a cell centered finite volume approximation of diffusion-convection-
reaction equations. We have shown that this estimate is reliable and efficient. This
estimate is based on the construction of an appropriate interpolant of Morley type.
Some numerical experiments confirm our theoretical predictions.

Acknowledgment. I am very grateful to Karim Djadel (Cermics, ENPC, France),
who made the numerical experiments presented in section 7.
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Abstract. Discretization of Maxwell eigenvalue problems with edge finite elements involves a
simultaneous use of two discrete subspaces of H1 and H(curl), reproducing the exact sequence con-
dition. Kikuchi’s discrete compactness property, along with appropriate approximability conditions,
implies the convergence of discrete eigenpairs to the exact ones. In this paper we prove the discrete
compactness property for the edge element approximation of Maxwell’s eigenpairs on general hp
adaptive rectangular meshes. Hanging nodes, yielding 1-irregular meshes, are covered, and the order
of the used elements can vary from one rectangle to another, thus allowing for a real hp adaptivity.
As a particular case, our analysis covers the convergence result for the p-method.
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1. Introduction. The importance of the exact sequence

H1 grad−→ H(curl)
curl−→ H(div)

div−→ L2

has been recognized in the analysis of Maxwell equations [2, 12, 13]. In two space
dimensions the sequence reduces to

H1 grad−→ H(curl)
curl−→ L2.

In this paper we shall deal with the two-dimensional (2D) case.
The fundamental idea behind the construction of edge elements is based on the

reproduction of the sequence at the discrete level. This idea had been also successfully
exploited in the framework of mixed finite elements for elliptic problems, where it is
also known as commuting diagram property [34].

Thus, we shall consider discrete subspaces of H1 and H(curl) forming part of the
discrete exact sequence. It is in this context that Kikuchi [35] introduced the funda-
mental notion of the discrete compactness property which, along with appropriate ap-
proximability properties, guarantees the convergence of discrete Maxwell eigenvalues
to the exact ones. We also refer the reader to the book [17] for a definition correspond-
ing to discrete compactness in an abstract setting. In another important contribution
Caorsi, Fernandes, and Raffetto [16] have demonstrated that the discrete compactness
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property is not only a sufficient but also a necessary condition for the convergence of
Maxwell eigenvalues without the appearance of any spurious mode.

Let us recall that the difficulty related with the Maxwell curl curl operator is
the lack of ellipticity manifested by the presence of the infinite dimensional kernel
formed by the gradients. Nevertheless, the Maxwell problem is well posed as soon as
the divergence-free constraint is imposed. With this constraint, the Maxwell problem
recovers ellipticity properties due to the compact embedding of H0(curl)∩H(div) into
L2. The discrete compactness is the correct discrete analogue of the above compact
embedding.

For the sake of clarity let us give the definition of discrete compactness property.
As with the usual approximability properties, it is related to a sequence of discrete
spaces. Let (Xn)n be a sequence of finite dimensional subspaces of H0(curl) and (Qn)n
a related sequence of subspaces of H1. We say that the sequence (Qn,Xn)n has the
discrete compactness property if the following holds:

Any sequence un ∈ Xn of discrete divergence-free fields, i.e., satisfying

(un,gradφn) = 0 ∀φn ∈ Qn

and uniformly bounded in H(curl), has a subsequence converging in L2.
The discrete compactness property has been extensively studied in the framework

of the h version of edge finite elements, where it is well known to hold true for
a variety of edge finite elements on quite general 2D and three-dimensional (3D)
meshes (see the review papers [19, 33], the book [38], and the references therein,
among which we recall in particular [6, 7, 9, 14, 16, 35, 39]), but it has not been
widely investigated for the p and hp version yet. On the other hand, electromagnetic
devices very often involve complicated geometries, which in particular may be neither
smooth nor convex. The analysis of the singularities arising from reentrant corners
or edges and from material discontinuities (see [18, 20]) shows that such situations
are to be handled with care. When using edge elements, one might want to locally
adapt the meshsize h and the approximation order p, which can possibly vary from
one element to another within the same mesh. Such an hp strategy is an excellent way
to get accurate results (an exponential convergence is expected and observed) when
even severe singularities are present (see [23, 42] for examples of hp finite element
(FE) implementations).

In [8], the analysis of the discrete compactness property for triangular hp finite
elements has been tackled, but the proof of the main result relied on a conjectured L2

estimate which had only been demonstrated numerically. Even for the pure p method,
there is no result in this direction available in the literature. In [37] the p version of
edge elements has been considered, but the proved results do not apply to eigenvalue
approximations.

In this paper, we consider the 2D case of rectangular elements. A rigorous proof
of the discrete compactness property is provided for edge elements of the first Nédélec
family. Our hypotheses allow for a complete hp refinement, including the presence of
hanging nodes. The pure p version of edge elements, being a subset of our setting, is
naturally covered by our analysis. The same proof applies to meshes of quadrilaterals
obtained by affine transformation from the reference square (i.e., parallelograms) and,
more generally, to meshes obtained using the so-called algebraic mesh generators.

The case of unstructured quadrilateral meshes presents some issues: It is known
that the h version of standard edge elements does not provide optimal results in
this case, and even in the lowest order case there is no convergence at all; see [3].
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Nevertheless, the results of [31] show that the discrete compactness property holds in
the framework of the h version for the modified family of edge elements proposed and
analyzed in [3]; another, simpler modification has been proposed and analyzed in [11].
But the validity of the discrete compactness property for the p and hp versions of
edge elements remains an open problem in the situation of unstructured meshes.

Our presentation starts with the pure p method on a single square element, which
is analyzed in section 3 after the introduction of some preliminary notation in section 2.
We consider, in particular, full tensor polynomials (the second Nédélec family of edge
elements; see [41]) and standard edge element of the first Nédélec family (see [40]). We
show that standard edge elements provide convergent approximation, while the second
Nédélec family presents several spurious eigenpairs (more precisely, some discrete
eigenvalues come with wrong multiplicity). We then present in section 4 the general
hp theory which relies on an L2 estimate which is proved thanks to the evaluation
of an inf-sup constant on the reference element (section 4.3). We make use of the
hp edge element spaces presented in [42], which generalize the first family of Nédélec
finite elements.

We conclude our paper in section 5, where we recall the consequences of the
discrete compactness property on the eigenvalue approximation by a Galerkin method:
As a result, the kth nonzero eigenvalue of the Galerkin discretization converges to the
kth nonzero Maxwell eigenvalue. We discuss the possibility of proving an exponential
convergence rate, such as the one obtained in [22] for the discretization of the Maxwell
problem by the weighted regularization method. We then finally comment on the
extension of our proofs to the situation of general curvilinear polygons, with meshes
obtained using algebraic mesh generators.

2. Preliminary notions and notation.

2.1. Polynomial spaces on the reference square. The square is defined as
Σ := I2, where I is the interval (−1, 1). We denote the coordinates by x = (x, y).
The outward unit normal vector on the boundary ∂Σ is n.

Everywhere p denotes an integer p ≥ 1. The space of polynomials of degree ≤ p on
I is denoted by P

p(I), and its subspace of polynomials ϕ with zero traces, ϕ(±1) = 0,
is denoted by P

p
0(I).

On the square, let Q
p,q(Σ) be the space of polynomials of separate degrees p and

q in x and y, respectively. This can be expressed as

Q
p,q(Σ) = P

p(I) ⊗ P
q(I).

Symbol Q
p will be used for isotropic spaces, Q

p = Q
p,p, and Q

p
0 will denote the

polynomials with zero traces, Q
p
0 = P

p
0 ⊗ P

p
0.

We will study in the following two families of polynomial spaces for the electric
field u = (u1, u2) on the square Σ.

2.1.1. Full tensor product spaces. Qp(Σ) denotes the full space Q
p(Σ) ×

Q
p(Σ). This is the space of Lagrange nodal elements on the square and, with appro-

priate degrees of freedom, this also forms the second Nédélec family of edge elements.

We denote by Qp
N(Σ) its subspace of the fields u satisfying the perfect electric

conductor boundary condition u × n = 0 on ∂Σ. We have

Qp
N(Σ) =

[
P
p(I) ⊗ P

p
0(I)

]
×
[
P
p
0(I) ⊗ P

p(I)
]
.(1)
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2.1.2. Classical edge elements. Np(Σ) denotes the space Q
p−1,p(Σ)×Q

p,p−1

(Σ) which allows the commuting diagram property with the operator grad from the
space of scalar polynomials Q

p(Σ). These edge element spaces are also known as the
first Nédélec family of edge elements. For simplicity, we shall refer to the spaces of
this section as standard (Nédélec) edge elements. We denote by Np

N(Σ) the subspace
of fields satisfying the electric boundary condition:

Np
N(Σ) =

[
P
p−1(I) ⊗ P

p
0(I)

]
×
[
P
p
0(I) ⊗ P

p−1(I)
]
.(2)

2.2. Maxwell spectrum in the square. In section 3 we shall describe in terms
of one-dimensional (1D) problems the Maxwell spectrum computed with the spaces
Qp

N(Σ) and Np
N(Σ).

We first recall the definition of the standard continuous spaces associated with
Maxwell equations on a domain Ω: H(curl,Ω) is the space of L2(Ω) fields with curl in
L2(Ω), while H0(curl,Ω) is the subspace of H(curl,Ω) with perfect electric boundary
conditions; H(div,Ω) is the space of L2(Ω) fields with divergence in L2(Ω).

Let us describe the Maxwell spectrum in the continuous space

XN(Σ) := H0(curl,Σ) ∩ H(div,Σ),

i.e., the eigenpairs (λ,u) with u 	= 0 such that

u ∈ XN(Σ) :

∫
Σ

curlu curl v dx = λ

∫
Σ

u · v dx ∀v ∈ XN(Σ).(3)

2.2.1. The kernel. For λ = 0, we have the whole space gradH1
0 (Σ) of kernel

elements.

2.2.2. The genuine Maxwell spectrum. The whole nonzero spectrum corre-
sponds to eigenvectors of the form u = curlϕ with ϕ the nonconstant eigenvector of
the Neumann problem on Σ. Let (ψj)j≥0 be the basis of the Neumann eigenvectors

on the interval I; they are associated with the eigenvalues j2π2/4. Then the Maxwell
spectrum on Σ is

λj,k = (j2 + k2)π2/4, uj,k(x, y) = (ψj(x)ψ′
k(y),−ψ′

j(x)ψk(y)), j + k ≥ 1.(4)

For comparison purposes, it is convenient to split the whole spectrum into the
three following parts:

(a) the kernel;
(b) the nonzero Neumann eigenvalues j2π2/4 associated with the two eigenvectors

(0,−ψ′
j(x)) and (ψ′

j(y), 0);

(c) the sum of two nonzero Neumann eigenvalues (j2 + k2)π2/4 with the eigen-
vectors uj,k (and uk,j if j 	= k).

Remark 1. For all nonconstant Neumann eigenvectors ψj (i.e., for j ≥ 1), ψ′
j is a

Dirichlet eigenvector associated with the eigenvalue j2π2/4. Let us denote ϕj := −ψ′
j .

Then (j2π2/4)ψj = −ψ′′
j = ϕ′

j , and we can see that eigenvectors associated with part
(c) of the spectrum can be written as(

1

j2
ϕ′
j(x)ϕk(y),−

1

k2
ϕj(x)ϕ′

k(y)

)
.(5)
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3. Approximation of Maxwell’s spectrum in a square by the p method.
In this section we characterize explicitly the Maxwell spectrum on the square com-
puted with the full polynomial space Qp

N(Σ) and with the Nédélec edge element space
Np

N(Σ).
In contrast with (4), where the 1D generators are the Neumann eigenvectors on

the interval, at the discrete level we will show that the 1D generators are the Dirichlet
discrete eigenvectors: for p ≥ 2, we consider the eigenpairs (λ, β) with β 	= 0 such
that

β ∈ P
p
0(I) :

∫
I

β′w′ dx = λ

∫
I

βw dx ∀w ∈ P
p
0(I).(6)

The dimension of P
p
0(I) is p − 1; for j = 1, . . . , p − 1, let (λ

[p]
j , β

[p]
j ) be an eigenpair

basis of (6) satisfying

λ
[p]
1 < λ

[p]
2 < · · · < λ

[p]
p−1.

For each j, λ
[p]
j tends exponentially to j2π2/4 as p → ∞. This follows from the stan-

dard convergence analysis for elliptic eigenvalue problems [5] and best approximation
properties of the p-version of the finite element method (FEM); see [43, Chapter 3].

We are going to describe the Maxwell spectrum in Qp
N(Σ), i.e., the eigenpairs

(λ,u) such that

u ∈ Qp
N(Σ) :

∫
Σ

curlu curl v dx = λ

∫
Σ

u · v dx ∀v ∈ Qp
N(Σ).(7)

Theorem 1. The whole Maxwell spectrum (7) in Qp
N(Σ) can be split into four

parts:
(a) the kernel: λ = 0 and u ∈ grad(Pp

0 ⊗ P
p
0);

(b) the Dirichlet discrete eigenvalues λ
[p]
j associated with the two eigenvectors

(0,−β
[p]
j (x)) and (β

[p]
j (y), 0), j = 1, . . . , p− 1;(8)

(c) the sum of two Dirichlet discrete eigenvalues λ
[p]
j + λ

[p]
k with the eigenvectors

(λ
[p]
j β

[p]
k

′(x)β
[p]
j (y),−λ

[p]
k β

[p]
k (x)β

[p]
j

′(y)), 1 ≤ j, k ≤ p− 1;(9)

(d) the Dirichlet discrete eigenvalues λ
[p]
j associated with two spurious eigenvec-

tors

(0,−β
[p]
j (x)Lp(y)) and (Lp(x)β

[p]
j (y), 0),(10)

where Lp denotes the Legendre polynomial of degree p.
Remark 2. Note that formula (5) transforms into (j2ϕ′

k(x)ϕj(y),−k2ϕk(x)ϕ′
j(y))

by swapping j and k and multiplying by j2k2. The similarity with formula (9) is now
obvious.

Remark 3. The previous theorem shows that the space Qp
N(Σ) is not suited for

the computation of Maxwell’s eigenvalues. Indeed, the discrete eigenvalues described
in part (d) are redundant, providing a wrong multiplicity to the correct eigenvalues
described in part (b). Moreover, the discrete eigenvectors of part (d) do not approx-
imate any physical eigenfunction. The fact that the second Nédélec family produces
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spurious modes in the h-version of the FEM has been documented in the literature;
see, e.g., [29, 30].

Proof. Let us first check the dimensions of the spaces described in the four above
cases:

(a) (p− 1)2.
(b) 2(p− 1).
(c) (p− 1)2.
(d) 2(p− 1).

The sum is 2(p− 1)(p + 1), which is the dimension of Qp
N(Σ) (see (1)).

It remains to check that the proposed pairs are eigenpairs of (7).
Case (a). The scalar polynomial space P

p
0 ⊗ P

p
0 is contained in H1

0 (Σ); therefore
all elements of grad(Pp

0 ⊗ P
p
0) belong to the kernel.

For the remaining part of the proof, since p is fixed, let us drop the exponent [p]
in the notation of the discrete 1D Dirichlet eigenpairs. By integration by parts we
note that the discrete eigenpairs (λj , βj) satisfy∫

I

(β′′
j + λjβj)w dx = 0 ∀w ∈ P

p
0(I).(11)

On the other hand, again by integration by parts, we obtain that (λ,u) is an eigenpair
in Qp

N(Σ) if and only if

u ∈ Qp
N(Σ) :

∫
Σ

(curl curlu − λu) · v dx = 0 ∀v ∈ Qp
N(Σ).(12)

It is clear that all proposed eigenvectors in (b), (c), and (d) belong to Qp
N(Σ). It

remains to compute curl curlu − λu in each case and to check (12).
Case (b). For λ = λj and u = (0,−βj(x)), the two components of curl curlu−λu

are

0 and β′′
j (x) + λjβj(x).

Then relation (11) yields (12), and the same argument applies to the other vector
(βj(y), 0).

Case (c). For λ = λj + λk and u given by (9), we have

curlu = (λj + λk)β
′
k(x)β′

j(y)

and the two components of curl curlu − λu are

−(λj + λk)β
′
k(x)β′′

j (y) − (λj + λk)λjβ
′
k(x)βj(y)

+ (λj + λk)β
′′
k (x)β′

j(y) + (λj + λk)λkβk(x)β′
j(y)

which can be written as

−(λj + λk)β
′
k(x)

{
β′′
j (y) + λjβj(y)

}
+ (λj + λk)β

′
j(y)

{
β′′
k (x) + λkβk(x)

}
.

Then relation (11) yields (12).
Case (d). For λ = λj and u = (0,−βj(x)Lp(y)), the two components of curl curlu−

λu are

−β′
j(x)L′

p(y) and β′′
j (x)Lp(y) + λjβj(x)Lp(y).
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The second component is orthogonal to any element of P
p
0(I) ⊗ P

p(I) (see (1) and
(11)). It remains to check that the first component is orthogonal to P

p(I) ⊗ P
p
0(I),

i.e., ∫
Σ

v′j(x)L′
p(y)w(x)v(y) dxdy = 0 ∀w ∈ P

p(I), ∀v ∈ P
p
0(I).(13)

It is sufficient to prove that
∫
I
L′
p(y)v(y) dy = 0 for all v ∈ P

p
0(I): such a v is given by

(1 − y2)ϕ(y) with ϕ ∈ P
p−2(I). Since the polynomials L′

k are orthogonal on I with
respect to the measure (1− y2) dy and since the degree of L′

j is j − 1, we obtain that∫
I

L′
p(y)ϕ(y)(1 − y2) dy = 0 ∀ϕ ∈ P

p−2(I),

hence (13).
The next theorem characterizes the Maxwell spectrum in Np

N(Σ), i.e., the eigen-
pairs (λ,u) such that

u ∈ Np
N(Σ) :

∫
Σ

curlu curl v dx = λ

∫
Σ

u · v dx ∀v ∈ Np
N(Σ).(14)

Theorem 2. The three first parts (a), (b), and (c) of the discrete spectrum
described in Theorem 1 are the whole discrete Maxwell spectrum computed by the edge
element space Np

N(Σ).
Proof. We can see that the eigenvectors of parts (a), (b), and (c) all belong to

the smaller space Np
N(Σ). Therefore they are also eigenvectors in this space. We see

that the sum of the dimensions of the corresponding eigenspaces is (p − 1)2 + 2(p −
1) + (p− 1)2, which is equal to 2(p− 1)p, the dimension of Np

N(Σ) (see (2)).
The conclusion arising from Theorems 1 and 2 is that the space Np

N(Σ) is to
be preferred with respect to Qp

N(Σ) for the computation of Maxwell’s eigenpairs.
Indeed, the latter space does not provide correct approximation of the spectrum (see
Remark 3).

4. Approximation of Maxwell’s spectrum by hp rectangular finite el-
ements. In this section we extend the results about the space Np

N(Σ) to the more
involved situation of hp refinements, which provides realistic applications to a class
of polygonal domains. The structure of this section is as follows. First, we define
the FE spaces we are dealing with and make precise the assumptions on the mesh.
Then, after establishing an L2-stability result (see section 4.3), we prove the discrete
compactness property which implies the convergence of eigenvalues/eigenvectors. Our
proof clearly implies that the discrete compactness property also holds true for the
pure p method on a conforming rectangular mesh (i.e., without hanging node) with
the standard edge elements of the first Nédélec family.

4.1. De Rham diagram for a variable order quad element. Let Σ = I× I
be the master square element. A feature of edge elements is their embedding in a com-
muting de Rham diagram of type (15) relating two exact sequences of spaces on both
continuous and discrete levels. We refer the reader to [14, 33] for a systematic descrip-
tion of the standard discrete de Rham diagram of any degree, where the interpolation
operators are based on nodal values, edge moments, and volume moments. In view
of the construction hp finite elements, another class of commuting de Rham diagram
has been introduced [26], relying on the so-called projection-based interpolants, which
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allow variable orders on distinct elements of the same mesh, while preserving the com-
muting property.

We start by introducing this latter version of the de Rham diagram, involving
discrete spaces and interpolation operators on Σ, according to

R −→ H1+ε(Σ)
grad−→ Hε(Σ) ∩ H(curl,Σ)

curl−→ L2(Σ) −→ 0⏐⏐�id ⏐⏐�Π
⏐⏐�Πcurl

⏐⏐�P

R −→ Q
p| pe(Σ)

grad−→ Np| pe−1(Σ)
curl−→ Q

p−1(Σ) −→ 0.

(15)

Index p specifies the order in both variables which, for the sake of simplicity of this
presentation, we assume to be identical, Q

p(Σ) = Q
p,p(Σ) = P

p(I) ⊗ P
p(I), and

with every edge e of the master element, we associate the corresponding order pe,
e = 1, . . . , 4 (with standard, counterclockwise enumeration of edges), that satisfies
the condition

pe ≤ p, e = 1, . . . , 4.(16)

The polynomial spaces present in the diagram are defined as follows.
• Q

p| pe(Σ)—the subspace of Q
p(Σ), consisting of polynomials whose traces on

edges e reduce to (possibly lower) order pe, e = 1, . . . , 4.

• Np| pe(Σ)—the subspace of Np(Σ) (cf. section 2.1.2) of vector-valued poly-
nomials with traces of their tangential components on edges e of (possibly
lower) order pe:

Np| pe(Σ) = {u ∈ Np(Σ) : ut|e := (n × u)|e ∈ P
pe(e) ∀e},(17)

where n is the outward unit normal vector.
In particular, Q

p| −1 provides an alternative notation for the subspace Q
p
0 of poly-

nomials vanishing on the boundary of the element, and Np| −1 = Np
N stands for the

subspace of vector-valued polynomials from the first Nédélec family whose tangential
component traces on the boundary are equal to zero. The assumption that edge or-
ders pe should not exceed corresponding components of order p is realized in practice
by implementing the minimum rule that sets an edge order pe to the minimum of
orders p corresponding to the adjacent elements.

4.1.1. H1-conforming projection-based interpolation. Let P
p
0(I) denote

the space of polynomials of degree ≤ p, defined on the interval I = (−1, 1) with zero
traces at the endpoints. Let φ1(x) = (1−x)/2, φ2(x) = (x+1)/2 be the standard 1D
linear shape functions. Space Q

p| pe(Σ) admits a natural decomposition into vertex
bilinear shape functions, edge bubbles, and element bubbles:

Q
p| pe(Σ) =

{
P

1(I) ⊗ P
1(I)

}
⊕
{
(Pp1

0 (I) ⊗ Rφ1) ⊕ (Rφ2 ⊗ P
p2

0 (I)) ⊕ (Pp3

0 (I) ⊗ Rφ2) ⊕ (Rφ1 ⊗ P
p4

0 (I))
}

⊕
{
P
p
0(I) ⊗ P

p
0(I)

}
.

(18)

We will alternatively speak of edge bubbles for functions defined on a particular edge
(and zero at its ends) or for their extensions to the whole element (and zero on the



DISCRETE COMPACTNESS FOR THE hp EDGE ELEMENTS 987

other edges). The linear extensions are natural but not essential in the forthcoming
discussion. For a particular edge, the corresponding edge bubbles must vanish on the
remaining edges and must “live” in the FE space. Similarly, the shape function for a
vertex node must vanish at the remaining vertices, and it must be in the FE space;
the fact that it is constructed using bilinear functions is secondary.

Given a function u ∈ H1+ε(Σ), we define its interpolant, up = Πu, as a sum of
three contributions,

up = u1 +
∑
e

u2,e,p︸ ︷︷ ︸
u2,p

+u3,p.(19)

Interpolation at vertices. Vertex interpolant u1 interpolates function u at
vertices,

u1(a) = u(a) for each vertex a.

The simplest choice of an extension of the vertex values is provided by the bilinear
function, but the ultimate value of the interpolant is independent of the choice of the
extension as long as the extension “lives” in the FE space.

Projection on edges. We subtract the vertex interpolant u1 from u and project
the difference u− u1, over each edge e, onto the space of edge bubbles,

|u− u1 − u2,e,p|1/2,e → min.

The projection is done in an H1/2(e) seminorm, and it is equivalent to the solution
of a small linear system,

Find edge bubble u2,e,p ∈ P
pe

0 (e) such that

(u− u1 − u2,e,p , φ)1/2,e = 0, for each edge bubble φ ∈ P
pe

0 (e),

where (·, ·)1/2,e denotes the inner product corresponding to edge seminorm | · |1/2,e.
Projection on the element. We extend each edge bubble u2,e,p to the whole

element. Again, the most natural extension is provided by the element shape functions
and corresponds to decomposition (19). We subtract then the total edge interpolant
u2,p =

∑
e u2,e,p from the difference u−u1 and project the resulting difference on the

element bubbles,

|u− u1 − u2,p − u3,p|1,Σ → min.

Again, the projection is equivalent to a local Dirichlet problem on the element,

Find element bubble u3,p ∈ Q
p
0(Σ) such that

(u− u1 − u2,p − u3,p, φ)1,Σ = 0, for each element bubble φ ∈ Q
p
0(Σ),

where (·, ·)1,Σ denotes the H1
0 -inner product.

The interpolation is thus equivalent to the solution of a sequence of local (ap-
proximate) Dirichlet problems. We first interpolate at the vertices and then, with
the vertex values providing Dirichlet conditions, solve the edge Dirichlet problems.
Finally, we use the vertex and edge interpolants to set up the Dirichlet boundary
conditions and solve the final Dirichlet problem on the whole element. Remember
that it does not matter in which way we construct lifts of the approximate Dirichlet
data; the ultimate interpolant is unique. In each of the three steps, we determine a
part of the interpolant corresponding to the decomposition (18).
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4.1.2. H(curl)-conforming projection-based interpolation. A similar de-
composition into edge functions and element bubbles can be constructed for the space
Np| pe−1(Σ),

Np| pe−1(Σ) =
{[

(Pp1−1(I) ⊗ Rφ1) × {0}
]
⊕
[
{0} × (Rφ2 ⊗ P

p2−1(I))
]

⊕
[
(Pp3−1(I) ⊗ Rφ2) × {0}

]
⊕
[
{0} × (Rφ1 ⊗ P

p4−1(I))
]}

⊕
{[

(Pp−1 ⊗ P
p
0)(Σ) × {0}

]
⊕
[
{0} × (Pp

0 ⊗ P
p−1)(Σ)

]}
.

(20)

Given a vector-valued function u ∈ Hε(curl,Σ), we define its interpolant up = Πcurlu
as a sum of two contributions,

up =
∑
e

u2,e,p︸ ︷︷ ︸
u2,p

+u3,p.

Edge projections. For each edge e, let vt = n × v denote the (scalar-valued)
tangential component1 of a field v on e. We project the tangential component ut of
function u onto the scalar edge functions,

‖ut − u2,e,p,t‖−1/2,e → min.

Here the norm ‖ · ‖−1/2,e denotes the norm in the dual space

H−1/2(e) = (H
1/2
00 (e))′;

see, e.g., [36]. We then define the vector edge function u2,e,p as the tangent vector
field on e such that u2,e,p,t = n × u2,e,p. The projection problem is equivalent to the
variational problem

Find the tangential component u2,e,p,t ∈ P
pe−1(e) of the edge function u2,e,p s. t.

(ut − u2,e,p,t, φ)−1/2,e = 0, for each edge function φ ∈ P
pe−1(e),

with (·, ·)−1/2,e denoting the inner product corresponding to norm ‖ · ‖−1/2,e. Notice
that for a constant function φ, the inner product reduces to L2-product, and the
equation above incorporates in particular the edge average condition∫

e

(ut − u2,e,p,t) ds = 0.

Element projection. We extend each individual edge function u2,e,p to the
whole element using the edge shape functions according to the splitting (20), sum it
up, u2,p =

∑
e u2,e,p, and subtract the difference from function u. We then solve a

local projection problem,

‖ curl(u − u2,p − u3,p)‖0,Σ → min,

subjected to the additional constraint,

(u − u2,p − u3,p,gradφ) = 0, for each element scalar bubble φ.

1More precisely, using the 3D notation, we have vt = (n × v) · ez , where ez is the unit vector
orthogonal to the 2D plane.
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The constrained projection problem is equivalent to a Dirichlet mixed problem:
Find element bubble u3,p and Lagrange multiplier ψ such that

{
(curl(u − u2,p − u3,p), curl v) + (gradψ, v) = 0 for every element vector bubble v,
(u − u2,p − u3,p,gradφ) = 0 for every element scalar bubble φ.

(21)

Here the Lagrange multiplier ψ lives in the space of scalar bubbles. Since gradψ
is a vector bubble, the multiplier is identically equal to zero and, for this reason, is
sometimes called the hidden variable.

Remark 4. In [24], the edge contributions u2,e,p were split into the Whitney
interpolant with constant tangential component and a higher order edge bubble. Also,
the choice of “edge” norms in the presentation above is consistent with the latest 3D
results (see [25]), and it is slightly different from those used in [24].

Finally, P is the L2-projection from L2(Σ) onto Q
p−1(Σ). With this, we have the

following result.
Theorem 3. If the edge seminorm |u|1/2,e is selected in such a way that

|u|1/2,e =

∥∥∥∥∂u∂s
∥∥∥∥
−1/2,e

,

then the de Rham diagram (15) commutes.
Proof. The tangential derivative ∂s is an isomorphism from H1/2(e)/R onto

H−1/2(e) (see [32, p. 31]). By the Bramble–Hilbert lemma, the norm in the quo-
tient space H1/2(e)/R is equivalent to the standard |u|1/2,e-seminorm. Consequently,

‖∂su‖−1/2,e defines a seminorm on H1/2(e), equivalent to the standard seminorm.
The commuting projection-based interpolation operators considered in [26] use

different projections on edges based on the H1-seminorm for operator Π and the
L2-norm for operator Πcurl. The proof from [26] carries over to the case being pre-
sented without any modification, provided the H1-seminorm is traded for the H1/2-
seminorm, and the L2-norm is traded for the H−1/2-norm.

4.2. De Rham diagram for hp meshes. In this section we consider a polyg-
onal domain Ω with sides parallel to the axes, covered by rectangular meshes aligned
along the same axes. Of course, by a global affine transformation, our result general-
izes to the situation of nonperpendicular axes.

If we fix a conforming mesh (i.e., such that the intersection of any two distinct
elements K is either empty or a vertex or a full edge) and consider on each K the

mapped spaces Q
p| p(K), Np| p−1(K), and Q

p−1(K) with the same p, we can define
on the whole domain Ω the corresponding H1-, H(curl)-, and L2-conforming discrete
spaces Qp, Xp, and Sp, and the projection-based interpolation is done element by
element. The elements are said to be unconstrained in this case. Then it is clear that
the commutativity properties (15) of the projection-based interpolation operators are
still valid on the whole domain Ω. Besides, we note that in this case the discrete
spaces coincide with those of the standard p-extension of the edge elements [37, 40].

The adaptation to hp meshes containing local refinements, therefore hanging
nodes, and variable degrees are by no means obvious.

For the sake of simplicity of the presentation, we shall restrict ourselves to 1-
irregular hp meshes corresponding to isotropic refinements only and consisting of
square elements. Beginning with a standard regular mesh consisting of square ele-
ments of the same size, we allow for breaking each element into four elements with the
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Fig. 1. Constrained approximation.

restriction that an element cannot share an edge with more than two small neighbors—
the classical “two to one” rule. In other words, the generation level for two neighboring
elements cannot differ by more than one. The order of elements can be modified lo-
cally, element by element, with the minimum rule being enforced—the order for an
edge is set to the minimum of orders for all adjacent elements. Finally, since for meshes
with hanging nodes the projections cannot be done on an element level—the resulting
interpolants will no longer be conforming—the global conformity is maintained by
means of the constrained approximation; see [23, 42].

The situation is illustrated in Figure 1. For a function u defined on “big” edge e,
the corresponding “big edge” interpolant is a polynomial defined on the whole edge,
whereas the interpolants determined on the small edges e1, e2 result in a piecewise
interpolant that, in general, is different.

A natural idea is to utilize the constrained approximation concepts. First, do
the projections on the big edges and then define the corresponding small edges inter-
polants by enforcing the global conformity requirements. The resulting interpolants
will indeed be globally conforming, but we then lose the commutativity properties.
This can be seen by considering the lowest order elements. The last space in the di-
agram then reduces to piecewise constants and the commutativity property requires
that ∫

∂K

(up,t − ut) ds =

∫
K

curl(up − u) dx = 0

for each element K in the mesh. For regular meshes, the condition follows from the
edge averaging. In the presence of hanging nodes, however, the condition may not be
satisfied. Going back to the situation illustrated in Figure 1, enforcing the averaging
condition on “big” edge e does not imply the same condition for the restrictions of the
original function and its projection on the small edge e1. Consequently, the condition
above is violated for the small element, and the commutativity fails.

A remedy to the problem is to perform the interpolation on groups of elements.
The whole mesh is split into polygonal patches consisting of single elements or element
clusters (of minimum size) in such a way that all vertices of the polygonal patches
are unconstrained. The decomposition is illustrated with the classical example of the
L-shaped domain and h-refinements aimed at resolving the corner singularity shown
in Figure 2.

All clusters in this example coincide with either a single element (the white ele-
ments) or three elements forming an L-shaped patch (such clusters are indicated in
the picture with a grey or black shading). In general, the 1-irregularity rule limits
the number of possible cluster shapes to four cases only: clusters of a single, two,
three, or four small elements. Our convention is to call patch, denoted by P , the
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Fig. 2. Decomposition of a 1-irregular mesh into clusters.

Fig. 3. L-shaped cluster and patch.

union of the cluster elements K together with the interior edges. In our example, the
L-shaped patches are the union of three squares and two interior edges; see Figure 3.
Such patches have six distinct (exterior) edges. Edges of a patch always coincide with
either a single element edge or two “small” edges adjacent to a big one.

The space Q
p| pe(P ) on the patch is the subspace of continuous functions on P ,

which are Q
p on each element K of the cluster, and whose restriction on e belongs to

Q
pe(e) for each edge of the patch. The space Np| pe−1(P ) is defined correspondingly

as the subspace of H(curl) fields on P , which are in Np on each element K, and whose
tangential restriction on e belongs to Q

pe(e).
The definition of projection-based interpolation extends now naturally to the

patch P : We list only the main steps. The vertices are the corners of P , and we check
that there exists a continuous piecewise bilinear vertex interpolant u1 ∈ Q

1| 1(P ). The
edge bubbles u2,e,p are related with patch edges (and no longer with element edges)
and are polynomial on the whole patch edge. These bubbles can be extended inside
P as elements of Q

p| pe(P ). The patch bubbles u3,p are the functions in the FE space
Q

p| pe(P ) with zero traces on the patch boundary ∂P .
Similarly we define the edge functions u2,e,p as vector polynomials on the whole

patch edge, tangential to the edge. They can be extended in Np| pe−1(P ). The patch
bubbles u3,p are the elements of Q

p| pe(P ) with zero tangential traces on the patch
boundary ∂P . The patch bubbles are, therefore, no longer polynomials but piecewise
polynomials only.

Thus, by the same procedure as before we define the projection operators

Π = ΠP , Πcurl = Πcurl
P , and P = PP(22)

and obtain a commutative scheme like (15).
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Once the interpolation is done on the patches, we regain both the global confor-
mity and commutativity of the interpolation operators on the whole hp mesh:

R −→ H1+ε(Ω)
grad−→ Hε(Ω) ∩ H(curl,Ω)

curl−→ L2(Ω) −→ 0⏐⏐�id ⏐⏐�Π
⏐⏐�Πcurl

⏐⏐�P

R −→ Qhp
grad−→ Xhp

curl−→ Shp −→ 0.

Here Qhp, Xhp, and Shp denote FE spaces defined on the common domain Ω, cor-
responding to the H1-, H(curl)-, and L2-conforming discretizations, done patch by
patch.

4.3. A stability result in L2. We begin by recalling the inclusion of polynomial
spaces,

Q
p
0(Σ)

grad−→ Np
N(Σ).

Here

Q
p
0(Σ) = P

p
0(I) ⊗ P

p
0(I),

Np
N(Σ) = [Pp−1(I) ⊗ P

p
0(I)] × [Pp

0(I) ⊗ P
p−1(I)].

In this section, we will omit the mention of Σ and I for the spaces Q
p, Np, and P

p,
respectively. We shall denote the L2-norm on I or Σ by ‖ · ‖, with the corresponding
L2-product denoted by (·, ·). We hope that the similarity of the latter with the
notation for vector components will not lead to confusion.

Theorem 4. The following stability condition holds:

inf
q ∈ Np

N

sup
s ∈ grad Q

p
0 ⊕ curl curlNp

N

(q, s)

‖q‖ ‖s‖ = Cp,(23)

where

Cp =

(
2(2p + 1)

(p + 1)(p + 2)

)1/2

= O(p−1/2).(24)

The proof of Theorem 4 relies on two lemmas.
Lemma 5. Let ai > 0, bi > 0, i = 1, . . . , n. Then for any real v1, . . . , vn

sup
u1, . . . , un

|
∑n

i=1 aiuivi|
(
∑n

i=1 biu
2
i )

1/2
=

(
n∑

i=1

a2
i

bi
v2
i

)1/2

.

Proof. Use the Cauchy–Schwarz inequality for the discrete l2-product and the
representation,

n∑
i=1

aiuivi =

n∑
i=1

ai

b
1/2
i

vi b
1/2
i ui.
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We recall that (λi, βi), i = 1, . . . , p− 1, and denote the discrete eigenpairs of the
1D Laplace operator defined in (6) (we omit the exponent [p] for simplicity). The
eigenvectors are normalized to satisfy (βi, βj) = δij .

Lemma 6. The following inequality holds:

(
p−1∑
i=1

λ2
i v

2
i

)1/2

≥ Cp

∥∥∥∥∥
p−1∑
i=1

viβ
′′
i

∥∥∥∥∥ ∀v = (v1, . . . , vp−1) ∈ R
p−1,

where Cp is defined in (24).
Proof. It was proved in [8] that the constant

Cp = inf
u ∈ P

p
0

sup
f ∈ P

p−2

(u, f)

‖u‖‖f‖ = inf
u ∈ P

p
0

sup
v∈ P

p
0

(u, v′′)

‖u‖‖v′′‖

= inf
u ∈ P

p
0

sup
v∈ P

p
0

(u′, v′)

‖u‖‖v′′‖ = inf
v∈ P

p
0

sup
u ∈ P

p
0

(u′, v′)

‖u‖‖v′′‖

is given by formula (24). Consequently,

sup
u ∈ P

p
0

(u′, v′)

‖u‖ ≥ Cp‖v′′‖ ∀v ∈ P
p
0.

If we now define

u =

p−1∑
i=1

uiβi, v =

p−1∑
i=1

viβi,

then

(u′, v′) =

p−1∑
i=1

λiuivi and ‖u‖ =

(
p−1∑
i=1

u2
i

)1/2

.

Apply Lemma 5 to finish the proof.
Proof of Theorem 4. Step 1. Let αi, i = 0, . . . , p− 1 be a basis for P

p−1 defined
as follows:

αi =

{
1/
√

2, i = 0,
β′
i, i = 1, . . . , p− 1.

Polynomials αi are orthogonal and satisfy

‖α0‖2 = 1, ‖αi‖2 = λi, i = 1, . . . , p− 1.

Any element q ∈ Np
N can be represented in the form

q =

⎛
⎝p−1∑

i=0

p−1∑
j=1

q1,ijαiβj ,

p−1∑
i=1

p−1∑
j=0

q2,ijβiαj

⎞
⎠.(25)

Here and in what follows, we assume that in a tensor product αβ, the first function
is always a function of x, and the second is a function of y, i.e., αβ = α(x)β(y).



994 D. BOFFI, M. COSTABEL, M. DAUGE, AND L. DEMKOWICZ

A direct calculation shows that

curl curlq

=

⎛
⎝p−1∑

i=1

p−1∑
j=0

q2,ijβ
′
iα

′
j −

p−1∑
i=0

p−1∑
j=1

q1,ijαiβ
′′
j , −

p−1∑
i=1

p−1∑
j=0

q2,ijβ
′′
i αj +

p−1∑
i=0

p−1∑
j=1

q1,ijα
′
iβ

′
j

⎞
⎠

=

⎛
⎝p−1∑

i=1

p−1∑
j=1

q2,ijβ
′
iβ

′′
j −

p−1∑
i=0

p−1∑
j=1

q1,ijαiβ
′′
j , −

p−1∑
i=1

p−1∑
j=0

q2,ijβ
′′
i αj +

p−1∑
i=1

p−1∑
j=1

q1,ijβ
′′
i β

′
j

⎞
⎠

=

(
−

p−1∑
j=1

q1,0jα0β
′′
j +

p−1∑
i=1

p−1∑
j=1

(q2,ij − q1,ij)β
′
iβ

′′
j ,

−
p−1∑
i=1

q2,i0β
′′
i α0 −

p−1∑
i=1

p−1∑
j=1

(q2,ij − q1,ij)β
′′
i β

′
j

)
.

Hence, any element s ∈ curl curlNp
N can be represented in the form

s =

⎛
⎝p−1∑

j=1

s0jα0β
′′
j +

p−1∑
i=1

p−1∑
j=1

sijβ
′
iβ

′′
j ,

p−1∑
i=1

si0β
′′
i α0 −

p−1∑
i=1

p−1∑
j=1

sijβ
′′
i β

′
j

⎞
⎠.

Let q ∈ Np
N be discrete divergence-free, i.e.,

(q,gradw) = 0 ∀w ∈ Q
p
0.

Selecting w = βkβl, k, l = 1, . . . , p − 1, we conclude that coefficients q1,ij , q2,ij in
representation (25) must satisfy the identity

q1,klλk + q2,klλl = 0.

This leads to the following formulas for the norm of a discrete divergence-free vector
and the L2-product of such a vector with s ∈ curl curlNp

N:

‖q‖2 =

p−1∑
j=1

q2
1,0j +

p−1∑
i=1

q2
2.i0 +

p−1∑
i=1

p−1∑
j=1

(
λ2
i

λj
+ λi

)
q2
1,ij ,

(q, s) = −
p−1∑
j=1

q1,0js0jλj −
p−1∑
i=1

q2,i0si0λi −
p−1∑
i=1

p−1∑
j=1

q1,ijsij(λiλj + λ2
i ).

Applying Lemma 5 we get

sup
q ∈ Np

N
(q,gradw) = 0 ∀w ∈ Q

p
0

(q, s)

‖q‖ =

p−1∑
j=1

λ2
js

2
0j +

p−1∑
i=1

λ2
i s

2
i0 +

p−1∑
i=1

p−1∑
j=1

(λ2
iλj + λiλ

2
j )s

2
ij .

Finally, the norm of s ∈ curl curlNp
N can be represented in the form

‖s‖2 =

∥∥∥∥∥∥
p−1∑
j=1

s0jβ
′′
j

∥∥∥∥∥∥
2

+

∥∥∥∥∥
p−1∑
i=1

si0β
′′
i

∥∥∥∥∥
2

+

p−1∑
i=1

λi

∥∥∥∥∥∥
p−1∑
j=1

sijβ
′′
j

∥∥∥∥∥∥
2

+

p−1∑
j=1

λj

∥∥∥∥∥
p−1∑
i=1

sijβ
′′
i

∥∥∥∥∥
2

.
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By Lemma 6 we have

p−1∑
j=1

λ2
js

2
0j ≥ C2

p

∥∥∥∥∥∥
p−1∑
j=1

s0jβ
′′
j

∥∥∥∥∥∥
2

,

p−1∑
i=1

λ2
i s

2
i0 ≥ C2

p

∥∥∥∥∥
p−1∑
i=1

si0β
′′
i

∥∥∥∥∥
2

,

λi

p−1∑
j=1

λ2
js

2
ij ≥ λiC

2
p

∥∥∥∥∥∥
p−1∑
j=1

sijβ
′′
j

∥∥∥∥∥∥
2

,

λj

p−1∑
i=1

λ2
i s

2
ij ≥ λjC

2
p

∥∥∥∥∥
p−1∑
i=1

sijβ
′′
i

∥∥∥∥∥
2

.

Summing up all the inequalities, we get

sup
q ∈ Np

N
(q,gradw) = 0 ∀w ∈ Q

p
0

(q, s)

‖q‖ ≥ Cp‖s‖,

or, equivalently, using the equality of inf-sup constants for a bilinear form and its
adjoint, we get

inf
q ∈ Np

N
(q,gradw) = 0 ∀w ∈ Q

p
0

sup
s ∈ curl curlNp

N

(q, s)

‖q‖‖s‖ ≥ Cp.(26)

Step 2. Use discrete Helmholtz decomposition,

q = q0 + gradφ, (q0,gradw) = 0 ∀w ∈ Q
p
0, φ ∈ Q

p
0,

to extend inequality (26) to arbitrary q ∈ Np
N and s ∈ gradQ

p
0 ⊕ curl curlNp

N.
Step 3. The equality in (23) follows, e.g., from the fact that for q coinciding with

eigenvectors from part (b) of the spectrum (see (8)), the 2D inf-sup condition reduces
to its 1D counterpart.

The consequence of Theorem 4 is the following L2-stability result in p-version.
Theorem 7. Let u3 ∈ Hε(Σ) ∩ H0(curl,Σ) be a divergence-free bubble function

on Σ. Let u3,p be the projection Πcurlu3. Then u3,p is discrete divergence-free and
there holds

‖u3 − u3,p‖0,Σ ≤ Cp1/2 inf
qp∈ Np

N

‖u3 − qp‖0,Σ.(27)

Proof. Let qp be any element of Np
N. Since

(Πcurlu3,gradqp) = (u3,Π
curl gradqp) = (u3,gradΠqp),

we obtain that u3,p is discrete divergence-free.
By Theorem 4, there exists s ∈ gradQ

p
0 ⊕ curl curlNp

N so that

Cp‖u3,p − qp‖ ‖s‖ ≤ (u3,p − qp, s).



996 D. BOFFI, M. COSTABEL, M. DAUGE, AND L. DEMKOWICZ

Any s ∈ gradQ
p
0 ⊕ curl curlNp

N being orthogonal to u3 − u3,p we get

Cp‖u3,p − qp‖ ‖s‖ ≤ (u3 − qp, s) ≤ ‖u3 − qp‖ ‖s‖.

By the triangle inequality we deduce (27).

The best approximation error in the L2-norm by polynomials in Np
N behaves as

p−1 for fields in H1 satisfying the boundary conditions of H0(curl).

Lemma 8. Let u3 ∈ H1(Σ)∩H0(curl,Σ) be a general bubble function on Σ. There
exists qp ∈ Np

N(Σ) such that

‖u3 − qp‖0,Σ ≤ Cp−1‖u3‖1,Σ.(28)

Proof. Let ux and uy be the two components of u3. We note that ux belongs
to L2(I,H1

0 (I)) ∩H1(I, L2(I)). We take as interpolant for ux the function πp−1,0
x ⊗

πp,1
y (ux), where πp,0 and πp,1 are the 1D standard projection operators used in spectral

and p methods: πp,0 is the L2 orthogonal projection on P
p(I) and πp,1 is defined as

πp,1(u)(t) =

∫ t

−1

πp−1,0(u′)(s) ds.

Both πp,0 and πp,1 satisfy the L2-H1 error estimate with a factor p−1; see, for instance,
[43, Chapter 3]. Moreover, πp,0 is stable in L2 and πp,1 in H1. The proof of the
estimate for ‖ux − πp−1,0

x ⊗ πp,1
y (ux)‖0,Σ then follows. The situation for the second

component is similar.

4.4. Discrete compactness. In this section we prove the discrete compactness
property for edge finite elements on 1-irregular hp square meshes. The discrete com-
pactness property, stated in Theorem 11, is known to be sufficient and in a sense
necessary for the good approximation of eigenvalues/eigenvectors (see, for instance,
[7, 16, 33, 39]).

For our proof we need L2 estimates for u − Πcurlu for divergence-free fields u on
any unconstrained element K (Lemma 9) or any patch P (Lemma 10).

Lemma 9. Let K be an unconstrained square element of size h = hK , and let p
be the minimum among pK and {pe, e = 1, . . . , 4}. Let u ∈ Hr(K), 0 < r < 1/2,
curlu ∈ L2(K), div u = 0. For every ε > 0, there exists a constant C > 0, dependent
upon ε but independent of the element and function u, such that

‖u − Πcurl
K u‖ ≤ C

(
h

p

)(r−ε)

(‖u‖r,K + ‖ curlu‖0,K).

Here Πcurl
K is the projection-based interpolation on K transported from Πcurl in (15).

Proof. Step 1. p-estimate on the master element. Assume first that K = Σ is the
master square element. It follows from the integration by parts formula∫

K

(curlu)φdx =

∫
K

u · curlφdx +

∫
∂K

utφds

that the tangential component ut lives in H−1/2+r(∂K) and

‖ut‖−1/2+r,∂K ≤ C(‖u‖r,K + ‖ curlu‖0,K),
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with C denoting a generic constant depending upon the master element only. We
decompose function u into three contributions

u = u1 + grad q + u3.(29)

The terms are constructed as follows.
• u1 is the lowest degree Whitney interpolant, which means that u1 ∈ N1| 0(K),

div u1 = 0, and the tangential traces of u1 are the mean values of those of u
on each edge of K.

• Potential q is obtained by integrating tangential component ut−u1t along the
element boundary, starting from any of its vertex nodes. Potential q vanishes
at all vertex nodes and

‖q‖1/2+r,∂K ≤ C‖ut − u1t‖−1/2+r,∂K .

As the Whitney interpolant depends continuously upon the tangential com-
ponent ut itself and it lives in a finite dimensional space, by the standard
finite dimensionality argument we conclude that the norm of potential q is
controlled by the norm of u alone:

‖q‖1/2+r,∂K ≤ C‖ut‖−1/2+r,∂K

≤ C(‖u‖r,K + ‖ curlu‖0,K).

We then extend potential q to the rest of the element using a harmonic (min-
imum energy) extension. Consequently,

‖q‖1+r,K ≤ (‖u‖r,K + ‖ curlu‖0,K).

• u3 is the residual bubble function: n × u3 = 0 on the boundary ∂K, and

curlu3 = curl(u − u1), div u3 = div(u − u1) = 0.

It follows that u3 ∈ H1(K) and

‖u3‖1,K ≤ C‖ curl(u − u1)‖0,K ≤ C‖ curlu‖0,K .

We use a similar decomposition for the projection-based interpolant Πcurl
K u of u,

Πcurl
K u = u1 + grad qp + up,3,

with the same Whitney interpolant u1 and qp = ΠKq. Thus qp is only a discrete
harmonic function, and up,3 is only discrete divergence-free. Obviously,

u − Πcurl
K u = grad(q − qp) + u3 − up,3.

The first term then admits the estimate (see [24])

‖grad(q − qp)‖0,K ≤ Cp−(r−ε)‖q‖1+r,K

≤ Cp−(r−ε)(‖u‖r,K + ‖ curlu‖0,K).
(30)

The estimate of the second term is made possible by Theorem 7: there holds

‖u3 − u3,p‖0,K ≤ Cp1/2 inf
F3,p∈ Np

N

‖u3 − F3,p‖0,K .
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The approximation result (28) then gives

‖u3 − u3,p‖0,K ≤ Cp−1/2‖u3‖1,K

≤ Cp−1/2(‖u‖r,K + ‖ curlu‖0,K).(31)

Combining (30) and (31), we get the final estimate for the master element,

‖u − Πcurl
K u‖0,K ≤ Cp−(r−ε)(‖u‖r,K + ‖ curlu‖0,K).

Step 2. Scaling argument. Let K be an arbitrary (unconstrained) square element,
and let

Σ = K̂ � ξ → x ∈ K

be the homothetic transformation from the master element Σ onto K. Recalling the
transformation for H(curl)-conforming elements,

û(ξ) = u(x)h,

where h = hK is the element size, we follow the standard scaling argument and Step 1
result to obtain

‖u − Πcurl
K u‖0,K = ‖û − Πcurlû‖0,Σ

≤ Cp−(r−ε)(‖û‖r,Σ + ‖ curl û‖0,Σ).

However, the (projection-based) interpolation reproduces polynomials and, by the
Bramble–Hilbert argument and standard interpolation arguments, we get

‖u − up‖0,K ≤ Cp−(r−ε)(|û|r,Σ + ‖ curl û‖0,Σ)

≤ C

(
h

p

)(r−ε)

(|u|r,K + ‖ curlu‖0,K).

This finishes the proof.
We have an analogous but slightly different result for element patches.
Lemma 10. Let P be a patch of two, three, or four square elements of the same

size, forming a rectangle, an L-shaped domain, and a square, respectively; cf. section
4.2. Let p denote the minimum order of all elements and edges constituting the patch.
Let h denote the size of the elements forming the patch. Let u ∈ Hr(P ), 0 < r < 1/2,
curlu ∈ L2(P ), div u = 0. There exist constant C > 0, independent of the element
and function u, and constant rP , 0 < rP < r, such that

‖u − Πcurl
P u‖0,P ≤ C

(
h

p

)r
P

(‖u‖r,P + ‖ curlu‖0,P ).

By Πcurl
P u we understand the projection-based interpolation (22) done on the patch.

Proof. The reasoning follows the same lines as for the preceding lemma. We
revisit the main steps and point out the differences.

• u1 plays on the patch P a similar (but weaker) role as the lowest degree Whit-

ney interpolant on K: u1 ∈ N1| 0(P ), div u1 = 0 in P , and u1 compensates
for the mean value of the tangential trace of u on the whole boundary ∂P :∫

∂P

n × (u − u1) ds = 0.

For u1 we may take a field of the form γe|P , where e is any nonzero element

of N1| 0(P̂ ) on the convex hull P̂ of P , and γ is a suitable constant.
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• The potential q is still obtained by first integrating ut − u1t along ∂P . Now
it does not vanish at the corners, but we still have q ∈ H1/2+r(∂P ), so we
can take its harmonic extension in P to find q ∈ H1+r(P ).

• We still have a decomposition like (29), u = u1 + grad q + u3, with a
divergence-free patch bubble function u3. But for the L-shaped patches, u3

is no longer an H1-function; however, u3 belongs to H1/2+r
P (P ), with rP > 0

(here rP is any constant < 1
6 ) [18].

• At the discrete level, we have Πcurl
P u = u1 + grad(ΠP q) + u3,p. The estimate

corresponding to (30), ‖grad(q − ΠP q)‖0,P , does not follow directly from
element estimates, but it can be obtained extending arguments from [24].
Alternatively, the H1 patch interpolant ΠP q can be seen as the Galerkin
approximation to the solution of the Laplace equation on the patch, with
Dirichlet boundary conditions and right approximation of Dirichlet data (in
the H1/2-norm). The corresponding estimates can be found in [43].

• The bound on ‖u3 − u3,p‖0,P corresponding to (31) does not follow directly
from the L2-stability result for a single element. Instead, we proceed by
comparing the patch interpolant u3,p = Πcurl

P u3 with the union of interpolants
Πcurl

K u3 corresponding to elements K contributing to the patch, denoted by
v3,p:

v3,p

∣∣
K

= Πcurl
K u3 ∀K ⊂ P.

Both operators Πcurl
P and (Πcurl

K )K⊂P , acting from H0(curl, P )∩Hε(P ), satisfy
the commutativity property for the de Rham diagram. The L2-projections of
curlu done on the whole patch or elementwise are identical. Consequently,

curlu3,p = curl v3,p,

and the two functions may differ only by a gradient of potential φ that is zero
on the patch boundary ∂P and lives in the patch FE space. It follows from
the fact that u3,p is discrete divergence-free that

‖u3 − u3,p‖0,P ≤ inf
φ

‖u3 − u3,p − gradφ‖0,P

≤ ‖u3 − v3,p‖0,P .

Coming back to the definition of v3,p, we finally obtain

‖u3 − u3,p‖0,P ≤
∑
K⊂P

‖u3 − Πcurl
K u3‖0,P .

The estimation can now be done elementwise on each unconstrained element
K ⊂ P utilizing Lemma 9 for u := u3|K , noting that div u3|K = 0.

We are ready now to formulate and prove our final result.
Theorem 11. Starting with a regular mesh on Ω we perform consecutive hp-

refinements, enforcing the 1-irregularity and minimum rules, constructing meshes
Mhp. We assume that

max
K∈Mhp

hK

pK
→ 0.(32)

Let uhp ∈ Xhp be an arbitrary sequence of FE functions on Mhp, such that uhp×n = 0
on ∂Ω. We assume that the functions uhp are discrete divergence-free, i.e.,

(uhp,gradφhp) = 0 ∀φhp ∈ Qhp.
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We also assume that the uhp are uniformly bounded in the space H(curl,Ω):

‖ curluhp‖ ≤ 1.

Then there exists a subsequence uhp, (denoted with the same symbol) converging
strongly in L2(Ω) to a limit2 u:

‖uhp − u‖ → 0.

Proof. Step 1. Following Kikuchi’s reasoning (see [35]), we introduce a sequence
of divergence-free functions uhp, satisfying the same essential boundary conditions,
such that

curluhp = curluhp, (uhp, gradφ) = 0 ∀φ ∈ H1
0 (Ω).

We have

uhp = uhp + grad qhp,(33)

where qhp is the solution to

qhp ∈ H1
0 (Ω)

(grad qhp, gradφ) = (uhp, gradφ) ∀φ ∈ H1
0 (Ω).

It follows from the regularity results of [18] that

uhp ∈ Hr(Ω), r > 0,

with a uniform bound on the Hr norm,

‖uhp‖Hr(Ω) ≤ C.

By a standard compactness argument, there exists a subsequence uhp converging
strongly in L2(Ω) to a limit u. We are going to prove that grad qhp → 0, and thus
obtain that uhp converges to the same limit u.

Step 2. Applying the interpolation operator to both sides of the equation, and
using the commutativity of interpolation and the fact that the interpolation preserves
FE spaces, we get

uhp = Πcurluhp + gradΠqhp.(34)

Subtracting (34) from (33) we get

−grad(qhp − Πqhp) = uhp − Πcurluhp .

It follows from (33) that grad qhp is orthogonal to all discrete gradients. Consequently,

‖grad qhp‖ = inf
qhp∈Qhp

‖grad(qhp − qhp)‖ ≤ ‖grad(qhp − Πqhp)‖ = ‖uhp − Πcurluhp‖.

It is sufficient, therefore, to prove that the interpolation error of functions uhp con-
verges uniformly to zero.

2Notice that the limit satisfies ‖ curl u‖ ≤ 1 and that u is divergence-free.
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Step 3. Applying Lemmas 9 and 10, we obtain

‖uhp − Πcurluhp‖2
0,Ω =

∑
P

‖uhp − Πcurluhp‖2
0,P

≤ C
∑
P

(
hP

pP

)2r
P

(‖uhp‖r,P + ‖ curluhp‖0,P )2.

Here r is the global regularity constant and rP < r denote the patch constants dis-
cussed in Lemma 10 (we also consider unconstrained elements K as one-element
patches and, applying Lemma 9, take rP as any number between 0 and r in this
case). As rP depends only upon the shape of the patch and the number of different
patches is finite, the L2-interpolation error must converge to zero if the maximum
ratio of patch size and (minimum) order converges to zero,

max
P

hP

pP
→ 0.

Notice, finally, that the 1-irregularity and max rules imply that the last condition
follows from assumption (32).

Remark 5. Examining our proof, we see that we have proved the following prop-
erty: There exists a sequence δhp converging to 0 such that

∀uhp ∈ Xhp, discrete divergence-free,(35)

∃uhp ∈ H0(curl,Ω) with div uhp = 0 : ‖uhp − uhp‖≤Cδhp(‖uhp‖ + ‖ curluhp‖).

Here C > 0 does not depend on uhp. Condition (35) implies the discrete compactness
property; cf. [6, 7]. It also implies the quasi optimality of the discrete electric Maxwell
problems for any fixed frequency which is not an eigenfrequency of the continuous
problem; see [10, 15, 27].

5. Conclusions. Relying on our main result, Theorem 11, and on [16], we can
conclude the convergence of eigenvalue approximation along the following lines.

Let Ω be a simply connected polygonal domain with sides parallel to the coordi-
nate axes. We consider the Maxwell eigenvalue problem on Ω:

Find u ∈ H(curl,Ω),u 	= 0, and λ 	= 0 :(36) ∫
Ω

curlu curl v dx = λ

∫
Ω

u · v dx ∀v ∈ H(curl,Ω).

The condition λ 	= 0 implies that eigenvectors u are divergence-free. The converse
is also true since Ω is simply connected. The eigenvalues λ have a finite multiplicity
and form an increasing sequence of positive numbers without accumulation point.
We denote by λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · the sequence of eigenvalues with repetition
according to their multiplicities.

We choose a sequence of hp FE spaces Xhp satisfying the assumptions of Theorem
11 and define the approximated problems by the following problem:

Find uhp ∈ Xhp,uhp 	= 0, and λhp 	= 0 :(37) ∫
Ω

curluhp curl vhp dx = λhp

∫
Ω

uhp · vhp dx ∀vhp ∈ Xhp.
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The discrete eigenvectors uhp are discrete divergence-free. We denote by λ1
hp ≤ λ2

hp ≤
· · · ≤ λk

hp ≤ · · · the sequence of eigenvalues with repetition according to their multi-
plicities.

Assumption (32) guarantees that the conditions (CAS) (approximation in H(curl,
Ω)) and (CDK) (approximation in the kernel of the curl operator) of [16] are satisfied.
Theorem 11 yields condition (DCP) of discrete compactness. Thus [16, Theorem
6.9] yields that the sequence of problems (37) is a spurious-free spectrally correct
approximation of problem (36). As a consequence, we have

∀k ≥ 1, λk
hp −→ λk as max

K∈Mhp

hK

pK
→ 0.(38)

Let us recall that the spectral correctness alone would provide a weaker statement,
according to which the correct numbering of discrete eigenvalues which ensures (38)
should be done by discarding small eigenvalues (and not only zero eigenvalues).
“Small” means that the maximal size εhp of the discarded ones tends to zero as
hK/pK tends to zero. The consequence of the spurious-free property is that εhp is
equal to zero.

According to [16, Theorem 6.11] the three conditions (CAS), (CDK), and (DCP)
imply condition (CHN) too. Condition (CHN) is the one which allows the application
of the theory of [28]; see also [16, Remark 4.11]. This implies, for example, that if λk

is a simple eigenvalue, there holds the estimate

|λk − λk
hp| ≤ Ck

(
min

vhp ∈ Xhp

‖uk − vhp‖H(curl,Ω)

)2

.(39)

Here uk is a normalized eigenvector associated with λk. Less sharp estimates can be
deduced by this argument in the case of multiple eigenvalues.

In [21, 22], it is proved that the regularity of the eigenvectors uk can be described
in terms of weighted analytic spaces (close to the countably normed spaced of [4]),
via a decomposition ∇ϕk + wk where the potential ϕk concentrates the strongest
singularities. Combining this with the approximation result proved in [1] for Raviart–
Thomas elements, it is possible to deduce an exponential estimate in our case:

|λk − λk
hp| ≤ Ck e

−bkN
1/3

, bk > 0.(40)

Here N is the dimension of Xhp. Note that N1/3 is a O(p).
Our final comment concerns the validity of our result for meshes obtained using

the so-called algebraic mesh generators. This is the case when the actual physical do-
main is partitioned into a finite number of (possibly curvilinear) quadrilaterals, each
of them being the image of a reference unit square through a smooth map. The maps
are compatible in the sense that parametrizations for two quadrilaterals adjacent to a
common edge provide an identical parametrization for the edge. The original Maxwell
problem can then be restated on a collection of reference square domains with appro-
priate interface conditions and modified material properties resulting from the change
of coordinates. According to the result of Caorsi, Fernandes, and Raffetto [16], the
discrete compactness property for constant material data implies the corresponding
discrete compactness property for the case of general, possibly anisotropic, material
data. As the discretization in the original domain with parametric, exact geometry
elements is equivalent to the discretization of the modified problem on the reference



DISCRETE COMPACTNESS FOR THE hp EDGE ELEMENTS 1003

squares using square elements discussed in this paper, our analysis applies to such a
case as well. We emphasize that the situation is essentially different when unstruc-
tured mesh generators are used, and the geometry of individual quadrilateral elements
is no longer controlled by global (and sufficiently smooth) maps; cf. [3].
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OPTIMALITY OF MULTILEVEL PRECONDITIONERS FOR LOCAL
MESH REFINEMENT IN THREE DIMENSIONS∗

BURAK AKSOYLU†‡ AND MICHAEL HOLST§

Abstract. In this article, we establish optimality of the Bramble–Pasciak–Xu (BPX) norm
equivalence and optimality of the wavelet modified (or stabilized) hierarchical basis (WHB) precon-
ditioner in the setting of local 3D mesh refinement. In the analysis of WHB methods, a critical first
step is to establish the optimality of BPX norm equivalence for the refinement procedures under con-
sideration. While the available optimality results for the BPX norm have been constructed primarily
in the setting of uniformly refined meshes, a notable exception is the local 2D red-green result due to
Dahmen and Kunoth. The purpose of this article is to extend this original 2D optimality result to
the local 3D red-green refinement procedure introduced by Bornemann, Erdmann, and Kornhuber,
and then to use this result to extend the WHB optimality results from the quasi-uniform setting to
local 2D and 3D red-green refinement scenarios. The BPX extension is reduced to establishing that
locally enriched finite element subspaces allow for the construction of a scaled basis which is formally
Riesz stable. This construction turns out to rest not only on the shape regularity of the refined
elements, but also critically on a number of geometrical properties we establish between neighbor-
ing simplices produced by the Bornemann–Erdmann–Kornhuber (BEK) refinement procedure. It is
possible to show that the number of degrees of freedom used for smoothing is bounded by a constant
times the number of degrees of freedom introduced at that level of refinement, indicating that a
practical, implementable version of the resulting BPX preconditioner for the BEK refinement setting
has provably optimal (linear) computational complexity per iteration. An interesting implication of
the optimality of the WHB preconditioner is the a priori H1-stability of the L2-projection. The ex-
isting a posteriori approaches in the literature dictate a reconstruction of the mesh if such conditions
cannot be satisfied. The theoretical framework employed supports arbitrary spatial dimension d ≥ 1
and requires no coefficient smoothness assumptions beyond those required for well-posedness in H1.
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bases, wavelets, three dimensions, local mesh refinement, red-green refinement
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1. Introduction. In this article, we analyze the impact of local mesh refine-
ment on the stability of multilevel finite element spaces and on optimality (linear
space and time complexity) of multilevel preconditioners. Adaptive refinement tech-
niques have become a crucial tool for many applications, and access to optimal or
near-optimal multilevel preconditioners for locally refined mesh situations is of pri-
mary concern to computational scientists. The preconditioners which can be expected
to have somewhat favorable space and time complexity in such local refinement sce-
narios are the hierarchical basis (HB) method [9], the Bramble–Pasciak–Xu (BPX)
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preconditioner [16], and the wavelet modified (or stabilized) hierarchical basis (WHB)
method [35]. While there are optimality results for both the BPX and WHB precon-
ditioners in the literature, these are primarily for quasi-uniform meshes and/or two
space dimensions (with some exceptions noted below). In particular, there are few
hard results in the literature on the optimality of these methods for various realistic
local mesh refinement hierarchies, especially in three space dimensions. In this article,
the first in a series of two articles [2] on local refinement and multilevel preconditioners,
we first assemble optimality results for the BPX norm equivalence in local refinement
scenarios in three spatial dimensions. Building on the extended BPX results, we then
develop optimality results for the WHB method in local refinement settings. The
material forming this series is based on the first author’s Ph.D. dissertation [1]; a
comprehensive presentation of this article can be found in [3, 4, 5, 6].

Through some topological or geometrical abstraction, if local refinement is ex-
tended to d spatial dimensions, then the main results are valid for any dimension
d ≥ 1 and for nonsmooth PDE coefficients p ∈ L∞(Ω). Throughout this article, we
consider primarily the d = 3 case. But, when the abstraction to generic d is clear, we
simply state the argument by using this generic d.

The problem class we focus on here is linear second order PDEs of the form

−∇ · (p ∇u) + q u = f, u = 0 on ∂Ω.(1.1)

Here, f ∈ L2(Ω), p, q ∈ L∞(Ω), p : Ω → L(Rd,Rd), q : Ω → R, where p is a symmetric
positive definite matrix function and q is a nonnegative function. Let T0 be a shape
regular and quasi-uniform initial partition of Ω into a finite number of d simplices, and
generate T1, T2, . . . by refining the initial partition using red-green local refinement
strategies in d = 3 spatial dimensions. Denote by Sj the simplicial linear C0 finite
element space corresponding to Tj equipped with zero boundary values. The set of

nodal basis functions for Sj is denoted by Φ(j) = {φ(j)
i }Nj

i=1, where Nj = dim Sj is
equal to the number of interior nodes in Tj , representing the number of degrees of
freedom (DOF) in the discrete space. Successively refined finite element spaces will
form the following nested sequence:

S0 ⊂ S1 ⊂ · · · ⊂ Sj ⊂ · · · ⊂ H1
0 (Ω).

Let the bilinear form and the functional associated with the weak formulation
of (1.1) be denoted as

a(u, v) =

∫
Ω

p ∇u · ∇v + q u v dx, b(v) =

∫
Ω

f v dx, u, v ∈ H1
0 (Ω).

We consider primarily the following Galerkin formulation: Find u ∈ Sj , such that

a(u, v) = b(v) ∀v ∈ Sj .(1.2)

The finite element approximation in Sj has the form u(j) =
∑Nj

i=1 uiφ
(j)
i , where u =

(u1, . . . , uNj )
T denotes the coefficients of u(j) with respect to Φ(j). The resulting

discretization operator A(j) = {a(φ(j)
k , φ

(j)
l )}Nj

k,l=1 must be inverted numerically to
determine the coefficients u from the linear system

A(j)u = F (j),(1.3)

where F (j) = {b(φ(j)
l )}Nj

l=1. Our task is to solve (1.3) with optimal (linear) complexity
in both storage and computation, where the finite element spaces Sj are built on
locally refined meshes.
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Optimality of the BPX norm equivalence with generic local refinement was shown
by Bramble and Pasciak in [14], where the impact of the local smoother and the
local projection operator on the estimates was carefully analyzed. The two primary
results on optimality of the BPX norm equivalence in the local refinement settings
are due to Dahmen and Kunoth [19] and Bornemann and Yserentant [12]. Both
works consider only two space dimensions, and in particular, the refinement strategies
analyzed are restricted to 2D red-green refinement and 2D red refinement, respectively.
In this paper, we extend the framework developed in [19] to a practical, implementable
3D local red-green refinement procedure introduced by Bornemann, Erdmann, and
Kornhuber [11]. We will refer to this as the BEK refinement procedure.

HB methods [9, 7, 37] are particularly attractive in the local refinement setting
because (by construction) each iteration has linear (optimal) computational and stor-
age complexity. Unfortunately, the resulting preconditioner is not optimal due to
condition number growth: in two dimensions the growth is slow, and the method is
quite effective (nearly optimal), but in three dimensions the condition number grows
much more rapidly with the number of unknowns [26]. To address this instability,
one can employ L2-orthonormal wavelets in place of the HB, giving rise to an optimal
preconditioner [23]. However, the complicated nature of traditional wavelet bases, in
particular the nonlocal support of the basis functions and problematic treatment of
boundary conditions, severely limits computational feasibility. WHB methods have
been developed [34, 35] as an alternative, and they can be interpreted as a wavelet
modification (or stabilization) of the HB. These methods have been shown to op-
timally stabilize the condition number of the systems arising from HB methods on
quasi-uniform meshes, in both two and three space dimensions, and retain a compa-
rable cost per iteration.

There are two main results and one secondary result in this article. The main
results establish the optimality of the BPX norm equivalence and also optimality of the
WHB preconditioner—as well as optimal computational complexity per iteration—for
the resulting locally refined 3D finite element hierarchy. Both the BPX and WHB
preconditioners under consideration are additive Schwarz preconditioners. The BPX
analysis here relies heavily on the techniques of the Dahmen–Kunoth [19] framework
and can be seen as an extension to three spatial dimensions, with the realistic BEK
refinement procedure [11] being the application of interest. The WHB framework
relies on the optimality of the BPX norm equivalence. Hence, the WHB results are
established after the BPX results.

The secondary result is the H1-stability of L2-projection onto finite element spaces
built through the BEK local refinement procedure. This is currently under intensive
study in the finite element community due to its relationship to multilevel precondi-
tioning. The existing theoretical results, due primarily to Carstensen [18] and Bram-
ble, Pasciak, and Steinbach [15] involve a posteriori verification of somewhat compli-
cated mesh conditions after local refinement has taken place. If such mesh conditions
are not satisfied, one has to redefine the mesh. However, an interesting consequence
of the BPX optimality results for locally refined 2D and 3D meshes established here
is H1-stability of L2-projection restricted to the same locally enriched finite element
spaces. This result appears to be the first a priori H1-stability result for L2-projection
on finite element spaces produced by practical and easily implementable 2D and 3D
local refinement procedures.

Outline of the paper. In section 2, we introduce some basic approximation
theory tools used in the analysis such as Besov spaces and Bernstein inequalities.
The framework for the main norm equivalence is also established here. In section 3,
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we list the BEK refinement conditions. We give several theorems about the generation
and size relations of the neighboring simplices, thereby establishing local (patchwise)
quasi uniformity. This gives rise to an L2-stable Riesz basis in section 3.1; one can
then establish the Bernstein inequality.

In section 4, we explicitly give an upper bound for the nodes introduced in the
refinement region. This implies that one application of the BPX preconditioner to
a function has linear (optimal) computational complexity. In section 5, we use the
geometrical results from section 3 to extend the 2D Dahmen–Kunoth results to the
3D BEK refinement procedure by establishing the desired norm equivalence. While it
is not possible to establish a Jackson inequality due to the nature of local adaptivity,
in section 6 the remaining inequality in the norm equivalence is handled directly using
approximation theory tools, as in the original work [19]. In section 7, we introduce
the WHB preconditioner as well as the operator used in its definition. In section 8,
we state the fundamental assumption for establishing basis stability and set up the
main theoretical results for the WHB framework, namely, optimality of the WHB
preconditioner in the 2D and 3D local red-green refinements. The results in section 8
rest completely on the BPX results in section 5 and on the Bernstein inequalities, the
latter of which rest on the geometrical results established in section 3. The first a
priori H1-stability result for L2-projection on the finite element spaces produced is
established in section 9. We conclude in section 10.

2. Preliminaries and the main norm equivalence. The basic restriction on
the refinement procedure is that it remains nested. In other words, tetrahedra of
level j which are not candidates for further refinement will never be touched in the
future. Let Ωj denote the refinement region, namely, the union of the supports of
basis functions which are introduced at level j. Due to nested refinement, Ωj ⊂ Ωj−1,
the following hierarchy holds:

ΩJ ⊂ ΩJ−1 ⊂ · · · ⊂ Ω0 = Ω.(2.1)

In the local refinement setting, in order to maintain optimal computational com-
plexity, the smoother is restricted to a local space S̃j , typically

Sf
j ⊆ S̃j ⊂ Sj ,(2.2)

where Sf
j := (Ij − Ij−1) Sj and Ij : L2(Ω) → Sj denotes the finite element inter-

polation operator. DOF corresponding to Sf
j and S̃j will be denoted by N f

j and

Ñj , respectively, where f stands for fine. Equation (2.2) indicates that N f
j ⊆ Ñj ;

typically, Ñj consists of fine DOF and their corresponding coarse fathers.
The BPX preconditioner (also known as the parallelized or additive multigrid) is

defined as follows:

Xu :=
J∑

j=0

2j(d−2)
∑
i∈Ñj

(u, φ
(j)
i )φ

(j)
i .(2.3)

Success of the BPX preconditioner in locally refined regimes relies on the fact that
the BPX smoother acts on a local space as in (2.2). As mentioned above, it acts
on a slightly bigger set than fine DOF (examples of these are given in [13]). The
choice of such a set is crucial because computational cost per iteration will eventually
determine the overall computational complexity of the method. Hence, in section 4
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we show that the overall computational cost of the smoother is O(N), meaning that
the BPX preconditioner is optimal per iteration. We would like to emphasize that
one of the main goals of this paper, as in the earlier works of Dahmen and Kunoth
[19] and Bornemann and Yserentant [12] in the purely 2D case, is to establish the
optimality of the BPX norm equivalence,

c1

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2

≤ ‖u‖2
H1 ≤ c2

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2
,(2.4)

where Qj is the L2-projection. We note that in the uniform refinement setting, it
is straightforward to link the BPX norm equivalence to the optimality of the BPX
preconditioner,

c1(Xu, u) ≤ ‖u‖2
H1 ≤ c2(Xu, u),

due to the projector relationships between the Qj operators. However, in the local
refinement scenario the precise link between the norm equivalence and the precondi-
tioner is more subtle and essentially remains open.

The rest of this section is dedicated to setting up the framework to establish
the main norm equivalence (2.4), which will be formalized in Theorem 2.1 at the
end of this section. We borrow several tools from approximation theory, including
the modulus of smoothness, ωk(f, t,Ω)p, which is a finer scale of smoothness than
differentiability. It is a central tool in the analysis here and it naturally gives rise to
the notion of Besov spaces. For further details and definitions, see [19, 29]. Besov
spaces are defined to be the collection of functions f ∈ Lp(Ω) with a finite Besov
norm defined as

‖f‖qBs
p,q(Ω) := ‖f‖qLp(Ω) + |f |qBs

p,q(Ω),

where the seminorm is given by

|f |Bs
p,q(Ω) := ‖{2sjωk(f, 2

−j ,Ω)p}j∈N0‖lq ,

with k any fixed integer larger than s.
Besov spaces become the primary function space setting in the analysis by real-

izing Sobolev spaces as Besov spaces:

Hs(Ω) ∼= Bs
2,2(Ω), s > 0.

The primary motivation for employing the Besov space stems from the fact that
the characterization of functions which have a given upper bound for the error of
approximation sometimes calls for a finer scale of smoothness than that provided by
Sobolev classes functions.

The Bernstein inequality is defined as

ωk+1(u, t)p ≤ c (min{1, t2J})β‖u‖Lp , u ∈ Sj , j = 0, . . . , J,(2.5)

where c is independent of u and j. Usually k = degree of the element, and in the case
of linear finite elements, k = 1. Here β is determined by the global smoothness of the
approximation space as well as p. For Cr finite elements, β = min{1 + r + 1

p , k + 1}.
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Let θJ be defined as

θj,J := sup
u∈SJ

‖u−Qju‖L2

ω2(u, 2−j)2
, θJ := max {1, θj,J : j = 0, . . . , J} .(2.6)

Following [19] we have the following theorem.
Theorem 2.1. Suppose the Bernstein inequality (2.5) holds for some real number

β > 1. Then, for each 0 < s < min{β, 2}, there exist constants 0 < c1, c2 < ∞
independent of u ∈ SJ , J = 0, 1, . . . , such that the following norm equivalence holds:

c1
θ2
J

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2

≤ ‖u‖2
H1 ≤ c2

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2
, u ∈ SJ .

(2.7)

Proof. See [19, Thm. 4.1].
We would like to elaborate on the difficulties one faces within the local refinement

framework. In order for the Bernstein inequality to hold, one needs to establish that
the underlying basis is an L2-stable Riesz basis as in (3.8). This crucial property
heavily depends on local quasi uniformity of the mesh. Hence, the Bernstein inequality
is established in section 5 through local quasi uniformity and L2-stability of the basis
in the Riesz sense.

A Jackson-type inequality cannot hold in a local refinement setting. This poses a
major difficulty in the analysis because one has to calculate θJ directly. The missing
crucial piece of the optimal norm equivalence in (2.7), namely, θJ = O(1) as J → ∞,
will be shown in (6.12) and as a result (2.4) will hold. This required the operator Q̃j

to be bounded locally and to fix polynomials of degree 1 as will be shown in section 6.

3. The BEK refinement procedure. Our interest is in showing optimality
of the BPX norm equivalence for the local 3D red-green refinement introduced by
Bornemann, Erdmann, and Kornhuber [11]. This 3D red-green refinement is practical
and easy to implement; numerical experiments were presented in [11]. A similar
refinement procedure was analyzed by Bey [10]; in particular, the same green closure
strategy was used in both papers. While these refinement procedures are known to be
asymptotically nondegenerate (and thus produce shape regular simplices at every level
of refinement), shape regularity is insufficient for constructing a stable Riesz basis for
finite element spaces on locally adapted meshes. To construct a stable Riesz basis
we will need to establish patchwise quasi uniformity as in [19]; as a result, d-vertex
adjacency relationships that are independent of the shape regularity of the elements
must be established between neighboring tetrahedra as done in [19] for triangles.

We first list a number of geometric assumptions concerning the underlying mesh.
Let Ω ⊂ R

3 be a polyhedral domain. We assume that the triangulation Tj of Ω
at level j is a collection of tetrahedra with mutually disjoint interiors which cover
Ω =

⋃
τ∈Tj

τ . We want to generate successive refinements T0, T1, . . . which satisfy the
following conditions.

Assumption 3.1 (nestedness). Each tetrahedron (son) τ ∈ Tj is covered by exactly
one tetrahedron (father) τ ′ ∈ Tj−1, and any corner of τ is either a corner or an edge
midpoint of τ ′.

Assumption 3.2 (conformity). The intersection of any two tetrahedra τ, τ ′ ∈ Tj
is either empty, a common vertex, a common edge, or a common face.

Assumption 3.3 (nondegeneracy). The interior angles of all tetrahedra in the
refinement sequence T0, T1, . . . are bounded away from zero.
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Fig. 3.1.

A regular (red) refinement subdivides a tetrahedron τ into eight equal volume
subtetrahedra. We connect the edges of each face as in 2D regular refinement. We
then cut off four subtetrahedra at the corners which are congruent to τ . An octahedron
with three parallelograms remains in the interior. Cutting the octahedron along the
two faces of these parallelograms, we obtain four more subtetrahedra which are not
necessarily congruent to τ . We choose the diagonal of the parallelogram so that
the successive refinements always preserve nondegeneracy [1, 10, 27, 38]. A sketch
of regular refinement (octasection and quadrasection in three and two dimensions,
respectively) as well as bisection is given in Figure 3.1.

If a tetrahedron is marked for regular refinement, the resulting triangulation vio-
lates conformity Assumption 3.2. Nonconformity is then remedied by irregular (green)
refinement. In three dimensions, there are altogether 26 = 64 possible edge refine-
ments, of which 62 are irregular. One must pay extra attention to irregular refinement
in the implementation due to the large number of possible nonconforming configura-
tions. Bey [10] gives a methodical way of handling irregular cases. Using symmetry
arguments, the 62 irregular cases can be divided into nine different types. To ensure
that the interior angles remain bounded away from zero, we enforce the following ad-
ditional conditions. (Identical assumptions were made in [19] for their 2D refinement
analogue.)

Assumption 3.4. Irregular tetrahedra are not refined further.
Assumption 3.5. Only tetrahedra τ ∈ Tj with L(τ) = j are refined for the

construction of Tj+1, where L(τ) = min {j : τ ∈ Tj} denotes the level of τ .
One should note that the restrictive character of Assumptions 3.4 and 3.5 can

be eliminated by a modification on the sequence of the tetrahedralizations [10]. On
the other hand, it is straightforward to enforce both assumptions in a typical lo-
cal refinement algorithm by minor modifications of the supporting datastructures for
tetrahedral elements (cf. [22]). In any event, the proof technique (see (6.8) and (6.9))
requires both assumptions hold. The last refinement condition enforced for the pos-
sible 62 irregularly refined tetrahedra is stated as the following.

Assumption 3.6. If three or more edges are refined and do not belong to a common
face, then the tetrahedron is refined regularly.

We note that the d-vertex adjacency generation bound for simplices in R
d which

are adjacent at d vertices is the primary result required in the support of a basis func-
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tion so that Assumption 3.6 holds, and depends critically on the particular details of
the local refinement procedure rather than on shape regularity of the elements. The
generation bound for simplices which are adjacent at d − 1, d − 2, . . . vertices fol-
lows by using the shape regularity and the generation bound established for d-vertex
adjacency. We provide rigorous generation bounds for all the adjacency types men-
tioned in the lemmas to follow when d = 3. The 2D version appeared in [19]; the 3D
extension is described below.

Lemma 3.1. Let τ and τ ′ be two tetrahedra in Tj sharing a common face f . Then

|L(τ) − L(τ ′)| ≤ 1.(3.1)

Proof. If L(τ) = L(τ ′), then 0 ≤ 1, and there is nothing to show. Without loss of
generality, assume that L(τ) < L(τ ′). The proof requires a detailed and systematic
analysis. To show the line of reasoning, we first list as follows the facts used in the
proof:

1. L(τ ′) ≤ j because by assumption τ ′ ∈ Tj . Then L(τ) < j.
2. By assumption τ ∈ Tj , meaning that τ was never refined from level L(τ), in

which it was born, to level j.
3. Let τ ′′ be the father of τ ′. Then L(τ ′′) = L(τ ′) − 1 < j.
4. L(τ) < L(τ ′) by assumption, implying L(τ) ≤ L(τ ′′).
5. By (2), τ belongs to all the triangulations from L(τ) to j, in particular τ ∈

TL(τ ′′), where by fact 3 L(τ ′′) < j.
f is the common face of τ and τ ′ on level j. By fact 5 both τ, τ ′′ ∈ TL(τ ′′). Then,

Assumption 3.2 implies that f must still be the common face of τ and τ ′′. Hence, τ ′

must have been irregular.
On the other hand, L(τ) ≤ L(τ ′)−1 = L(τ ′′). Next, we proceed by eliminating the

possibility that L(τ) < L(τ ′′). If so, we repeat the above reasoning, and τ ′′ becomes
irregular. τ ′′ is already the father of the irregular τ ′, contradicting Assumption 3.4
for level L(τ ′′). Hence, L(τ) = L(τ ′′) = L(τ ′) − 1 concludes the proof.

By Assumptions 3.4 and 3.5, every tetrahedron at any Tj is geometrically similar
to some tetrahedron in T0 or to a tetrahedron arising from an irregular refinement of
some tetrahedron in T0. Then, there exist absolute constants c1, c2 such that

c1 diam(τ̄) 2−L(τ) ≤ diam(τ) ≤ c2 diam(τ̄) 2−L(τ),(3.2)

where τ̄ is the father of τ in the initial mesh. The lemma below follows by shape
regularity and (3.1).

Lemma 3.2. Let τ, τ ′ and ζ, ζ ′ be the tetrahedra in Tj sharing a common edge
(two vertices) and a common vertex, respectively. Then there exist finite numbers V
and E depending on the shape regularity such that

|L(τ) − L(τ ′)| ≤ V,(3.3)

|L(ζ) − L(ζ ′)| ≤ E.(3.4)

Consequently, simplices in the support of a basis function are comparable in size
as indicated in (3.5). This is usually called patchwise quasi uniformity. Furthermore,
it was shown in [1] that patchwise quasi uniformity (3.5) holds for 3D marked tetra-
hedron bisection introduced by Liu and Joe [24] and for 2D newest vertex bisection
introduced by Sewell [30] and Mitchell [25]. Due to the restrictive nature of the proof
technique (see (6.8) and (6.9)), we focus on refinement procedures which obey As-
sumptions 3.4 and 3.5. However, due to the strong geometrical results available for
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purely bisection-based local refinement procedures, it should be possible to establish
the main results of this paper for purely bisection-based strategies.

Lemma 3.3. There is a constant depending on the shape regularity of Tj and the
quasi uniformity of T0, such that

diam(τ)

diam(τ ′)
≤ c ∀τ, τ ′ ∈ Tj , τ ∩ τ ′ �= ∅.(3.5)

Proof. τ and τ ′ are either face-adjacent (d vertices), edge-adjacent (d−1 vertices),
or vertex-adjacent, and are handled by (3.1), (3.4), (3.3), respectively. Therefore we
have

diam(τ)

diam(τ ′)
≤ c 2|L(τ)−L(τ ′)| diam(τ̄)

diam(τ̄ ′)
(by (3.2))

≤ c 2max{1,E,V } γ(0) (by (3.1), (3.4), (3.3) and quasi uniformity of T0).

3.1. L2-stable Riesz basis. Since patchwise quasi uniformity is established by
(3.5), we can now take the first step in establishing the norm equivalence in section 5.
In other words, our motivation is to form a stable basis in the following sense [29]:∥∥∥∥∥∥

∑
xi∈Nj

uiφ
(j)
i

∥∥∥∥∥∥
L2(Ω)

� ‖{volume1/2(supp φ
(j)
i ) ui}xi∈Nj

‖l2 .(3.6)

The basis stability (3.6) will then guarantee that the Bernstein inequality (2.5) holds.
For a stable basis, functions with small supports have to be augmented by an appro-

priate scaling so that ‖φ(j)
i ‖L2(Ω) remains roughly the same for all basis functions.

This is reflected in volume(supp φ
(j)
i ) by defining

Lj,i = min{L(τ) : τ ∈ Tj , xi ∈ τ}.(3.7)

Then

volume(supp φ
(j)
i ) � 2−dLj,i .

We prefer to use an equivalent notion of basis stability; a basis is called an L2-stable
Riesz basis if ∥∥∥∥∥∥

∑
xi∈Nj

ûiφ̂
(j)
i

∥∥∥∥∥∥
L2(Ω)

� ‖{ûi}xi∈Nj
‖l2 ,(3.8)

where φ̂
(j)
i denotes the scaled basis, and the relationship between (3.6) and (3.8) is

given as follows:

φ̂
(j)
i = 2d/2Lj,i φ

(j)
i , ûi = 2−d/2Lj,i ui, xi ∈ Nj .(3.9)

Then (3.8) forms the sufficient condition to establish the Bernstein inequality (2.5).
This crucial property helps us to prove Theorem 8.2.

Remark 3.1. The analysis is done purely with basis functions, completely in-
dependent of the underlying mesh geometry. Furthermore, our construction works
for any d-dimensional setting with the scaling (3.9). However, it is not clear how to
define face-adjacency relations for d > 3. If such relations can be defined through
some topological or geometrical abstraction, then our framework naturally extends to
d-dimensional local refinement strategies, and hence the optimality of the BPX and
WHB preconditioners can be guaranteed in R

d, d ≥ 1. One such generalization was
given by Brandts, Korotov, and Krizek in [17]; also see the references therein.
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4. Local smoothing computational complexity. In [11], the smoother is
chosen to act on the local space

S̃j = span
[⋃

{φ(j)
i }Nj

i=Nj−1+1

⋃
{φ(j)

i �= φ
(j−1)
i }Nj−1

i=1

]
.

Other choices for Ñj are also possible, e.g., DOF which intersect the refinement region

Ωj [2, 14]. The only restriction is that Ñj ⊂ Ωj . For this particular choice, Ñj = {i =

Nj−1 + 1, . . . , Nj}
⋃
{i : φ

(j)
i �= φ

(j−1)
i , i = 1, . . . , Nj−1}, the following result from

[11] establishes a bound for the number of nodes used for smoothing (those created
in Ωj by the BEK procedure) so that the BPX preconditioner has provably optimal
(linear) computational complexity per iteration.

Lemma 4.1. The total number of nodes used for smoothing satisfies the bound

J∑
j=0

Ñj ≤
5

3
NJ − 2

3
N0.(4.1)

Proof. See [11, Lem. 1].
A similar result for 2D red-green refinement was given by Oswald [29, p. 95]. In

the general case of local smoothing operators, which involve smoothing over newly
created basis functions plus some additional sets of local neighboring basis functions,
one can extend the arguments from [11] and [29] using shape regularity.

5. Establishing optimality of the BPX norm equivalence. In this section,
we extend the Dahmen–Kunoth framework to three spatial dimensions; the extension
closely follows the original work [19]. However, the general case for d ≥ 1 spatial
dimensions is not in the literature, and therefore we present it below.

For linear g, the element mass matrix gives rise to the following useful formula:

‖g‖2
L2(τ) =

volume(τ)

(d + 1)(d + 2)

⎛
⎝d+1∑

i=1

g(xi)
2 +

[
d+1∑
i=1

g(xi)

]2
⎞
⎠ ,(5.1)

where i = 1, . . . , d+ 1 and xi is a vertex of τ , d = 2, 3. In view of (5.1), we have that

‖φ̂(j)
i ‖2

L2(Ω) = 2dLj,i
volume(supp φ̂

(j)
i )

(d + 1)(d + 2)
.

Since the min in (3.7) is attained, there exists at least one τ ∈ supp φ̂
(j)
i such

that L(τ) = Lj,i. By (3.2) we have

2Lj,i �
diam(τ)

diam(τ̄)
.(5.2)

Also,

volume(supp φ̂
(j)
i ) �

E∑
i=1

diamd(τi), τi ∈ supp φ̂
(j)
i .(5.3)

By (3.5), we have

diam(τi) � diam(τ).(5.4)
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Combining (5.3) and (5.4), we conclude that

volume(supp φ̂
(j)
i ) � E diamd(τ).(5.5)

Finally, (5.2) and (5.5) yield

2dLj,ivolume(supp φ̂
(j)
i ) � E

1

diamd(τ̄)
.

E is a uniformly bounded constant by shape regularity. One can view the size of any
tetrahedron in T0, in particular of size τ̄ , as a constant. The reason is the following:
Assumptions 3.4 and 3.5 force every tetrahedron at any Tj to be geometrically similar
to some tetrahedron in T0 or to a tetrahedron arising from an irregular refinement
of some tetrahedron in T0, and hence to some tetrahedron of a fixed finite collection.
Combining the two arguments above, we have established that

‖φ̂(j)
i ‖L2(Ω) � 1, xi ∈ Nj .(5.6)

Let g =
∑

xi∈Nj
ûiφ̂

(j)
i ∈ Sj . For any τ ∈ Tj we have that

‖g‖2
L2(τ) ≤ c

∑
xi∈Nj,τ

|ûi|2‖φ̂(j)
i ‖2

L2(Ω),(5.7)

where Nj,τ = {xi ∈ Nj : xi ∈ τ}, which is uniformly bounded in τ ∈ Tj and
j ∈ N0. By the scaling (3.9), we get equality in the estimate below. The inequality
is a standard inverse inequality, where one bounds g(xi) using formula (5.1) and by
handling the volume in the formula by (3.2):

|ûi|2 = 2−dLj,i |g(xi)|2 ≤ c 2−dLj,i2dLj,i‖g‖2
L2(τ).(5.8)

Now, we are ready to establish that our basis is an L2-stable Riesz basis as in (3.8).
This is achieved by simply summing up over τ ∈ Tj in (5.7) and (5.8) and using (5.6).
L2-stability in the Riesz sense allows us to establish the Bernstein inequality (2.5).

Lemma 5.1. For the scaled basis (3.9), the Bernstein inequality (2.5) holds for
β = 3/2.

Proof. Equation (5.6) with (5.7) and (5.8) asserts that the scaled basis (3.9) is
stable in the sense of (3.8). Hence, (2.5) holds by [29, Thm. 4]. Note that the proof
actually works independently of the spatial dimension.

6. Lower bound in the norm equivalence. The Jackson inequality for Besov
spaces is defined as follows:

inf
g∈SJ

‖f − g‖Lp
≤ c ωα(f, 2−J)p, f ∈ Lp(Ω),(6.1)

where c is a constant independent of f and J , and α is an integer. In the uniform
refinement setting, (6.1) is used to obtain the lower bound in (2.7). However, in the
local refinement setting, (6.1) holds only for functions whose singularities are somehow
well captured by the mesh geometry. For instance, if a mesh is designed to pick up
the singularity at x = 0 of y = 1/x, then on the same mesh we will not be able to
recover a singularity at x = 1 of y = 1/(x − 1). Hence, the Jackson inequality (6.1)
cannot hold in a general setting, i.e., for f ∈ W k

p . In order to get the lower bound
in (2.7), we focus on estimating θJ directly, as in [19] for the 2D setting.
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To begin, we borrow the quasi-interpolant construction from [19], extending it to
the 3D setting. Let τ ∈ Tj be a tetrahedron with vertices x1, x2, x3, x4. Clearly the

restrictions of φ̂
(j)
i to τ are linearly independent over τ , where xi ∈ {x1, x2, x3, x4}.

Then, there exists a unique set of linear polynomials ψτ
1 , ψ

τ
2 , ψ

τ
3 , ψ

τ
4 such that∫

τ

φ̂
(j)
k (x, y, z)ψτ

l (x, y, z)dxdydz = δkl, xk, xl ∈ {x1, x2, x3, x4}.(6.2)

For xi ∈ Nj and τ ∈ Tj , define a function for xi ∈ τ ,

M
(j)
i (x, y, z) =

{
1
Ei

ψτ
i (x, y, z), (x, y, z) ∈ τ,

0, (x, y, z) �∈ supp φ̂
(j)
i ,

(6.3)

where Ei is the number of tetrahedra in Tj in supp φ̂
(j)
i . By (6.2) and (6.3), we obtain

(M
(j)
k , φ̂

(j)
l ) =

∫
Ω

M
(j)
k (x, y, z)φ̂l(x, y, z) dxdydz = δkl, xk, xl ∈ Nj .(6.4)

We can now define a quasi interpolant, and in fact a projection onto Sj , such that

(Q̃jf)(x, y, z) =
∑

xi∈Nj

(f,M
(j)
i )φ̂

(j)
i (x, y, z).(6.5)

As remarked earlier, due to (6.3) the slice operator term Q̃j−Q̃j−1 will vanish outside
the refined set Ωj defined in (2.1). One can easily observe by (5.6) and (6.4) that

‖M (j)
i ‖L2(Ω) � 1, xi ∈ Nj , j ∈ N0.(6.6)

Letting Ωj,τ =
⋃
{τ ′ ∈ Tj : τ ∩ τ ′ �= ∅}, we can conclude from (5.6) and (6.6)

that

‖Q̃jf‖L2(τ) = ‖
∑

xk∈Nj,τ

(f,M
(j)
l )φ̂

(j)
k ‖L2(τ) ≤ c‖f‖L2(Ωj,τ ).(6.7)

We define now a subset of the triangulation where the refinement activity stops,
meaning that all tetrahedra in T ∗

j , j ≤ m also belong to Tm:

T ∗
j = {τ ∈ Tj : L(τ) < j, Ωj,τ ∩ τ ′ = ∅ ∀τ ′ ∈ Tj with L(τ ′) = j}.(6.8)

Due to the local support of the dual basis functions M
(j)
i and the fact that Q̃j is a

projection, one gets for g ∈ SJ ,

‖g − Q̃jg‖L2(τ) = 0, τ ∈ T ∗
j .(6.9)

Since Q̃j is a projection onto linear finite element space, it fixes polynomials of
degree at most 1 (i.e., Π1(R

3)). Using this fact and (6.7), we arrive at

‖g − Q̃jg‖L2(τ) ≤ ‖g − P‖L2(τ) + ‖Q̃j(P − g)‖L2(τ)

≤ c ‖g − P‖L2(Ωj,τ ), τ ∈ Tj \ T ∗
j .(6.10)

We would like to bound the right-hand side of (6.10) in terms of a modulus of
smoothness in order to reach a Jackson-type inequality. Following [19], we utilize a
modified modulus of smoothness for f ∈ Lp(Ω),

ω̃k(f, t,Ω)pp = t−s

∫
[−t,t]s

‖Δk
hf‖

p
Lp(Ωk,h) dh.
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The two moduli of smoothness can be shown to be equivalent:

ω̃k+1(f, t,Ω)p � ωk+1(f, t,Ω)p.

The equivalence in the one-dimensional setting can be found in [20, Lem. 5.1].
For τ a simplex in R

d and t = diam(τ), a Whitney estimate shows that [21, 28, 33]

inf
P∈Πk(Rd)

‖f − P‖Lp(τ) ≤ cω̃k+1(f, t, τ)p,(6.11)

where c depends only on the smallest angle of τ but not on f and t. The reason why
Q̃j works well for tetrahedralization in three dimensions is the fact that the Whitney
estimate (6.11) remains valid for any spatial dimension. Tj \ T ∗

j is the part of the
tetrahedralization Tj , where refinement is active at every level. Then, in view of (3.5),

diam(Ωj,τ ) � 2−j , τ ∈ Tj \ T ∗
j .

Taking the inf over P ∈ Π1(R
3) in (6.10) and using the Whitney estimate (6.11), we

conclude that

‖g − Q̃jg‖L2(τ) ≤ cω̃2(g, 2
−j ,Ωj,τ )2.

Recalling (6.9) and summing over τ ∈ Tj \ T ∗
j gives rise to

‖g − Q̃jg‖L2(Ω) ≤ cω̃2(g, 2
−j ,Ω)2 ≤ c̃ ω2(g, 2

−j ,Ω)2,

where we have switched from the modified modulus of smoothness to the standard
one. Since Qj is an orthogonal projection, we have the following:

‖g −Qjg‖ ≤ ‖g − Q̃jg‖.

Using the above inequality with (2.6), one then has

vJ = O(1), J → ∞.(6.12)

7. The WHB preconditioner. In local refinement, HB methods enjoy an op-
timal complexity of O(Nj −Nj−1) per iteration per level (resulting in O(NJ) overall

complexity per iteration) by using only DOF corresponding to Sf
j . However, HB

methods suffer from suboptimal iteration counts or, equivalently, suboptimal condi-
tion numbers. The BPX decomposition Sj = Sj−1 ⊕ (Qj − Qj−1)Sj gives rise to
basis functions which are not locally supported, but they decay rapidly outside a
local support region. This allows for locally supported approximations; in addition,
the WHB methods [34, 35, 36] can be viewed as an approximation of the wavelet
basis stemming from the BPX decomposition [23]. A similar wavelet-like multilevel
decomposition approach was taken in [32], where the orthogonal decomposition is
formed by a discrete L2-equivalent inner product. This approach utilizes the same
BPX two-level decomposition [31, 32]. The WHB preconditioner is defined as follows:

Hu :=

J∑
j=0

2j(d−2)
∑
i∈N f

j

(u, ψ
(j)
i )ψ

(j)
i ,(7.1)

where ψ
(j)
i = (Q̃j − Q̃j−1)φ

(j)
i . The WHB preconditioner uses the modified basis

(whereas the BPX preconditioner uses the standard nodal basis) where the projection
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operator used is defined as in (7.5). In the WHB setting, these operators are chosen
to satisfy the following three properties [5]:

Q̃j |Sj
= I,(7.2)

Q̃jQ̃k = Q̃min{j,k},(7.3)

‖(Q̃j − Q̃j−1)u
(j)‖L2 � ‖u(j)‖L2 , u(j) ∈ (Ij − Ij−1)Sj .(7.4)

As indicated in (2.2), the WHB smoother acts on only the fine DOF, i.e., N f
j ,

and hence is an approximation to a fine-fine discretization operator A
(j)
ff : Sf

j → Sf
j ,

where Sf
j := (Q̃j − Q̃j−1)Sj and f stands for fine. On the other hand, the BPX

smoother acts on a slightly bigger set than fine DOF, typically N f
j ⊆ Ñj , the union

of fine DOF and their corresponding coarse fathers.
The WHB preconditioner introduced in [34, 35] is, in some sense, the best of

both worlds. While the condition number of the HB preconditioner is stabilized by
inserting Qj into the definition of Q̃j , somehow employing the operators Ij − Ij−1 at
the same time guarantees optimal computational and storage cost per iteration. The
operators which will be seen to meet both goals at the same time are

Q̃k =

J−1∏
j=k

Ij + Qa
j (Ij+1 − Ij),(7.5)

with Q̃J = I. The exact L2-projection Qj is replaced with a computationally feasible
approximation Qa

j : L2 → Sj . To control the approximation quality of Qa
j , a small

fixed tolerance γ is introduced:

‖(Qa
j −Qj)u‖L2

≤ γ‖Qju‖L2
∀u ∈ L2(Ω).(7.6)

In the limiting case γ = 0, Q̃k reduces to the exact L2-projection on SJ by (7.2):

Q̃k = QkIk+1Qk+1 · · · IJ−1QJ−1IJ = QkQk+1 · · ·QJ−1 = Qk.

Following [34, 35], the properties (7.2), (7.3), and (7.4) can be verified for Q̃k as
follows:

• Property (7.2): Let u(k) ∈ Sk. Since (Ij+1 − Ij)u
(k) = 0 and Iju

(k) = u(k) for

k ≤ j, then [Ij + Qa
j (Ij+1 − Ij)](u

(k)) = u(k), verifying (7.2) for Q̃k. It also implies

Q̃2
k = Q̃k.(7.7)

• Property (7.3): Let k ≤ l; then by (7.7)

Q̃kQ̃l = [(Ik + Qa
k(Ik+1 − Ik)) · · · (Il−1 + Qa

l−1(Il − Il−1)) Q̃l]Q̃l = Q̃k.(7.8)

Since Q̃ku ∈ Sk and Sk ⊂ Sl, then by (7.2) we have

Q̃l(Q̃ku) = Q̃ku.(7.9)

Finally, (7.3) then follows from (7.8) and (7.9).
• Property (7.4): This is an implication of Lemma 7.1.
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For an overview, we list the corresponding slice spaces for the preconditioners of
interest:

HB: Sf
j = (Ij − Ij−1)Sj ,

BPX: Sf
j = (Qj −Qj−1)Sj ,

WHB: Sf
j = (Q̃j − Q̃j−1)Sj = (I −Qa

j−1)(Ij − Ij−1)Sj ,

where Q̃j is given in (7.5).

The WHB smoother acts only on the fine DOF. Then, in the generic multilevel
preconditioner notation, the WHB preconditioner can be written in the following
form:

Bu :=
J∑

j=0

B
(j)−1

ff (Q̃j − Q̃j−1)u.(7.10)

Bff is chosen to be a spectrally equivalent operator to fine-fine discretization operator

A
(j)
ff . Since the smoother and property (7.4) both rely on a well-conditioned A

(j)
ff , we

discuss this next.

7.1. Well-conditioned A
(j)
ff . The lemma below is essential to extend the exist-

ing results for quasi-uniform meshes (see [34, Lem. 6.1] or [35, Lem. 2]) to the locally

refined ones. S(f)
j = (Ij − Ij−1)Sj denotes the HB slice space.

Lemma 7.1. Let Tj be constructed by the local refinements under consideration.

Let Sf
j = (I − Q̃j−1)S(f)

j be the modified hierarchical subspace, where Q̃j−1 is any
L2-bounded operator. Then, there are constants c1 and c2 independent of j such that

c1‖φf‖2
X ≤ ‖ψf‖2

X ≤ c2‖φf‖2
X , X = H1, L2,(7.11)

holds for any ψf = (I − Q̃j−1)φ
f ∈ Sf

j with φf ∈ S(f)
j .

Proof. The Cauchy–Schwarz like inequality [8] is central to the proof: There exists
δ ∈ (0, 1) independent of the mesh size or level j such that

(1 − δ2)(∇φf ,∇φf ) ≤ (∇(φc + φf ),∇(φc + φf )) ∀φc ∈ Sj−1, φ
f ∈ S(f)

j ,(7.12)

(1 − δ2)‖φf‖2
L2

≤ c|φc + φf |2H1 (by the Poincaré inequality and (7.12)).(7.13)

Combining (7.12) and (7.13), we get (1 − δ2)‖φf‖2
H1 ≤ ‖φc + φf‖2

H1 . Choosing φc =

−Q̃j−1φ
f , we get the lower bound (1 − δ2)‖φf‖2

H1 ≤ ‖ψf‖2
H1 .

Let Ωf
j denote the support of basis functions corresponding to N f

j . Due to nested

refinement, triangulation on Ωf
j is quasi uniform. One can analogously introduce a

triangulation hierarchy, where all the simplices are exposed to uniform refinement:
T f
j := {τ ∈ Tj : L(τ) = j} = Tj |Ωf

j
. Hence, T f

j becomes a quasi-uniform tetrahe-

dralization and the inverse inequality holds for Sf
j . The upper bound is derived by

using a father-son size relation, the inverse inequalities, and L2-boundedness of Q̃j−1.
Hence, one gets

‖ψf‖2
H1 ≤ c02

2j‖ψf‖2
L2

≤ c02
2j
(
1 + ‖Q̃j−1‖L2

)2

‖φf‖2
L2

≤ c22j‖φf‖2
L2
.

The slice space S(f)
j is oscillatory. Then there exists c such that ‖φf‖2

L2
≤ c2−2j‖φf‖2

H1 .

Hence, ‖ψf‖2
H1 ≤ c‖φf‖2

H1 . The case for X = L2 can be established similarly.
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Using the above tools, one can establish that A
(j)
ff is well conditioned. Namely,

c12
2j ≤ λf

j,min ≤ λf
j,max ≤ c22

2j ,(7.14)

where λf
j,min and λf

j,max are the smallest and largest eigenvalues of A
(j)
ff , and both c1

and c2 are independent of j. For details see [34, Lem. 4.3] or [35, Lem. 3].

8. The fundamental assumption and WHB optimality. As in the BPX
splitting, the main ingredient in the WHB splitting is the L2-projection. Hence, the
stability of the BPX splitting is still important in the WHB splitting. The lower
bound in the BPX norm equivalence is the fundamental assumption for the WHB
preconditioner. Utilizing a local projection Q̃j , the BPX lower bound was verified
earlier for 3D a local red-green (BEK) refinement procedure. The same result easily
holds for the projection Qj . Dahmen and Kunoth [19] verified a BPX lower bound
for the 2D red-green refinement procedures.

Before getting to the stability result we remark that the existing perturbation
analysis of WHB is one of the primary insights in [34, 35]. Although not observed in
[34, 35], the result does not require substantial modification for locally refined meshes.
Let ej := (Q̃j −Qj)u be the error; then the following holds.

Lemma 8.1. Let γ be as in (7.6). There exists an absolute c satisfying

J∑
j=0

22j‖ej‖2
L2

≤ cγ2
J∑

j=0

22j‖(Qj −Qj−1)u‖2
L2

∀u ∈ SJ .(8.1)

Proof. See [34, Lem. 5.1] or [35, Lem. 1].
We arrive now at the primary result, which indicates that the WHB slice norm is

optimal in the class of locally refined meshes under consideration.
Theorem 8.2. If there exists sufficiently small γ0 such that (7.6) is satisfied for

γ ∈ [0, γ0), then

‖u‖2
WHB =

J∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2

� ‖u‖2
H1 , u ∈ SJ .(8.2)

Proof. Observe that

(Q̃j − Q̃j−1)u = (Q̃j −Qj)u− (Q̃j−1 −Qj−1)u + (Qj −Qj−1)u(8.3)

= ej − ej−1 + (Qj −Qj−1)u.

This gives

J∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2

≤ c

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2

+ c

J∑
j=0

22j‖ej‖2
L2

≤ c(1 + γ2)

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2

(using (8.1))

≤ c‖u‖2
H1 .

Let us now proceed with the upper bound. The Bernstein inequality (2.5) holds for Sj

[1, 19] for the local refinement procedures. Hence, we are going to utilize an inequality
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involving the Besov norm ‖ · ‖B1
2,2

which naturally fits into our framework when the

moduli of smoothness is considered in (2.5). The following important inequality holds,
provided that (2.5) holds [29, p. 39]:

‖u‖2
B1

2,2
≤ c

J∑
j=0

22j‖u(j)‖2
L2

(8.4)

for any decomposition such that u =
∑J

j=0 u
(j), u(j) ∈ Sj , in particular for u(j) =

(Q̃j − Q̃j−1)u. Then the upper bound holds due to H1(Ω) ∼= B1
2,2(Ω).

Remark 8.1. The following equivalence is used for the upper bound in the proof
of Theorem 8.2 on uniformly refined meshes [35, Lem. 4]:

c1‖u‖2
H1 ≤ inf

u=
∑J

j=0 u(j),

u(j)∈Sj

J∑
j=0

22j‖u(j)‖2
L2

≤ c2‖u‖2
H1 .

Let us emphasize that the left-hand side holds in the presence of the Bernstein in-
equality (2.5), and the right-hand side holds in the simultaneous presence of Bernstein
and Jackson inequalities. However, the Jackson inequality cannot hold under local
refinement procedures (cf. the counterexample in section 6). That is why we can
utilize only the left-hand side of the above equivalence as in (8.4).

Now, we have all the required estimates at our disposal for establishing the op-
timality of WHB preconditioner for 2D and 3D red-green refinement procedures for
p ∈ L∞(Ω). We would like to emphasize that our framework supports any spatial
dimension d ≥ 1, provided that the necessary geometrical abstractions are in place.

Theorem 8.3. If a BPX lower bound holds and if there exists sufficiently small
γ0 such that (7.6) is satisfied for γ ∈ (0, γ0), then for B in (7.10),

(Bu, u) � ‖u‖2
H1 .

Proof. B
(j)
ff is spectrally equivalent to A

(j)
ff . Since A

(j)
ff is a well-conditioned

matrix, by using (7.14) it is spectrally equivalent to 22jI. The result follows from
Theorem 8.2.

An extension to a multiplicative WHB preconditioner is also possible under ad-
ditional assumptions. These results will not be reported here.

9. H1-stable L2-projection. The involvement of Q̃j in the multilevel decom-
position makes it the most crucial element in the stabilization. We then come to the
central question, Which choice of Q̃j can provide an optimal preconditioner? The

following theorem sets a guideline for picking Q̃j . It shows that H1-stability of Q̃j is
actually a necessary condition for obtaining an optimal preconditioner.

Theorem 9.1 (see [34, 35]). If Q̃j induces an optimal preconditioner, namely for

u ∈ SJ ,
∑J

j=0 22j‖(Q̃j − Q̃j−1)u‖2
L2

� ‖u‖2
H1 , then there exists an absolute constant

c such that

‖Q̃ku‖H1 ≤ c ‖u‖H1 ∀k ≤ J.

Proof. Using the multilevel decomposition and (7.3), we get Q̃ku =
∑k

j=0(Q̃j −
Q̃j−1)u. Since Q̃j induces an optimal preconditioner, there exist two absolute
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constants σ1 and σ2:

σ1‖u‖2
H1 ≤

J∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2

≤ σ2‖u‖2
H1 ∀u ∈ SJ .(9.1)

Using (9.1) for Q̃ku, we get

‖Q̃ku‖2
H1 ≤ 1

σ1

k∑
j=0

22j‖(Q̃j−Q̃j−1)u‖2
L2

≤ 1

σ1

J∑
j=0

22j‖(Q̃j−Q̃j−1)u‖2
L2

≤ σ2

σ1
‖u‖2

H1 .

As a consequence of Theorem 9.1 we have the following corollary.
Corollary 9.2. L2-projection restricted to Sj, Qj |Sj : L2 → Sj is H1-stable on

2D and 3D locally refined meshes by red-green refinement procedures.
Proof. Optimality of the BPX norm equivalence on the above locally refined

meshes was already established. Application of Theorem 9.1 with Qj proves the
result. Alternatively, the same result can be obtained through Theorem 9.1 applied
to the WHB framework. Theorem 8.2 will establish the optimality of the WHB
preconditioner for the local refinement procedures. Hence, the operator Q̃j restricted

to Sj is H1-stable. Since Q̃j is none other than Qj in the limiting case, we can also
conclude the H1-stability of the L2-projection.

Our stability result appears to be the first a priori H1-stability for the L2-
projection on these classes of locally refined meshes. H1-stability of L2-projection
is guaranteed for the subset Sj of L2(Ω), but not for all of L2(Ω). This problem
is currently undergoing intensive study in the finite element and approximation the-
ory communities. The existing theoretical results, mainly those in [15, 18], involve
a posteriori verification of somewhat complicated mesh conditions after refinement
has taken place. If such mesh conditions are not satisfied, one has to redefine the
mesh. The mesh conditions mentioned require that the simplex sizes do not change
drastically between regions of refinement. In this context, quasi uniformity in the
support of a basis function becomes crucial. This type of local quasi uniformity is
usually called patchwise quasi uniformity. Local quasi uniformity requires neighbor
generation relations as in (3.1), neighbor size relations, and shape regularity of the
mesh. It was shown in [1] that patchwise quasi uniformity holds also for 3D marked
tetrahedron bisection [24] and for 2D newest vertex bisection [25, 30]. These are
promising refinement procedures for which H1-stability of the L2-projection can be
established.

10. Conclusion. In this article, we examined the Bramble–Pasciak–Xu (BPX)
norm equivalence in the setting of local 3D mesh refinement. In particular, we ex-
tended the 2D optimality result for BPX due to Dahmen and Kunoth to the local 3D
red-green refinement procedure introduced by Bornemann, Erdmann, and Kornhuber
(BEK procedure). The extension involved establishing that the locally enriched finite
element subspaces produced by the BEK procedure allow for the construction of a
scaled basis which is formally Riesz stable. This in turn rested entirely on establishing
a number of geometrical relationships between neighboring simplices produced by the
local refinement algorithms. We remark again that shape regularity of the elements
produced by the refinement procedure is insufficient to construct a stable Riesz basis
for finite element spaces on locally adapted meshes. The d-vertex adjacency genera-
tion bound for simplices in R

d is the primary result required to establish patchwise
quasi uniformity for stable Riesz basis construction, and this result depends critically



OPTIMALITY OF PRECONDITIONERS FOR 3D LOCAL REFINEMENT 1023

on the particular details of the local refinement procedure rather than on shape reg-
ularity of the elements. We also noted in section 3 that these geometrical properties
have been established in [1] for purely bisection-based refinement procedures that
have been shown to be asymptotically nondegenerate, and therefore also allow for the
construction of a stable Riesz basis.

We also examined the wavelet modified hierarchical basis (WHB) methods of
Vassilevski and Wang and extended their original quasi-uniformity-based framework
and results to local 2D and 3D red-green refinement scenarios. A critical step in the
extension involved establishing the optimality of the BPX norm equivalence for the
local refinement procedures under consideration, as established in the first part of this
article. With the local refinement extension of the WHB analysis framework presented
here, we established the optimality of the WHB preconditioner on locally refined
meshes in both two and three dimensions under the minimal regularity assumptions
required for well-posedness. An interesting implication of the optimality of WHB
preconditioner was the a priori H1-stability of the L2-projection. Existing a posteriori
approaches in the literature dictate a reconstruction of the mesh if such conditions
cannot be satisfied.

The theoretical framework established here supports arbitrary spatial dimension
d ≥ 1, and therefore allows for extension of the optimality results, the H1-stability
of L2-projection results, and the various supporting results to arbitrary d ≥ 1. We
indicated clearly which geometrical properties must be re-established to show BPX
optimality for spatial dimension d ≥ 4. All of the results here require no smoothness
assumptions on the PDE coefficients beyond those required for well-posedness in H1.

To address the practical computational complexity of implementable versions of
the BPX and WHB preconditioners, we indicated how the number of degrees of free-
dom (DOF) used for the smoothing step can be shown to be bounded by a constant
times the number of DOF introduced at that level of refinement. This indicates that
practical implementable versions of the BPX and WHB preconditioners for the local
3D refinement setting considered here have provably optimal (linear) computational
complexity per iteration. A detailed analysis of both the storage and per-iteration
computational complexity questions arising with BPX and WHB implementations
can be found in the second article in our series [2].

Acknowledgments. The authors thank R. Bank, P. Vassilevski, and J. Xu for
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1. Introduction. Consider the oscillatory integral

I :=

∫ b

a

f(x)eiωg(x) dx(1.1)

with ω > 0 and with f(x) and g(x) smooth functions. Integrals of this form abound
in mathematical models and computational algorithms for oscillatory phenomena
in science and engineering. Recently, much progress has been made in numerical
quadrature techniques for (1.1). Methods have been devised that compute an accu-
rate approximation to the value of the integral with low computational complexity
and with a number of operations that actually decreases as ω increases to infin-
ity [12, 13, 14, 15, 16, 17, 18]. This is in contrast to most classical integration ap-
proaches, based on polynomial interpolation, that rapidly deteriorate in the presence
of strong oscillations. In order to appreciate the inner workings of these methods, one
should understand the asymptotic behavior of the oscillatory integral (1.1) for large
values of the parameter ω.

The value of I at large frequencies depends on the behavior of the smooth func-
tions f and g near the endpoints a and b, and near the so-called stationary points.
The latter are the solutions to the equation g′(x) = 0 on [a, b]; they represent points
in which the integrand locally does not oscillate. An intuitive justification of this
property may be that, away from the endpoints and the stationary points, the os-
cillations of the integrand increasingly cancel out. Mathematically, the property is
reflected in the asymptotic expansion of I. We say that a stationary point ξ has order
r if g(j)(ξ) = 0, j = 1, . . . , r, but g(r+1)(ξ) �= 0; i.e., the first r derivatives of the
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oscillator vanish. Assuming one stationary point ξ of order r in the interval [a, b], the
asymptotic expansion of (1.1) has the form

I ∼
∞∑
j=0

aj
ω(j+1)/(r+1)

,(1.2)

where the coefficients aj depend only on a finite number of function values and deriva-
tives of f and g at the critical points a, b, and ξ [20]. The coefficients are in gen-
eral not easily obtained, although the leading order coefficient a0 is given by the
method of stationary phase. Still, the mere existence of the asymptotic expansion
reveals a lot of information about I. For example, an immediate consequence is that
|I| = O(ω−1/(r+1)).

A first efficient method is to simply truncate the asymptotic expansion (1.2) after
a finite number of terms. By construction, the truncation error decays as a power
of 1/ω. This asymptotic method was described by Iserles and Nørsett in [14]. The
problem of the unknown coefficients in the presence of stationary points is solved
by constructing a uniform asymptotic expansion, based on factoring out the moment

μ0 =
∫ b

a
eiωg(x) dx, or similar higher order moments. The coefficients in this expansion

can be computed explicitly if the moments themselves are known a priori. A disad-
vantage of such an approach is that the error of an asymptotic expansion is essentially
uncontrollable, since asymptotic expansions tend to diverge. This is especially true
for smaller frequencies.

A second approach, proposed also in [14], is to extend Filon’s method for oscilla-
tory integrals (see [9, 5]) by considering Hermite interpolation of f . The result is a
quadrature rule for I with a classical form, involving function values and derivatives of
f . The error of this approach is controllable and may be very small. A disadvantage
is that the weights of the rule are given by oscillatory integrals themselves, and they
cannot always be explicitly computed. We will revisit Filon-type methods in section 6.

An entirely different approach was proposed by Levin in [17]. If the indefinite inte-
gral is written as F (x)eiωg(x), then we immediately have I = F (b)eiωg(b)−F (a)eiωg(a).
It was observed in [17] that F (x) is a smooth function in the absence of stationary
points. Moreover, it satisfies the nonoscillatory differential equation

F ′(x) + iωF (x)g′(x) = f(x).(1.3)

This system can be solved for F (x) by collocation. The method was generalized
in [7, 8] to more general oscillatory functions that satisfy a linear ordinary differential
equation; for example, Bessel functions. The accuracy of the methods improves with
ω if the boundary points are included in the collocation. Recently, it was shown in [18]
that collocating also the derivatives of f in the endpoints can arbitrarily increase the
order of accuracy as a function of 1/ω. In some cases, the order can also be increased
by adding internal points. This Levin-type method allows for an accurate evaluation
of the integral, without the need for moments. The accuracy is increased simply by
solving the differential equation more accurately.

For the particular case of an oscillating factor of the form cos(ωx) or sin(ωx),
specialized quadrature rules using first order derivatives were developed in [16]. An
exponentially fitting quadrature rule with n points has an error of order ω−n. The
weights depend on ω and converge to zero.

The approach taken in this paper achieves a similar high convergence rate as a
function of ω. We will show that it solves some of the problems of the other methods
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and introduces some peculiarities of its own, thus adding to the spectrum of available
approaches that appear to complement each other. For example, we present a case
that exhibits a significantly faster convergence rate for increasing ω. The method
we describe for approximating (1.1) depends on two simple observations. First, the
oscillatory function eiωg(x) decays exponentially fast for a complex g(x) along a path
with a growing imaginary part. Second, the oscillatory function eiωg(x) does not
oscillate for complex g(x) along a path with fixed real part. These observations are
exploited numerically in combination with a corollary to Cauchy’s theorem; i.e., the
value of a line integral of an analytic function along a path between two points in
the complex plane does not depend on the exact path taken (see, e.g., [11]). The
same observations also provide the foundation for the steepest descent method [1, 2].
In that method, an asymptotic expansion of the form (1.2) is developed for I. The
method was used already by Cauchy and Riemann and developed further by Debye [6].
Methods in the complex plane have since been considered for oscillatory integrals
several times in specific applications and for Laplace transforms (see, e.g., [21, 4, 3]).
We will present a rather general implementation of the steepest descent method that
is also valid for small values of ω. We prove convergence estimates of the numerical
scheme as a function of the frequency, and we extend the method to functions f and
g that are not analytic. A quadrature rule is proposed that has the same order of
accuracy as the Filon-type method. The implementation is entirely numerical; hence
we shall refer to the method as the numerical steepest descent method.

We start this paper in section 2 with some practical and motivating examples that
illustrate most of the theory described later. In section 3 we describe and analyze the
idealized setting that gives the best possible convergence. It is shown that a suitable
n-point quadrature rule in that setting leads to a convergence of O(ω−2n−1). This
setting comes with the most restrictions but still covers many important applications.
The first requirement is that the functions f and g in (1.1) be analytic in an (infinitely)
large region of the complex plane containing the integration interval [a, b]. Further, it
is assumed that there are no stationary points in [a, b] and that the equation g(x) = c
should be “easily solvable.” This rather vague description will be made more precise
further on. We then proceed by relaxing the requirements one by one until a more
generally applicable method is obtained. This increase in generality will, at times,
come with a loss in convergence rate. In section 4 we will allow stationary points.
We relax the “easy solvability” requirement in section 5. We drop the requirement
that f and g should be analytic in sections 6 and 7, respectively. Some final remarks
conclude the paper in section 8.

2. Some motivating examples. Consider the following integral, which fre-
quently appears in Fourier analysis applications:∫ b

a

f(x)eiωx dx.(2.1)

This integral has the form of (1.1) with g(x) = x. The integrand is highly oscillatory
along the real axis if ω is sufficiently large. An important observation is that the
function eiωx decays rapidly for complex values of x with a positive imaginary part,
since eiωx = e−ω�xeiω�x. The speed of the decay actually grows as the frequency
parameter ω increases. Additionally, the function eiωx does not oscillate if the real
part of the argument x remains fixed.

Based on these observations, integral (2.1) can be reformulated in such a way that
the difficulty—the highly oscillatory nature—is removed. To that end, the integration
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Fig. 2.1. Illustration of the integration paths for g(x) = x and g(x) = x2.

on interval [a, b] is replaced with a path in the complex plane, as illustrated in the left
panel of Figure 2.1. The first, vertical part of the path is of the form z = ha(p) := a+ip
for p ∈ [0, P ]. The second part is horizontal and connects the points ha(P ) := a+ iP
to the point hb(P ) := b + iP . Finally, the third part connects hb(P ) to b with the
vertical path z = hb(p) for p ∈ [0, P ]. Now assume that f is analytic and that f itself
does not grow exponentially large in the complex plane. Letting P go to infinity, and
using paths parameterized by ha(p) and hb(p), for p ∈ [0,∞), we can write (2.1) as

∫ b

a

f(x)eiωx dx = eiωa

∫ ∞

0

f(a + ip)e−ωp dp− eiωb

∫ ∞

0

f(b + ip)e−ωp dp.(2.2)

The integral along the path that connects the endpoints of ha(P ) and hb(P ) vanishes
for P = ∞ and can therefore be discarded. Both integrals in the right-hand side
of (2.2) are well behaved. They can be evaluated efficiently by standard numerical
integration techniques, e.g., by Gauss–Laguerre integration [5]. It can be expected
from (2.2) that the accuracy of any numerical integration scheme will increase with
increasing ω, thanks to the faster decay of the integrand. This expectation will be
confirmed both theoretically and numerically in the subsequent sections. One also
sees that, asymptotically, the behavior of f around x = a and x = b completely
determines the value of (2.1).

Next, we consider the function g(x) = x2 and the corresponding integral

∫ 1

−1

f(x)eiωx2

dx.(2.3)

Again, we can remove the integration difficulty by a careful selection of an integration
path in the complex plane. The path is drawn in the right panel of Figure 2.1.
The following notation is used for the parameterization: hxj(p) = (−1)j

√
x2 + ip.

Integrating along any such path for p ∈ [0,∞) leads to an integrand with the desired

decay properties, since eiωhxj(p)
2

= eiωx2

e−ωp. One can see that, for general g, a
similar result is obtained if the path satisfies g(hx(p)) = g(x) + ip. This path can be
found by using the inverse of g, if it exists, i.e., hx(p) = g−1(g(x) + ip). Returning
to the example function g(x) = x2, however, we note that the inverse of y = g(x) is
multivalued: we have x = −√

y corresponding to the restriction g1 := g|[−1,0], and
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Fig. 2.2. Illustration of the integration path for g(x) = x3.

x =
√
y corresponding to g2 := g|[0,1]. The paths leaving −1 and arriving at 1 are

uniquely determined by the requirement that hxj(0) = x. Hence,

h−1,1(p) = −
√

1 + ip and h1,2(p) =
√

1 + ip.

Contrary to the first example, the integral along the path that connects the limiting
endpoints of h−1,1(p) and h1,2(p) cannot be discarded. Since h−1,1(p) and h1,2(p) have
opposite signs, any connecting path should cross the real axis. Additionally we require
the connecting path to be such that the integrand along the path is nonoscillatory.
The solution is to pass explicitly through the point x = 0 via two new paths

h0,1(p) = −
√

ip and h0,2(p) =
√

ip.

The point x = 0 is such that the paths corresponding to the two inverses coincide at
x = 0. We can now rewrite (2.3) as∫ 1

−1

f(x)eiωx2

dx =eiω
∫ ∞

0

f(h−1,1(p))e
−ωph′

−1,1(p)dp−
∫ ∞

0

f(h0,1(p))e
−ωph′

0,1(p)dp

+

∫ ∞

0

f(h0,2(p))e
−ωph′

0,2(p)dp− eiω
∫ ∞

0

f(h1,2(p))e
−ωph′

1,2(p)dp.

These four integrals are well behaved, although the derivatives h′
0,1(p) and h′

0,2(p)
introduce a weak singularity of the form 1/

√
p for p → 0. The integrands do not

oscillate, and their decay is exponentially fast.
Note that ξ = 0 is a stationary point because g′(ξ) = 0. More general stationary

points, where also higher order derivatives of g vanish, are handled in a similar way.
Consider, e.g., g(x) = x3 and its inverse g−1(y) = 3

√
y. The cubic root has three

branches in the complex plane, and the optimal path hx(p) = g−1(g(x) + ip) at the
point x is found by taking the branch corresponding to the inverse of g that is valid
at x, i.e., for which hx(0) = x. At ξ = 0, we have that g′(ξ) = g′′(ξ) = 0 and the
three branches coincide. For this example, integral (1.1) can again be decomposed
into four contributions, each of which corresponds to a nonoscillating integral. The
integration path is drawn in Figure 2.2.

3. The ideal case: Analytic integrand and no stationary points.

3.1. An approximate decomposition of the oscillatory integral. The
ideal setting for our approach has three conditions: both f and g are analytic func-
tions, there are no stationary points in the integration interval [a, b] (i.e., g′(x) �= 0),
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and the equation g(x) = z is easily solvable, preferably by analytical means. None of
these conditions is crucial in order to obtain a convergent quadrature method, as we
will relax all conditions later on. But, the ideal case leads to the highest convergence
rate among all cases described and is most suited to demonstrate our approach: the
problem of evaluating (1.1) can be transformed into the problem of integrating two
integrals on [0,∞) with a smooth integrand that does not oscillate and that decays
exponentially fast. This will be proved in this section in Theorem 3.3. First, we give
a basic lemma for the approximation of an integral with an integrand that becomes
small in some region S of the complex plane.

Lemma 3.1. Assume u is analytic in a simply connected complex region D ⊂ C

with [a, b] ⊂ D, and there exists a bounded and connected region S ⊂ D such that
|u(z)| ≤ ε ∀z ∈ S. If the shortest distance between any two points p and q of S along
a curve that lies in S can be bounded from above by a constant M > 0, then there
exists a function F (x), x ∈ [a, b], such that the integral of u can be approximated by∫ x

a

u(z) dz ≈ F (a) − F (x)(3.1)

with an error e that satisfies |e| ≤ Mε. The function F is of the form

F (x) =

∫
Γx

u(z) dz(3.2)

with Γx any path in D that starts at x and ends in S.
Proof. Let Γx be a curve in D from x to an arbitrary point in S, denoted by q(x),

and Γa a curve in D from a to q(a) ∈ S. Choose κ as the shortest path in S that
connects q(a) and q(x). Since u is analytic in D, the integration path between a and
x may be chosen as the concatenation of Γa, κ, and −Γx. The integral is written as∫ x

a

u(z) dz = F (a) +

∫
κ

u(z) dz − F (x) with

∣∣∣∣
∫
κ

u(z) dz

∣∣∣∣ ≤ Mε.

This proves the result.
Note that F is not completely determined by the conditions of this lemma. In

particular, the endpoint q(x) of Γx may be an arbitrary function of x.
If g is analytic, then the oscillating function eiωg(x) in the integrand of (1.1) is

also analytic as a function of x. This function is small in absolute value if

|eiωg(x)| ≤ ε ⇐⇒ e−ω�g(x) ≤ ε ⇐⇒ �g(x) ≥ − log(ε)

ω
.

Hence, if the inverse of g exists, we can find a suitable region S that is required

for Lemma 3.1 with points given by g−1(c + id) for d ≥ d0 := − log(ε)
ω . Note that,

in general, the inverse of an analytic function may be multivalued. Each single-
valued branch of the inverse has branch points that are located at the points ξ where
g′(ξ) = 0, and it is discontinuous across branch cuts that extend from one branch
point to another, or from a branch point to infinity. By explicitly excluding the
presence of branch points locally, a single-valued branch of the inverse can be found
that is analytic in a neighborhood of [a, b]. We can then characterize the error of
the decomposition given in Lemma 3.1 for the particular case of integral (1.1) as a
function of ω.
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Theorem 3.2. Assume f and g are analytic in a bounded and open complex
neighborhood D of [a, b], and assume g′(z) �= 0, z ∈ D. Then there exists an ap-
proximation of the form (3.1) for (1.1), with an error that has order O(e−ωd0) as a
function of ω for a real constant d0 > 0.

Proof. Define S := {z : �g(z) ≥ d0} ∩D with d0 > 0. A positive constant d0 can
always be found such that S is nonempty because g is analytic. In order to prove this,
consider a point x ∈ [a, b]. Since g is analytic at x, the equation g(z) = g(x) + id0

always has a solution z for sufficiently small d0 > 0 [11]. Additionally, d0 can be
chosen small enough such that z ∈ D, because D contains an open neighborhood of
x. The necessary geometrical conditions on S required by Lemma 3.1 follow from the
continuity properties of g. We have

∀x ∈ S : |f(x)eiωg(x)| ≤ |f(x)|e−ωd0 .

Since S is finite (because D is bounded), there exists a constant C > 0 such that
|f(x)| ≤ C, x ∈ S. The result is established by Lemma 3.1 with u(x) = f(x)eiωg(x)

and ε = Ce−ωd0 .
Theorem 3.2 shows that the error in the approximation I ≈ F (a)−F (b) for (1.1)

decays exponentially fast as the frequency parameter ω increases. It requires only
that f and g are analytic in a finite neighborhood of [a, b]. The function F is given
by an integral along a curve that originates in x, and it leads to a point z such that
g(z) has a positive imaginary part. The result follows from the exponential decay of
the integrand, which is the first of the two observations about the integrand made in
the introduction.

3.2. An exact decomposition of the oscillatory integral. Next, we will
take the second observation into account: eiωg(x) does not oscillate along a path
where g(x) has a fixed real part. This will lead to a particularly useful choice for the
path Γx in definition (3.2) of F .

Let hx(p) be a parameterization for Γx, p ∈ [0, P ]; then we find a suitable path
as the solution to

g(hx(p)) = g(x) + ip, x ∈ [a, b].

If the inverse of g exists, we have the unique solution hx(p) = g−1(g(x) + ip). The
path hx(p) is also called the path of steepest descent [1, 2]. This can be understood
as follows. Define k(x, y) := ig(z) = u(x, y) + iv(x, y), with z = x+ iy. Then we have
eiωg(z) = eωk(x,y). It can be shown that the path is such that v(x, y) = v(x0, y0) is
constant and that the descent of u(x, y) is maximal. In particular, the direction of
steepest descent coincides with −∇u at each point z = x + iy.

Using this path in the definition of F , the decomposition for (1.1) becomes∫ x

a

f(z)eiωg(z) dz ≈ F (a) − F (x)

= eiωg(a)

∫ P

0

f(ha(p))e
−ωph′

a(p) dp− eiωg(x)

∫ P

0

f(hx(p))e−ωph′
x(p) dp.

The integrands in the right-hand side do not oscillate, and they decay exponentially
fast as the integration parameter p or the frequency parameter ω increases.

In the following theorem, we will consider the limit case P → ∞ in which the error
of the approximation vanishes. This will require stronger analyticity conditions for
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both f and g. Additionally, the function f can no longer be assumed to be bounded.
The result of the theorem will hold if f does not grow faster than polynomially in the
complex plane along the suggested integration path.

Theorem 3.3. Assume that the functions f and g are analytic in a simply
connected and sufficiently (infinitely) large complex region D containing the interval
[a, b], and that the inverse of g exists on D. If the following conditions hold in D:

∃m ∈ N : |f(z)| = O(|z|m),(3.3)

∃ω0 ∈ R : |g−1(z)| = O(eω0|z|), |z| → ∞,(3.4)

then there exists a function F (x) for x ∈ [a, b] such that∫ x

a

f(z)eiωg(z) dz = F (a) − F (x) ∀ω > (m + 1)ω0,(3.5)

where F (x) is of the form

F (x) :=

∫
Γx

f(z)eiωg(z) dz,(3.6)

with Γx a path that starts at x. A parameterization hx(p), p ∈ [0,∞), for Γx exists
such that the integrand of (3.6) is O(e−ωp).

Proof. We will use u(z) to denote the integrand of (1.1). Using the fact that
|u(z)| = |f(z)eiωg(z)| = |f(z)|e−ω�g(z), and conditions (3.3) and (3.4), we can state

c + id ∈ D ⇒ |u(g−1(c + id))| = O(e(mω0−ω)d), d → ∞.(3.7)

If ω > mω0, then (3.7) characterizes the exponential decay of the integrand in the
complex plane. We will now choose an integration path from the point a to the region
where the integrand becomes small and from that region back to the point x ∈ [a, b].
We will show that the contribution along the line that connects both paths can be
discarded. This will establish the existence of Γa and Γx in (3.6) and the independence
of Γa and Γx.

Assume an integration path for I that consists of three connected parts, param-
eterized as ha(p) and hx(p) with p ∈ [0, P ], and κ(p) with p ∈ [a, x]. The parameteri-
zations can be chosen differentiable and satisfy ha(0) = a, hx(0) = x, ha(P ) = κ(a),
and hx(P ) = κ(x). We have∫ x

a

u(z) dz =

∫ P

0

u(ha(p))h
′
a(p) dp +

∫ x

a

u(κ(p))κ′(p) dp(3.8)

−
∫ P

0

u(hx(p))h′
x(p) dp.

Since the inverse function g−1 exists, we can choose the points ha(P ) and hx(P )
as follows: ha(P ) = g−1(g(a) + iP ) and hx(P ) = g−1(g(x) + iP ). Hence, by (3.7),

|u(ha(P ))| = O(e(mω0−ω)P ) and |u(hx(P ))| = O(e(mω0−ω)P ).

We will now show that, as P → ∞, the second integral vanishes. Equation (3.8) is
then of the form (3.5), with Γa and Γx parameterized by ha(p) and hx(p), respectively,
with p ∈ [0,∞). The contribution of the integral along κ(p) is bounded by∣∣∣∣

∫ x

a

u(κ(p))κ′(p) dp

∣∣∣∣ ≤ max
p∈[a,x]

|u(κ(p))| max
p∈[a,x]

|κ′(p)| |x− a|.(3.9)
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Defining the path κ(p):=g−1(g(p)+iP ), we have by (3.7) that |u(κ(p))|=O(e(mω0−ω)P ),
p ∈ [a, x]. We can write the second factor in the bound (3.9) as

κ′(p) =
∂g−1

∂y
(g(p) + iP )

dg

dp
(p).

The derivative of g(p) with respect to p is bounded on [a, b] because g is analytic. The

factor ∂g−1

∂y (g(p) + iP ) is bounded by O(eω0P ). Combining the asymptotic behavior

of the factors in (3.9), the second term in (3.8) vanishes for P → ∞ and ∀ x ∈ [a, b]
if ω > (m + 1)ω0. This proves the result.

Remark 3.4. Note that f and g should be analytic in a simply connected region
D that contains the paths ha, hb, and κ(p) in order to apply Cauchy’s theorem. The
unique existence of the inverse of g is a necessary condition: if g′(z) = 0 with z ∈ D,
then the point z is a branch point of the inverse function. The path κ(p) may cross
the branch cut that originates at z, and Cauchy’s theorem cannot be applied.

Remark 3.5. Conditions (3.3) and (3.4) are sufficient but not necessary. For
example, the limit case also applies when f(x) = ex and g(x) = x. If, however,

f(x) = e−x2

and g(x) = x, the integrand always diverges at infinity along the steepest
descent path, regardless of the size of ω. In that case, the path should be truncated
at a finite distance from the real axis. The accuracy of the decomposition is then
described by Theorem 3.2; i.e., the error decays exponentially fast.

3.3. Evaluation of F (x) by Gauss–Laguerre quadrature. Next, we con-
sider the evaluation of F (x) as defined by (3.6). The parameterization of the path
hx(p) is such that it solves the equation

g(hx(p)) = g(x) + ip.(3.10)

The integrand of (1.1) along this path is nonoscillatory and exponentially decaying,

f(hx(p))eiωg(hx(p)) = f(hx(p))eiωg(x)e−ωp.

In the simplest, yet important, case g(x) := x the suggested path is hx(p) = x + ip.
An efficient approach for infinite integrals with an exponentially decaying inte-

grand is Gauss–Laguerre quadrature [5]. Laguerre polynomials are orthogonal with
respect to e−x on [0,∞]. A Gauss–Laguerre rule with n points is exact for polynomi-
als up to degree 2n − 1. The integral F (x) with the suggested path can be written
as

F (x) =

∫ ∞

0

f(hx(p))eiω(g(x)+ip)h′
x(p) dp = eiωg(x)

∫ ∞

0

f(hx(p))h′
x(p)e−ωp dp

=
eiωg(x)

ω

∫ ∞

0

f

(
hx

(
q

ω

))
h′
x

(
q

ω

)
e−q dq,

with q = ωp in the last expression. Applying a Gauss–Laguerre quadrature rule with
n points xi and weights wi yields a quadrature rule

F (x) ≈ QF [f, g, hx] :=
eiωg(x)

ω

n∑
i=1

wif

(
hx

(
xi

ω

))
h′
x

(
xi

ω

)
.(3.11)

The rule requires the evaluation of f in a complex neighborhood of x.
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Theorem 3.6. Assume functions f and g satisfy the conditions of Theorem 3.3.
Let I be approximated by the quadrature formula

I ≈ Q[f, g] := QF [f, g, ha] −QF [f, g, hb],(3.12)

where QF is evaluated by an n-point Gauss–Laguerre quadrature rule as specified in
(3.11). Then the quadrature error behaves asymptotically as O(ω−2n−1).

Proof. A formula for the error of the n-point Gauss–Laguerre quadrature rule
applied to the integral

∫∞
0

f(x)e−xdx is given by [5]

E =
(n!)2

(2n)!
f (2n)(ζ), ζ ∈ [0,∞).

Using this formula, one can derive an expression for the error E := F (a)−QF [f, g, ha]:

E =
eiωg(a)

ω

(n!)2

(2n)!

d2n(f(ha(q/ω))h′
a(q/ω))

dq2n

∣∣∣∣
q=ζ

=
eiωg(a)

ω2n+1

(n!)2

(2n)!

d2n(f(ha(q))h
′
a(q))

dq2n

∣∣∣∣
q=ζ/ω

(3.13)

with ζ ∈ C. The error behaves asymptotically as O(ω−2n−1). The absolute error for
the approximation to (1.1) is composed of two contributions of the form (3.13), and,
hence, has the same high order of convergence.

Remark 3.7. The decomposition I = F (a) − F (b) is of a similar type as the
decomposition of I in [14] based on asymptotic expansions. There, the terms in
the expansions are given by a combination of f , g, and their derivatives, evaluated
in the points a and b. Yet, the numerical properties of our approach are different:
the convergence rate O(ω−2n−1) when using an n-point quadrature rule for both
QF [f, g, ha] and QF [f, g, hb] should be compared to the rate O(ω−n−1) when using
an n-term asymptotic expansion of I evaluated in a and b.

Example 3.8. We end this section with a numerical example to illustrate the
sharpness of our convergence result. The absolute error for different values of ω and
of n is given in Table 3.1 for the functions g(x) = x and f(x) = 1/(1 + x) on [0, 1].
The parameterization for Γx is given by hx(p) = g(x)+ ip. The behavior as a function
of ω follows the theory until machine precision is reached. The relative error scales
only slightly worse, since |I| = O(ω−1).

One should note that decomposition (3.5) is exact for all positive values of the
parameter ω > (m + 1)ω0 > 0. The conditions from Theorem 3.3 yield the minimal
frequency parameter (m+ 1)ω0. The method itself is therefore not asymptotic—only

Table 3.1

Absolute error of the approximation of I by QF [f, g, ha]−QF [f, g, hb] with n quadrature points
for the functions f(x) = 1/(1 + x) and g(x) = x on [0, 1]. The last row shows the value of
log2(e40/e80): this value should approximate 2n + 1.

ω \ n 1 2 3 4 5
10 1.0E − 3 3.1E − 5 1.9E − 6 1.7E − 7 2.1E − 8
20 1.2E − 4 1.1E − 6 2.3E − 8 7.5E − 10 3.2E − 11
40 1.7E − 5 3.9E − 8 2.1E − 10 2.0E − 12 2.8E − 14
80 2.0E − 6 1.2E − 9 1.7E − 12 4.2E − 15 1.6E − 17

Rate 3.1 5.0 6.9 8.9 10.8
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the convergence estimate is. Table 3.1 shows an absolute error of 2.1E − 8 (relative
error 1.4E − 7) for ω = 10 with a number of quadrature points as small as n = 5.
The corresponding integral is not highly oscillatory at all. In order to achieve the
same absolute error with standard Gaussian quadrature on [0, 1], we had to choose
a rule with 10 points. Considering the fact that we evaluate both QF [f, g, ha] and
QF [f, g, hb] with n = 5 points, the amount of work is the same. Thus, even at
relatively low frequencies, our approach is competitive with conventional quadrature
on the real axis. For higher frequencies, obviously, the new approach may be many
orders of magnitude faster.

4. The case of stationary points.

4.1. A new decomposition for the oscillatory integral. At a stationary
point ξ, the derivative of g vanishes and the integrand f(x)eiωg(x) does not oscillate,
at least locally. The contribution of the integrand and its derivatives at ξ can therefore
not be neglected. The theorems of section 3 do not apply, because the inverse of g
does not exist uniquely due to the branch point at ξ.

In order to illustrate the problem, consider the following situation. Assume that
the equation g′(x) = 0 has one solution ξ and ξ ∈ [a, b]. Now define the restrictions

g1 := g|[a,ξ] and g2 := g|[ξ,b](4.1)

of g on the intervals [a, ξ] and [ξ, b], respectively. Then the unique inverse of g on [a, b]
does not exist, but a single-valued branch g−1

1 can be found that satisfies g−1
1 (g1(x)) =

x, x ∈ [a, ξ]. This branch is analytic everywhere except at the point ξ and along a
branch cut that can be chosen arbitrarily but that always originates at ξ. Similarly, a
single-valued branch g−1

2 exists that satisfies g−1
2 (g2(x)) = x, x ∈ [ξ, b]. Both branches

satisfy g(g−1
i (z)) = z, i = 1, 2, in their domain of analyticity. The integrand is small in

the region S1 with points of the form g−1
1 (c+id), d ≥ d0, or in the region S2 with points

of the form g−1
2 (c + id), d ≥ d0. It is easy to see that S1 and S2 are not connected:

applying g on both sides of the equality g−1
1 (y) = g−1

2 (z) leads to y = z, which is
only possible if z = ξ /∈ S1, S2. The path (3.10) that solves g(hx(p)) = g(x) + ip, as
suggested in section 3, leads to a path in S1 for a and to a path in S2 for b.

The solution is therefore to split the integration interval into the two subintervals
[a, ξ] and [ξ, b]. This procedure can be repeated for any number of stationary points.
The analogues of Theorems 3.2 and 3.3 can be stated as follows.

Theorem 4.1. Assume that the functions f and g are analytic in a bounded and
open complex neighborhood D of [a, b]. If the equation g′(x) = 0 has only one solution
ξ in D and ξ ∈ (a, b), then there exist functions Fj(x), j = 1, 2, such that∫ t

s

f(z)eiωg(z) dz = F1(s) − F1(ξ) + F2(ξ) − F2(t) + O(e−ωd0), d0 > 0,

for s ∈ [a, ξ] and t ∈ [ξ, b], where Fj(x) is of the form

Fj(x) :=

∫
Γx,j

f(z)eiωg(z) dz(4.2)

with Γx,j a path that starts at x.

Proof. Define g2(x) as in (4.1). A decomposition for
∫ t

ξ
f(x)eiωg2(x) dx can be

found using the proof of Theorem 3.2 with two modifications. First, the equation
g(z) = g(x) + id0 now has at least two solutions locally around x = ξ. We choose
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the solution that corresponds to the single-valued branch g−1
2 of the inverse of g that

satisfies g−1
2 (g(x)) = x, x ∈ [ξ, b]. The branch cut can always be chosen such that it

does not prevent us from applying Cauchy’s theorem. Second, the set S in the proof is
now defined as S := {z : �g(z) ≥ d0 and g−1

2 (g(z)) = z} ∩D; i.e., the set is restricted
to one connected part of D, where the integrand is small, as opposed to the set of all
points, where the integrand is small. The latter set would not be connected in this
case. With these modifications, the proof shows the existence of F2 such that∫ t

ξ

f(z)eiωg2(z) dz = F2(ξ) − F2(t) + O(e−ωd0).

The same reasoning can be applied in order to find a decomposition on the interval
[a, ξ]. This leads to the result.

The next theorem is the limit case of Theorem 4.1, where the error vanishes.
The notation g−1

1 denotes a branch of the multivalued inverse of g that satisfies
g−1
1 (g1(x)) = x, x ∈ [a, ξ]. The notation g−1

2 is similar.
Theorem 4.2. Assume that the functions f and g are analytic in a simply

connected and sufficiently (infinitely) large complex region D containing the interval
[a, b]. Assume further that the equation g′(x) = 0 has only one solution ξ in D and
ξ ∈ (a, b). Define g1 and g2 as in (4.1). If the following conditions hold:

∃m ∈ N : |f(z)| = O(|z|m),

∃ω0 ∈ R : |g−1
1 (z)| = O(eω0|z|) and |g−1

2 (z)| = O(eω0|z|), |z| → ∞,

then there exist functions Fj(x), j = 1, 2, of the form (4.2) such that∫ t

s

f(z)eiωg(z) dz = F1(s) − F1(ξ) + F2(ξ) − F2(t) ∀ω > (m + 1)ω0(4.3)

for s ∈ [a, ξ] and t ∈ [ξ, b]. A parameterization hξ,j(p), p ∈ [0,∞), for Γx,j exists such
that the integrand of (4.2) is O(e−ωp).

Theorems 4.1 and 4.2 are easily extended to the case when ξ = a (or ξ = b) by
discarding the two terms F1(a) − F1(ξ) (or F2(ξ) − F2(b)).

Example 4.3. We consider the function g(x) = (x−1/2)2 with a stationary point
at ξ = 1/2. The inverse of g, i.e., g−1(y) = 1/2 ±√

y, is a two-valued function. One
branch is valid on the interval [0, ξ], the other on [ξ, 1]. The paths suggested by (3.10)
on [0, ξ] that originate at the points 0 and ξ, respectively, are given by

h0,1(p) = 1/2 −
√

1/4 + ip and hξ,1(p) = 1/2 −
√

ip.

The paths on [ξ, 1] for the points 1/2 and 1 are parameterized by

hξ,2(p) = 1/2 +
√

ip and h1,2(p) = 1/2 +
√

1/4 + ip.

These paths correspond to the two inverse functions. We have found the decomposi-
tion I = F1(a) − F1(ξ) + F2(ξ) − F2(b).

Note that the paths hξ,1 and hξ,2 that originate in the point ξ introduce a nu-
merical problem. Their derivatives, which appear in the integrand of the line integral,
behave like 1/

√
p, p → 0, at ξ. This weak singularity is integrable but prevents con-

vergence of the Gauss–Laguerre quadrature rules. We will require a new method to
evaluate Fj(ξ).
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4.2. The evaluation of Fj(x) by generalized Gauss–Laguerre quadra-
ture. The previous example showed a numerical problem for the evaluation of Fj(x)
by numerical quadrature: the integrand of Fj(ξ) along the path suggested by (3.10)
becomes weakly singular at the stationary point ξ. A similar singularity occurs if
higher order derivatives of g(ξ) also vanish. Assume that g(k)(ξ) = 0, k = 1, . . . , r.
The Taylor expansion of g is then

g(x) = g(ξ) + 0 + · · · + 0 + g(r+l)(ξ)
(x− ξ)r+1

(r + 1)!
+ O((x− ξ)l+2).

The path hξ,j(p) solves the equation g(hξ,j(p)) = g(ξ) + ip. Its behavior at p = 0 is

hξ,j(p) ∼ ξ + r+1

√
(r + 1)! p

g(r+1)(ξ)
i.(4.4)

The derivative has a singularity of the form p
1

r+1−1, p → 0.
Fortunately, these types of singularities can be handled efficiently by generalized

Gauss–Laguerre quadrature. Generalized Laguerre polynomials are orthogonal with
respect to the weight function xαe−x, α > −1 [5]. Function Fj(ξ) with optimal path
hξ,j(p) is given by

Fj(ξ) =
eiωg(ξ)

ω

∫ ∞

0

f

(
hξ,j

(
q

ω

))
h′
ξ,j

(
q

ω

)
e−q dq.(4.5)

Generalized Gauss–Laguerre quadrature will be used with n points xi and weights wi

that depend on the value of α = 1/(r + 1) − 1 = −r/(r + 1). The function Fj(x) is
then approximated by

Qα
F [f, g, hξ,j ] :=

eiωg(ξ)

ω

n∑
i=1

wi f

(
hξ,j

(
xi

ω

))
h′
ξ,j

(
xi

ω

)
x−α
i .(4.6)

This expression is similar to (3.11) but includes the factor x−α
i to regularize the

singularity.
Theorem 4.4. Assume functions f and g satisfy the conditions of Theorem 4.2.

Assume that g(k)(ξ) = 0, k = 1, . . . , r, and g(r+1)(ξ) �= 0. Let the function Fj(ξ) be
approximated by the quadrature formula

Fj(ξ) ≈ Qα
F [f, g, hξ,j ]

with α = −r/(r + 1). Then the quadrature error has order O(ω−2n−1−α).
Proof. The error formula for an n-point generalized Gauss–Laguerre quadrature

rule is

n!Γ(n + α + 1)

(2n)!
f (2n)(ζ), 0 < ζ < ∞.(4.7)

We can repeat the arguments of the proof of Theorem 3.6. An expression for the error
e := Fj(ξ) −Qα

F [f, g, hξ,j ] can be derived by using (4.7). This leads to

e =
eiωg(ξ)

ω

n!Γ(n + α + 1)

(2n)!

d2n(f(hξ,j(q/ω))h′
ξ,j(q/ω)q−α)

dq2n

∣∣∣∣∣
q=ζ

=
eiωg(ξ)

ω2n+1

n!Γ(n + α + 1)

(2n)!

d2n(f(hξ,j(q))h
′
ξ,j(q)(ωq)

−α)

dq2n

∣∣∣∣∣
q=ζ/ω

with ζ ∈ C. Hence, the error is asymptotically of the order O(ω−2n−1−α).
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Remark 4.5. Generalized Gauss–Laguerre quadrature converges rapidly only if
the function v(x) in an integrand of the form v(x)xαe−x has polynomial behavior.
Depending on f , the function f(hξ,j(p)) may not resemble a polynomial very well,
due to the root in (4.4) for small p. An alternative to generalized Gauss–Laguerre
quadrature with α = −1/2 is to remove the singularity by the transformation u =

√
p

or p = u2. The same transformation also removes the square root behavior of hξ,j(p).

The integrand after the transformation decays like e−u2

. In that case, variants of
the classical Hermite polynomials that are orthogonal with respect to e−u2

on the
half-range interval [0,∞) can be used with corresponding Gaussian quadrature rules
as constructed by Gautschi [10]. A similar convergence analysis yields the order
O(ω−n−1) in this case.

We can now characterize the approximation of (1.1) in the presence of several
stationary points.

Theorem 4.6. Assume that f and g are analytic in a sufficiently large region
D ⊂ C and that the equation g′(x) = 0 has l solutions ξi ∈ (a, b). Define ri :=
(mink>1 g

(k)(ξi) �= 0) − 1 and r := maxi ri. If the conditions of Theorem 4.2 are
satisfied on each subinterval [ξi, ξi+1], and on [a, ξ1] and [ξr, b], then (1.1) can be
approximated by

I ≈ Q[f, g] :=QF [f, g, ha,0] −Qα1

F [f, g, hξ1,0](4.8)

+

l−1∑
i=1

(
Qαi

F [f, g, hξi,i] −Q
αi+1

F [f, g, hξi+1,i]
)

+Qαl

F [f, g, hξl,l] −QF [f, g, hb,l]

with αi = −ri/(ri + 1), with a quadrature error of the order O(ω−2n−1/(r+1)).
Proof. This follows from a repeated application of the decomposition given by

Theorem 4.2 and from the approximation of each term Fi(x) by Qαi

F [f, g, hx,i] as in
Theorem 4.4.

Theorem 4.6 can easily be extended to the case when g′(a) = 0 or g′(b) = 0. If,
e.g., g′(a) = 0, we can set ξ1 = a and use the general decomposition (4.8) with the
first two terms left out.

Example 4.7. We return to Example 4.3 of this section in order to illustrate the
convergence results. The approximation of (1.1) for the function g(x) = (x− 1/2)2 is
given by

Q[f, g] = QF [f, g, h0,1] −Q
−1/2
F [f, g, h1/2,1] + Q

−1/2
F [f, g, h1/2,2] −QF [f, g, h1,2].

Theorem 4.6 predicts an error of the order O(ω−2n−1/2). The sharpness of this esti-
mate can be verified by the results in Table 4.1.

4.3. The case of complex stationary points. So far, we have required the
stationary point ξ ∈ [a, b] to be real. But even for functions g that are real valued
on the real axis, the equation g′(x) = 0 may have complex solutions. The value of
g′(x) on [a, b] can become very small if a complex stationary point ξ lies close to
the real axis. We may therefore expect that such a point contributes to the value of
the integral (1.1). Here, we will not pursue the extension of the theory to the case
of complex stationary points in any detail. Instead, we will restrict ourselves to a
number of remarks that address some of the relevant issues.

A first observation is that Theorem 4.1 can still be applied if the region D is chosen
small enough such that it does not contain ξ. This means that the contribution of
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Table 4.1

Absolute error of the approximation of I by Q[f, g] using (generalized) Gauss–Laguerre quadra-
ture with f(x) = 1/(1 + x) and g(x) = (x − 1/2)2 on [0, 1]. The last row shows the value of
log2(e80/e160): this value should approximate 2n + 1/2.

ω \ n 1 2 3 4 5
10 4.7E − 3 7.1E − 4 1.7E − 4 4.9E − 5 1.7E − 5
20 7.8E − 4 5.6E − 5 7.2E − 6 1.3E − 6 2.7E − 7
40 1.2E − 4 2.8E − 6 1.5E − 7 1.2E − 8 1.3E − 9
80 1.6E − 5 1.0E − 7 1.7E − 9 5.0E − 11 2.1E − 12
160 2.3E − 6 3.4E − 9 1.6E − 11 1.3E − 13 1.6E − 15
Rate 2.8 4.9 6.8 8.6 10.4

ξ to the value of I, if any, decays exponentially fast as ω increases. Still, for small
values of ω, the error may become prohibitively large if ξ lies close to the real axis.

In order to resolve this problem, one must first know which stationary points can
contribute to the error of the approximations of section 4. In general, the question
can be answered by inspecting the integration paths. A stationary point contributes
if it lies in the interior of the domain bounded by the integration interval on the
real axis and the complex integration path (including the limiting connecting part at
infinity). In order to obtain an exact decomposition, the integration path should be
changed to pass through ξ explicitly. Specifically, the decomposition should include
two additional terms for ξ of the form (4.5).

As a final remark, we note that the integral of the form (4.5) has a factor eiωg(ξ)

with g(ξ) = c + id complex. If d > 0, then the contribution decays exponentially as
e−ωd. We know from Theorem 4.1 that the error introduced by discarding complex
stationary points should decay exponentially. Hence, complex stationary points for
which d ≤ 0 cannot contribute to the value of I.

5. The case when the oscillator is not easily invertible. Theorems 3.3
and 4.2 continue to hold for paths different from the one implicitly defined by (3.10).
The value of F (a) does not depend on the path taken, and does not even depend on
the limiting endpoint of the path, as long as the imaginary part of g(x) grows infinitely
large. We have merely suggested (3.10), which yields a nonoscillatory integrand with
exponential decay, as being suitable for Gauss–Laguerre quadrature. Other integra-
tion techniques may be applied for other paths with different numerical properties.
We will not explore these possibilities in depth here.

We restrict the discussion to an approach that is useful when the inverse function
of g is known to exist, but when the suggested path is not easily obtained by analytical
means. As ω increases, we see from (3.11) that QF [f, g, ha] requires function values in
a complex region around a of diminishing size. Therefore, it is reasonable to assume
that approximating the path defined by (3.10) locally around x = a is acceptable.
Use of the first order Taylor approximation g(x) ≈ g(a) + g′(a)(x− a) to replace the
left-hand side of (3.10) leads to the path

ha(p) = a +
ip

g′(a)
.

The second order Taylor approximation leads to the path

ha(p) = a− g′(a) −
√
g′(a)2 + 2ipg(2)(a)

g(2)(a)
.

In the case of stationary points the path can be approximated by using (4.4).
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The general expression for the integral along the approximate path is given by

F (a) =

∫ ∞

0

f(ha(p))e
iωg(ha(p))h′

a(p) dp.

Computing F (a) by Gauss–Laguerre quadrature yields a numerical approximation
with an error given by

E = ω−1 (n!)2

(2n)!

d2n(f(ha(q/ω))eiωg(ha(q/ω))h′
a(q/ω)eq)

dq2n

∣∣∣∣
q=ζ

= ω−2n−1 (n!)2

(2n)!

d2n(f(ha(q))h
′
a(q)e

iωg(ha(q))eωq)

dq2n

∣∣∣∣
q=ζ/ω

.

The order of convergence is not necessarily O(ω−2n−1) in this case because the
derivative still depends on ω. However, the function eiωg(ha(q)) is a good approxi-
mation to eiωg(a)e−ωq, and we can expect the quadrature to converge. This will be
illustrated further on.

The results can be improved to preserve the original convergence rate of O(ω−2n−1)
at the cost of a little extra work to determine the optimal path. The optimal path
depends only on g(x), and on the interval [a, b], and can therefore be reused for differ-
ent functions f . The extra computations have to be done once for each combination
of g(x) and [a, b].

The Taylor approximation of the path can be used to generate suitable starting
values for a Newton–Raphson iteration, which is applied to find the root x of the
equation

g(x) − g(a) − ip = 0.(5.1)

For the set of n (fixed) values for p that are required by the quadrature rule, the
iteration yields the points x = ha(p) on the path. The values of h′

a(p), i.e., dx
dp , are

found by taking the derivative of (5.1) with respect to p,

g′(x)
dx

dp
= i.

With the Newton–Raphson method, the points on the optimal path and the
derivatives at these points can be found to high precision. Since the Taylor approxi-
mation is already a good approximation for large ω, the required number of iterations
is small.

Example 5.1. We consider the second order Taylor approximation of the path for
f(x) = 1/(1+x) and g(x) = (x2 +x+1)1/3. The absolute error is shown in Table 5.1.
Use of the Newton–Raphson iteration for the same example yields an error of order
O(ω−2n−1). This is shown in Table 5.2. The number of iterations per quadrature
point varied between 1 and 4.

6. Generalization to a nonanalytic function f(x). If f(x) is not analytic
in a complex region surrounding [a, b], then the method presented thus far will not
work. If f(x) is piecewise analytic (e.g., piecewise polynomial), the integration can
be split into the integrals corresponding to the analytic parts of f . More generally,
however, we need to resort to another approach. For a suitable analytic function f̃
that approximates f , we can expect the integral

Ĩ :=

∫ b

a

f̃(x)eiωg(x) dx

to approximate the value of I.
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Table 5.1

Absolute error of approximation of F (a) − F (b) by Gauss–Laguerre quadrature with f(x) =
1/(1+x) and g(x) = (x2 +x+1)1/3 on [0, 1] and second order Taylor approximation of the optimal
path. The last row shows the value of log2(e160/e320).

ω \ n 1 2 3 4 5

20 1.4E − 2 2.7E − 3 7.4E − 4 2.4E − 4 8.9E − 5

40 2.5E − 3 2.6E − 4 4.6E − 5 1.0E − 5 2.5E − 6

80 3.8E − 4 1.8E − 5 1.7E − 6 2.0E − 7 2.9E − 8

160 5.2E − 5 1.1E − 6 4.0E − 8 2.1E − 9 1.5E − 10

320 6.7E − 6 6.8E − 8 7.7E − 10 1.6E − 11 4.4E − 13

Rate 3.0 4.0 5.7 7.0 8.4

Table 5.2

The same example as in Table 5.1, but using Newton–Raphson iterations to compute the optimal
path. The number of iterations per quadrature point varied between 1 and 4. The last row shows the
value of log2(e320/e640): this value should approximate 2n + 1.

ω \ n 1 2 3 4 5

20 1.1E − 2 2.4E − 3 7.4E − 4 2.5E − 4 7.5E − 5

40 2.1E − 3 2.4E − 4 4.4E − 5 1.0E − 5 2.4E − 6

80 3.3E − 4 1.5E − 5 1.2E − 6 1.5E − 7 2.3E − 8

160 4.5E − 5 6.1E − 7 1.8E − 8 8.7E − 10 6.2E − 11

320 5.9E − 6 2.1E − 8 1.8E − 10 2.7E − 12 6.2E − 14

640 7.2E − 7 6.7E − 10 1.5E − 12 6.3E − 15 4.3E − 17

Rate 3.0 5.0 6.9 8.8 10.5

This leads to a Filon-type method that was already mentioned in the introduction.
Filon’s method was extended by Iserles and Nørsett in [14]. Since the value of I
depends on the value of f and its derivatives at x = a and x = b, they successfully
used Hermite interpolation in the points a and b, in the stationary points, and in a
few other regular points in the interval [a, b]. In [14, Thm. 2.3] it was shown that
interpolating f (j)(x) at a and b, j = 0, . . . , s− 1, with a polynomial of degree 2s− 1
leads to a quadrature rule with an error of order O(ω−s−1).

Since polynomials are analytic, we can also use the Hermite approximation in our
approach. This enables the computation of the weights of the Filon-type quadrature
rule for general oscillators. (Note that the complex approach also enables the com-
putation of the moments in the asymptotic method of [14].) It does not improve the
convergence rate of the method. We can improve on the Filon-type method, however,
in a different way. Thanks to the decomposition of (1.1) as I = F (a) − F (b), it is
possible to use different approximations around a and b, and, hence, to approximate
F (a) and F (b) independently. Since F (a) depends only on the behavior of f around a,
the approximating Hermite polynomial can have a much lower degree. In the theorem
below, we show that we can obtain a similar accuracy as in [14, Thm. 2.3] with two
independently constructed polynomials of degree s − 1 instead of one polynomial of
degree 2s− 1.

Theorem 6.1. Assume that f is a smooth function and g is analytic. Let fa(x)
and fb(x) be the Hermite interpolating polynomials of degree s− 1 that satisfy

f (k)
a (a) = f (k)(a) and f

(k)
b (b) = f (k)(b), k = 0, . . . , s− 1.
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Then the approximation of (1.1) by

Ffa(a) − Ffb(b) :=

∫ ∞

0

fa(ha(p))e
iωg(ha(p))h′

a(p) dp

−
∫ ∞

0

fb(hb(p))e
iωg(hb(p))h′

b(p) dp

along the paths ha(p) and hb(p) that satisfy (3.10) has an error of order O(ω−s−1).
Proof. First, we consider the approximation with the Hermite interpolating poly-

nomial f̃(x) of degree 2s − 1 that satisfies f̃ (k)(a) = f (k)(a) and f̃ (k)(b) = f (k)(b),
k = 0, . . . , s − 1. Since f̃ is analytic, it can be used to approximate (1.1) as I ≈
Ff̃ (a)−Ff̃ (b). This approximation has an error of O(ω−s−1) by [14, Thm. 2.3]. Now

consider the approximation of Ff̃ (a) by Ffa(a). Since f̃(x) is a polynomial, we can
write Ff̃ (a) as

Ff̃ (a) =

2s−1∑
k=0

f̃ (k)(a)
μk(a)

k!
,(6.1)

where the μk(a) are the moments of the form

μk(a) :=

∫ ∞

0

(ha(p) − a)keiωg(ha(p))h′
a(p) dp(6.2)

=

∫ ∞

0

eiωg(a)

ω
(ha(q/ω) − a)ke−qh′

a(q/ω) dq.

Although q goes to infinity, the behavior for small q/ω dominates due to the factor
e−q (this follows from Watson’s lemma [1]). Since (ha(q/ω) − a) ∼ ω−1, we see that
μk(a) ∼ ω−k−1. For Ffa(a), we have

Ffa(a) =

s−1∑
k=0

f (k)
a (a)

μk(a)

k!
.(6.3)

The first discarded moment, μs(a), is of order O(ω−s−1). The approximation of Ff̃ (b)
by Ffb(b) has an error of the same order. This concludes the proof.

There are two ways to proceed: either fa(x) can be evaluated explicitly in the
quadrature evaluation of Ffa(a), or the moments (6.2) can be precomputed with the
previous techniques and used in the summation (6.3). The result is a quadrature
rule for integrals of type (1.1) for fixed g, a, and b, and using function values and

derivatives of f at a and b. Define wi,1 = μk(a)
k! and wi,2 = −μk(b)

k! . Then

I ≈ Qμ[f ] :=

s−1∑
i=0

wi,1f
(i)(a) +

s−1∑
i=0

wi,2f
(i)(b)(6.4)

is a quadrature rule with an error of order O(ω−s−1). For a fixed frequency, this
localized Filon-type method is exact for polynomials up to degree s − 1, while the
regular Filon-type method is exact for polynomials up to degree 2s − 1. Hence, the
simplified construction comes at a cost; the order of accuracy as a function of ω is the
same, but we can expect the coefficient to be much larger.
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We can generalize the result to include stationary points. The same reasoning
applies, but we need to interpolate more derivatives in order to achieve a similar
convergence rate. That rate depends on the smallest value of r for which g(r+1)(ξ) �= 0
with ξ a stationary point.

Theorem 6.2. Assume that g is analytic and that g(k)(ξ) = 0, k = 1, . . . , r, and
g(r+1)(ξ) �= 0. Let f be sufficiently smooth, and let fξ(x) be the Hermite interpolating
polynomial of degree s(r + 1) − 1 that satisfies

f
(k)
ξ (ξ) = f (k)(ξ), j = 0, . . . , s(r + 1) − 1.

Then the sequence Ffξ,j(ξ) converges for increasing values of s to a limit with an error

of order O(ω−s−1/(r+1)).
Proof. The proof follows essentially the same lines as the proof of Theorem 6.1

and uses the moments μk,j(ξ), defined using the path hξ,j ,

μk,j(ξ) :=

∫ ∞

0

eiωg(ξ)

ω

(
hξ,j

(
q

ω

)
− ξ

)k

e−qh′
ξ,j

(
q

ω

)
dq.(6.5)

The derivative of the parameterization hξ,j in the integrand has an integrable sin-
gularity of the form (q/ω)−r/(r+1) at the stationary point ξ and leads to a factor
ωr/(r+1). By (4.4) we have (hξ,j(q/ω) − ξ) ∼ ω−1/(r+1). This makes μk,j(ξ) ∼
ωr/(r+1)−k/(r+1)−1 = ω(−k−1)/(r+1). The first discarded moment μk,j(ξ) in the sum
Ffξ,j of the form (6.3) has the index k = s(r + 1), which leads to the result.

Theorem 6.2 shows only that the value Ffξ(ξ) converges with a specific rate if more
derivatives of f are interpolated. It does not explicitly state that Ffξ(ξ) can be used

in a decomposition to approximate (1.1). The existence of an analytic function f̃ that
can be used to approximate the value of (1.1) with an arbitrary accuracy, provided f
is smooth enough, was proved in [14, Thm. 3.3] using Hermite interpolation.

Assume there is one stationary point ξ ∈ (a, b), and g(r+1)(ξ) �= 0. Then we can
extend the definition of quadrature rule (6.4) to

I ≈ Qμ[f ] :=

s−1∑
i=0

wi,1f
(i)(a) +

s(r+1)−1∑
i=0

wi,2f
(i)(ξ) +

s−1∑
i=0

wi,3f
(i)(b),(6.6)

with wi,1 = μk(a)
k! , wi,3 = −μk(b)

k! , and wi,2 =
−μk,1(ξ)+μk,2(ξ)

k! . This rule has an

absolute error of order O(ω−s−1/(r+1)) and a relative error of order O(ω−s).
Example 6.3. We consider the functions f(x) = 1/(1 + x) and g(x) = (x− 1/3)2

on [0, 1]. Since f is analytic, we could use the previous techniques. However, here
we will use only the values of the first few derivatives of f at 0 and 1 and at the
stationary point ξ = 1/3. The results are shown in Table 6.1 for varying degrees of
interpolation. The convergence rate is limited to the convergence rate at the stationary
point. According to Theorem 6.2, in order to obtain an error of order O(ω−s−1/(r+1)),
we need to interpolate up to the derivative of order m = s(r + 1)− 1. Hence, solving
the latter expression for s, we expect a convergence rate of (m+ 2)/(r + 1). The rate
is actually higher in the columns with even m, due to the cancellation of the moments
at ξ with odd index. For a more general function g there is no exact cancellation, but
the difference of the moments at ξ, i.e., μk,1(ξ) − μk,2(ξ), can have lower order than
predicted by Theorem 6.2. This cancellation does not occur if the stationary point ξ
is the endpoint of the integration interval.
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Table 6.1

Absolute error of the approximation of I for f(x) = 1/(1 + x) and g(x) = (x− 1/3)2 on [0, 1].
We approximate f by interpolating m derivatives. The last row shows the value of log2(e1280/e2560):
this value should approximate (m + 2)/2 for odd m and (m + 3)/2 for even m.

ω \m 0 1 2 3 4
160 1.0E − 4 1.8E − 4 9.5E − 7 9.7E − 7 8.6E − 9
320 6.5E − 5 6.5E − 5 1.7E − 7 1.7E − 7 7.6E − 10
640 2.8E − 5 2.3E − 5 3.1E − 8 3.0E − 8 6.7E − 11
1280 8.1E − 6 8.2E − 6 5.4E − 9 5.4E − 9 5.9E − 12
2560 3.2E − 6 2.9E − 6 9.5E − 10 9.5E − 10 5.2E − 13
Rate 1.4 1.5 2.5 2.5 3.5
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Fig. 6.1. A numerical comparison between the regular and localized Filon-type methods and
the numerical steepest descent method (Example 6.4). (a) Absolute error for four methods. (b) The
absolute error for numerical steepest descent, scaled by ω5/2.

Example 6.4. We make a numerical comparison between the regular Filon-type
method, the localized Filon-type method, and the numerical steepest descent method
for f(x) = 1/(1 + x2) and g(x) = (x − 1/2)2 on [−1, 1]. Filon-type methods for this
integral suffer from Runge’s phenomenon: the interpolation error for the function f is
large [19]. We choose s = 1; i.e., we use only function values of f in {−1, 1/2, 1} and
no derivatives. The order of the Filon-type methods is then O(ω−3/2). We choose
n = 1 in Theorem 4.6. The order of the numerical steepest descent method is then
O(ω−5/2), using four evaluations of f in the complex plane. We also interpolate two
additional derivatives at 1/2 for the Filon-type method: this yields a quadrature rule
with five weights and order O(ω−2). The results are illustrated in Figure 6.1.

7. Generalization to a nonanalytic function g(x). If g(x) is piecewise an-
alytic, the integration interval can be split into subintervals, where the function is
analytic. Otherwise we can try to approximate g(x) by an analytic function g̃(x)
on [a, b]. We should take care to not introduce new stationary points and to make
sure that we accurately approximate all stationary points of g(x). Alternatively, we
can approximate g(x) locally around the special points, possibly by using different
functions for each point. This will turn out to be easier and will yield the same
convergence rate.

When g(x) is smooth, it can be approximated arbitrarily well by an analytic
function g̃(x) on [a, b]. Hence, there exist analytic g̃ such that the integral

Ĩ :=

∫ b

a

f(x)eiωg̃(x) dx = F̃ (a) − F̃ (b)(7.1)
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is arbitrarily close to the value of I. Such function g̃ may be difficult to find, how-
ever, and, if found, intractable for numerical purposes. Hermite interpolation in the
points a and b is not a solution in this case, as the resulting polynomial may introduce
stationary points that the original function g did not have. However, owing to decom-
position (7.1), it becomes possible to do Hermite interpolation in a and b separately
by different polynomials.

Theorem 7.1. Assume that f and g̃ are analytic. Let ga(x) be the Hermite
interpolating polynomial of degree s that satisfies

g(k)
a (a) = g̃(k)(a), k = 0, . . . , s.

Then the approximation of F̃ (a) by Fga(a) has an error of order O(ω−s−1).

Proof. The error e := F̃ (a) − Fga(a) can be written as

e =

∫ ∞

0

f(ha(p))(e
iωg̃(ha(p)) − eiωga(ha(p)))h′

a(p) dp(7.2)

=

∫ ∞

0

f(ha(p))e
iωga(ha(p))(eiω(g̃(ha(p))−ga(ha(p))) − 1)h′

a(p) dp

=
eiωga(a)

ω

∫ ∞

0

f

(
ha

(
q

ω

))
e−q(eiω(g̃(ha( q

ω ))−ga(ha( q
ω ))) − 1)h′

a

(
q

ω

)
dq.

The path ha(p) was chosen as the solution of (3.10) with respect to the approximation
ga(x). Using a Taylor approximation around a, we have

g̃(x) − ga(x) = (g̃(s+1)(a) − g(s+1)
a (a))

(x− a)s+1

(s + 1)!
+ O((x− a)s+2).

Because ha(q/ω) − a ∼ ω−1, we have

eiω(g̃(ha(q/ω))−ga(ha(q/ω))) − 1 ∼ iω(g̃(ha(q/ω)) − ga(ha(q/ω))) ∼ ω−s.

The error e is therefore of order O(ω−s−1).
The value of Ĩ, defined by (7.1), is completely determined by the derivatives of

g̃ at a and b. If Ĩ − I is small, it follows from Theorem 7.1 that g̃ should satisfy
g̃(j)(a) = g(j)(a) and g̃(j)(b) = g(j)(b), j = 0, . . . , s, for some maximal order s that
depends on the smoothness of g. Hence, g̃ need not be explicitly constructed.

At a stationary point ξ, more derivatives are needed. The convergence rate de-
pends on the minimal value of r for which g̃(r+1)(ξ) �= 0.

Theorem 7.2. Assume that f and g̃ are analytic and that g̃(k)(ξ) = 0, k =
1, . . . , r, and g̃(r+1)(ξ) �= 0. Let gξ(x) be the Hermite interpolating polynomial of
degree (s + 1)(r + 1) − 1 that satisfies

g
(k)
ξ (ξ) = g̃(k)(ξ), k = 0, . . . , (s + 1)(r + 1) − 1.

Then the approximation of F̃j(ξ) by Fgξ,j(ξ) has an error of order O(ω−s−1/(r+1)).
Proof. The proof follows the same lines as the proof of Theorem 7.1. The difference

is that, similar to the situation in the proof of Theorem 6.2, we have hξ,j(q/ω)− ξ ∼
ω−1/(r+1) and h′

ξ,j(q/ω) ∼ ωr/(r+1). This leads to

eiω(g̃(hξ,j(q/ω))−gξ(hξ,j(q/ω))) − 1 ∼ ω−s.
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Table 7.1

Absolute error of the approximation of F̃ (a) by Fa(a) for f(x) = 1/(1 + x) and g(x) = (x −
1/2)2(x− 2)ex

2
at a = 0. We approximate g by interpolating m derivatives. The last row shows the

value of log2(e400/e800): this value should approximate m + 1.

ω \m 1 2 3 4
100 6.1E − 5 7.6E − 7 1.3E − 8 1.9E − 10
200 1.5E − 5 9.5E − 8 8.4E − 10 6.1E − 12
400 3.8E − 6 1.2E − 8 5.3E − 11 1.9E − 13
800 9.6E − 7 1.5E − 9 3.3E − 12 6.0E − 15
Rate 2.0 3.0 4.0 5.0

Table 7.2

Absolute error of the approximation of I by Ĩ for f(x) = 1/(1 + x) and g(x) = (x− 1/2)2(x−
2)ex

2
on [0, 1]. We approximate g by interpolating m derivatives. The last row shows the value of

log2(e400/e800): this value should approximate m/2 for odd m and (m + 1)/2 for even m.

ω \m 2 3 4
100 1.6E − 4 2.7E − 4 1.8E − 7
200 5.5E − 5 9.8E − 6 3.2E − 8
400 2.0E − 5 3.5E − 6 5.6E − 9
800 6.9E − 6 1.2E − 6 9.9E − 10
Rate 1.5 1.5 2.5

The error estimate for this case is analogous to (7.2) in the proof of Theorem 7.1.
Adding all contributions, it is of order O(ω−1−s+r/(r+1)) = O(ω−s−1/(r+1)).

Example 7.3. We illustrate the convergence with two examples. The function
g(x) = (x − 1/2)2(x − 2)ex

2

is approximated by a polynomial of degree m in the
endpoints a = 0 and b = 1, and in the stationary point ξ = 1/2. The resulting
errors are displayed in Tables 7.1 and 7.2. Table 7.1 shows the error in approximating
only F̃ (a). Table 7.2 shows the error of the approximation of I. The latter error is
dominated by the error made at the stationary points but follows the theory. As in
the last example for a nonanalytic function f , the convergence rate is actually higher
for even m because the difference of the terms at ξ in the decomposition of I can
have an order lower than predicted by Theorem 7.2. Note that it is not possible to
approximate g(x) by a fixed constant since in that case also eiωga(x) = eiωc reduces to
a constant. At a stationary point with r vanishing derivatives, the minimal number
of derivatives to interpolate is r + 1.

8. Concluding remarks. We have presented an approach to compute highly
oscillatory integrals of the form (1.1). The method is quite general and leads to high
order convergence when the frequency increases. The (generalized) Gauss–Laguerre
quadrature rules yields the typical Gauss rule convergence exponent of approximately
2n, but here as a function of 1/ω. This is made possible by transforming the integrand
into a numerically well behaved one, i.e., one that is not oscillatory and that has
exponential decay which becomes faster with increasing ω.

The approach by Iserles and Nørsett has led us to consider the use of Hermite
interpolation for functions f(x) that are not analytic. The resulting polynomial is an-
alytic, and this enables the use of our rapidly converging complex approach. Owing
to our decomposition of the integral into a sum of a number of functions that each de-
pend only on one point, this approach could be simplified considerably in our setting.
Vice versa, the methods developed in this paper may be used to compute generalized

moments of the form
∫ 1

0
p(x)eiωg(x)dx with p(x) a polynomial of low degree. Such
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moments are assumed to be available in the approach of Iserles and Nørsett, but an
analytical value may not always be available. The details of the latter method can be
found in [14].

Acknowledgments. The authors wish to thank Arieh Iserles and Sheehan Olver
for many insightful discussions on the topic of oscillatory integrals (suggesting the term
numerical steepest descent in the process) and to thank the anonymous referees for a
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Abstract. This paper develops and analyzes some fully discrete finite element methods for a
parabolic system consisting of the Navier–Stokes equations and the Cahn–Hilliard equation, which
arises as a diffuse interface model for the flow of two immiscible and incompressible fluids. In
the model the two sets of equations are coupled through an extra phase induced stress term in
the Navier–Stokes equations and a fluid induced transport term in the Cahn–Hilliard equation.
Fully discrete mixed finite element methods are proposed for approximating the coupled system,
it is shown that the proposed numerical methods satisfy a mass conservation law, and a discrete
energy law which is analogous to the basic energy law for the phase field model. The convergence
of the numerical solutions to the solutions of the phase field model and its sharp interface limit is
established by utilizing the discrete energy law. As a by-product, the convergence result also provides
a constructive proof of the existence of weak solutions to the Navier–Stokes-Cahn–Hilliard phase field
model. Numerical experiments are also presented to validate the theory and to show the effectiveness
of the combined phase field and finite element approach.

Key words. two-phase fluids, phase field model, Cahn–Hilliard equation, Navier–Stokes equa-
tions, finite element methods
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1. Introduction. Interfacial dynamics in the mixture of different fluids, solids,
or gas has been one of the fundamental issues in hydrodynamics and materials sci-
ence. It plays an increasingly important role in many current scientific, engineering,
and industrial applications (cf. [7, 15] and the references therein). In the classical
approaches, the interface is usually considered as a free curve/surface that evolves
in time along with fluid. The movement of the interface at each time is determined
by a set of interfacial balance conditions. In the case of two immiscible incompress-
ible fluids, the dynamics of the fluid mixture is described by the following two-phase
Navier–Stokes equations:

ut − νΔu + (u · ∇)u + ∇p = g in ΩT \ Γt,(1.1)

div u = 0 in ΩT \ Γt,(1.2)

[(νD(u) − pI)n] = ακn on Γt,(1.3)

[u] = 0 on Γt,(1.4)

with a given set of initial and boundary conditions. Here Ω ⊂ Rd (d = 1, 2, 3) is
a bounded domain, ΩT = Ω × (0, T ), Γt denotes the (free) interface at the time t
with the normal n and the mean curvature κ, α > 0 is the surface tension constant.
D(u) = 1

2 (∇u+(∇u)T ) denotes the deformation tensor, I is the d×d identity matrix.
[u] denotes the jump of the u across the interface Γt. Clearly, (1.3) and (1.4) are the
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interfacial conditions for the fluid mixture, which are the mathematical descriptions
of the balance of the normal stress and the balance of the movement.

Computationally, the above free interface problem is difficult to solve directly due
to the existence of the surface tension on the interface. In addition, during the evo-
lution the fluid interface may experience topological changes such as self-intersection,
pinch-off, splitting, and fattening. When that happens, the classical solution of the
free interface problem ceases to exist. In such a situation it is delicate and difficult to
develop a proper notion of generalized solutions, it becomes even more challenging to
compute the generalized solutions when they are defined.

To overcome the difficulties, an alternative approach for solving interface prob-
lems is the diffuse interface (or mean field) theory, which was originally developed as
methodology for modeling and approximating solid-liquid phase transitions in which
the effects of surface tension and nonequilibrium thermodynamic behavior may be
important at the surface [28, 12, 24]. In the theory, the interface is represented as a
thin layer of finite thickness. The method uses an auxiliary function (called phase field
function/variable) to indicate the “phase.” The phase-field function assumes distinct
values in the bulk phases away from the interfacial regions over which the phase func-
tion varies smoothly, and the interface itself can be associated with an intermediate
contour or level set of the phase function (cf. [32] and the references therein). The
diffuse interface models converge to their corresponding sharp interface models as the
width of the interfacial layer ε tends to zero.

This is the second paper in a series (cf. [18]) which devotes to finite element
numerical analysis of two-phase fluid flows based on the phase field (diffuse interface)
approach. In [18] finite element methods were developed and analyzed for the Navier–
Stokes-Allen–Cahn phase field model proposed in. The goal of this paper is to carry
out a parallel finite element numerical analysis for a mass-conserved diffuse interface
model for two-phase fluids proposed in [27, 30], which consists of the Navier–Stokes
equations and the Cahn–Hilliard equation. In the model the two sets of equations are
coupled through an extra phase induced stress term in the Navier–Stokes equations
and a fluid induced transport term in the Cahn–Hilliard equation. We develop and
analyze some fully discrete mixed finite element methods for the Navier–Stokes-Cahn–
Hilliard phase field model. It is proved that the proposed numerical methods satisfy
a mass conservation law, and a discrete energy law which exactly mimics the basic
energy law for the phase field model. The convergence of the numerical solutions to
the solutions of the phase field model and its sharp interface limit is then established
by utilizing the discrete energy law.

It should be noted that the Navier–Stokes-Cahn–Hilliard phase field model (in
different forms, see section 2 for more details) for two phase fluids has been studied
numerically by several authors [2, 3, 27, 30, 31], among them [27, 30] are most closely
related to the current paper. In [27] Jacqmin derived the mathematical model based
on physical arguments, and then proposed some finite difference compact schemes for
the model. Impressive numerical experiments also were reported in the paper although
no convergence analysis was given. In [30], inspired by their early experiences on the
nematic liquid crystal flows, Liu and Shen rederived the Navier–Stokes-Cahn–Hilliard
phase field model based on the (heuristic) mathematical arguments, and then proposed
some Fourier-spectral element methods under the periodic assumptions. Local-in-time
stability estimates were also established for the proposed Fourier-spectral element
methods.

The remainder of this paper is organized as follows. In section 2, we present the
mass conserved Navier–Stokes-Cahn–Hilliard phase field model for two-phase fluids
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to be studied in this paper. We then demonstrate that various phase field models
appeared in [27, 30] are actually mathematically equivalent up to an additive function
to the pressure. However, it is shown later in this paper that numerically the phase
field model in the potential form is favored since finite element methods based on this
form are shown to fulfill a global-in-time energy (or stability) estimate which exactly
mimics the basic energy law of the differential model. In section 3, we first re-establish
the basic energy law (in a slightly different form) associated with the Navier–Stokes-
Cahn–Hilliard phase field model, and then derive some additional a priori energy
estimates which show explicit dependence on the physical parameters ε, λ, γ, and ν.
In section 4, we propose and analyze a family of fully discrete mixed finite element
methods for the phase field model. It is proved that the proposed numerical methods
enjoy a discrete energy law which mimics the basic energy law for the differential
problem. It is this discrete energy law which paves the way for us to establish the
convergence of the fully discrete methods to the phase field model as the mesh sizes
h, τ → 0, and to the sharp interface model (1.1)–(1.4) as the mesh sizes h, τ , and the
capillary width ε all tend to zero, provided that the phase field model converges to the
sharp interface model. Our main idea is to rewrite the flow equations in the potential
form by introducing a new “pressure” p = p+ λ

2 |∇ϕ|2 + λ
ε2F (ϕ) + λϕ(Δϕ− 1

ε2F
′(ϕ))

in the place of the original pressure p. As a by-product, our convergence result also
provides a rigorous proof of the existence of weak solutions to the phase field model,
which clearly is of interests in itself. Finally, in section 5 we present some numerical
experiment results to validate our theoretical results and to show the effectiveness of
the combined phase field and finite element approach.

2. The Navier–Stokes-Cahn–Hilliard phase field model. The phase field
model for two immiscible and incompressible fluids with comparable densities (which
are taken to be 1) and viscosities ν > 0 to be studied in this paper takes the form
[30, 3]

ut − νΔu + (u · ∇)u + ∇p + λ div (∇ϕ⊗∇ϕ) = g in ΩT ,(2.1)

ϕt + u · ∇ϕ + γΔ
(
Δϕ− 1

ε2
f(ϕ)
)

= 0 in ΩT ,(2.2)

div u = 0 in ΩT .(2.3)

To close the system, it will be complemented with the following initial and boundary
conditions:

u(·, 0) = uε
0(·), ϕ(·, 0) = ϕε

0(·), in Ω,(2.4)

u = 0,
∂ϕ

∂n
=

∂Δϕ

∂n
= 0, on ∂ΩT := ∂Ω × (0, T ].(2.5)

Note that we have suppressed the superscript ε in (uε, ϕε, pε) for the notation brevity.
Here the vector u(x, t) ∈ Rd and the scalar p(x, t) ∈ R denote the velocity and the
pressure of the fluid mixture at the space time point (x, t), respectively. The scalar
function ϕ is called a phase function and is used to indicate the fluid phases. ϕ assumes
distinct values in the bulk phases away from a thin layer (called the interfacial region)
over which ϕ varies smoothly, and the interface itself can be associated with the zero
level set {ϕ = 0} of ϕ (f(ϕ) = F ′(ϕ) and F (ϕ) = 1

4 (ϕ2 − 1)2). The positive constants
λ, γ, and ε are the surface tension, the elastic relaxation time, and the capillary width
(width of the interfacial layer), respectively. ∇ϕ⊗∇ϕ stands for the d× d rank-one
matrix (∇ϕ)T∇ϕ with entries ϕxi

ϕxj
. We especially note that ε << 1.
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Equation (2.1) without the stress term λdiv (∇ϕ ⊗ ∇ϕ) is the Navier–Stokes
equations [33] and (2.2) without the convection term u · ∇ϕ is the Cahn–Hilliard
equation [23, 32]. In the literature, the phase equation is always given by (2.2). On
the other hand, the flow equations often appear differently in different papers due to
how the phase induced force is expressed in the equations. In (2.1), since ∇ϕ⊗∇ϕ is a
phase induced stress tensor (its divergence represents the phase induced force), hence,
we may regard (2.1) as the flow equations in the stress form. Using the differential
identity

(2.6) div (∇ϕ⊗∇ϕ) = Δϕ∇ϕ +
1

2
∇|∇ϕ|2,

(2.1) can be rewritten as

(2.7) ut − νΔu + (u · ∇)u + ∇p̂ + λΔϕ∇ϕ = g,

where

(2.8) p̂ := p +
λ

2
|∇ϕ|2.

By introducing the chemical potential (cf. [11, 23, 32]),

(2.9) w := −Δϕ +
1

ε2
f(ϕ),

and noticing the fact that F ′(ϕ) = f(ϕ), (2.7) can be rewritten as

(2.10) ut − νΔu + (u · ∇)u + ∇p̃− λw∇ϕ = g,

where

(2.11) p̃ := p̂ +
λ

ε2
F (ϕ) = p +

λ

2
|∇ϕ|2 +

λ

ε2
F (ϕ).

It was based exactly on (u, p̃, ϕ, w) formulation that convergent finite element methods
were successfully developed in [18] for the related Navier–Stokes-Allen–Cahn phase
field model of for two-phase fluids.

It is natural to ask if the success of [18] can be extended to the above Navier–
Stokes-Cahn–Hilliard phase field model. It turns out (see section 4 for details) that
one can show that mixed finite methods based on (u, p̃, ϕ, w) formulation for the
Navier–Stokes-Cahn–Hilliard phase field model do satisfy a discrete energy law which
mimics the basic energy law associated with the phase field model. However, the
numerical solutions may not satisfy the mass conservation law∫

Ω

ϕ(x, t) dx =

∫
Ω

ϕ(x, 0) dx ∀t ∈ [0, T ],

associated with the Navier–Stokes-Cahn–Hilliard phase field model (2.1)–(2.5).
To overcome the difficulty, we define another new “pressure” p as

(2.12) p := p̃− λϕw = p +
λ

2
|∇ϕ|2 +

λ

ε2
F (ϕ) + λϕ

(
Δϕ− 1

ε2
F ′(ϕ)

)
,

and rewrite (2.10) as

(2.13) ut − νΔu + (u · ∇)u + ∇p + λϕ∇w = g,



FINITE ELEMENT METHODS FOR TWO PHASE FLUIDS 1053

which it turns out is exactly the flow equations proposed by Jacqmin in [27] using
physical arguments. Since the phase induced force is expressed as the gradient of the
chemical potential w, we may regard (2.13) as the flow equation in the potential form.
We also note that with help of the chemical potential w, (2.2) can be rewritten as

(2.14) ϕt + u · ∇ϕ− γΔw = 0.

Equations (2.9) and (2.14) is known as the mixed (or split) formulation for the Cahn–
Hilliard equation (cf. [16, 19, 20]).

In section 4, we shall present some fully discrete mixed finite element methods for
the Navier–Stokes-Cahn–Hilliard phase field model based on the (u, p, ϕ, w) formula-
tion, which consists of (2.13), (2.14), (2.3), and (2.9). It is shown that such numerical
methods not only satisfy the global-in-time discrete energy law but also fulfill the mass
conservation law. We like to emphasize that although the flow equations presented
above all are mathematically equivalent, numerical methods based on these equations
are often different, and the differences could be significant.

3. A priori energy estimates. The standard space notations are used in this
paper; we refer to [1, 33] for their exact definitions. In particular, B∗ denotes the
dual space of a Banach space B, and B denotes the vector Banach space Bd. (·, ·) is
used to denote the standard L2(Ω) inner product, 〈·, ·〉 stands for the dual product
between H1

0 (Ω) and H−1(Ω), and

L2
0(Ω) = {q ∈ L2(Ω); (q, 1) = 0},

V = {v ∈ H1
0(Ω); div v = 0 in Ω},

H = {v ∈ L2(Ω); div v = 0 in Ω and v · n|∂Ω = 0}.

In addition, we use π to denote the L2-orthogonal projection from L2(Ω) onto H, and
Δ̃ = πΔ to denote the Stokes operator (cf. [33]).

Throughout the paper, unless stated otherwise, c and C will be used to denote
generic positive constants which is independent of u, p, ϕ, and ε.

Existence and uniqueness (for d = 2) of weak solutions of system (2.1)–(2.3) were
heuristically outlined in [30]. A key ingredient of the proof is to establish the basic
energy law for the phase field model (see (3.9) below). In this section, we shall first
reestablish the basic energy law in a slightly different form. We shall also derive
some additional uniform (in ε) a priori estimates, in particular on ut, ϕt, and p, for
weak solutions to the system (2.1)–(2.3), which will be needed in section 4. Special
attention will be given to tracing the explicit dependence of the a priori estimates on
the capillary width ε, and the parameters λ and γ.

Lemma 3.1. Suppose that g ∈ L2((0, T );L2(Ω)), and the initial values uε
0 and ϕε

0

satisfy |ϕε
0| ≤ 1 and Jε,λ(uε

0, φ
ε
0) < ∞, i.e., the initial energy is bounded, then every

regular solution (u, ϕ, p) of system (2.1)–(2.3) satisfies the following estimates: for all
T ∈ [0,∞]

∫
Ω

ϕ(x, t) dx =

∫
Ω

ϕε
0(x) dx ∀t ∈ (0, T ),(3.1)

ess sup
t∈[0,T ]

{‖u(t)‖2
L2 + λ ‖∇ϕ(t)‖2

L2 + λε−2(F (ϕ(t)), 1)} ≤ C,(3.2)
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∫ T

0

ν ‖∇u(t)‖2
L2 dt +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ T

0

λγ ‖∇w(t)‖2
L2 dt∫ T

0

λγ−1 ‖ϕt(t) + u(t) · ∇ϕ(t)‖2
H−1 dt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ≤ C,(3.3)

∫ T

0

{
‖ut(t)‖

12
6+d

V ∗ + ‖ut(t)‖2
(V ∩L∞)∗

}
dt ≤ C,(3.4)

ess sup
t∈[0,T ]

∥∥∥∥
∫ t

0

p(s) ds

∥∥∥∥
L2

≤ C,(3.5)

∫ T

0

‖ϕt(t)‖2
H−1 ≤ C,(3.6)

where p = p + λ
2 |∇ϕ|2 + λ

ε2F (ϕ). In addition, there holds∫ T

0

‖Δϕ(t)‖2
L2 dt ≤ C ε−2,(3.7)

∫ T

0

‖∇Δϕ‖2
L2 dt ≤ C ε−

6(4+d)
6−d .(3.8)

Proof. Testing (2.1) with u, (2.14) with λγ−1Δ−1(ϕt + u · ∇ϕ) or with w, (2.9)
with ϕt, using the differential identity (2.6), and adding the resulting equations yield

(3.9)
d

dt
Jε,λ(u, ϕ) + ν ‖∇u‖2

L2 +

{
λγ ‖∇w‖2

L2

νγ−1 ‖ϕt + u · ∇ϕ‖H−1

}
=

∫
Ω

g · u dx,

where

(3.10) Jε,λ(u, ϕ) :=

∫
Ω

[
1

2
|u|2 +

λ

2
|∇ϕ|2 +

λ

ε2
F (ϕ)

]
dx.

The identity (3.9) is known (cf. [27, 30]) as the basic energy law for the system (2.1)–
(2.5).

Next, the estimates (3.2) and (3.3) follow easily from integrating (3.9) in t from
0 to T and using the inequality

|(g,u)| ≤ 1

4
‖u‖2

L2 + ‖g‖2
L2 .

To show (3.4), we test (2.13) with v ∈ V ∩ L∞(Ω) to get

(ut,v) = −ν (∇u,∇v) − ((u · ∇)u,v) − λ (ϕ∇w,v) + (g,v)(3.11)

≤ ν ‖∇u‖L2 ‖∇v‖L2 + λ ‖∇w‖L2 ‖ϕ‖L3 ‖v‖L6 + ‖g‖L2 ‖v‖L2

−((u · ∇)u,v).

For the last term above we have

(3.12) ((u · ∇)u,v) ≤ C

{
‖∇u‖

6+d
6

L2 ‖u‖
6−d
6

L2 ‖v‖L6 + ‖∇u‖L2 ‖u‖L2 ‖v‖L6 ,

‖∇u‖L2 ‖u‖L2 ‖v‖L∞ ,
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here we have used the interpolation inequality (cf. [1])

(3.13) ‖u‖L3 ≤ C ‖∇u‖
d
6

L2 ‖u‖
6−d
d

L2 + C ‖u‖L2 .

Equation (3.4) then follows from combining (3.11), (3.12), (3.13), (3.2), and (3.3).
To verify (3.5), testing (2.13) with v ∈ H1

0(Ω) and integrating the resulted equa-
tion in t from 0 to τ(≤ T ) yield(∫ τ

0

p(t)dt, divv

)
= (u(τ) − u0,v) + ν

(∫ τ

0

∇u(t)dt,∇v

)

+

(∫ τ

0

(u · ∇u)(t)dt,v

)
− λ

(∫ τ

0

(ϕ∇w)(t)dt,v

)
.

Using the estimates (3.2), (3.3), (3.11)–(3.13), and the Sobolev inequality (cf. [1]) we
conclude that

(3.14)

(∫ τ

0

p(t)dt, divv

)
≤ C ‖v‖H1 ∀v ∈ H1

0(Ω).

Equation (3.5) then follows from (3.14) and an application of the inf-sup inequality
(cf. [33]).

To show (3.6), we first notice that ∇w ∈ L2(ΩT ) implies that Δw ∈ L2((0, T );
H−1). Then (3.6) follows from (2.14), (3.2), (3.3), and the following inequality:

‖u · ∇ϕ‖
L

6
5
≤ ‖u‖L3 ‖∇ϕ‖L2 .

To show (3.7), testing (2.9) with Δϕ we get

‖Δϕ‖2
L2 = −(w,Δϕ) +

1

ε2
(f(ϕ),Δϕ) ≤ ‖∇w‖L2 ‖∇ϕ‖L2 −

1

ε2
(f ′(ϕ), |∇ϕ|2)

≤
(

1

2
+

1

ε2

)
‖∇ϕ‖2

L2 +
1

2
‖∇w‖2

L2 .

Here we have used the fact that f ′(ϕ) = 3φ2 − 1. The assertion then follows from the
above inequality, (3.2), and (3.3).

Finally, applying the operator ∇ on both sides of (2.9) yields

∇Δϕ = −∇w +
1

ε2
f ′(ϕ)∇ϕ = −∇w +

3

ε2
ϕ2∇ϕ− 1

ε2
∇ϕ,

which, (3.2), (3.3), and the interpolation inequality (cf. [1])

‖ϕ‖L∞ ≤ C
(
‖Δϕ‖

d
2(6−d)

L2 ‖ϕ‖
3(4−d)
2(6−d)

L6 + ‖ϕ‖L6

)
imply that ∫ T

0

‖∇Δϕ‖2
L2 dt ≤ C

(
1 + ε−4− 2d

6−d
)
.

Hence, (3.8) holds. The proof is complete.



1056 XIAOBING FENG

Remark 3.1. (a) Compare with a priori estimates for the Navier–Stokes-Allen–
Cahn phase field model obtained in [18], here for the Navier–Stokes-Cahn–Hilliard
model we get better uniform estimates for w, ut, and p. However, the estimate for ϕt

is weaker.
(b) The estimate (3.1) is often known as the mass conservation property of the

Cahn–Hilliard equation. It should be noted that this property does not hold for the
Navier–Stokes-Allen–Cahn model.

(c) It is well known that no maximum principle holds for the fourth order Cahn–
Hilliard equation. Although L∞-estimate is known [10] for the Cauchy problem of the
Cahn–Hilliard equation, to the best of our knowledge, it is not clear if such an estimate
still holds for the initial-boundary value problem for the Cahn–Hilliard equation, in
particular, with the presence of a flow. Hence, throughout this paper, we do not
assume any L∞-estimate for ϕ.

(d). We emphasize that the constant C in (3.2)–(3.8) is independent of T .
The next lemma derives a priori estimates in higher norms for (u, ϕ) under

stronger assumptions on the initial data (uε
0, ϕ

ε
0).

Lemma 3.2. In addition to the assumptions of Lemma 3.1, suppose that uε
0 ∈ V,

ϕε
0 ∈ H2(Ω), then every regular solution (u, ϕ) of problem (2.1)–(2.3) satisfies the

following estimates: for any T ∈ (0,∞)

ess sup
t∈[0,T ]

‖Δϕ(t)‖2
L2 + γ

∫ T

0

∥∥Δ2ϕ(s)
∥∥2
L2 ds ≤ c1ε

− 2d(18−d)

d2−24d+72 ,(3.15)

∫ T

0

[
‖ϕt(s) + u(s) · ∇ϕ(s)‖2

L2 + γ2 ‖Δw(s)‖2
L2

]
ds ≤ c2ε

− 2d(18−d)

d2−24d+72 ,(3.16) ∫ T

0

‖ϕt(s)‖2
L2 ds ≤ c3ε

− 2d(18−d)

d2−24d+72 .(3.17)

Moreover, when d = 2 there also hold the following additional estimates:

ess sup
t∈[0,T ]

‖∇u‖2
L2 + ν

∫ T

0

‖Δu(s)‖2
L2 ds ≤ c4ε

− 2d(18−d)

d2−24d+72 ,(3.18)

∫ T

0

[
‖ut(s)‖2

L2 + ‖∇p(s)‖2
L2

]
ds ≤ c5ε

− 2d(18−d)

d2−24d+72 .(3.19)

Here cj = cj(u0, ϕ0, ν, g, λ, γ, T ) for j = 1, 2, 3, 4, 5 are some positive constants.
Proof. Testing (2.2) with Δ2ϕ and using Young’s inequality yields

d

dt
‖Δϕ‖2

L2 + γ
∥∥Δ2ϕ
∥∥2
L2 ≤ γ

ε4
‖Δf(ϕ)‖2

L2 +
1

γ
‖u · Δϕ‖2

L2 .(3.20)

By (3.2) and the interpolation inequality (cf. [1]):

‖∇ϕ‖L∞ ≤ C
∥∥Δ2ϕ
∥∥ d

6

L2 ‖∇ϕ‖
6−d
6

L2 + C ‖∇ϕ‖L2 ,

we have

‖u · Δϕ‖2
L2 ≤ ‖u‖2

L2 ‖∇φ‖2
L∞(3.21)

≤ C
∥∥Δ2ϕ
∥∥ d

3

L2 ‖∇ϕ‖
6−d
3

L2 + C ‖∇ϕ‖2
L2

≤ γ

4

∥∥Δ2ϕ
∥∥2
L2 + C.
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To estimate the first term on the right-hand side of (3.20), using the differential
identity

Δf(ϕ) = f ′(ϕ)Δϕ + f ′′(ϕ)|∇ϕ|2,
we have

‖Δf(ϕ)‖L2 ≤ 3 ‖ϕ‖2
L∞ ‖Δϕ‖L2 + 6 ‖ϕ‖L∞ ‖∇ϕ‖2

L4 .

The above inequality, (3.2), and the interpolation inequalities (cf. [1])

‖ϕ‖L∞ ≤ C
(∥∥Δ2ϕ

∥∥ d
2(12−d)

L2 ‖ϕ‖
3(8−d)
2(12−d)

L6 + ‖ϕ‖L6

)
(3.22)

‖Δϕ‖L2 ≤ C
(∥∥Δ2ϕ

∥∥ d
6

L2 ‖∇ϕ‖
6−d
6

L2 + ‖∇ϕ‖L2

)
(3.23)

‖∇ϕ‖L4 ≤ C
(∥∥Δ2ϕ

∥∥ d
12

L2 ‖∇ϕ‖
12−d
12

L2 + ‖∇ϕ‖L2

)
,(3.24)

imply that

(3.25) ‖Δf(ϕ)‖L2 ≤ C
(∥∥Δ2ϕ

∥∥ d(18−d)
6(12−d)

L2 + 1
)
≤ ε2

√
γ

8

∥∥Δ2ϕ
∥∥
L2 + Cε

− 2d(18−d)

d2−24d+72 .

Now (3.15) follows immediately from combining (3.20), (3.21), and (3.25).
Applying the operator Δ to both sides of (2.9) we get

Δw = −Δ2ϕ +
1

ε2
Δf(ϕ).

It then follows from the above equation, (3.15), and (3.25) that∫ T

0

‖Δw(s)‖2
L2 ds ≤ Cε

− 2d(18−d)

d2−24d+72 ,

which (2.14) in turn implies that∫ T

0

‖ϕt(s) + u(s) · ∇ϕ(s)‖2
L2 ds ≤ Cε

− 2d(18−d)

d2−24d+72 .

Hence, (3.16) holds.
Clearly, (3.17) is a trivial consequence of (3.16) and (3.21). To show (3.18), we

test (2.13) with −Δu to get

(3.26)
1

2

d

dt
‖∇u‖2

L2 + ν ‖Δu‖2
L2 = ((u · ∇)u,Δu)) + λ

(
ϕ∇w,Δu

)
− (g,Δu).

Using (3.2) and interpolation inequalities, three terms on the right-hand side of (3.26)
can be bounded as follows:∣∣((u · ∇)u,Δu)

∣∣ ≤ ‖Δu‖L2 ‖u‖L4 ‖∇u‖L4(3.27)

≤ C ‖Δu‖
4+d
4

L2 ‖u‖
4−d
4

L2 ‖∇u‖L2 , (see [33])

≤ ν

4
‖Δu‖2

L2 + C ‖∇u‖2+ 2d
4−d

L2 ,∣∣λ(ϕ∇w,Δu)
∣∣ ≤ ‖Δu‖L2 ‖∇w‖L4 ‖φ‖L4(3.28)

≤ C ‖Δu‖L2

{
‖Δw‖

d
4

L2 ‖∇w‖
4−d
4

L2 + ‖∇w‖L2

}
≤ ν

4
‖Δu‖2

L2 + C ‖Δw‖2
L2 + C ‖∇w‖2

L2 ,∣∣(g,Δu)
∣∣ ≤ ν

4

∥∥Δ2u
∥∥2
L2 + C ‖g‖2

L2 .(3.29)
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For d = 2, (3.18) now follows from applying the Gronwall’s inequality to (3.26) after
substituting (3.27)–(3.29) into it.

Testing (2.13) with ut and utilizing (3.2), (3.28), (3.29), and (3.18) we obtain

∫ T

0

‖ut(s)‖2
L2 ds ≤ C ε

− 2d(18−d)

d2−24d+72 ,

which together with (2.13), (3.18), and (3.27) in turn implies that

∫ T

0

‖∇p(s)‖2
L2 ds ≤ C ε

− 2d(18−d)

d2−24d+72 .

Hence, (3.19) holds. The proof is complete.
Remark 3.2. (a) When d = 3, estimates (3.18) and (3.19) only hold local in time

as is the case for the Navier–Stokes equations (cf. [33]). In addition, the difficulty of
extending these estimates to all times is caused exactly by the nonlinear term (u·∇)u,
not by the nonlinear coupling terms.

(b) Unlike the Navier–Stokes-Allen–Cahn model for two-phase fluids (cf. [18]),
the higher order norm estimates for the solution of the Navier–Stokes-Cahn–Hilliard
model depend on ε−1 only polynomially, instead of exponentially. This important
fact may give the possibility to derive a priori error estimates, which depend on ε−1

polynomially, for numerical solutions to the Navier–Stokes-Cahn–Hilliard model; see
section 4 for further discussions.

4. Fully discrete finite element approximations and convergence analy-
sis. In this section, we shall first give the weak formulation of the problem (2.1)–(2.5)
based on the mixed (or split) setting using variables (u, p, ϕ, w). We then introduce
a family of fully discrete finite element methods based on this mixed (or split) weak
formulation. The implicit Euler time-stepping will be used as a prototype scheme
for time discretization and for presenting the idea of our convergence analysis. Es-
sentially, any stable finite element for the Navier–Stokes equations can be used for
the spatial discretizations of u and p, and any of Ciarlet–Raviart family of mixed
elements for the biharmonic operator can be used for the spatial discretizations of
ϕ and w. The highlight of this section is to establish a discrete energy law, which
mimics exactly the basic energy law (3.9) for the Navier–Stokes-Cahn–Hilliard phase
field model, for the proposed finite element methods. Utilizing this discrete energy
law we then show the convergence of the numerical solutions to the weak solution of
(2.13), (2.14), (2.3), and (2.9) as h, τ → 0, and to the solution of its sharp interface
model (1.1)–(1.4) as h, τ, ε → 0, provided that the phase field model converges to the
sharp interface model (cf. Conjecture 4.1).

4.1. Weak formulation. The mixed weak formulation of (2.13), (2.14), (2.3),
and (2.9) used in this paper is defined as follows: Find (u, p, ϕ, w) such that

u ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1
0(Ω)) ∩ L2((0, T );V∗),∫ t

0

p(s)ds ∈ L∞((0, T );L2
0(Ω)),

ϕ ∈ L∞((0, T );H1(Ω)) ∩H1((0, T );H−1(Ω)),

w ∈ L2((0, T );H1(Ω)),
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and (2.13) holds in the distribution sense. Moreover, for all (v, q, ψ, χ) ∈ V×L2
0(Ω)×

H1(Ω) ×H1(Ω) there hold

〈ut,v〉 + ν(∇u,∇v) + ((u · ∇)u,v) + λ(ϕ∇w,v) = (g,v) ,(4.1)

(div u, q) = 0,(4.2)

〈ϕt, ψ〉 − (ϕu,∇ψ) + γ(∇w,∇ψ) = 0,(4.3)

(∇ϕ,∇χ) +
1

ε2
(f(ϕ), χ) = (w,χ) ,(4.4)

with the initial conditions u(0) = uε
0 and ϕ(0) = ϕε

0.
Remark 4.1. (a) We note that the second term on the left-hand side of (4.3) is

obtained after performing an integration by parts to the coupling term. It turns out
this simple step is quite important for the construction of the finite element methods
which not only satisfy the discrete energy law but also fulfill the mass conservation
law (see Lemma 4.2).

(b) The well-posedness of (4.1)–(4.4) can be proved by the standard techniques
such as the Galerkin method using a priori estimates derived in the previous section
(cf. [33]). In fact, as a by-product, our convergence result (see section 4.3) also
provides an alternative and constructive proof of the existence of weak solutions.

4.2. Formulation of fully discrete finite element method. Let Jτ =
{tm}Mm=0 be a quasi-uniform partition of [0, T ] of mesh size τ := T

M , and dtv
m :=

(vm − vm−1)/τ . Let Th be a quasi-uniform “triangulation” of the domain Ω of mesh
size h ∈ (0, 1) and Ω =

⋃
K∈Th

K (K ∈ Th are tetrahedrons in the case d = 3). For a
nonnegative integer r, let Pr(K) denote the space of polynomials of degree less than
or equal to r on K. We introduce the finite element spaces

Mh = {qh ∈ L2
0(Ω); qh|K ∈ P0(K)},

Xh = {vh ∈ C0(Ω) ∩ H1
0(Ω); vh|K ∈ P2(K)},

Vh = {vh ∈ Xh; (div vh, qh) = 0 ∀qh ∈ Mh},
Yh = {ψh ∈ C0(Ω); ψh|K ∈ Pr(K), r ≥ 1}.

It is well known that [9, 25] the P2-P0 mixed finite element space (Xh,Mh) is a
stable pair for the Navier–Stokes equations since it satisfies the inf-sup condition

sup
vh∈Xh

(div vh, qh)

‖∇vh‖L2

≥ c ‖qh‖L2 ∀qh ∈ Mh.(4.5)

Remark 4.2. The above finite element spaces (Xh,Mh) are chosen for the con-
venience of presentation, our convergence analysis in fact holds for any stable mixed
finite element pairing (Xh,Mh) for the Navier–Stokes equations. In addition, the
convergence analysis also holds for stabilized finite element approximations of the
Navier–Stokes equations (cf. [9]).

It is also well known [13, 34, 16, 19] that Yh×Yh is a stable pair for the biharmonic
operator and there holds the inf-sup condition

sup
ψh∈Yh

(∇ψh,∇χh)

‖ψh‖H1

≥ c ‖χh‖H1 ∀χh ∈ Yh.(4.6)

We now are ready to introduce our fully discrete mixed finite element methods
for problem (2.1)–(2.5). Find {(um

h , pmh , ϕm
h , wh)}Mm=1 ∈ Xh×Mh×Yh×Yh such that
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for all (vh, qh, ψh, χh) ∈ Xh ×Mh × Yh × Yh

(dtu
m
h ,vh) + ν

(
∇um

h ,∇vh

)
+ ((um

h · ∇)um
h ,vh)(4.7)

+
1

2
(um

h div um
h ,vh) −

(
pmh ,div vh

)
+ λ
(
ϕm
h ∇wm

h ,vh

)
= (g(tm),vh),(

div um
h , qh
)

= 0,(4.8)

(dtϕ
m
h , ψh) −

(
ϕm
h um

h ,∇ψh

)
+ γ
(
∇wm

h ,∇ψh

)
= 0,(4.9)

(∇ϕm
h ,∇χh) +

1

ε2

(
fm
h , χh

)
= (wm

h , χh) ,(4.10)

with the initial conditions u0
h = u0h, and ϕ0

h = ϕ0h. Here

(4.11) fm
h =

1

4

{
|ϕm

h |2 + |ϕm−1
h |2 − 2

}{
ϕm
h + ϕm−1

h

}
,

Remark 4.3. (a) The fm
h factor in the above scheme can be replaced by f̃m

h :=
(ϕm

h )3 − ϕm−1
h . It is not hard to check that the resulted scheme will still satisfy an

almost same discrete energy law that (to be given in the next subsection) satisfied by
the above scheme, provided that a mesh constraint on τ is met (cf. section 3 of [19]).

(b) The solvability of (4.7)–(4.8) can be verified by using a fixed point argument
in finite dimensional spaces (cf. [33]) and the discrete energy law to be given in the
next subsection.

4.3. Convergence analysis. Since the phase field model couples two sets of
well-known equations, the Navier–Stokes equations and the Cahn–Hilliard equation, it
should not be hard to derive a priori error estimates for the above fully discrete mixed
finite element schemes using the standard techniques as presented in [6, 25, 26, 33]
and in [14, 17, 16]. However, since these standard techniques use the Gronwall type
arguments at the end, the anticipated error estimates will definitely depend on 1

ε
exponentially! Such error estimates clearly are not informative and have no practical
usefulness for small ε. We refer interested readers to [19, 20] for more discussions in
this direction.

One way to overcome this difficulty is to derive better error estimates which only
depend on 1

ε polynomially, the best situation one can expect. For the Cahn–Hilliard
equation, which is (2.2) with u = 0, such error estimates were obtained in [19, 20]
using a nonstandard technique. The key idea of this technique is to make use of
a spectrum estimate result for the linearized Cahn–Hilliard operator (cf. [4] and
the reference therein). In order to adapt this technique for analyzing the scheme
(4.1)–(4.4), one needs a similar spectrum estimate result for the linearized operator
associated with the coupled system (2.1)–(2.3). Unfortunately, to our knowledge,
such a desired spectrum estimate has not been proved in the literature, although it is
believed to be true.

In this paper, we shall take a different approach to address the convergence.
Instead of proving the convergence by first establishing a rate of convergence (i.e.,
an error estimate), we shall prove the convergence directly. As expected, the crux of
carrying out such a proof is to derive uniform (in ε) a priori estimates for the numerical
solutions; in particular, to establish a discrete energy law, which must mimic the basic
energy law (3.9). It should be noted that not every numerical method will meet such
a criterion. The goal of this subsection is to prove that the fully discrete finite element
method proposed in section 4.2 indeed is one exception. We verify our claim in the
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next lemma by establishing a discrete counterpart of the basic energy law (3.9) for
the numerical scheme (4.7)–(4.8).

Lemma 4.1. Let (um
h , pmh , ϕm

h , wm
h ) solves (4.7)–(4.10), then there holds that

Jε,λ(u�
h, ϕ

�
h) + τ

�∑
m=1

[
τ

2
‖dtum

h ‖2
L2 +

τλ

2
‖dt∇ϕm

h ‖2
L2 + ν ‖∇um

h ‖2
L2(4.12)

+λγ ‖∇wm
h ‖2

L2

]
= τ

�∑
m=1

(g(tm),um
h ) + Jε,λ(u0

h, ϕ
0
h)

for all 0 ≤ � ≤ M . Here Jε,λ(·, ·) is defined by (3.10).
Proof. The desired estimate (4.12) follows from setting vh = um

h in (4.7), qh = pmh
in (4.8), ψh = wm

h in (4.9), χh = dtϕ
m
h in (4.10), adding the resulting equations, using

the identities

(dtu
m
h ,um

h ) =
1

2

{
dt ‖um

h ‖2
L2 + τ ‖dtum

h ‖2
L2

}
,

(dt∇um
h ,∇um

h ) =
1

2

{
dt ‖∇um

h ‖2
L2 + τ ‖dt∇um

h ‖2
L2

}
,

((um
h · ∇)um

h ,um
h ) +

1

2
(um

h div um
h ,um

h ) = 0,

(dtϕ
m
h , fm

h ) =
1

4
dt
∥∥(ϕm

h )2 − 1
∥∥2
L2 .

and applying the operator τ
∑�

m=1 to the combined equation.
The discrete energy law immediately implies the following uniform (in ε) a priori

estimates for (um
h , pmh , ϕm

h , wm
h ).

Lemma 4.2. Let (um
h , pmh , ϕm

h , wm
h ) solves (4.7)–(4.10), and suppose that g ∈

L2((0, T );H−1(Ω)) and there exists a positive constant C0 such that Jε,λ(uε
0, ϕ

ε
0) ≤

C0, then there hold the following estimates:∫
Ω

ϕm
h dx =

∫
Ω

ϕ0
h, for m ≥ 1,(4.13)

max
0≤m≤M

{
‖um

h ‖2
L2 + λ ‖∇ϕm

h ‖2
L2 + λε−2 (F (ϕm

h ), 1)
}
≤ C,(4.14)

M∑
m=1

[ ∥∥um
h − um−1

h

∥∥2
L2 + λ

∥∥∇ϕm
h −∇ϕm−1

h

∥∥2
L2

]
≤ C,(4.15)

τ
M∑

m=1

[
ν ‖∇um

h ‖2
L2 + λγ ‖∇wm

h ‖2
L2

]
≤ C,(4.16)

τ

M∑
m=1

‖dtum
h ‖

12
6+d

V∗ ≤ C,(4.17)

max
0≤�≤M

∥∥∥∥∥τ
�∑

m=1

pmh

∥∥∥∥∥
L2

≤ C,(4.18)

τ

M∑
m=1

‖dtϕm
h ‖2

H−1 ≤ C,(4.19)

for some positive constant C = C(g, C0).
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Proof. Equation (4.13) follows from setting ψh = 1 in (4.9), and (4.14)–(4.19) are
the immediate consequences of the discrete energy law (4.12).

To show (4.17), let Ph denote the L2-projection operator from L2(Ω) to Vh. For
any v ∈ V setting vh = Phv in (4.7), using the stability property of Ph and an inverse
inequality (cf. [13, 25]) we get

(dtu
m
h ,v) = −ν

(
∇um

h ,∇Phv
)
− λ (ϕm

h ∇wm
h , Phv) − ((um

h · ∇)um
h , Phv)

−1

2
(um

h div um
h , Phv) + (g, Phv)

≤ cν ‖∇um
h ‖L2 ‖∇v‖L2 + λ ‖∇wm

h ‖L2 ‖ϕm
h ‖L3 ‖v‖L6

+ ‖∇um
h ‖L2 ‖um

h ‖L3 ‖v‖L6 + c ‖g‖H−1 ‖∇v‖L2

≤ c
{
ν ‖∇um

h ‖L2 + λ ‖∇wm
h ‖L2 + ‖g‖H−1

}
‖∇v‖L2

+ ‖∇um
h ‖

6+d
6

L2 ‖um
h ‖

6−d
6

L2 ‖∇v‖L2 .

It follows from the above estimate and (4.14)–(4.16) that

τ
M∑

m=1

‖dtum
h ‖

12
6+d

V ∗ ≤ C.

Hence, (4.17) holds.

To show (4.18), we apply the operator τ
∑�

m=1 to (4.7) to get(
τ

�∑
m=1

pmh ,divvh

)
=
(
u�
h − u0

h,vh

)
+ ν

(
τ

�∑
m=1

∇um
h ,∇vh

)

+

(
τ

�∑
m=1

[
(um

h · ∇)um
h +

1

2
um
h divum

h

]
,vh

)

+λ

(
τ

�∑
m=1

ϕm
h ∇wm

h ,vh

)
−
(
τ

�∑
m=1

g(tm),vh

)
.

It then follows from (4.14), (4.16), (3.12), (3.13), and the Sobolev inequality (cf. [1])
that (

τ
�∑

m=1

pmh ,divvh

)
≤ C ‖vh‖H1 ∀vh ∈ Xh.(4.20)

Hence, (4.18) is an immediate consequence of (4.20) and the inf-sup inequality (4.5).
Finally, to show (4.19), for any ψ ∈ H1

0 (Ω) setting ψh = Qhψ in (4.9), where Qh

denotes the L2-projection from L2(Ω) to Yh, and using the stability property of the
L2-projection (cf. [8]) we get

(dtϕ
m
h , ψ) = −γ (∇wm

h ,∇Qhψ) − (um
h · ∇ϕm

h , ψ)

≤ cγ ‖∇wm
h ‖L2 ‖∇ψ‖L2 + ‖um

h · ∇ϕm
h ‖

L
6
5
‖ψ‖L6

≤ c
{
γ ‖∇wm

h ‖L2 + ‖∇um
h ‖L2 ‖∇ϕm

h ‖L2

}
‖∇ψ‖L2 .

Now, (4.19) follows immediately from the above estimate and (4.14)–(4.16). The proof
is complete.
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Remark 4.4. The property (4.13) says that our numerical methods preserve the
mass conservation law of the phase field model (cf. (3.1)). This property will be
further validated numerically in section 5. We remark that such a mass conservation
law does not hold for the Navier–Stokes-Cahn–Hilliard phase field model, nor does it
for its numerical approximations developed in [18].

Let (Uε,h,τ (x, t),Φε,h,τ (x, t)) denote the piecewise linear interpolation (in t) of
the fully discrete solution {(um

h , ϕm
h )}, that is,

Uε,h,τ (·, t) :=
t− tm−1

τ
um
h (·) +

tm − t

τ
um−1
h (·) ∀t ∈ [tm−1, tm],(4.21)

Φε,h,τ (·, t) :=
t− tm−1

τ
ϕm
h (·) +

tm − t

τ
ϕm−1
h (·) ∀t ∈ [tm−1, tm],(4.22)

for 1 ≤ m ≤ M , and let P ε,h,τ (x, t), Uε,h,τ (x, t), Φε,h,τ (x, t), and W ε,h,τ (x, t) denote
the piecewise constant extensions of {pmh }, {um

h }, {ϕm
h }, and {wm

h }, respectively. That
is,

P ε,h,τ (·, t) := pmh ∀t ∈ [tm−1, tm], 1 ≤ m ≤ M,(4.23)

Uε,h,τ (·, t) := um
h ∀t ∈ [tm−1, tm], 1 ≤ m ≤ M,(4.24)

Φε,h,τ (·, t) := ϕm
h ∀t ∈ [tm−1, tm], 1 ≤ m ≤ M,(4.25)

W ε,h,τ (·, t) := wm
h ∀t ∈ [tm−1, tm], 1 ≤ m ≤ M.(4.26)

We remark that Uε,h,τ (x, t) and Φε,h,τ (x, t) are continuous piecewise polynomial func-
tions in space and time, P ε,h,τ (x, t), Uε,h,τ (x, t), Φε,h,τ (x, t), and W ε,h,τ (x, t) are right
continuous at the nodes {tm}.

The main result of this section is the following convergence theorem.
Theorem 4.3. Suppose the assumptions of Lemma 4.2 hold. For each fixed

ε > 0, let (uε
∗, p

ε
∗, ϕ

ε
∗, w

ε
∗) denote the unique solution of problem (4.1)–(4.4), and

{(Uε,h,τ , P ε,h,τ ,Φε,h,τ ,W ε,h,τ )} be defined as above. Then we have

lim
h,τ→0

(
‖Uε,h,τ − uε

∗‖L2(L2) + ‖Φε,h,τ − ϕε
∗‖L2(L2) +

∥∥W ε,h,τ − wε
∗
∥∥
L2(L2)

)
= 0,(4.27)∫ t

0

P ε,h,τ (s) −→
∫ t

0

pε∗(s)ds weakly � in L∞((0, T );L2(Ω)).(4.28)

Proof. Since the proof is long, we divide it into three steps.
Step 1: Extracting convergent subsequences. The estimates of Lemma 4.2 imme-

diately give the following (uniform in h, τ and ε) estimates:

∥∥Uε,h,τ

∥∥
L∞(L2)

+
√
λ
∥∥∇Φε,h,τ

∥∥
L∞(L2)

+ ε−1
√
λ
∥∥∥Φ2

ε,h,τ − 1
∥∥∥
L∞(L2)

≤ C,(4.29)

√
ν
∥∥∇Uε,h,τ

∥∥
L2(L2)

+
√
λγ
∥∥∇W ε,h,τ

∥∥
L2(L2)

≤ C,(4.30) ∥∥∥∥ ∂∂tUε,h,τ

∥∥∥∥
L

12
6+d (V ∗)

≤ C,(4.31)

∥∥∥∥
∫ t

0

P ε,h,τ (s)ds

∥∥∥∥
L∞(L2)

≤ C,(4.32) ∥∥∥∥ ∂∂tΦε,h,τ

∥∥∥∥
L2(H−1)

≤ C.(4.33)



1064 XIAOBING FENG

Then there exists a convergent subsequence of {(Uε,h,τ , P ε,h,τ ,Φε,h,τ ,W ε,h,τ )}
(still denote by the same notation) and a quadruple (uε, pε, ϕε, wε) such that

uε ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1
0(Ω)) ∩H1((0, T );V∗),

ϕε ∈ L∞((0, T );H1(Ω)) ∩H1((0, T );H−1(Ω)),∫ t

0

pε(s)ds ∈ L∞((0, T );L2
0(Ω)),

wε ∈ L2((0, T );H1(Ω)),

and

Uε,h,τ
h,τ↘0−→ uε weakly� in L∞((0, T );L2(Ω)),(4.34)

strongly in L2((0, T );L2(Ω)),

weakly in L2((0, T );H1(Ω)),

weakly in H1((0, T );V∗),

Φε,h,τ
h,τ↘0−→ ϕε weakly� in L∞((0, T );H1(Ω)),(4.35)

strongly in L2((0, T );L2(Ω)),

weakly in H1((0, T );H−1(Ω)),∫ t

0

P ε,h,τ (s)ds
h,τ↘0−→
∫ t

0

pε(s)ds weakly ∗ in L∞((0, T );L2(Ω)),(4.36)

W ε,h,τ
h,τ↘0−→ wε weakly in L2((0, T );H1(Ω)),(4.37)

strongly in L2((0, T );L2(Ω)).

From (4.15) we also have

∥∥Uε,h,τ − Uε,h,τ

∥∥2
L2(L2)

=

M∑
m=1

∥∥um
h − um−1

h

∥∥2
L2

∫ tm

tm−1

(
t− tm−1

τ

)2

dt

=
τ

3

M∑
m=1

∥∥um
h − um−1

h

∥∥2
L2

τ↘0−→ 0,

∥∥∇(Φε,h,τ − Φε,h,τ )
∥∥2
L2(L2)

=
τ

3

M∑
m=1

∥∥∇(ϕm
h − φm−1

h )
∥∥2
L2

τ↘0−→ 0.

Hence, the sequences {Uε,h,τ} and {Uε,h,τ} converge to the same limit as h, τ → 0,
so do the sequences {Φε,h,τ} and {Φε,h,τ}.

Step 2: Passing to the limit. We now want to pass to the limit in (4.7)–(4.10) and
show that (uε, pε, ϕε, wε) is a weak solution of problem (4.1)–(4.4) with the initial
values uε(0) = uε

0 and ϕε(0) = ϕε
0. To the end, we rewrite (4.7)–(4.10) as

((Uε,h,τ )t,vh) + ν
(
∇Uε,h,τ ,∇vh

)
+
(
(Uε,h,τ · ∇)Uε,h,τ ,vh

)
(4.38)

+
1

2

(
Uε,h,τdiv Uε,h,τ ,vh

)
+ λ
(
Φε,h,τ∇W ε,h,τ ,vh

)
= (gτ ,vh),(

div Uε,h,τ , qh
)

= 0,(4.39)

((Φε,h,τ )t, ψh) −
(
Φε,h,τUε,h,τ ,∇ψh

)
+ γ
(
∇W ε,h,τ ,∇ψh

)
= 0,(4.40) (

∇Φε,h,τ ,∇χh

)
+

1

ε2

(
fε,h,τ , χh

)
=
(
W ε,h,τ , χh

)
,(4.41)
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for (vh, qh, ψh, χh) ∈ Vh × Mh × Yh × Yh. Here fε,h,τ and gτ denotes the constant
extensions of {fm

h } and {g(tm)}, respectively.
For any η ∈ C0[0, T ], we multiply (4.38)–(4.41) by η, respectively, and integrate

the resulting equations in t from 0 to T to get

∫ T

0

[
((Uε,h,τ )t,vh) + ν

(
∇Uε,h,τ ,∇vh

)
+
(
(Uε,h,τ · ∇)Uε,h,τ ,vh

)]
η(t)dt(4.42)

+

∫ T

0

[
1

2

(
Uε,h,τdiv Uε,h,τ ,vh

)
+ λ
(
Φε,h,τ∇W ε,h,τ ,vh

)]
η(t)dt

=

∫ T

0

(gτ ,vh)η(t)dt,∫ T

0

(
div Uε,h,τ , qh

)
η(t)dt = 0,(4.43) ∫ T

0

[
((Φε,h,τ )t, ψh) −

(
Φε,h,τUε,h,τ ,∇ψh

)
+ γ
(
∇W ε,h,τ ,∇ψh

)]
η(t)dt = 0,(4.44) ∫ T

0

[ (
∇Φε,h,τ ,∇χh

)
+

1

ε2

(
fε,h,τ , χh

) ]
η(t)dt =

∫ T

0

(
W ε,h,τ , χh

)
η(t)dt.(4.45)

For any (v, q, ψ, χ) ∈ V × L2
0(Ω) × H1(Ω) × H1(Ω), let (vh, qh, ϕh, χh) ∈ Vh ×

Mh × Yh × Yh denote the standard finite element (nodal) interpolations of (v, q, ψ, χ)
in (4.42)–(4.45). Since

vh
h↘0−→ v strongly in H1

0(Ω),

qh
h↘0−→ q strongly in L2

0(Ω),

ψh
h↘0−→ ψ strongly in H1(Ω),

χh
h↘0−→ χ strongly in H1(Ω),

setting h, τ → 0 in (4.42)–(4.45) and using(4.34)–(4.37) we get uε(0) = uε
0, ϕ

ε(0) =
ϕε

0, and

∫ T

0

[
〈uε

t ,v〉 + ν
(
∇uε,∇v

)
+ ((uε · ∇)u,v) +

1

2
(uεdiv uε,v)

]
η(t)dt

+λ

∫ T

0

(
ϕε∇wε,v

)
η(t)dt =

∫ T

0

(g,v) η(t)dt,∫ T

0

(div uε, q) η(t)dt = 0,∫ T

0

[
〈ϕt, ψ〉 −

(
ϕεuε,∇ψ

)
+ γ
(
∇wε,∇ψ

)]
η(t)dt = 0,∫ T

0

[
(∇ϕε,∇χ) +

1

ε2

(
f(ϕε), χ

)]
η(t)dt =

∫ T

0

(wε, χ) η(t)dt,

which is equivalent to (4.1)–(4.4) since C0[0, T ] is dense in L2(0, T ). In addition,
it is easy see that (uε, pε, ϕε, wε) satisfies (2.13) in the distribution sense. Hence,
(uε, pε, ϕε, wε) is a weak solution of (4.1)–(4.4).
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Step 3: Finishing up. We have shown above that {(Uε,h,τ , P ε,h,τ ,Φε,h,τ ,W ε,h,τ )}
has a convergent subsequence and its limit (uε, pε, ϕε, wε) is a weak solution of (4.1)–
(4.4). By the uniqueness, we have uε = uε

∗, p
ε = pε∗, ϕ

ε = ϕε
∗, and wε = wε

∗.
Moreover, the proof also implies that the limit of every convergent subsequence of
{(Uε,h,τ , P ε,h,τ ,Φε,h,τ ,W ε,h,τ )} must be a weak solution of (4.1)–(4.4). Hence, the
whole sequence {(Uε,h,τ , P ε,h,τ ,Φε,h,τ ,W ε,h,τ )} converge to the unique weak solution
(uε

∗, p
ε
∗, ϕ

ε
∗, w

ε
∗). The proof is complete.

Remark 4.5. We remark that since the phase field model (2.13), (2.14), (2.3), and
(2.9) contains the Navier–Stokes equations, in general, one cannot expect any better
results than those for the Navier–Stokes equations. Hence, the uniqueness assumption
on the solution (uε

∗, p
ε
∗, ϕ

ε
∗, w

ε
∗) can only be justified when d = 2. For the case d = 3, it

can be shown that (2.13), (2.14), (2.3), and (2.9) has a unique local-in-time classical
solution, hence, we assume that the uniqueness is understood local-in-time when
d = 3. Clearly, without the uniqueness assumption Step 3 of the above proof does
not stand anymore, hence, the convergence stated in Theorem 4.3 only holds for a
subsequence, instead of the whole sequence, of {(Uε,h,τ , P ε,h,τ ,Φε,h,τ ,W ε,h,τ )}.

We now recall that the following convergent result was conjectured in [27, 30],
and we also believe it should be true.

Conjecture 4.1. Assume that the sharp interface problem (1.1)– (1.4) has a
unique regular solution (u∗, p∗). Under the assumptions of Theorem 4.3 there hold

lim
ε→0

‖uε
∗ − u∗‖L2(L2) = 0,(4.46) ∫ t

0

pε∗(s) ds
ε↘0−→
∫ t

0

p∗(s) ds weakly ∗ in L∞((0, T );L2(Ω)),(4.47)

ϕε
∗

ε↘0−→ ±1 a.e. in Ω±
t × (0, T ).(4.48)

Here Ω+
t and Ω−

t denote the outside and inside of Γt in Ω at time t, respectively.
An immediate consequence of Theorem 4.3 and Conjecture 4.1 is the following

convergence theorem.
Theorem 4.4. Under the assumptions of Conjecture 4.1 there hold

lim
ε→0

lim
h,τ→0

‖Uε,h,τ − u∗‖L2(L2) = 0,(4.49) ∫ t

0

P ε,h,τ (s) ds
ε↘0−→
∫ t

0

p∗(s) ds weakly ∗ in L∞((0, T );L2(Ω)),(4.50)

Φε,h,τ
ε,h,τ↘0−→ ±1 a.e. in Ω±

t × (0, T ).(4.51)

Remark 4.6. (a) The convergence result of Theorem 4.3 essentially guarantees
that the numerical solution (Uε,h,τ , P ε,h,τ ,Φε,h,τ ,W ε,h,τ ) enjoys the same kind con-
vergence to the solution (u∗, p∗) of the sharp interface problem (1.1)–(1.4) as the
phase field solution (uε

∗, p
ε
∗, ϕ

ε
∗, w

ε
∗) of (2.13), (2.14), (2.3), and (2.9) does.

(b) We remark that the analogue of convergence result (4.50) for the pressure
does not hold for the Navier–Stokes-Allen–Cahn model (cf. [18]). However, this
result holds for the Navier–Stokes-Cahn–Hilliard model due to the uniform (in ε)
estimate (4.18).

5. Numerical experiments. In this section we provide some 2-D numerical
experiments to gauge the fully discrete finite element method developed in the previ-
ous sections. In addition, our numerical results reveal some interesting features such
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as shrinking, splitting, and merging of fluid interfaces governed by the phase field
model (2.13), (2.14), (2.3), and (2.9). In all numerical experiments to be given in the
following, we choose Ω = [−0.4, 0.4]2, ε = 10−2, ν = 1, λ = γ = 0.1, g = (1, 0)t,
uε

0 ≡ 0, while the initial condition for φ is specified in each test. Also, in order to
resolve the diffuse interface, we use τ = 10−5 and unstructured spatial meshes with
the minimum triangle size h = 10−4 in all experiments.

Test 1. In this test, we take the following initial condition for ϕ:

ϕε
0(x) = tanh

(
x2

1

0.01
+

x2
2

0.0225
− 1

)
.

Note that the zero level set of ϕε
0, which gives the initial fluid interface, is the ellipse

x2
1

0.01 +
x2
2

0.0225 = 1. Hence, we have the situation of one elliptical fluid bubble inside
another fluid.

Figure 5.1 shows snapshots of color and zero-level set plots of the computed phase
function φm

h at six time steps. In the figure, the red color stands for φm
h = 1, the

blue color stands for φm
h = −1, and the black curve represents the zero-level set of the

computed phase function. We notice that the elliptical bubble quickly deforms into a
circular bubble while the total mass (the integral of φm

h over Ω) remains constant in
time. In the test, we have∫

Ω

φm
h dx ≡ 0.54538 for m = 1, 2, . . . ,M.

The shape and size of the circular bubble remains unchanged, it should eventually be
stabilized (i.e., converge to a stationary solution) due to the dissipative mechanism of
the phase field model (2.13), (2.14), (2.3), and (2.9) (cf. Lemma 3.1). We also remark
that the interface (zero-level set of ϕm

h ) movement is very similar to that of the zero-
level set of the solution to the Cahn–Hilliard equation (the equation obtained by
setting u ≡ 0 in (2.2)) (cf. [21, 22]). As expected, here the zero-level set is pushed to
the right by the fluid flow (through the convective term u ·∇φ) while it is approaching
the equilibrium state.

Figure 5.2 displays snapshots of the arrow and streamline plots of the computed
velocity field um

h at six time steps. The black ellipse in the center of each snapshot
stands for the initial fluid interface (i.e., the zero-level set of φε

0). We notice that
fluid vertices are formed shortly after the initial time step, and the vertices become
stronger as the time goes on.

Test 2. In this test, the initial profile of the phase function is taken as

ϕε
0(x) = tanh

(
1

ε

(
x2

1

0.0064
+

x2
2

0.0225
− 1

)(
x2

1

0.0225
+

x2
2

0.0064
− 1

))
.

Note that the zero level set of ϕε
0, which gives the initial fluid interface, is the union

of the following two intersecting ellipses:
x2
1

0.0064 +
x2
2

0.0225 = 1 and
x2
1

0.0225 +
x2
2

0.0064 = 1,
which enclose four bullethead-like bubbles inside a fluid.

Figure 5.3 shows snapshots of color and zero-level set plots of the computed phase
function ϕm

h at fifteen time steps. Again, the red color stands for ϕm
h = 1, the blue

color stands for ϕm
h = −1, and the black curve represents the zero-level set of the

computed phase function. In this test, we see the fluid bubble first splits into four
bubbles, they then deform into four circular bubbles, and finally merge to form a
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Fig. 5.1. Color and zero-level set plots of computed phase function ϕm
h at tm = 10−7,

1.1 × 10−6, 10−5, 10−4, 5 × 10−4, 10−3. The graphs are arranged row-wise.

Fig. 5.2. Arrow and streamline plots of computed velocity field um
h at tm = 10−7, 1.1 × 10−6,

5 × 10−5, 2 × 10−4, 5 × 10−4, 10−3. The graphs are arranged row-wise.

bigger circular bubble which eventually stabilizes. During the evolution, the total
mass (the integral of φm

h over Ω) remains constant in time. In the test, we have∫
Ω

φm
h dx ≡ 0.58313 for m = 1, 2, . . . ,M.

As expected, the interface (zero-level set of ϕm
h ) movement is very similar to that of

the zero-level set of the solution to the Cahn–Hilliard equation (the equation obtained
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by setting u ≡ 0 in (2.2)) (cf. [21, 22]), and it is pushed very slowly off the center to
the right by the fluid flow (through the convective term u · ∇ϕ). Another noticeable
difference is that, unlike the dynamics of the zero-level set of the solution to the Cahn–
Hilliard equation, here the four bullethead-like bubbles seem to evolve at slightly
different speed and the bottom bubble disappears a couple of time steps earlier than
the top one, which in turn is taken a couple of time steps earlier than the left bubble.
We think that this phenomenon is caused by the fluid flow through the convective
term u · ∇ϕ.

Figure 5.4 displays snapshots of the arrow and streamline plots of the computed
velocity field um

h at nine time steps. The black ellipses in the center of each snapshot
stand for the initial fluid interface (i.e., the zero-level set of ϕε

0). We notice that fluid
vertices are formed shortly after the initial time step, and more vertices are produced
as the time goes on.
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Abstract. A well-known generalization of Shannon’s sampling theorem states that a bandlimited
function can be reconstructed from its periodic nonuniformly spaced samples if the effective sampling
rate is at least the Nyquist rate. Analogous to Shannon’s sampling theorem this generalization
requires that an infinite number of samples be available, which, however, is never the case in practice.
Most existing reconstruction methods for periodic nonuniform sampling yield very low order (often
not even first order) accuracy when only a finite number of samples is given. In this paper we propose
a fast, numerically robust, root-exponential accurate reconstruction method. The efficiency and
accuracy of the algorithm is obtained by fully exploiting the sampling structure and utilizing localized
Fourier analysis. We discuss applications in analog-to-digital conversion where nonuniform periodic
sampling arises in various situations. Finally, we demonstrate the performance of our algorithm by
numerical examples.
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1. Introduction. The classical Shannon sampling theorem plays a crucial role
in signal processing and communications, indicating how to transfer between analog
signals and discrete sequences [26]. Shannon’s sampling theorem states that if a
function1 belongs to the space of bandlimited functions Bσ, i.e.,

f(t) :=
1√
2π

∫ σ

−σ

e2πiwtF (w)dw, F (w) ∈ L2
0[−σ, σ],(1.1)

then it can be recovered exactly from its equidistant samples

f(t) ≡
∞∑

k=−∞
f

(
k

2σ

)
sin(2πσt− πk)

2πσt− πk
:=

∞∑
k=−∞

f

(
k

2σ

)
sinc(2πσt− πk).(1.2)

Shannon’s sampling theorem assumes that an infinite number of samples is avail-
able, which is of course never true in practice. Truncation of the cardinal series (1.2)
results in rather poor approximation of the original bandlimited signal, and the trun-
cation error is of the unacceptable low order of 1/

√
L, where L is the number of

samples; cf. [26]. In the presence of noise or quantization errors convergence may
even break down completely [4]. To avoid these problems in practice, one usually
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resorts to oversampling of the signal, since this gives rise to vastly better convergence
rates and as a result greater robustness to noise.

While oversampling is therefore desirable in practice, it is not always easily done
in real world applications. For example, consider advanced wireless communication
systems, where demand for data rate is steadily increasing, requiring communication
systems that use transmission signals with a (baseband) bandwidth in the range of tens
of megahertz up to one gigahertz (as in currently developed ultrawideband systems).
Such a huge bandwidth necessitates very high sampling rates in the analog-to-digital
conversion which puts enormous demands on the analog sampling devices. While
it is possible to construct signal acquisition systems that sample a signal even at
nanosecond scales with high precision, such devices become increasingly expensive.
More specifically, a linear increase in precision of a sampling device often goes hand
in hand with a superlinear increase in the costs of constructing such a device.

One possible way to remedy this problem is to combine several analog-to-digital
converters (ADCs) with lower sampling rate to obtain one virtual sensor with high
sampling rate. We describe this concept in more detail. A standard ADC uniformly
(over)samples an analog signal (a continuous-time function) at rate T−1, say, where
T is the time between two successive samples. The so obtained discrete-time signal is
then subject to quantization, and the quantized signal is further processed by a digital
signal processor (DSP). Instead of using one ADC with sampling rate T−1 we could
run N ADCs in parallel, each operating at the slower rate (NT )−1. The sampling
instances of the nth ADC are chosen at {(kN + n)T}k∈Z, n = 0, . . . , N − 1, so that
the combined sampling instances are {kT}k∈Z, which is equivalent to the output of
one ADC that operates at the N times higher rate T−1.

Many companies such as Maxim (http://www.maxim-ic.com/appnotes.cfm/
appnote number/2094), Agilent Technologies (http://www.agilent.com/labs/news/
2003features/fea adc03.html), and Analog Devices have been developing or are cur-
rently developing such time-interleaved ADCs.

To give another concrete current example for the need of time-interleaved ADCs
consider the 10 Gigabit Ethernet over copper standard (which is part of the IEEE 802.3
standard; see http://www.ieee802.org). There 4 Cat6 copper pairs are used, so 2.5
Gigabits/sec are transmitted. Since a 12-PAM code with error correction is used, this
means the baud rate is about 800 MHz. At least 8 bits precision is necessary. The
fastest ADC with the desired precision runs about 1/2 of that. Consequently 2 or 4
time-interleaved ADC channels must be used to achieve the required precision.

While a time-interleaved ADC structure obviously has its merits, it does not come
without caveats. The coordination of the N ADCs has to be done with high precision,
but in practice timing errors between the individual ADCs result in sampling sets of
the form {kNT + Tn}k∈Z, where the Tn are distinct random timing shifts. In other
words, the combined sampling set does not form a uniform sampling set but consists of
nonuniformly shifted unions of uniform sampling points, which is often referred to as
periodic nonuniform sampling or bunched sampling [2, 18]. This poses two problems:
(i) How can we estimate the unknown shifts Tn? (ii) How can we reconstruct quickly
and stably the original signal from its periodically nonuniformly spaced samples? In
this paper we focus on the second question, with shift estimation discussed in [23].
While there are several algorithms in the literature that deal with the reconstruction
of bandlimited signals from periodic nonuniform samples (see, e.g., [14, 18, 2, 25, 24,
5, 12, 15, 20]), none of these algorithms provide high order accuracy with respect to
truncation error.
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Sometimes it can be advantageous to deliberately perform nonuniform periodic
sampling in connection with analog-to-digital conversion. For instance, in [20] the use
of periodic nonuniform sampling is proposed to avoid noise coupling in a mixed-signal
integrated circuit, which contains analog and digital signal processing circuits, as is
the case for an ADC. After the analog input signal has been sent through the ADC,
the digital output is processed further by a DSP. However, switching of the digital
circuits generates noise that can couple into the analog signal path through so-called
parasite signal paths. Such noise coupling distorts the analog signal, which degrades
the signal-to-noise ratio at the input of the ADC.

To avoid this noise coupling, it is proposed in [20] to have the ADC acquire a
group (bunch) of samples at high rate while the digital signal processor is inactive,
and allow digital processing of the ADC output during a second phase when the
ADC is not sampling. This reduces the noise coupled to the analog signal, since the
DSP operates only during the second phase. As the final step, one has to convert
the bunched samples to uniformly spaced samples. Practical restrictions in terms
of available memory and tolerable time delay imply an upper limit on the number
of samples that can be processed during the conversion from bunched to uniform
samples. This sampling pattern is obviously a special case of the periodic nonuniform
sampling pattern described in the previous paragraph, with the simplification that all
Tn − Tn−1 are (nearly) equal, but with the difficulty that we have a potentially large
gap between two clusters of samples. This large gap may cause some instabilities;
therefore it is vital to have a numerical reconstruction algorithm that is robust to
such large gaps.

In this paper we develop the first method for reconstruction of a bandlimited
signal from its periodic nonuniformly spaced samples that achieves root-exponential
accuracy from a finite number of samples. The proposed method is numerically robust,
and since its computationally most expensive steps consist of fast Fourier transforms
(FFTs), it is numerically very efficient.

The paper is organized as follows. In section 2 we review some results on over-
sampling and localization of functions and their Fourier transforms. The Gevrey
class arises as a natural candidate space for compactly supported smooth filter func-
tions in connection with oversampled bandlimited signals. In section 3 we briefly
describe how these smooth filters correspond to a localized reconstruction, resulting
in a root-exponential accurate, fast algorithm for recovering a bandlimited signal from
its uniformly spaced oversampled values. This simple observation is integral for the
derivation of the main algorithm for the case of periodic nonuniformly spaced sam-
ples; cf. section 4. Numerical simulations that demonstrate the performance of the
proposed method are presented in section 5. Finally, section 6 contains our conclusion
and an outlook of future research.

2. Oversampling and localization. As mentioned in the introduction, the
formulation in (1.2) is unsuitable for practical applications, where only a finite number
of samples is available, {f(k/2σ)}|k|≤L. For truncated samples the error, classically
referred to as the truncation error, is controlled by the atom’s localization

ε(t, L, T ) :=

∣∣∣∣∣∣f(t) −
√

2π

2σ

∑
|k|≤L

f

(
k

2σ

)
ψ

(
t− k

2σ

)∣∣∣∣∣∣(2.1)

≤
√

2π

2σ
· ‖f‖L∞

∑
|k|>L

∣∣∣∣ψ
(
t− k

2σ

)∣∣∣∣ .
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In the case of the classical Shannon sampling theorem, the atom, ψ(τ) := sinc(τ),
suffers from an unacceptably slow decay, limτ→∞ ψ(τ) ∼ 1/τ , resulting in a first order
convergence rate while moving from the sample boundaries, ±L/2σ, to the interior.
Moreover, if the samples f(k/(2σ)) are replaced by noisy samples f(k/(2σ))+εk, then
the corresponding approximation via the cardinal series in (1.2) may differ significantly
from f(t); cf. [4].

To remedy these problems in applications, one usually introduces oversampling.
Sampling a function in the time domain introduces a periodization in the associated
Fourier dual space, where sampling rate T−1 = 2σ corresponds to a 2σ periodization.
In (1.2) the reproducing atom (time domain), sinc(2πσt−πk), removes the periodiza-
tion introduced by sampling, through the action of its associated filter (Fourier dual
space), χ[−σ,σ]. For this critical, Nyquist sampling rate, sinc(·) is the unique atom
that can be used to remove the periodization. However, if the bandlimited signal is
sampled at a faster rate, T−1 := 2σ/r, where r < 1, then the dual space periodization
is increased to 2σ/r, allowing a large family of reproducing filters. Specifically, any
function satisfying2

Ψ(w) =

⎧⎨
⎩

1, |w| ≤ σ,
0, |w| > σ(2 − r)/r =: Ω ⇒ ψ ∈ BΩ,
anything else

(2.2)

gives rise to a Shannon-type series expansion

f(t) ≡
√

2πT

∞∑
k=−∞

f (kT )ψ (t− kT ) .(2.3)

For r = 1 the above filter reduces to χ[−σ,σ] and the classical Shannon’s sampling
theorem, whereas for r < 1 a gap3 is introduced between σ and σ(2 − r)/r, allowing
for a host of other reproducing filters, including those with a high degree of regularity;
see Figure 2.1.

Asymptotically the atom’s localization is reflected in the filter’s smoothness; con-
sequently, the filter’s regularity controls the convergence rate of the truncation er-
ror (2.1). By constructing infinitely differentiable filters with precise regularity esti-
mates, we obtain root-exponential accuracy for the approximation of a bandlimited
signal, as the point to be approximated moves from the sampling boundary, ±LT , to
the interior; see subsection 2.1. Unfortunately, unlike classical finite regularity filters,
such as the raised cosine, which have a closed form expression for their corresponding
atoms, to the authors’ knowledge, there is no known infinitely differentiable compactly
supported filter whose atom allows an explicit closed form expression. Alternatively
to approximating the atoms as proposed in [16, 22], we introduce and analyze a di-
rect Fourier domain implementation that does not adversely affect the high resolution

2It has been noted in [11] that the reproducing property is somewhat less strict than as stated
in (2.2), in that the filter need not be zero for all |w| ≥ (2 − r)/r. Rather, the reproducing property
is satisfied if the filter is one for |w| ≤ σ and zero at the points where the periodic extension
of the signal’s dual representation is nonzero. However, this added flexibility cannot increase the
regularity of the filter or decrease its regularity constants and, as such, cannot improve the asymptotic
convergence rate. Although this added flexibility can be used to increase the atom’s immediate
localization about the origin, it introduces substantial peaks away from the origin [11], decreasing
the overall convergence rate.

3Filters which are nonzero for σ < |w| < Ω necessarily decrease noise less than the characteristic
filter, χ[−σ,σ], but the vastly improved convergence rate more than makes up for this modestly lower
denoising which is overcome in other ways.
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Fig. 2.1. The signal’s dual space representation (solid line) and the signal’s periodization due
to sampling at the rate, T−1 := 2σ/r, for r < 1 (dotted line). With the gap between periodization,
a smooth filter (dot-dash line) can be used to remove the periodization introduced by sampling.

achieved by smooth filters. The time domain localization of an atom, ψ(·), is reflected
in the regularity4 of its corresponding filter, Ψ(·),

|ψ(t)| ≤ (2πt)−s‖Ψ‖Cs · 2Ω√
2π

∀s, ψ ∈ BΩ,(2.4)

where ‖Ψ‖Cs := ‖Ψ(s)‖L∞ .
Consequently, combining the bounds in (2.1) and (2.4), convergence is gained at

the polynomial rate5

ε(t, L, T ) ≤ Const · (LT − |t|)1−s(2π)−s‖Ψ‖Cs ·
(

Ω

σ

)
, s ≥ 2,(2.5)

as t passes from the boundary, ±LT , to the interior, where T := r/2σ.
Rather than improving the atom’s localization by increasing its corresponding

filter’s regularity, attempts have been made to construct highly localized atoms by

maximizing the atom’s local weight,
∫ R

−R
ψ2(t)dt/

∫∞
−∞ ψ2(t)dt. However, such ap-

proaches have resulted in discontinuous filters [17] and atoms which do not decay
globally [11]. A much more successful approach for polynomial order filters is to min-
imize the filter’s regularity constant, ‖Ψ‖Cs . The classical raised cosine is such a filter
[21]:

Ψrc(w) =

⎧⎪⎪⎨
⎪⎪⎩

1, |w| ≤ σ,
0, |w| > σ(2 − r)/r,
1
2 (1 + cos(π2 ( r

1−r )(wσ − 1)), σ < w < σ 2−r
r ,

1
2 (1 + cos(π2 ( r

1−r )(wσ + 1)), −σ > w > −σ 2−r
r ,

(2.6)

4This is achieved by s integrations by parts, where the derivatives are transferred onto the filter.
5If the underlying filter possesses ‖Ψ‖Cs+1 < ∞, then the bound (2.5) can be tightened by one

order of (LT − |t|) to the rate (LT − |t|)−s [9].
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where the bounded regularity constants are given explicitly by ‖Ψ‖C1 = 1
2 ( T

2(1−r) )

and ‖Ψ‖C2 = 1
2 ( T

2(1−r) )
2.

When a comparatively small number of sampling points is taken, low regular-
ity constant polynomial order methods give extremely good reconstructions. How-
ever, when a larger number of samples is available, atoms with significantly im-
proved asymptotic localization can be achieved by constructing infinitely regular fil-
ters, Ψ ∈ C∞

0 . It should be noted that for infinitely differentiable functions, the opti-
mal bound in (2.4) is not necessarily obtained for large s, as the regularity constant
‖Ψ‖Cs grows rapidly in s. Rather, for functions where precise regularity estimates are
known, the optimal s can be determined, resulting in an exponential decay without
necessarily large constants. These claims will be realized in the numerical experi-
ments presented in section 5, contrary to the assertion in [3], where it is claimed
that the increased regularity does not improve numerical convergence. In a direct
numerical comparison with the raised cosine filter, our infinitely differentiable filter
(2.10) achieves dramatically superior convergence in the interior of the samples, and
quantitatively similar errors near the sampling boundaries; see Figure 5.1.

2.1. Localization and Gevrey regularity. To achieve exponential accuracy
and satisfy the reproducing condition, (2.2), requires a filter which is infinitely dif-
ferentiable and compactly supported. The natural space for infinitely differentiable
compactly supported functions is the Gevrey class which consists of functions satis-
fying the smoothness bound

‖h‖Cs := ‖h(s)‖L∞ ≤ Const · (s!)α

ηsh
⇐⇒ h ∈ Gα,(2.7)

where ηh is a constant independent of s. Incorporating the regularity information in
the localization bound, (2.4), and minimizing over all admissible s, we conclude that
Gevrey class filters satisfy a root-exponential localization decay,6

|ψ(t)| ≤ Const ·
√
|t| exp(−α(2πη|t|)1/α), Ψ ∈ Gα,(2.8)

and root-exponential truncation error

ε(t, L, T ) ≤ Constα,η exp(−(2πη(LT − |t|))1/α),(2.9)

where Constα,η ∼ η−2
∑q

l=0 q!η
l/2/(q− l)!, with q the smallest integer greater than or

equal to (3α− 2)/2.
A similarly localized atom was constructed in [8, 16] by multiplying the sinc

function with the inverse Fourier transform of an appropriately dilated G2 function.
Alternatively, such Gα filters can be expressed explicitly in the dual space, such as

ΨG2(w) =

⎧⎪⎪⎨
⎪⎪⎩

1, |w| ≤ σ,
0, |w| > σ(2 − r)/r,
ρ
(

w−σ
σ(2−r)/r

)
, σ < w < σ 2−r

r ,

ρ
( −w−σ
σ(2−r)/r

)
, −σ > w > −σ 2−r

r ,

(2.10)

where ρ(w) := exp[β(w − 1)−1 e−1/w] ∈ G2 [13].

6Compact support is inconsistent with analyticity, G1, so reproducing atoms can at most be in
the space Gα, for α > 1, excluding true exponential decay, i.e., α = 1, as was shown in the classical
paper [1]. The Gevrey class of functions is essentially similar to ultradifferentiable functions [19].
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Although the filter ΨG2(·) and the one in [16] result in rapid convergence while ap-
proaching the interior, |t| ≤ LT , their associated atoms lack an explicit construction.
As a result, to reconstruct a bandlimited signal at an arbitrary point has required the
costly implementation of a quadrature evaluation, or a global approximation of the
atom, such as the Padé and Gabor approximations proposed in [16] and [22], respec-
tively. Alternatively, in the next section we introduce and analyze a direct Fourier
domain implementation that does not adversely effect the high resolution achieved by
smooth filters.

3. Dual space implementation for uniform oversampling. In this section
we introduce an implementation which removes the sampling induced periodization
through the direct action of the filter in the Fourier dual space. More specifically, if
the bandlimited signal is sampled on the mesh R := {kT}|k|≤L, with T := r/2σ and
r < 1, we seek to compute an approximation to the signal on the refined mesh P :=
{kT/p}|k|≤pL, where p ∈ N/{1}. This implementation is extremely efficient, as it only
requires the FFT of the zero inserted signal, (3.2), and the pointwise multiplication
in the dual space.

Define the approximation on the fine mesh as

Approxψ f

(
qT

p

)
:=

∑
|k|≤L

f(kT )ψ

[(
q

p
− k

)
T

]
.(3.1)

We zero insert the samples from the coarse mesh to the fine mesh

fo(x) :=

{
f(x), x ∈ R,
0, x ∈ P/R,

(3.2)

and note that the approximation in (3.1) is a discrete convolution,

Approxψ f(hq) =
∑

|k|≤pL

fo(hk)ψ ([q − k]h) ,(3.3)

where h := T/p. To transfer the discrete convolution to pointwise multiplication in
the dual space, we define the discrete, pseudo-Fourier transforms of a function as

G̃(wj) :=
h√
2π

∑
|k|≤pL

g(hk) exp(−2πihkwj),(3.4)

g(hq) :=

√
2π

h(2pL + 1)

∑
|j|≤pL

G̃(wj) exp(2πihqwj),(3.5)

where wj := j/h(2pL + 1).
In this notation the time domain implementation can be expressed in the Fourier

domain,

Approxψ f(hq) =
∑

|k|≤pL

fo(kh)ψ([q − k]h)

=
2π

h2(2pL + 1)

∑
|j|≤pL

F̃o(wj)Ψ̃(wj) exp(2πihwjq).(3.6)
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Although this illustrates an efficient method for computing the approximation on
a refined grid without increasing the overall error, it remains necessary to compute
the atom in order to determine Ψ̃(wj). However, the pseudo-Fourier transform is the
spectral projection (truncated Fourier series) of the true Fourier representation,

Ψ̃
( wj

2πh

)
=

h√
2π

∑
|k|≤pL

ψ(hk) exp(−ikwj)

= h

∫ σ(2−r)/r

−σ(2−r)/r

Ψ
( w

2πh

)
DpL(2πh(w − wj))dw

= SpLΨ
( wj

2πh

)
,(3.7)

where DR(x) := sin((R + 1/2)x)/2π sin(x/2) is the Dirichlet kernel of order R, and
SRf(·) is the R term truncated Fourier series projection of f(·), i.e., SRf := DR∗f . As
such, for highly smooth filters, the two Fourier representations are root-exponentially
close7 for all wj ,∣∣∣Ψ(wj) − Ψ̃(wj)

∣∣∣ = |Ψ(wj) − SpLΨ(wj)|

≤ Const · e−α(ηΨLT )1/α , Ψ(·) ∈ Gα.(3.8)

The composite error is then composed of the traditional truncation error, (2.1), and
the error in replacing the pseudo-Fourier transform with the exact dual space repre-
sentation of the atom, i.e., the filter. We summarize the above results in the following
theorem.

Theorem 3.1. Let f(t) be a signal bandlimited to [−σ, σ], and Ψ(·) a filter in Gα

satisfying (2.2). From the function’s oversampled values on the mesh, R := {kT}|k|≤L,
where T := r/2σ; its approximation on the fine mesh, P := {kh}|k|≤PL/R, where
h := r/2σp for p ∈ N/{1}, can be computed by pointwise multiplying the pseudo-
Fourier transform, (3.4), of the signal’s zero insertion onto P and the filter, Ψ(·).
The resulting error is bounded by∣∣∣∣∣∣f(hk) − 2π

h2(2pL + 1)

∑
|j|≤pL

F̃o(wj)Ψ(wj) exp(2πihwjk)

∣∣∣∣∣∣
≤ Const · p

2L

σr
‖f‖L∞

(
e−α(ηΨLT )1/α + e−α(ηΨ(LT−|t|))1/α

)
≤ Const · p

2L

σr
‖f‖L∞e−α(ηΨ(LT−|t|))1/α .

Remark. Although the approximation of an arbitrary point is not possible by
the method put forth in Theorem 3.1, the filter can be modulated to give an approx-
imation on a shifted submesh, P + s0 := {kh + s0}|k|≤pL. This can be seen directly

be replacing Ψ̃(wj) in (3.6) with its modulation Ψ̃(wj) exp(2πis0wj) and absorbing
the modulation into the exponential, resulting in Approxψf(hq + s0). An arbitrary
point in |t| ≤ LT can be approximated for a small modulation, |s0| ≤ h/2, and

7This is true for any p ∈ N/{1} as the trapezoidal quadrature is taken over the support of the
filter, [−σ(2 − r)/r, σ(2 − r)/r] ⊂ [w−pL, wpL].
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as a result, the difference between the modulated pseudo-filter and the true modu-
lated filter remain exponentially small, only modestly increasing the constant in (3.8).
Consequently any point in the interior of the samples, |t| ≤ LT , can be approximated
with the exponential accuracy stated in Theorem 3.1 through the application of the
appropriately modulated filter and a zero insertion of p = 2.

4. An algorithm for periodic nonuniform sampling. Although uniform
oversampling achieves the optimal convergence rate for a given sampling rate, appli-
cations exist where for various reasons one is confronted with more general sampling
geometries. In this section we devote our attention to the case of periodic nonuni-
form sampling (bunched sampling), i.e., when multiple uniform undersampled sets
are combined to achieve an effective sampling density similar to the uniform sam-
pling case. First order methods exist for the reconstruction of the bandlimited signal
from periodic nonuniform sampling [18, 2, 25, 5]. Here we investigate the dual space
structure induced by periodic nonuniform sampling, and derive direct high resolution
reconstruction methods.

It is well known that for periodic nonuniform sampling a generalization of the
cardinal series (1.2) holds by using N atoms in the series expansion (in combination
with appropriate coefficients) instead of just one atom. Various essentially equivalent
versions of this generalized sampling theorem have been derived, which all revolve
around exploiting in the Fourier domain certain periodicities induced by the sampling
geometry. Initially we follow a similar path, but unlike other approaches we pay
special attention in our derivations to our goal of using highly localized atoms for the
reconstruction of the sampled function.

Poisson’s summation theorem relates the physical space sampling to the resulting
dual space periodization. Specifically, a bandlimited signal, f ∈ Bσ, sampled at the
rate T−1 := 2σ/r causes a dual space periodization of 2σ/r. For oversampling, r < 1,
the signal’s dual space representation is separated (Figure 2.1), and the introduced
periodization can be removed in one step by applying a smooth filter which satisfies the
reproducing condition (2.2). Alternatively, when a signal is undersampled (r > 1), the
dual space periodizations overlap, and a general signal cannot be reconstructed from
those samples alone. More precisely, if a signal is sampled at the points {lT +Tn}l∈Z,
the dual space representation is given by

STn(w) := e2πiTnw
∞∑

l=−∞
e−2πilTnT

−1

F (w − lT−1).(4.1)

If N ≥ r� such undersampled sets are available, then an effective sampling rate of
2σN/r is obtained and the overlapping can be removed for |w| ≤ σ, allowing the
recovery of the bandlimited signal. We now present general conditions, reminiscent
of (2.2), for the recovery of a bandlimited signal from its bunched sampling. We then
conclude this section with an algorithm for the construction of a family of filters which
remove the sampling induced periodization.

For a given value of k, F (w) can be recovered from the N bunched sampling sets
of the signal in the interval Ik := [(−N +k−1)T−1 +σ, kT−1−σ] by multiplying each
undersampled set’s dual space representation, STn by an undetermined coefficient,
ck,n, selected to remove the periodizations for l = −N + k, . . . , k − 1, i.e.,

Fk(w) :=

N∑
n=1

ck,ne
−2πiTnwSTn(w) with Fk(w) = F (w) for w ∈ Ik.(4.2)
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The coefficients can then be determined by solving the resulting system8

AR(k)c(k) = eN−k+1 with Am,n := exp(2πiTnT
−1m), m, n = 1, . . . , N,(4.3)

c(k) = (ck,1 ck,2 · · · ck,N )T , eN−k+1 = δj,N−k+1, and

R(k) := diag(γ1(k) γ2(k) · · · γN (k)),where γn(k) := exp(2πiTnT
−1(k −N − 1)).

Repeating this process for a sufficient set of intervals to cover the bandwidth of the sig-
nal, [−σ, σ] ⊆ ∪κ

j=1Ikj
, removes the sampling induced periodization for the bandwidth

of interest.9 However, the overall domain is segmented into κ overlapping intervals
which must be spliced together with partitioning functions Φkj (w) constructed ap-
propriately to recover F (w),

F (w) =

κ∑
j=1

Fkj (w)Φkj (w), |w| ≤ σ.(4.4)

For partitions which are not dependent on the translates, {Tn}Nn=1 requires Φk(w) = 0
for w /∈ Ik and consequently

∑κ
j=1 Φkj

(w) = 1 for |w| ≤ σ. In summary, the signal’s
dual space representation can be recovered from its bunched sampling if the following
conditions on the intervals and partitioning functions are satisfied:

[−σ, σ] ⊆ ∪κ
j=1Ikj

, Φkj
(w) = 0 for w /∈ Ikj

,

κ∑
j=1

Φkj
(w) = 1 for |w| ≤ σ.

(4.5)

Accordingly, a bandlimited signal’s (f(·) ∈ Bσ) Fourier transform can be recov-
ered from its overlapping induced periodization by the set of filters {Ψn(·)}Nn=1,

F (w) =

κ∑
j=1

Φkj (w)

N∑
n=1

STn(w)ckj ,ne
−2πiTnw

=

N∑
n=1

⎛
⎝ κ∑

j=1

cn,kjΦkj (w)

⎞
⎠ ∞∑

l=−∞
e−2πilTnT

−1

F (w − lT−1)

=

N∑
n=1

Ψn(w)

∞∑
l=−∞

e−2πilTnT
−1

F (w − lT−1)

= T

N∑
n=1

Ψn(w)

∞∑
l=−∞

f(lT + Tn)e−2πiw(lT+Tn),(4.6)

where the last equality is due to the Poisson summation formula, and the filters are
defined as

Ψn(w) :=

κ∑
j=1

ckj ,nΦkj
(w),(4.7)

8The matrix A is of Vandermonde type and is therefore invertible for distinct translates, {Tn}Nn=1.
9The effective oversampling rate N/r > 1 guarantees the full set of intervals cover the signal’s

bandwidth, [−σ, σ] ⊆N
k=1 Ik.
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with Ikj
and Φkj

selected to satisfy conditions (4.5), and ckj ,n being the solutions
of the system (4.3). Note that this N stage filtering is in contrast to the one-step
filtering, F (w) = Ψ(w)

∑∞
l=−∞ F (w−lT−1), used to remove the periodization induced

by uniform oversampling.
Consequently, by taking the inverse Fourier transform of (4.6), the signal can be

represented by its bunched samples and translated atoms:

f(t) = T

N∑
n=1

∞∑
l=−∞

f(lT − Tn)ψn(t− (lT + Tn)),(4.8)

where ψn, the inverse Fourier transform of Ψn, is the atom associated with the under-
sampled set {lT−Tn}l∈Z. This is the corresponding generalization of the oversampling
representation (2.3) to the case of bunched sampling.

Similar to the case of uniform oversampling, the truncation error for bunched
sampling, (4.8), is governed by the atom’s localization:

εb(t, L, T ) :=

∣∣∣∣∣∣f(t) − T

N∑
n=1

∑
|l|≤L

f (lT − Tn)ψn (t− (lT + Tn))

∣∣∣∣∣∣
≤ T‖f‖L∞

N∑
n=1

∑
|l|>L

|ψn (t− (lT + Tn))| .(4.9)

In [5] the Nyquist sampling rate N = r was considered, where the interval |w| ≤ σ
was necessarily partitioned with characteristic functions, Φk(w) = χIk . However,
similar to uniform Nyquist sampling the abrupt filtering results in atoms with first
order decay, and consequently the convergence rate for truncated sets of samples is
first order, making it an impractical method for real world applications.

For smooth Gα filters, the atoms, ψn(t), possess root-exponential localization,
(2.8), and consequently the truncation error satisfies

εb(t, L, T ) ≤ Constα,ηNT‖A−1‖‖f‖L∞ · exp(−α(2πη((L− 1)T − |t|))1/α),(4.10)

where Constα,η is as before and ‖A−1‖ is determined solely by the set of translates,
{Tn}Nn=1.

Remark. (i) The truncation error bound in (4.10) is overly pessimistic in the
factor ‖A−1‖ due to inherent structure in the system of equations AR(k)c(k) =

eN−k+1. The (N − k + 1)th row of this system simplifies to
∑N

n=1 ck,n = 1
for each k, imposing the additional structure on the atoms that the sum of
the filters is the sum of the partitions,

N∑
n=1

Ψn(w) =

N∑
n=1

κ∑
j=1

cn,kj
Φkj

(w) =

κ∑
j=1

Φkj
(w),(4.11)

which is by construction a smooth function satisfying condition (2.2) with a
modified bandwidth Ω. Applying the Fourier transform to (4.11), this struc-
ture implies that the atoms sum to a fixed function, independent of the set
of translates. As a result, even when the translates are such that the ma-
trix A is ill conditioned, a substantial amount of cancellation between the
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atoms significantly reduces its effect on the truncation error. To see this
more quantitatively, first group those translates that are near one another,
say {Tn}n∈λ. Then let xλ be the overall amount of eN−k+1 contained in the
space spanned by the associated columns of AR(k). We observe in (4.3) that
due to the linear dependence of the columns in AR(k) associated with n ∈ λ
the coefficients {ck,n}n∈λ are often large in magnitude. Nonetheless, the sum
of these coefficients is dictated by xλ, which by construction is order one, not
by the individual translates. For this reason, although the individual atoms
associated with n ∈ λ may have large magnitude, determined by {ck,n}n∈λ

rather than xλ, their sum will not. Combined with the values of f(lT − Tn)
for n ∈ λ being nearly equal results in a substantial amount of cancellation
between the associated atoms. To capture the effect of this cancellation quan-
titatively, rather than pass the absolute value onto each element as in (4.9),
the bound can be left as

εb(t, L, T ) ≤ T
∑
|l|>L

∣∣∣∣∣
N∑

n=1

f(lT − Tn)ψn(t− (lT + Tn))

∣∣∣∣∣ ,(4.12)

where for each l, the atoms corresponding to near translates possess sub-
stantial cancellation. The numerical example in Figure 5.3 illustrates this
effect, where the error near the sampling boundaries does not increase sub-
stantially for highly ill conditioned matrices A, but rather roundoff error in
the cancellations pollutes the high resolution near the origin.
(ii) To improve the robustness of the proposed method even further we could
multiply each uniform sampling set by some weight, similar to the general
nonuniform sampling case discussed in [7]. In fact, by introducing properly
chosen weights we can obtain estimates for the condition number of A, since
the Toeplitz matrix A∗A is of the same form as the Toeplitz matrix appearing
in [10]. We leave the details to the reader.

We now turn our attention to constructing intervals and smooth Gα partitioning
functions satisfying condition (4.5) where the number of undersampled sets is sufficient
to achieve a density similar to oversampling, N > r, with an effective oversampling
rate of N/r > 1.

For minimal oversampling, N = r� > r, the recovered regions only overlap with
their immediate neighbors, i.e., Ik∩Ij = ∅ for |k−j| > 1, and the full set of recovered
zones {Ik}Nk=1 is required to cover the interval [−σ, σ]. Moreover, for each Ik there
is a subset that is not contained in the other intervals; consequently, the condition∑

k Φk(w) = 1 for |w| ≤ σ implies that the partitioning functions must satisfy

Φk(w) =

{
1, w ∈ [max(−σ, (k − 1)T−1 − σ),min(σ, (−N + k)T−1 + σ)],
0, w /∈ Ik.

(4.13)
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An example of Gα partitioning functions satisfying conditions (4.13) and
∑

k Φk(w) =
1 for |w| ≤ σ is

Φk1(w) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, w ≤ σ + (k1 − 1)T−1,

ρ
(

−w−σ
−(k1−1)T−1−2σ

)
, σ + (k1 − 1)T−1 < w < −σ,

1, −σ ≤ w ≤ σ + (k2 − 1)T−1,

ρ
(

w−(σ+(k2−1)T−1)
(k1−k2+N+1)T−1−2σ

)
, σ + (k2 − 1)T−1 < w < (k1 + N − 1)T−1 − σ,

0, (k1 + N − 1)T−1 − σ ≤ w,

(4.14)

for the leftmost partition,

Φkj
(w) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w ≤ σ + (kj − 1)T−1,

1 − ρ
(

w−(σ+(kj−1)T−1)
(kj−1−kj+N+1)T−1−2σ

)
, σ + (kj − 1)T−1 < w

< (kj−1 + N − 1)T−1 − σ,

1, (kj−1 + N − 1)T−1 − σ ≤ w
≤ σ + (kj+1 − 1)T−1,

ρ
(

w−(σ+(kj+1−1)T−1)
(kj−kj+1+N+1)T−1−2σ

)
, σ + (kj+1 − 1)T−1 < w

< (kj+1 + 1)T−1 − σ,

0, (kj+1 + 1)T−1 − σ ≤ w,

(4.15)

for interior regions j = 2, 3, . . . , κ− 1, and

(4.16)

Φkκ(w) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w ≤ σ + (kκ − 1)T−1,

1 − ρ
(

w−(σ+(kκ−1)T−1)
(kκ−1−kκ+N+1)T−1−2σ

)
, σ + (kκ − 1)T−1 < w

< (kκ−1 + N)T−1 − σ,

1, (kκ−1 + N)T−1 − σ ≤ w ≤ σ,

ρ
(

w−σ
(kκ+N)T−1−2σ

)
, σ < w < (kκ + N)T−1 − σ,

0, (kκ + N)T−1 − σ ≤ w,

for the rightmost partition, where kj := j −N for j = 1, 2, . . . , N and ρ(·) is defined
as in (2.10).

For more general effective oversampling rates, N > r, the recovered zones Ik
often overlap many of their neighbors, and as such constructing the full set of N
partitioning functions satisfying

∑
k Φk(w) = 1 for |w| ≤ σ becomes substantially

more complicated. However, for such higher effective oversampling, a smaller number
of partitions, κ ≤ N , is required to cover the support of F (w). The ideal subset of
intervals and partitioning functions selected through {kj}κj=1 possess minimal slope,
requiring that the intervals have equal size of internal and boundary overlaps, i.e.,
length(Ikj ∩ Ikj+1

) = length(Ik1
/[−σ, σ]) = length(Ikκ

/[−σ, σ]). Combined with the

fixed length of Ik the optimal subset for a given κ is selected as k∗j := jN+1
κ+1 − N

for j = 1, 2, . . . κ. The overlap length for κ sets with kj as defined before is T−1(1 −
r − κN−1

κ+1 ). The minimum number of partitions κ necessary to cover the bandwidth
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[−σ, σ] is then determined by requiring the overlap interval to be nonnegative, yielding
κmin :=  r

N+1−r �.
For computational purposes using the minimum number of partitions, κmin re-

sults in unnecessarily steep partitions. Alternatively, a reasonable balance between
simplicity of construction and minimizing the partitions slope is achieved by using
the maximum number of partitions subject to the constraint that the intervals only
interact with their immediate neighbors, yielding κ∗ := min(N, �N+1+r

N+1−r �). The above
results for bunched sampling are summarized in the following theorem.

Theorem 4.1. A bandlimited signal f ∈ Bσ can be expressed in terms of its
samples on the N > r� uniform meshes {lT + Tn}l∈Z, where {Tn}Nn=1 are distinct
and T := r/2σ. Reminiscent of the classical Shannon sampling theorem, the signal is
decomposed into the translates of N atoms, ψn(·), each of which are associated with
a particular uniform sampling mesh,

f(t) = T
N∑

n=1

∞∑
l=−∞

f(lT − Tn)ψn(t− (lT + Tn)).

A particularly simple construction of filters is achieved by solving the system of equa-
tions (4.3) for k∗j = round(j N+1

κ∗+1 −N), where κ∗ = min(N, �N+1+r
N+1−r �). The N filters

are then given by

Ψn(w) :=

κ∗∑
j=1

ck∗
j ,n

Φk∗
j
(w),

where the coefficient ck∗
j ,n

are determined by solving (4.3) for {k∗j }κ
∗

j=1, and the parti-

tioning functions are given by (4.14), (4.15), (4.16).
Before developing a dual space implementation for truncated bunched sampling,

we illustrate partitions and representative atoms for bunched samples in the case of
minimal oversampling, N = r� > r.

Example 1. The partitions for r = 2.4 as expressed in (4.14), (4.15), (4.16) for
the case N = r� > r are shown in Figure 4.1, where ρ(w) := exp[β(w−1)−1e−1/w] ∈
G2, with β = e2/3. It should be noted that the partitioning does not depend on the
translates {Tn}Nn=1, rather solely on the number of undersampled sets, N .

The atoms, {ψn}Nn=1, associated with r = 2.4, N = 3, and random translates
Tn/T = {−0.4484, 0.3419,−0.0984} are given in Figure 4.2. This distribution of
shifts is near the distribution that would correspond to uniform oversampling, Tn/T =
{−1/3, 0, 1/3} at the rate N/r = 1.25, and as such the atoms for this bunched
sampling are qualitatively similar to the atom associated with uniform oversampling
at the rate N/r = 1.25. Figure 4.3 illustrates the atoms for the set of translates
Tn/T = {−1/3, 0, 10−6}, where cond(A) = 5.5 × 105. Having constructed the parti-
tions Φk from ρ(·) ∈ G2, the atoms possess root-exponential localization.

4.1. Direct dual space implementation for bunched sampling. Just as in
the case of the single oversampled set, the approximation of f(·) on the zero inserted
grid {hq}|q|≤pL, where h = T/p, can be implemented directly in the dual space. Define
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Fig. 4.1. The partitions for r = 2.4 and N = 3 as described in (4.14), (4.15), (4.16); the end
partitions Φ1, Φ3 (solid line) and the center partition Φ2 (dot-dashed line).
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Fig. 4.2. The atoms {ψn}Nn=1 associated with r = 2.4, N = 3, and random translates Tn/T =
{−0.4484, 0.3419,−0.0984} shown from left to right, respectively. The atoms are qualitatively similar
due to the low condition number cond(A) = 1.8939.

the approximation on this mesh from the bunched sampling as

Approxψ,Bf(hq) := T

N∑
n=1

∑
|k|≤L

f(kT − Tn)ψn(hq − (kT + Tn))

= T

N∑
n=1

∑
|j|≤pL

f0(jh− Tn)ψn(h(q − j)Tn),(4.17)

where f0(x) is zero unless x = kT −Tn for k = −L, . . . , L. Replacing the point values
in (4.17) with their pseudo-Fourier transform, we can express the evaluation in terms
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Fig. 4.3. The atoms {ψn}Nn=1 associated with r = 2.4, N = 3, and translates Tn/T =
{−1/3, 0, 10−6} shown from left to right, respectively. The first atom is similar to those in Fig-
ure 4.2, and although the remaining atoms have significant amplitude, due to the relatively large
condition number cond(A) = 5.5 × 105, they are nearly the negative of each other, allowing for
significant cancellation.

of the sampling sets pseudo-Fourier transforms,

Approxψ,Bf(hq) = T

N∑
n=1

∑
|j|≤pL

f0(jh− Tn)ψn(h(q − j)Tn)

=
2πT

h2(2pL + 1)2

N∑
n=1

∑
|j|≤pL

⎛
⎝ ∑

|l|≤pL

F̃0(wl)e
2πiwl(jh−Tn)

⎞
⎠

×

⎛
⎝ ∑

|k|≤pL

Ψ̃n(wk)e
2πiwk(h(q−j)−Tn)

⎞
⎠

= T
√

2π

N∑
n=1

∑
|l|≤pL

( √
2π

h(2pL + 1)
F̃0(wl)e

2πiwl(hq−Tn)

)
Ψ̃n(wl)e

−2πiTnwl .(4.18)

The last line can be viewed as an algorithm, where first each undersampled set is zero
inserted of order p, its pseudo-Fourier transform is computed, and it is multiplied by
the appropriately modulated filter, Ψ̃n(·), to remove the overlapping periodization.
These filtered dual space representations are then summed and their inverse pseudo-
Fourier transform computed to achieve an approximation of the bandlimited signal
at the set of point {hq}|q|≤pL. Just as in the case of the uniform oversampled dual
space representation it is computationally advantageous to avoid the construction of
ψn(·) in order to compute Ψ̃n; rather for a fast algorithm the true filters {Ψn(·)}Nn=1

should be applied directly. Again we note that the atom’s pseudo-Fourier transform
is the pL order spectral projection of the atom’s associated filter, (3.7). As such their
difference is exponentially small,∣∣∣Ψn(wl) − Ψ̃n(wl)

∣∣∣ ≤ Const · ‖A−1‖e−α(ηnLT )1/α , Ψn(·) ∈ Gα,(4.19)

if the zero padding is sufficient to expend the dual axis beyond the support of the
filter, p ≥ 2N − r.
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In addition to the usual truncation error, this additional error gives a threshold
below which the error does not fall, determined by the condition number of A as
dictated by the set of translates. Unlike the truncation error, the structure in A does
not result in cancellation to reduce the effects of ‖A−1‖; however, the bound does not
depend on t and is well below the truncation error for all but the most ill conditioned
sets of translates. We summarize the above results in the following theorem.

Theorem 4.2. Let f(t) ∈ Bσ be sampled at the points {kT + Tn}|k|≤L with
sampling rate T−1 := 2σ/r and translate |Tn| ≤ T/2. From N > r such distinct
sampling sets, and filters {Ψn}Nn=1 ∈ Gα constructed as in Theorem 4.1, the signal
can be approximated on the set {kT/N}|k|≤pL, with p ≥ 2N − r, within the bound

|f(t) −ApproxBf(hk)|

≤ Const
N2

σ
‖f‖L∞‖A−1‖ · e−α(η((L−1)T−|t|))1/α ,

where ApproxBf(hk) is computed by the following algorithm:
1. Zero insert each of the uniform sampling sets {kT +Tn}|k|≤L to the fine mesh

{kh + Tn}|k|≤pL, where p ≥ 2N − r and h = T/p, yielding {fo,n}Nn=1.
2. Compute the pseudo-Fourier transform, as defined in (3.4), of each set of zero

inserted samples from step 1, labeled {F̃o,n(wl)}Nn=1, and pointwise multiply
by exp(−2πiTnwl), respectively.

3. Pointwise multiply each of the pseudo-Fourier transforms from step 2, F̃o,n(wl),
by their corresponding filters, Ψn(wl), and sum over N , yielding an approxi-

mation of F (w), F̃A(wl) :=
∑N

n=1 e
−2πiTnwl F̃o,n(wl)Ψn(wl).

4. Compute the inverse pseudo-Fourier transform of F̃A formed in step 4, and
multiply by p.

Similar to the remark following Theorem 4.1, the signal can be recovered on a
shifted mesh, {kT/N + s0}|k|≤pL, by multiplying F̃A(wl) with exp(2πis0wl) between
steps 3 and 4 of the algorithm in Theorem 4.2.

The direct implementation for uniform oversampling has a computational cost
limited by the FFT, proportional to L log(L), where L is the number of samples
used in the reconstruction. For the algorithm described in Theorem 4.2 for bunched
sampling, the computational cost is again limited by the overall FFT evaluations. To
allow for a direct comparison to the uniform oversampling let each of the N sampling
sets contain L/N samples for a similar total number of samples being available for
the algorithm. Each of the N FFTs then requires L

N log(pL/N), where p is the level
of zero insertion required to be proportional to the number of sampling sets, p ≈ N .
The overall computational cost for the algorithm in Theorem 4.2 is then NL log(L),
where L is the total number of samples used in the approximation. In principle we
also have to take into account the costs for inverting the matrix A in (4.3). Since A is
a Vandermonde matrix and A∗A is a Toeplitz matrix, there are plenty of fast standard
algorithms for the solution of the system in (4.3) at our disposal. Moreover, in practice
N is small compared to L, and thus the computational costs of this step have little
impact on the overall complexity of the proposed method. In summary, the bunched
sampling algorithm requires an additional factor of N in the total computational cost,
when compared to uniform sampling at the same effective sampling rate and number
of available samples.

5. Numerical examples. We illustrate the convergence rates and algorithms
for the results presented in Theorems 3.1 and 4.2 for characteristic bandlimited sig-
nals. For the approximation of an arbitrary bandlimited signal, we form a test signal
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Fig. 5.1. The error with oversample rate r−1 = 1.43 in recovering the signal in B1 whose
real portion is shown in Figure 2.1. With the log axis, note the log convergence exhibited by the
reconstruction using the raised cosine (dotted line), as compared to the root convergence obtained
by the dual space implementation using ΨG2 (solid line). The approximations were computed with
zero insertion rate p = 2 on the grid translated by s0 = T/

√
5.

whose Fourier transform is composed of one hundred characteristic functions with
random complex valued amplitudes normalized to unit l2 norm, and with random
widths and centers, normalized so that the largest magnitude bandwidth is σ. The
resulting numerics shown are characteristic of arbitrary complex valued bandlimited
signals. The dual space representation, real portion, of such a function can be seen
in Figure 2.1. Before illustrating the main results of Theorem 4.2 we briefly contrast
the exponential convergence of Gevrey class filters with the polynomial order conver-
gence of classical finite regular filters. To compare representative filters with finite
and infinite regularity, we use the canonical raised cosine filter (2.6) and the Gevrey
order two filter given in (2.10), respectively; see Figure 5.1.

Much of the success of the raised cosine filter is due to the optimally small first
two regularity constants, ‖Ψ‖Cs for s = 1, 2, which result in rapid initial localization.
Infinitely regular filters possess bounded regularity constants for all s, but at the cost
of necessarily larger regularity constants for small s. However, a great deal of freedom
exists in the selection of Gα regular filters, for example the constant β used in the filter
of (2.10). A good approximation of the β which minimizes the first regularity constant
in ΨG2 can be obtained by selecting β such that the filter’s points of inflection are at
the middle of the region connecting zero and one, i.e., Ψ(2)(±σ/r) = 0. As such, for
the numerical experiments involving the filter ΨG2, we use β := 1

3e
2 which satisfies

ρ(2)( 1
2 ) = 0.
Various properties of Theorem 4.2 are demonstrated in the following numerical

examples. First we begin with the simplest case of bunched sampling where only
just sufficiently many sampling sets are available for effective oversampling, N :=
r� > r; in particular for r = 2.4 and a random set of well separated translates with
corresponding atoms presented in Figure 4.2, and the exponentially small error shown
in Figure 5.2. To illustrate the computational robustness, Figure 5.3 shows the error
as two sampling sets approach one another, resulting in a poorly conditioned matrix A
in system (4.3). However, as noted in the Remark following (4.10), the ill conditioning
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Fig. 5.2. The error with N = 3 undersampled sets with effective sampling rate N/r = 1.25
in recovering the signal in B1 whose real portion is shown in Figure 2.1. The translates were
Tn/T = {−0.4484,−0.0984, 0.3419} with cond(A) = 1.8939 and atoms illustrated in Figure 4.2.
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Fig. 5.3. The error with N = 3 undersampled sets and effective sampling rate N/r = 1.25
in recovering the signal in B1 whose real portion is shown in Figure 2.1. The translates used,
Tn/T = {−1/3, 0, 10−3j} for j = 1, 2, 3, result in systems (4.3) with respective condition numbers
cond(A) = 5.5×103j−1. Note that although the condition number becomes very large, the error near
the boundaries does not suffer. Rather, the minimal error is increased due to roundoff errors. The
atoms associated with the set of translations, j = 2, are shown in Figure 4.3.

of the matrix does not increase the entire error by the factor ‖A−1‖ as stated in the
pessimistic bound of Theorem 4.2; rather, the ill conditioning results in a rounding
error that limits the achievable error for a given precision arithmetic.

A more general example of Theorem 4.2 is shown in Figure 5.4 where N = 17
uniform sampling sets with random translates undersampled at the rate r = 12.4 are
given for an effective sampling rate of N/r ≈ 1.37. The resulting error is typical for
the algorithm of Theorem 4.2 when the system (4.3) has a relatively modest condition
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Fig. 5.4. The error in recovering a random signal in B1 from N = 17 undersampled sets
of random translation with effective sampling rate N/r = 1.37. The filters were composed of five
partitions, κ∗ = 5, and the system of the random translates had condition number cond(A) =
1.4 × 104.

number.
Before concluding the numerical examples we illustrate the algorithm’s perfor-

mance for a particular application discussed in the introduction. Due to feedback
interactions between sampling and processing chips in close proximity, it is advanta-
geous to use a sampling structure that includes relatively large sampling gaps, when
the signal processing can be applied and not interact with the sampling. However,
the introduced sampling gap could potentially introduce stability problems. The ex-
traordinary robustness of the algorithm in Theorem 4.2 overcomes any stability issues,
even for relatively large sampling gaps. For example, Figure 5.5 shows the approx-
imation error with eight sets interleaved over a third of the effective sampling rate,
i.e., Tn := T (n/24) for n = 1, 2, . . . , 8.

6. Final remarks. We have derived a fast algorithm for reconstructing a band-
limited signal from its periodic nonuniform samples that achieves root-exponential
accuracy with respect to the given number of samples. Due to its high accuracy the
method can be easily realized in practice via finite impulse response (FIR) filters. Fur-
thermore, since the numerically most expensive steps are FFTs the proposed method
lends itself to a simple implementation on standard DSP processors. Furthermore, the
high accuracy provided by the algorithms derived in this paper will not be lost in the
subsequent reconstruction of the signal from its quantized samples due to the recently
developed highly accurate algorithms for recovering a quantized bandlimited signal;
cf. [4].

Another application where periodic nonuniform sampling arises is image process-
ing. For instance, in astronomical imaging one is confronted with images that are
blurred and notoriously undersampled. The goal is to combine these blurred low-
resolution images to one high-resolution image. This problem is also referred to as
superresolution; see, e.g., [6]. The low-resolution images contain (blurred, noisy) sam-
ples of the high-resolution image where the sampling sets can be thought of as a union
of arbitrarily shifted (and/or rotated) uniform sampling sets. One step in reconstruct-
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Fig. 5.5. The error in recovering a random signal in B1 from N = 8 undersampled sets with
effective sampling rate N/r = 1.82. The filters were composed of two partitions, κ∗ = 2, and the
translates, Tn := T (n/24) for n = 1, 2, . . . , 8, had condition number cond(A) = 3.1 × 104.

ing a high-resolution image is thus the conversion of the periodic nonuniform image
samples to a uniform sampling set at a fine sampling grid. In our future research we
will address two-dimensional reconstruction algorithms and their effect on deblurring
and noise.

Acknowledgment. We are indebted to Professor Bernard Levy for insightful
discussions on practical aspects of the research presented in this paper.
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FOR CURVES∗
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Abstract. We derive two reformulations of the C1 Hermite subdivision scheme introduced by
Merrien. One where we separate computation of values and derivatives and one based of refinement
of a control polygon. We show that the latter leads to a subdivision matrix which is totally posi-
tive. Based on this we give algorithms for constructing subdivision curves that preserve positivity,
monotonicity, and convexity.

Key words. interpolation, subdivision, corner cutting, total positivity, positivity, monotonicity,
convexity

AMS subject classifications. 65D05, 65D17

DOI. 10.1137/040621302

1. Introduction. Subdivision is a technique for creating a smooth curve or sur-
face out of a sequence of successive refinements of polygons; or grids see [2]. Subdivi-
sion has found applications in areas such as geometric design [6, 16], and in computer
games and animation [4]. We consider here the two point Hermite scheme, the HC1-
algorithm, introduced in [11]. We start with values and derivatives at the endpoint
of an interval and then compute values and derivatives at the midpoint. Repeating
this on each subinterval we obtain in the limit a function with a certain smoothness.
The scheme depends on two parameters α and β and it has been shown that the limit
function is C1 for a range C of these parameters. For more references to Hermite
subdivision, see [5, 10, 12, 13].

The strong locality of the HC1-algorithm was used in [13] to construct subdivision
curves with shape constraints like positivity, monotonicity, and convexity. A notion
of control points, control coefficients, and a Bernstein basis for two subfamilies of the
HC1-interpolant were introduced in [15].

In this paper we continue the study of subdivision with shape constraints initiated
in [13, 15]. Before detailing our results let us first describe the shape preserving
subdivision process and give an example. Suppose we have values y1, . . . , yn and
derivatives y′1, . . . , y

′
n at some abscissae t1 < t2 < · · · < tn. With each subinterval

[ti, ti+1] we associate parameters (αi, βi) ∈ C chosen so that the HC1-interpolant
using data (yi, y

′
i, yi+1, y

′
i+1) has the required shape on [ti, ti+1]. We then obtain a

C1-function on [t1, tn]. As an illustration consider the function in Figure 1.1.

This function is defined on the interval [0, 4]. It is positive on [0, 1], strictly
increasing on [1, 2], constant on [2, 3], and concave on [3, 4]. Suppose we want to use
subdivision to construct a C1-approximation to this function with the same shape
characteristics and that all we know about the function is the function values y1, . . . , yn
at some points t1 < · · · < tn. We can achieve this with the HC1-algorithm using only
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Fig. 1.1. A given function.

crude estimates for the derivatives y′1, . . . , y
′
n as long as the transition points 1, 2, 3

are among the abscissae and the chosen derivatives are consistent with the required
shapes; see section 6 for details. For classical curve based shape preserving algorithms
we refer to [7, 8, 9] and references therein.

As for Bézier and spline curves we introduce a control polygon for the HC1-
interpolant. The originality of this family of interpolants is that monotonicity or
convexity of the control polygon and of the function are equivalent (see Propositions
5.3 and 5.6). We observe that this is only true in one direction for Bezier or spline
curves.

Our paper can be detailed as follows. In section 2, we recall the HC1-algorithm
and some properties which were proved in [13]. We give a new formulation of the HC1-
algorithm where we separate the computation of function values and derivatives. This
formulation is useful for proving shape preserving properties and with the aid of this
formulation we simplify the proofs of the main results in [13]. The new formulation
also shows why the one parameter family given by α = β/(4(1 − β)) and β ∈ [−1, 0)
considered in [13, 15] really is an extension of the quadratic spline case. We will refer
to this family as the EQS-case of the HC1-algorithm. We also give a new domain C
for C1-convergence of the algorithm. In section 3 we use the control points introduced
in [15] to reformulate the HC1-algorithm as a stationary subdivision algorithm called
SC1. The control points depend on a third parameter λ ≥ 2 and we show convergence
of the SC1-algorithm for (α, β) ∈ C and λ ≥ 2. Starting in section 4, we restrict our
attention to the EQS-case. By formulating the SC1-algorithm as a corner cutting
scheme we show that the subdivision matrix S is totally positive. We show this for an
extended range of β and λ and also prove the total positivity of the HC1-Bernstein
basis. With this last property, the interpolant inherits shape properties of the control
polygon such as nonnegativity, monotonicity, or convexity. In section 5, we give
algorithms for interpolation with any of the previous shape constraints. An example
based on Figure 1.1 is given in section 6.

We also point out that Proposition 2.1 on one hand and Proposition 3.1 with
Theorem 3.4 on the other hand show that we obtain two Lagrange subdivision schemes
from the HC1-Hermite subdivision scheme.

2. The HC1-algorithm. We recall the univariate version of the Hermite subdi-
vision scheme for C1 interpolation given by Merrien [11], which we call here HC1. We
start with values (f(a), p(a)) and (f(b), p(b)) of a function f and of its first derivative
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p = f ′ at the endpoints a, b of a bounded interval I := [a, b] of R. To build f and
p on I, we proceed recursively. At step n (n ≥ 0), let us denote by Pn the regular
partition of I in 2n subintervals and let us write hn := (b − a)/2n. If c and d are
two consecutive points of Pn, then we compute f and p at the midpoint (c + d)/2
according to the following scheme, which depends on two parameters α and β,

f

(
c + d

2

)
:=

f(d) + f(c)

2
+ αhn[p(d) − p(c)],

p

(
c + d

2

)
:=(1 − β)

f(d) − f(c)

hn
+ β

p(d) + p(c)

2
.

(2.1)

By applying these formulae on ever finer partitions, we define f and p on P = ∪Pn

which is a dense subset of I. We say that the scheme is C1-convergent if, for any
initial data, f and p can be extended from P to continuous functions on I with p = f ′.
We call f defined either on I or on P the HC1-interpolant to the data.

The HC1-algorithm can also be formulated as follows. We start with Hermite
data f0, p0, f1, p1 at the endpoints of a finite interval [a, b] and set f0

0 = f0, p
0
0 = p0,

f0
1 = f1, and p0

1 = p1. For n = 0, 1, 2, . . . , hn = 2−n(b− a), and k = 0, 1, . . . , 2n − 1

fn+1
2k := fn

k , fn+1
2k+1 :=

fn
k+1 + fn

k

2
+ αhn

(
pnk+1 − pnk

)
,(2.2)

pn+1
2k := pnk , pn+1

2k+1 :=(1 − β)
fn
k+1 − fn

k

hn
+ β

pnk+1 + pnk
2

,(2.3)

and fn+1
2n+1 := fn

2n , pn+1
2n+1 := pn2n . If the scheme is C1-convergent with limit functions f

and p, then

f(tnk ) = fn
k , f ′(tnk ) = p(tnk ) = pnk , tnk := a + khn, k = 0, 1, . . . , 2n.(2.4)

2.1. The vector space of HC1-interpolants. To each choice of (α, β) there
is a vector space

V C1
α,β(P) := {f : P → R : f, p computed by (2.2)−(2.4)}

of HC1-interpolants. If the scheme is C1-convergent we define

V C1
α,β(I) := {f : I → R : f |P ∈ V C1

α,β(P)}.

The HC1-Hermite basis functions {φ0, ψ0, φ1, ψ1} are defined by taking as initial
data the four unit vectors ej = (δi,j)

4
i=1, respectively. They are always defined on P

and the HC1-interpolant corresponding to initial data (f0, p0, f1, p1) can be written
f = f0φ0 + p0ψ0 + f1φ1 + p1ψ1. Since the Hermite basis functions are clearly linearly
independent on P they form a basis for V C1

α,β(P). Thus V C1
α,β(P) and V C1

α,β(I) are
vector spaces of dimension 4.

Let us denote the HC1-interpolant to initial data sampled from a function g by
f = Hg. By induction it is easy to see that for any (α, β) we have g = Hg for all
polynomials g of degree at most one, while g = Hg for all quadratic polynomials if
and only if α = −1/8. We also have g = Hg for all cubic polynomials if and only if
α = −1/8 and β = −1/2 and it can be shown that xk �= Hxk for any integer k ≥ 4.
The fact that the scheme reproduces polynomials up to a certain degree can be used
to give error bounds; see [13, section 5]. Assume (α, β) are chosen so that the scheme
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is C1-convergent. Then there is a constant C(α, β) such that for all intervals I = [a, b]
and all g ∈ Ck(I) we have

‖g −Hg‖L∞(I) ≤ C(α, β)hk‖g(k)‖L∞(I),(2.5)

where h := b− a and k = 2 for most choices of α and β.
Notice some important choices of (α, β):
1. If α = −1/8, β = −1/2, then f is the cubic polynomial known as the Hermite

cubic interpolant. For this choice of parameters, (2.5) holds with k = 4 and
C(α, β) = 1/384.

2. If α = −1/8, β = −1, then f is the Hermite quadratic interpolant, i.e., the
quadratic C1 spline interpolant with one knot at the midpoint of the initial
interval. In this case (2.5) holds with k = 3 and C(α, β) = 1/96; see [13].

3. The EQS-case α = β
4(1−β) with β ∈ [−1, 0) is a one parameter extension of

the quadratic spline case; it was introduced and studied in [13], see also [15].
In this case (2.5) only holds with k = 2 and C(α, β) ≤ 1/48 unless β = −1,
but as we will see this scheme has important shape preserving properties.

2.2. Direct computation of the function or the derivative. We can refor-
mulate (2.2), (2.3) so that only values of p are involved and similarly for f .

Proposition 2.1. For α, β ∈ R, the function f and the derivative p of the
HC1-interpolant satisfy the following relations:
For n = 1, 2, . . . and i = 0, 1, . . . , 2n−1 − 1,⎡

⎢⎢⎣
pn+1
4i

pn+1
4i+1

pn+1
4i+2

pn+1
4i+3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0
μ 1 + β/2 −ν
0 1 0
−ν 1 + β/2 μ

⎤
⎥⎥⎦
⎡
⎣ pn2i
pn2i+1

pn2i+2,

⎤
⎦ .(2.6)

For n ≥ 2 and i = 0, 1, . . . , 2n−2 − 1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn+1
8i

fn+1
8i+1

fn+1
8i+2

fn+1
8i+3

fn+1
8i+4

fn+1
8i+5

fn+1
8i+6

fn+1
8i+7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0
1 + μ 2(2 − μ) μ + ν − 1 −2ν ν

0 4 0 0 0
−μ 2(1 + μ) 2 − μ− ν 2ν −ν
0 0 4 0 0
−ν 2ν 2 − μ− ν 2(1 + μ) −μ
0 0 0 4 0
ν −2ν μ + ν − 1 2(2 − μ) 1 + μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

fn
4i

fn
4i+1

fn
4i+2

fn
4i+3

fn
4i+4,

⎤
⎥⎥⎥⎥⎦,(2.7)

where μ := −2α(1 − β) and ν = μ + β/2.
Proof. The result is clear for equations corresponding to even subscripts of p and

f since the scheme is interpolating. Consider therefore the odd subscript equations.
We will use the notation Δpnk = pnk+1 − pnk , Δfn

k = fn
k+1 − fn

k and Δ2fn
k = Δ(Δfn

k ) =
fn
k+2 − 2fn

k+1 + fn
k .

Let us start by proving (2.6). Using (2.3) with k = 2i and k = 2i + 1

pn+1
4i+1 = (1 − β)

Δfn
2i

hn
+

β

2

(
pn2i+1 + pn2i

)
pn+1
4i+3 = (1 − β)

Δfn
2i+1

hn
+

β

2

(
pn2i+2 + pn2i+1

)
.

(2.8)
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From (2.2) we obtain

Δfn
2i

hn
=

Δfn−1
i

hn−1
+ 2αΔpn−1

i ,

Δfn
2i+1

hn
=

Δfn−1
i

hn−1
− 2αΔpn−1

i .

(2.9)

The f difference on the right can be eliminated by a reordering of (2.3) with k = i
and n → n− 1

(1 − β)
Δfn−1

i

hn−1
= pn2i+1 −

β

2

(
pn−1
i+1 + pn−1

i

)
.(2.10)

Combining (2.8)–(2.10), we find

pn+1
4i+1 = pn2i+1 +

β

2

(
pn2i+1 − pn−1

i+1

)
− μΔpn−1

i ,

pn+1
4i+3 = pn2i+1 +

β

2

(
pn2i+1 − pn−1

i

)
+ μΔpn−1

i ,

and we obtain (2.6).
In terms of differences (2.6) takes the form

Δpn4i = (1 − μ)Δpn−1
2i − νΔpn−1

2i+1,

Δpn4i+1 = μΔpn−1
2i + νΔpn−1

2i+1,

Δpn4i+2 = νΔpn−1
2i + μΔpn−1

2i+1,

Δpn4i+3 = −νΔpn−1
2i + (1 − μ)Δpn−1

2i+1.

(2.11)

Notice that an equivalent formulation of (2.2) is

Δ2fn+1
2k = −2αhnΔpnk

and (2.11) can be written

2Δ2fn+1
8i = (1 − μ)Δ2fn

4i − νΔ2fn
4i+2,

2Δ2fn+1
8i+2 = μΔ2fn

4i + νΔ2fn
4i+2,

2Δ2fn+1
8i+4 = νΔ2fn

4i + μΔ2fn
4i+2,

2Δ2fn+1
8i+6 = −νΔ2fn

4i + (1 − μ)Δ2fn
4i+2.

(2.12)

It remains to extract the values fn+1
8i+j , j = 1, 3, 5, 7 from the previous formulae to

obtain (2.7).
From (2.6) it follows that the new p-values on level n + 1 (n ≥ 1) can be formed

by an affine combination of three p values on the previous level n. This can especially
be used to simplify the proofs of two results in [13] on monotonicity and convexity of
the HC1-interpolant.

For monotonicity the HC1-algorithm is applied in [13, section 3] to test data
(f0, p0, f1, p1) = (0, x, 1, y) computing the corresponding HC1-interpolant f and its
derivative p. For fixed (α, β) the authors determine the set of slopes (x, y) giving
p ≥ 0. Theorem 11 in [13] states that if −1 < β < 0 and 0 > α ≥ β/(4(1 − β)), then

M(α, β) := {(x, y) ∈ R
2
+ : p ≥ 0} = {(x, y) ∈ R

2
+ : x + y ≤ γ} =: T (γ),
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where γ := 2(β−1)
β and R

2
+ = {(x, y) ∈ R : x > 0, y > 0}. Note that any point in R

2
+

belongs to T (γ) for some β < 0. Thus we can obtain an increasing interpolant for
any nonnegative initial slopes x, y by choosing β suitably close to zero. For arbitrary
initial data (f0, p0, f1, p1) on [a, b] one can use the change of variables g(t) :=

(
f(a +

t(b− a))− f0

)
/(f1 − f0) to show that the HC1-interpolant f is increasing if and only

if
(
p0/Δ, p1/Δ

)
∈ M(α, β), where Δ := (f1 − f0)/(b− a).

The proof of Theorem 11 follows immediately from (2.6). Indeed for the assumed
range of (α, β) the elements in the matrix in (2.6) are all nonnegative. Thus if p is
nonnegative on level n − 1 it is nonnegative on level n. Moreover, if (x, y) ∈ T (γ),
then p((a + b)/2) = 1 − β + β(x + y)/2 ≥ 1 − β + β

2
2
β (β − 1) = 0 and the theorem

follows. In fact the theorem holds for −2 ≤ β < 0 as long as we have C1-convergence
of the HC1-interpolant; see the next subsection for convergence results.

For convexity the HC1-algorithm is applied to the test data (f0, p0, f1, p1) =
(0,−x, 0, y) with (x, y) ∈ R

2
+. For fixed (α, β) the set of slopes (x, y) giving an

increasing p, is determined. Theorem 18 in [13] states that if −1 ≤ β < 0 and
γ := (β − 2)/β, then

C(α, β) := {(x, y) ∈ R
2
+ : p is increasing} = {(x, y) ∈ R

2
+ : x/γ ≤ y ≤ xγ} =: C∗(γ)

if and only if α = β/(4(1 − β)). Since any point in R
2
+ belongs to C∗(γ) for β suffi-

ciently close to zero, this result implies that we can obtain a convex HC1-interpolant
in the EQS-case by using any nonnegative values (x, y) as initial data. For arbitrary
initial data (f0, p0, f1, p1) on [a, b] with h = b−a, one can for convexity use the change
of variables g(t) := f(a+ th)− (1− t)f0 − tf1 to show that the HC1-interpolant f is
convex if and only if h∗

(
p1−Δ,Δ−p0

)
∈ C(α, β), where as before Δ := (f1−f0)/h.

To prove Theorem 18 we use (2.11). For the given value of α we have ν = 0 and
moreover 0 ≤ μ ≤ 1. Thus p is increasing on level n if it is increasing on level n− 1.
Since −x = β(γ − 1)x ≤ β(y− x)/2 = p((a+ b)/2) ≤ β(y− γy)/2 = y, p is increasing
on level 1 and the if part of the theorem follows. The only if part is easy; see [13,
p. 293].

In the EQS-case we only need two of the three p-values on the right of (2.6).
Moreover, the derivatives will be sampled from a piecewise linear curve.

Corollary 2.2. In the EQS-case α = β
4(1−β) we have

pn+1
4i+1 = −β

2
pn2i +

(
1 +

β

2

)
pn2i+1,

pn+1
4i+3 =

(
1 +

β

2

)
pn2i+1 −

β

2
pn2i+2.

(2.13)

and

4fn+1
8i+1 =

(
1 − β

2

)
fn
4i + (4 + β)fn

4i+1 −
(

1 +
β

2

)
fn
4i+2

4fn+1
8i+3 =

β

2
fn
4i + (2 − β)fn

4i+1 +

(
2 +

β

2

)
fn
4i+2

4fn+1
8i+5 =

(
2 +

β

2

)
fn
4i+2 + (2 − β)fn

4i+3 +
β

2
fn
4i+4

4fn+1
8i+7 = −

(
1 +

β

2

)
fn
4i+2 + (4 + β)fn

4i+3 +

(
1 − β

2

)
fn
4i+4.

(2.14)
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If in addition β ∈ (−2, 0), then there exist

a = τn0 < τn1 < · · · < τn2n = b,(2.15)

with τn2n−1 = a+b
2 for n ≥ 1, such that

pni = L(τni ), i = 0, 1, . . . , 2n, n = 0, 1, . . . ,(2.16)

where L is the piecewise linear curve connecting the three points (a, p(a)), (a+b
2 , p(a+b

2 )),
(b, p(b)).

Proof. If α = β
4(1−β) , then μ = −β/2 and (2.13) follows from (2.6). Similarly, we

obtain (2.14).
We claim that (2.16) holds with

τn+1
4i = τn2i, τn+1

4i+1 = −β

2
τn2i +

(
1 +

β

2

)
τn2i+1,

τn+1
4i+2 = τn2i+1, τn+1

4i+3 = −β

2
τn2i+2 +

(
1 +

β

2

)
τn2i+1.

(2.17)

Since pn0 = p(a) and pn2n = p(b), we have τn0 = a and τn2n = b for all n ≥ 0.
Moreover, since pn2n−1 = p(a+b

2 ), we see that τn2n−1 = a+b
2 for all n ≥ 1. Thus (2.15)

will follow from (2.17) since the latter involves convex combinations for β ∈ (−2, 0);
(2.17) follows from (2.13) by induction. Suppose (2.16) holds for some n. Since L is
linear on the actual segment we obtain

pn+1
4i+1 = −β

2
L(τn2i) +

(
1 +

β

2

)
L(τn2i+1) = L(τn+1

4i+1),

where τn+1
4i+1 is given by (2.17). The proof of the other τ -relation is similar.

2.3. C1-convergence. To study convergence we observe that it is enough to
consider the interval [0, 1]. Indeed, if I := [a, b] and h := b − a, defining the initial
data g(u) = f(a + hu), g′(u) = hf ′(a + hu), for u ∈ {0, 1}, the construction of f
on [a, b] or g on [0, 1] by (2.1) are equivalent and at step n, g(u) = f(a + uh) and
g′(u) = hf ′(a + hu) for u ∈ {0, 1/2n, . . . , �/2n, . . . , 1}.

In [12] it was shown that if there exist positive constants c, ρ with ρ < 1 such that
for each integer n ≥ 0 we have |Δpni | ≤ cρn for i = 0, 1, . . . , 2n − 1, where

Δpni := p

(
i + 1

2n

)
− p

(
i

2n

)
, i = 0, 1, . . . , 2n − 1,(2.18)

then p has a unique continuous extension to I. Moreover, there is a positive constant
c1 such that for all (x, y) ∈ [0, 1]2

|p(x) − p(y)| ≤ c1|x− y|− log2 ρ,

i.e., p is Hölder continuous with exponent − log2 ρ.
Suppose p is continuous and lim

n→∞
max

0≤i<2n−1
|Δ(f, p)ni | = 0, where

Δ(f, p)ni := 2nΔfn
i − σpni , σpni :=

1

2

(
p

(
i + 1

2n

)
+ p

(
i

2n

))
,(2.19)
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and Δfn
i = f

(
i+1
2n

)
− f

(
i

2n

)
. Then [12] f has a unique continuous extension to

I := [0, 1]. Moreover, f ∈ C1([0, 1]) with f ′ = p. From this discussion we have the
following lemma.

Lemma 2.3. Let Un
i := [Δpni ,Δ(f, p)ni ]T for i = 0, 1, . . . , 2n − 1 and n =

0, 1, 2, . . . . If we can find a vector norm ‖·‖ on R
2 and positive constants c, ρ with

ρ < 1 such that

‖Un
i ‖ ≤ cρn, i = 0, 1, . . . , 2n − 1 and n = 0, 1, . . . ,

then the HC1-algorithm is C1-convergent and f ′ = p is Hölder continuous with expo-
nent − log2 ρ.

We can now show the following proposition.
Proposition 2.4. Algorithm HC1 is C1-convergent for (α, β) ∈ [−1/8, 0) ×

[−2, 1).
Proof. An immediate evaluation gives

Un+1
2i = Λ1U

n
i and Un+1

2i+1 = Λ−1U
n
i for i = 0, 1, . . . , 2n, n = 0, 1, . . . ,

where

Λε =

⎡
⎢⎣

1

2
ε(1 − β)

ε
8α + 1

4

1 + β

2

⎤
⎥⎦ , ε = ±1.(2.20)

Note that the off-diagonal elements of Λε have the same sign for α ≥ −1/8 and
β ≤ 1. We define a vector norm by ‖v‖ := ‖P−1v‖2, where ‖ · ‖2 is the usual

Euclidian vector norm and P :=

[
2
√

1 − β 0
0

√
8α + 1

]
. Then P−1ΛεP is symmetric

and the corresponding matrix operator norm is given by ‖Λε‖ := ‖P−1ΛεP‖2, where
‖A‖2 :=

√
ρ(ATA) is the spectral norm of a matrix A. The eigenvalues of Λε or of

P−1ΛεP are

λ1 =
1

4

(
2+β+

√
(2 − β)2 + 32α(1 − β)

)
, λ2 =

1

4

(
2+β−

√
(2 − β)2 + 32α(1 − β)

)
.

Since P−1ΛεP is symmetric the eigenvalues are real with λ2 < λ1. Now for β ∈ [−2, 1)
and α ∈ [−1/8, 0) we find λ1 < (2 + β +

√
(2 − β)2)/4 = 1 and λ2 > (2 + β −√

(2 − β)2)/4 = β/2 ≥ −1. Thus ρ := ‖Λε‖ = max{|λ1|, |λ2|} < 1 for ε = ±1 and
we have shown that max{‖Un+1

2i ‖, ‖Un+1
2i+1‖} ≤ ρ‖Un

i ‖ so that ‖Un
i ‖ ≤ ρn‖U0

0 ‖ for i =
0, 1, . . . , 2n−1 and n = 0, 1, 2, . . . . The C1-convergence for (α, β) ∈ [−1/8, 0)× [−2, 1)
now follows from Lemma 2.3.

By Proposition 2.4, the HC1-algorithm converges for β ∈ [−1, 0) if α = β
4(1−β) .

We can now extend this result.
Proposition 2.5. If α = β

4(1−β) , then the HC1-algorithm is C1-convergent for

β ∈ (−2, 0).
Proof. For ε = ±1 the matrices Λε in (2.20) take the form

Λε =

(
1
2 ε(1 − β)

ε β+1
4(1−β)

1+β
2

)
.
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Now, for any positive real number θ, we define the norm ‖·‖θ on R
2 by ‖(x, y)‖θ =

|x|+θ|y|. It is easy to prove that for any matrix M = (mij) ∈ R
2×2, the corresponding

matrix operator norm is given by ‖M‖θ := max(|m11| + θ|m21|, |m12|/θ + |m22|).
Choosing θ = 2(1 − β) we find ‖Λ1‖θ = ‖Λ−1‖θ = 1/2(1 + |1 + β|), which is stricly
less than one for −2 < β < 0. Lemma 2.3 now gives the convergence.

We define the convergence region C by

C :=
{
(α, β) : the scheme HC1 is C1-convergent

}
.(2.21)

We have shown that [−1/8, 0) × [−2, 1) ⊂ C and also that {( β
4(1−β) , β) : −2 < β <

0} ⊂ C.

The function f ′ = p is Hölder continuous with exponent − log2 ρ. In the case
where α = β

4(1−β) we have ‖Λ1‖θ = ‖Λ−1‖θ = ρ = ρ(β) = 1/2(1 + |1 + β|) which is

piecewise linear with a minimum for β = −1 and we obtain the best regularity of the
interpolant for β = −1 when f is a quadratic spline.

To illustrate the smoothness properties of a HC1-interpolant we show the Hermite
basis with β = −3/5 and α = β

4(1−β) = −3/32 in Figure 2.1. The spectral radius of

the matrices Λε is 7/10 and hence the derivatives of the Hermite basis functions are
Hölder continuous with exponent ρ = − log2(7/10) ≈ 0.5146.

0 0.2 0.4 0.6 0.8 1
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0 0.2 0.4 0.6 0.8 1
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-1. 5

-1

-0. 5

0

0.5

1

1.5

2

-

Fig. 2.1. Hermite basis and derivatives, corresponding to α = −3/32 and β = −3/5.

Remark. The data f(a), p(a), f(b), p(b) can either have real values or vector values
in R

s, s ≥ 2. In this second case, we look for vector continuous functions f and p
with f ′ = p from I = [a, b] to R

s. The C1-convergence is guaranteed for all (α, β) in
the convergence region C since it suffices to study the convergence independently for
each component of f and p.
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3. Control polygons and subdivision algorithm.

3.1. Control coefficients and control polygons. Suppose we apply the sub-
division scheme HC1 to some real valued data f(a), p(a), f(b), p(b). In order to
obtain a geometric formulation of the scheme we define control coefficients relative to
the interval [a, b] by

a0 = f(a), a1 = f(a) +
h

λ
p(a), a2 = f(b) − h

λ
p(b), a3 = f(b),(3.1)

where h := b − a and λ ≥ 2 is a real number to be chosen. We define the control
points (A0, A1, A2, A3) on [a, b] by

A0 = (a, a0), A1 =

(
a +

h

λ
, a1

)
, A2 =

(
b− h

λ
, a2

)
, A3 = (b, a3),(3.2)

and the control polygon {A0, A1, A2, A3} on [a, b] by connecting the four control
points by straight line segments. If f is the HC1-interpolant, then the parametric
curve (x, f(x)) with x ∈ [a, b] passes through A0 with tangent directions A1 −A0 and
A3 with tangent direction A3 −A2; see Figure 3.1.
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3
 

Fig. 3.1. A HC1-interpolant and its control polygon, β = −3/5, α = −3/32, λ = 16/3.

We can also apply the subdivision scheme HC1 to vector valued data f0, p0, f1, p1

in R
s for some s ≥ 2. We pick an interval [a, b] and use the HC1-algorithm on each

component of f and p. To obtain a geometric formulation of this process we define
control coefficients relative to [a, b] by (3.1) and we define the control points to be the
same as the control coefficients. The computed curve interpolates the first and last
control coefficient and its tangent direction at a0 is a1 − a0, and at a3 the tangent
direction is a3 − a2.

Note that if 4 points a0, a1, a2, a3 in R
s for s ≥ 1 are given we can think of these

as control coefficients of a HC1-interpolant on some finite interval [a, b] and apply the
HC1-algorithm to the data given by

f(a) := a0, p(a) :=
λ

h

(
a1 − a0

)
, f(b) := a3, p(b) :=

λ

h

(
a3 − a2

)
,(3.3)
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where h := b−a. We now derive a parameter independent formulation of this scheme.
In particular suppose (a0, a1, a2, a3) are points in R

s for some s ≥ 1 which are distinct
if s ≥ 2 and let [a, b] be any finite interval.

Using (3.1) and (3.3) we can compute new control coefficients (ā0, ā1, ā2, ā3) for
the interval I1 and new control coefficients (ā3, ā4, ā5, ā6) for I2, and then join them
into control coefficients (ā0, ā1, ā2, ā3, ā4, ā5, ā6) on [a, b]. In the following geometric
formulation of the subdivision scheme we do this computation directly without picking
an underlying interval [a, b]. The proposition is a generalization of [15, Theorem 10].

Proposition 3.1. Suppose ai ∈ R
s for i = 0, 1, 2, 3 and some s ≥ 1. After one

subdivision of the control coefficients (a0, a1, a2, a3) we obtain new control coefficients
(ā0, ā1, ā2, ā3, ā4, ā5, ā6) given by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā0

ā1

ā2

ā3

ā4

ā5

ā6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= S

⎡
⎢⎢⎣
a0

a1

a2

a3

⎤
⎥⎥⎦ :=

1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
2 2 0 0
γ v − β v + β δ

2 − v v v 2 − v
δ v + β v − β γ
0 0 2 2
0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
a0

a1

a2

a3

⎤
⎥⎥⎦ ,(3.4)

where

v = −4αλ,

γ = 2 − v + (2 + β(λ− 2))/λ,

δ = 2 − v − (2 + β(λ− 2))/λ.

(3.5)

Moreover,

ā3 =
1

2
(ā2 + ā4).(3.6)

Proof. Pick any interval [a, b] and let h := b− a. By (3.1)

ā0 = f(a), ā1 = f(a) +
h

2λ
p(a), ā2 = f

(
a + b

2

)
− h

2λ
p

(
a + b

2

)
, ā3 = f

(
a + b

2

)
,

ā6 = f(b), ā5 = f(b) − h

2λ
p(b), ā4 = f

(
a + b

2

)
+

h

2λ
p

(
a + b

2

)
.

From (2.1) and (3.3) we obtain on an interval [a, b] the inverse relations

f(a) = a0, p(a) =
λ

h
(a1 − a0),

f(b) = a3, p(b) =
λ

h
(a3 − a2),

f

(
a + b

2

)
=

a0 + a3

2
− v

4
(a3 − a2 − a1 + a0),

h

2λ
p

(
a + b

2

)
=

1 − β

2λ
(a3 − a0) +

β

4
(a3 − a2 + a1 − a0),

=
2 + β(λ− 2)

λ
(a3 − a0) +

β

4
(a1 − a2).

(3.7)
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But then we see that (ā0, ā1, ā2, ā3, ā4, ā5, ā6)
T = S(a0, . . . , a3)

T , where S is the matrix
in (3.4). Since the sum of rows three and five in the matrix S equals twice row four
the relation (3.6) follows.

For s ≥ 2 the control coefficients and control points are the same and the propo-
sition also gives rules for subdividing the control polygon. The following corollary
holds in general.

Corollary 3.2. Suppose (a0, a1, a2, a3) ∈ R
s for some s ≥ 1. After one subdi-

vision of the corresponding control polygon {A0, A1, A2, A3} we obtain a new control
polygon {Ā0, Ā1, Ā2, Ā3, Ā4, Ā5, Ā6} given by[

Ā0 Ā1 Ā2 Ā3 Ā4 Ā5 Ā6

]T
= S

[
A0 A1 A2 A3

]T
,(3.8)

where S is given by (3.4). Moreover,

Ā3 =
1

2
(Ā2 + Ā4),(3.9)

which means that these control points always lie on a straight line.
Proof. This has already been shown for s ≥ 2 and for the control coefficients

for s = 1. For the control point abscissas we obtain the relation (a, a + h/(2λ), ā −
h/(2λ), ā, ā+h/(2λ), b−h/(2λ), d)T = S(a, a+h/λ, b−h/λ, d)T , where ā = (a+b)/2,
since the scheme HC1 reproduces linear functions. Thus (3.8) and (3.9) also holds
for s = 1.

3.2. A stationary subdivision algorithm. By applying (3.4), we can refor-
mulate the Hermite subdivision scheme HC1 as a stationary subdivision scheme work-
ing on points in R

s.
Starting with 4 points a0, a1, a2, a3 in R

s, s ≥ 1, (α, β) in the convergence region
C, and λ ≥ 2, we define Algorithm SC1 as follows.

At step n = 0, we set a0
0 = a0, a

0
1 = a1, a

0
2 = a2, a

0
3 = a3.

At step n + 1, n ≥ 0, we define⎡
⎢⎢⎢⎢⎢⎢⎣

an+1
6i

an+1
6i+1

an+1
6i+2

an+1
6i+3

an+1
6i+4

an+1
6i+5

⎤
⎥⎥⎥⎥⎥⎥⎦ =

1

4

⎡
⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
2 2 0 0
γ v − β v + β δ

2 − v v v 2 − v
δ v + β v − β γ
0 0 2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

an3i
an3i+1

an3i+2

an3i+3

⎤
⎥⎥⎦ , i = 0, 1, . . . , 2n − 1(3.10)

and an+1
3.2n+1 = an3.2n . Here v, γ, δ are given by (3.5). The matrix (s�,k)�=0,...,5,k=0,...,3

in (3.10) is formed from the first 6 rows of S given by (3.4).
Lemma 3.3. For all n ≥ 1 and for all i = 1, . . . , 2n − 1, we have

an+1
6i = an3i, i = 1, . . . , 2n−1,

an+1
6i+1 − an+1

6i =
1

2

(
an3i+1 − an3i

)
, i = 1, . . . , 2n−1 − 1,

an3i+1 + an3i−1 = 2an3i, i = 1, . . . , 2n − 1.

(3.11)

Proof. The first two equations follow immediately from (3.10). As in the proof of
(3.6) it is clear that

an+1
6i+2 + an+1

6i+4 = 2an+1
6i+3, i = 0, . . . , 2n − 1, n = 0, 1, . . . ,
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and in particular a1
2 + a1

4 = 2a1
3. By (3.11) and induction on n

an+1
6i+1 + an+1

6i−1 =
1

2
(an3i + an3i+1) +

1

2
(an3i−1 + an3i) = 2an3i = 2an+1

6i .

If we define a0
i for i < 0 and i > 3 in any way, the subdivision scheme can be

written an+1
� =

∑
k∈Z

σ�,ka
n
k , � ∈ Z, where σ6i+�,3i+k = s�,k for i ∈ Z, � = 0, . . . , 5,

k = 0, . . . , 3 and σi,j = 0 otherwise. With the definitions recalled in [3], the scheme
is local since σ�,k = 0 for |� − 2k| > 4. Since

∑
k∈Z

σ�,k = 1, it is affine but is not

interpolating in a classical sense since we generally have an+1
6i+2 �= an3i+1.

3.3. Convergence of SC1. The convergence of the subdivision schemes are
usually established by studying the difference sequence. Alternatively convergence
follows since SC1 was derived from HC1. Here are the details.

Theorem 3.4. Let s ≥ 1 and a0, a1, a2, a3 be 4 points in R
s. Suppose λ ≥ 2 and

that (α, β) is in the convergence region C given by (2.21). We build the sequence of
points {ani }n∈N,i=0,...,3.2n by (3.10). Choose any interval I := [a, b] with h := b−a > 0
and define tni := a + ihn, where hn := h2−n for n ∈ N and i = 0, . . . , 2n. Then, there
exists a C1 function f : I → R

s such that for all n ∈ N:

an3i = f(tni ), i = 0, . . . , 2n,

an3i+1 − an3i =
hn

λ
f ′(tni ), i = 0, . . . , 2n − 1,

an3i − an3i−1 =
hn

λ
f ′(tni ), i = 1, . . . , 2n.

For s ≥ 2, let An
i = ani , i = 0, 1, . . . , 3 × 2n and for s = 1, let An

3i = (tni , a
n
3i),

An
3i+1 = (tni + hn

λ , an3i+1), A
n
3i+2 = (tni+1− hn

λ , an3i+2), i = 0, 1, . . . , 2n−1, and An
3×2n =

(b, an3×2n).
Then the sequence of polygons {An

0 , . . . , A
n
3×2n} converges to the curve {f(t),

t ∈ I}.
Proof. We will show that the scheme SC1 generates sequences {fn} and {pn}

of piecewise linear vector functions which interpolate values and derivatives at the
points of Pn = {tn0 , . . . , tn2n}.

We define fn and pn to be linear on [tni , t
n
i+1], i = 0, . . . , 2n−1, and to interpolate

the following values:

fn(tni ) = an3i, pn(tni ) =
λ

hn
(an3i+1 − an3i), i = 0, . . . , 2n − 1,

fn(b) = an3.2n , pn(b) =
λ

hn
(an3×2n − an3×2n−1).

(3.12)

Since tni = tn+1
2i we find from (3.11) and (3.12)

fn+1(tni ) = fn(tni ), pn+1(tni ) = pn(tni ), i = 0, . . . , 2n.(3.13)

Below we prove that, for i = 0, . . . , 2n − 1,

fn+1(tn+1
2i+1) =

fn(tni+1) + fn(tni )

2
+ αhn(pn(tni+1) − pn(tni )),(3.14)

pn+1(tn+1
2i+1) = (1 − β)

fn(tni+1) − fn(tni )

hn
+ β

pn(tni+1) + pn(tni )

2
.(3.15)
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Comparing (3.13), (3.14), and (3.15) with (2.2)–(2.3) we conclude that fn = f
and pn = p on Pn, where f and p are the functions built on ∪Pn by HC1 defined
by (2.2)–(2.4) from the initial data f(a) = a0, p(a) = λ

h (a1 − a0), f(b) = a3, and

p(b) = λ
h (a3 − a2), and then extended to [a, b]. So that if (α, β) ∈ C, then the

sequences fn and pn defined from SC1 by (3.12) converge uniformly to continuous
vector functions f and p defined on [a, b]. Moreover, f ∈ C1([a, b]) and f ′ = p.

Now since f ′ is bounded and an3i+1−an3i = h
λ2n f

′(tni ), i = 0, . . . , 2n−1, we deduce
that an3i+1 − an3i tends uniformly to 0. We conclude that the sequence of polygons
{A0, . . . , A3×2n} tends to the curve {f(t), t ∈ I} since an3i = f(tni ) for i = 0, . . . , 2n.

It remains to prove (3.14) and (3.15). Since α = −v/4λ, for i = 0, . . . , 2n − 1 and
using (3.12) and (3.10),

1

2
(fn(tni+1) + fn(tni )) + αhn(pn(tni+1) − pn(tni ))

=
1

2
(an3i+3 + an3i) −

v

4
(an3i+3 − an3i+2 − an3i+1 + an3i)

= an+1
6i+3 = fn+1(tn+1

2i+1)

so that (3.14) is proved.

Similarly, for (3.15), let i ∈ {0, . . . , 2n − 1}. With the definitions of γ and δ in
(3.5) we find

1 − β

hn
(fn(tni+1) − fn(tni )) +

β

2
(pn(tni+1) + pn(tni ))

=
1 − β

hn
(an3i+3 − an3i) +

βλ

2hn
(an3i+3 − an3i+2 + an3i+1 − an3i)

=
λ

hn+1

(
−
(

1 − β

2λ
+

β

4

)
an3i +

β

4
an3i+1 −

β

4
an3i+2 +

(
1 − β

2λ
+

β

4

)
an3i+3

)

=
1

4

λ

hn+1

(
(δ − 2 + v)an3i + βan3i+1 − βan3i+2 + (γ − 2 + v)an3i+3

)
=

λ

hn+1

(
an+1
6i+4 − an+1

6i+3

)
= pn+1(tn+1

2i+1).

4. Total positivity and consequences.

4.1. Corner cutting and total positivity of the subdivision matrix. Con-
sider now the subdivision process in the EQS-case when α = β

4(1−β) with β ∈ (−2, 0).

Since v = −4αλ = β
β−1λ, or λ = β−1

β v we find from (3.5)

γ = 2 − v +
2 + βλ− 2β

λ
= 2 − v +

2 + (β − 1)v − 2β

(β − 1)v
β =

(2 − v)(v − β)

v
,

and similarly

δ =
(2 − v)(v + β)

v
.
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Thus the subdivision matrix (3.4) can be written

S =
1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
2 2 0 0

(2−v)(v−β)
v v − β v + β (2−v)(v+β)

v
2 − v v v 2 − v

(2−v)(v+β)
v v + β v − β (2−v)(v−β)

v
0 0 2 2
0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(4.1)

In this case, as soon as 1 ≤ v ≤ 2 and v ≥ −β, we can compute the subdivided
control points

(Ā0, Ā1, Ā2, Ā3, Ā4, Ā5, Ā6)
T = S(A0, A1, A2, A3)

T

by successive convex combinations starting with the polygon defined by (A0, A1, A2,
A3). With 2 intermediate quantities B and C we have (see Figure 4.1)

Ā0 = A0, Ā1 =
1

2
A0 +

1

2
A1, Ā5 =

1

2
A2 +

1

2
A3, Ā6 = A3,

B = (1 − v

2
)A0 +

v

2
A1,

C = (1 − v

2
)A3 +

v

2
A2,

Ā2 =
v − β

2v
B +

v + β

2v
C,

Ā4 =
v + β

2v
B +

v − β

2v
C,

Ā3 =
1

2
Ā2 +

1

2
Ā4.

(4.2)

_
A

0
=A

0
 

_
A

1

A
1
 

_
A

2

_
A

3

_
A

4

_
A

5

_
A

6
=A

3

B C 

A
2
 

Fig. 4.1. Corner cutting with α = −3/32, β = −3/5 and v = 1.5.

For v = 2 we obtain B = A1 and C = A2. The value of λ corresponding to v = 2
was considered in [15, Theorem 10], where formulae similar to (4.2) were given.

The equations (4.2) can be formulated as a corner cutting scheme in the following
way. We start with the polygon {A0, A1, A2, A3} and then either cut one of the
previous corners or break an edge in the following sequence of convex combinations:
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1. B = (1 − v
2 )A0 + v

2A1 (replace A1 by B to obtain {A0, B,A2, A3}).
2. C = (1 − v

2 )A3 + v
2A2 (replace A2 by C to obtain {A0, B,C,A3}).

3. Ā1 = (1 − 1
v )A0 + 1

vB (break [A0, B] to obtain {A0, Ā1, B,C,A3}).
4. Ā5 = 1

vC + (1 − 1
v )A3 (break [C,A3] to obtain {A0, Ā1, B,C, Ā5, A3}).

5. Ā2 = v−β
2v B + v+β

2v C (replace B by Ā2 to obtain {A0, Ā1, Ā2, C, Ā5, A3}).
6. Ā4 = v+β

v−β Ā2 − 2β
v−βC (replace C by Ā4 to obtain {A0, Ā1, Ā2, Ā4, Ā5, A3}).

7. Ā3 = (Ā2 + Ā4)/2 (break [Ā2, Ā4] to obtain {A0, Ā1, Ā2, Ā3, Ā4, Ā5, A3}).
Since Ā0 = A0 and Ā6 = A3 we have obtained the subdivided polygon {Ā0, Ā1,

Ā2, Ā3, Ā4, Ā5, Ā6} by carrying out a sequence of simple corner cuts (see, for example,
[14, 8]) on the polygon defined by {A0, A1, A2, A3}.

We recall that a matrix is totally positive if all minors are nonnegative [1]. Then
we obtain the following theorem.

Theorem 4.1. Suppose −2 < β < 0, 1 ≤ v := λβ
β−1 ≤ 2, and λ ≥ 1−β. Then the

matrix S given by (4.1) is totally positive. For each v /∈ [1, 2] there is a β ∈ [−1, 0[
such that S is not totally positive.

Proof. The sequence of simple corner cuts corresponds to a factorization of S into
a product of 7 matrices as follows:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1

2
1
2 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 v+β
v−β

−2β
v−β 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

0 0 v−β
2v

v+β
2v 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1

v 1 − 1
v

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0
1 − 1

v
1
v 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 v

2 1 − v
2

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
1 − v

2
v
2 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Since these matrices are bidiagonal and the entries are nonnegative for the indicated
values of the parameters it is well known that each of the 7 matrices are totaly positive
(see, for example, [8]). Since a product of totally positive matrices is totally positive
we conclude that S is totally positive.

If v /∈ [1, 2], then we can find β ∈ [−1, 0) such that S has at least one negative
entry. Hence S is not totally positive for these v, β.

4.2. The HC1-Bernstein basis. Let a, b be 2 real numbers with a < b and let
us define h := b− a. Recall that the HC1-Hermite basis {φ0, ψ0, φ1, ψ1} on I := [a, b]
forms a basis for the space V C1

α,β(I) of all possible HC1 interpolants on I. The

HC1-Bernstein basis {b0, b1, b2, b3} on I are defined as in [15] from the Hermite basis
on I by

b0 := φ0 −
λ

h
ψ0, b1 :=

λ

h
ψ0, b2 := −λ

h
ψ1, b3 := φ1 +

λ

h
ψ1,(4.3)

where λ ≥ 2 is the parameter used to define the control points; see Figure 4.2. These
functions are clearly linearly independent and so they form a basis for V C1

α,β(I). The
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coefficients in terms of this basis are the control coefficients of f . This follows since

f := f(a)φ0 + p(a)ψ0 + f(b)φ1 + p(b)ψ1, ⇔ f = a0b0 + a1b1 + a2b2 + a3b3,

where a0, a1, a2, a3 are the control coefficients of f on I given by (3.1).
We note that bj(0) = δj,0 and bj(1) = δj,3.
For certain values of the parameters the HC1-Benstein basis is totally positive.
Theorem 4.2. Suppose −2 < β < 0, 1 ≤ v := λβ

β−1 ≤ 2, and λ ≥ 1 − β. Then

the HC1-Bernstein basis is totally positive.
Proof. It is enough to prove the result for the interval [0, 1]. Consider for some

integers n, k with n ≥ 0 and 0 ≤ k ≤ 2n − 1 the interval Ink := [k/2n, (k + 1)/2n].
On Ink the HC1-Hermite basis {φn

0,k, ψ
n
0,k, φ

n
1,k, ψ

n
1,k} can be expressed as

φn
0,k(t) = φ0(2

nt− k), ψn
0,k(t) = 2−nψ0(2

nt− k),

φn
1,k(t) = φ1(2

nt− k), ψn
1,k(t) = 2−nψ1(2

nt− k),

where {φ0, ψ0, φ1, ψ1} is the HC1-Hermite basis on [0, 1]. From (4.3) with h := 2−n,
it then follows that the HC1-Bernstein basis {bn4k, bn4k+1, b

n
4k+2, b

n
4k+3} on Ink can be

expressed in terms of the HC1-Bernstein basis {b0, b1, b2, b3} on [0, 1] as

bn4k+j(t) =

{
bj(2

nt− k), if t ∈ Ink and j = 0, 1, 2, 3

0 otherwise.
(4.4)

We note that

bn4k+j(k/2
n) = δj,0, bn4k+j((k + 1)/2n) = δj,3 for j = 0, 1, 2, 3.(4.5)

Let f ∈ C1[0, 1] be a HC1-interpolant to some initial data. We can then write

f =

m∑
i=0

ani b
n
i ,

where m := 4 × 2n − 1 and where for k = 0, . . . , 2n − 1 the numbers an4k, an4k+1,
an4k+2, a

n
4k+3 are the control points of f on Ink . In vector form, we have f = bnan,

where bn = (bn0 , . . . , b
n
m) is a row vector and an = (an0 , . . . , a

n
m)T a column vector.

Note that bn is a vector of linearly independent functions on [0, 1]. They span a
space containing V C1

α,β [0, 1] as a 4-dimensional subspace. On level n + 1 we have

f = bn+1an+1, where from Proposition 3.1 it follows that an+1 = Ana
n for some

matrix An. The matrix An is a block diagonal with 2n diagonal blocks Ŝ of order
8×4. Indeed, Ŝ is obtained from the matrix S in (3.4) by adding a copy of row 4 as a
new row 5. But then f = bn+1an+1 = bn+1Ana

n = bnan and by linear independence,
it follows that bn = bn+1An. Thus we obtain

b0 = bnAn−1 · · ·A0, n ≥ 1.(4.6)

For distinct points y0, . . . , yp and functions f0, . . . , fq defined on the y’s, we use the
standard notation

M

[
y0, . . . , yp
f0, . . . , fq

]
:=

⎡
⎢⎣f0(y0) · · · fq(y0)

...
...

f0(yp) · · · fq(yp)

⎤
⎥⎦
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for a collocation matrix of order (p + 1) × (q + 1). In order to show total positivity
of b = b0 we choose 0 ≤ x0 < x1 < x2 < x3 ≤ 1 and consider the collocation matrix

M

[
x0, x1, x2, x3

b0, b1, b2, b3

]
. From (4.6) we immediatly obtain

M

[
x0, . . . , x3

b0, . . . , b3

]
= M

[
x0, . . . , x3

bn0 , . . . , b
n
m

]
An−1 · · ·A0, n ≥ 1.(4.7)

Since the matrix S is totally positive, it follows that Ŝ and hence each Ak is totally
positive. We now show that the first matrix on the right of (4.7) is totally positive
provided xj ∈ Pn for j = 0, 1, 2, 3. For this, with m = 2n−1 − 1, we consider the
bigger matrix

B = M

[
y0, . . . , ym+1

bn0 , . . . , b
n
m

]
using all points yi = i/2n, i = 0, 1, . . . , 2n in Pn. From (4.5) it follows that b4k−1(yk) =
1 for k = 1, . . . , 2n, b4k(yk) = 1 for k = 0, . . . , 2n − 1 and bni (yj) = 0 otherwise. Thus
the columns of B have the following form:

B = [e1, 0, 0, e2, e2, 0, 0, e3, e3, 0, 0, e4 . . . , em, 0, 0, em+1],

where ej = (δi,j)
m
i=0 is the jth unit vector in R

m+1. From this explicit form we see that
B is totally positive since each nonzero minor must be the determinant of the identity
matrix. But then all matrices on the right in (4.7) are totally positive and we conclude

that M

[
x0, . . . , x3

b0, . . . , b3

]
is totally positive provided xj ∈ Pn for j = 0, 1, 2, 3. Since ∪Pn

is dense in [0, 1] we conclude that the HC1-Bernstein basis is totally positive.
Corollary 4.3. For p ≥ 0 and m = 4 · 2p − 1, the basis bp = (bp0, . . . , b

p
m) for

the space span(bp) is totally positive on [0, 1].
Proof. Instead of (4.6) we use for n > p the equation

bp = bnAn−1 · · ·Ap.

The argument now proceeds as in the proof of Theorem 4.2 replacing x0, . . . , x3 by
suitable x0, . . . , xm.

It is well known that total positivity of the HC1-Bernstein basis on [0, 1] implies
that the HC1-interpolant f inherits properties of the control polygon P 0 defined by
{a0, a1, a2, a3}; see, for example, [8]. In particular if P0 is positive (monotone, convex)
then f is positive (monotone, convex). We can use this to generalize Theorem 4 in
[15].

Corollary 4.4. Let b0, b1, b2, b3 be the HC1-Bernstein basis on [0, 1] given by
(4.3) with λ = v(β − 1)/β > 2. Suppose also that α = β

4(1−β) , −1 ≤ β < 0, and

1 ≤ v ≤ 2. Then
1. b0 is nonnegative, decreasing, and convex on [0, 1]. If v = 2, then b0(t) = 0

for t ∈ [1/2, 1].
2. b1 is nonnegative and concave on [0, 1/2] and nonnegative, decreasing, and

convex on [1/2, 1].
3. b2 is nonnegative, increasing, and convex on [0, 1/2] and nonnegative and

concave on [1/2, 1].
4. b3 is nonnegative, increasing, and convex on [0, 1]. If v = 2, then b3(t) = 0

for t ∈ [0, 1/2].
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Fig. 4.2. Bernstein basis, β = −3/5, α = −3/32, λ = 16/3.

5.
∑3

j=0 bj(t) = 1 for t ∈ [0, 1].
Proof. From (4.3) it follows that the control points of the function bj is the jth unit

vector ej+1 for j = 0, 1, 2, 3. Thus nonnegativity of bj follows from the nonnegativity
of ej+1 for j = 0, 1, 2, 3. Moreover, the monotonicity and convexity properties of b0
and b3 follow. For the remaining properties of b1 and b2, we carry out one subdivision,
then the proof is similar.

The refined points are given as the columns of the matrix S given by (4.1). When
v = 2 the first column is given by [1, 1/2, 0, 0, 0, 0, 0]. Since the last four entries are
zero it follows that b0(t) = 0 for t ∈ [1/2, 1]. Similarly b3(t) = 0 for t ∈ [0, 1/2].

The interpolation of the constant function f = 1 with p = f ′ = 0 gives a0 = a1 =
a2 = a3 = 1 in (3.1) so that 5. holds.

5. Algorithms for local shape constraints. We base shape preserving algo-
rithms on the extended quadratic spline case given by α = β

4(1−β) . The control point

subdivision matrix for this case is given by (4.1), where we have both β and λ as
free parameters. The matrix simplifies when v = βλ

β−1 = 2 and we will use this one
parameter family of schemes in our algorithms. Using the parameter λ to control the
shape we thus have

α =
β

4(1 − β)
= − 1

2λ
, β =

2

2 − λ
.(5.1)

We restrict our attention to λ ≥ 4. We then have β ∈ [−1, 0) and both algorithms
HC1 and SC1 are convergent. In the limit when n → ∞ we obtain a function
f ∈ C1(I). This function is the quadratic spline interpolant with a knot at the
midpoint of I when λ = 4, while p = f ′ is Hölder continuous on I with exponent

log2

(
1 +

1

λ− 3

)
≈ 1.44

λ− 3
, λ → ∞.

Thus the derivative becomes less regular when λ increases, but it is always C1.
Given s ≥ 1, points a0

j = aj ∈ R
s for j = 0, 1, 2, 3, and λ ≥ 4, the following

algorithm computes sequences {an} of control coefficients an = (an0 , a
n
1 , . . . , a

n
3×2n) in

R
s.



1114 TOM LYCHE AND JEAN-LOUIS MERRIEN

Algorithm 5.1 (CC1
).

1. β = 2/(2 − λ).
2. For n = 0, 1, 2, 3, . . . ,

For i = 0, 1, . . . 2n − 1,
(a) an+1

6i = an3i,
(b) an+1

6i+1 = 1
2 (an3i + an3i+1),

(c) an+1
6i+2 = ( 1

2 − β
4 )an3i+1 + ( 1

2 + β
4 )an3i+2,

(d) an+1
6i+3 = 1

2 (an3i+1 + an3i+2),

(e) an+1
6i+4 = ( 1

2 + β
4 )an3i+1 + ( 1

2 − β
4 )an3i+2,

(f) an+1
6i+5 = 1

2 (an3i+2 + an3i+3),
a3·2n+1 = a3·2n .

The control points corresponding to the computed control coefficients converges
to a C1-curve. More specifically, pick any finite closed interval [a, b] and define hn :=
(b− a)/2n and tnk := a+ khn for k = 0, . . . , 2n, n ≥ 0. By Theorem 3.4 the computed
control points converge uniformly to a C1-curve f : [a, b] → R

s. Moreover,

an3i = f(tni ), i = 0, . . . , 2n,

an3i+1 − an3i =
hn

λ
f ′(tni ), i = 0, . . . , 2n − 1,

an3i − an3i−1 =
hn

λ
f ′(tni ), i = 1, . . . , 2n.

We now discuss shape preservation in the scalar case s = 1 in more detail. We
start by noting that if the initial control polygon is nonnegative (respectively, in-
creasing, convex) on an interval I = [a, b], then the HC1-interpolant computed in
Algorithm 5.1 will be nonnegative (respectively, increasing, convex) on the same in-
terval I. This follows from the total positivity of the Bernstein basis. In addition
to total positivity the main tool will be Corollary 2.2 which says that the p-values of
the interpolant are located on the piecewise linear curve connecting the three points
(a, p(a)), (a+b

2 , p(a+b
2 )), (b, p(b)).

5.1. Nonnegative interpolants. We already remarked that if the initial con-
trol coefficients are nonnegative, then the HC1-interpolant will be nonnegative. No-
tice that the converse is false. For example, the HC1-interpolant to the function f
given on [0, 1] by f(x) := 16(x − 1/4)2 and using λ = 4 is f itself. Note that f is
nonnegative, but the initial control coefficient a1 = −1 is negative.

To give an algorithm for constructing a nonnegative interpolant we assume that

f(a) ≥ 0, f(b) ≥ 0, p(a) ≥ 0 if f(a) = 0, and p(b) ≤ 0 if f(b) = 0.(5.2)

Under these weak assumptions nonnegative initial control coefficients a0, . . . , a3 can
always be obtained by choosing λ sufficiently large. Indeed, since a0 = f(a) ≥ 0
and a3 = f(b) ≥ 0 we only need to make sure that a1 = f(a) + hp(a)/λ ≥ 0 and
a2 = f(b) − hp(b)/λ ≥ 0. If f(a) = 0, then p(a) ≥ 0 and a1 ≥ 0 whenever λ > 0.
Similarly a2 ≥ 0 if f(b) = 0. But then we can choose λ = 4 except possibly in the
two cases f(a) > 0, p(a) < 0 and f(b) > 0, p(b) > 0. If (5.2) holds, then the following
algorithm will compute a nonnegative HC1-interpolant on [a, b].

Algorithm 5.2 (nonnegative interpolant).
1. Compute λ:

(a) λ = 4,
(b) if (f(a) > 0) and (p(a) < 0), then λ = max(λ,−hp(a)/f(a)),
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(c) if (f(b) > 0) and (p(b) > 0), then λ = max(λ, hp(b)/f(b)).
2. Compute initial control coefficients using (3.1).
3. Apply Algorithm 5.1 or Algorithm HC1 with α = − 1

2λ , β = 2
2−λ .

5.2. Monotone interpolants. The monotonicity of the HC1-interpolant is
completely determined by the monotonicity of the initial control polygon. If f is
decreasing, then −f is increasing and we restrict our discussion to increasing inter-
polants.

Proposition 5.3. Suppose that the parameters are chosen according to (5.1).
Then the HC1-interpolant f is nondecreasing on an interval I = [a, b] if and only if
the control polygon on I is nondecreasing.

Proof. By Theorem 4.2 the Bernstein basis is totally positive and it follows that
the HC1-interpolant is nondecreasing if the control polygon is nondecreasing; see [8].
Conversely, suppose the HC1-interpolant f is nondecreasing. Since β = 2/(2−λ), we
obtain from (2.1)

p

(
a + b

2

)
=

1

λ− 2

(
λ
f(b) − f(a)

h
− (p(a) + p(b))

)
.(5.3)

From (3.1), we then find

a1 − a0 =
h

λ
p(a), a2 − a1 =

λ− 2

λ
hp

(
a + b

2

)
, a3 − a2 =

h

λ
p(b).(5.4)

Now p ≥ 0 at all points if f is nondecreasing. It follows that the control coefficients,
and hence the control polygon is nondecreasing.

Consider next the case of a strictly increasing interpolant.
Proposition 5.4. Suppose that the parameters are chosen according to (5.1)

and that the HC1-interpolant f is nondecreasing on an interval I = [a, b]. Then f
is strictly increasing on [a, b] if and only if the two middle control coefficients on I
satisfy a2 > a1.

Proof. Since f is nondecreasing, we have p(a) ≥ 0, p(a+b
2 ) ≥ 0 and p(b) ≥ 0. By

Corollary 2.2, it follows that f is strictly increasing on [a, b] if and only if p(a+b
2 ) > 0.

By (5.4), this happens if and only if a2 > a1.
To give an algorithm to construct a nondecreasing interpolant we assume that

f(a) ≤ f(b), p(a) ≥ 0, p(b) ≥ 0 and p(a) = p(b) = 0 if f(a) = f(b).(5.5)

In the latter case the HC1-interpolant is constant and we can set λ = 4.
Suppose f(b) > f(a). With h := b− a we then have

a0 = f(a) ≤ a1 = f(a) +
h

λ
p(a) ≤ a2 = f(b) − h

λ
p(b) ≤ a3 = f(b)

provided

a2 − a1 = f(b) − f(a) − h

λ

(
p(b) + p(a)

)
≥ 0

or

λ ≥ (p(a) + p(b))h

f(b) − f(a)
.(5.6)
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If (5.5) holds, then the following algorithm will compute a nondecreasing HC1-
interpolant on [a, b]. It will be strictly increasing if f(b) > f(a) and (5.6) holds with
strict inequality.

Algorithm 5.5 (nondecreasing or strictly increasing interpolant).
1. Compute λ:

(a) λ = 4,
(b) If f(a) < f(b), then

(i.) λ1 ≥ (p(a)+p(b))h
f(b)−f(a) ,

(ii.) λ = max (4, λ1).
2. Compute initial control coefficients using (3.1).
3. Apply Algorithm 5.1 or Algorithm HC1 with α = − 1

2λ , β = 2
2−λ .

Note that if the initial control points are located on a straight line then the HC1-
interpolant is the line segment connecting the first and last control point. For if the
initial control points are located on a straight line, then

λ

h
(a1 − a0) =

λ

(λ− 2)h
(a2 − a1) =

λ

h
(a3 − a2)

and by (5.4) the three slopes p(a), p(a+b
2 ), p(b) are all equal. By Corollary 2.2, all

slopes are equal and the function f is a straight line.
In Figure 5.1 we interpolate three sets of data on [0, 1]. In all cases f(0) = −1 and

f(1) = 1. In the first case, with p(0) = 3 and p(1) = 4 we find p(0)+p(1)
f(1)−f(0) = 7/2 < 4.

Suppose in Algorithm 5.5 we choose 7/2 ≤ λ1 ≤ 4 in statement (b)(i). and apply
Algorithm 5.1 with λ = 4. Then the HC1-interpolant is the quadratic spline and
it is strictly increasing since λ > 7/2. In the two other cases we use p(0) = 8 and

p(1) = 4 giving p(0)+p(1)
f(1)−f(0) = 6. With λ = 6 we have p(1/2) = 0 and the interpolant

is increasing, but not strictly increasing. We obtain a strictly increasing interpolant
by using λ = 10. Note that choosing a bigger λ decreases the regularity of the
interpolant. In both cases the first derivative is Hölder continuous, but the exponent
is log2 (4/3) ≈ 0.415 when λ = 6 and log2 (4/3) ≈ 0.193 when λ = 10.

5.3. Convex interpolants. The convexity of the HC1-interpolant is also com-
pletely determined by the convexity of the initial control polygon.

Proposition 5.6. Suppose that the parameters are chosen according to (5.1).
Then f is convex (concave) on an interval I = [a, b] if and only if the control polygon
on I is convex (concave).

Proof. Again by total positivity of the Bernstein basis the HC1-interpolant is
convex (concave) if the control polygon is convex (concave); see [8]. Conversely,
suppose the HC1-interpolant f is convex (concave). Now the control polygon is
convex if and only if the conditions

a1 − a0

h/λ
≤ a2 − a1

h− 2h/λ
≤ a3 − a2

h/λ

hold. But from (5.4) we find

a1 − a0

h/λ
= p(a),

a2 − a1

h− 2h/λ
= p(

a + b

2
),

a3 − a2

h/λ
= p(b).

Since f is convex (concave) the function p is nondecreasing (nonincreasing) and hence
the control polygon is convex (concave).
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Fig. 5.1. Monotone interpolants.

To give an algorithm for constructing a convex (concave) HC1-interpolant on an
interval I = [a, b] we first assume that

p(a) <
f(b) − f(a)

h
< p(b)

(
p(a) >

f(b) − f(a)

h
> p(b)

)
,(5.7)

where h := b− a. We define

λ1 :=
p(b) − p(a)

p(b) − f(b)−f(a)
h

, λ2 :=
p(b) − p(a)

f(b)−f(a)
h − p(a)

(5.8)

and note that the tangents

tc(x) := f(a) + (x− a)p(a), td(x) := f(b) + (x− b)p(b)

of f at a and b intersect at the point (x̄, ȳ) given by

x̄− a

h
=

1

λ1
, and

b− x̄

h
=

1

λ2
.

Moreover, the hypothesis (5.7) is equivalent to a < x̄ < b.
Under the assumption

p(a) ≤ f(b) − f(a)

h
≤ p(b)

(
p(a) ≥ f(b) − f(a)

h
≥ p(b)

)
,(5.9)

the following algorithm will compute a convex (concave) interpolant.
Algorithm 5.7 (convex or concave interpolant).

1. (a) If p(a) = f(b)−f(a)
h �= p(b), choose λ ≥ max (4, λ1),

(b) If p(a) �= f(b)−f(a)
h = p(b), choose λ ≥ max (4, λ2),
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(c) If p(a) �= f(b)−f(a)
h �= p(b), choose λ ≥ max (4, λ1, λ2).

2. Compute initial control points using (3.1).
3. Apply Algorithm 5.1 or Algorithm HC1 with α = − 1

2λ , β = 2
2−λ .
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Fig. 5.2. Convex interpolants.

In Figure 5.2, we have interpolated three sets of data on [0, 1]. In all cases
f(0) = 0.5 and f(1) = 1.

In the first case, p(0) = −1 and p(1) = 3 so that λ1 = 8/5 and λ2 = 8/3. Then
max (4, λ1, λ2) = 4 and we have chosen λ = 4. In this case, the interpolant is the
quadratic spline.

In the two other cases p(0) = −1 and p(1) = 8 so that λ1 = 18/5 and λ2 = 6.
Then max (4, λ1, λ2) = 6. With λ = 6 we have p = −1 on [0, 1/2], while we obtain a
strictly convex interpolant by using λ = 10. Recall that choosing a bigger λ decreases
the regularity of the interpolant.

6. Example. Given data (ti, yi, y
′
i) for i = 1, . . . , n, where t1 < · · · < tn and the

y’s are real numbers, we look for a function f ∈ C1([t1, tn]) that satisfies

f(ti) = yi, f ′(ti) = y′i for i = 1, . . . , n.(6.1)

In addition we would like f to be positive, monotone, linear, or convex on some or all
of the subintervals Ii = [ti, ti+1], i = 1, . . . , n− 1. We assume that

(P) (5.2) holds for the subintervals where we want nonnegativity or positivity,
(M) (5.5) holds for the subintervals where we want a nondecreasing or a strictly

increasing interpolant,
(L) y′i = y′i+1 = yi+1−yi

ti+1−ti
for the subintervals where the interpolant should be

linear,
(C) (5.9) holds for the subintervals where the interpolant should be convex or

concave.
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Fig. 5.3. The function φ and its derivative.

We also require that the given data is consistent with these shape requirements. We
can compute f locally by applying the HC1-algorithm with parameters given by
(5.1) on each subinterval Ii = [ti, ti+1], i = 1, . . . , n − 1 using initial data f(ti) = yi,
f(ti+1) = yi+1, p(ti) = y′i, and p(ti+1) = y′i+1. We obtain C1-convergence and the
desired shape locally by choosing the parameter λi for the interval Ii sufficiently large.

Consider now (6.1) for the example illustrated in Figure 1.1. The data are sampled
from the function φ ∈ C1([0, 4]) given by

φ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 sin(2πt + π/2) + 1

2 , 0 ≤ t ≤ 1,
1 + exp(− 1

1−(t−2)2 + 1), 1 < t ≤ 2,

2, 2 < t ≤ 3,
2 cos(π t−3

2 ), 3 ≤ t ≤ 4.

(6.2)

The function and its first derivative are displayed in Figure 5.3 and it can be shown
that φ is positive on [0, 1], strictly increasing on [1, 2], constant on [2, 3], and concave on
[3, 4]; given n and let (t1, . . . , tn) be a partition of [0, 4]. The points (t2, . . . , tn−1) are
chosen randomly except that 1, 2, 3, are among them. In the example, we used t1 = 0,
tn1 = t5 = 1, tn2 = t9 = 2, tn3 = t13 = 3, and tn = t17 = 4. We want an interpolant f
which is positive on [t1, tn1 ] = [0, 1], strictly increasing on [tn1 , tn2 ] = [1, 2], constant
on [tn2

, tn3 = [2, 3], and concave on [tn3 , tn] = [3, 4].
In the first test we use yi = φ(ti) and exact derivatives y′i = φ′(ti), i = 1, . . . , n.

In this case all λ’s become equal to 4 and the quadratic spline interpolant f1 does the
job. Plots of this function and its first derivative are shown in Figure 6.1. The first
derivative appears continuous and piecewise linear.

For the second test shown in Figure 6.2, we kept the previous data ti and yi = φ(ti)
for i = 1, . . . , n = 17, but we used inexact derivatives given by crosses in the lower part
of the figure. However, the derivatives were chosen so that the relevant requirement
(P), (M), (L), and (C) above are satisfied on each subinterval [ti, ti+1]. We obtain
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Fig. 6.1. Interpolation with exact derivatives.
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a C1-interpolant f2 satisfying the required shape constraints. The computed val-
ues of λi are successively (4, 5.1425, 4, 4, 4, 12.8631, 55.8239, 4, 4, 4, 4, 17.6767, 20.0216,
4.4087, 11.3544). These are the smallest values on each interval. Any larger value
of λi is possible without losing the shape, but then the curve is less regular (smaller
Hölder exponent) on the corresponding interval. This example shows that we can
obtain a desired shape even with more or less random derivative values.
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7. Conclusion. We have shown that the Hermite subdivision scheme introduced
by Merrien in 1992 [11] has many desirable properties. It gives a C1 limit curve for a
wide range of parameters. A one parameter subfamily called the extended quadratic
spline-scheme is particularly interesting. This family can be formulated as a scheme,
the SC1 algorithm, with a totally positive subdivision matrix. When applied in
a piecewise fashion its local nature makes it easy to control the final shape of the
subdivision curve. In many cases a desired shape can be obtained even without
accurate derivative estimates.

The SC1 algorithm can also be used in the parametric case, but a discussion of
this will be deferred to a future paper. We also defer the construction of interpolating
C1 surfaces with shape preserving properties.
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1. Introduction. We are concerned with approximate solutions for the following
system of linear equations:

u = −A∇p, ∇ · u + cp = f in Ω(1.1)

subject to the Neumann boundary condition

∇p · n = 0 on Γ.(1.2)

Here ∇ is the gradient operator; Ω ⊂ R2 is a rectangular domain; n indicates the
outward unit normal vector along Γ; and A = (aij)2×2 is a positive definite matrix
uniformly in Ω. Mixed finite element methods [4] shall be employed to discretize the
system (1.1).
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There is extensive literature on the numerical methods for problem (1.1)–(1.2).
For example, see [5, 9, 18, 26] and the references therein for mixed finite element
methods, finite element methods, and finite difference methods.

Our objective in this paper is to present an analysis for the Richardson extrap-
olation of two different forms for the mixed finite element approximations. It is well
known that the extrapolation method, which was established by Richardson in 1926,
is an efficient procedure for increasing the accuracy of approximation of many prob-
lems in numerical analysis. The effectiveness of this technique relies heavily on the
existence of an asymptotic expansion for the error. The application of this approach
in finite difference methods can be found in the book of Marchuk and Shaidurov
[26]. Also, this technique has been well demonstrated in its applications to the finite
element and the mixed finite element methods for elliptic partial differential equa-
tions [2, 9, 10, 18, 28, 29], parabolic partial differential equations [15], Sobolev- and
viscoelasticity-type equations [19], partial integro-differential equations [18, 20, 21],
Fredholm and Volterra integral equations of the second kind [23, 6], and Volterra
integro-differential equations [24, 32], and to boundary element methods and col-
location methods in [31] and [17], respectively. Recently, multiparameter parallel
algorithms have been considered to accelerate its computational speed [33].

In [28, 29] Richardson extrapolation methods of mixed finite elements have been
investigated for a special case of the problem (1.1)–(1.2): Seek u ∈ H1(Ω) such that

−div(β(x)∇u(x)) = f(x) in Ω,

β(x)∇u · n = 0 on Γ,

(1.3)

where β(x) is a positive, continuous function on the closure of the rectangular domain
Ω, and the approximate solution of accuracy O(h3| log h|) in the L∞-norm has been
obtained for the lowest triangular and rectangular elements, respectively.

In particular, when β(x) = 1 in (1.3), Chen, Ewing, and Lazarov [10] obtained an
asymptotic error expansion of the lowest order Raviart–Thomas rectangular mixed fi-
nite elements for the velocity, such that an approximate solution of accuracy O(h3+1/2)
was gained by the Richardson extrapolation method.

To our best knowledge, there is no analysis for the Richardson extrapolation in
mixed finite element methods for the problem (1.1)–(1.2) because A(x) is a full ma-
trix, such that the high accuracy analysis of mixed finite elements and finite elements,
such as Richardson extrapolation and superconvergence, is much more difficult than
the case (1.3). In this paper, we employ the sharp integral estimates, which were first
proposed by Lin in 1990 (see, for example, [18, 19]), to establish an asymptotic ex-
pansion for the error between the mixed finite element solution and the corresponding
interpolation function of the exact solution to (1.1). These analysis techniques are
quite different from those used in [10] and [28]. Furthermore, by virtue of an interpo-
lation postprocessing method we will obtain an asymptotic expansion of the error in
a mixed finite element solution, so that the Richardson extrapolation of two different
types can be applied to yield mixed finite element approximations of accuracy O(h4)
in the L2-norm which are a half-order higher than those obtained in [10]. In another
paper, we will demonstrate that our new method in this paper can also provide the
approximations of accuracy O(h4| log h|) in the L∞-norm which are one-order higher
than those gained in [28]. In addition, based on the high accuracy approximations,
a class of a posteriori error estimators are constructed for this mixed finite element
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method. Also, other types of superconvergence and a posteriori estimates have been
obtained; see, for example, [1, 3, 7, 8, 16, 25, 27, 30], where the authors studied these
problems on mixed finite element methods for optimal control, quadratic control, and
elliptic problems by using conforming and nonconforming elements via structured and
unstructured meshes.

This paper is organized in the following way. In section 2, we give the approxi-
mate subspace and the variational formula for the problem (1.1)–(1.2) as well as the
Raviart–Thomas projection. The asymptotic expansion for the Raviart–Thomas pro-
jection is derived in section 3. Section 4 is devoted to investigating the asymptotic
expansion of the error between the mixed finite element solution and the Raviart–
Thomas projection of the exact solution to (1.1)–(1.2), on the basis of which the
asymptotic expansion of the mixed finite element approximation is demonstrated by
an interpolation postprocessing method. Hence, the Richardson extrapolation of two
schemes can be used to improve the mixed finite element solution. Moreover, in this
section suggestions are presented on how to form a posteriori error estimators by those
approximations with high convergence rates.

2. The mixed finite element method. In this section we first formulate the
mixed finite element method for the second order elliptic partial differential equation
(1.1)–(1.2).

Let

W := L2(Ω) and V := H(div,Ω) =
{
v ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω)

}
be the standard L2-space on Ω with norm ‖ · ‖0 and the Hilbert space equipped with
the norm

‖v‖V :=
(
‖v‖2

0 + ‖∇ · v‖2
0

) 1
2 ,

respectively. In addition, set

V0 := {v ∈ V : v · n = 0, x ∈ Γ} .

Using Green’s formula and the boundary condition v · n = 0, one finds

(∇p,v) = −(∇ · v, p)(2.1)

for all v ∈ V0. Moreover, from (1.1) and (1.2) we know that the vector-valued function
u satisfies

u(x) · n(x) = 0 on Γ.(2.2)

Thus, noticing (2.1) and (2.2), the weak mixed formulation for the problem (1.1)–(1.2)
is to seek (p,u) ∈ W × V0 such that

a(u,v) − (∇ · v, p) = 0 ∀ v ∈ V0,

(∇ · u, w) + (cp, w) = (f, w) ∀ w ∈ W,

(2.3)
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where a(·, ·) is a bilinear form defined by

a(u,v) =

∫
Ω

A−1u · vdΩ,

and (·, ·) denotes the standard L2-inner product.

Let Th1,h2 be a finite element partition of Ω into uniform rectangles and Vh1,h2
×

Wh1,h2 ⊂ V×W denote a pair of finite element spaces satisfying the Babuška–Brezzi
condition, where h1 and h2 are the mesh sizes in the x- and y-axis, respectively. Even
if there are now several choices for Vh1,h2

and Wh1,h2
, here we will consider only the

Raviart–Thomas space of the lowest order; i.e.,

Vh1,h2 := {vh1,h2 ∈ V : vh1,h2 |e ∈ Q1,0(e) ×Q0,1(e), e ∈ Th1,h2} ,

Wh1,h2 := {wh1,h2 ∈ W : wh1,h2 |e ∈ Q0,0(e), e ∈ Th1,h2} ,
(2.4)

where Qm,n(e) indicates the space of polynomials of degree no more than m and n in
x and y on e, respectively. Following the steps of the paper, the extension to other
stable rectangular element spaces can be also made. Hence, the corresponding discrete
mixed finite element version of (2.3) seeks a pair (ph1,h2 ,uh1,h2) ∈ Wh1,h2 ×V0,h1,h2 ⊂
W × V0 such that

a(uh1,h2
,v) − (∇ · v, ph1,h2

) = 0 ∀ v ∈ V0,h1,h2
,

(∇ · uh1,h2 , w) + (cph1,h2 , w) = (f, w) ∀ w ∈ Wh1,h2 .

(2.5)

Moreover, from (2.3) and (2.5) one derives the following mixed finite element error
equation:

a(u − uh1,h2
,v) − (∇ · v, p− ph1,h2

) = 0 ∀ v ∈ V0,h1,h2
,

(∇ · (u − uh1,h2), w) + (c(p− ph1,h2), w) = 0 ∀ w ∈ Wh1,h2 .

(2.6)

Let us recall that the Raviart–Thomas projection

Π0
h1,h2

× P 0
h1,h2

: V ×W → V0,h1,h2 ×Wh1,h2

is defined by the following conditions:

∫
si

(u − Π0
h1,h2

u) · nids = 0, i = 1, 2, 3, 4,∫
e

(p− P 0
h1,h2

p)de = 0,

(2.7)

where si (i = 1, 2, 3, 4) are the four edges of the rectangle e and ni is the outward
normal direction on si (see the left-hand side of Figure 2.1).
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s2

s1

s3

s4e

n1

n2

n3

n4

(xi, yj)

(xi+1, yj+1)

s2

s1

s3

s4

(xi, yj)

(xi+1, yj+1)

h1

h2

(xe, ye)

Fig. 2.1. The rectangular element e and its four edges.

This projection enjoys the following properties [11]:

(i) P 0
h1,h2

is the local L2(Ω) projection;

(ii) Π0
h1,h2

and P 0
h1,h2

satisfy

(∇ · (u − Π0
h1,h2

u), w) = 0, w ∈ Wh1,h2 ,

(∇ · v, p− P 0
h1,h2

p) = 0, v ∈ Vh1,h2 ;

(2.8)

(iii) the following approximation properties hold:

||u − Π0
h1,h2

u||0 ≤ Ch||u||1,

||∇ · (u − Π0
h1,h2

u)||−s ≤ Ch1+s||∇ · u||1, 0 ≤ s ≤ 1,

||p− P 0
h1,h2

p||−s ≤ Ch1+s||p||1, 0 ≤ s ≤ 1,

(2.9)

where h := max{h1, h2}.

3. The asymptotic expansion. The aim of this section is to give an asymptotic
error expansion for the Raviart–Thomas projection. To this end, we first introduce
some notation for future use.

For any element e ∈ Th1,h2 , let (xe, ye) stand for the center of e and let 2h1 and
2h2 stand for the side lengths of e in the x- and y-direction, respectively. Define two
error functions for x and y as follows [18, 19]:

E(x) :=
1

2
[(x− xe)

2 − h2
1] and F (y) :=

1

2
[(y − ye)

2 − h2
2].

Then, we have

(Em)(r)|si = 0 (i = 2, 4) and (Fm)(r)|si = 0 (i = 1, 3) when r ≤ m− 1,(3.1)

where s2, s4 and s1, s3 are the sides of e parallel to the y-axis and x-axis, respectively
(see the right-hand side of Figure 2.1).
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In addition, it is easy to check that

E =
1

6
(E2)xx − 1

3
h2

1, F =
1

6
(F 2)yy −

1

3
h2

2,

(x− xe)
2 =

1

3
(E2)xx +

1

3
h2

1, (y − ye)
2 =

1

3
(F 2)yy +

1

3
h2

2,

x− xe =
1

6
(E2)xxx, y − ye =

1

6
(F 2)yyy,

E2 =
1

420
(E4)xxxx − 2

21
h2

1(E
2)xx +

2

15
h4

1,

F 2 =
1

420
(F 4)yyyy −

2

21
h2

2(F
2)yy +

2

15
h4

2,

(3.2)

where fxx = ∂2f
∂x2 , fxxx = ∂3f

∂x3 , and so on.
We are now in a position to derive an asymptotic expansion for the error of the

Raviart–Thomas projection in the Raviart–Thomas space of the lowest order.
Theorem 3.1. Assume that u ∈ V ∩ (H4(Ω))2 and αij ∈ H4(Ω) (1 ≤ i, j ≤ 2).

Then we have

(α · (u − Π0
h1,h2

u),v) = −h2
1

3

∫
Ω

[α11(u1)xx + α12(u2)xx]v1dΩ

+
h2

1

3

∫
Ω

[(α22)x(u2)x − α21(u1)xx]v2dΩ

+
h2

2

3

∫
Ω

[(α11)y(u1)y − α12(u2)yy]v1dΩ

− h2
2

3

∫
Ω

[α22(u2)yy + α21(u1)yy]v2dΩ

+O(h4)||u||4||v||0, v ∈ V0,h1,h2
,

where u1, u2 and v1, v2 are the first components and the second components of the
vector-valued functions u and v, respectively, and α = (αij)2×2 is the inverse of the
matrix A : α = A−1.

Proof. Set

(α · (u − Π0
h1,h2

u),v)

=
∑

e∈Th1,h2

∫
e

[α11(u1 − Π0
1,h1,h2

u1) + α12(u2 − Π0
2,h1,h2

u2)]v1de

+
∑

e∈Th1,h2

∫
e

[α21(u1 − Π0
1,h1,h2

u1) + α22(u2 − Π0
2,h1,h2

u2)]v2de

:=
∑

e∈Th1,h2

(I + II).

(3.3)

Since the treatment for II is the same as that for I, we deal only with I in Lemmas
3.2 and 3.3.
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Lemma 3.2. We have under the conditions of Theorem 3.1 that∫
Ω

α11(u1 − Π0
1,h1,h2

u1)v1dΩ = − h2
1

3

∫
Ω

α11(u1)xxv1dΩ +
h2

2

3

∫
Ω

(α11)y(u1)yv1dΩ

+O(h4)||u1||4||v1||0.

Proof. Denoting the first term of I in (3.3) by I1, we obtain from the Taylor
expansion of α11 and (2.9) that

I1 =

∫
e

[α11(x, ye) + (y − ye)(α11)y(x, ye)](u1 − Π0
1,h1,h2

u1)v1de

+
1

2

∫
e

(y − ye)
2(α11)yy(x, ye)(u1 − Π0

1,h1,h2
u1)v1de + O(h4)||u1||1,e||v1||0,e

:= I11 + I12 + I13 + O(h4)||u1||1,e||v1||0,e.

(3.4)

Next we shall deal with I11, I12, and I13, respectively.
It follows from the Taylor expansion of v1 that

I11 =

∫
e

α11(x, ye)(u1 − Π0
1,h1,h2

u1)[v1(xe, y) + (x− xe)(v1)x]de

:= I111 + I112.

(3.5)

From (2.7) we find that ∫
si

(u1 − Π0
1,h1,h2

u1)ds = 0, i = 2, 4,

where s2 and s4 are the two sides of e parallel to the y-axis. Thus, we further obtain
for I111 according to the definition of the error function E(x) and integration by parts
as well as (3.1) that

I111 =

∫
e

α11(x, ye)Exx(u1 − Π0
1,h1,h2

u1)v1(xe, y)de

=

∫
e

E[α11(x, ye)(u1 − Π0
1,h1,h2

u1)]xxv1(xe, y)de

=

∫
e

E[(u1)xxα11(x, ye) + 2(u1 − Π0
1,h1,h2

u1)x(α11)x(x, ye)]v1(xe, y)de

+

∫
e

E(u1 − Π0
1,h1,h2

u1)(α11)xx(x, ye)v1(xe, y)de

:= I1
111 + I2

111 + I3
111.

(3.6)

For I1
111 it follows from (3.2), integration by parts, and the Taylor expansion of

α11(x, ye),

α11(x, ye) = α11(x, y) − Fy(α11)y(x, ξ1),
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where ξ1 is between ye and y, that

I1
111 =

1

6

∫
e

(E2)xx(u1)xxα11(x, ye)v1(xe, y)de−
h2

1

3

∫
e

(u1)xxα11(x, ye)v1(xe, y)de

=
1

6

∫
e

E2[(u1)xxα11(x, ye)]xxv1(xe, y)de−
h2

1

3

∫
e

(u1)xxα11v1(xe, y)de

− h2
1

3

∫
e

(u1)xxF (α11)y(x, ξ1)v1(xe, y)de

= O(h4)||u1||4,e||v1||0,e −
h2

1

3

∫
e

(u1)xxα11v1(xe, y)de

= − h2
1

3

∫
e

(u1)xxα11v1(x, y)de−
h2

1

3

∫
e

E[(u1)xxα11]x(v1)xde

+O(h4)||u1||4,e||v1||0,e

= − h2
1

3

∫
e

α11(u1)xxv1de +
h4

1

9

∫
e

[(u1)xxα11]x(v1)xde

− h2
1

18

∫
e

(E2)xx[(u1)xxα11]x(v1)xde + O(h4)||u1||4,e||v1||0,e

= − h2
1

3

∫
e

α11(u1)xxv1de +
h4

1

9

(∫
s4

−
∫
s2

)
[(u1)xxα11]xv1ds

+O(h4)||u1||4,e||v1||0,e.(3.7)

Here we have used (3.1) and the standard inverse inequality for finite element func-
tions,

h||v1||1,e ≤ C||v1||0,e.

Similarly, we have for I2
111 by (3.2), integration by parts, and the finite element

inverse inequality as well as (2.7) that

I2
111 = − 2

3
h2

1

∫
e

(u1 − Π0
1,h1,h2

u1)x(α11)x(x, ye)v1(xe, y)de

+
1

3

∫
e

(E2)xx(u1 − Π0
1,h1,h2

u1)x(α11)x(x, ye)v1(x, ye)de

= − 2

3
h2

1

(∫
s4

−
∫
s2

)
(u1 − Π0

1,h1,h2
u1)(α11)x(x, ye)v1(xe, y)ds

+
2

3
h2

1

∫
e

(u1 − Π0
1,h1,h2

u1)(α11)xx(x, ye)v1de + O(h4
1)||u1||3,e||v1||0,e

=
2

3
h2

1

∫
e

Exx(u1 − Π0
1,h1,h2

u1)(α11)xx(x, ye)v1(xe, y)de

+ O(h4
1)||u1||3,e||v1||0,e

= O(h4
1)||u1||3,e||v1||0,e.

(3.8)
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Also, we obtain for I3
111 that

I3
111 = O(h4

1)||u1||2,e||v1||0,e.(3.9)

Thus, combining (3.7)–(3.9) with (3.6) yields

I111 = − h2
1

3

∫
e

α11(u1)xxv1de +
h4

1

9

(∫
s4

−
∫
s2

)
[(u1)xxα11]xv1ds

+ O(h4)||u1||4,e||v1||0,e.

(3.10)

Next we turn our attention to I112 in (3.5).

Again, it follows from (3.2), integration by parts, and (2.7) that

I112 =
1

6

∫
e

(E2)xxxα11(x, ye)(u1 − Π0
1,h1,h2

u1)(v1)xde

= − 1

6

∫
e

E2[α11(x, ye)(u1 − Π0
1,h1,h2

u1)]xxx(v1)xde

= − 1

6

∫
e

[
2

15
h4

1 +
1

420
(E4)xxxx

] [
α11(x, ye)(u1 − Π0

1,h1,h2
u1)

]
xxx

(v1)xde

+
1

3

∫
e

1

21
h2

1(E
2)xx

[
α11(x, ye)(u1 − Π0

1,h1,h2
u1)

]
xxx

(v1)xde

= − h4
1

45

∫
e

[α11(x, ye)(u1)xxx + 3(α11)x(x, ye)(u1)xx](v1)xde

− h4
1

45

∫
e

3(α11)xx(x, ye)(u1 − Π0
1,h1,h2

u1)x(v1)xde

− h4
1

45

∫
e

(α11)xxx(x, ye)(u1 − Π0
1,h1,h2

u1)(v1)xde

+O(h4
1)||u1||4,e||v1||0,e.

For the second and third terms of I112, we have from the Cauchy–Schwartz inequality,
(2.9), and the inverse estimate for finite element functions that

∣∣∣∣− h4
1

45

∫
e

[3(α11)xx(x, ye)(u1 − Π0
1,h1,h2

u1)x

+ (α11)xxx(x, ye)(u1 − Π0
1,h1,h2

u1)](v1)xde
∣∣∣

≤ Ch4
1(||u1 − Π0

1,h1,h2
u1||1,e + ||u1 − Π0

1,h1,h2
u1||0,e)||v1||1,e

≤ Ch4
1(Ch1||u1||2,e + Ch1||u1||1,e)||v1||1,e

≤ Ch5
1||u1||2,e||v1||1,e ≤ Ch4

1||u1||2,e||v1||0,e,
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which yields

I112 = −h4
1

45

∫
e

[α11(x, ye)(u1)xxx+3(α11)x(x, ye)(u1)xx](v1)xde+O(h4
1)||u1||4,e||v1||0,e.

Furthermore, we know from the Taylor expansions of α11(x, ye) and (α11)x(x, ye),

α11(x, ye) = α11(x, y) + O(h2), (α11)x(x, ye) = (α11)x(x, y) + O(h2),

and the inverse inequality for finite element functions that

I112 = − h4
1

45

∫
e

[α11(x, y)(u1)xxx + 3(α11)x(x, y)(u1)xx](v1)xde

− h4
1

45

∫
e

[O(h2)(u1)xxx + 3O(h2)(u1)xx](v1)xde + O(h4
1)||u1||4,e||v1||0,e

= − h4
1

45

∫
e

[α11(u1)xxx + 3(α11)x(u1)xx](v1)xde + O(h4
1)||u1||4,e||v1||0,e.

This, together with integration by parts with respect to the variable x, implies

I112

= − h4
1

45

(∫
s4

−
∫
s2

)
[α11(u1)xxx + 3(α11)x(u1)xx]v1ds

+
h4

1

45

∫
e

[α11(u1)xxx + 3(α11)x(u1)xx]xv1de + O(h4
1)||u1||4,e||v1||0,e

= − h4
1

45

(∫
s4

−
∫
s2

)
[α11(u1)xxx + 3(α11)x(u1)xx]v1ds + O(h4

1)||u1||4,e||v1||0,e.

Thus, by means of (3.5) and (3.10), we have

I11 = −h2
1

3

∫
e

α11(u1)xxv1de +
h2

1

9

(∫
s4

−
∫
s2

)
[α11(u1)xx]xv1ds

− h4
1

45

(∫
s4

−
∫
s2

)
[α11(u1)xxx + 3(α11)x(u1)xx]v1ds

+ O(h4)||u1||4,e||v1||0,e.

(3.11)

We shall handle I12 in (3.4) as follows.
Noticing v1|e ∈ Q1,0(e) and (3.1), we get from the definition of the error function

F (y) and integration by parts as well as (3.2) that

I12 = −
∫
e

F (α11)y(x, ye)(u1)yv1de

=
h2

2

3

∫
e

(α11)y(x, ye)(u1)yv1de + O(h4
2)||u1||3,e||v1||0,e.
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Therefore, it follows from the Taylor expansion of (α11)y(x, ye),

(α11)y(x, ye) = (α11)y(x, y) + (ye − y)(α11)yy(x, y) + O(h2
2),

integration by parts, and (3.1) that

I12 =
h2

2

3

∫
e

(α11)y(u1)yv1de−
h2

2

3

∫
e

Fy(α11)yy(u1)yv1de

+ O(h4
2)||u1||3,e||v1||0,e

=
h2

2

3

∫
e

(α11)y(u1)yv1de−
h2

2

3

(∫
s3

−
∫
s1

)
F (α11)yy(u1)yv1ds

+
h2

2

3

∫
e

F [(α11)yy(u1)y]yv1de + O(h4
2)||u1||3,e||v1||0,e

=
h2

2

3

∫
e

(α11)y(u1)yv1de + O(h4
2)||u1||3,e||v1||0,e.

(3.12)

As to I13, one can find from (3.2), the Taylor expansion of v1,

v1(x, y) = v1(xe, y) + (x− xe)(v1)x,

and integration by parts that

I13 =
h2

2

6

∫
e

(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)v1(xe, y)de

+
h2

2

6

∫
e

(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)(x− xe)(v1)xde

+
1

6

∫
e

(F 2)yy(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)v1de

:= I1
13 + I2

13 + O(h4
2)||u1||2,e||v1||0,e.

(3.13)

It follows from (2.7), (3.1), and integration by parts that

I1
13 =

h2
2

6

∫
e

Exx(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)v1(xe, y)de

=
h2

2

6

(∫
s4

−
∫
s2

)
Ex(α11)yy(x, ye)(u1 − Π0

1,h1,h2
u1)v1(xe, y)ds

− h2
2

6

∫
e

Ex[(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)]xv1(xe, y)de

= − h2
2

6

∫
e

Ex[(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)]xv1(xe, y)de

=
h2

2

6

∫
e

E[(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)]xxv1(xe, y)de

= O(h4)||u1||2,e||v1||0,e.

(3.14)
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Analogously, we have via (2.7), (3.1)–(3.2), and integration by parts as well as
the finite element inverse inequality that

I2
13 =

h2
2

36

∫
e

(E2)xxx(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)(v1)xde

=
h2

2

36

∫
e

(E2)x[(α11)yy(x, ye)(u1 − Π0
1,h1,h2

u1)]xx(v1)xde

= O(h4)||u1||2,e||v1||0,e,

which, together with (3.13) and (3.14), implies

I13 = O(h4)||u1||2,e||v1||0,e.(3.15)

Finally, combining (3.11), (3.12), and (3.15) with (3.4) results in

I1 = −h2
1

3

∫
e

α11(u1)xxv1de +
h2

2

3

∫
e

(α11)y(u1)yv1de

+
h4

1

45

(∫
s4

−
∫
s2

)
[4α11(u1)xxx + 2(α11)x(u1)xx]v1ds

+ O(h4)||u1||4,e||v1||0,e.

The line integrals in the above can be canceled if we sum up I1 over all the elements
e ∈ Th1,h2 . In fact, the integral on s2 will be canceled from a similar contribution
from the element to the immediate left of the element e if s2 is an interior edge. In
the case that s2 is a boundary edge, the trace of v1 on s2 is vanishing. To summarize,
we have obtained the expansion stated in Lemma 3.2

Lemma 3.3. Assume that the conditions of Theorem 3.1 hold. Then, there exists
the following asymptotic expansion:∫

Ω

α12(u2 − Π0
2,h1,h2

u2)v1dΩ = − h2
1

3

∫
Ω

α12(u2)xxv1dΩ − h2
2

3

∫
Ω

α12(u2)yyv1dΩ

+ O(h4)||u2||4||v1||0.

Proof. By letting I2 stand for the second term of I in (3.3), one finds from the
Taylor expansion of v1 with respect to xe that

I2 =

∫
e

α12(u2 − Π0
2,h1,h2

u2)[v1(xe, y) + (v1)x(x− xe)]de

:= I21 + I22.

(3.16)

For I21 we derive from the Taylor expansion of α12 with respect to xe and (2.9) that

I21 =

∫
e

[α12(xe, y) + (x− xe)(α12)x(xe, y)](u2 − Π0
2,h1,h2

u2)v1(xe, y)de

+
1

2

∫
e

(x− xe)
2(α12)xx(xe, y)(u2 − Π0

2,h1,h2
u2)v1(xe, y)de

+ O(h4)||u2||2,e||v1||0,e := I211 + I212 + I213 + O(h4)||u2||2,e||v1||0,e.

(3.17)
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Next we shall estimate I211, I212, and I213, respectively.
Similar to I111 we have by means of (2.7), (3.1)–(3.2), and integration by parts

that

I211 =

∫
e

F [α12(xe, y)(u2 − Π0
2,h1,h2

u2)]yyv1(xe, y)de

= − h2
2

3

∫
e

[α12(xe, y)(u2)yy + 2(α12)y(xe, y)(u2 − Π0
2,h1,h2

u2)y]v1(xe, y)de

− h2
2

3

∫
e

(α12)yy(xe, y)(u2 − Π0
2,h1,h2

u2)v1(xe, y)de + O(h4
2)||u2||4,e||v1||0,e

:= I1
211 + I2

211 + I3
211 + O(h4

2)||u2||4,e||v1||0,e.

(3.18)

From the Taylor expansion of α12(xe, y) we know that there exists ξ2 between xe

and x such that

α12(xe, y) = α12(x, y) − Ex(α12)x(ξ2, y),

which, together with the Taylor expansion of v1(xe, y) and (3.2), leads to

I1
211 = − h2

2

3

∫
e

α12(u2)yyv1de +
h2

2

3

∫
e

α12(u2)yyEx(v1)xde

− h2
2

3

∫
e

E[(α12)x(ξ2, y)(u2)yy]xv1(xe, y)de

= − h2
2

3

∫
e

α12(u2)yyv1de−
h2

2

3

∫
e

E[α12(u2)yy]x(v1)xde

+ O(h4)||u2||3,e||v1||0,e

= − h2
2

3

∫
e

α12(u2)yyv1de +
(h2h1)

2

9

(∫
s4

−
∫
s2

)
[α12(u2)yy]xv1ds

− (h2h1)
2

9

∫
e

[α12(u2)yy]xxv1de +
h2

2

18

∫
e

(E2)x[α12(u2)yy]xx(v1)xde

+ O(h4)||u2||3,e||v1||0,e

= − h2
2

3

∫
e

α12(u2)yyv1de +
(h2h1)

2

9

(∫
s4

−
∫
s2

)
[α12(u2)yy]xv1ds

+ O(h4)||u2||4,e||v1||0,e.

(3.19)

For u2, we have by (2.7) that∫
si

(u2 − Π0
2,h1,h2

u2)ds = 0, i = 1, 3,

where s1 and s3 are the two sides of e parallel to the x-axis. Thus, analogous to I2
111

we can also obtain via integration by parts with respect to y and (3.2) that

I2
211 = O(h4

2)||u2||2,e||v1||0,e.(3.20)
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Similarly, we have

I3
211 = O(h4

2)||u2||2,e||v1||0,e,

which, together with (3.18)–(3.20), implies

I211 = − h2
2

3

∫
e

α12(u2)yyv1de +
(h2h1)

2

9

(∫
s4

−
∫
s2

)
[α12(u2)yy]xv1ds

+O(h4)||u2||4,e||v1||0,e.
(3.21)

Also, we can obtain from integration by parts and (3.2) that

I212 = −
∫
e

E(α12)x(xe, y)(u2)xv1(xe, y)de

=
h2

1

3

∫
e

[(α12)x + (xe − x)(α12)xx](u2)xv1(xe, y)de

+ O(h4
1)||u2||3,e||v1||0,e

=
h2

1

3

∫
e

(α12)x(u2)xv1de−
h2

1

3

∫
e

Ex(α12)x(u2)x(v1)xde

+ O(h4
1)||u2||3,e||v1||0,e

=
h2

1

3

∫
e

(α12)x(u2)xv1de−
h4

1

9

∫
e

[(α12)x(u2)x]x(v1)xde

+
h2

1

18

∫
e

(E2)xx[(α12)x(u2)x]x(v1)xde + O(h4
1)||u2||3,e||v1||0,e

=
h2

1

3

∫
e

(α12)x(u2)xv1de−
h4

1

9

(∫
s4

−
∫
s2

)
[(α12)x(u2)x]xv1ds

+ O(h4
1)||u2||3,e||v1||0,e.

(3.22)

Using a similar argument, we obtain

I213 =
h2

1

6

∫
e

(α12)xx(xe, y)(u2 − Π0
2,h1,h2

u2)v1(xe, y)de

+
1

6

∫
e

(E2)xx(α12)xx(xe, y)(u2 − Π0
2,h1,h2

u2)v1(xe, y)de

=
h2

1

6

∫
e

Fyy(α12)xx(xe, y)(u2 − Π0
2,h1,h2

u2)v1(xe, y)de

+ O(h4
1)||u2||2,e||v1||0,e

=
h2

1

6

∫
e

F [(α12)xx(xe, y)(u2 − Π0
2,h1,h2

u2)]yyv1(xe, y)de

+ O(h4
1)||u2||2,e||v1||0,e

= O(h4)||u2||2,e||v1||0,e.

(3.23)
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Combining (3.21)–(3.23) with (3.17) implies

I21 =
h2

1

3

∫
e

(α12)x(u2)xv1de−
h2

2

3

∫
e

α12(u2)yyv1de

− h4
1

9

(∫
s4

−
∫
s2

)
[(α12)x(u2)x]xv1ds

+
(h1h2)

2

9

(∫
s4

−
∫
s2

)
[α12(u2)yy]xv1ds

+ O(h4)||u2||4,e||v1||0,e.

(3.24)

It remains to deal with I22 in (3.16). To this end, we notice that from the Taylor
expansion for α12 we have

I22

=

∫
e

[α12(xe, y) + (x− xe)(α12)x(xe, y)](u2 − Π0
2,h1,h2

u2)(x− xe)(v1)xde

+
1

2

∫
e

(x− xe)
2(α12)xx(xe, y)(u2 − Π0

2,h1,h2
u2)(x− xe)(v1)xde

+O(h4
1)||u2||1,e||v1||0,e := I221 + I222 + I223 + O(h4

1)||u2||1,e||v1||0,e.

(3.25)

The above terms can be estimated as follows. First, we have

I221

= −
∫
e

Eα12(xe, y)(u2)x(v1)xde

=
h2

1

3

∫
e

α12(u2)x(v1)xde−
h2

1

3

∫
e

Exα12(ξ3, y)(u2)x(v1)xde

− 1

6

∫
e

E2α12(xe, y)(u2)xxx(v1)xde

=
h2

1

3

(∫
s4

−
∫
s2

)
α12(u2)xv1ds−

h2
1

3

∫
e

[α12(u2)x]xv1de

+
h2

1

3

∫
e

E[α12(ξ3, y)(u2)x]x(v1)xde

− 1

6

∫
e

[
1

420
(E4)xxxx − 2

21
h2

1(E
2)xx +

2

15
h4

1

]
α12(xe, y)(u2)xxx(v1)xde

= − h2
1

3

∫
e

[α12(u2)x]xv1de +
h2

1

3

(∫
s4

−
∫
s2

)
α12(u2)xv1ds

− h4
1

9

(∫
s4

−
∫
s2

)
[α12(u2)x]xv1ds−

h4
1

45

(∫
s4

−
∫
s2

)
α12(u2)xxxv1ds

+O(h4
1)||u2||4,e||v1||0,e,

(3.26)
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where ξ3 is between xe and x. Also, we have

I222 =
h2

1

3

∫
e

Fyy(α12)x(xe, y)(u2 − Π0
2,h1,h2

u2)(v1)xde

+
1

3

∫
e

E2(α12)x(xe, y)(u2)xx(v1)xde

=
h2

1

3

(∫
s3

−
∫
s1

)
Fy(α12)x(xe, y)(u2 − Π0

2,h1,h2
u2)(v1)xds

− h2
1

3

∫
e

Fy[(α12)x(xe, y)(u2 − Π0
2,h1,h2

u2)]y(v1)xde

+
1

3

∫
e

[
2

15
h4

1 +
1

420
(E4)xxxx − 2

21
h2

1(E
2)xx

]
(α12)x(xe, y)(u2)xx(v1)xde(3.27)

= − (h1h2)
2

9

∫
e

(α12)x(u2)yy(v1)xde

− 2(h1h2)
2

9

(∫
s3

−
∫
s1

)
(α12)xy(xe, y)(u2 − Π0

2,h1,h2
u2)(v1)xds

+
2

45
h4

1

(∫
s4

−
∫
s2

)
(α12)x(u2)xxv1ds + O(h4

1)||u2||3,e||v1||0,e

= − (h1h2)
2

9

(∫
s4

−
∫
s2

)
(α12)x(u2)yyv1ds

+
2

45
h4

1

(∫
s4

−
∫
s2

)
(α12)x(u2)xxv1ds + O(h4

1)||u2||3,e||v1||0,e.

Since

(x− xe)
3 =

1

15
(E3)xxx +

9

15
h2

1Ex,

we have

I223 = −3h2
1

10

∫
e

E(α12)xx(xe, y)(u2)x(v1)xde + O(h4
1)||u2||2,e||v1||0,e

=
h4

1

10

∫
e

(α12)xx(u2)x(v1)xde + O(h4
1)||u2||2,e||v1||0,e

=
h4

1

10

(∫
s4

−
∫
s2

)
(α12)xx(u2)xv1ds + O(h4

1)||u2||2,e||v1||0,e,
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which, together with (3.25)–(3.27), leads to

I22 = −h2
1

3

∫
e

[α12(u2)x]xv1de +
h2

1

3

(∫
s4

−
∫
s2

)
α12(u2)xv1ds

− h4
1

9

(∫
s4

−
∫
s2

)
[α12(u2)x]xv1ds−

h4
1

45

(∫
s4

−
∫
s2

)
α12(u2)xxxv1ds

− (h1h2)
2

9

(∫
s4

−
∫
s2

)
(α12)x(u2)yyv1ds

+
2h4

1

45

(∫
s4

−
∫
s2

)
(α12)x(u2)xxv1ds

+
h4

1

10

(∫
s4

−
∫
s2

)
(α12)xx(u2)xv1ds + O(h4)||u2||4,e||v1||0,e.

(3.28)

Hence, combining (3.24) and (3.28) with (3.16) gives rise to

I2 = −h2
1

3

∫
e

α12(u2)xxv1de−
h2

2

3

∫
e

α12(u2)yyv1de

+
h2

1

3

(∫
s4

−
∫
s2

)
α12(u2)xv1ds

− h4
1

9

(∫
s4

−
∫
s2

){
[(α12)x(u2)x]x + [α12(u2)x]x +

1

5
α12(u2)xxx

}
v1ds

+
h4

1

5

(∫
s4

−
∫
s2

)[
2

9
(α12)x(u2)xx +

1

2
(α12)xx(u2)x

]
v1ds

+
(h1h2)

2

9

(∫
s4

−
∫
s2

)
α12(u2)yyxv1ds + O(h4)||u2||4,e||v1||0,e.

Furthermore, summing up I2 over all the elements e ∈ Th,k, we can obtain the desired
result.

Theorem 3.4. Assume that p, c ∈ H3(Ω). Then we have the following asymp-
totic expansion:

(c(p−P 0
h1,h2

p), w) =
h2

1

3

∫
Ω

cxpxwdΩ+
h2

2

3

∫
Ω

cypywdΩ+O(h4)||p||3||w||0, w ∈ Wh1,h2 .

Proof. It follows from (2.7), (2.9), and the Taylor expansion of c(x, y) at xe that∫
e

c(x, y)(p− P 0
h1,h2

p)wde

=

∫
e

[c(xe, y) + cx(xe, y)(x− xe)](p− P 0
h1,h2

p)wde

+
1

2

∫
e

(x− xe)
2cxx(xe, y)(p− P 0

h1,h2
p)wde + O(h4

1)||p||1,e||w||0,e

:= III1 + III2 + III3 + O(h4
1)||p||1,e||w||0,e.

(3.29)
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For III1 we know from (2.7), (2.9), (3.1)–(3.2), integration by parts, and the Taylor
expansion of c(xe, y) with respect to ye that

III1 =

∫
e

[c(xe, ye) + (y − ye)cy(xe, ye)](p− P 0
h1,h2

p)wde

+
1

2

∫
e

(y − ye)
2cyy(xe, ye)(p− P 0

h1,h2
p)wde + O(h4

2)||p||1,e||w||0,e

= −
∫
e

Fcy(xe, ye)pywde +
h2

2

6

∫
e

cyy(xe, ye)(p− P 0
h1,h2

p)wde

+
1

6

∫
e

(F 2)yycyy(xe, ye)(p− P 0
h1,h2

p)wde + O(h4
2)||p||1,e||w||0,e

=
h2

2

3

∫
e

cy(xe, ye)pywde−
1

6

∫
e

(F 2)yycy(xe, ye)pywde + O(h4
2)||p||2,e||w||0,e

=
h2

2

3

∫
e

cypywde−
h2

2

3

∫
e

Excyxpywde

− h2
2

3

∫
e

Fycyypywde + O(h4
2)||p||3,e||w||0,e

=
h2

2

3

∫
e

cyuywde + O(h4)||p||3,e||w||0,e.(3.30)

We can also get for III2 that

III2 = −
∫
e

Ecx(xe, y)pxwde

=
h2

1

3

∫
e

(cx − Excx)pxwde + O(h4
1)||p||3,e||w||0,e

=
h2

1

3

∫
e

cxpxwde + O(h4
1)||p||3,e||w||0,e.

(3.31)

Analogously, we have

III3 =
h2

1

6

∫
e

cxx(xe, y)(p− P 0
h1,h2

p)wde +
1

6

∫
e

cxx(xe, y)(E
2)xx(p− P 0

h1,h2
p)wde

=
h2

1

6

∫
e

cxxy(xe, ye)Fy(p− P 0
h1,h2

p)wde + O(h4
1)||p||2,e||w||0,e

= O(h4)||p||2,e||w||0,e,

which, together with (3.29)–(3.31), implies∫
e

c(p− P 0
h1,h2

p)wde =
h2

1

3

∫
e

cxpxwde +
h2

2

3

∫
e

cypywde + O(h4)||p||3,e||w||0,e.
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Thus,∫
Ω

c(p− P 0
h1,h2

p)wdΩ =
h2

1

3

∫
Ω

cxpxwdΩ +
h2

2

3

∫
Ω

cypywdΩ + O(h4)||p||3||w||0.

From Theorems 3.1 and 3.4 we immediately obtain the following corollaries.

Corollary 3.5. If u ∈ V
⋂

(H2(Ω))2 and αij ∈ H2(Ω) (1 ≤ i, j ≤ 2), we have

|(α · (u − Π0
h1,h2

u),v)| ≤ Ch2||u||2||v||0, v ∈ V0,h1,h2 .

Corollary 3.6. If p, c ∈ H1(Ω), we have

|(c(p− P 0
h1,h2

p), w)| ≤ Ch2||p||1||w||0, w ∈ Wh1,h2 .

4. The global Richardson extrapolation. In this section we turn to the
asymptotic expansions between the mixed finite element solution and the interpolant
of the exact solution of the problem (1.1)–(1.2), from which asymptotic expansions
between the exact solution and the postprocessed mixed finite element solution by
interpolation are further obtained. The Richardson extrapolations of two different
schemes will be performed to generate high order approximations to the exact solution
of (1.1)–(1.2). First, we recall from [13, 14] the following lemma.

Lemma 4.1. Assume that the matrix A is positive definite. Then, the norms
||u||20 := (u,u) and ||u||2A−1 := (A−1u,u) are equivalent.

4.1. The global Richardson extrapolation in two directions. We first
discuss the extrapolation method of mixed finite element approximation for (1.1)–
(1.2) in both the x and y directions as follows.

Theorem 4.2. Suppose that (p,u) and (ph1,h2 ,uh1,h2
) are the exact solution of

(2.3) and its mixed finite element solution, respectively. Then we have the following
asymptotic expansions under the conditions that p, c ∈ H3(Ω), u ∈ V ∩ (H4(Ω))2,
and αij ∈ H4(Ω) (1 ≤ i, j ≤ 2):

ph1,h2 − P 0
h1,h2

p = h2ξh1,h2 + rh1,h2 , ||rh1,h2 ||0 ≤ Ch4,

uh1,h2 − Π0
h1,h2

u = h2ηh1,h2 + rh1,h2 , ||rh1,h2 ||V ≤ Ch4,

where (ξh1,h2 , ηh1,h2) ∈ Wh1,h2 ×V0,h1,h2 and P 0
h1,h2

× Π0
h1,h2

: W ×V0 → Wh1,h2 ×
V0,h1,h2

is the Raviart–Thomas projection operator.

Proof. Let

ρh1,h2
:= ph1,h2 − P 0

h1,h2
p, θh1,h2 := uh1,h2

− Π0
h1,h2

u.

Then, it follows from (2.6) and (2.8) that

(αθh1,h2
,v) − (ρh1,h2

,∇ · v) = (α(u − Π0
h1,h2

u),v), v ∈ V0,h1,h2
,

(∇ · θh1,h2
, w) + (cρh1,h2

, w) = (c(p− P 0
h1,h2

p), w), w ∈ Wh1,h2
,

(4.1)
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where α = A−1. From Theorems 3.1 and 3.4 we derive that

(α(u − Π0
h1,h2

u),v) = h2Lh1,h2(v) + O(h4)||v||0, v ∈ V0,h1,h2 ,

(c(p− P 0
h1,h2

p), w) = h2Gh1,h2
(w) + O(h4)||w||0, w ∈ Wh1,h2

,

(4.2)

where

Gh1,h2(φ) =
1

3

(
h1

h

)2 ∫
Ω

cxpxφdΩ +
1

3

(
h2

h

)2 ∫
Ω

cypyφdΩ,

Lh1,h2(ψ) = −1

3

(
h1

h

)2 ∫
Ω

[α11(u1)xx + α12(u2)xx]ψ1dΩ

+
1

3

(
h1

h

)2 ∫
Ω

[(α22)x(u2)x − α21(u1)xx]ψ2dΩ

+
1

3

(
h2

h

)2 ∫
Ω

[(α11)y(u1)y − α12(u2)yy]ψ1dΩ

− 1

3

(
h2

h

)2 ∫
Ω

[α22(u2)yy + α21(u1)yy]ψ2dΩ.

Here, ψ = (ψ1, ψ2) is a vector-valued function. Obviously,

Lh1/2,h2/2(ψ) = Lh1,h2
(ψ) and Gh1/2,h2/2(φ) = Gh1,h2

(φ).(4.3)

Let (ξ, η) ∈ W ×V0 and (ξh1,h2
, ηh1,h2

) ∈ Wh1,h2
×V0,h1,h2

be the exact solution
and the mixed finite element solution, respectively, of the following auxiliary problem:

(αη,v) − (ξ,∇ · v) = Lh1,h2
(v), v ∈ V0,

(∇ · η, w) + (cξ, w) = Gh1,h2
(w), w ∈ W.

(4.4)

Then, from (4.1), (4.2), and (4.4) one finds that

(α(θh1,h2 − h2ηh1,h2),v) − (ρh1,h2 − h2ξh1,h2 ,∇ · v) = O(h4)||v||0, v ∈ V0,h1,h2 ,

(∇ · (θh1,h2 − h2ηh1,h2), w) + (c(ρh1,h2 − h2ξh1,h2), w) = O(h4)||w||0, w ∈ Wh1,h2 .

Set

θ∗h1,h2
:= θh1,h2 − h2ηh1,h2 and ρ∗h1,h2

:= ρh1,h2 − h2ξh1,h2 .

Thus, we have

(αθ∗h1,h2
,v) − (ρ∗h1,h2

,∇ · v) = O(h4)||v||0, v ∈ V0,h1,h2 ,

(∇ · θ∗h1,h2
, w) + (cρ∗h1,h2

, w) = O(h4)||w||0, w ∈ Wh1,h2 ,

(4.5)
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which implies by using the standard stability argument [5] that

||θ∗h1,h2
||V + ||ρ∗h1,h2

||0 ≤ C

(
sup

v∈V0,h1,h2

|O(h4)| ||v||0
||v||V

+ sup
w∈Wh,k

|O(h4)| ||w||0
||w||0

)

≤ Ch4.

Thus, the proof of Theorem 4.2 is complete.
Remark 4.1. In another paper we will discuss asymptotic expansions in L∞-norm

that are similar to those in Theorem 4.2 above.
Following the procedure for Theorem 4.2 and utilizing Corollaries 3.5 and 3.6 we

can also prove the following result.
Lemma 4.3. If (ξ, η) ∈ W × V0 and (ξh1,h2

, ηh1,h2
) ∈ Wh1,h2

× V0,h1,h2
are the

variational solution and the mixed finite element solution of (4.4), respectively, then
we have the superconvergent estimate

||ξh1,h2 − P 0
h1,h2

ξ||0 + ||ηh1,h2 − Π0
h1,h2

η||V ≤ Ch2(||ξ||1 + ||η||2).

Now we use the interpolation postprocessing technique to get a global extrapola-
tion approximation of high accuracy for the pressure and the velocity fields. Analogous
to [18, 13, 14] we need to define two postprocessing interpolation operators Π3

4h1,4h2

and P 3
4h1,4h2

to satisfy

Π3
4h1,4h2

Π0
h1,h2

= Π3
4h1,4h2

,

||Π3
4h1,4h2

v||0 ≤ C||v||0 ∀v ∈ V0,h1,h2 ,

||Π3
4h1,4h2

u − u||0 ≤ Ch4||u||4 ∀u ∈ (H4(Ω))2,

P 3
4h1,4h2

P 0
h1,h2

= P 3
4h1,4h2

,

||P 3
4h1,4h2

w||0 ≤ C||w||0 ∀w ∈ Wh1,h2
,

||P 3
4h1,4h2

p− p||0 ≤ Ch4||p||4 ∀p ∈ H4(Ω).

(4.6)

To this end, assume that the rectangular partition Th1,h2 has been obtained from
T4h1,4h2

with mesh size 4h by subdividing each element of T4h1,4h2
into sixteen small

congruent rectangles. Let τ :=
⋃16

i=1ei with ei ∈ Th1,h2
. We define two projection

operators Π3
4h1,4h2

and P 3
4h1,4h2

associated with T4h1,4h2
of degree at most 3 in x and

y on τ , respectively, according to the following conditions:

Π3
4h1,4h2

u|τ ∈ Q4,3(τ) ×Q3,4(τ), P 3
4h1,4h2

u|τ ∈ Q3,3(τ),∫
si

(u − Π3
4h1,4h2

u) · nds = 0, i = 1, 2, . . . , 40, and∫
ei

(p− P 3
4h1,4h2

p) = 0, i = 1, 2, . . . , 16,

(4.7)

where si (i = 1, 2, . . . , 40) is one of the forty sides of the sixteen small elements ei
(i = 1, 2, . . . , 16). It is easy to check that the two operators Π3

4h1,4h2
and P 3

4h1,4h2

defined by (4.7) satisfy the properties described in (4.6).
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Theorem 4.4. We have under the conditions of Theorem 4.2 that

P 3
4h1,4h2

ph1,h2
− p = h2ξ + r∗h1,h2

, ||r∗h1,h2
||0 ≤ Ch4,

Π3
4h1,4h2

uh1,h2 − u = h2η + r∗h1,h2
, ||r∗h1,h2

||0 ≤ Ch4,

where (ξ, η) ∈ W × V0 is the variational solution of (4.4).

Proof. Let

rh1,h2
:= ph1,h2

− P 0
h1,h2

p− h2P 0
h1,h2

ξ.

Then, it follows from Theorem 4.2 and Lemma 4.3 that

||rh1,h2
||0 ≤ Ch4.

Thus, we find from (4.6) that

P 3
4h1,4h2

ph1,h2 − p

= P 3
4h1,4h2

(ph1,h2
− P 0

h1,h2
p) + (P 3

4h1,4h2
p− p)

= P 3
4h1,4h2

(h2P 0
h1,h2

ξ + rh1,h2
) + (P 3

4h1,4h2
p− p)

= h2P 3
4h1,4h2

ξ + P 3
4h1,4h2

rh1,h2 + (P 3
4h1,4h2

p− p)

= h2ξ + h2(P 3
4h1,4h2

ξ − ξ) + P 3
4h1,4h2

rh1,h2
+ (P 3

4h1,4h2
p− p)

= h2ξ + r∗h1,h2
,

where

r∗h1,h2
:= h2(P 3

4h1,4h2
ξ − ξ) + P 3

4h1,4h2
rh1,h2 + (P 3

4h1,4h2
p− p)

with ||r∗h1,h2
||0 ≤ Ch4.

Analogously, we can also get the second equality in the theorem.

Theorem 4.4 guarantees that we can use low order mixed finite element solutions
to generate high order approximations by the Richardson extrapolation. And thus,
we employ, in addition to Wh1,h2

×V0,h1,h2
, the Raviart–Thomas mixed finite element

space Wh1/2,h2/2×V0,h1/2,h2/2 of the lowest order gained by subdividing each element
ei ∈ Th1,h2

into four small congruent elements êi,j ∈ Th1/2,h2/2 (j = 1, 2, 3, 4). Denote
by (ph1/2,h2/2,uh1/2,h2/2) ∈ Wh1/2,h2/2×V0,h1/2,h2/2 and P 3

2h1,2h2
×Π3

2h1,2h2
the mixed

finite element approximation and the Raviart–Thomas projection of degree at most 3
in x and y with respect to this new partition. From Theorem 4.4 we know under the
L2-norm that

P 3
2h1,2h2

ph1/2,h2/2 − p =

(
h

2

)2

ξ + O(h4),
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which produces by applying the Richardson extrapolation that under the L2-norm

4P 3
2h1,2h2

ph1/2,h2/2 − P 3
4h1,4h2

ph1,h2

3
= p + O(h4).(4.8)

Similarly, we have under the L2-norm that

4Π3
2h1,2h2

uh1/2,h2/2 − Π3
4h1,4h2

uh1,h2

3
= u + O(h4).(4.9)

It is very important for a mixed finite element method to have a computable
a posteriori error estimator such that we can assess the accuracy of the approxi-
mate solutions by means of the error estimator in applications. The superconvergent
approximations generated above in (4.8) and (4.9) can be used naturally to produce
efficient a posteriori error estimators. In fact, we have by the same way as in Theorem
5.3 in [13] that the following theorem holds.

Theorem 4.5. Under the assumptions of Theorem 4.4, we have

||p− P 3
2h1,2h2

ph1/2,h2/2||0

=
1

3
||P 3

2h1,2h2
ph1/2,h2/2 − P 3

4h1,4h2
ph1,h2

||0 + O(h4),
(4.10)

||u − Π3
2h1,2h2

uh1/2,h2/2||0

=
1

3
||Π3

2h1,2h2
uh1/2,h2/2 − Π3

4h1,4h2
uh1,h2 ||0 + O(h4).

(4.11)

In addition, if there exist positive constants C1, C2 and ε1, ε2 ∈ (0, 1) such that

||p− P 3
2h1,2h2

ph1/2,h2/2||0 ≥ C1h
4−ε1 ,(4.12)

||u − Π3
2h1,2h2

uh1/2,h2/2||0 ≥ C2h
4−ε2 ,(4.13)

then we have

lim
h→0

3||p− P 3
2h1,2h2

ph1/2,h2/2||0
||P 3

2h1,2h2
ph1/2,h2/2 − P 3

4h1,4h2
ph1,h2 ||0

= 1,(4.14)

lim
h→0

3||u − Π3
2h1,2h2

uh1/2,h2/2||0
||Π3

2h1,2h2
uh1/2,h2/2 − Π3

4h1,4h2
uh1,h2

||0
= 1.(4.15)

From (4.10) we see that the computable error estimator 1
3 ||P 3

2h1,2h2
ph1/2,h2/2 −

P 3
4h1,4h2

ph1,h2
||0 is the principal part of the error ||p − P 3

2h1,2h2
ph1/2,h2/2||0, and can

be used as an a posteriori error indicator to assess the accuracy of the pressure error
||p − P 3

2h1,2h2
ph1/2,h2/2||0. Meanwhile, the condition (4.12) seems to be a reasonable

assumption because O(h2) is the optimal convergence rate of ||p−P 3
2h1,2h2

ph1/2,h2/2||0
according to Theorem 4.4. Also, it can be further seen from (4.14) that the a posteriori
error estimator 1

3 ||P 3
2h1,2h2

ph1/2,h2/2 − P 3
4h1,4h2

ph1,h2
||0 is quite reliable. The same

comments are also valid for (4.11), (4.13), and (4.15).
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4.2. The global Richardson extrapolation in one direction. The approach
introduced in the last subsection has a limitation in that it requires a global and
uniform refinement in both the x- and y-directions, and hence, it wastes computing
time and memory. To overcome this shortcoming, here we propose an extrapolation
method of a partial refinement [18], in which the meshes are refined just in either the
x- or y-direction. Thus, this method is more efficient and is also more suitable for
parallel computations.

Theorem 4.6. Under the conditions of Theorem 4.4 we have

ph1,h2
− P 0

h1,h2
p = h2

1ξ
1
h1,h2

+ h2
2ξ

2
h1,h2

+ r̂h1,h2
, ||r̂h1,h2

||0 ≤ Ch4,

uh1,h2 − Π0
h1,h2

u = h2
1η

1
h1,h2

+ h2
2η

2
h1,h2

+ r̂h1,h2
, ||r̂h1,h2 ||0 ≤ Ch4,

where (ξ1
h1,h2

, η1
h1,h2

), (ξ2
h1,h2

, η2
h1,h2

) ∈ Wh1,h2
× V0,h1,h2

.

Proof. Let (ξ1, η1), (ξ2, η2) ∈ W × V0 and (ξ1
h1,h2

, η1
h1,h2

), (ξ2
h1,h2

, η2
h1,h2

) ∈
Wh1,h2 × V0,h1,h2 be the exact solutions and the mixed finite element solutions, re-
spectively, of the following two auxiliary variational problems:

(αη1,v) − (ξ1,∇ · v) = L1(v), v ∈ V0,

(∇ · η1, w) + (cξ1, w) = L3(w), w ∈ W,

(4.16)

and

(αη2,v) − (ξ2,∇ · v) = L2(v), v ∈ V0,

(∇ · η2, w) + (cξ2, w) = L4(w), w ∈ W,

(4.17)

where

L1(v) = −1

3

∫
Ω

[α11(u1)xx + α12(u2)xx]v1dΩ

+
1

3

∫
Ω

[(α22)x(u2)x − α21(u1)xx]v2dΩ,

L2(v) =
1

3

∫
Ω

[(α11)y(u1)y − α12(u2)yy]v1dΩ

− 1

3

∫
Ω

[α22(u2)yy + α21(u1)yy]v2dΩ,

L3(w) =
1

3

∫
Ω

cxpxwdΩ, L4(w) =
1

3

∫
Ω

cypywdΩ.
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Then, it follows from (4.1) and Theorems 3.1 and 3.4 that

(αθh1,h2
,v) − (ρh1,h2

,∇ · v) = h2
1L1(v) + h2

2L2(v) + O(h4)||v||0, v ∈ V0,h1,h2
,

(∇ · θh1,h2 , w) + (cρh1,h2 , w) = h2
1L3(w) + h2

2L4(w) + O(h4)||w||0, w ∈ Wh1,h2 .

(4.18)

Set

θ̂h1,h2 := θh1,h2 − h2
1η

1
h1,h2

− h2
2η

2
h1,h2

, ρ̂h1,h2 := ρh1,h2 − h2
1ξ

1
h1,h2

− h2
2ξ

2
h1,h2

.

Thus, we know from (4.16)-(4.18) that

(αθ̂h1,h2 ,v) − (ρ̂h,k,∇ · v) = O(h4)||v||0, v ∈ V0,h,k,

(∇ · θ̂h,k, w) + (cρ̂h,k, w) = O(h4)||w||0, w ∈ Wh,k.

(4.19)

Following the steps for the estimates of θ∗h1,h2
and ρ∗h1,h2

in the proof of Theorem 4.2
yields by means of (4.19) that

||ρ̂h1,h2
||0 ≤ Ch4 and ||θ̂h1,h2

||0 ≤ Ch4.

By the same argument as that for Theorem 4.4, we can establish the following
result.

Theorem 4.7. We have under the conditions of Theorem 4.6 that

P 3
4h1,4h2

ph1,h2 − p = h2
1ξ

1 + h2
2ξ

2 + r̃h1,h2
, ||r̃h1,h2 ||0 ≤ Ch4,

Π3
4h1,4h2

uh1,h2
− u = h2

1η
1 + h2

2η
2 + r̃h1,h2

, ||r̃h1,h2
||0 ≤ Ch4,

where (ξ1, η1), (ξ2, η2) ∈ W × V0.
From Theorem 4.7 one can obtain the following unidirectional Richardson extrap-

olation results under the L2-norm:

4(Π3
2h1,4h2

uh1/2,h2
+ Π3

4h1,2h2
uh1,h2/2) − 5Π3

4h1,4h2
uh1,h2

3
= u + O(h4),

4(P 3
2h1,4h2

ph1/2,h2
+ P 3

4h1,2h2
ph1,h2/2) − 5P 3

4h1,4h2
ph1,h2

3
= p + O(h4),

(4.20)

where (ph1/2,h2
,uh1/2,h2

), (ph1,h2/2,uh1,h2/2), and (ph1,h2 ,uh1,h2) are the mixed finite
element solutions corresponding to the meshes Th1/2,h2

, Th1,h2/2, and Th1,h2 , respec-
tively, and Th1/2,h2

as well as Th1,h2/2 are gained by subdividing each element of Th1,h2

into two small congruent rectangles in the x-direction and y-direction, respectively.
In order to fulfill the Richardson extrapolation, in (4.8) and (4.9) we have to com-

pute ph1/2,h2/2, uh1/2,h2/2, and ph1,h2
, uh1,h2

in advance. The numbers of the unknown
variables for ph1/2,h2/2 (or uh1/2,h2/2), and ph1,h2 (or uh1,h2) are O(4h−2) and O(h−2),
respectively. However, in (4.20) we need only compute ph1/2,h2

, ph1,h2/2, ph1,h2 and
uh1/2,h2

, uh1,h2/2, uh1,h2 . The numbers of the unknown variables for ph1/2,h2
(or

uh1/2,h2
), ph1,h2/2 (or uh1,h2/2), and ph1,h2 (or uh1,h2) are O(2h−2), O(2h−2), and
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O(h−2), respectively. Generally speaking, the scale of computing ph1/2,h2
(or ph1,h2/2)

and uh1/2,h2
(or uh1,h2/2) is smaller than that of computing ph1/2,h2/2 and uh1/2,h2/2.

Hence, the computation and storage can be saved. In addition, compared with (4.8)
and (4.9), (4.20) is easy to compute in a parallel manner, so that this method is
more efficient than the normal method described in (4.8) and (4.9), especially for
three-dimensional problems.

Similarly to (4.8) and (4.9), we can also construct a posteriori error estimators
by virtue of (4.20).

Theorem 4.8. Under the conditions of Theorem 4.7 we have

||p− P 3
2h1,4h2

ph1/2,h2
||0

=
1

3
||P 3

2h1,4h2
ph1/2,h2

+ 4P 3
4h1,2h2

ph1,h2/2 − 5P 3
4h1,4h2

ph1,h2 ||0 + O(h4),

||u − Π3
2h1,4h2

uh1/2,h2
||0

=
1

3
||Π3

2h1,4h2
uh1/2,h2

+ 4Π3
4h1,2h2

uh1,h2/2 − 5Π3
4h1,4h2

uh1,h2 ||0 + O(h4),

||p− P 3
4h1,2h2

ph1,h2/2||0

=
1

3
||4P 3

2h1,4h2
ph1/2,h2

+ P 3
4h1,2h2

ph1,h2/2 − 5P 3
4h1,4h2

ph1,h2
||0 + O(h4),

||u − Π3
4h1,2h2

uh1,h2/2||0

=
1

3
||4Π3

2h1,4h2
uh1/2,h2

+ Π3
4h1,2h2

uh1,h2/2 − 5Π3
4h1,4h2

uh1,h2
||0 + O(h4).

Moreover, if there exist positive constants C1, C2, C3, C4 and ε1, ε2, ε3, ε4 ∈ (0, 1)
such that

||p− P 3
2h1,4h2

ph1/2,h2
||0 ≥ C1h

4−ε1 ,

||u − Π3
2h1,4h2

uh1/2,h2
||0 ≥ C2h

4−ε2 ,

||p− P 3
4h1,2h2

ph1,h2/2||0 ≥ C3h
4−ε3 ,

||u − Π3
4h1,2h2

uh1,h2/2||0 ≥ C4h
4−ε4 ,

then we have

lim
h→0

3||p− P 3
2h1,4h2

ph1/2,h2
||0

||P 3
2h1,4h2

ph1/2,h2
+ 4P 3

4h1,2h2
ph1,h2/2 − 5P 3

4h1,4h2
ph1,h2 ||0

= 1,

lim
h→0

3||u − Π3
2h1,4h2

uh1/2,h2
||0

||Π3
2h1,4h2

uh1/2,h2
+ 4Π3

4h1,2h2
uh1,h2/2 − 5Π4h1,4h2uh1,h2 ||0

= 1,

lim
h→0

3||p− P 3
4h1,2h2

ph1,h2/2||0
||4P 3

2h1,4h2
ph1/2,h2

+ P 3
4h1,2h2

ph1,h2/2 − 5P 3
4h1,4h2

ph1,h2 ||0
= 1,

lim
h→0

3||u − Π3
4h1,2h2

uh1,h2/2||0
||4Π3

2h1,4h2
uh1/2,h2

+ Π3
4h1,2h2

uh1,h2/2 − 5Π3
4h1,4h2

uh1,h2 ||0
= 1.
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SUBGRID UPSCALING AND MIXED MULTISCALE FINITE
ELEMENTS∗

TODD ARBOGAST† AND KIRSTEN J. BOYD‡

Abstract. Second order elliptic problems in divergence form with a highly varying leading order
coefficient on the scale ε can be approximated on coarse meshes of spacing H � ε only if one uses
special techniques. The mixed variational multiscale method, also called subgrid upscaling, can be
used, and this method is extended to allow oversampling of the local subgrid problems. The method
is shown to be equivalent to the multiscale finite element method when one uses the lowest order
Raviart–Thomas spaces and provided that there are no fine scale components in the source function
f . In the periodic setting, a multiscale error analysis based on homogenization theory of the more
general subgrid upscaling method shows that the error is O(ε+Hm+

√
ε/H), where m = 1. Moreover,

m = 2 if one uses the second order Brezzi–Douglas–Marini or Brezzi–Douglas–Durán–Fortin spaces
and no oversampling. The error bounding constant depends only on the Hm−1-norm of f and so is
independent of small scales when m = 1. When oversampling is not used, a superconvergence result
for the pressure approximation is shown.

Key words. mixed method, multiscale finite element, subgrid upscaling, variational multiscale
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1. Introduction. Many physical problems can be modeled by a second order
elliptic partial differential equation in space. In many cases, the coefficients of the
equation are highly heterogeneous, which induces fine scale variability in the solution.
Thus the difficulty in approximating the solution on a coarse finite element mesh TH is
that the solution is not fully resolved on this scale. Traditional finite element analysis
fails, and we require some multiscale approximation techniques.

Babuška and Osborn [10, 9] proposed using special finite elements to approximate
the solution. Hughes et al. [23, 24] (see also [13]) developed a more formal framework,
which they called the variational multiscale method. A mixed variant, described as
subgrid upscaling, was developed by Arbogast et al. [7, 3, 4, 6, 5]. Hou and Wu [21]
and Hou, Wu, and Cai [22] took a more direct approach and simply proposed finding a
special finite element basis by solving the problem locally. They called this approach
the multiscale finite element method. A mixed form was developed later by Chen and
Hou [17].

To be more precise, consider a connected, convex polygonal domain Ω ⊆ R
d,

where d = 2 or 3, and a second order, uniformly positive-definite symmetric tensor
a, so that both a and a−1 are uniformly elliptic and uniformly bounded. Suppose
we are also given vectors b and vg. For a set S, let νS be the outward unit normal
to ∂S, and define the function g on ∂Ω by g = vg ·ν, where ν = νΩ. The problem under
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consideration is to find u and p such that

∇ · u = f in Ω,(1.1)

u = −a(∇p− b) in Ω,(1.2)

u · ν = g on ∂Ω.(1.3)

The above system of two first order differential equations is described as a mixed
formulation, and it is preferable to a single second order differential equation for p be-
cause it allows one to enforce the conservation property for the flux (1.1) locally [16].
An example governed by this system is fluid flow in porous media, where the perme-
ability (divided by fluid viscosity) a can vary by many orders of magnitude over a
small spatial displacement, u is the Darcy velocity, p is the fluid pressure, and f mod-
els sources and sinks, i.e., wells, which themselves may be quite small scale features
in the problem.

To approximate the velocity u and pressure p on the coarse mesh TH requires
meeting two competing objectives. First, the approximating spaces must be rich
enough to follow the variability in the solution. While a fully fine scale approximating
space fulfills this objective, it is not computationally efficient. The second objective
is to somehow reduce the problem to the size and complexity of an ordinary coarse
scale approximation. The natural approach is to simplify the representation of the
solution on the coarse element edges in two dimensions, or faces in three dimensions.

In the variational point of view taken by Arbogast et al., the solution space is
decomposed into coarse and fine scale components. This also splits the trial space, and
therefore the equations, into coarse and fine scale parts. The fine scale equations are
local, and thus solvable, and allow one to compute the fine scale part of the solution
from the coarse scale part. The problem then reduces to solving a coarse scale problem
for the coarse part of the solution. Any of the usual mixed finite element spaces can
be used on the coarse scale. To obtain good approximation on the coarse element
edges or faces in this context, it was found that one should use at least second order
accurate velocities on the coarse scale.

The multiscale finite element approach of Hou, Wu, and Cai is based on using
the lowest order Raviart–Thomas (RT0) spaces [27] on the coarse scale. One modifies
the usual coarse basis to incorporate the microstructure in a by solving the system
(1.1)–(1.2) locally. This produces finite elements that vary much like the solution
itself. One simply solves a coarse mesh mixed finite element method using these
perturbed elements. However, because the RT0 spaces are only first order accurate,
they do not give good approximation on the coarse element boundaries. To alleviate
this problem, Hou, Wu, and Cai propose an oversampling technique, in which they
modify each local basis function by sampling the microstructure over a domain larger
than its support. This induces variability in the velocity across coarse element edges
or faces and improves the quality of the solution. Several interesting and important
advances in the design of the mixed multiscale finite elements have been proposed by
Aarnes [1] and Aarnes, Krogstad, and Lie [2].

In this paper, we obtain a connection between the two frameworks. Even though
they appear very different, we show that they are in fact equivalent under mild re-
strictions. We first extend the subgrid upscaling approach to allow oversampling.
Then the two frameworks are equivalent provided that one uses the RT0 spaces, and
provided that there are no fine scale components in f . This last is a subtle point, but
important in porous media applications, since wells are so small in two of their three
dimensions. The variational framework picks up additional terms related to fine scale
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components of the wells that are overlooked in the multiscale finite element approach,
since the latter emphasizes only heterogeneity in a (unless perhaps one supplements
the finite element space with special well elements).

We also show that the multiscale error analysis of Chen and Hou [17] extends
to the variational multiscale framework. In this analysis, one considers a(x) to be
locally periodic of period ε; that is, the scale of the heterogeneity is well defined
as ε. In the case considered in [17], RT0 on simplices, our results are similar and
give an O(ε + H +

√
ε/H) error bound, wherein the bounding constant depends on

Sobolev norms of the smooth homogenized solution but not on the solution itself.
Moreover, the proof is elucidated by the application of variational upscaling ideas
and results in improved error estimates with regard to f , requiring its L2-norm to
be bounded rather than its H1-norm. When oversampling is not used, we obtain
error bounds of O(ε + Hm +

√
ε/H) for RT0 on nonsimplicial elements (m = 1) and

the second order accurate (m ≤ 2) Brezzi–Douglas–Marini (BDM1) [15] spaces in
two dimensions or the Brezzi–Douglas–Durán–Fortin (BDDF1) [14] spaces in three
dimensions. Furthermore, when oversampling is not used, we obtain an important
superconvergence result for the pressure approximation, showing that it is O

(
(ε +

H + (ε/H)1/d−η)(ε + Hm +
√
ε/H)

)
, where η > 0 if d = 2 and η = 0 if d = 3.

The outline of the paper follows. In section 2, we apply the construction in [5] to
obtain equations upscaled to the coarse level. We show that the upscaling correction
terms are antidiffusive and nonlocal in character. We also extend the method to allow
oversampling. In section 3, we extract the multiscale finite elements that are implicit
in the construction and show when the method is equivalent to that of Chen and
Hou [17]. In section 4, we discuss the fundamental inf-sup lemma regarding solvability
and approximability. In the next section, section 5, we state certain homogenization
results that we need for section 6, in which our multiscale convergence result for
the velocity is stated and proved. Due to the structure of the inf-sup lemma, the
error has two components, the optimal velocity error and an error due to the use of
nonconforming spaces. Finally, in section 7, we treat the pressure error and show that
it is superconvergent in the multiscale setting.

We close the introduction by recasting (1.1)–(1.3) in variational form. Let

H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}

with inner product

(v1,v2)H(div;Ω) = (v1,v2)(L2(Ω))d + (∇ · v1,∇ · v2)L2(Ω)

and norm ‖v‖H(div;Ω) = (v,v)
1/2
H(div;Ω). We set

V = H0(div; Ω) = {v ∈ H(div; Ω) : v · ν = 0 on ∂Ω}

and W = L2(Ω)/R with the L2(Ω)-norm, so that ∇ · V = W . We wish to find
u ∈ V + vg and p ∈ W such that

(∇ · u, w) = (f, w) ∀ w ∈ W,(1.4)

(αu,v) = (p,∇ · v) + (b,v) ∀ v ∈ V,(1.5)

where α = a−1 and we denote the L2(S) inner product by (·, ·)S for set S and omit

S from the notation when it is Ω. We assume that a ∈ (L∞(Ω))
d×d

, b ∈
(
L2(Ω)

)d
,
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f ∈ L2(Ω), and vg ∈ H1(Ω). Provided that we have the compatibility condition∫
Ω

f(x) dx =

∫
∂Ω

g(x) ds,

it follows from the standard inf-sup theory of saddle point problems [8, 12, 11, 16, 17]
that (1.4)–(1.5) is indeed uniquely solvable.

2. Approximation by the variational multiscale method. Let TH be a
regular and quasi-uniform partition of Ω into simplices and/or bricks having maximum
diameter H, satisfying the condition that the minimum angle of each E is bounded
below by some positive constant independent of H. Consider the orthogonal direct
sum decomposition

W = W̄ ⊕W ′,

where the coarse space is

W̄ = {w̄ ∈ W : w̄ is constant on each E ∈ TH}

and the “subgrid” space is the orthogonal complement

W ′ = W̄⊥ =

{
w′ ∈ W :

∫
E

w′(x) dx = 0 ∀ E ∈ TH
}
.

Following [5], we can find a (nonorthogonal) direct sum decomposition of V into closed
subspaces V̄ and V′ such that

V = V̄ ⊕ V′,

V̄ ⊆
{
v̄ ∈ V : ∇ · v̄ ∈ W̄

}
,

V′ =
{
v′ ∈ V : ∇ · v′ ∈ W ′ and v′ · νE = 0 on ∂E ∀E ∈ TH

}
;

moreover, ∇·V̄ = W̄ and ∇·V′ = W ′. Thus we can uniquely decompose the solution
(u, p) ∈ (V + vg) ×W of (1.4)–(1.5) as

u = ū + u′ + vg,(2.1)

p = p̄ + p′,(2.2)

where ū ∈ V̄, u′ ∈ V′, p̄ ∈ W̄ , and p′ ∈ W ′.

2.1. Subgrid closure operators. By using the above decompositions and re-
stricting the test functions in (1.4)–(1.5) to (v′, w′) ∈ V′ ×W ′, we obtain the subgrid
equation

(∇ · u′, w′) = (f −∇ · vg, w
′) ∀ w′ ∈ W ′,(2.3)

(α(ū + u′),v′) = (p′,∇ · v′) + (b − αvg,v
′) ∀ v′ ∈ V′,(2.4)

where certain terms have vanished due to the orthogonality of W̄ and W ′ and the
property that ∇ · V̄ = W̄ . Note that for our problem, p̄ does not appear in the above
equation (see [5] for handling the general case).

We now define the subgrid closure operators mapping each ū ∈ V̄ to some u′ ∈ V′

and p′ ∈ W ′. Each is an affine operator consisting of a linear and a constant part
depending on ū, the coarse part of u, so we write

u′ = u′(ū) = û′(ū) + ũ′,(2.5)

p′ = p′(ū) = p̂′(ū) + p̃′.(2.6)
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More generally, for each v ∈ H(div; Ω), by (2.3)–(2.4), (û′(v), p̂′(v)) ∈ V′ × W ′ is
defined by

(∇ · û′(v), w′) = 0 ∀ w′ ∈ W ′,(2.7)

(α (v + û′(v)) ,v′) = (p̂′(v),∇ · v′) ∀ v′ ∈ V′,(2.8)

and (ũ′, p̃′) ∈ V′ ×W ′ is defined by

(∇ · ũ′, w′) = (f −∇ · vg, w
′) ∀ w′ ∈ W ′,(2.9)

(αũ′,v′) = (p̃′,∇ · v′) + (b − αvg,v
′) ∀ v′ ∈ V′.(2.10)

These equations are well-posed on each E ∈ TH [5].
For future reference, we note that on each E ∈ TH ,

− a∇p̂′(v) = v + û′(v),(2.11)

− a∇p̃′ = ũ′ − ab + vg,(2.12)

because V′|E = H0(div;E) is the full space. Moreover, W ′|E = L2(E)/R, so

∇ · û′(v) = 0.(2.13)

2.2. The upscaled equation. We now define a vector space V̂ ⊆ V by

V̂ =
{
v̂ ∈ V : v̂ = v̄ + û′(v̄) for some v̄ ∈ V̄

}
,

restrict the test functions in (1.4)–(1.5) to be in V̂×W̄ , use the various decompositions,
and introduce the notation

f̂ = f −∇ · vg and b̂ = b − α(vg + ũ′).

Thus we rewrite (1.4)–(1.5) in upscaled form as the problem of finding (û, p̄) ∈ V̂×W̄
such that

(∇ · û, w̄) = (f̂ , w̄) ∀ w̄ ∈ W̄ ,(2.14)

(αû, v̂) = (p̄,∇ · v̂) + (b̂, v̂) ∀ v̂ ∈ V̂,(2.15)

where now

u = ū + û′(ū) + ũ′ + vg = û + ũ′ + vg.(2.16)

By [5, Theorem 4.6], the above problem has a unique solution.

2.3. Character of the upscaled operator. With v′ = û′(ū) in (2.8), we note
that

(αû′(ū), v̄) = −(αû′(ū), û′(v̄)),

so (1.5) with v = v̄ ∈ V̄ enables us to rewrite the upscaled equation (2.15) as

(αū, v̄) − (αû′(ū), û′(v̄)) = (p̄,∇ · v̄) + (b̂, v̄) ∀ v̄ ∈ V̄.(2.17)

Thus the second term on the left-hand side, the primary subscale correction, is purely
antidiffusive on the coarse scale, as we should expect. Moreover, there is an affine
correction term related to subscales of b, f , and vg through ũ′.
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Next let Gx(y) be the Green’s function on a coarse element E, defined by

−∇ · a∇Gx = δx − 1/|E| in E,

− a∇Gx · νE = 0 on ∂E,

where δx is the Dirac mass at x ∈ E and the average of Gx vanishes, and where
vertical bars around a set in R

d denotes d-dimensional or (d−1)-dimensional Lebesgue
measure, as appropriate. Then on E,

p(x) = (−∇ · a∇Gx + 1/|E|, p)E
= (a∇Gx,∇p)E + p̄

= −(∇Gx,u − ab)E + p̄

= −(∇Gx, ū − ab)E − (∇Gx,u
′ + vg)E + p̄

= −(∇Gx, ū − ab)E + (Gx,∇ · (u′ + vg))E − (Gx,vg · νE)∂E + p̄

= −(∇Gx, ū − ab)E + (Gx, f
′)E − (Gx,vg · νE)∂E + p̄,

where f ′ is defined by the decomposition f = f̄ + f ′ ∈ W̄ ⊕ W ′ and we use that
Gx ∈ W ′ to replace (Gx,∇ · (u′ + vg))E by (Gx,∇ · u)E = (Gx, f

′). Now

α(x)u(x) − b = −∇p = (∇x∇yGx, ū − ab)E − (∇xGx, f
′)E + (∇xGx,vg · νE)∂E ,

so the diffusive and b terms of (1.5), tested on the coarse scale, are

(αu − b, v̄)E =

∫
E

∫
E

ū(y) · ∇x∇yGx(x, y) · v̄(x) dy dx(2.18)

−
∫
E

∫
E

b(y) · a(y)∇x∇yGx(x, y) · v̄(x) dy dx

−
∫
E

∫
E

f ′(y)∇xGx(x, y) · v̄(x) dy dx

+

∫
E

∫
∂E

vg · νE(y)∇xGx(x, y) · v̄(x) ds(y) dx,

so the upscaled inverse permeability tensor is a nonlocal operator (confined to E)
related to a(y)∇x∇yGx(y).

2.4. Oversampling. For each element E ∈ TH , choose some larger set E∗ ⊇ E
such that E∗ ⊆ Ω, E∗ is the same shape as E (i.e., a simplex or brick, again such
that the minimum angle is bounded below by some positive constant independent of
H and E), and, for some C > 0 independent of H and E, diam(E∗) ≤ C diam(E).
Locally on each E∗, recalling the definition of W ′ and properties of V′, we define
function spaces W ′

∗(E∗) = L2(E∗)/R and

V′
∗(E∗) =

{
v′
∗ ∈ V : ∇ · v′

∗ ∈ W ′
∗(E∗) and v′

∗ · νE∗ = 0 on ∂E∗
}
.(2.19)

By analogy to (2.7)–(2.8), we now define the linear part of the oversampled subgrid
closure operators mapping any v ∈ V to some (û′

∗(v), p̂′∗(v)) ∈ V′
∗(E∗) × W ′

∗(E∗)
defined by

(∇ · û′
∗(v), w′

∗)E∗ = 0 ∀ w′
∗ ∈ W ′

∗(E∗),(2.20)

(α (v + û′
∗(v)) ,v′

∗)E∗ = (p̂′∗(v),∇ · v′
∗)E∗ ∀ v′

∗ ∈ V′
∗(E∗).(2.21)
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Note that if E∗ = E, then the operators û′
∗(·) and û′(·) coincide. We also define the

oversampled constant parts of the subgrid closure operators corresponding to (2.9)–
(2.10) as (ũ′

∗, p̃
′
∗) ∈ V′

∗(E∗) ×W ′
∗(E∗) defined by

(∇ · ũ′
∗, w

′
∗)E∗ = (f −∇ · vg, w

′
∗)E∗ ∀ w′

∗ ∈ W ′
∗(E∗),(2.22)

(αũ′
∗,v

′
∗)E∗ = (p̃′∗,∇ · v′

∗)E∗ + (b − αvg,v
′
∗)E∗ ∀ v′

∗ ∈ V′
∗(E∗).(2.23)

Usually we consider these quantities only locally on E, so we need not concern our-
selves with the overlap of the E∗’s. Also note that ∇ · û′

∗(v) = 0 for all v ∈ V.

2.5. Discretization. In practice, we must approximate the solution to the sub-
grid problems (2.20)–(2.21) and (2.22)–(2.23). Since these problems are small (i.e.,
localized to E∗), we assume that we can fully resolve the fine scales in these problems
on a fine subgrid mesh and thereby obtain a sufficiently accurate approximation (see
also [5]). Thus, we will discuss only approximation of the coarse space in this paper,
and we assume that the subgrid is solved exactly.

Let V̄H × W̄H ⊆ V ×W be the lowest order Raviart–Thomas (RT0) [27] space
or the lowest order Brezzi–Douglas–Marini (BDM1) [15] space in two dimensions or
the Brezzi–Douglas–Durán–Fortin (BDDF1) [14] space in three dimensions. In each
case, the pressure approximation space is the space of piecewise constants, so we have
W̄H = W̄ . Let EE be the analytic extension operator from E to E∗, and define the
function space

V̂H,∗ =

{
v̂H,∗ : v̂H,∗ = v̄H +

∑
E∈TH

û′
∗(EEv̄H)|E for some v̄H ∈ V̄H

}
,(2.24)

wherein, technically, EEv̄H = EE(v̄H |E). Now V̂H,∗ ⊆ X, where

X =
⊕

E∈TH

H(div;E)(2.25)

is a Banach space with the norm ‖v‖X =
(∑

E∈TH
‖v‖2

H(div;E)

)1/2
. Clearly V =

H0(div; Ω) ⊆ X, but if E∗ 
= E for any E ∈ TH , then V̂H,∗ 
⊆ V and we have a
nonconforming finite element space.

We approximate (2.14)–(2.15) by the problem of finding (ûH , p̄H) ∈ V̂H,∗ × W̄H

such that ∑
E∈TH

(∇ · ûH , w̄H)E = (f̂ , w̄H) ∀ w̄H ∈ W̄H ,(2.26)

(αûH , v̂H) =
∑

E∈TH

(p̄H ,∇ · v̂H)E + (b̂∗, v̂H) ∀ v̂H ∈ V̂H,∗,(2.27)

where

b̂∗ = b − α

(
vg +

∑
E∈TH

ũ′
∗|E

)
.

Define the affine space

VH,∗ = V̂H,∗ +
∑

E∈TH

ũ′
∗|E + vg(2.28)
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and the discrete oversampled approximation

u ≈ uH = ûH +
∑

E∈TH

ũ′
∗|E + vg ∈ VH,∗,(2.29)

p ≈ pH = p̄H +
∑

E∈TH

(
p̂′∗(EEūH) + p̃′∗

)∣∣
E
∈ W.(2.30)

The full approximation satisfies∑
E∈TH

(∇ · uH , w)E = (f, w) ∀ w ∈ W,(2.31)

(αuH , v̂H) =
∑

E∈TH

(p̄H ,∇ · v̂H)E + (b, v̂H) ∀ v̂H ∈ V̂H,∗,(2.32)

which corresponds to the original system (1.4)–(1.5). The systems (2.26)–(2.27) and
(2.31)–(2.32) are equivalent; the former is suitable for computation and the latter for
analysis. In section 4, it will be shown using the abstract inf-sup lemma [8, 12, 11,
16, 17] that this problem has a unique solution.

If oversampling is not used, this is the same discrete approximation considered
in [5], except that there the subgrid operators are also approximated on a finer mesh
than TH . Since our concern in this paper is to relate ε, the scale of the heterogeneity,
to H, the size of the coarse mesh, we have assumed that the subgrid operators are
fully resolved (as was done in [17]).

3. Partial equivalence with the multiscale finite element method. In
[17], Chen and Hou give a mixed finite element method for the equations making use
of their multiscale finite element basis functions. As we show in this section, their
method is fundamentally equivalent to that described in this paper in the case where
V̄H is the vector variable part of the RT0 space and ũ′ and p̃′ vanish. Note that from
(2.9)–(2.10), ũ′ and p̃′ vanish exactly when (f −∇ · vg, w

′) = 0 for all w′ ∈ W ′ and
(b − αvg,v

′) = 0 for all v′ ∈ V′; that is, the subscales of f − ∇ · vg and b − αvg

vanish.

Let E ∈ TH be given, and let eEi represent the ith edge in two dimensions or face
in three dimensions of E. We begin by recalling a standard basis

{
RE

i

}
for RT0(E),

the vector part of the RT0 space [27] on E ∈ TH , which satisfies

∇ ·RE
i = 1/|E| in E,

RE
i = −∇ωE

i in E,

RE
i · νE =

{
1/
∣∣eEi ∣∣

0
on eEi ,
on eEj , j 
= i.

That is, RE
i is linear, has a constant divergence, and has constant fluxes over the

edges or faces of E.

Chen and Hou [17] construct the multiscale finite element space in the following
way. Let

{
RE∗

i

}
be the basis of RT0(E∗), the vector part of the RT0 space on E∗,

which satisfies

RE∗
i · νE∗

=

{
1/
∣∣eE∗

i

∣∣ on eE∗
i ,

0 on eE∗
j , j 
= i,
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where eE∗
i represents an edge or face of E∗. Since the RT0 basis functions on E∗ also

span RT0(E), there must exist, for each i and j, constants cEij such that

RE
i =

∑
j

cEijR
E∗
j |E .

(If E∗ = E, we simply have cEij = δij , where δij is the Kronecker delta.) Now for each

j, let wE∗
j be the unique solution in L2(E∗)/R = W ′

∗(E∗) of the Neumann problem∫
E∗

a∇wE∗
j · ∇ϕdx =

1∣∣E∗
∣∣
∫
E∗

ϕdx− 1∣∣eE∗
j

∣∣
∫
eE∗
j

ϕds ∀ϕ ∈ H1(E∗),(3.1)

which is equivalent to

∇ · ψ̂H,i = ∇ ·RE∗
i in E∗,(3.2)

ψ̂H,i = −a∇wE∗
i in E∗,(3.3)

ψ̂H,i · νE∗ = RE∗
i · νE∗ on ∂E∗.(3.4)

For each i, set

w̃E∗
i =

∑
j

cEijw
E∗
j .

Now let

MS∗(E) = span{−a∇w̃E∗
i |E}

and X̃H,∗ = {v ∈ X : v|E ∈ MS∗(E) for all E ∈ TH}. Define

ΠH : X̃H,∗ →
⊕

E∈TH

RT0(E)

to be the natural projection defined locally for v|E = −
∑

i bia∇w̃E
i by ΠH(v)|E =∑

i biR
E
i . The oversampled multiscale finite element space X̂H,∗ ⊆ X is then defined

by

X̂H,∗ =
{
v ∈ X̃H,∗ : ΠHv ∈ V̄H

}
,

wherein V̄H is RT0 in this section. Note that again the subgrid problems have been
assumed to be solved exactly, since the fine scales can be fully resolved.

To see the equivalence with the construction in this paper, first note that the
problems (3.1), i.e., (3.2)–(3.4), and (2.20)–(2.21) are closely related, so that

−a∇wE∗
j = RE∗

j + û′
∗(R

E∗
j ) = −a∇p̂′∗(R

E∗
j );

that is, wE∗
j = p̂′∗(R

E∗
j ). Now clearly EERE

i =
∑

j c
E
ijR

E∗
j , so

EERE
i + û′

∗(EERE
i ) = −a∇p̂′∗(EERE

i ) = −
∑
j

cEija∇w̃E∗
j .

Since the matrix cEij is invertible,

MS∗(E) = span{RE
i + û′

∗(EERE
i )|E}.
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Now if v ∈ X̃H,∗, then v|E =
∑

i bi
(
RE

i + û′
∗(EERE

i )|E
)
, and so ΠHv|E =

∑
i biR

E
i .

The condition that ΠHv ∈ V̄H merely says that the local RT0 basis functions fit
together globally in H(div; Ω). Thus X̂H,∗ is the span of v̄H +

∑
E û′

∗(EEv̄H)|E for
v̄H ∈ V̄H ; that is,

X̂H,∗ = V̂H,∗,

and our construction agrees with that in [17], up to the treatment of ũ′ and p̃′.
Moreover, the mixed multiscale finite element method obtains only p̄H ∈ W̄H (not
pH) from (2.30).

4. Analysis of the saddle point variational problem. In this paper, we use
the notation ‖·‖j,S for the norm of the Sobolev space Hj(S), and ‖·‖j,p,S for the norm
of the Sobolev space W j,p(S) when p 
= 2. We proceed through a series of lemmas.

Lemma 4.1. There exists C > 0, independent of ε and H, such that for each
E ∈ TH and v ∈ V,

‖û′
∗(v)‖0,E∗ + ‖∇p̂′∗(v)‖0,E∗ ≤ C‖v‖0,E∗ .

Moreover, if v ∈ V′
∗(E∗) has vanishing divergence, then û′

∗(v) = −v and p̂′∗(v) = 0.

Proof. This is the standard energy estimate for the differential system (2.20)–
(2.21), and the bound depends only on the ellipticity and continuity constants for a
and so is independent of ε and H. The final remark is obvious from the definition of
the operator.

Lemma 4.2. There exists C > 0, independent of ε and H, such that for any
v̂H ∈ V̂H,∗, if v̄H ∈ V̄H is any element corresponding to v̂H in the sense that

v̂H = v̄H +
∑

E∈TH

û′
∗(EEv̄H)|E ,(4.1)

then on any E, ∇ · v̂H |E = ∇ · v̄H |E and

‖v̂H‖H(div;E) ≤ C‖v̄H‖H(div;E).

Proof. By the definition (2.24), each v̂H ∈ V̂H,∗ has at least one v̄H satisfying
(4.1). Since the operator norm of EE (as applied to low order polynomials and with
respect to the L2(E)- and L2(E∗)-norms) is bounded uniformly in E and H under
our assumptions on the shape regularity of E and E∗, we have

‖EEv̄H + û′
∗(EEv̄H)‖0,E∗ ≤ C‖EEv̄H‖0,E∗ ≤ C‖v̄H‖0,E .

Note that EEv̄H + û′
∗(EEv̄H) agrees with v̂H on E, so we have

‖v̂H‖0,E ≤ C‖v̄H‖0,E .

The above inequality holds for the H(div;E)-norm as well, because ∇ · û′
∗(v) is iden-

tically zero for all v ∈ V, which implies ∇ · v̂H = ∇ · v̄H .
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Lemma 4.3. There exists a constant β > 0, independent of ε and H, such that
for any q̄H ∈ W̄H , the following inf-sup condition holds:

sup
0 �=v̂H∈V̂H,∗

∑
E∈TH

(q̄H ,∇ · v̂H)E

‖v̂H‖X
≥ β‖q̄H‖0,Ω.

Proof. It is known that the inf-sup condition holds for all the usual mixed finite
element spaces, such as W̄H × V̄H . Because ∇ · û′

∗(·) = 0, and by Lemma 4.2, we
have

sup
0 �=v̂H∈V̂H,∗

∑
E∈TH

(q̄H ,∇ · v̂H)E

‖v̂H‖X
≥ C sup

0 �=v̄H∈V̄H

(q̄H ,∇ · v̄H)

‖v̄H‖H(div;Ω)
≥ Cβ̄‖q̄H‖0,Ω,

where β̄ > 0 is the inf-sup condition constant for W̄H × V̄H .

To obtain a unique solution of the discrete approximation (2.31)–(2.32) of (1.4)–
(1.5), we can now apply the abstract inf-sup theory given in [16], for example. We can
also obtain a bound on the approximation error, but it involves the approximation of p
in W̄H , which is only first order accurate. This is acceptable for RT0, but suboptimal
for the higher order spaces.

Theorem 4.4. There exists a unique solution (uH , p̄H) ∈ VH,∗ × W̄H to (2.31)–
(2.32). Moreover, there exists C > 0, independent of ε and H, such that if (u, p) is
the solution of (1.4)–(1.5), then

∇ · uH = ∇ · u = f,(4.2)

‖u − uH‖0,Ω ≤ C

{
inf

vH∈VH,∗,∇·vH=∇·u
‖u − vH‖0,Ω(4.3)

+ sup
0 �=ψH∈V̂H,∗,∇·ψH=0

|(αu − b, ψH)|
‖ψH‖0,Ω

}
,

‖p̄− p̄H‖0,Ω ≤ C

{
‖u − uH‖0,Ω(4.4)

+ sup
0 �=ψH∈V̂H,∗

∣∣(αu − b, ψH) −
∑

E∈TH
(p,∇ · ψH)E

∣∣
‖ψH‖X

}
.

Proof. The first equality follows from (2.31). The inf-sup condition of the previous
lemma and (2.32) allow us to estimate directly that

β‖p̄− p̄H‖0,Ω

≤ sup
0 �=ψH∈V̂H,∗

∑
E∈TH

(p̄− p̄H ,∇ · ψH)E

‖ψH‖X

= sup
0 �=ψH∈V̂H,∗

∑
E∈TH

[
(p,∇ · ψH)E − (αuH − b, ψH)E

]
‖ψH‖X

≤ sup
0 �=ψH∈V̂H,∗

∑
E∈TH

[
(p,∇ · ψH)E − (αu − b, ψH)E

]
‖ψH‖X

+ ‖α(u − uH)‖0,Ω,

and the third result (4.3) follows.
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The statement vH ∈ VH,∗ such that ∇ · vH = ∇ · u = ∇ · uH merely says that

vH − uH ∈ V̂H,∗ and has vanishing divergence. For any such vH , we compute

‖u − uH‖0,Ω ≤ ‖u − vH‖0,Ω + ‖vH − uH‖0,Ω

≤ ‖u − vH‖0,Ω + C sup
0 �=ψH∈V̂H,∗,∇·ψH=0

|(α(vH − uH), ψH)|
‖ψH‖0,Ω

≤ ‖u − vH‖0,Ω + C

{
sup

0 �=ψH∈V̂H,∗,∇·ψH=0

|(α(u − uH), ψH)|
‖ψH‖0,Ω

+ sup
0 �=ψH∈V̂H,∗,∇·ψH=0

|(α(vH − u), ψH)|
‖ψH‖0,Ω

}

≤ C

{
‖u − vH‖0,Ω + sup

0 �=ψH∈V̂H,∗,∇·ψH=0

|(αu − b, ψH)|
‖ψH‖0,Ω

}
,

since (αuH , ψH) = (b, ψH), and the second result (4.4) follows.

Finally, we obtain that the discrete solution must be unique by setting all the
data to zero (f , b, vg, which implies that u and p also vanish). We then also obtain
existence of a solution, since the system has finite dimensions and is square.

5. Some homogenization theory needed for multiscale error analysis.
We give a multiscale analysis of the error similar to that given by Hou et al. [22, 17].
This analysis determines the behavior of the error as a function both of H and the
scale of the heterogeneity in a, which we denote by ε. If H ∼ ε, the system is well
resolved, there is no need for oversampling, and the scheme converges with optimal
order of approximation [5]. Thus we tacitly assume the underresolved case where
ε � H. The difficulty, then, with standard approximation theory is that the error
is bounded in terms of H and derivatives of the solution. However, we expect that
each derivative of the solution is proportional to ε−1, and H/ε is not small. The two
exceptions are given by the standard energy estimates for our problem, which are
stated in the following lemma.

Lemma 5.1. Let (u, p) ∈ (V+vg)×W be the solution of (1.4)–(1.5). Then there
is a constant C > 0, depending only on the ellipticity bounds for a, such that

‖u‖0,Ω + ‖∇p‖0,Ω ≤ C
{
‖f −∇ · vg‖0,Ω + ‖vg‖0,Ω + ‖b‖0,Ω

}
,

‖∇ · u‖0,Ω = ‖f‖0,Ω.

In order to quantify the scale of the heterogeneity, we use homogenization theory.
Thus we assume that the permeability has “locally periodic” oscillations whose scale
is on the order of some ε > 0. That is, let C1

per(R
d) denote the space of all C1(Rd)

functions that are periodic with respect to the unit cube Y ⊆ R
d, and assume that

a = a(x, x/ε), where for each i, j = 1, . . . , d, aij(x, y) ∈ C1(Ω̄;C1
per(R

d)), and a varies

slowly in its first argument on a scale resolved by H. Moreover, suppose B ∈ (L2(D))d.

Following Chen and Hou [17], we now review the relevant aspects of homogeniza-
tion theory. Let D ⊆ Ω be a Lipschitz domain in R

d and suppose F ∈ L2(D) and
G ∈ L2(∂D) satisfy the compatibility condition∫

D

F (x) dx =

∫
∂D

G(x) ds.
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For each ε > 0, we let qε ∈ H1(D)/R be the unique solution of the Neumann problem∫
D

a(x, x/ε) (∇qε − B) · ∇ϕdx =

∫
D

Fϕdx−
∫
∂D

Gϕds ∀ ϕ ∈ H1(D).(5.1)

The homogenized coefficient matrix a0(x) =
(
a0
ij(x)

)
ij

of a(x, x/ε) is given by

a0
ij(x) =

1

|Y |

d∑
k=1

∫
Y

aik(x, y)

(
δkj −

∂χj

∂yk
(x, y)

)
dy, x ∈ Ω, y ∈ Y,(5.2)

where δkj is the Kronecker delta and χj(x, y) is the Y -periodic (in y) solution of the
jth cell problem

d∑
i=1

d∑
k=1

∂

∂yi

(
aik(x, y)

∂χj

∂yk
(x, y)

)
=

d∑
i=1

∂

∂yi
aij(x, y),

with
∫
Y
χj(x, y) dy = 0. Now, we let q0 ∈ H1(D)/R be the unique solution of the

homogenized counterpart of (5.1), namely,∫
D

a0(x)(∇q0 − B) · ∇ϕdx =

∫
D

Fϕdx−
∫
∂D

Gϕds ∀ ϕ ∈ H1(D).(5.3)

In the usual way, we define the first order corrector of qε by

(q0)ε1(x) = q0(x) − ε

d∑
k=1

χk(x, x/ε)

(
∂q0

∂xk
−Bk

)
.(5.4)

Recall that we use the notation ‖·‖j,p,S for the norm of the Sobolev space W j,p(S),
and simply ‖ · ‖j,S if p = 2.

Theorem 5.2. Suppose that q0 ∈ H2(D)∩W 1,∞(D) and D′ ⊂ D. Let the fluxes
be denoted by

Uε = −aε(∇qε − B) and U0 = −a0(∇q0 − B).

There exist a constant C, independent of ε, the size of the domains D and D′, and
the terms B, F , and G, and there exists a boundary corrector θSε ∈ H1(S)/R, defined
below for S ⊂ D in (5.11)–(5.12) and (5.9)–(5.10), such that

‖∇[qε − (q0)ε1 − εθDε ]‖0,D ≤ Cε‖∇q0 − B‖1,D,(5.5)

‖Uε − (U0 + εaε∇θD
′

ε − εaε∇θDε + ψD′

Sol)‖0,D′ ≤ Cε‖∇q0 − B‖1,D,(5.6)

where ψD′

Sol is a solenoidal vector, i.e., ∇·ψD′

Sol = 0 and ψD′

Sol·νD
′
= 0 on ∂D′. Moreover,

‖ε∇θSε ‖0,S ≤ C
{
ε‖∇q0 − B‖1,S +

√
ε|∂S| ‖∇q0 − B‖0,∞,S

}
,(5.7)

‖ε∇θSε ‖0,S ≤ C
(
ε + H−1

S (ε|∂S|)1/d−η
)
‖∇q0 − B‖1,S ,(5.8)

where S is D or D′, HS = diam(S), and η = 0 if d = 3 and η is any fixed positive
number if d = 2.

Remark 5.1. In [17], it is conjectured, but not proven, that estimate (5.7) can
be improved by replacing

√
ε|∂S| by ε

√
|S|/HS in the oversampled case, i.e., with S
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replaced by S′ ⊂ S on the left-hand side. If this turns out to be the case, the estimates
we derive can be correspondingly improved.

In [25], (5.5) and (5.7) were derived in the case where the coefficient a = a(x) is
periodic and B = 0. In [17], the proof was elucidated and extended to the case in
point, where a = a(x, x/ε) is locally periodic. The proof easily modifies to handle the
extra term related to B, and we reproduce it here in brief so that we can extract the
estimates (5.6) and (5.8).

Proof. We use the Einstein summation convention for repeated indices, and the
more concise notation ∂j = ∂/∂xj , and ∂x

j = ∂/∂xj and ∂y
j = ∂/∂yj if we are dealing

with a function of (x, y). The key to the proof is to note that

a0
ik(x) − aε,ij(x, y)

(
δjk − ∂y

j χ
k(x, y)

)
= ∂y

jA
k
ij(x, y),(5.9)

where Ak
ij(x, y) is skew-symmetric for each k [25, p. 6]. Let us denote

γi(x) = ∂j{Ak
ij(x, x/ε) [∂kq

0(x) −Bk(x)]},(5.10)

so that

∂y
jA

k
ij(x, x/ε) (∂kq

0 −Bk) = εγi − ε∂x
j A

k
ij(∂kq

0 −Bk) − εAk
ij∂j(∂kq

0 −Bk).

After some manipulation

−aε,ij [∂j(q
0)ε1 −Bj ] = −a0

ij(∂jq
0 −Bj) + εγi + εψ1,i,

where

ψ1,i = −∂x
j A

k
ij(∂kq

0 −Bk) −Ak
ij∂j(∂kq

0 −Bk)

+ aε,ij∂
x
j χ

k(∂kq
0 −Bk) + aε,ijχ

k∂j(∂kq
0 −Bk).

Now we let θSε ∈ H1(S)/R be defined by

∇ · (aε∇θSε ) = 0 in S,(5.11)

aε∇θSε · νS = γ · νS on ∂S,(5.12)

so that ψS
Sol = ε(γ − aε∇θSε ) has the requisite properties and

−aε[∇(q0)ε1 − B] = −a0(∇q0 − B) + εaε∇θSε + ψS
Sol + εψ1.(5.13)

It is now a simple consequence of the governing equations (5.1) and (5.3) and the
properties of ψD

Sol that

(aε∇[qε − (q0)ε1 − εθDε ],∇ϕ)D = ε(ψ1,∇ϕ)D,

and the first result (5.5) follows easily. The second result (5.6) follows from (5.13)
and the previous result.

To obtain bounds on the boundary corrector, we use a smooth cut-off function
ζε(x) ∈ [0, 1] with compact support that is one except near ∂S, where it tends to zero
in a narrow region of width ε with gradient bounded by C/ε. Now let

γI,i(x) = ∂j{Ak
ij(x, x/ε) [∂kq

0(x) −Bk(x)]ζε(x)},
γB,i(x) = ∂j{Ak

ij(x, x/ε) [∂kq
0(x) −Bk(x)][1 − ζε(x)]}
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(i.e., γ = γB + γI), and note that (5.11)–(5.12) imply that

‖∇θε‖0,S ≤ C‖γB‖0,S ,

since γB is divergence free. Finally,

ε‖γB,i‖0,S = ε‖∂j{Ak
ij [∂kq

0 −Bk][1 − ζε]}‖0,S

≤ ε‖∂x
j A

k
ij [∂kq

0 −Bk][1 − ζε]‖0,S + ε‖Ak
ij∂j [∂kq

0 −Bk][1 − ζε]‖0,S

+ ε‖Ak
ij [∂kq

0 −Bk]∂j [1 − ζε]‖0,S + ‖∂y
jA

k
ij [∂kq

0 −Bk][1 − ζε]‖0,S

≤ C
{
ε‖∇q0 − B‖1,S + ‖∇q0 − B‖0,Sζ

ε

}
,

where Sζ
ε is the support of 1 − ζε. Since the measure of Sζ

ε is proportional to ε|∂S|,
we have

‖∇q0 − B‖0,Sζ
ε
≤

√∣∣Sζ
ε

∣∣ ‖∇q0 − B‖0,∞,S ≤ C
√
ε|∂S| ‖∇q0 − B‖0,∞,S ,

and (5.7) follows. To show (5.8), we instead use Hölder’s inequality with r = d/(d−2)
(or large but finite if d = 2) and the Sobolev imbedding theorem to show that

‖∇q0 − B‖0,Sζ
ε
≤ C(ε|∂S|)(r−1)/2r‖∇q0 − B‖0,2r,Sζ

ε

≤ CH−1
S (ε|∂S|)1/d−η‖∇q0 − B‖1,S ,

wherein η = 0 if d = 3 and η > 0 if d = 2 (the factor H−1
S comes from a scaling

argument on the size of the domain S). The proof is complete.

We will apply Theorem 5.2 several times, with D being one of Ω, E, or E∗. Since
these are convex polygonal domains, the hypothesis q0 ∈ H2(D) ∩ W 1,∞(D) will
hold provided that, for some r > d, F ∈ Lr(D) and G = vg · νD on ∂D for some
vg ∈ (W 1,r(D))d [17, 20, 26].

6. Multiscale estimation of the errors. In this section, we estimate the terms
in the basic estimates of Theorem 4.4 for the velocity and pressure errors. We obtain
the following estimates which isolate the dependence on both H and ε.

Theorem 6.1. For each ε > 0, let (uε, pε) ∈ (V+vg)×W be the solution of (1.4)–
(1.5) with the coefficient aε = a(x, x/ε) and αε = a−1

ε . Let (u0, p0) ∈ (V + vg) ×W
satisfy (1.4)–(1.5) with the homogenized coefficient a0 defined by (5.2) in place of a,

and α0 = (a0)−1. For H > 0, let (ûε
H , p̄εH) ∈ V̂H,∗×W̄H be the solution of the discrete

upscaled equation (2.26)–(2.27), and define uε
H by (2.29).

(a) Oversampling. Assume that the partition TH consists only of simplices and
V̄H is RT0. Then

‖uε − uε
H‖H(div;Ω) + ‖pε − p̄εH‖0,Ω(6.1)

≤ C
{
(ε +

√
ε/H + H)

[
‖f −∇ · vg‖0,Ω + ‖vg‖0,Ω + ‖b‖0,Ω

]
+ (ε/H) ‖∇p0‖0,∞,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ (ε + H)
[
‖∇p0‖1,Ω + ‖∇p0 − b‖1,Ω

]
+ H‖u0 − vg‖1,Ω

}
.

If the oversampling conjecture of Chen and Hou [17] holds (Remark 5.1), then√
ε/H may be replaced by ε/H above.
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(b) Nonoversampling. Assume that oversampling is not used. Let m = 1 when
V̄H is RT0 and m = 1 or 2 when V̄H is BDM1 or BDDF1. Then

‖uε − uε
H‖H(div;Ω) + ‖p̄ε − p̄εH‖0,Ω(6.2)

≤ C
{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
.

Moreover, with η = 0, if d = 3, and η any fixed positive number, if d = 2,

‖uε − uε
H‖H(div;Ω) ≤ C

{(
ε + (ε/H)1/d−η

)
‖∇p0 − b‖1,Ω(6.3)

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
.

We remark that (a) is a small improvement over the result in [17, Theorem 2.2].
Assuming the more pessimistic but proven bound on the boundary corrector, and
with vg = b = 0, this previous result is

‖uε − uε
H‖H(div;Ω) + ‖pε − p̄εH‖0,Ω

≤ C
{
(ε + H)

(
‖p0‖2,Ω + ‖f‖1,Ω + ‖u0‖H(div;Ω)

)
+
√
ε/H

(
‖p0‖1,∞,Ω + ‖f‖0,Ω + ‖u0‖H(div;Ω)

)}
.

The small improvement is in the norm on f , which as noted in the introduction can
have small scale aspects in some applications such as flow in porous media. Result (b)
is new for the BDM1 and BDDF1 spaces, and for RT0 with nonsimplicial elements.

Concerning the proof of this theorem, by Theorem 4.4, for (b), we need only to
bound the optimal velocity error, which is done in section 6.1. For (a), we need this,
the oversampling error, handled in section 6.2, and the following simple estimate for
the pressure. Note that in (6.1), we have pε rather than p̄ε. This is allowed by the
estimate

‖p− p̄H‖0,Ω ≤ ‖p− p̄‖0,Ω + ‖p̄− p̄H‖0,Ω ≤ CH‖∇p‖0,Ω + ‖p̄− p̄H‖0,Ω

and the bound on ‖∇p‖0,Ω in Lemma 5.1. We will improve the pressure estimate of
(b) in section 7.

6.1. The optimal velocity error. In this subsection, we assume that oversam-
pling may be used, so as to handle cases (a) and (b) of Theorem 6.1 simultaneously.
Let π̄H : V ∩ Lr(Ω) → V̄H (for some r > 2) be the standard mixed finite element
interpolation operator [27, 18, 15, 14, 16]. It has the property that

∇ · π̄Hv = PW̄H
∇ · v(6.4)

for all v ∈ V ∩ Lr(Ω), where PW̄H
is the L2-projection onto W̄H . We also have the

approximation property

‖v − π̄Hv‖0,Ω ≤ CHm‖v‖m,Ω,(6.5)

where m = 1 when V̄H is RT0 and m = 1 or 2 when V̄H is BDM1 or BDDF1.
We now note a lemma on the difference between nonoversampled and oversampled

quantities.
Lemma 6.2. If E ∈ TH and w ∈ H1(E∗), then

∇p̂′∗(a∇w) = −∇w and û′
∗(a∇w) = 0.(6.6)
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In fact, p̂′∗(a∇w) = −w provided w ∈ W ′
∗(E∗). Moreover, on E,

∇p̂′(a∇w) = ∇p̂′∗(a∇w)|E = −∇w.(6.7)

Proof. We simply observe that (6.6) provides the unique solution to the equations
defining the subgrid operator (2.20)–(2.21). The remark for w ∈ W ′

∗(E∗) ∩ H1(E∗)
is then trivial, since w is correctly normalized. Similar results hold for p̂′, so (6.7)
follows.

Our main result in this subsection follows.

Lemma 6.3. Let

v̂ε
H = π̄H(u0 − vg) +

∑
E∈TH

û′
∗(EE π̄H(u0 − vg))|E ∈ V̂H,∗,

vε
H = v̂ε

H +
∑

E∈TH

ũ′
∗|E + vg ∈ VH,∗.

Then there is C > 0, independent of ε and H, such that

∇ · uε = ∇ · vε
H ,

‖uε − vε
H‖0,Ω ≤ C

{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
,

‖uε − vε
H‖0,Ω ≤ C

{(
ε + (ε/H)1/d−η

)
‖∇p0 − b‖1,Ω

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
,

where m is 1 or 2 and η ≥ 0 as in Theorem 6.1.

Proof. The divergence result is easy to see from (6.4). For the other result, we
work locally on E∗ ⊃ E ∈ TH . We have an expansion over E∗ similar to the one over
E, so on E∗ we can write

pε = p̄∗ + p̂′∗ + p̃′∗,

where p̄∗ is the average of pε over E∗ and p̂′∗, p̃
′
∗ ∈ W ′

∗(E∗) are defined in (2.20)–(2.23)
above. (To see this fact, simply consider an expansion as in section 2 on a perturbed
coarse mesh containing E∗, and discard the expansion outside E∗.) In fact, we have
uε = ū∗ + û′

∗ + ũ′
∗ + vg and the functional relationship

p̂′∗ = p̂′∗(ū∗) = p̂′∗(u
ε − ũ′

∗ − vg),

using Lemma 4.1 to avoid further discussion of ū∗ and û′
∗. Thus we have on E that

uε = −aε(∇pε − b)

= −aε∇p̂′∗(u
ε − ũ′

∗ − vg) − aε(∇p̃′∗ − b)

= −aε[∇p̂′∗(u
ε − u0) + ∇p̂′∗(u

0 − vg) −∇p̂′∗(ũ
′
∗)] + ũ′

∗ + vg,

using (2.23) in the last step.

Note that on E,

v̂ε
H |E = π̄H(u0 − vg) + û′

∗(EE π̄H(u0 − vg))|E = −aε∇p̂′∗(EE π̄H(u0 − vg))|E ,(6.8)
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so

uε − vε
H = uε − (v̂ε

H + ũ′
∗ + vg)

= −aε[∇p̂′∗(u
ε − u0) + ∇p̂′∗(u

0 − vg) −∇p̂′∗(ũ
′
∗) −∇p̂′∗(EE π̄H(u0 − vg))].

Now we estimate

‖uε − vε
H‖0,E ≤ C{‖∇p̂′∗(u

ε − u0)‖0,E + ‖u0 − vg − EE π̄H(u0 − vg)‖0,E∗(6.9)

+ ‖∇p̂′∗(ũ
′
∗)‖0,E},

using Lemma 4.1 again, this time to bound the operator. The second term on the
right is bounded as

‖u0 − vg − EE π̄H(u0 − vg)‖0,E∗ ≤ C Hm ‖u0 − vg‖m,E∗ ,

using the approximation property (6.5) of π̄H (actually, a slight extension to E∗, but
the approximation result continues to hold since the operator EE π̄H preserves low
order polynomials).

For the last term on the far right side of (6.9), since ũ′
∗ ∈ V′

∗(E∗), note that we
have the differential system

−∇ · aε∇p̂′∗(ũ
′
∗) = PW ′

∗(f −∇ · vg) in E∗,

− aε∇p̂′∗(ũ
′
∗) · νE∗ = 0 on ∂E∗,

where PW ′
∗ is the L2-projection onto W ′

∗(E∗). The standard energy estimate is

‖∇p̂′∗(ũ
′
∗)‖0,E∗ ≤ C‖PW ′

∗(f −∇ · vg)‖(H1(E∗))∗ ≤ C Hm ‖f −∇ · vg‖m−1,E∗ ,
(6.10)

where (H1(E∗))
∗ is the dual space of H1(E∗), using standard negative norm estimates

for approximation of a function with vanishing average.
Finally, we estimate the first term on the far right side of (6.9), using Theorem 5.2,

specifically the expansion in (5.6). By Lemma 4.1 we can introduce the local solenoidal
term ψE∗

Sol, so we have

∇p̂′∗(u
ε − u0)

= ∇p̂′∗(u
ε − u0 − εaε∇θE∗

ε + εaε∇θΩ
ε ) + ε∇p̂′∗(aε∇θE∗

ε ) − ε∇p̂′∗(aε∇θΩ
ε )

= ∇p̂′∗(u
ε − u0 − εaε∇θE∗

ε + εaε∇θΩ
ε + ψE∗

Sol) − ε∇θE∗
ε + ε∇θΩ

ε ,

using Lemma 6.2. Thus Theorem 5.2 gives the two bounds

‖∇p̂′∗(u
ε − u0)‖0,E

≤ C
{
ε‖∇p0 − b‖1,E∗ +

√
ε|∂E∗| ‖∇p0 − b‖0,∞,E∗ + ‖ε∇θΩ

ε ‖0,E∗

}
,

‖∇p̂′∗(u
ε − u0)‖0,E ≤ C

{(
ε + H−1(ε|∂E∗|)1/d−η

)
‖∇p0 − b‖1,E∗ + ‖ε∇θΩ

ε ‖0,E∗

}
(with the first bound improved if the oversampling conjecture holds).

Combining terms, summing over E ∈ TH , and using that the number of overlaps
of the E∗ are bounded yield

‖uε − vε
H‖0,Ω ≤ C

{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ ‖ε∇θΩ
ε ‖0,Ω + Hm

(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
,
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wherein
√

ε/H ‖∇p0−b‖0,∞,Ω can be replaced by (ε/H)1/d−η‖∇p0−b‖1,Ω. The proof
is completed by Theorem 5.2 to bound the global boundary corrector term.

We have an abstract result, analogous to Theorem 5.2, relating uε to a correction
of the homogenized solution u0.

Corollary 6.4. If ũ′
∗(u

0) is defined by (2.22)–(2.23) with vg replaced by u0,
then∥∥∥∥uε −

(
u0 +

∑
E∈TH

ũ′
∗(u

0)|E
)∥∥∥∥

0,Ω

≤ C
{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

}
,

∥∥∥∥uε −
(
u0 +

∑
E∈TH

ũ′
∗(u

0)|E
)∥∥∥∥

0,Ω

≤ C
(
ε + (ε/H)1/d−η

)
‖∇p0 − b‖1,Ω.

Proof. Simply take vg = u0. Then v̂ε
H = 0, and we can remove the term involving

f from the estimate since ∇ · vg = ∇ · u0 = f .

6.2. The oversampled nonconforming error. Chen and Hou [17, pp. 559–
563] bounded the nonconforming error terms in Theorem 4.4 when b = 0. The key
features needed in the analysis are (1) that the vector variable of the RT0 spaces, when
restricted to an element and multiplied by a constant matrix, is a pure potential (i.e.,
a gradient of a scalar function), and (2) a vector variable v̄H in RT0 satisfies the
estimate

‖v̄H‖1,E ≤ C‖v̄H‖H(div;E)(6.11)

(see [17, (4.26)]). These properties hold only for RT0 on simplices.
The extension of their result to nonzero b is not difficult, and, again using the

more pessimistic but proven bound on the homogenization boundary corrector terms
(see Remark 5.1), the extended result follows.

Lemma 6.5. There is a constant C > 0, independent of H and ε, such that for
any ψH ∈ V̂H,∗,∣∣∣∣∣(αu − b, ψH) −

∑
E∈TH

(p,∇ · ψH)E

∣∣∣∣∣
≤ C

{
(ε +

√
ε/H + H)

[
‖f −∇ · vg‖0,Ω + ‖vg‖0,Ω + ‖b‖0,Ω

]
+ (ε + H)

[
‖∇p0‖1,Ω + ‖∇p0 − b‖1,Ω

]
+ (ε/H) ‖∇p0‖0,∞,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

}
‖ψH‖X .

This completes the proof of Theorem 6.1.

7. Superconvergent multiscale estimation of the pressure error. In this
section, we assume that oversampling is not used. In this case, we can significantly
improve the estimate of the pressure error over that obtained in Theorem 6.1 above.

Theorem 7.1. For each ε > 0, let (uε, pε) ∈ (V + vg) × W be the solution of
(1.4)–(1.5), with the coefficient aε = a(x, x/ε) and αε = a−1

ε . For each H > 0, let

(ûε
H , p̄εH) ∈ V̂H × W̄H be the solution of the nonoversampled (E∗ = E ∀E ∈ TH)

discrete upscaled equation (2.26)–(2.27), and define (uε
H , pεH) by (2.29)–(2.30). Let

m = 1 when V̄H is the RT0 space and m = 1 or 2 when V̄H is BDM1 or BDDF1.
Assume that the domain Ω is k-regular, in the sense of (7.3) below. If k = 2, then

‖pε − pεH‖0,Ω ≤ C
(
ε + (ε/H)1/d−η + H

)
‖uε − uε

H‖0,Ω,
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and if k = 3, then

‖pε − pεH‖−1,Ω ≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖uε − uε

H‖0,Ω.

These results display superconvergence, in that the pressure converges at a rate
better that we would normally expect from approximation theory. Combining Theo-
rems 7.1 and 6.1(b), we obtain for d = 2 that

‖pε − pεH‖0,Ω ≤ C
(
ε2 + ε/H + Hm+1

)
.(7.1)

One should compare this estimate to the L2-estimate of Efendiev, Hou, and Wu [19]
for the (nonmixed) multiscale finite element method:

‖pε − pεH‖0,Ω ≤ C
(
ε + ε| lnh| + (ε/H)2 + Cθε/H + H2

)
,

although numerical results suggest that Cθ is negligible.
Proof. The difference between (1.5) and the conforming, nonoversampled method

(2.32) is (
α(u − uH), v̂H

)
= (p̄− p̄H ,∇ · v̄H) ∀ v̂H ∈ V̂H(7.2)

(wherein we suppress the superscript ε on the solutions and the subscript ε on α). For
ϕ ∈ Hk−2(Ω), we construct a test function from the solution U ∈ V to the problem

∇ · U = ϕ in Ω,

U = −a∇q in Ω,

U · ν = 0 on ∂Ω.

This is the same problem as (1.1)–(1.3), with f = ϕ, b = 0, and g = 0 (i.e., vg = 0).
We solve this problem approximately with the variational multiscale method (2.31)–

(2.32) of section 2 for UH = ÛH+Ũ′ ∈ V̂H+Ũ′. Note that ∇·ÛH = ϕ̄, Ũ′ = −a∇q̃′,
and Theorem 6.1 imply that

‖U − UH‖0,Ω ≤ C
{(

ε + (ε/H)1/d−η
)
‖∇q0‖1,Ω + Hm

(
‖U0‖m,Ω + ‖ϕ‖m−1,Ω

)}
,

where (U0, q0) ∈ V×W satisfies the corresponding homogenized problem (i.e., with a0

replacing a). The k-regularity assumption means that there is some constant C > 0,
independent of H and ε, such that

‖U0‖k−1,Ω + ‖q0‖k,Ω ≤ C‖ϕ‖k−2,Ω,(7.3)

so

‖U − UH‖0,Ω ≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖ϕ‖k−2,Ω,

wherein m = 1 if k = 2.
Using the test function ÛH ∈ V̂H in (7.2), we obtain that

(p̄− p̄H , ϕ̄) = (p̄− p̄H , ϕ) =
(
α(u − uH), ÛH

)
(7.4)

=
(
α(u − uH),UH − U

)
+
(
α(u − uH),U − Ũ′).
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Now, by the divergence theorem,(
α(u − uH),U − Ũ′) = −

(
α(u − uH), a∇(q − p̃′)

)
= −

(
u − uH ,∇(q − p̃′)

)
=

(
∇ · (u − uH), q − p̃′

)
= 0,

so

(p̄− p̄H , ϕ) =
(
α(u − uH),UH − U

)
≤ C‖u − uH‖0,Ω‖U − UH‖0,Ω

≤ C‖u − uH‖0,Ω

(
ε + (ε/H)1/d−η + Hm

)
‖ϕ‖k−2,Ω,

wherein m = 1 if k = 2.
Taking k = 2 and the supremum over ϕ ∈ L2(Ω), we see the estimate

‖p̄− p̄H‖0,Ω ≤ C
(
ε + (ε/H)1/d−η + H

)
‖u − uH‖0,Ω.

If instead k = 3 and ϕ ∈ H1
0 (Ω), we obtain

‖p̄− p̄H‖−1,Ω ≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖u − uH‖0,Ω.

Now by Lemma 4.1, we see that

p̂′(ū − ūH) = p̂′
(
ū + û′(ū) − ūH − û′(ūH)

)
= p̂′(u − uH),

so we conclude that

‖p− pH‖0,Ω ≤ ‖p̄− p̄H‖0,Ω + ‖p̂′(u − uH)‖0,Ω

≤ ‖p̄− p̄H‖0,Ω + CH‖∇p̂′(u − uH)‖0,Ω

≤ ‖p̄− p̄H‖0,Ω + CH‖u − uH‖0,Ω

≤ C
(
ε + (ε/H)1/d−η + H

)
‖u − uH‖0,Ω,

which is our first estimate. For the negative norm estimate,

‖p̂′(u − uH)‖−1,Ω ≤ CH2‖∇p̂′(u − uH)‖0,Ω ≤ CH2‖u − uH‖0,Ω,

so if k = 3,

‖p− pH‖−1,Ω ≤ ‖p̄− p̄H‖−1,Ω + ‖p̂′(u − uH)‖−1,Ω

≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖u − uH‖0,Ω,

completing the proof.
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SEMI-IMPLICIT EULER SCHEME FOR GENERALIZED
NEWTONIAN FLUIDS∗
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Abstract. Rheological behavior of certain non-Newtonian fluids in engineering sciences is often
modeled by power law ansatzes with p ≤ 2. So far, existing numerical analysis for local strong
solutions studies a fully implicit time discretization and find only restricted ranges of admissible
p’s for corresponding error estimates [A. Prohl and M. Růžička, SIAM J. Numer. Anal., 39 (2001),
pp. 214–249]; different nonlinear stabilization strategies which allow a corresponding error analysis
for smaller p’s are examined in [L. Diening, Theoretical and Numerical Results for Electrorheological
Fluids, Ph.D. thesis, University of Freiburg, Freiburg, Germany, 2002] and [L. Diening, A. Prohl, and
M. Růžička, in Nonlinear Problems in Mathematical Physics and Related Topics, II, Kluwer/Plenum,
New York, 2002, pp. 89–118]. In the present paper, a semi-implicit time discretization scheme is
proposed, and error estimates apply to the extended range p ∈ ( 3

2
, 2]. The key analytical tool is a

new Gronwall-type inequality.

Key words. non-Newtonian fluid flow, degenerate parabolic system, time discretization, weak
and strong solution, shear-dependent viscosity, error analysis
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1. Introduction and main results. Viscous fluids that cannot be adequately
described by the classical linearly viscous fluid model are usually called non-Newton-
ian fluids. There are many fluids which differ from a Newtonian fluid only in that
their viscosity depends on the shear rate, i.e., on the modulus of the symmetric part
of the velocity gradient. Such fluids are called fluids with shear-dependent viscosity
or generalized Newtonian fluids. We refer to [2], [4], [10], [12], [14], and [17] for a
detailed discussion of the modeling and the engineering relevance of such fluids.

A typical example of a constitutive relation for the extra stress tensor S of a
generalized Newtonian fluid is

S(D) = μ (κ + |D|2)
p−2
2 D,

where μ > 0, κ ≥ 0, and p ∈ (1,∞) are some given material constants. Note
that in the case p ∈ (1, 2) the model reflects shear-thinning behavior, while p ∈
(2,∞) corresponds to shear-thickening behavior. For p = 2 the model reduces to the
Newtonian one.

In this paper we abstract from the specific form of the constitutive relation of the
extra stress tensor S but make the following assumptions: We assume that the extra
stress tensor S has p-structure; i.e., for the constitutive function S : R

3×3
sym → R

3×3
sym,

with R
3×3
sym := {D ∈ R

3×3;D = D�}, there exist p > 1 and C1, C2 > 0 such that for
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all A,B ∈ R
3×3
sym it holds that

3∑
i,j,k,l=1

∂Sij(A)

∂Akl
BijBkl ≥ C1

(
1 + |A|

)p−2|B|2(1.1)

and for all i, j, k, l = 1, 2, 3 ∣∣∣∣∂Sij(A)

∂Akl

∣∣∣∣ ≤ C2

(
1 + |A|

)p−2
.(1.2)

We consider only the case p ∈ (1, 2], i.e., the shear-thinning and the Newtonian model.
Moreover, in our investigation of the governing system for such fluids we restrict our-
selves to space-periodic boundary conditions. From the physical point of view this can
be viewed only as a model case. However, in the case of Dirichlet boundary conditions
in three-dimensional bounded domains, appropriate existence, uniqueness, and regu-
larity results are only partially available. For example, the existence of weak solutions
is known for p > 8

5 (cf. [8], [9], [11], [18]). However, regularity properties of solutions
and their uniqueness are known only for p > 20

9 (cf. [11], [1]), and the results are much
weaker than the corresponding ones in the space-periodic case (cf. Proposition 1.1).
Moreover, we do not wish to burden the already complicated analysis with further
technical difficulties. In fact all the difficulties which appear in the investigation of
the continuous problem will also appear in the numerical analysis. Finally, we restrict
ourselves to the three-dimensional case.

Now we will state precisely the problem in which we are interested. Let Ω =
(0, L)3, L ∈ (0,∞), be a cube in R

3. Let us denote Γj = ∂Ω ∩
{
xj = 0

}
and Γj+3 =

∂Ω∩
{
xj = L

}
for j = 1, 2, 3. For T ∈ (0,∞), we denote by QT the time-space cylinder

I × Ω, where I = (0, T ) is the time interval. Assume that S satisfies assumptions
(1.1), (1.2). For a given external body force f : QT → R

3 and a given initial velocity
u0 : Ω → R

3 we seek a velocity field u = (u1, u2, u3)
� : QT → R

3 and a pressure
function π : Ω → R solving the system

∂tu − div S(Du) + [∇u]u + ∇π = f in QT ,

div u = 0 in QT ,(1.3)

u(0) = u0 on Ω,

and satisfying the space-periodicity requirements

u
∣∣
Γj

= u
∣∣
Γj+3

, ∇u
∣∣
Γj

= ∇u
∣∣
Γj+3

, π
∣∣
Γj

= π
∣∣
Γj+3

(1.4)

for j = 1, 2, 3. The term Du := 1
2 (∇u + ∇u�) denotes the symmetric part of the

velocity gradient ∇u. We refer to (1.3), (1.4) as problem (NSp).
This paper studies the following time discretization of (NSp).
Algorithm 1. Given a time step size k > 0 and the corresponding net Ik =

{tm}Mm=0, for m ≥ 1 and um−1 given from the previous step, compute an iterate um

that solves

dtu
m − div S(Dum) + [∇um]um−1 + ∇πm = f(tm),

div um = 0,(NSk
p)

u0 = u0
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endowed with space-periodic boundary conditions (1.4), where we denote by dtu
m :=

k−1
(
um − um−1) the divided difference in time. We assume that S has p-structure,

i.e., it satisfies (1.1) and (1.2).
To our knowledge, numerical analysis for the full model (NSp) starts with [13, 4],

where error estimates for a first order fully implicit space-time discretization of (NSp)
are derived in the context of locally existing strong solutions; new tools had to be
developed to efficiently control errors—albeit surprisingly only valid for restricted
values of p. This observation motivated nonlinear stabilization strategies in [3, 4]
which significantly extended the range of admissible p’s. Proper strategies here are to
add a q–Laplacian-type operator (q ≥ 2) to the problem (scaled with the discretization
parameter), or substitute p-growth of the underlying functional Φ : R → R at a
numerical threshold by a quadratic one; the motivation for these strategies is to
“strengthen” the dissipative mechanism in the scheme for small values of p in relation
to the convective term.

The goal of this paper is to show a similar effect for the scheme (NSk
p) that is due

to its semi-implicit character—with no need for additional stabilizing terms. The key
step in our analysis is a new lemma of Gronwall-type (see Lemma 3.2). The verified
rate of convergence with respect to the step size k > 0 will be the same as for the
(more expensive) fully implicit stabilized schemes. The range of admissible p’s for the
derivation of the error estimates and for the existence of strong solutions will even be
extended to p > 3

2 .
The existence of strong solutions locally in time for large data of the problem

(NSp) is ensured by the following assertion.1

Proposition 1.1. Let f ∈ L∞(I,W 1,2(Ω)), ∂tf ∈ L2(I, L2(Ω)), u0 ∈ W 2,2
div (Ω),

and 7
5 < p ≤ 2. Then there exists a time interval I = (0, T ), T > 0, and a unique

solution u, π which satisfies for all 1 ≤ r < 6(p− 1)

u ∈ C(I,W 1,r(Ω)),

∂tu ∈ L∞(I, L2(Ω)) ∩ Lp(I, L3p(Ω)),

∂2
t u ∈ L2(I, (W 1,2

div (Ω))∗).

(1.5)

The proof of this proposition for p ∈ (7/5, 2] can be found in [3] and [5] under
the additional assumption that S is given by a potential. However, this fact is never
used in these papers, and the result also extends to the situation without a potential
(cf. [16] where the case p ∈ (3/2, 2] is treated under the assumptions (1.1) and (1.2)
only). The case p > 5/3 is already covered in [10]. In [13] the existence of a weak
solution um ∈ l∞(Ik;L

2(Ω)) ∩ lp(Ik;W
1,p
div ) of the fully implicit time discretization

of (NSp) is proved for p > 3/2, but the analysis applies to (NSk
p) as well with only

minor changes. In order to analyze the above algorithm for all p > 3/2 we first
derive suboptimal convergence rates for the error between the strong solution u from
Proposition 1.1 and the unique weak solution um of the discrete problem (NSk

p) from
Lemma 3.1. In fact, we show with the help of a new Gronwall-type lemma that the
following proposition holds.

Proposition 1.2. Suppose that u0 ∈ W 2,2(Ω) ∩W 1,p
div , f ∈ C(I;W 1,2(Ω)), ∂tf ∈

C(I;L2(Ω)) are given. Let u be the strong solution of problem (NSp) for p ∈ ( 3
2 , 2]

satisfying (1.5) and let um be the unique weak solution of problem (NSk
p) satisfying

(3.1) and tM ≤ T . Then the following error estimate is valid provided that the time

1We use standard notation for Lebesgue, Sobolev, and Bochner spaces, which will be defined
precisely in section 2.
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step size k is chosen sufficiently small, i.e., k ≤ k1(p, T ):

max
0≤m≤M

‖u(tm) − um‖2
2 + k

M∑
m=0

‖∇(u(tm) − um)‖2
p ≤ c1 k

2β ,

max
0≤m≤M

‖∇(u(tm) − um)‖p ≤ 1,

(1.6)

with c1 = c1(p, T,u0, f) and

β :=
5p− 6

2p
.

Then we use this error estimate to show by an induction argument that the weak
solution of problem (NSk

p) is actually a strong one. Namely, we show that the following
theorem holds.

Theorem 1.3. Let u0, f , p, u, um, T , and tM be as in Proposition 1.2. Then

max
1≤m≤M

‖dtum‖2
2 + k

M∑
m=1

(
Ip(um)

5p−6
2−p + Kp(u

m)
)
≤ c(f ,u0),(1.7)

where Ip and Kp are defined below by (2.1) and (2.2). In particular, due to Lemma 2.3
for all 1 < r < 6(p− 1) we have

um ∈ l
5p−6
2−p (Ik;W

2,
3p
p+1 (Ω)) ∩ l∞(Ik;Vr),

dtu
m ∈ l

p(5p−6)
(3p−2)(p−1) (Ik;W

1,
3p
p+1 (Ω)) ∩ l∞(Ik;L

2(Ω)).

(1.8)

Now using this regularity we can improve the convergence rate from Proposition
1.2 and show that the following theorem holds.

Theorem 1.4. Let u0, f , p, u, um, T , and tM be as in Proposition 1.2. Then
for all

α < α0(p) :=
5p− 6

4(p− 1)
,

there exists a constant c2 = c2(p, T,u0, f , α), such that the following error estimate is
valid for k chosen sufficiently small, i.e., k ≤ k2(p, T, α):

max
0≤m≤M

‖u(tm) − um‖2
2 + k

M∑
m=0

‖∇(u(tm) − um)‖2
p ≤ c2 k

2α .(1.9)

Remark 1.5. Theorem 1.4 improves Theorem 1.10 in [4] considerably, both with
respect to the range of admissible p’s and the regularity of the solution um. In [13]

it is proved that for p ∈ ( 11+
√

21
10 , 2] ≈ (1.5583, 2] estimate (1.9) holds. However,

note that the discrete solution um in [4] is only a weak solution; i.e., only (3.1)
holds. The regularity of um ensured by Theorem 1.3 is proved in [4] only for stabilized
schemes. For a subsequent analysis of a spatial discretization it is shown in [13] that
the existence and characterization of strong solutions to (NSk

p) are essential. For
example, uniform a priori bounds in [13] in a comparable situation are obtained only
for restricted values p ∈ ( 9

5 , 2]. Using the results in this paper one can carry out the
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analysis of the fully discrete system based on (NSk
p) along the lines of [13]. Within

the framework of the DFG–Forschergruppe “Nonlinear Partial Differential Equations:
Theoretical and Numerical Analysis” we currently develop a robust and efficient solver
for problems with p-structure. Part of the research is a comparison of semi-implicit
and fully implicit schemes. However, at the moment results are not yet available.

The remainder of this paper is organized as follows. Section 2 provides the math-
ematical setup to study (NSk

p) and collects the consequences of our assumptions (1.1),
(1.2). In section 3 first the existence of weak solutions is verified and then the proof
of Proposition 1.2 is given, where Lemma 3.2 is the main tool. Section 4 presents
proofs of Theorems 1.3 and 1.4.

2. Notation and technical preliminaries. In this section we fix the notation
and collect some useful consequences of the assumptions (1.1), (1.2). Recall that Ω =
(0, L)3, L ∈ (0,∞), is a cube in R

3. By D(Ω) we denote the space of smooth periodic
functions with mean value zero. Let further p, q > 1 and k > 0. Then (Lp(Ω), ‖·‖p)
(respectively, (W k,p(Ω), ‖·‖k,p)) is used for the usual Lebesgue (respectively, Sobolev)
spaces of periodic functions with mean value zero. We will further make frequent use
of spaces of divergence-free functions defined by

V :=
{
ψ ∈ D(Ω) : div ψ = 0

}
,

W 1,p
div := the closure of V with respect to the ‖∇·‖p-norm.

By 〈g, h〉 we denote the scalar product
∫
Ω
g(x)h(x) dx. For two Banach spaces X0, X1

and θ ∈ (0, 1) the complex interpolation space is [X0, X1][θ]. Moreover, we denote by

Lq(I;X) Bochner spaces which are equipped with the norm
(∫

I
‖·‖qX ds

)1/q
. We refer

the reader to [7] for more details. We make frequent use of the discrete counterparts

of these spaces. Let Ik = {tm}Mm=0 be a given net in an interval I = [0, tM ] with a
constant time step size k := tm − tm−1. We denote by dtu

m := k−1(um − um−1) the

divided difference in time. By lp(Ik;X) we denote the space of functions {ϕm}Mm=0

with finite norm
(
k
∑M

m=0 ‖ϕm‖pX
)1/p

. In the case p = ∞, functions {ϕm}Mm=0 need
to satisfy the bound max0≤m≤M ‖ϕm‖X < ∞.

Let us introduce some notation for terms which arise from S when we test (NSp)
with −Δu or with ∂2

t u. Namely, for p > 1 we set

Ip(u) =

∫
Ω

(
1 + |Du|2

) p−2
2 |D(∇u)|2 dx,

(2.1)

Jp(u) =

∫
Ω

(
1 + |Du|2

) p−2
2 |D(∂tu)|2 dx.

The discrete analogue for Jp(u) for a function defined on a net Ik reads as follows:

Kp(u
m) =

∫
Ω

(
1 +

1

2
|Dum|2 +

1

2
|Dum−1|2

) p−2
2

|D(dtu
m)|2 dx.(2.2)

Let us now summarize some important estimates for S, Ip, Jp, and Kp. The proofs
can be found, for example, in [10, Lemmas 5.1.19 and 5.1.35] and [13, Lemma 2.8].

Lemma 2.1. Suppose that Φ and S satisfy (1.1), (1.2) for some p > 1. Then
there are constants c3 = c3(p) and c4 = c4(p) such that for all A,B ∈ R

3×3
sym

S(A) · A ≥ c3
(
1 + |A|

)p−2|A|2,(2.3)

|S(A)| ≤ c4
(
1 + |A|

)p−1
.(2.4)
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Additionally, we have(
S(A) − S(B)

)
·
(
A − B

)
≥ c3

∣∣A − B
∣∣2(1 + |B| + |A − B|

)p−2
,(2.5) ∣∣S(A) − S(B)

∣∣ ≤ c4 |A − B|
(
1 + |B| + |A − B|

)p−2
.(2.6)

Remark 2.2. From (2.5) it follows that for r ∈ [1,∞) and p ∈ (1, 2]∫
Ω

(S(Du) − S(Dv)) · D(u − v) dx

(2.7)
≥ c5 ‖Du − Dv‖2

2r
2−p+r

(1 + ‖Du‖r + ‖Du − Dv‖r)p−2.

The following lemmas are proved in [4].
Lemma 2.3. Let u ∈ C1(I;C2(Ω)) be a space periodic function with mean value

zero and p ∈ (1, 2]. Then there exists a constant c depending only on Ω and p such
that for s ∈ [1,∞)

‖∇u‖2
6s

6−3p+s
+ ‖∇2u‖2

2s
2−p+s

≤ c Ip(u)
(
1 + ‖∇u‖s

)2−p
,(2.8)

‖∇u‖p3p + ‖∇2u‖p3p
p+1

≤ c (1 + Ip(u)),(2.9)

‖∂tu‖2
6s

6−3p+s
+ ‖∇∂tu‖2

2s
2−p+s

≤ cJp(u)(1 + ‖∇u‖s)2−p,(2.10)

‖∂tu‖p3p + ‖∇∂tu‖p3p
p+1

≤ c (1 + Ip(u))
2−p
2 Jp(u)

p
2

≤ c (1 + Ip(u) + Jp(u)).(2.11)

Moreover, for 1 ≤ r < 6(p− 1) we have

sup
t∈I

‖∇u‖pr ≤ c

(
1 +

∫
I

Ip(u)
5p−6
2−p + Jp(u) dt

)
.(2.12)

Lemma 2.4. Let u ∈ l∞(Ik;C
2(Ω)) be a space-periodic function with mean value

zero, and let p ∈ (1, 2]. Then there exists a constant c depending only on Ω and p
such that for s ∈ [1,∞)

‖dtum‖2
6s

6−3p+s
+ ‖dt∇um‖2

2s
2−p+s

≤ cKp(u
m)(1 + ‖∇um‖s + ‖∇um−1‖s)2−p,(2.13)

‖dtum‖p3p + ‖dt∇um‖p3p
p+1

≤ c (1 + Ip(um) + Ip(um−1))
2−p
2 Kp(u

m)
p
2(2.14)

≤ c (1 + Ip(um) + Ip(um−1) + Kp(u
m)).(2.15)

Moreover, for 1 ≤ r < 6(p− 1)

max
1≤m≤M

‖∇um‖pr ≤ c(r)

(
1 + k

M∑
m=1

( Ip(um)
5p−6
2−p + Ip(um−1)

5p−6
2−p + Kp(u

m) )

)
.

(2.16)
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3. Proof of Proposition 1.2. In this section we will present a proof of Propo-
sition 1.2; i.e., we will derive preliminary estimates for the error u(tm) − um. Before
we do so, let us offer a few words on the existence of the solution um to the system
(NSk

p). The strategy employed in the proof of Proposition 1.1 to ensure the existence

of strong solutions is not applicable to the discrete system (NSk
p). However, the ex-

istence of weak solutions to the fully discrete analogue of problem (NSk
p) is ensured,

e.g., by [13, Lemma 4.1] which we recall here.
Lemma 3.1. Let u0 and f be as in Proposition 1.1, and let p > 3/2. Then there

exists a unique, weak solution um of the problem (NSk
p) satisfying

max
0≤m≤M

‖um‖2
2 + k

M∑
m=0

‖Dum‖pp ≤ c(f ,u0),(3.1)

whenever p > 3/2.
The proof of Lemma 3.1 is based on the fact that each um is just the solution to a

stationary Stokes-like problem which is then solved by the techniques developed in [6]
and [15]. Lemma 3.1 was originally developed for the fully implicit time discretization,
i.e., with convective term [∇um]um, without the statement for uniqueness. In our case
of a semi-implicit time discretization, i.e., with convective term [∇um]um−1, the proof
could even be simplified, since the convective term is linear in um. The same reason
ensures that the solution um for each time step is unique.

Proof of Proposition 1.2. Let us introduce some notation. We set e0 = 0 and we
define for 1 ≤ m ≤ M

em := u(tm) − um, ηm := π(tm) − πm, Rm := dtu(tm) − ∂tu(tm).

It has been shown in [13] and [4] under the assumptions (1.5) that Rm is well defined
and satisfies

‖Rm‖l2(Ik;(W 1,2
div (Ω))∗) ≤ c k ‖∂2

t u‖L2(I;(W 1,2
div (Ω))∗),

‖Rm‖l∞(Ik;L2(Ω)) ≤ c ‖∂tu‖L∞(I;L2(Ω)).

Especially, by (1.5) we have

‖Rm‖l2(Ik;(W 1,2
div (Ω))∗) ≤ c k, ‖Rm‖l∞(Ik;L2(Ω)) ≤ c.(3.2)

With this new notation, system (NSp) reads at time tm > 0 as follows:

dtu(tm) − div S(Du(tm)) + [∇u(tm)]u(tm) + ∇π(tm) = f(tm) + Rm,

div u(tm) = 0,

u(0) = u0,

with 1 ≤ m ≤ M . This and (NSk
p) imply for 1 ≤ m ≤ M that

dte
m − div(S(Du(tm)) − S(Dum)) + ∇ηm

= −k [∇u(tm)]dtu(tm) − [∇u(tm)]em−1 − [∇em]um−1 + Rm,

div em = 0,

e0 = 0.

(3.3)
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We use the test function em for this system and get〈
dte

m, em
〉

+
〈
S(Du(tm)) − S(Dum),Dem

〉
≤ k

∣∣〈[∇u(tm)]dtu(tm), em
〉∣∣ +

∣∣〈[∇u(tm)]em−1, em
〉∣∣ +

∣∣〈Rm, em〉
∣∣

=: Km
1 + Km

2 + Km
3 ,

(3.4)

where we have used that 〈∇ηm, em〉 = 0 and 〈[∇em]um−1, em〉 = 0 since div(um−1) =

div(um) = 0. With 〈dtem, em〉 = 1
2dt‖em‖2

2 + k
2 ‖dtem‖2

2, Remark 2.2, with r = p,
and Korn’s inequality we get

1
2dt‖e

m‖2
2 +

c5 ‖∇em‖2
p

(1 + ‖∇u(tm)‖p + ‖∇em‖p)2−p
≤ c

(
Km

1 + Km
2 + Km

3

)
.

Since u ∈ C(I;W 1,p(Ω)) by (1.5), this implies the existence of a constant c6 > 0 such
that

1
2dt‖e

m‖2
2 +

c6 ‖∇em‖2
p

(1 + ‖∇em‖p)2−p
≤ c

(
Km

1 + Km
2 + Km

3

)
.(3.5)

We will now estimate Km
1 , Km

2 , and Km
3 in such a way that we can apply Lemma 3.2

below with

am := ‖em‖2,

bm := ‖∇em‖p,
rm := c

(
‖Rm‖−1,p′ + k ‖dtu(tm)‖ 12

8−3p

)
,

β :=
5p− 6

2p
.

(3.6)

Let us first show that rm satisfies (3.14). From the embedding (p ≤ 2)

[l2(Ik;W
−1,2(Ω)), l∞(Ik;L

2(Ω))][ 5p−6
2p ] ↪→ [l2(Ik;W

−1,2(Ω)), l∞(Ik;W
−1,6(Ω))][ 5p−6

2p ]

↪→ l
4p

5p−6 (Ik;W
−1,p′

(Ω))

↪→ l2(Ik;W
−1,p′

(Ω))

and (3.2) it follows that

‖Rm‖l2(Ik;W−1,p′ (Ω)) ≤ c ‖Rm‖[l2(Ik;W−1,2(Ω)),l∞(Ik,L2(Ω))]
[
5p−6
2p

]

≤ c ‖Rm‖
6−3p
2p

l∞(Ik;L2(Ω))‖R
m‖

5p−6
2p

l2(Ik;W 1,2(Ω)∗)(3.7)

≤ c k
5p−6
2p .

From ∂tu ∈ L∞(I;L2(Ω)) and ∂tu ∈ Lp(I;L3p(Ω)) it follows by complex interpolation
that

∂tu ∈ L2(I;L
12

8−3p (Ω)) = [L∞(I;L2(Ω)), Lp(I;L3p(Ω))][ p2 ].

We estimate

k
M∑

m=1

‖dtu(tm)‖2
12

8−3p
= k−1

M∑
m=1

∥∥∥∥
∫ tm

tm−1

∂tu(t) dt

∥∥∥∥
2

12
8−3p

≤
∫ tM

0

‖∂tu(t)‖2
12

8−3p
dt.
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In particular,

‖dtu(tm)‖
l2(Ik;L

12
8−3p (Ω))

≤ ‖∂tu‖
L2(I;L

12
8−3p (Ω))

≤ c.(3.8)

From (3.7) and (3.8) follows

k

M∑
m=1

r2
m ≤ c

(
‖Rm‖2

l2(Ik;W−1,p′ (Ω)) + k2 ‖dtu(tm)‖2

l2(Ik;L
12

8−3p (Ω))

)
≤ c k

5p−6
p + c k2 ≤ c k2β .

This proves (3.14). Let us return to the estimation of Km
1 , Km

2 , and Km
3 . First,

Km
3 =

∣∣〈Rm, em〉
∣∣ ≤ ‖Rm‖−1,p′‖em‖1,p ≤ c ‖Rm‖−1,p′‖∇em‖p.(3.9)

Second,

Km
1 ≤ k ‖∇u(tm)‖ 12p

3p2+8p−12

‖dtu(tm)‖ 12
8−3p

‖em‖ 3p
3−p

.

We use 6(p− 1) > 12p
3p2+8p−12 for all p ∈ [ 32 , 2] and (1.5). Then

Km
1 ≤ ck ‖dtu(tm)‖ 12

8−3p
‖∇em‖p.(3.10)

From (3.9) and (3.10) we deduce

Km
1 + Km

3 ≤ rmbm.(3.11)

Third,

Km
2 =

∣∣〈[∇u(tm)]em−1, em
〉∣∣

≤ ‖∇u(tm)‖3‖em‖ p
p−1

‖em−1‖ 3p
3−p

≤ c ‖em‖ p
p−1

‖∇em−1‖p,

where we have used that 3 < 6(p − 1) for all p ∈ ( 3
2 , 2], and (1.5).2 Since p ∈ ( 3

2 , 2]

there exists θ ∈ (0, 1] with ‖em‖ p
p−1

≤ c ‖∇em‖1−θ
p ‖em‖θ2. Thus

Km
2 ≤ c ‖∇em−1‖p‖∇em‖1−θ

p ‖em‖θ2 = c bm−1b
1−θ
m aθm.(3.12)

Due to the embedding W 1,p
0 (Ω) ↪→ L2(Ω) it holds that am ≤ c bm which immediately

implies

Km
2 ≤ c bm−1bm.(3.13)

We combine (3.5), (3.11), (3.12), and (3.13) to obtain

dta
2
m + c6(1 + bm)p−2b2m ≤ bmrm + c bm−1bm,

dta
2
m + c6(1 + bm)p−2b2m ≤ bmrm + c bm−1b

1−θ
m aθm,

2Note that this is the crucial estimate which limits the analysis to p > 3/2. Since the extra stress
tensor S in problem (NSp) depends on the symmetric part of the velocity gradient D, the regularity
stated in (1.5) is at the present time optimal. Thus the method presented here cannot be extended
to smaller values of p.
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which proves the validity of (3.15) and (3.16). Overall, we have shown that we can
apply Lemma 3.2 below. This ensures the existence of k3 such that if 0 < k < k3,
then the error em satisfies

max
0≤m≤M

‖∇em‖p ≤ 1,

max
0≤m≤M

‖em‖2
2 + c6 k

M∑
m=0

‖∇em‖2
p ≤ c k

5p−6
p exp(c T ).

This proves Proposition 1.2.

We now state and prove the crucial Lemma 3.2 which is of Gronwall-type.

Lemma 3.2. Let 1 < p ≤ 2. Let 0 ≤ am, bm, rm < ∞, with a0 = b0 = 0, and let

k

M∑
m=1

r2
m ≤ c7k

2β ,(3.14)

with 1
2 < β. Further, let

dta
2
m + c8 (c9 + bm)p−2b2m ≤ bmrm + c10 bm−1bm,(3.15)

dta
2
m + c8 (c9 + bm)p−2b2m ≤ bmrm + c11 bm−1b

1−θ
m aθm,(3.16)

with 0 < c8, c9 ≤ 1, c10, c11 ≥ 1, and some 0 < θ ≤ 1. Then there exists k4 > 0, such
that if (3.15) and (3.16) hold for 0 < k < k4 = min(k5, k6), then

max
0≤m≤M

bm ≤ 1,(3.17)

max
0≤m≤M

a2
m + c8 k

M∑
m=0

b2m ≤ c12k
2β exp(c13kM),(3.18)

where

c12 := 8 c7 c
−1
8 , c13 := 2 · 8

2−θ
θ c

θ−2
θ

8 c
2
θ
11,

k5 :=

(
8 c−2

8

(
c7 + c210 c12 exp(c13T )

)) −1
2β−1

, k6 :=
1

2

(
2 · 8

2−θ
θ c

θ−2
θ

8 c
2
θ
11

)−1
.

Proof. We prove (3.17) and (3.18) by induction over M .

Case M = 0. Obvious.

Case (M − 1) → M . We start with the proof of (3.17). There is nothing to show
for bM ≤ 1 so assume bM > 1. Especially, we have 0 ≤ b1, . . . , bM−1 ≤ 1 < bM .
Summation of (3.15) over {1, . . . ,M} implies (with a0 = 0)

a2
M + c8 k

M∑
m=0

(c9 + bm)p−2 b2m ≤ k

M∑
m=0

bm
(
rm + c10bm−1

)

≤ c8
k

2

M∑
m=0

(c9 + bm)p−2b2m +
1

c8
k

M∑
m=0

(c9 + b2m)2−p
(
r2
m + c210b

2
m−1

)
.



1182 LARS DIENING, ANDREAS PROHL, AND MICHAEL RŮŽIČKA

We absorb the first term of the right-hand side and then neglect all summands on the
left-hand side, except for m = M :

c8 k (c9 + bM )p−2 b2M ≤ 2

c8
k

M∑
m=0

(c9 + b2m)2−p
(
r2
m + c210b

2
m−1

)

≤ 2

c8
(c9 + bM )2−pk

M∑
m=0

(
r2
m + c210b

2
m−1

)
≤ 2

c8
(c9 + bM )2−pk2β

(
c7 + c210 c12 exp(c13 kM)

)
,

where we have used (3.18) for 0 ≤ m ≤ M − 1. With 0 ≤ c9 ≤ 1 < bM

b2M ≤ 2c−2
8 (c9 + bM )2(2−p)k2β−1

(
c7 + c210 c12 exp(c13 kM)

)
≤ 2c−2

8 b
2(2−p)
M 22(2−p)k2β−1

(
c7 + c210 c12 exp(c13 kM)

)
.

In particular, with 1 < p ≤ 2

1 < b
2(p−1)
M ≤ 8 k2β−1 c−2

8

(
c7 + c210 c12 exp(c13 T )

)
.

If 0 < k < k5 with

k5 :=

(
8 c−2

8

(
c7 + c210 c12 exp(c13T )

)) −1
2β−1

,

we get the desired contradiction 1 < 1. This proves 0 ≤ bM ≤ 1, i.e., (3.17).
We continue with the proof of (3.18). From (3.16) and Young’s inequality we

deduce

dta
2
m + c8 (c9 + bm)p−2b2m ≤ rm bm + c11 b

1−θ
m aθmbm−1

≤ c11
(
b2−θ
m + b2−θ

m−1

)
aθm + 2 c−1

8 r2
m +

c8
8
b2m.

Now b1, . . . , bM ≤ 1, 0 < c9 ≤ 1, 0 < θ ≤ 1, c11 ≥ 1, and Young’s inequality imply

dta
2
m +

c8
2
b2m ≤ c11

(
b2−θ
m + b2−θ

m−1

)
aθm + 2 c−1

8 r2
m +

c8
8
b2m

≤ c8
8

(
b2m + b2m−1

)
+ 2 · 8

2−θ
θ c

θ−2
θ

8 c
2
θ
11a

2
m + 2 c−1

8 r2
m.

Taking the sum m = 1, . . . ,M with a0 = 0 implies

a2
M +

c8
4
k

M∑
k=1

b2m ≤ 2 c−1
8 k

M∑
k=1

r2
m + 2 · 8

2−θ
θ c

θ−2
θ

8 c
2
θ
11 k

M∑
k=1

a2
m .

Let k6 := 1
2

(
2·8 2−θ

θ c
θ−2
θ

8 c
2
θ
11

)−1
. Then for 0 < k < k6 we absorb k 2·8 2−θ

θ c
θ−2
θ

8 c
2
θ
11a

2
M <

1
2a

2
M on the left-hand side. Thus

a2
M +

c8
2
k

M∑
k=1

b2m ≤ 4

c8
k

M∑
k=1

r2
m + 2 · 8

2−θ
θ c

θ−2
θ

8 c
2
θ
11 k

M−1∑
k=1

a2
m.
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An application of Gronwall’s lemma implies

a2
M +

c8
2
k

M∑
m=0

bm ≤
(

4

c8
k

M∑
m=0

r2
m

)
exp

(
2 · 8

2−θ
θ c

θ−2
θ

8 c
2
θ
11kM

)
≤ 4 c7

c8
k2β exp

(
2 · 8

2−θ
θ c

θ−2
θ

8 c
2
θ
11 kM

)
.

Let c12 := 8 c7 c
−1
8 and c13 := 2 · 8 2−θ

θ c
θ−2
θ

8 c
2
θ
11; then

a2
M + c8 k

M∑
m=0

bm ≤ c12k
2β exp(c13kM).

This proves (3.15). The choice k4 := min(k5, k6) concludes the lemma.

4. Proof of Theorems 1.3 and 1.4. In this section we will show that the
solution um of system (NSk

p) is not only a weak solution but a strong solution. In
particular, we will derive some a priori estimates of second derivatives of um which
will be independent of the time step size k (as long as k ≤ k1). The results of this are
summarized in Theorem 1.3.

Before we start with the derivation of the (global in time) a priori estimates of um

we will show that each um has some higher regularity in space. This regularity in terms
of norms crucially depends on the time step size k and the time step m. Nevertheless,
we will need this in order to justify all the calculations later, in particular that all
terms involved are finite.

Lemma 4.1. Let p, f , and u0 be as in Theorem 1.3. Let um be the weak solution
of system (NSk

p) as in Lemma 3.1. Then for all m ∈ {−1, 0, . . . ,M} it holds that

k−1‖∇um‖2
2 + Ip(um) ≤ c(m, k−1) < ∞.(4.1)

Proof. We proceed by induction of m. For each time index m the function um

is just the solution of a stationary quasi–Stokes-like system equipped with periodic
boundary conditions

1

k
um − div S(Dum) + [∇um]um−1 = fm +

1

k
um−1,

(4.2)
div um = 0.

Either by means of the difference quotient method or by a Galerkin approach with
eigenfunctions of the Stokes operator, it is possible to justify the formal use of −Δum

as a test function of (4.2). As in [13] this implies

1
2dt‖∇um‖2

2 + C1 Ip(um) ≤ c(f) +

∫
Ω

|∇um|2 |∇um−1| dx.(4.3)
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Here we have used

〈−div S(Dum),−Δum〉 =
∑
i,j,k

〈∂jSij(Dum), ∂2
ku

m
i 〉

=
∑
i,j,k

〈∂kSij(Dum), ∂j∂ku
m
i 〉

=
∑

i,j,k,l,m

〈
∂ij∂lmΦ(|Dum|)Dij(∂ku

m), Dij(∂ku
m)

〉
≥ C1

∫
Ω

(1 + |Dum|2)
p−2
2 |D(∇um)|2 dx (by (1.1))

= C1 Ip(um)

and〈
[∇um]um−1,−Δum

〉
=

∑
j,k,l

〈
∂ju

m
k um−1

k , ∂2
l u

m
k

〉
=

∑
j,k,l

〈
∂ju

m
k ∂lu

m−1
j , ∂lu

m
k

〉
+

∑
j,k,l

∫
Ω

1
2∂j

(
(∂ju

m
k )2

)
um−1
j dx

=
∑
j,k.l

〈
∂ju

m
k ∂lu

m−1
j , ∂lu

m
k

〉
(by div um−1 = 0)

≤
∫

Ω

|∇um|2|∇um−1| dx,

where we have frequently used the periodicity. Now, Young’s inequality and (2.8)
imply ∫

Ω

|∇um|2|∇um−1| dx ≤ ‖∇um−1‖3p‖∇um‖2
6p

3p−1

≤ c ‖∇um−1‖3p‖∇um‖
5p−7

p
p ‖∇um‖

7−3p
p

3p
3−p

≤ cδ ‖∇um−1‖
2p

5p−7

3p ‖∇um‖2
p + δ‖∇um‖2

3p
3−p

≤ cδ ‖∇um−1‖
2p

5p−7

3p ‖∇um‖2
p + δ c ‖∇2um‖2

p

≤ cδ ‖∇um−1‖
2p

5p−7

3p ‖∇um‖2
p + δ c Ip(um).

We absorb the last term on the left-hand side of (4.3) and get

1

2
dt‖∇um‖2

2 + C1 Ip(um) ≤ c(f) + c ‖∇um−1‖
2p

5p−7

3p ‖∇um‖2
p.

From Ip(um−1) < ∞, ‖∇um‖2 < ∞, and (2.9) we know that the right-hand side is
finite. This proves the lemma.

Note that estimate (4.1) depends on k−1 and m. Nevertheless, it will justify all
of the following calculations. We will now get to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let um be the weak solution of Lemma 3.1. We will show
that um satisfies (1.7). Unfortunately, the proof of this cannot be reduced to a simple
Gronwall argument but is rather subtle. Let q, r be such that 3 < q < r < 6(p − 1).
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By assumption (1.5) on u there exists c14 = c14(f ,u0) ≥ 1 such that for all M with
kM ≤ T it holds that

max
0≤m≤M

‖∇u(tm)‖p + max
0≤m≤M

‖∇u(tm)‖r ≤ c14.(4.4)

From Proposition 1.2, it follows that, for k ≤ k1, max0≤m≤M ‖∇em‖p ≤ 1 holds.
This, together with c14 ≥ 1 and (4.4), implies

max
0≤m≤M

‖∇um‖p ≤ 2 c14.(4.5)

We proceed by induction over M with step M−1 → M . Instead of (1.7) we will show
step by step that um satisfies

max
0≤m≤M

‖∇um‖2
2 + k

M∑
m=0

Ip(um) ≤ c15 = c15(c14, p),(4.6a)

max
1≤m≤M

‖dtum‖2
2 + k

M∑
m=1

Kp(u
m) ≤ c16 = c16(c14, p),(4.6b)

k

M∑
m=0

(
Ip(um)

) 5p−6
2−p ≤ c17 = c17(c14, p),(4.6c)

max
0≤m≤M

‖∇um‖r ≤ c18 = c18(c14, p),(4.6d)

max
0≤m≤M

‖∇u(tm) −∇um‖q ≤ c14,(4.6e)

max
0≤m≤M

‖∇um‖q ≤ 2 c14.(4.6f)

Obviously, by u(0) = u0 = u0 and the assumptions on u0 and p ≤ 2, inequalities (4.6)
are valid for M = 0. Note that due to (2.16) the inequality (4.6f) seems to contain less
information than (4.6b) and (4.6c). The point here is that c14 is much smaller than
c17 and is given in advance by (1.5). In the proof of (4.6a), (4.6b), and (4.6e) we will
need some smallness of the step size k, which is dependent on c14 and c1. Therefore,
we assume 0 < k ≤ k7(c14, c1, k1), where c1 and k1 are from Proposition 1.2. The
exact dependence of k5 on c14, c1, and k1 is given later. The proof of (4.6e) will
further rely on the error estimates of Proposition 1.2. We will prove (4.6a)–(4.6f) in
the same order as stated. Assume in the following that (4.6) holds for M − 1. From
Lemma 4.1 we further know that um has enough regularity to justify the calculations
below.

Proof of (4.6a). Using the test function −Δum for the system (NSk
p) we conclude

as in the proof of (4.3) in Lemma 4.1 that

1
2dt‖∇um‖2

2 + C1 Ip(um) ≤ c(f) +

∫
Ω

|∇um|2|∇um−1| dx
(4.7)

≤ c(f) + ‖∇um‖2
3‖∇um−1‖3.

Since 2 < 3 < 3p
3−p , there exists θ = θ(p) ∈ (0, 1) with L3(Ω) = [L2(Ω), L

3p
3−p (Ω)][θ].
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This and (4.6f) for M − 1 imply

1

2
dt‖∇um‖2

2 + C1 Ip(um) ≤ c(f) + c14 ‖∇um‖2
3

≤ c(f) + c14 ‖∇um‖2(1−θ)
2 ‖∇um‖2θ

3p
3−p

(4.8)

≤ c(f) + c(c14, p, ε) ‖∇um‖2
2 + ε‖∇um‖2

3p
3−p

,

with ε > 0. From (2.8) with s = p and (4.5) follows

1

2
dt‖∇um‖2

2 + C1 Ip(um) ≤ c(f) + c(c14, p, ε) ‖∇um‖2
2 + ε Ip(um) (1 + 2 c14)

2−p.

For small ε we obtain

dt‖∇um‖2
2 + C1 Ip(um) ≤ c(f) + c(c14, p)‖∇um‖2

2.(4.9)

Now, Gronwall’s inequality provides the existence of k8 = k8(c14, p) and c15 =
c15(c14, p) such that (4.6a) holds, provided that k7 ≤ k8.

Proof of (4.6b). We want to use the test function dtu
M . In order to give dtu

0 a
meaning we introduce u−1. For that we set for all ϕ ∈ V

1

k

〈
u0 − u−1,ϕ

〉
+
〈
S(D(u0)),D(ϕ)

〉
+ 〈[∇u0]u0,ϕ〉 = 〈f(0),ϕ〉.

Using u0 = u0, p ≤ 2, and the assumption on u0, we obtain

‖dtu0‖2

2 ≤ ‖f(0)‖2
2 + ‖[∇u0]u0‖2

2 +
∥∥div S(D(u0))

∥∥2

2
≤ c(f ,u0).(4.10)

Now we can take the discrete time derivative of the weak formulation (NSk
p), use dtu

m

as a test function, and sum up to obtain

‖dtuM‖2

2 + k−1
M∑

m=1

〈
S(Dum) − S(Dum−1),Dum − Dum−1

〉

≤ c(f ,u0) + c k

M∑
m=1

∣∣〈dt([∇um]um−1
)
, dtu

m
〉∣∣

≤ c(f ,u0) + c k

M∑
m=1

∣∣〈[∇um−1]dtu
m−1, dtu

m
〉∣∣,

where we used (4.10), dt
(
[∇um]um−1

)
= [dt∇um]um−1 + [∇um−1]dtu

m−1, and
〈[dt∇um]um−1, dtu

m〉 = 0 as div um−1 = 0. From (2.5) and the definition of Kp

we deduce 〈
S(Dum) − S(Dum−1),Dum − Dum−1

〉
≥ c k2 Kp(u

m).

Overall,

‖dtuM‖2

2 + k

M∑
m=1

Kp(u
m) ≤ c(f ,u0) + c k

M∑
m=1

∣∣〈[∇um−1]dtu
m−1, dtu

m
〉∣∣

≤ c(f ,u0) + c k

M∑
m=1

‖∇um−1‖3‖dtum−1‖3‖dtum‖3.
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Thus, by q > 3 and (4.6f) for M − 1 follows

‖dtuM‖2

2 + k

M∑
m=1

Kp(u
m) ≤ c(f ,u0) + c c14 k

M∑
m=1

‖dtum−1‖3‖dtum‖3.

Analogously to the step from (4.7) to (4.8) we get

‖dtuM‖2

2 + k

M∑
m=1

Kp(u
m) ≤ c(f ,u0) + c(c14, p, ε) k

M∑
m=1

(
‖dtum−1‖2

2 + ‖dtum‖2
2

)

+ ε k
M∑

m=1

‖dtum‖2
3p

3−p
.

From (2.13) with s = p and (4.5) follows

‖dtuM‖2

2 + k

M∑
m=1

Kp(u
m) ≤ c(f ,u0) + c(c14, p, ε) k

M∑
m=1

(
‖dtum−1‖2

2 + ‖dtum‖2
2

)

+ ε k
M∑

m=1

Kp(u
m) (1 + 2 c14)

2−p.

For small ε we obtain

‖dtuM‖2

2 + k

M∑
m=1

Kp(u
m) ≤ c(f ,u0) + c(c14, p, ε) k

M∑
m=1

(
‖dtum−1‖2

2 + ‖dtum‖2
2

)
.

(4.11)

Now, Gronwall’s inequality provides the existence of k9 = k9(c14, p) and c16 =
c16(c14, p) such that (4.6b) holds, provided that k7 ≤ k9.

Proof of (4.6c). As in the proof of (4.6a) we use −Δum as a test function. But,
instead of retrieving information from the term 〈dtum,Δum〉 as in the proof of (4.6a),
will we estimate it on the right-hand side. In particular, instead of (4.9) we get

C1 Ip(um) ≤ c(f) + c(c14, p)‖∇um‖2
2 +

∣∣〈dtum,Δum〉
∣∣

(4.12)
≤ c(f) + c(c14, p) +

∣∣〈dtum,Δum〉
∣∣,

where we have used (4.6a). We will proceed as in [4], [16]:

∣∣〈dtum,Δum〉
∣∣ ≤ ‖dtum‖ 3p

2p−1
‖∇2um‖ 3p

p+1
≤ c ‖dtum‖ 3p

2p−1

(
1 + Ip(um)

) 1
p ,

where we used (2.9). With (4.12) we get

(
1 + Ip(um)

)p−1
p ≤ c(c14, p)

(
1 + ‖dtum‖ 3p

2p−1

)
.

Now, we interpolate L
3p

2p−1 (Ω) between L2(Ω) and L3p(Ω) and use (4.6b) and (2.14)
to arrive at

(1 + Ip(um) )
p−1
p ≤ c(c14, p)

(
1 + Kp(u

m)
λ
2
(
1 + Ip(um) + Ip(um−1)

)λ 2−p
2p

)
,
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with λ = 2−p
3p−2 . We raise this inequality to the power γ and apply Young’s inequality

to get

(1 + Ip(um) )
γ

p−1
p

≤ c(c14, p)
(
1 + Kp(u

m)γ
λ
2 (1 + Ip(um) + Ip(um−1) )

γ λ
2−p
2p

)
≤ c(c14, p)

(
1 + cεKp(u

m) + ε
(
1 + Ip(um) + Ip(um−1)

) 2γ λ
2−γλ

2−p
2p

)
.(4.13)

We now require

γ
p− 1

p
=

2γ λ

2 − γλ

2 − p

2p
,

which gives γ = p
p−1

5p−6
2−p . With this γ and with ε sufficiently small we can absorb the

last term in (4.13) into the left-hand side after summation over all time steps. Thus,
we have derived

k
M∑

m=1

Ip(um)
5p−6
2−p ≤ c(c14, p)

(
1 + k

M∑
m=1

Kp(u
m)

)
≤ c(c14, p),

where we have used (4.6b). This proves (4.6c).
Proof of (4.6d). This is a direct consequence of (2.16), (4.6b), and (4.6c).
Proof of (4.6e). From (4.4) and (4.6d) we deduce

max
0≤m≤M

‖∇u(tm) −∇um‖r ≤ c(c14, p).(4.14)

On the other hand from (1.6) we know that

max
0≤m≤M

‖∇u(tm) −∇um‖p ≤ c1 k
4p−6
2p ≤ c1 k

2p−3
p(4.15)

for p ∈ ( 3
2 , 2]. Since p < q < r, there exists by interpolation of (4.14) and (4.15) some

k10 = k10(p, c14) > 0 such that

max
0≤m≤M

‖∇u(tm) −∇um‖q ≤ c14

as long as k ≤ k10. This proves (4.6e).
Proof of (4.6f). By (4.4) and p < q < r there follows by interpolation

max
0≤m≤M

‖∇u(tm)‖q ≤ c14.

This and (4.6e) immediately imply (4.6f).
The proof of Theorem 1.3 is complete.
Based on Theorem 1.3 we can now improve the convergence rate from Proposition

1.2.
Proof of Theorem 1.4. We will proceed as in the proof of Proposition 1.2. However,

due to the better regularity properties of um we can extract more information from
the second term on the left-hand side in (3.4). Namely, from Remark 2.2, with
r ∈ (p, 6(p− 1)), (1.5), and (1.8) we deduce instead of (3.5)

1

2
dt‖em‖2

2 + c19

(
‖∇em‖2

p + ‖∇em‖2
2r

2−p+r

)
≤ c

(
Km

1 + Km
2 + Km

3

)
.(4.16)
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Now we set instead of (3.6)

am := ‖em‖2,

b̃m := ‖∇em‖p + ‖∇em‖ 2r
2−p+r

,

r̃m := c
(
‖Rm‖−1,( 2r

2−p+r )′ + k ‖dtu(tm)‖ 12
8−3p

)
,

β = β(p, r) :=
2r + 3p− 6

2r
,

(4.17)

and want to use Lemma 3.2 with bm replaced by b̃m and rm replaced by r̃m. Note
that

bm ≤ b̃m

since r > p. Thus we can replace in all estimates in the proof of Proposition 1.2 the
term bm by b̃m. In order to show that r̃m satisfies (3.14) we use the embedding

[l2(Ik;W
−1,2(Ω)), l∞(Ik;L

2(Ω))][ 2r+3p−6
2r ]

↪→ [l2(Ik;W
−1,2(Ω)), l∞(Ik;W

−1,6(Ω))][ 2r+3p−6
2r ]

↪→ l
4r

2r+3p−6 (Ik;W
−1,( 2r

2−p+r )′(Ω))

↪→ l2(Ik;W
−1,( 2r

2−p+r )′(Ω))

and (3.2) to show that

‖Rm‖l2(Ik;W−1,p′ (Ω)) ≤ c ‖Rm‖[l2(Ik;W−1,2(Ω)),l∞(Ik,L2(Ω))]
[
2r+3p−6

2r
]

≤ c ‖Rm‖
6−3p
2r

l∞(Ik;L2(Ω))‖R
m‖

2r+3p−6
2r

l2(Ik;W 1,2(Ω)∗)(4.18)

≤ c k
2r+3p−6

2r = c kβ(p,r).

From this and (3.8) follows

k

M∑
m=1

r̃ 2
m ≤ c

(
‖Rm‖2

l2(Ik;W
−1,( 2r

2−p+r
)′

(Ω))
+ k2 ‖dtu(tm)‖2

l2(Ik;L
12

8−3p (Ω))

)
≤ c k

2r+3p−6
r + c k2 ≤ c k2β(p,r).

This proves (3.14). Thus Lemma 3.2 in particular implies

max
0≤m≤M

‖∇em‖p ≤ 1,

max
0≤m≤M

‖em‖2
2 + c19 k

M∑
m=0

‖∇em‖2
p ≤ c k2β(p,r) exp(c T ).

Since

lim
r→6(p−1)

β(p, r) = α0(p) =
5p− 6

4(p− 1)
,

the proof of Theorem 1.4 is complete.
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PERFECTLY MATCHED LAYERS FOR TIME-HARMONIC
ACOUSTICS IN THE PRESENCE OF A UNIFORM FLOW∗

E. BÉCACHE† , A.-S. BONNET-BEN DHIA‡ , AND G. LEGENDRE‡§

Abstract. This paper is devoted to the resolution of the time-harmonic linearized Galbrun
equation, which models, via a mixed Lagrangian–Eulerian representation, the propagation of acoustic
and hydrodynamic perturbations in a given flow of a compressible fluid. We consider here the
case of a uniform subsonic flow in an infinite, two-dimensional duct. Using a limiting absorption
process, we characterize the outgoing solution radiated by a compactly supported source. Then
we propose a Fredholm formulation with perfectly matched absorbing layers for approximating this
outgoing solution. The convergence of the approximated solution to the exact one is proved, and
error estimates with respect to the parameters of the absorbing layers are derived. Several significant
numerical examples are included.

Key words. aeroacoustics, Galbrun’s equation, limiting absorption principle, perfectly matched
layers, acoustic waveguide, modal decomposition

AMS subject classifications. 65N12, 76Q05

DOI. 10.1137/040617741

1. Introduction. Several industrial applications are concerned with the propa-
gation of acoustic waves in a moving fluid. Aeronautics, for instance, requires accurate
simulations of acoustic radiation in the presence of a flow in order to design efficient
devices for noise reduction. In this context, most of the numerical simulations consist
of solving in the time domain the hyperbolic system of linearized Euler equations
using finite difference schemes or, more recently, discontinuous Galerkin methods.
The computational domain being necessarily finite, artificial boundary conditions are
needed, and the perfectly matched layers (PMLs), introduced by Bérenger [3] in com-
putational electromagnetics, have already been used to this end, raising some specific
difficulties related to instabilities [14, 13, 19, 1, 15].

The present work differs from the previous ones as it considers the time-harmonic
regime and aims at developing a finite element approach.

We use a model introduced by Galbrun [8, 18], which assumes small perturba-
tions of an isentropic flow of a perfect fluid and whose unknown is the Lagrangian
displacement perturbation, expressed in terms of Eulerian variables with respect to
the mean flow. It can be viewed as an alternative to the use of the linearized Eu-
ler equations, as the perturbations of density, velocity, and pressure can be retrieved
from the knowledge of both the the Lagrangian displacement perturbation and the
mean flow quantities [18]. The so-called Galbrun equation is a linear partial differ-
ential equation of second order in time and space and is well suited to variational
approaches. However, its numerical solution by standard (i.e., nodal) finite element
methods is subject to difficulties similar to those observed for Maxwell’s equations
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in electromagnetism. We previously proposed a regularized formulation of the time-
harmonic Galbrun equation [5, 16] that allowed the use of nodal finite elements for
the discretization of the problem.

The simple case of a uniform subsonic flow in an infinite two-dimensional duct
is considered here, but the method should, in its principle, be extended to problems
involving arbitrary flows and geometries. The two main difficulties we are confronted
with when solving this problem in the time-harmonic regime are the characterization
of its outgoing solution and its reduction to a bounded domain. We settle the first
difficulty by a classical limiting absorption process and use a PML technique for the
latter.

In a previous paper [2], we dealt with PMLs for the convected Helmholtz equation
in a waveguide, and two different models of PML were analyzed: the “classical”
Bérenger model and a modified model, designed to avoid a possible exponential spatial
growth of the solution in the downstream layer (responsible for the instabilities in the
time domain). For both models, we proved the well-posedness and convergence of
the method. Yet, this last problem being scalar, acoustic waves were the only ones
taken into account, whereas one of the difficulties when applying the PML technique
in aeroacoustics lies in the appropriate treatment in the layers of the vorticity waves,
which are convected downstream of the mean flow. In the present work, we will see
that the regularization of Galbrun’s equation leads to the addition of a noncompactly
supported source term, accounting for the vortical effects of the flow, which will
necessitate a proper, nonstandard treatment in the layers based on the modified PML
model studied in [2].

The outline is the following. The problem to be solved is introduced in section
2. In section 3, a limiting absorption result is established. The problem with PML
is posed and analyzed in section 4, and its convergence is subsequently proved in
section 5 via the combined use of vector potentials and scalar modal analysis. Finally,
numerical applications are presented in section 6.

2. The physical problem posed in an infinite waveguide. We consider
Galbrun’s formulation for the propagation of acoustic waves in an infinite, rigid, two-
dimensional duct in the presence of a uniform mean flow of subsonic speed v0. A time-
harmonic dependence of the form exp(−iωt), ω > 0 being the pulsation, is assumed
throughout the paper. The displacement perturbation then satisfies the equation and
boundary condition

D2u −∇ (div u) = f in Ω,(2.1)

u · n = 0 on ∂Ω,(2.2)

where Ω and ∂Ω denote, respectively, the infinite duct of height l and its rigid walls
(i.e., Ω = {(x1, x2) ∈ R

2 ; 0 < x2 < l}) and n is a unit outward normal to ∂Ω. In
(2.1), the letter D stands for the time-harmonic material derivative in the subsonic
uniform flow, given by Du = −iku + M ∂x1

u, where the scalar k = ω
c0

is the wave
number and the scalar M = v0

c0
is the Mach number (0 < M < 1), c0 being the sound

velocity in the mean flow. Thus, in extended form, (2.1) reads

−k2 u − 2ikM ∂x1
u + M2 ∂2

x1
u −∇ (div u) = f in Ω.

Note that the equation resulting from (2.1) when the fluid is at rest (i.e., when M = 0)
arises in several fluid-structure interaction problems (see, for instance, [12]).
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An additional hypothesis is made on the compactly supported source f , which
is assumed to admit the Helmholtz decomposition f = ∇ga + curl gh, where ga and
gh are also compactly supported. From a physical point of view, the source term
f is meant to contain an “acoustic” part ga, which generates irrotational perturba-
tions (i.e., pressure fluctuations), and a vortical part gh, which creates hydrodynamic
perturbations. Note here that curl f = ∂x2

f e1 − ∂x1
f e2, where e1 and e2 are the

vectors of the canonical basis of R
2, is the vectorial form of the curl operator when

applied to scalar functions. We denote by curlv = ∂x1
v2−∂x2

v1 the dual form of this
operator when applied to vector fields.

The source f is also assumed to belong to the space H(curl; Ω), which implies
some regularity on ga and gh (ga ∈ H1(Ω) and gh ∈ H2(Ω), for instance).

The problem (2.1)–(2.2) admits an infinite number of solutions as long as an
additional condition at infinity is not given. We are interested in the unique solu-
tion associated with the time-harmonic regime. In the next section, we characterize
this solution through the study of a dissipative problem and the use of the limiting
absorption principle [7].

3. Well-posedness—The limiting absorption principle.

3.1. The dissipative problem. A dissipative problem associated with (2.1)–
(2.2) is readily obtained by replacing the real wave number k by a complex number
kε = k + iε, where ε is a positive real number. The physical case then becomes
the limiting case in which ε is equal to zero. In what follows, we prove that the
unique solution of “finite energy” (that is, which belongs to the space H1(Ω)2) of the
dissipative problem converges, as ε tends to zero, in the H1

loc(Ω)2 sense to a limit,
which will be called the “outgoing” solution of (2.1)–(2.2).

3.2. Study of the dissipative problem. We seek a function uε in H1(Ω)2

satisfying

D2
εu

ε −∇ (div uε) = f in Ω,(3.1)

uε · n = 0 on ∂Ω,(3.2)

where Dε = −ikε +M ∂x1 . To be able to prove the well-posedness of this problem, it
must be regularized, as proposed in [5]. To this end, we introduce the function ψε =
curluε, belonging to L2(Ω), which is a solution to the following ordinary differential
equation with constant coefficients (obtained by taking the curl of (3.1)):

D2
εψ

ε = curlf in Ω.(3.3)

We first state a preliminary result.
Lemma 3.1. Equation (3.3) has a unique solution ψε in L2(Ω). This solution

vanishes upstream of the support of the source f .
Proof. Introducing the causal Green’s function of the differential operator D2

ε,

Gε(x1) =
x1

M2
H(x1) e

i kε
M x1 ∀x1 ∈ R,

where H denotes the Heaviside function, one can derive the following particular so-
lution to (3.3):

ψε(x1, x2) = Gε ∗ curlf(·, x2)(x1) =
1

M2

∫ x1

−∞
(x1 − z) ei kε

M (x1−z)curlf(z, x2) dz.
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We easily verify that this function vanishes upstream of the source and belongs to
L2(Ω) (see the appendix). Uniqueness of the solution follows from the fact that the
solutions to the homogeneous equation D2

εψ = 0 are of the form

(c(x2) + x1 d(x2)) ei kε
M x1 ∀(x1, x2) ∈ Ω

and therefore do not belong to L2(Ω), except for the trivial solution c = d ≡ 0.
Now, if uε is a solution to (3.1)–(3.2), it clearly satisfies the so-called regularized

or augmented problem

D2
εu

ε −∇ (div uε) + curl (curluε − ψε) = f in Ω,

uε · n = 0 on ∂Ω,

curluε = ψε on ∂Ω.

(3.4)

Setting V (Ω) =
{
v ∈ H1(Ω)2 | v · n = 0 on ∂Ω

}
, a variational formulation of this

last problem reads as follows: find uε ∈ V (Ω) such that

aΩ(kε; u
ε,v) =

∫
Ω

(f · v + ψε(curlv)) dx ∀v ∈ V (Ω),(3.5)

where the sesquilinear form aΩ(kε; ·, ·) is defined by

aΩ(kε; u,v) =

∫
Ω

(
(div u)(div v) + (curlu)(curlv) −M2 ∂x1

u · ∂x1
v
)

dx

+

∫
Ω

(
−kε

2 u · v − 2ikεM ∂x1u · v
)

dx.

Theorem 3.2. The variational problem (3.5) is well-posed.
Proof. Integrating by parts gives∫

Ω

∂x1u · u dx = −
∫

Ω

u · ∂x1
u dx = −

∫
Ω

∂x1u · u dx ∀u ∈ H1(Ω)2;

hence
∫
Ω
∂x1u · u dx ∈ iR. We then have

Im

(
− 1

kε
aΩ(kε; u,u)

)
=

∫
Ω

Im(kε)

(
|u|2 +

|div u|2 + |curlu|2 −M2 |∂x1
u|2

|kε|2

)
dx.

Since M2 < 1 and Im(kε) > 0, the sesquilinear form aΩ(kε; ·, ·) is coercive on H1(Ω)2,
due to Theorem 4.1 of [6]. It is also clear that this form is continuous on the
same space. Moreover, estimate (6.2) (see the appendix) allows one to establish
the continuity of the antilinear form by simply using the Cauchy–Schwarz inequal-
ity. The well-posedness of problem (3.5) is then a consequence of the Lax–Milgram
lemma.

By construction, every solution to (3.1)–(3.2) belonging to H1(Ω) is a solution to
(3.5). The converse statement results from the following theorem.

Theorem 3.3. The solution uε to problem (3.5) is such that curluε = ψε.
Proof. Taking as test function v = curlϕ with ϕ ∈

{
φ ∈ H3(Ω) | φ|∂Ω

= 0
}
, we

obtain, after some integration by parts and the use of boundary conditions of problem
(3.5), the following orthogonality relation:∫

Ω

(curluε − ψε) (Hkε,Mϕ) dx = 0.
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Here Hkε,M denotes the operator D2
ε − Δ. Owing to a density result (Theorem 1.6.2

of [11]), this relation holds for any function ϕ of D(Hkε,M ) = H2(Ω) ∩ H1
0 (Ω). To

conclude that curluε = ψε in L2(Ω), it suffices to show that Hkε,M is surjective from
D(Hkε,M ) to L2(Ω). For all ϕ in D(Hkε,M ), we have

(Hkε,Mϕ,ϕ)L2(Ω) =

∫
Ω

(
−kε

2 |ϕ|2 + 2ikεM ∂x1ϕϕ + |∇ϕ|2 −M2 |∂x1ϕ|
2
)

dx.

Again, we have
∫
Ω
∂x1

ϕϕ dx ∈ iR, and we deduce that

Im

(
− 1

kε
(Hkε,Mϕ,ϕ)L2(Ω)

)
=

∫
Ω

Im(kε)

(
|ϕ|2 +

|∇ϕ|2 −M2 |∂x1ϕ|
2

|kε|2

)
dx.

The surjectivity of the operator is then a consequence of the Lax–Milgram
lemma.

Corollary 3.4. Problem (3.1)–(3.2) has a unique solution in H1(Ω)2 which is
the solution to problem (3.5).

Proof. We choose v ∈ D(Ω)2 ⊂ V (Ω) in the variational formulation (3.5). Inte-
gration by parts and Theorem 3.3 imply that the unique solution uε to (3.5) verifies
(3.1) in the distributional sense. The boundary condition (3.2) is also satisfied since
uε ∈ V (Ω).

3.3. Convergence of the dissipative problem. We will prove in this sub-
section that, if k is not a cut-off wave number for acoustic modes, the solution uε

to problem (3.5) converges to a limit u in H1
loc(Ω)2 as ε tends to zero. This limit is

clearly a solution to (2.1)–(2.2) and, contrary to uε, does not belong to H1(Ω)2, since
it does not decrease at infinity. The proof of convergence is based on a Helmholtz
decomposition of the field uε and the use of convergence results for scalar problems.

3.3.1. Use of potentials. Let us consider the following problems: find ϕε
a ∈

H1(Ω) such that

D2
εϕ

ε
a − Δϕε

a = ga in Ω,

∂nϕ
ε
a = 0 on ∂Ω,

(3.6)

and find ϕε
h ∈ L2(Ω) such that

D2
εϕ

ε
h = gh in Ω.(3.7)

Both problems are well-posed. Indeed, problem (3.6) has been studied in [4,
Theorem 1], and the regularity of ga and of the domain Ω imply that its solution
ϕε
a belongs to the space H2(Ω). Problem (3.7) was dealt with in Lemma 3.1, the

regularity of gh implying that ϕε
h is in H2(Ω) (see the appendix). It then clearly

ensues that the function ∇ϕε
a + curlϕε

h is a solution to (3.1)–(3.2) (or equivalently
to problem (3.5)), since ∇

(
D2

εϕ
ε
a − Δϕε

a

)
+ curl

(
D2

εϕ
ε
h

)
= ∇ga + curl gh = f in Ω

and ∂nϕ
ε
a + curlϕε

h · n = 0 on ∂Ω (the function gh being compactly supported, ϕε
h

vanishes on the boundary ∂Ω, which implies that curlϕε
h ·n = 0 on ∂Ω). Hence, the

uniqueness of the solution to (3.5) implies that

uε = ∇ϕε
a + curlϕε

h.(3.8)

We now prove the convergence of the respective solutions to problems (3.6) and
(3.7) as ε tends to zero.
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3.3.2. Limit and convergence of the acoustic problem. In order to obtain
the limit in H2

loc(Ω) of ϕε
a as ε tends to zero, we use some theoretical results previously

established in [4] for scalar problems of the same type. First, problem (3.6) is equiv-
alently set in a bounded domain Ωb, which contains the supports of ga and gh and
is situated in between the two vertical boundaries Σ±, respectively located at x1 =
x±. To this end, we make use of the Dirichlet-to-Neumann (DtN) operators TN,ε

± :

H1/2 (Σ±) → H−1/2 (Σ±) (the superscript N refers here to the Neumann boundary

condition in problem (3.11)), defined by TN,ε
± φ = ∓i

∑+∞
n=0 β

ε±
n (φ,Cn)L2(Σ±) Cn(x2),

where

βε±
n =

−kεM ±
√
kε

2 − n2π2

l2 (1 −M2)

1 −M2
,(3.9)

the square root being defined by
√
z =

√
|z| ei arg(z)

2 , 0 ≤ arg(z) < 2π, and where

C0(x2) =

√
1

l
and Cn(x2) =

√
2

l
cos

(nπ

l
x2

)
∀n ∈ N

∗.(3.10)

An equivalent formulation of problem (3.6) is then as follows: find ϕε
a ∈ H1(Ωb) such

that

D2
εϕ

ε
a − Δϕε

a = ga in Ωb,

∂nϕ
ε
a = 0 on ∂Ω ∩ ∂Ωb,

∂nϕ
ε
a = −TN,ε

± ϕε
a on Σ±.

(3.11)

We now can formally derive a limiting problem for (3.11). Observe that, because
of the definition of the complex square root, one has

lim
ε→0

√
kε

2 − n2π2

l2
(1 −M2) =

⎧⎪⎪⎨
⎪⎪⎩

√
k2 − n2π2

l2
(1 −M2) ∈ R+ if k ≥ nπ

l

√
1 −M2,

i

√
n2π2

l2
(1 −M2) − k2 ∈ iR+ if k <

nπ

l

√
1 −M2.

Hence, the respective limits β±
n ∀n ∈ N of axial wave numbers βε±

n are defined by

β±
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−kM ±
√
k2 − n2π2

l2 (1 −M2)

1 −M2
if k ≥ nπ

l

√
1 −M2,

−kM ± i
√

n2π2

l2 (1 −M2) − k2

1 −M2
if k <

nπ

l

√
1 −M2.

(3.12)

The limiting problem to be considered is then as follows: find ϕa ∈ H1(Ωb) such that

D2ϕa − Δϕa = ga in Ωb,

∂nϕa = 0 on ∂Ω ∩ ∂Ωb,

∂nϕa = −TN
± ϕa on Σ±,

(3.13)

with the following obvious definition for the DtN operators TN
± : H1/2 (Σ±) →

H−1/2 (Σ±), TN
± φ = ∓i

∑+∞
n=0 β

±
n (φ,Cn)L2(Σ±) Cn(x2).

Theorem 3.5. Problem (3.13) is well-posed, except if k = kn for n ∈ N, with
kn =

√
1 −M2 nπ

l .
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A proof of this theorem is available in [2, Theorem 2.2]. The scalars kn, n ∈ N,
are called the cut-off wave numbers of the modes. We are now in a position to prove
a convergence result for problem (3.6).

Theorem 3.6. If k = kn ∀n ∈ N, the solution ϕε
a to problem (3.6) tends in

H2(Ωb) to ϕa as ε tends to zero, ϕa being the solution to (3.13).
Proof. Theorem 4 of [4] gives the convergence of ϕε

a to ϕa in H1(Ωb). We then
have (1−M2) ∂2

x1
ϕε
a + ∂2

x2
ϕε
a −→

ε→0
(1−M2) ∂2

x1
ϕa + ∂2

x2
ϕa in L2(Ωb). The domain Ωb

being convex, we deduce ϕε
a −→

ε→0
ϕa in H2(Ωb) (see [10]).

3.3.3. Limit and convergence of the hydrodynamic problem. The so-
lution to problem (3.7) is explicitly given by the convolution product ϕε

h(x1, x2) =
Gε ∗ gh(., x2)(x1) ∀(x1, x2) ∈ Ω, where the kernel Gε denotes the causal Green’s func-

tion of the differential operator D2
ε. Introducing G(x1) = x1

M2H(x1) e
i k
M x1 ∀x1 ∈ R

as the formal limit of Gε as ε tends to zero, one can show that Gε converges to G
in L2

loc(R). Consider now ϕh(x1, x2) = G ∗ gh(., x2)(x1), which is a solution to the
limiting problem find ϕh ∈ L2

loc(Ω) such that

D2ϕh = gh in Ω.(3.14)

One has |ϕε
h−ϕh| = |(Gε−G)∗ gh(., x2)| ∀x2 ∈ [0, l], and, using the Cauchy–Schwarz

inequality,

‖ϕε
h − ϕh‖L2(Ωb) ≤

(∫ x+

x−

|Gε(z) −G(z)|2 dz

)1/2

‖gh‖L2(Ω).

The convergence of Gε to G in L2
loc(Ω) implies that ϕε

h converges to ϕh in L2(Ωb) as
ε tends to zero. Since gh ∈ H2(Ω) and using classical properties of the convolution of
distributions, the above estimate is also true in the H2(Ω) norm and we deduce the
following theorem.

Theorem 3.7. The solution ϕε
h to problem (3.7) tends to ϕh in H2(Ωb) as ε

tends to zero.

3.3.4. Conclusion. We finally infer from Theorems 3.6 and 3.7 the following
result.

Theorem 3.8. If k is not a cut-off wave number, the solution uε to problem
(3.1)–(3.2) tends to u = ∇ϕa + curlϕh in H1(Ωb)

2 as ε tends to zero, where ϕa is
the unique solution to (3.13) and ϕh(x1, x2) = G ∗ gh(., x2)(x1).

The potential ϕa can be extended via a modal expansion to the whole domain Ω.
The field u is therefore also defined in the whole duct Ω, where it obviously satisfies
(2.1) and (2.2). From now on, this field will be referred to as the outgoing solution to
problem (2.1)–(2.2).

Corollary 3.9. The function ψε = curluε tends to curlu in L2(Ωb). We set
ψ = curlu.

In the remainder of the paper, we assume that k is not a cut-off wave number:

k = kn ∀n ∈ N.(3.15)

3.3.5. Another characterization of ϕh. We observe that using the Helmholtz
decomposition (3.8) of uε in the regularized problem (3.4) would lead, as curl (curl ) =
−Δ for a scalar field, to the following problem for the hydrodynamic potential:
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find ϕε
h ∈ H1(Ω) such that

D2
εϕ

ε
h − Δϕε

h = gh + ψε in Ω,

ϕε
h = 0 on ∂Ω,

(3.16)

in place of (3.7). Nevertheless, problems (3.7) and (3.16) are equivalent, since −Δϕε
h =

ψε, but using the latter to find the limit of ϕε
h as ε tends to zero is less natural and more

delicate than what has been proposed in subsection 3.3.3. Even still, we detail this
alternative approach here, since it provides another characterization of the potential
ϕh, which will prove to be useful in what follows.

Notice that problem (3.16) is very similar to (3.6), except for the homogeneous
Dirichlet boundary condition, which replaces the homogeneous Neumann boundary
condition of (3.6), and for the right-hand side term, which does not have compact
support. To prove the convergence of problem (3.16), we define a similar problem
with compactly supported data, which then fits into the previous framework. This
leads to the following statement.

Lemma 3.10. The limit ϕh of the potential ϕε
h has the following two equivalent

characterizations:
1. ϕh is the unique solution to (3.14) which vanishes upstream of the source gh.
2. ϕh = ϕ̃h + χζ, where ϕ̃h is the unique (outgoing) solution to problem (3.21)

and χ and ζ are defined below.
Proof. We first introduce the function ψε,∞, which coincides with ψε downstream

of the support of curlf and is the sum of two functions with separated variables. More
precisely, if supp(curlf) ⊂ {(x1, x2) ∈ Ω | d− < x1 < d+}, we have by definition that
ψε,∞(x1, x2) = ψε(x1, x2) for x1 > d+ and, from (6.3), that

ψε,∞(x1, x2) = (aε(x2) + x1 bε(x2)) e
i kε
M x1 ∀(x1, x2) ∈ Ω.

Notice that ψε,∞ does not generally vanish upstream of the support of the source,
contrary to ψε. Taking advantage of the particular form of ψε,∞, one can explicitly
determine a function ζε satisfying the problem find ζε ∈ H1(Ω) such that

D2
εζ

ε − Δζε = ψε,∞ in Ω,

ζε = 0 on ∂Ω,

which is sought in the form ζε(x1, x2) = (Aε(x2) + x1 Bε(x2)) e
i kε
M x1 ∀(x1, x2) ∈ Ω.

This leads to the solution of the following two problems:

−B′′
ε (x2) +

kε
2

M2
Bε(x2) = bε(x2),

Bε(0) = Bε(l) = 0,

(3.17)

−A′′
ε (x2) +

kε
2

M2
Aε(x2) = 2i

kε
M

Bε(x2) + aε(x2),

Aε(0) = Aε(l) = 0.

(3.18)

One can easily prove that problem (3.17) is well-posed in the space H1
0 ([0, l]) and

consequently compute the function Bε, which allows us in turn to determine Aε (using
the same argument) and finally find the function ζε.

Now using their explicit formulas (see the appendix), one can show that aε and
bε, respectively, tend, as ε tends to zero, to some functions a and b which are related
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to ψ = curlu through the relation ψ(x1, x2) = (a(x2) + x1 b(x2)) e
i k
M x1 ∀(x1, x2) ∈

]d+,+∞[×[0, l]. We are then able to compute the respective limits of Aε and Bε,
denoted A and B, by simply solving similar problems. We have consequently defined
a function ζ(x1, x2) = (A(x2) + x1 B(x2)) e

i k
M x1 ∀(x1, x2) ∈ Ω, which satisfies D2ζ −

Δζ = ψ ∀(x1, x2) ∈]d+,+∞[×[0, l] and which is the limit of ζε as ε tends to zero.
Now, consider a cut-off function χ ∈ C∞(R) such that χ(x1) = 1 if x1 > d+ and

vanishing for x1 < d−. It is easily seen that ϕ̃ε
h = ϕε

h − χζε satisfies the following
problem: find ϕ̃ε

h ∈ H1(Ω) such that

D2
εϕ̃

ε
h − Δϕ̃ε

h = g̃εh in Ω,

ϕ̃ε
h = 0 on ∂Ω,

where g̃εh = gh+ψε−
(
D2

ε(χζ
ε) − Δ(χζε)

)
. By construction, ψε−

(
D2

ε(χζ
ε) − Δ(χζε)

)
has a compact support contained in Ωb, and therefore g̃εh is compactly supported in Ωb.
Using DtN operators, this last problem may equivalently be rewritten as a problem
set in Ωb: find ϕ̃ε

h ∈ H1(Ωb) such that

D2
εϕ̃

ε
h − Δϕ̃ε

h = g̃εh in Ωb,

ϕ̃ε
h = 0 on ∂Ω ∩ ∂Ωb,

∂nϕ̃
ε
h = −TD,ε

± ϕ̃ε
h on Σ±,

(3.19)

where the operators TD,ε
± : H1/2 (Σ±) → H−1/2 (Σ±) (the superscript D refers to the

Dirichlet boundary condition in (3.19)) are defined by

TD,ε
± φ = ∓i

+∞∑
n=1

βε±
n (φ,Sn)L2(Σ±) Sn(x2),

the numbers βε±
n , n ∈ N

∗, being defined in (3.9) and with

Sn(x2) =

√
2

l
sin

(nπ

l
x2

)
∀n ∈ N

∗.(3.20)

One can prove that problem (3.19) is well-posed, due to hypothesis (3.15). It is now
possible to pass to the limit as ε tends to zero in the same way as previously done for
the acoustic potential ϕε

a and finally show that limε→0 ϕ̃
ε
h = ϕ̃h in H1(Ωb), where ϕ̃h

is the solution to the following: find ϕ̃h ∈ H1(Ωb) such that

D2ϕ̃h − Δϕ̃h = g̃h in Ωb,

ϕ̃h = 0 on ∂Ω ∩ ∂Ωb,

∂nϕ̃h = −TD
± ϕ̃h on Σ±,

(3.21)

where g̃h = gh + ψ −
(
D2(χζ) − Δ(χζ)

)
, the DtN operators TD

± : H1/2 (Σ±) →
H−1/2 (Σ±) being defined by TD

± φ = ∓i
∑+∞

n=0 β
±
n (φ,Sn)L2(Σ±) Sn(x2).

Using that limε→0 ζ
ε = ζ, one has limε→0 ϕ

ε
h = limε→0 (ϕ̃ε

h + χζε) = ϕ̃h +χζ. By
uniqueness of the limit, we conclude that ϕh = ϕ̃h + χζ.

4. Setting of the problem with perfectly matched layers. Our goal in
this section is to develop a finite element method to compute an approximation of
the outgoing solution u to problem (2.1)–(2.2). To do so, we must address two main
difficulties. First, this problem is set in an unbounded domain. Second, the operator
in Galbrun’s equation is not coercive.
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As already seen during the study of the dissipative problem, the coerciveness can
be restored by applying a regularization technique. On the other hand, we use PMLs
(see, for example, [2] and references therein for a presentation of this methodology)
in order to truncate the computational domain. A posteriori, the regularization will
prove to be necessary not only for the finite element method, but also for the PML
method (see subsection 5.5).

In a previous paper [2], we proved the convergence of the solutions to PML for-
mulations of the scalar problem (3.13). Two different models of PMLs were studied: a
“classical” one, derived directly from Bérenger’s original model, and a modified one,
designed to avoid a possible growing of the solution in the downstream layer (due
to the presence of the so-called inverse upstream modes). This last property will be
useful for the vectorial problem at hand, and the modified PML model (to be recalled
in the next subsection) will be the only one considered here.

4.1. The PML formulation. We introduce the bounded domain ΩL, composed
of domain Ωb and surrounding layers ΩL

±, which are respectively defined by ΩL
− =

{(x1, x2) ∈ Ω |x− − L < x1 < x−} and ΩL
+ = {(x1, x2) ∈ Ω |x+ < x1 < x+ + L}, the

external vertical boundaries of the layers ΩL
± being respectively denoted by ΣL

±.
The so-called modified PML model consists of the formal transformation of the

differential operator

∂x1 −→ α(x1) ∂x1 + iλ(x1)(4.1)

in the governing equations of the problem. The complex function α is assumed to be
unity in Ωb and, in order to simplify the study, constant and equal to the complex
scalar α∗, satisfying the hypotheses

Re(α∗) > 0, Im(α∗) < 0(4.2)

in Ω\Ωb (see [2] for a justification), but it can generally depend on the coordinate x1

in the layers. The function λ is assumed to be zero in Ωb and to be constant and
equal to

λ∗ = − kM

1 −M2
(4.3)

in Ω\Ωb. In Bérenger’s model, one has λ ≡ 0. Note that the results obtained subse-
quently can be extended to the case of a varying coefficient α∗, as done in [2].

As a consequence of the transformation (4.1), the various modified operators will
now be indexed by α and λ.

As seen in section 3, Galbrun’s equation must be regularized in order to be numer-
ically solved in a stable fashion by a nodal (i.e., H1-conforming) finite element method.
The PML formulation of the problem is no exception to this rule. Consequently, we
introduce a function ψα,λ, defined as the unique solution to D2

α,λψα,λ = curlf in Ω,
which vanishes upstream of the source. One can easily verify that ψα,λ = ψ in Ωb and
that, ∀(x1, x2) ∈ Ω+,

ψα,λ(x1, x2) = e
i
(

k
M x++( k

M −λ∗)
x1−x+

α∗
) (

a(x2) +

(
x+ +

(x1 − x+)

α∗

)
b(x2)

)
.

We then set the problem for the approximated displacement field: find uL ∈ H1(ΩL)2
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such that

D2
α,λuL −∇α,λ

(
divα,λ uL

)
+ curl α,λ

(
curl α,λuL − ψα,λ

)
= f in ΩL,

uL · n = 0 on ∂ΩL,

curl α,λuL = ψα,λ on ∂ΩL.

(4.4)

4.2. Well-posedness. We first establish a variational formulation of problem
(4.4): find uL ∈ V (ΩL) =

{
v ∈ H1(ΩL)2 | v · n = 0 on ∂ΩL

}
such that

aΩL(uL,v) + bΩL(uL,v) = lΩL(v) ∀v ∈ V (ΩL),(4.5)

where

aΩL(u,v) =

∫
ΩL

(
u · v +

1

α
(divα,λ u divα,−λ v + curl α,λu curl α,−λv)

− αM2 ∂x1u · ∂x1v

)
dx,

bΩL(u,v) =

∫
ΩL

(
1

α

(
−k2 + 2kMλ−M2λ2 − α

)
u · v +

(
iλM2 − 2ikM

)
∂x1

u · v

− iλM2 u · ∂x1v

)
dx,

lΩL(v) =

∫
ΩL

1

α
(f · v + ψα,λ curl α,−λv) dx −

∫
ΣL

±

M2ψα,λv2(n · e1) dσ.

Theorem 4.1. If the assumption (4.2) is satisfied, the variational problem (4.5)
is of Fredholm type.

Proof. We prove that the sesquilinear form aΩL(· , ·) defines, via the Riesz repre-
sentation theorem, an operator which is the sum of an isomorphism and a compact
operator on V (ΩL). Let us write aΩL(· , ·) as the sum

aΩL(u,v) = a0
ΩL(u,v) + λa1

ΩL(u,v) + λ2 a2
ΩL(u,v),

where the sesquilinear forms aiΩL(· , ·), i = 0, 1, 2, are independent of λ. The sesquilin-
ear form a0

ΩL(· , ·) is coercive on V (ΩL). Indeed, ∀u, v in V (ΩL), we have∫
ΩL

(curl α,0u curl α,0v + divα,0 u divα,0 v) dx =

∫
ΩL

∇α,0u : ∇α,0v dx,

and due to assumption (4.2), we have ∀u of V (ΩL)

Re
(
a0
ΩL(u,u)

)
=

∫
ΩL

(
|u|2 + Re(α)(1 −M2) |∂x1u|

2
+ Re

(
1

α

)
|∂x2u|

2

)
dx

≥ Cα ‖u‖H1(ΩL)2 ,

with Cα = min
(
1 −M2,Re(α∗)(1 −M2),Re

(
1
α∗

))
.

On the other hand, the forms a1
ΩL(· , ·) and a2

ΩL(· , ·) both define a compact op-
erator on V (ΩL), due to the compact embedding of H1(ΩL) into L2(ΩL). The same
argument is used to show that the bounded operator defined on H1(ΩL)2 by the
sesquilinear form bΩL(· , ·) is compact, which ends the proof.
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We now prove the equivalence between the variational formulation (4.5) and the
following (strong) problem: find uL ∈ H1(ΩL)2 such that

D2
α,λuL −∇α,λ(divα,λ uL) = f in ΩL,

curl α,λuL = ψα,λ in ΩL,

uL · n = 0 on ∂ΩL.

Lemma 4.2. There exists a strictly positive constant δ, depending on k, M , and
θ = arg(α∗), such that if L/|α∗| ≥ δ, any solution to variational problem (4.5) is such
that curl α,λuL = ψα,λ in ΩL.

Proof. Considering a test function of the form v = curl α,−λφ with φ ∈ H3(ΩL)∩
H1

0 (ΩL) in (4.5), we obtain, after integrating by parts,∫
ΩL

1

α
curl α,λuL

(
D2

α,−λφ− Δα,−λφ
)

dx =

∫
ΩL

1

α

(
φ curl α,λf − ψα,λΔϕ

)
dx

+

∫
ΣL

−∪ΣL
+

αM2ψα,λ∂x1
φ(n · e1) dσ.

Knowing that the function ψα,λ satisfies D2
α,λψα,λ = curl α,λf in ΩL, we finally have∫

ΩL

1

α

(
curl α,λuL − ψα,λ

) (
D2

α,−λφ− Δα,−λφ
)

dx = 0.

Owing to a density argument, this equality holds for any function φ in H2(ΩL)∩
H1

0 (ΩL). Then, if L/|α∗| is large enough, the operator D2
α,−λ−Δα,−λ is surjective from

H2(ΩL)∩H1
0 (ΩL) onto L2(ΩL) (see subsection 5.1), and we deduce that curl α,λuL =

ψα,λ almost everywhere in ΩL.
We finish this study by an existence and uniqueness result. In addition to hy-

pothesis (3.15) on the wave number k, we now assume that

k = nπ

l
∀n ∈ N.(4.6)

The need for this second assumption will be made clear in the next section.
Theorem 4.3. Assume that hypotheses (4.2) are satisfied and choice (4.3) is

made. Then, there exists a strictly positive constant δ such that problem (4.5) admits
a unique solution if L/|α∗| ≥ δ.

Proof. The problem being of Fredholm type, proving the existence of its solution
amounts to proving uniqueness. Let w ∈ H1(ΩL)2 denote the difference between two
solutions to problem (4.5). It verifies that

D2
α,λw −∇α,λ(divα,λ w) = 0 in ΩL,

curl α,λw = 0 in ΩL,

w · n = 0 on ∂ΩL.

We then consider the function w̌(x1, x2) = w(x1, x2) e
iλx1 , so that curl α,0w̌ =

curl α,λw eiλx1 , and we use the following result.
Theorem 4.4. A function v in L2(ΩL)2 satisfies curl α,0v = 0 in ΩL if and only

if there exists a function φ in H1(ΩL) such that v = ∇α,0φ. This function is unique
up to an additive constant.

A proof of the above theorem can be obtained by slightly modifying the proof of
Theorem 2.9 of [9, Chapter 1].
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The field w̌ then derives from a scalar potential φ, which is a solution to

∇α,0

(
D2

α,0φ− Δα,0φ
)

= 0 in ΩL,

∇α,0φ · n = 0 on ∂ΩL;

hence

D2
α,0φ− Δα,0φ = C in ΩL,

∇α,0φ · n = 0 on ∂ΩL,
(4.7)

where C is a complex constant. This last problem is well-posed if L/|α∗| is large
enough (this will be proved later; see subsection 5.1). Besides, one can easily verify
that φ ≡ − C

k2 is a solution to system (4.7) and, thus, the unique solution of the
problem. As a consequence, one has w = 0 in ΩL.

5. Convergence results of PMLs for Galbrun’s equation. Our objective
is to show that uL, the solution to (4.5), tends to u = ∇ϕa + curlϕh in Ωb when
the ratio L/|α∗| tends to infinity. A natural idea is to introduce two approximate
potentials ϕL

a and ϕL
h , which converge, respectively, to ϕa and ϕh and are such that

uL = ∇ϕL
a + curlϕL

h .
We now briefly present a sketch of the convergence proof and point out several

difficulties that need to be addressed in the analysis as well. Indeed, it appears there
is not a unique Helmholtz decomposition for uL, which leaves us with the delicate task
of choosing the adequate approximate potentials. Second, the “natural candidates”
for these potentials satisfy scalar problems with boundary conditions that are, as we
shall see, a priori unusual for PML problems.

Let us characterize the potentials ϕL
h and ϕL

a as the respective solutions to the
following scalar problems: find ϕL

h ∈ H1(ΩL) such that

D2
α,λϕ

L
h − Δα,λϕ

L
h = gh + ψα,λ in ΩL,(5.1a)

ϕL
h = 0 on ∂ΩL ∩ ∂Ω,(5.1b)

− Δα,λϕ
L
h = ψα,λ on ΣL

±,(5.1c)

and find ϕL
a ∈ H1(ΩL) such that

D2
α,λϕ

L
a − Δα,λϕ

L
a = ga in ΩL,(5.2a)

∇α,λϕ
L
a · n = 0 on ∂ΩL ∩ ∂Ω,(5.2b)

∇α,λϕ
L
a · n = −curl α,λϕ

L
h · n on ΣL

±.(5.2c)

The first step of the proof consists of showing that these two problems are well-
posed. The field ∇ϕL

a + curlϕL
h is then clearly a solution to problem (4.4), which

establishes that uL = ∇ϕL
a + curlϕL

h . It remains to prove the convergence of the
potentials ϕL

h and ϕL
a to their counterparts ϕh and ϕa, using the convergence analysis

previously done in [2]. However, problems (5.1) and (5.2) do not exactly enter the
framework considered in [2] for three main reasons. First, the boundary condition
(5.1c) is nonstandard (from a functional point of view) and nonhomogeneous. Second,
the right-hand side term in (5.1a) has a part of its support contained in the PMLs
(we nevertheless observe that both this datum and the one in (5.1c) are exponentially
decreasing in the layers). Third, the boundary condition (5.2c) is not homogeneous.
Note that this last condition links the potential ϕL

a to the tangential trace of curlϕL
h
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on the boundaries ΣL
±. Since ϕa satisfies an analogous problem with homogeneous

boundary conditions, we expect this trace to tend to zero in order to be able to
prove the convergence of the method. As a consequence, we will first investigate the
convergence of ϕL

h and then that of ϕL
a .

Before doing so, we first recall and give convergence results for scalar problems
of the type of (5.1) and (5.2), but with compactly supported data and homogeneous
boundary conditions.

5.1. Convergence results of PMLs for scalar problems. Some straightfor-
ward extensions of the results of [2] will be needed in what follows. We do not detail
their proofs here, as they are only slight modifications from the ones in the cited
reference.

We study the following model problem. Suppose g ∈ L2(Ωb) is a source with
compact support and consider the scalar field ϕ in H1

loc(Ω), which satisfies

D2ϕ− Δϕ = g in Ω,

ϕ = 0 on ∂Ω,
(5.3)

and an additional radiation condition at infinity, which selects the outgoing solution
of the problem. As already seen in subsection 3.3.5, this (nonlocal) condition may be
expressed through the DtN operators TD

± on Σ±.
In the following subsections, we give three PML formulations of this model prob-

lem, each one of them using a different boundary condition at the end of the layers.
One should note that the results obtained here are still valid if a homogeneous Neu-
mann boundary condition is applied on ∂Ω and, for the sake of brevity, we do not
duplicate the statements. Indeed, such a change induces only a modification of the
modal basis that appears in the proofs—the sine functions (Sn)n∈N∗ introduced in
(3.20) being replaced by the cosine functions (Cn)n∈N

defined in (3.10).

5.1.1. Problem A. We first consider a PML formulation of problem (5.3) with
a homogeneous Dirichlet boundary condition on ΣL

±: find ϕL ∈ H1(ΩL) such that

D2
α,λϕ

L − Δα,λϕ
L = g in ΩL,(5.4a)

ϕL = 0 on ∂ΩL.(5.4b)

Equation (5.4a) has to be understood in the distributional sense, so that it implies
the following transmission conditions at the interfaces between Ωb and ΩL

±:[
ϕL

]
Σ±

= 0 and
[
α∂x1

ϕL + iλϕL
]
Σ±

= 0.(5.5)

In the domain Ωb, the function ϕL, solution to (5.4), is meant to be an approxi-
mation of ϕ, solution to (5.3).

Adapting the proofs in [2], one can easily show the following lemma.
Lemma 5.1. Assume that problem (5.4) has a solution. Then, this solution can

be written as

ϕL(x1, x2) =

+∞∑
n=1

(
ϕL(x±, .),Sn

)
L2(Σ±)

(
A+

n (±L) eiγ+
n (x1−x±)

+ A−
n (±L) eiγ−

n (x1−x±)
)

Sn(x2)

in the layers ΩL
±, where γ±

n =
β±
n −λ∗

α∗ and A±
n (L) = ∓ eiβ

∓
n L/α∗

eiβ
+
n L/α∗−eiβ

−
n L/α∗ .
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We easily check that the denominators of (A±
n (±L))n∈N

do not vanish due to
assumptions (3.15) and (4.2). We are then able to write exact boundary conditions
satisfied by ϕL

|
ΩL
±

= ϕL
± on Σ±, that is,

∂x1ϕ
L
±|Σ±

= i

+∞∑
n=1

(
ϕL
±(x±, .),Sn

)
L2(Σ±)

(
A+

n (±L)γ+
n + A−

n (±L)γ−
n

)
Sn,

which in turn yield, using the transmission conditions (5.5),

∂x1
ϕL
b |Σ±

= i

+∞∑
n=1

(
ϕL
b (x±, .),Sn

)
L2(Σ±)

νn(±L) Sn,

where we have set νn(L) = A+
n (L)β+

n + A−
n (L)β−

n = β+
n +

β−
n −β+

n

1−ei(β
−
n −β

+
n )L/α∗ ∀n ∈ N.

Observe here that these quantities do not depend on the value of λ∗.
Having in mind the comparison between ϕL and ϕ in Ωb, we reformulate (5.4) as

an equivalent problem posed solely in this domain: find ϕL ∈ H1(Ωb) such that

D2ϕL − ΔϕL = g in Ωb,

ϕL = 0 on ∂Ωb ∩ ∂Ω,

∂nϕ
L = −TL

±ϕL on Σ±,

(5.6)

where the DtN operators TL
± : H1/2 (Σ±) → H−1/2 (Σ±) are defined by TL

±φ =

∓i
∑+∞

n=1 νn(±L) (φ,Sn)L2(Σ±) Sn(x2).

On the other hand, problem (5.3) has the following equivalent formulation: find
ϕ ∈ H1(Ωb) such that

D2ϕ− Δϕ = g in Ωb,

ϕ = 0 on ∂Ωb ∩ ∂Ω,

∂nϕ = −TD
± ϕ on Σ±.

Since the scalars νn(±L) tend to β±
n as L/|α∗| tends to infinity for any integer n,

we have the following convergence result (see [2] for a proof).
Theorem 5.2. Suppose that assumptions (3.15) and (4.2) are verified and let g

in L2(ΩL) be compactly supported in Ωb. Then, there exists a strictly positive constant
δ, depending on k, M , and θ = arg(α∗), such that if L/|α∗| ≥ δ, problem (5.4) is well-
posed. Furthermore, the restriction to Ωb of the solution ϕL to problem (5.4) converges
to the restriction of the solution ϕ to problem (5.3) as L/|α∗| tends to infinity. There
also exists a constant C, depending on M and k, such that

‖ϕ− ϕL‖H2(Ωb) ≤ C e−η L
|α∗| ‖ϕ‖H2(Ωb),

with

η =
2k

1 −M2
min

⎛
⎝− sin(θ)

√
1 − N0

2

K0
2 , cos(θ)

√
(N0 + 1)2

K0
2 − 1

⎞
⎠ ,(5.7)

where K0 = kl
π
√

1−M2 , N0 is the floor of K0, and θ = arg(α∗).
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5.1.2. Problem B. We now consider the homogeneous Neumann boundary con-
dition

∇α,λϕ
L · n = 0 on ΣL

±,(5.8)

instead of the previous Dirichlet boundary condition. In this case, the claim of
Theorem 5.2 remains true if we furthermore assume that k = nπ

l ∀n ∈ N. In-
deed, the sketch of the proof for the problem at hand is nearly identical to the

preceding one, with the following values: A±
n (L) = ∓ β∓

n eiβ
∓
n L/α∗

β+
n eiβ

+
n L/α∗−β−

n eiβ
−
n L/α∗ and

νn(L) = β+
n +

β+
n (β−

n −β+
n )

β+
n −β−

n ei(β
−
n −β

+
n )L/α∗ .

Again, one can verify that the scalars (A±
n (L))n∈N

are always defined if the as-
sumptions (3.15) and (4.2) are satisfied. Obviously, the scalar νn(L) tends to β+

n as
L/|α∗| tends to +∞ for any integer n. On the other hand, if there exists an integer
j such that k = jπ

l , then the corresponding axial wave number β+
j vanishes and the

scalar νj(−L) = β−
j +

β−
j (β+

j −β−
j )

β−
j −β+

j e
i(β

−
j −β

+
j )L/α∗ = 0 cannot converge to β−

j = 0 when L/|α∗|

tends to infinity; hence we have the supplementary assumption.
Additionally, the well-posedness of problem (5.4a)–(5.8) in the more general case

of a source g with noncompact support and/or if the boundary condition (5.8) is not
homogeneous can be proved by means of the Fredholm alternative.

5.1.3. Problem C. We finally consider the following homogeneous condition:

Δα,λϕ
L = 0 on ΣL

±.(5.9)

Theorem 5.2 is still valid. This time, in the proof, we have

A±
n (L) = ∓ (Mβ∓

n − k)2 eiβ∓
n L/α∗

(Mβ+
n − k)2 eiβ+

n L/α∗ − (Mβ−
n − k)2 eiβ−

n L/α∗(5.10)

and νn(L) = β+
n +

(Mβ+
n −k)2(β−

n −β+
n )

(Mβ+
n −k)2−(Mβ−

n −k)2 ei(β
−
n −β

+
n )L/α∗ .

Contrary to both previous problems, the well-posedness of problem (5.4a)–(5.9)
cannot be extended to the case of an arbitrary source term g, since the boundary
condition (5.9) does not allow us to write a variational formulation of the problem.

5.2. Well-posedness and convergence analysis for ϕL
h . Once again, the

idea is to deal with an equivalent problem, whose source term is compactly supported
and whose boundary conditions are homogeneous, and the approach previously used
in subsection 3.3.5 is followed closely. This new problem then permits the construction
of the solution via a modal decomposition.

We first introduce the functions ψ∞
α,λ such that, ∀(x1, x2) ∈ ΩL

+,

ψ∞
α,λ(x1, x2) =

⎧⎨
⎩

(a(x2) + b(x2)x1) ei k
M x1 ∀(x1, x2) ∈]d+, x+[×]0, l[,(

a(x2) + b(x2)

(
x+ +

x1 − x+

α∗

))
e
i
(

k
M x++( k

M −λ∗)
x1−x+

α∗
)
,

and ζα,λ such that, ∀(x1, x2) ∈ ΩL
+,

ζα,λ(x1, x2) =

⎧⎨
⎩

(A(x2) + B(x2)x1) ei k
M x1 ∀(x1, x2) ∈]d+, x+[×]0, l[,(

A(x2) + B(x2)

(
x+ +

x1 − x+

α∗

))
e
i
(

k
M x++( k

M −λ∗)
x1−x+

α∗
)
,
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the functions a, b, A, and B having been characterized in the subsection 3.3.5. We
then set ϕL

h = ϕ̃L
h + χζα,λ, where the function ϕ̃L

h satisfies

D2
α,λϕ̃

L
h − Δα,λϕ̃

L
h = g̃h in ΩL,

ϕ̃L
h = 0 on ∂ΩL ∩ ∂Ω,

−Δα,λϕ̃
L
h = 0 on ΣL

±.

Indeed, the quantity gh+ψα,λ−D2
α,λ(χζα,λ)−Δα,λ(χζα,λ) coincides with g̃h, since ψα,λ

and ζα,λ, respectively, coincide with ψ and ζ in Ωb. This last problem is well-posed,
owing to the results of subsection 5.1, and we easily deduce the following result.

Theorem 5.3. If the ratio L/|α∗| is large enough, problem (5.1) has a unique
solution which is ϕL

h = ϕ̃L
h +χζα,λ. Moreover, the function ϕL

h converges to ϕ̃h+χζ =
ϕh in H2(Ωb) as L/|α∗| tends to infinity, and one has the estimate

∥∥ϕh − ϕL
h

∥∥
H2(Ωb)

≤ C e−
η
2

L
|α∗| ‖ϕh‖H2(Ωb)

,

where the constant C depends on k and M and η is defined in (5.7).
Proof. In the domain Ωb, one has ϕL

h − ϕh = ϕ̃L
h + χζα,λ − ϕ̃h − χζ = ϕ̃L

h − ϕ̃h.
The convergence result then directly follows from subsection 5.1.

Corollary 5.4. Suppose that assumptions (4.2) and (4.3) hold. Then, the
traces (curl α,λϕ

L
h ·n)|

ΣL
±

tend to zero in H1/2(ΣL
±) as L/|α∗| tends to infinity. More

precisely, for L/|α∗| large enough, one has the estimate

∥∥curl α,λϕ
L
h · n

∥∥
H1/2(ΣL

±)
≤ C

(
e−

η
2

L
|α∗| ‖ϕh‖H2(Ωb)

+ e(
k
M −λ∗) sin(θ) L

|α∗| ‖gh‖L2(Ωb)

)
,

where the constant C depends on k and M , η is defined in (5.7), and θ denotes the
argument of α∗.

Proof. Using a modal decomposition for ϕ̃L
h in the layers ΩL

±, similar to the ones
used in the subsection 5.1, one has, on ΣL

+, for instance, ∀x2 ∈ [0, l],

∂x2 ϕ̃
L
h (x+ + L, x2) =

+∞∑
n=1

(
ϕ̃L
h (x+, ·),Sn

)
L2([0,l])

(
A+

n (L)eiγ+
n L + A−

n (L)eiγ−
n L

) nπ

l
Cn(x2),

the scalars (A±
n (L))n∈N

being defined in (5.10). Setting

τn = A+
n (L) eiγ+

n L + A−
n (L) eiγ−

n L =
M(β−

n − β+
n ) (2k + M(β+

n + β−
n )) eiγ+

n L

(Mβ+
n − k)2 ei(β+

n −β−
n ) L

α∗ − (Mβ−
n − k)2

∀n ∈ N,

we obtain, if L/|α∗| is large enough and after some majorizations,

|τn| ≤ C e−
η
2

L
|α∗| ∀n ∈ N,

the constant η being defined in (5.7). Thus, we have

∥∥∂x2
ϕ̃L
h

∥∥2

H1/2(ΣL
+)

≤
+∞∑
n=1

(
1 +

n2π2

l2

)3/2

|τn|2
∣∣∣(ϕ̃L

h (x+, ·),Sn

)
L2([0,l])

∣∣∣2
≤ C e−η L

|α∗|
∥∥ϕ̃L

h

∥∥2

H3/2(Σ+)
.
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We then deduce an estimate of this quantity using the convergence of ϕ̃L
h to ϕ̃h

in H2(Ωb) and a trace theorem. On the other hand, one has

‖∂x2ζα,λ‖
2
H1/2(ΣL

+) ≤
(
‖A‖2

H2([0,l]) + ‖B‖2
H2([0,l])

∣∣∣∣x+ +
L

α∗

∣∣∣∣2
)

e2( k
M −λ∗) sin(θ) L

|α∗|

≤ C

(
1 +

L

|α∗|

)2

e2( k
M −λ∗) sin(θ) L

|α∗| ‖gh‖2
L2(Ω).

One obviously has similar estimates on ΣL
−, and thus the announced result is ob-

tained.
We emphasize here that this corollary is valid only for the PML model correspond-

ing to the transformation (4.1) with the choice (4.3) for λ∗. Indeed, every propagative
mode, and, more particularly, every inverse upstream mode, has to be damped in the
layers in order to prove the claim. This appears to be different from the convergence
results previously given in [2] and subsequently extended in subsection 5.1, which are
also true for the original Bérenger model (that is, when λ ≡ 0).

5.3. Well-posedness and convergence analysis for ϕL
a . Since the analysis in

section 5.1 was concerned with PML problems with homogeneous boundary conditions
on ΣL

±, the only difficulty in proving the convergence of problem (5.2) comes from the
nonhomogeneous boundary condition (5.2c). Consequently, the scalar field ϕL

a is split
in the following manner: ϕL

a = ϕL,1
a + ϕL,2

a , with

D2
α,λϕ

L,1
a − Δα,λϕ

L,1
a = ga in ΩL,

∇α,λϕ
L,1
a · n = 0 on ∂ΩL,

(5.11)

and

D2
α,λϕ

L,2
a − Δα,λϕ

L,2
a = 0 in ΩL,

∇α,λϕ
L,2
a · n = 0 on ∂ΩL ∩ ∂Ω,

∇α,λϕ
L,2
a · n = −curl α,λϕ

L
h · n on ΣL

±.

(5.12)

As seen in subsection 5.1, both of these problems are well-posed. Moreover, the
results of subsection 5.1.2 readily give the convergence of the solution ϕL,1

a to problem
(5.11) to ϕa in H2(Ωb) as the ratio L/|α∗| tends to infinity.

We next prove the following lemma.
Lemma 5.5. If the ratio L/|α∗| is large enough, the solution ϕL,2

a to problem
(5.12) satisfies the estimate∥∥ϕL,2

a

∥∥
H2(Ωb)

≤ C e−
η
2

L
|α∗|

∥∥curl α,λϕ
L
h · n

∥∥
H1/2(ΣL

±) ,

where the constant C depends on k and M and the constant η is defined in (5.7).
Proof. Let us set q± = −(curl α,λϕ

L
h ·n)|

ΣL
±

. The main tool of the proof is again a

modal decomposition. Since the functions q±, respectively, belong to H1/2(ΣL
±), they

can be written as q±(x2) =
∑+∞

n=0 q
±
n Cn(x2) on ΣL

±, and we have ‖q±‖2
H1/2(ΣL

±)
=∑+∞

n=0(1 + n2π2

l2 )1/2 |q±n |
2
.

We look for a solution to problem (5.12) of the same form,

ϕL,2
a (x1, x2) =

+∞∑
n=0

φn(x1) Cn(x2) in ΩL,(5.13)
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which yields the following ODEs: D2
α,λφn − (α dx1

+ iλ)
2
φn + n2π2

l2 φn = 0, n ∈ N,

with boundary conditions αφn
′ + iλφn = ±q±n on ΣL

± and transmission conditions,
between Ωb and the PMLs, [φn]Σ± = 0 and

[
αφn

′ + iλφn

]
Σ±

= 0.

There are three different zones:

φn(x1) =

⎧⎪⎨
⎪⎩

A−
n eiγ−

n x1 + A+
n eiγ+

n x1 if x1 ≤ x−,

B−
n eiβ−

n (x1−x+) + B+
n eiβ+

n (x1−x−) if x− ≤ x1 ≤ x+,

C−
n eiγ−

n x1 + C+
n eiγ+

n x1 if x1 ≥ x+.

Expressing the boundary and transmission conditions gives a 6-by-6 linear system
to solve in order to obtain the coefficients (A±

n , B
±
n , C±

n ). After some manipulations,

we finally obtain B−
n = −i

q−n
β−
n
e−iγ−

n L 1+z+
n

1−z+
n z−

n
and B+

n = i
q+
n

β+
n
eiγ+

n L 1+z−
n

1−z+
n z−

n
, where z+

n =

eiβ+
n (x+−x−)e2iγ+

n L and z−n = e−iβ−
n (x+−x−)e−2iγ−

n L.
Note that, due to assumption (4.6), the scalars B±

n are well defined. Using classical
properties of propagative and evanescent modes, it is easy to show that, for L/|α∗| suf-

ficiently large, we have |B±
n | ≤ C

∣∣ q±n
β±
n

∣∣ e∓Im(γ±
n )L, which yield |B±

n | ≤ C
∣∣ q±n
β±
n

∣∣e− η
2

L
|α∗| ,

the constant η being the one defined in (5.7).
Then, successively integrating (5.13) with respect to x2 and x1 and using the

estimates above, we conclude that∥∥ϕL,2
a

∥∥
H2(Ωb)

≤ C e−
η
2

L
|α∗|

∥∥q±∥∥
H1/2(ΣL

±) ,

which ends the proof.
Using Corollary 5.4, we finally deduce the following corollary.
Corollary 5.6. The function ϕL,2

a converges to zero as L/|α∗| tends to infinity.
More precisely, for L/|α∗| large enough, one has the estimate∥∥ϕL,2

a

∥∥
H2(Ωb)

≤ C
(
e−η L

|α∗| ‖ϕh‖H2(Ωb)
+ e((

k
M −λ∗) sin(θ)− η

2 ) L
|α∗| ‖gh‖L2(Ω)

)
,

where the constant C depends on k and M , η is defined in (5.7), and θ denotes the
argument of α∗.

5.4. Conclusion. The gathering of the preceding results yields the inequality

‖uL − u‖H1(Ωb)2 ≤ C e−
η
2

L
|α∗|

(
‖∇ϕa‖H1(Ωb)2 + ‖curlϕh‖H1(Ωb)2

+

(
1 +

L

|α∗|

)
e(

k
M −λ∗) sin(θ) L

|α∗| ‖gh‖L2(Ω)

)

and consequently allows us to state a final theorem relative to the convergence of the
solution to problem (4.4) when the ratio L/|α∗| tends to infinity.

Theorem 5.7. Suppose that assumptions (4.2) and (4.3) hold. Then, the field
uL tends to u in H1(Ωb)

2 as L/|α∗| tends to infinity. Furthermore, for L/|α∗| large
enough, one has the estimate∥∥uL − u

∥∥
H1(Ωb)2

≤ C e−
η
2

L
|α∗| ,

where the constant C depends on k, M , and the solution u, the constant η being
defined in (5.7).
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5.5. Remark on the use of PMLs without regularization. Let us finally
tackle the claim made in the introduction of section 4, namely, that PMLs do not work
without regularization. Indeed, assume that the approximated displacement field uL

is computed as the solution to the problem

D2
α,λuL −∇α,λ

(
divα,λ uL

)
= f in ΩL,

uL · n = 0 on ∂ΩL,
(5.14)

completed by an additional boundary condition at the end of the layers—for instance,
curl α,λuL = 0 on ∂ΩL.

Then, the function ψL = curl α,λuL is a solution to the following problem:

D2
α,λψ

L = curlf in ΩL,

ψL = 0 on ΣL
±.

(5.15)

For the PML method to work, the field uL must converge to u in Ωb as the ratio
L/|α∗| tends to infinity, and, consequently, ψL must converge to ψ = curlu in Ωb. We
now show that this convergence does not hold. Indeed, the solution ψL to problem
(5.15) can be sought as the sum ψL = ψα,λ + ψ̃L, where ψ̃L solves the following
problem:

D2
α,λψ̃

L = 0 in ΩL,

ψ̃L = 0 on ΣL
−,

ψ̃L = −ψα,λ on ΣL
+.

(5.16)

Using the expression of ψα,λ derived previously, we find that

ψα,λ(x+ + L, x2) =

(
a(x2) + b(x2)

(
x+ +

L

α∗

))
ei( k

M x++( k
M −λ∗) L

α∗ ) ∀x2 ∈ ]0, l[.

Then, the expression of ψ̃L can be easily derived by seeking a solution of the form

ψ̃L(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ã(x2)

(
1 + t

x1 − x−
α∗

)
e
i
(

k
M x−+( k

M −λ∗)
x1−x−

α∗
)

if x1 ≤ x−,

ã(x2) (1 + t (x1 − x−)) ei k
M x1 if x− ≤ x1 ≤ x+,

ã(x2)

(
1 + t

(
x+ − x− +

x1 − x+

α∗

))
e
i
(

k
M x++( k

M −λ∗)
x1−x+

α∗
)

if x1 ≥ x+,

where the function ã and the real number t need to be determined. By construction,
the transmission conditions on Σ± are automatically satisfied, and we simply use the
boundary conditions on ΣL

±, which give us the two equalities

1 − t
L

α∗ = 0,

ã(x2)

(
1 + t

(
x+ − x− +

L

α∗

))
= −

(
a(x2) + b(x2)

(
x+ +

L

α∗

))
,

so that, finally, t = α∗/L and ã(x2) = −a(x2)+b(x2)(x++ L
α∗ )

2+α∗
L (x+−x−)

. Clearly, we see that ψ̃L

does not converge to zero as L/|α∗| tends to infinity.
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6. Numerical applications. Due to its Fredholm type, variational formulation
(4.5) is well suited for a finite element approximation, and, for given values of the PML
parameters α∗ and L, usual rates of convergence (with respect to the mesh stepsize)
are ensured. All computations are done with the finite element library mélina [17].
We use P2 Lagrange finite elements on a nonstructured mesh, and the length of the
PML is equal to 10% of the length of the domain Ωb = [0, 2] × [0, 1]. As in the
theoretical analysis, the function α is constant in the layer, and the argument of the
complex number α∗ is fixed and equal1 to −π

4 , its modulus |α∗| being a parameter in
the simulations.

We are interested here in simulating the radiation of a compactly supported source
situated in a two-dimensional rigid duct; this is a problem for which no explicit ref-
erence solution is available. Nonetheless, we consider as a preliminary study the
propagation of acoustic and vortical modes in order to validate the method.

6.1. Mode propagation in a rigid duct.

6.1.1. Acoustic and vortical modes: Some definitions. The so-called modes
are solutions with separated variables to the homogeneous, nonregularized Galbrun
equation, with the rigid wall boundary condition (2.2). These solutions are of two
distinct kinds, called acoustic and vortical modes.

The acoustic modes are of the form

u(x1, x2) =

⎧⎪⎨
⎪⎩

C eiβ±
n x1 e1 if n = 0,

C eiβ±
n x1

(
− iβ±

n l

nπ
cos

(nπ

l
x2

)
e1 + sin

(nπ

l
x2

)
e2

)
if n ∈ N

∗,

where C is a complex constant and the axial wave numbers β±
n are given by (3.12).

One can see that these fields are irrotational—hence their name. The acoustic modes
associated to real valued axial wave numbers are called propagative and evanescent
otherwise. Propagative modes with positive (resp., negative) group velocity ∂ω

∂β are

called downstream (resp., upstream) modes, since their energy propagates down-
stream (resp., upstream) of the mean flow.

The second “family” of solutions to Galbrun’s equation consists of a continuum
of fields such that

u(x1, x2) = C ei k
M x1

(
ik

M
ϕ′(x2) e1 + ϕ(x2) e2

)
,

where C is a complex constant and ϕ denotes a scalar function belonging to H1
0 ([0, l]).

These solutions propagate only downstream and are called vortical modes, since they
are divergence-free.

6.1.2. Description of the simulations. The following numerical simulations
consist of solving problems similar to (4.4), with only one absorbing layer downstream
(denoted by ΩL

+). Each problem was designed in such a way that one of the previously
introduced modes is its exact solution. For the propagation of an acoustic mode, we
have f ≡ 0 and ψα,λ ≡ 0, the mode being imposed via a nonhomogeneous condition
on the boundary Σ− for the normal displacement u ·n. In the case of a vortical mode,
we still have f ≡ 0 and a nonhomogeneous boundary condition on Σ−, but the field
ψα,λ has to be computed a priori as the curl of the considered mode.

1While apparently arbitrary, this choice simply makes the quantities − sin(arg(α∗)) and
cos(arg(α∗)), which appear in the definition (5.7) of the coefficient η, to be equal.
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0 0.5 1 1.5
0

2

mode n = 0
mode n = 1
mode n = 2

Fig. 1. Relative error in the H1(Ωb)
2 norm as a function of |α∗| for the computated propagative

downstream acoustic modes (k = 8 and M = 0.4).

Fig. 2. Contours of the real part of the component u1 of the computed displacement field for
the propagative downstream mode (n = 0, k = 8, M = 0.4, α∗ = 0.25(1 − i)).

Fig. 3. Contours of the real part of the component u1 of the computed displacement field for
the propagative downstream mode (n = 1, k = 8, M = 0.4, α∗ = 0.25(1 − i)).

6.1.3. Numerical results for acoustic modes. In the chosen configuration,
characterized by the values l = 1, k = 8, and M = 0.4, six (i.e., three upstream and
three downstream) acoustic modes are propagative. The curves plotting the relative
error in the H1(Ωb) norm for the computed displacement versus the modulus of α∗

for the propagative downstream modes are shown in Figure 1. We observe that each
curve contains a minimum plateau where the relative error is below a few percent.
For large values of |α∗|, the error increases due to the reflection at the end of the layer
and behaves as theoretically predicted. For small values of |α∗|, the method diverges,
the mesh resolution being too coarse to adequately represent the modes in the PML
medium, thus producing spurious numerical errors. Similar results were obtained for
the propagative upstream modes.

We show in Figures 2 to 4 the contours of the components of the computed
displacement for a value of |α∗| such that the error of the method is below one percent.

6.1.4. Numerical results for vortical modes. For the study of the method on
vortical perturbations, the transverse dependence of the modes is arbitrarily chosen
as ϕ(x2) = sin

(
mπ
l x2

)
, where m is a given nonzero integer. In Figure 5 we show
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Fig. 4. Contours of the real part of the component u1 of the computed displacement field for
the propagative downstream mode (n = 2, k = 8, M = 0.4, α∗ = 0.25(1 − i)).

0 0.5 1 1.5
0

0.5

1

mode m = 1
mode m = 2
mode m = 3

Fig. 5. Relative error in the H1(Ωb)
2 norm as a function of |α∗| for the computed vortical

modes (k = 8, M = 0.4).

Fig. 6. Contours of the real part of the component u1 of the computed displacement field for a
vortical mode (m = 1, k = 8, M = 0.4, α∗ = 0.65(1 − i)).

Fig. 7. Contours of the real part of the component u1 of the computed displacement field for a
vortical mode (m = 2, k = 8, M = 0.4, α∗ = 0.65(1 − i)).

the relative error of the method, plotted versus the modulus of the coefficient α∗ for
values of the integer m equal to 1, 2, and 3. The contours of the components of the
corresponding computed solutions when the relative error is below one percent are
presented in Figures 6 to 8.

The convergence of the PML method is also obtained in this case for appropriate
values of |α∗|. However, by comparing Figures 1 and 5, one can already point out a
potential difficulty that may be encountered in practice when both irrotational and
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Fig. 8. Contours of the real part of the component u1 of the computed displacement field for a
vortical mode (m = 3, k = 8, M = 0.4, α∗ = 0.65(1 − i)).

0 0.5 1 1.5
0

0.05

0.1
acoustic modes

n = 0
n = 1
n = 2

vortical modes
m = 0
m = 1
m = 2

Fig. 9. Relative error in the H1(Ωb)
2 norm as a function of |α∗| for several computed modes

(k = 8, M = 0.4).

vortical perturbations are present, as the values of |α∗| that allow a good agreement
between the exact and the computed solutions in the two cases are quite different.
Indeed, the propagation constant of the vortical modes, which is equal to k

M , leads
to more significant damping in the layer for these modes than for the acoustic ones.
On the other hand, the finite element error for vortical modes is higher, since their
wavelength is generally much shorter than that of their acoustic counterparts. This
fact may cause some discretization issues as |α∗| becomes small.2

However, a compromise can be found by using a thicker layer. For instance, we
have repeated the previous simulations with a layer of length equal to 25% of the
length of the domain Ωb. The obtained results are presented in Figure 9, and one can
now observe a partial match between the respective ranges of values of |α∗| for which
the relative errors are below a few percent.

6.2. Radiation of compactly supported sources.

6.2.1. Acoustic source. We next simulate the radiation of an irrotational, com-
pactly supported source which is placed in the duct, defined in polar coordinates by
f(r, θ) = |r − rC | er in the ball of center C = (1, 0.5) and with radius equal to 0.15,
and vanishing elsewhere. This case happens to be more complex than the previous one
because of the absence of any reference solution, which would permit the measuring of
the precision of the method and the choosing of an adequate value for the parameter
|α∗|. The real parts of the components of the computed displacement field are shown
in Figure 10. The acoustic mode mainly radiated by the source is the one of index
n = 2. The convective effect of the uniform flow can clearly be seen, as the wavelength
of the computed solution is shorter upstream of the source than downstream.

2Note that these issues, related to the mesh stepsize, appear as well without PMLs, when the
speed of the flow is slow (that is, when the Mach number M is close to zero) or at high frequencies
(that is, when the wave number k is large).



PML FOR ACOUSTICS IN THE PRESENCE OF A FLOW 1215

Fig. 10. Contours of the real part of components u1 (top) and u2 (bottom) of the computed
displacement field for the radiation of an acoustic source (k = 8, M = 0.4, α∗ = 0.5(1 − i)).

Fig. 11. Contours of the real part of components u1 (top) and u2 (bottom) of the computed
displacement field for the radiation of a vortical source (k = 8, M = 0.4, α∗ = 0.5(1 − i)).

6.2.2. Rotational source. The simulation of the radiation of a compactly
supported source whose curl is nonzero, which is defined in polar coordinates by
f(r, θ) = |r − rC | arctan( r sin θ−rC sin θC

r cos θ−rC cos θC
) er in the ball of center C = (0.7, 0.5) and

with radius equal to 0.15, and vanishing elsewhere, is presented in Figure 11. It
is located slightly upstream of the center of the domain Ωb. One can observe the
hydrodynamic wake generated by the source and convected by the flow, whose ampli-
tude increases linearly with respect to the coordinate x1. The acoustic perturbations,
where present, have a negligible amplitude compared to the vortical ones.

Appendix. Study of a second order transport equation. This appendix
is devoted to the second order transport equation (3.3), which is written here as

D2
εψ

ε = g,(6.1)

with g a compactly supported source belonging to L2(Ω). We know from Lemma 3.1
that (6.1) has a unique solution in L2(Ω). We also have the following result.

Lemma 6.1. The solution in L2(Ω) to (6.1) vanishes upstream of the support of
the source g and satisfies the estimate

‖ψε‖L2(Ω) ≤ Cε ‖g‖L2(Ω),(6.2)

where Cε denotes a positive constant depending on the parameter ε.
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Proof. From the proof of Lemma 3.1, we know that

ψε(x1, x2) = Gε ∗ g(·, x2)(x1) =
1

M2

∫ x1

−∞
(x1 − z) ei kε

M (x1−z)g(z, x2) dz,

where the kernel Gε denotes the causal Green’s function of the differential opera-
tor D2

ε. Setting the bounds d− = minx2∈[0,h] {x1 ∈ R | (x1, x2) ∈ supp g} and d+ =
maxx2∈[0,h] {x1 ∈ R | (x1, x2) ∈ supp g}, we consider the following cases.

If x1 < d−, one has ]−∞, x1]∩[d−, d+] = ∅; thus ψε(x1, x2) ≡ 0 for any x2 ∈ [0, l].
The solution then vanishes upstream of the support of the source.

If d− ≤ x1 ≤ d+, one has ψε(x1, x2) = 1
M2

∫ x1

d−
(x1 − z) ei kε

M (x1−z)g(z, x2) dz for

any x2 ∈ [0, l]. The Cauchy–Schwarz inequality then yields

|ψε(x1, x2)|2 ≤ 1

M4

(∫ x1

d−

(x1 − z)2 e−
2ε
M (x1−z) dz

) (∫ x1

d−

|g(z, x2)|2 dz

)
,

and one obtains ∫ d+

d−

∫ l

0

|ψε(x1, x2)|2 dx1 dx2 ≤ C1ε ‖g‖2
L2(Ω),

with C1ε = (d+−d−)4

M4 e−
2ε
M (d+−d−).

Finally, if x1 > d+, we have

ψε(x1, x2) =

(
− 1

M2

∫ d+

d−

z e−i kε
M zg(z, x2) dz +

x1

M2

∫ d+

d−

e−i kε
M zg(z, x2) dz

)
ei kε

M x1 .

Observing that the variables can be separated in the expression above so that

ψε(x1, x2) = (aε(x2) + x1 bε(x2)) ei kε
M x1 ,(6.3)

one arrives at∫ +∞

d+

∫ l

0

|ψε(x1, x2)|2 dx1 dx2 ≤ ‖aε‖L2([0,l])

∫ +∞

d+

e−
2ε
M x1 dx1

+ ‖bε‖L2([0,l])

∫ +∞

d+

|x1| e−
2ε
M x1 dx1.

Additionally, we have that |aε(x2)|2 ≤ 1
M4

∫ d+

d−
z2 e−

2ε
M z dz

∫ d+

d−
|g(z, x2)|2 dz and

|bε(x2)|2 ≤ 1
M4

∫ d+

d−
e−

2ε
M z dz

∫ d+

d−
|g(z, x2)|2 dz; hence

∫ +∞

d+

∫ l

0

|ψε(x1, x2)|2 dx1 dx2 ≤ C2ε ‖g‖2
L2(Ω),

with C2ε = 1
M4 max(

∫ d+

d−
z2e−

2ε
M z dz

∫ +∞
d+

e−
2ε
M x1 dx1,

∫ d+

d−
e−

2ε
M z dz

∫ +∞
d+

|x1| e−
2ε
M x1 dx1).

We finally set Cε =
√

max(C1ε, C2ε).
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FINITE ELEMENT APPROXIMATION OF SOLUBLE SURFACTANT
SPREADING ON A THIN FILM∗

JOHN W. BARRETT† , ROBERT NÜRNBERG† , AND MARK R. E. WARNER†

Abstract. We consider a fully practical finite element approximation of the following system of
nonlinear degenerate parabolic equations:

∂u

∂t
+

1

2
∇ · (u2 ∇[σ(v)]) − 1

3
∇ · (u3 ∇w) = 0,

w = −cΔu− δ u−ν + a u−3 ,

∂v

∂t
+ ∇ · (u v∇[σ(v)]) − 1

2
∇ · (u2 v∇w) − ρs Δv −K (ψ − v) = 0,

∂ψ

∂t
+

1

2
u∇[σ(v)] · ∇ψ − 1

3
u2 ∇w · ∇ψ − ρb u

−1∇ · (u∇ψ) + β K u−1(ψ − v) = 0.

The above equations model a Marangoni driven thin film laden with a soluble surfactant, in which
the bulk surfactant concentration has been vertically averaged. The model accounts for the presence
of both attractive, a ≥ 0, and repulsive, δ > 0 with ν > 3, van der Waals forces. Here u is the height
of the film, v is the concentration of the interfacial surfactant species, ψ is the concentration of the
surfactant species within the bulk phase, and σ(v) := 1− v is the typical surface tension. Moreover,
ρs ≥ 0, ρb > 0, and c > 0 are the inverses of the surface Peclet number, the bulk Peclet number, and
the modified capillary number, respectively; finally, β > 0 and K > 0 are parameters that characterize
the solubility and the rate of interfacial adsorption. In addition to showing stability bounds for our
approximation, we prove convergence and hence existence of a solution to this nonlinear degenerate
parabolic system (i) in one space dimension when ρs > 0 and, moreover, (ii) in two space dimensions
if, in addition, ν ≥ 7. Furthermore, iterative schemes for solving the resulting nonlinear discrete
system are discussed. Finally, some numerical experiments are presented.

Key words. thin film flow, surfactant, fourth order degenerate parabolic system, finite elements,
convergence analysis

AMS subject classifications. 65M60, 65M12, 35K55, 35K65, 35K35, 76A20, 76D08

DOI. 10.1137/040618400

1. Introduction. In the recent papers [5, 6], abbreviated to BGN and BN
throughout this paper, the authors proposed and analyzed a fully practical finite
element approximation of a system of nonlinear degenerate parabolic equations de-
scribing an insoluble surfactant driven monolayer. Here, we generalize that system to
a model in which the chemical may demonstrate varying degrees of solubility allowing
for adsorption and desorption between the bulk phase and an interfacial concentration.
This extended model is given by

∂u

∂t
+

1

2
∇ · (u2 ∇[σ(v)]) − 1

3
∇ · (u3 ∇w) = 0,(1.1a)

w = −cΔu + φ(u),(1.1b)

∂v

∂t
+ ∇ · (u v∇[σ(v)]) − 1

2
∇ · (u2 v∇w) − ρs Δv −K (ψ − v) = 0,(1.1c)
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∂ψ

∂t
+

1

2
u∇[σ(v)] · ∇ψ − 1

3
u2 ∇w · ∇ψ − ρb u

−1∇ · (u∇ψ)

+ β K u−1 (ψ − v) = 0(1.1d)

in ΩT , where ΩT := Ω × (0, T ] and Ω is a bounded domain in R
d, d = 1 or 2.

The above model, derived using lubrication theory and a cross-sectional averaging
technique that removes the vertical dependence of the bulk species [12], models the
flow of a surface tension gradient driven surfactant (chemical) laden thin film. Here
u denotes the film height, v the concentration of the interfacial surfactant species, ψ
the cross-sectionally averaged chemical concentration per unit height within the fluid
layer, and w the pressure (reduced if van der Waals forces are present, that is, φ �≡ 0).
In addition, σ ∈ C1(R≥0) with

σ(s) ≥ 0, σ′(s) < 0 ∀ s ∈ R≥0(1.2)

is the constitutive equation of state relating the surface tension σ to the interfacial
concentration v. We note that σ is a strictly monotonically decreasing function of
v, which is natural to assume as the surfactant lowers surface tension. An empirical
model proposed by Sheludko [15], often used in the engineering literature and that
maps σ : [0, 1] → [0, 1], is

σ(s) := (α + 1) [1 + θ(α) s]−3 − α, where θ(α) := (1 + α−1)
1
3 − 1,(1.3)

in which α ∈ R>0 relates to the activity of the surfactant; cf. [11, p. 262]. Of course the
above model assumes that v(·, ·) ∈ [0, 1], which is a physically reasonable assumption.
In modeling studies it is often further assumed that the surfactant concentration is
dilute, in which case the limit α → ∞ is taken, and the equation of state (1.3)
simplifies to σ(s) := 1 − s. For the van der Waals forces in (1.1b), we take the form
suggested in [13]; that is,

φ(u) = φ+(u) + φ−(u), φ+(u) := −δ u−ν , ν > 3, φ−(u) := a u−3,(1.4)

where a ∈ R≥0 is the scaled dimensionless Hamaker constant and δ ∈ R≥0 represents
the effect of repulsive van der Waals forces. In (1.1a)–(1.1d), ρs ∈ R≥0, ρb ∈ R>0,
and c ∈ R>0 are a nondimensional surface diffusivity (inverse of the surface Peclet
number), a bulk diffusivity (inverse of the bulk Peclet number), and the modified
capillary number, respectively. In order to permit the cross-sectional averaging process
one has assumed that vertical diffusion is sufficiently fast for the bulk concentration
to become independent of y, the vertical variable, at leading order. A necessary
condition of this process is that the product of ρb and the dimensional film aspect
ratio squared must be negligible at leading order in the lubrication approximation,
and hence in practical applications ρb is not “too large.” The parameter β ∈ R>0

indicates the degree of solubility of the chemical and emerges from the lubrication
scaling as a ratio of the rate of adsorption to the rate of desorption of the chemical
at the interface, y = u. We note that in the insoluble limit, β → ∞, whereby the
chemical accumulates preferentially at the interface, (1.1d) collapses to ψ = v, and
the system (1.1a)–(1.1d) reduces to the insoluble surfactant system, (1.1a)–(1.1c) with
ψ ≡ v, considered in BGN and BN. Finally, K ∈ R>0 is a parameter that describes
the ratio of the time scale of the flow to the time scale of desorption. Applications
of the system (1.1a)–(1.1d) range from the medical treatment of premature infants to
industrial coating and drying processes; see BGN for further details and references.
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As u and v can take on zero values, (1.1a)–(1.1d) is a degenerate parabolic system,
which is fourth order in u. This degeneracy makes the analysis/numerical analysis
of the system particularly difficult. As there is no maximum principle for parabolic
equations of fourth order, a naive discretization does not guarantee the nonnegativity
of the approximation to u. If δ = 0, following [2], BGN imposed the nonnegativity of
the discrete approximation to u as a constraint; whereas if δ > 0, the positivity of the
approximation to u can be guaranteed for an appropriate discretization through the
singularity in φ+. In both cases, BGN proposed a finite element approximation of the
insoluble surfactant system, (1.1a)–(1.1c) with ψ ≡ v, and were able to derive stability
bounds in space dimensions d = 1 and 2. However, their main convergence result was
restricted to ρs > 0 and one space dimension. The latter was due to the fact that the
a priori bounds they derived guarantee only in one space dimension that the discrete
approximation to u is uniformly bounded and equicontinuous, which was necessary to
be able to pass to the limit in the discrete problem. For similar reasons, the results
on related degenerate parabolic equations of fourth order in [1, 2, 3, 4, 8, 10] were
restricted to one space dimension. However, recently in [9], Grün proved convergence
in two space dimensions of a finite element approximation to the thin film equation in
the absence of surfactant/chemical, (1.1a)–(1.1b) with v ≡ 0 and u(·, 0) > 0. In BN
the techniques in BGN and [9] were adapted to propose a finite element approximation
to the insoluble surfactant system, (1.1a)–(1.1c) with ψ ≡ v, and prove convergence
in one space dimension if ρs, a, δ, u(·, 0) > 0 and, moreover, in two space dimensions if
in addition ν ≥ 7. It is the aim of this paper to adapt the techniques in BN in order
to prove convergence of a finite element approximation to (1.1a)–(1.1d). To this end,
we will identify and exploit an underlying Lyapunov structure and extend the usage
of two entropy-type estimates that were introduced in BGN and BN, respectively.

Throughout this paper, as in BGN and BN, we restrict ourselves to the linearized
form of the constitutive equation of state

σ(v) := 1 − v,(1.5)

the α → ∞ limit of (1.3). However, the techniques in this paper do apply to a general σ
satisfying (1.2); see Remark 2.2 below. As remarked previously, the physically relevant
values of v lie in the interval [0, 1]. Noting this, it is convenient for the analysis in
this paper, as well as in BGN and BN, to replace the terms ui v, i = 1 → 2, in (1.1c)
by ui λ(v), and similarly replace ψ in the first three terms of (1.1d) by λ(ψ), where
λ : R → (−∞, 1] is defined as

λ(s) := min{s, λM}, with λM := 1.(1.6)

We will return to this point later in this section.
Altogether, in this paper we consider the following initial boundary value problem.
(P) Find functions u,w, v, ψ : Ω × [0, T ] → R such that

∂u

∂t
+

1

2
∇ · (u2 ∇[σ(v)]) − 1

3
∇ · (u3 ∇w) = 0 in ΩT ,(1.7a)

w = −cΔu + φ(u) in ΩT ,(1.7b)

∂v

∂t
+ ∇ · (uλ(v)∇[σ(v)]) − 1

2
∇ · (u2 λ(v)∇w)

− ρs Δv −K(ψ − v) = 0 in ΩT ,(1.7c)

∂(uλ(ψ))

∂t
+

1

2
∇ ·

(
u2 λ(ψ)∇[σ(v)]

)
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− 1

3
∇ ·

(
u3 λ(ψ)∇w

)
− ρb ∇ · (u∇ψ) + β K (ψ − v) = 0 in ΩT ,(1.7d)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, ψ(x, 0) = ψ0(x) ≥ 0 ∀ x ∈ Ω,(1.7e)

1

2
u2 ∂[σ(v)]

∂ν∂Ω

− 1

3
u3 ∂w

∂ν∂Ω

=
∂u

∂ν∂Ω

= uλ(v)
∂[σ(v)]

∂ν∂Ω

− 1

2
u2 λ(v)

∂w

∂ν∂Ω

− ρs
∂v

∂ν∂Ω

=
1

2
u2 λ(ψ)

∂[σ(v)]

∂ν∂Ω

− 1

3
u3 λ(ψ)

∂w

∂ν∂Ω

− ρb u
∂ψ

∂ν∂Ω

= 0 on ∂Ω × (0, T ),

(1.7f)

where ν∂Ω is normal to ∂Ω, the Lipschitz boundary of Ω, and T > 0 is a fixed
positive time. In the above c, ρb,K, β ∈ R>0, and ρs ∈ R≥0 are given constants, while
σ ∈ C1(R≥0) and φ : R>0 → R are given by (1.2) and (1.4), with a ≥ 0, δ > 0, and
u0, v0, and ψ0 are given initial profiles.

Note that (1.7d) is just a combination of (1.1a) and the modified (1.1d), obtained
by multiplying (1.1a) with λ(ψ) and the modified (1.1d) with u. This is crucial for
the analysis in this paper, as it allows us to exploit a Lyapunov structure that was
not available before. The other main ingredients of our approach are two energy
estimates for the surfactant driven flow combined with a regularization procedure. In
particular, for any given ε ∈ (0, λM ), we introduce the regularized function

λε(s) := max{λ(s), ε},(1.8)

which yields the regularized system (Pε), i.e., (P) with {u,w, v, ψ, λ} replaced by

{uε, wε, vε, ψε, λε}. On defining the horizontal velocity field �Vε(y), similarly to BGN
and BN, as

�Vε(y) = y∇[σ(vε)] +

(
1

2
y2 − y uε

)
∇wε,(1.9)

where the modified pressure wε = −cΔuε + φ(uε), we can recast the system (Pε) in
terms of this velocity field as follows:

∂uε

∂t
+ ∇ ·

(∫ uε

0

�Vε(y) dy

)
= 0,(1.10a)

∂vε
∂t

+ ∇ · (λε(vε) �Vε(uε)) = ρs Δvε + K (ψε − vε) ,(1.10b)

(1.10c)

∂(uε λε(ψε))

∂t
+ ∇ ·

(
λε(ψε)

∫ uε

0

�Vε(y) dy

)
= ρb ∇ · (uε ∇ψε) − β K(ψε − vε),

ν∂Ω ·
∫ uε

0

�Vε(y) dy = ν∂Ω · (λε(vε) �Vε(uε) − ρs ∇vε)

= ν∂Ω ·
(
λε(ψε)

∫ uε

0

�Vε(y) dy − ρb uε ∇ψε

)
= 0.(1.10d)

We see from (1.9) that (P) is derived on assuming a no-slip condition at y = 0.
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In order to derive the crucial energy estimates, we introduce the regularized func-
tion Fε such that

F ′′
ε (s) = [λε(s)]

−1 and Fε(1) = F ′
ε(1) = 0,(1.11)

which implies that

Fε(s) :=

⎧⎪⎪⎨
⎪⎪⎩

s2−ε2

2 ε + (ln ε− 1) s + 1, s ≤ ε,

s (ln s− 1) + 1, ε ≤ s ≤ 1,

1
2 (s− 1)2, 1 ≤ s.

(1.12)

Hence Fε ∈ C2,1(R) and, for later purposes, we note that

Fε(s) ≥
s2

4
− 1

2
∀ s ≥ 0 and Fε(s) ≥

s2

2 ε
∀ s ≤ 0 ;(1.13)

see (2.4) in BGN. In addition, it is easily deduced that

(1.14)

[F ′
ε(s)]

2

F ′′
ε (s)

≤
{

2 ε−1 [s]2− + 8 exp(−1), s ≤ ε,

4 exp(−2), ε ≤ s ≤ 1,
where [s]± := ±max{±s, 0}.

We also introduce

F̂ε(s) := Fε(λε(s)) ≡ λε(s)F
′
ε(s) − s + 1.(1.15)

As Fε is convex, it follows that

[λε(s) − λε(r)]F
′
ε(s) ≥ F̂ε(s) − F̂ε(r) ∀ r, s ∈ R.(1.16)

We will now derive several formal estimates for {uε, wε, vε, ψε}. Testing equation
(1.10a) with wε and combining and noting (1.9) and (1.10d) yields that

(1.17)

d

dt

∫
Ω

[ c
2
|∇uε|2 + Φ(uε)

]
dx +

∫
Ω

(∫ uε

0

|∂y�Vε(y)|2 dy

)
dx = −

∫
Ω

�Vε(uε) · ∇vε dx,

where Φ is an antiderivative of φ, i.e., Φ′ ≡ φ. Testing (1.10b) with F ′
ε(vε) and noting

(1.10d) and (1.11) yields that

d

dt

∫
Ω

Fε(vε) dx + ρs

∫
Ω

F ′′
ε (vε) |∇vε|2 dx

=

∫
Ω

�Vε(uε) · ∇vε dx + K

∫
Ω

(ψε − vε)F
′
ε(vε) dx.(1.18)

Moreover, it follows from testing (1.10c) with F ′
ε(ψε) and testing (1.10a) with ψε − 1,

on noting (1.15), F ′
ε(λε(ψε))

∂[λε(ψε)]
∂t = F ′

ε(ψε)
∂[λε(ψε)]

∂t , (1.10d), and (1.11), that

d

dt

∫
Ω

uε F̂ε(ψε) dx =

∫
Ω

∂(uε λε(ψε))

∂t
F ′
ε(ψε) dx−

∫
Ω

∂uε

∂t
(ψε − 1) dx

= −ρb

∫
Ω

uε F
′′
ε (ψε) |∇ψε|2 dx− β K

∫
Ω

(ψε − vε)F
′
ε(ψε) dx.(1.19)
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Combining (1.17), (1.18), and (1.19) yields that

d

dt

∫
Ω

[
c

2
|∇uε|2 + Φ(uε) + Fε(vε) +

1

β
uε F̂ε(ψε)

]
dx + ρs

∫
Ω

F ′′
ε (vε) |∇vε|2 dx

+
ρb
β

∫
Ω

uε F
′′
ε (ψε) |∇ψε|2 dx +

∫
Ω

(∫ uε

0

|∂y�Vε(y)|2 dy

)
dx

+ K

∫
Ω

(F ′
ε(ψε) − F ′

ε(vε)) (ψε − vε) dx = 0.

(1.20)

Due to the singularity in Φ at the origin, it immediately follows from (1.20) that
uε(·, t) > 0 for all t ∈ (0, T ) if uε(·, 0) > 0. In addition, it follows from (1.9), on
applying a Young inequality

|r s| ≤ γ

2
r2 +

1

2γ
s2 ∀ r, s ∈ R, γ ∈ R>0,(1.21)

that ∫ uε

0

|∂y�Vε(y)|2 dy ≥ 1

8
uε |∇[σ(vε)]|2 +

1

21
u3
ε |∇wε|2 ;(1.22)

see (1.7) in BGN for details.
From (1.20), (1.11), (1.8), and (1.6), one can deduce uniform bounds on ∇vε and

uε ∇ψε in L2(ΩT ). We note the crucial role that the cut-off λM in (1.6) plays in these
estimates. Of course the cut-off λM can be chosen arbitrarily large, and it played no
real role in our finite element approximation of (Pε), as our computed approximations
to both vε and ψε were always strictly less than λM , which we set to be one. However,
as it does not appear possible to obtain a priori L∞(ΩT ) bounds on vε and ψε, one
requires some (arbitrarily large) cut-off in (1.6) and hence in certain coefficients in
(1.7a)–(1.7f), as the Lyapunov structure above is based on the relationship (1.11).

In order to obtain the second estimate, we also define a function G ∈ C∞(R>0)
such that u3 ∇[G′(u)] = ∇u; that is,

G′′(s) = s−3 ⇒ G′(s) = −1

2
s−2 ⇒ G(s) =

1

2
s−1,(1.23)

where the constants of integration have been chosen to be zero. Testing (1.10a) with
G′(uε) and testing (1.1b) with −Δuε yields, on noting (1.10d) and applying (1.21)
(see (1.10)–(1.12) in BN for details), that

d

dt

∫
Ω

G(uε) dx +
c

3

∫
Ω

|Δuε|2 dx +
1

4

∫
Ω

(φ+)′(uε) |∇uε|2 dx

≤ C

[∫
Ω

uε |∇[σ(vε)]|2 dx +

∫
Ω

|∇uε|2 dx

]
.(1.24)

From (1.24), (1.20), and (1.22) one can show that uε is uniformly bounded in L2(0, T ;
H2(Ω)) if uε(·, 0) > 0. Furthermore, the bound (1.13) together with (1.20) yields that∫
ΩT

[vε]
2
− dxdt ≤ C ε. One can use this, together with the last bound in (1.20), to

deduce that
∫
ΩT

Fε(ψε) dxdt ≤ C and hence that
∫
ΩT

[ψε]
2
− dxdt ≤ C ε.
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It is the goal of this paper to derive a finite element method that is consistent
with the formal energy estimates (1.20) and (1.24). We stress that it is only the
bound (1.24) that requires the presence of the repulsive van der Waals forces, δ > 0,
to control the surfactant term in (1.10a). In the absence of a surfactant/chemical,
(1.24) holds with (a, δ > 0) and without (a = δ = 0) van der Waals forces.

This paper is organized as follows. In section 2 we formulate a fully practical finite
element approximation of the degenerate system (P) and derive discrete analogues of
the energy estimates (1.20) and (1.24). In doing so, we adapt a technique introduced
in [17] and [10] for deriving a discrete entropy bound for the thin film equation. In
section 3 we prove convergence, and hence existence, of a solution to the system (P)
in one space dimension if ρs, δ > 0 and in two space dimensions if, in addition, ν ≥ 7.
In section 4 we state an iterative scheme for solving the nonlinear discrete system at
each time level and present some numerical computations in both one and two space
dimensions.

Finally we note that there is very little work in the PDE literature on surfactant-
type problems. To our knowledge, there is no work on the degenerate soluble system
(P). A numerical study of (P) can be found in [16]. We stress that this paper is
a nontrivial extension of the insoluble surfactant system, (1.7a)–(1.7c) with ψ = v,
studied in BN. First, one has to identify the Lyapunov structure for (P), which we
have outlined in this introduction. Second, proving convergence of our finite element
approximation to (P) and hence proving existence of a solution to (P) is far more
difficult in this case. As stated earlier, we will establish a finite element approximation,
which satisfies discrete analogues of (1.20) and (1.24). For the insoluble surfactant
one has control on the discrete analogue of

∫
ΩT

|∇vε|2 dxdt if ρs > 0, whereas for the

chemical we have control only on the discrete analogue of
∫
ΩT

uε |∇ψε|2 dxdt. This
degeneracy, as we have no a priori positive lower bound on uε, causes a number of
new difficulties in the convergence analysis.

Notation and auxiliary results. Let D ⊂ R
d, d = 1 or 2, with a Lipschitz

boundary ∂D if d = 2. We adopt the standard notation for Sobolev spaces, denoting
the norm of Wm,q(D) (m ∈ N, q ∈ [1,∞]) by ‖ · ‖m,q,D and the seminorm by | · |m,q,D.
We extend these norms and seminorms in the natural way to the corresponding spaces
of vector and matrix valued functions. For q = 2, Wm,2(D) will be denoted by Hm(D)
with the associated norm and seminorm written as, respectively, ‖ · ‖m,D and | · |m,D.
For notational convenience, we drop the domain subscript on the above norms and
seminorms in the case D ≡ Ω. Throughout (·, ·) denotes the standard L2 inner product
over Ω, while q′ denotes for any q ∈ [1,∞] the “dual exponent” such that 1

q + 1
q′ = 1.

In addition we define
∫
−η := (η, 1)/m(Ω) for all η ∈ L1(Ω), where m(D) denotes the

measure of D.
It is convenient to introduce the operator G : (W 1.q′(Ω))′ → W 1,q(Ω) such that

(∇Gz,∇η) + (Gz, η) = 〈z, η〉q′ ∀ η ∈ W 1,q′(Ω),(1.25)

where here and throughout 〈·, ·〉q′ denotes the duality pairing between (W 1,q′(Ω))′

and W 1,q′(Ω) for any q ∈ (1, 2].
Throughout C denotes a generic constant independent of h, τ , and ε, the mesh

and temporal discretization parameters and the regularization parameter. In addition,
C(a1, . . . , aI) denotes a constant depending on the arguments {ai}Ii=1. Furthermore,
·(�) denotes an expression with or without the superscript �.
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2. Finite element approximation. We consider the finite element approxi-
mation of (P) under the following assumptions on the mesh.

(A) Let Ω be a convex polygonal domain if d = 2. Let {T h}h>0 be a quasi-uniform
family of partitionings of Ω into disjoint open simplices κ with hκ := diam(κ)
and h := maxκ∈T h hκ, so that Ω = ∪κ∈T hκ. In addition, it is assumed for
d = 2 that all simplices κ ∈ T h are right-angled.

Associated with T h is the finite element space Sh := {χ ∈ C(Ω) : χ |κ is linear for
all κ ∈ T h} ⊂ H1(Ω). We also introduce Sh

≥0 := {χ ∈ Sh : χ ≥ 0 in Ω} ⊂ H1
≥0(Ω) :=

{η ∈ H1(Ω) : η ≥ 0 a.e. in Ω} and similarly Sh
>0 and H1

>0(Ω). Let J be the set of
nodes of T h and {pj}j∈J the coordinates of these nodes. Let {χj}j∈J be the standard
basis functions for Sh; that is, χj ∈ Sh

≥0 and χj(pi) = δij for all i, j ∈ J . We introduce

πh : C(Ω) → Sh, the interpolation operator, such that (πhη)(pj) = η(pj) for all j ∈ J .
A discrete semi-inner product on C(Ω) is then defined by

(η1, η2)
h :=

∫
Ω

πh(η1(x) η2(x)) dx =
∑
j∈J

mj η1(pj) η2(pj),(2.1)

where mj := (1, χj) > 0. The induced discrete seminorm is then |η|h := [ (η, η)h ]
1
2 ,

where η ∈ C(Ω). We introduce also the L2 projection Qh : L2(Ω) → Sh defined by
(Qhη, χ)h = (η, χ) for all χ ∈ Sh.

Similarly to the approach in [10, 17], we introduce matrices Λε : Sh → [L∞(Ω)]d×d

and Ξ : Sh
>0 → [L∞(Ω)]d×d such that for all zh ∈ Sh, χ ∈ Sh

>0 and a.e. in Ω

Λε(z
h), Ξ(χ) are symmetric and positive semidefinite,(2.2a)

Λε(z
h)∇πh[F ′

ε(z
h)] = ∇zh, [Ξ(χ)]3 ∇πh[G′(χ)] = ∇χ.(2.2b)

The construction of these matrices can be found in BN. Throughout we make use of
the fact that the matrices Ξ(χ) and Λε(z

h) commute for any χ ∈ Sh
>0 and zh ∈ Sh.

As in BN, it is convenient to split Φ (recall (1.20)) into its convex and concave
parts. We have for given a ∈ R≥0, δ ∈ R>0, and ν > 3 that for all s ∈ R>0

Φ(s) = Φ+(s) + Φ−(s), where Φ+(s) :=
δ

ν − 1
s1−ν , Φ−(s) := −a

2
s−2.(2.3)

It holds, on recalling (1.4), that φ+ ≡ (Φ+)′ and φ− ≡ (Φ−)′. For future reference,
we note that the following hold for all r, s ∈ R>0:

Φ(s) ≥ −a (ν − 3)

2 (ν − 1)

(
a

δ

) 2
ν−3

and

−Φ−(s) ≤ a (ν − 3)

2 (ν − 1)

(
2 a

δ

) 2
ν−3

+
1

2
Φ+(s).

(2.4)

In addition to T h, let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning
of [0, T ] into possibly variable time steps τn := tn − tn−1, n = 1 → N . We set
τ := maxn=1→N τn. For any given ε ∈ (0, 1), we then consider the following fully
practical finite element approximation of (P) with σ(v) given by (1.5) and φ(u) given
by (1.4):
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(Ph,τ
ε ) For n ≥ 1 find {Un

ε ,W
n
ε , V

n
ε ,Ψn

ε } ∈ [Sh]4 such that for all χ ∈ Sh

(
Un
ε − Un−1

ε

τn
, χ

)h

+
1

3
([Ξ(Un

ε )]3 ∇Wn
ε ,∇χ)

= −1

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 ∇V n−1

ε ,∇χ),(2.5a)

c (∇Un
ε ,∇χ) + (φ+(Un

ε ) + φ−(Un−1
ε ), χ)h = (Wn

ε , χ)h,(2.5b) (
V n
ε − V n−1

ε

τn
, χ

)h

+ ρs (∇V n
ε ,∇χ) + (Ξ(Un

ε ) Λε(V
n
ε )∇V n

ε ,∇χ)

−K (Ψn
ε − V n

ε , χ)
h

= −1

2
([Ξ(Un

ε )]2 Λε(V
n
ε )∇Wn

ε ,∇χ),(2.5c)

(
Un
ε λε(Ψ

n
ε ) − Un−1

ε λε(Ψ
n−1
ε )

τn
, χ

)h

+ ρb (Un
ε ∇Ψn

ε ,∇χ)

+
1

3

(
[Ξ(Un

ε )]3 Λε(Ψ
n
ε )∇Wn

ε ,∇χ
)

+ β K (Ψn
ε − V n

ε , χ)
h

= −1

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 Λε(Ψ

n
ε )∇V n−1

ε ,∇χ),(2.5d)

where U0
ε ∈ Sh

>0, V 0
ε ∈ Sh, and Ψ0

ε ∈ Sh are approximations of u0, v0, and ψ0,
respectively, e.g., U0

ε ≡ πhu0 or Qhu0 and similarly for V 0
ε and Ψ0

ε.
Remark 2.1. (Ph,τ

ε ) is the natural extension of the approximation of the insoluble
surfactant system studied in BN. In particular, on setting Ψn

ε ≡ V n
ε , n = 1 → N ,

equations (2.5a)–(2.5c) collapse to the approximation in BN. Note that we approxi-

mate u2 by [Ξ(Un
ε )]

3
2 [Ξ(Un−1

ε )]
1
2 in (2.5d) in order for our discrete stability bounds,

the analogues of (1.20) and (1.24), to hold. Furthermore, as U0
ε > 0, one can ensure

that Ξ(Un−1
ε ) and φ−(Un−1

ε ) are well defined for n ≥ 1; see Theorem 2.3 below.
Remark 2.2. The restriction of σ to the linear case (1.5) is not crucial for the

analysis in this paper. However, this choice simplifies our considerations and is also
more practical. Different choices of σ, e.g., (1.3), can be incorporated; see Remark
2.2 in BN for details.

Below we recall some well-known results concerning Sh for any κ ∈ T h, χ, zh ∈
Sh, m ∈ {0, 1}, p ∈ [1,∞], s ∈ [2,∞] if d = 1, and s ∈ (2,∞] if d = 2:

|χ|m,r,κ ≤ C h
−d ( 1

p−
1
r )

κ |χ|m,p,κ for any r ∈ [p,∞] ,(2.6)

lim
h→0

‖(I − πh)η‖1,s = 0 ∀ η ∈ W 1,s(Ω) ,(2.7)

|(I − πh)η|m,s,κ ≤ C h1−m
κ |η|1,s,κ ∀ η ∈ W 1,s(κ) ,(2.8)

‖πh[χ zh]‖1,p ≤ C
[
|χ zh|0,p + |χ∇zh|0,p + |zh ∇χ|0,p

]
,(2.9) ∫

κ

χ2 dx ≤
∫
κ

πh[χ2] dx ≤ (d + 2)

∫
κ

χ2 dx ,(2.10)

|(χ, zh) − (χ, zh)h| ≤ |(I − πh)(χ zh)|0,1 ≤ C h1+m |χ|m,p |zh|1,p′ .(2.11)
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On recalling (2.1), we see that the operator Qh satisfies

(Qhη)(pj) = m−1
j (η, χj) ∀ j ∈ J ⇒ |Qhη|0,∞ ≤ |η|0,∞, ∀ η ∈ L∞(Ω),(2.12)

and, in addition, it holds for m ∈ {0, 1} that

|(I −Qh)η|m,r ≤ C h1−m |η|1,r ∀ η ∈ W 1,r(Ω), for any r ∈ [2,∞].(2.13)

We note that assumption (A) and (1.11) yield that

∫
κ

∇zh · ∇πh[F ′
ε(z

h)] dx ≥ |zh|21,κ ∀ zh ∈ Sh, ∀ κ ∈ T h;(2.14)

see (2.13) in BN for details. It is also easily established that

|zh|0,q ≤ C h−1 ‖Gzh‖1,q ∀ zh ∈ Sh, for any q ∈ (1, 2].(2.15)

We note that the results (2.13) and (2.15) above exploit the fact that we have a
quasi-uniform family of partitionings {T h}h>0. Finally, we introduce the “discrete
Laplacian” operator Δh : Sh → Sh such that (Δhzh, χ)h = −(∇zh,∇χ) for all χ ∈ Sh.

Theorem 2.3. Let φ(·) satisfy (1.4) with δ > 0. Let the assumptions (A) hold
and {Un−1

ε , V n−1
ε ,Ψn−1

ε } ∈ Sh
>0 × [Sh]2. Then for all ε ∈ (0, 1) and for all h, τn > 0

there exists a solution {Un
ε ,W

n
ε , V

n
ε ,Ψn

ε } ∈ Sh
>0 × [Sh]3 to the nth step of (Ph,τ

ε ) with∫
−Un

ε =
∫
−Un−1

ε and
∫
−(V n

ε + 1
β πh[Un

ε λε(Ψ
n
ε )]) =

∫
−(V n−1

ε + 1
β πh[Un−1

ε λε(Ψ
n−1
ε )]).

Proof. Existence of a solution {Un
ε ,W

n
ε } ∈ Sh

>0×Sh to (2.5a)–(2.5b) follows from
Lemma 2.1 in BN. To prove the existence of {V n

ε ,Ψn
ε } to (2.5c)–(2.5d) we will make

use of the Brouwer fixed point theorem (see, e.g., [14, Theorem 9.36, p. 357]). This
is a nontrivial extension of the existence proof for V n

ε in Theorem 2.1 of BGN. Let
J := #J and let g : R

2J → R
2J be defined by

gj(V ,Ψ) :=
1

τn
(V, χj)

h + ρs (∇V,∇χj) + (Ξ(Un
ε ) Λε(V )∇V,∇χj)

−K (Ψ − V, χj)
h +

1

2
([Ξ(Un

ε )]2 Λε(V )∇Wn
ε ,∇χj),

gj+J (V ,Ψ) :=
1

β

[
1

τn
(Un

ε λε(Ψ), χj)
h + ρb (Un

ε ∇Ψ,∇χj)

+
1

3
([Ξ(Un

ε )]3 Λε(Ψ)∇Wn
ε ,∇χj) + β K (Ψ − V, χj)

h

+
1

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 Λε(Ψ)∇V n−1

ε ,∇χj)

]
∀ j ∈ J,

where V ≡
∑

j∈J Vj χj , Ψ ≡
∑

j∈J Ψj χj , and {V ,Ψ} := (V1, . . . , VJ ,Ψ1, . . . ,ΨJ )T ∈
R

2J . Hence a solution {V n
ε ,Ψn

ε } of (2.5c)–(2.5d) is such that for j = 1 → J

gj(V
n
ε ,Ψ

n
ε ) = 1

τn
(V n−1

ε , χj)
h, gj+J (V n

ε ,Ψ
n
ε ) = 1

β τn
(Un−1

ε λε(Ψ
n−1
ε ), χj)

h.
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On noting Lemma 2.1 in BGN we have that g is continuous, and hence it is
sufficient to show that g is coercive. We have that for all {V,Ψ} ∈ [Sh]2

∑
j∈J

(gj(V ,Ψ)Vj + gj+J (V ,Ψ) Ψj) =
1

τn
|V |2h + ρs |V |21

+ (Ξ(Un
ε ) Λε(V )∇V,∇V ) + K |Ψ − V |2h +

1

2
([Ξ(Un

ε )]2 Λε(V )∇Wn
ε ,∇V )

+
1

β

[
1

τn
(Un

ε λε(Ψ),Ψ)h + ρb |(Un
ε )

1
2 ∇Ψ|20 +

1

3
([Ξ(Un

ε )]3 Λε(Ψ)∇Wn
ε ,∇Ψ)

+
1

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 Λε(Ψ)∇V n−1

ε ,∇Ψ)

]
.

(2.16)

From (1.21) and Lemma 2.1 in BGN we have that

1

2

∣∣([Ξ(Un
ε )]2 Λε(V )∇Wn

ε ,∇V )
∣∣

≤ 1

2
(Ξ(Un

ε ) Λε(V )∇V,∇V ) +
1

8
([Ξ(Un

ε )]3 Λε(V )∇Wn
ε ,∇Wn

ε )(2.17a)

≤ 1

2
(Ξ(Un

ε ) Λε(V )∇V,∇V ) + C(Un
ε , W

n
ε ),

and similarly, on additionally noting Lemma 2.2 in BN and Un
ε ∈ Sh

>0, that

1

3β

∣∣([Ξ(Un
ε )]3 Λε(Ψ)∇Wn

ε ,∇Ψ)
∣∣ ≤ ρb

4β
(Un

ε ∇Ψ,∇Ψ) + C(β, ρb, U
n
ε , W

n
ε ),(2.17b)

1

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 Λε(Ψ)∇V n−1

ε ,∇Ψ)

≤ ρb
4β

(Un
ε ∇Ψ,∇Ψ) + C(β, ρb, U

n−1
ε , Un

ε , V
n−1
ε ).(2.17c)

Moreover, it follows from (1.8) that

1

τnβ

∣∣(Un
ε λε(Ψ),Ψ)h

∣∣ ≤ γ |Ψ|2h + C(γ, β, τn, U
n
ε ) for any fixed γ > 0.(2.17d)

Combining (2.16) and (2.17)–(2.17d) yields that

∑
j∈J

(gj(V ,Ψ)Vj + gj+J (V ,Ψ) Ψj) ≥
1

τn
|V |2h + K |Ψ − V |2h − γ |Ψ|2h − C

≥
(

1

τn
−K0

)
|V |2h +

(
K0

2
− γ

)
|Ψ|2h − C

≥ K0

4
[ |V |2h + |Ψ|2h ] − C ∀ {V,Ψ} ∈ [Sh]2,(2.18)

where K0 ∈ (0,K] and γ ∈ R>0 are chosen sufficiently small. Hence the coerciveness
of g follows from (2.18) and (2.1). Therefore, on noting the aforementioned theorem,
we have existence of {V n

ε ,Ψn
ε } to (2.5c)–(2.5d) and hence existence of a solution



SOLUBLE SURFACTANT SPREADING ON A THIN FILM 1229

{Un
ε ,W

n
ε , V

n
ε ,Ψn

ε } to (Ph,τ
ε ). The integral relations follow immediately from choosing

χ ≡ 1 in (2.5a), (2.5c), and (2.5d).
Lemma 2.4. Let the assumptions of Theorem 2.3 hold. Then for all ε ∈ (0, 1)

and for all h, τn > 0 a solution {Un
ε ,W

n
ε , V

n
ε ,Ψn

ε } to the nth step of (Ph,τ
ε ) is such

that

E(Un
ε , V

n
ε ,Ψn

ε ) +
c

2
|Un

ε − Un−1
ε |21 +

1

2
|V n

ε − V n−1
ε |2h

+ ρs τn (∇V n
ε ,∇πh[F ′

ε(V
n
ε )]) +

1

β
ρb τn

(
Un
ε ∇Ψn

ε ,∇πh[F ′
ε(Ψ

n
ε )]

)
+ τn K (Ψn

ε − V n
ε , F ′

ε(Ψ
n
ε ) − F ′

ε(V
n
ε ))

h
+

τn
24

([Ξ(Un
ε )]3 ∇Wn

ε ,∇Wn
ε )(2.19)

+
5

8
τn (Ξ(Un

ε )∇V n
ε ,∇V n

ε )

≤ E(Un−1
ε , V n−1

ε ,Ψn−1
ε ) +

τn
2

(Ξ(Un−1
ε )∇V n−1

ε ,∇V n−1
ε ),

where E(Un
ε , V

n
ε ,Ψn

ε ) := c
2 |Un

ε |21 + (Φ(Un
ε ) +Fε(V

n
ε ), 1)h + 1

β (Un
ε , F̂ε(Ψ

n
ε ))h and F̂ε is

as defined in (1.15). Furthermore, if φ(·) satisfies (1.4) with ν ≥ 7, then

(G(Un
ε ), 1)h +

τn
4

(∇πh[φ+(Un
ε )],∇Un

ε ) +
c

3
τn |ΔhUn

ε |2h

≤ (G(Un−1
ε ), 1)h +

τn
8

(∇πh[φ+(Un−1
ε )],∇Un−1

ε )

+ C τn
[
|Un

ε |21 + |Un−1
ε |21

]
+

τn
4

(Ξ(Un−1
ε )∇V n−1

ε ,∇V n−1
ε ).(2.20)

Proof. First, upon substitution of the trial function χ ≡ Wn
ε into the height

equation (2.5a), we obtain

(Un
ε − Un−1

ε ,Wn
ε )h +

τn
3

([Ξ(Un
ε )]3 ∇Wn

ε ,∇Wn
ε )

= −τn
2

([Ξ(Un
ε )]

3
2 [Ξ(Un−1

ε )]
1
2 ∇V n−1

ε ,∇Wn
ε ).(2.21)

Substituting χ ≡ Un
ε − Un−1

ε into (2.5b) and noting the identity 2 r (r − s) = (r2 −
s2) + (r − s)2, the convexity of Φ+, and the concavity of Φ− gives

c

2
|Un

ε |21 −
c

2
|Un−1

ε |21 +
c

2
|Un

ε − Un−1
ε |21 + (Φ(Un

ε ) − Φ(Un−1
ε ), 1)h

≤ (Wn
ε , U

n
ε − Un−1

ε )h.

(2.22)

Combining (2.21) and (2.22) yields

c

2
|Un

ε |21 + (Φ(Un
ε ), 1)h +

τn
3

([Ξ(Un
ε )]3 ∇Wn

ε ,∇Wn
ε ) +

c

2
|Un

ε − Un−1
ε |21

≤ c

2
|Un−1

ε |21 + (Φ(Un−1
ε ), 1)h − τn

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 ∇V n−1

ε ,∇Wn
ε ).(2.23)
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Furthermore, choosing χ ≡ πh[F ′
ε(V

n
ε )] in the interfacial equation (2.5c) and noting

the properties (2.2a)–(2.2b) of Λε yields that

(V n
ε − V n−1

ε , F ′
ε(V

n
ε ))h + ρs τn (∇V n

ε ,∇πh[F ′
ε(V

n
ε )])

+ τn (Ξ(Un
ε )∇V n

ε ,∇V n
ε ) − τn K (Ψn

ε − V n
ε , πh[F ′

ε(V
n
ε )])h(2.24)

= −τn
2

([Ξ(Un
ε )]2 ∇Wn

ε ,∇V n
ε ).

Now F ′′
ε ≥ 1 implies that

(V n
ε − V n−1

ε , F ′
ε(V

n
ε ))h ≥ (Fε(V

n
ε ) − Fε(V

n−1
ε ), 1)h +

1

2
|V n−1

ε − V n
ε |2h .(2.25)

Combining (2.24) and (2.25) gives

(Fε(V
n
ε ), 1)h +

1

2
|V n−1

ε − V n
ε |2h + ρs τn (∇V n

ε ,∇πh[F ′
ε(V

n
ε )])

+ τn (Ξ(Un
ε )∇V n

ε ,∇V n
ε ) − τn K (Ψn

ε − V n
ε , F ′

ε(V
n
ε ))h(2.26)

≤ (Fε(V
n−1
ε ), 1)h − τn

2
([Ξ(Un

ε )]2 ∇Wn
ε ,∇V n

ε ).

Similarly, choosing χ ≡ πh[F ′
ε(Ψ

n
ε )] in the bulk chemical equation (2.5d) and using

the properties (2.2a)–(2.2b) gives

(Un
ε λε(Ψ

n
ε ) − Un−1

ε λε(Ψ
n−1
ε ), F ′

ε(Ψ
n
ε ))h + τn ρb (Un

ε ∇Ψn
ε ,∇πh[F ′

ε(Ψ
n
ε )])

+
τn
3

([Ξ(Un
ε )]3 ∇Wn

ε ,∇Ψn
ε ) + τn β K (Ψn

ε − V n
ε , F ′

ε(Ψ
n
ε ))h

= −τn
2

([Ξ(Un
ε )]

3
2 [Ξ(Un−1

ε )]
1
2 ∇V n−1

ε ,∇Ψn
ε ).

Combining this with the height equation (2.5a) for χ ≡ Ψn
ε gives

(Un
ε λε(Ψ

n
ε ) − Un−1

ε λε(Ψ
n−1
ε ), F ′

ε(Ψ
n
ε ))h − (Un

ε − Un−1
ε ,Ψn

ε )h

= −τn ρb (Un
ε ∇Ψn

ε ,∇πh[F ′
ε(Ψ

n
ε )]) − τn β K (Ψn

ε − V n
ε , F ′

ε(Ψ
n
ε ))h.(2.27)

We recall (1.15) and (1.16) and also note that (Un
ε − Un−1

ε , 1)h = 0, which follows
from inserting χ ≡ 1 into (2.5a). Then the left-hand side of (2.27) may be rewritten
as

(Un
ε λε(Ψ

n
ε ) − Un−1

ε λε(Ψ
n−1
ε ), F ′

ε(Ψ
n
ε ))h − (Un

ε − Un−1
ε ,Ψn

ε )h

= (Un
ε − Un−1

ε , λε(Ψ
n
ε )F ′

ε(Ψ
n
ε ) − Ψn

ε )h + (λε(Ψ
n
ε ) − λε(Ψ

n−1
ε ), Un−1

ε F ′
ε(Ψ

n
ε ))h

≥ (Un
ε − Un−1

ε , F̂ε(Ψ
n
ε ) − 1)h + (F̂ε(Ψ

n
ε ) − F̂ε(Ψ

n−1
ε ), Un−1

ε )h

= (Un
ε F̂ε(Ψ

n
ε ) − Un−1

ε F̂ε(Ψ
n−1
ε ), 1)h,

and thus

(Un
ε F̂ε(Ψ

n
ε ) − Un−1

ε F̂ε(Ψ
n−1
ε ), 1)h

≤ −τn ρb (Un
ε ∇Ψn

ε ,∇πh[F ′
ε(Ψ

n
ε )]) − τn β K (Ψn

ε − V n
ε , F ′

ε(Ψ
n
ε ))h.(2.28)
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Combining (2.23), (2.26), and (2.28) and noting Young’s inequality (1.21) yields that

E(Un
ε , V

n
ε ,Ψn

ε ) +
c

2
|Un

ε − Un−1
ε |21 +

1

2
|V n

ε − V n−1
ε |2h + ρs τn (∇V n

ε ,∇πh[F ′
ε(V

n
ε )])

+
1

β
τn ρb (Un

ε ∇Ψn
ε ,∇πh[F ′

ε(Ψ
n
ε )]) + τn K (Ψn

ε − V n
ε , F ′

ε(Ψ
n
ε ) − F ′

ε(V
n
ε ))h

+
τn
3

([Ξ(Un
ε )]3 ∇Wn

ε ,∇Wn
ε ) + τn (Ξ(Un

ε )∇V n
ε ,∇V n

ε )

≤ E(Un−1
ε , V n−1

ε ,Ψn−1
ε ) − τn

2
([Ξ(Un

ε )]2 ∇Wn
ε ,∇V n

ε )

− τn
2

([Ξ(Un
ε )]

3
2 [Ξ(Un−1

ε )]
1
2 ∇Wn

ε ,∇V n−1
ε )

≤ E(Un−1
ε , V n−1

ε ,Ψn−1
ε ) +

ζ + γ

4
τn ([Ξ(Un

ε )]3 ∇Wn
ε ,∇Wn

ε )

+
τn
4ζ

(Ξ(Un−1
ε )∇V n−1

ε ,∇V n−1
ε ) +

τn
4γ

(Ξ(Un
ε )∇V n

ε ,∇V n
ε )

for arbitrary choices of ζ, γ > 0. Choosing ζ = 1
2 and γ = 2

3 leads to the desired
result for the discrete energy structure (2.19).

The desired result (2.20) was derived in Lemma 2.4 in BN.
Remark 2.5. We note that (2.19) and (2.20) are the discrete analogues of the

formal energy estimates (1.20) (on noting (1.22)) and (1.24), respectively.
Theorem 2.6. Let φ(·) satisfy (1.4) with δ > 0. Let the assumptions (A) hold

and {U0
ε , V

0
ε ,Ψ

0
ε} ∈ Sh

>0 × [Sh]2. Then for all ε ∈ (0, 1), h > 0 and for all time
partitions {τn}Nn=1 a solution {Un

ε ,W
n
ε , V

n
ε ,Ψn

ε }Nn=1 to (Ph,τ
ε ) is such that

∫
−Un

ε =
∫
−U0

ε

and
∫
−(V n

ε + 1
β πh[Un

ε λε(Ψ
n
ε )]) =

∫
−(V 0

ε + 1
β πh[U0

ε λε(Ψ
0
ε)]), n = 1 → N, and if

τn ≤ 5
4 ω τn−1, n = 2 → N, for an ω ∈ (0, 1), then

c max
n=1→N

‖Un
ε ‖2

1 + max
n=1→N

(Φ(Un
ε ), 1)h + max

n=1→N
(Fε(V

n
ε ), 1)h

+ c

N∑
n=1

‖Un
ε − Un−1

ε ‖2
1 +

N∑
n=1

|V n
ε − V n−1

ε |20

+ ρs

N∑
n=1

τn (∇V n
ε ,∇πh[F ′

ε(V
n
ε )]) +

N∑
n=1

τn ([Ξ(Un
ε )]3 ∇Wn

ε ,∇Wn
ε )(2.29a)

+ (1 − ω)

N∑
n=1

τn (Ξ(Un
ε )∇V n

ε ,∇V n
ε ) + ρb

N∑
n=1

τn (Un
ε ∇Ψn

ε ,∇Ψn
ε )

+ K

N∑
n=1

τn (Ψn
ε − V n

ε , F ′
ε(Ψ

n
ε ) − F ′

ε(V
n
ε ))h ≤ C C0,

where

C0 := 1 + ‖U0
ε ‖2

1 + (Φ(U0
ε ) + Fε(V

0
ε ), 1)h + (U0

ε , F̂ε(Ψ
0
ε))

h + (Ξ(U0
ε )∇V 0

ε ,∇V 0
ε ).

(2.29b)
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In addition,

max
n=1→N

|V n
ε |20 + ε−1 max

n=1→N
|πh[V n

ε ]−|20 + ρs

N∑
n=1

τn ‖V n
ε ‖2

1 + K

N∑
n=1

τn |Ψn
ε − V n

ε |20

+

N∑
n=1

τn
[
(Fε(Ψ

n
ε ), 1)h + |Ψn

ε |20 + ε−1 |πh[Ψn
ε ]−|20

]
≤ C C0,(2.30)

and, on letting Bn
ε := πh[Un

ε λε(Ψ
n
ε )], n = 0 → N , we have that

N∑
n=1

τn

[∥∥∥∥G
[
Un
ε − Un−1

ε

τn

]∥∥∥∥2

1,q

+

∥∥∥∥G
[
V n
ε − V n−1

ε

τn

]∥∥∥∥2

1,q

+

∥∥∥∥G
[
Bn

ε −Bn−1
ε

τn

]∥∥∥∥2

1,q

]

+
N∑

n=1

τn ‖Bn
ε ‖2

1,q ≤ C
(

max
n=0→N

{|[Ξ(Un
ε )]3|0,r, |(Un

ε )
1
2 |0,r}

)
C0,

(2.31a)

where q = 2 and r = ∞ if d = 1, q ∈ (1, 2); and r = 2q
2−q if d = 2; and

|[Ξ(Un
ε )]α|0,s ≤ C ‖Un

ε ‖α1 ∀ α ∈ (0,∞), ∀ s ∈
{

[1,∞] if d = 1,

[1,∞) if d = 2.
(2.31b)

Furthermore, if φ(·) satisfies (1.4) with ν ≥ 7, then

max
n=1→N

(G(Un
ε ), 1)h + c

N∑
n=1

τn |ΔhUn
ε |2h +

N∑
n=1

τn (∇πh[φ+(Un
ε )],∇Un

ε )

≤ C
[
C0 + (G(U0

ε ), 1)h + (∇πh[φ+(U0
ε )],∇U0

ε )
]
.(2.32)

Proof. Summing the discrete energy estimate (2.19) from n = 1 → k and using
τn ≤ 5

4 ω τn−1, n = 2 → k, yields for any k ≤ N that

E(Uk
ε , V

k
ε ,Ψk

ε) +
1

2

k∑
n=1

[
c |Un

ε − Un−1
ε |21 + |V n

ε − V n−1
ε |2h

]
(2.33)

+ ρs

k∑
n=1

τn (∇V n
ε ,∇πh[F ′

ε(V
n
ε )]) +

1

β
ρb

k∑
n=1

τn (Un
ε ∇Ψn

ε ,∇πh[F ′
ε(Ψ

n
ε )])

+

k∑
n=1

τn

[
K (Ψn

ε − V n
ε , F ′

ε(Ψ
n
ε ) − F ′

ε(V
n
ε ))h +

1

24
([Ξ(Un

ε )]3 ∇Wn
ε ,∇Wn

ε )

]

+
5

8
(1 − ω)

k∑
n=1

τn (Ξ(Un
ε )∇V n

ε ,∇V n
ε )

≤ E(U0
ε , V

0
ε ,Ψ

0
ε) +

τ1
2

(Ξ(U0
ε )∇V 0

ε ,∇V 0
ε ).

Similarly to (2.14), it holds that

(Un
ε ∇zh,∇πh[F ′

ε(z
h)]) ≥ |(Un

ε )
1
2 ∇zh|20 ∀ zh ∈ Sh.(2.34)
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Therefore, on noting (1.13), (2.4), (2.1), (2.10), (2.34), and a Poincaré inequality, the
bounds (2.29a) follow directly from (2.33).

Combining the third bound in (2.29a) and (1.13) yields the first two bounds in
(2.30). These, together with the sixth bound in (2.29a), yield, on noting (2.14), the
third bound in (2.30). Moreover, the fourth bound in (2.30) follows from (1.11) and
the last bound in (2.29a). We will now prove the final three bounds in (2.30). First,
by the convexity of Fε, we have for all r, s ∈ R that

Fε(r) ≤ Fε(s) + (r − s)F ′
ε(r) = Fε(s) + (r − s) (F ′

ε(r) − F ′
ε(s)) + (r − s)F ′

ε(s).

(2.35)

The last term on the right-hand side of (2.35) is only nonnegative if either r ≤ s ≤ 1
or r ≥ s ≥ 1, in which case we have that

2 (r − s)F ′
ε(s) ≤ F ′′

ε (s) (r − s)2 +
[F ′

ε(s)]
2

F ′′
ε (s)

≤ (r − s) (F ′
ε(r) − F ′

ε(s)) +
[F ′

ε(s)]
2

F ′′
ε (s)

.

(2.36)

The fifth bound in (2.30) then follows from (2.35), (2.36), (2.29a), (1.14), and the first
two bounds in (2.30). This, together with (1.13), then yields the last two bounds in
(2.30).

From (1.25), (2.5c), Lemma 2.1 in BGN, and (2.13) we obtain that(
∇G

[
V n
ε − V n−1

ε

τn

]
,∇η

)
+

(
G
[
V n
ε − V n−1

ε

τn

]
, η

)
=

(
V n
ε − V n−1

ε

τn
, Qhη

)h

= −ρs (∇V n
ε ,∇Qhη) −

(
Ξ(Un

ε ) Λε(V
n
ε )∇V n

ε

+
1

2
[Ξ(Un

ε )]2Λε(V
n
ε )∇Wn

ε ,∇Qhη

)
+ K (Ψn

ε − V n
ε , Qhη)h(2.37)

≤ C[ ρs |∇V n
ε |0 + |[Ξ(Un

ε )]
1
2 |0,r(|[Ξ(Un

ε )]
1
2 ∇V n

ε |0

+ |[Ξ(Un
ε )]

3
2 ∇Wn

ε |0) ]|η|1,q′ + C K |Ψn
ε − V n

ε |0 |η|0,q′ .

In a similar fashion, it follows from (2.5d) that

(
∇G

[
Bn

ε −Bn−1
ε

τn

]
,∇η

)
+

(
G
[
Bn

ε −Bn−1
ε

τn

]
, η

)(2.38)

=

(
Un
ε λε(Ψ

n
ε ) − Un−1

ε λε(Ψ
n−1
ε )

τn
, Qhη

)h

= −ρb
(
Un
ε ∇Ψn

ε ,∇Qhη
)
− 1

3

(
[Ξ(Un

ε )]3 Λε(Ψ
n
ε )∇Wn

ε ,∇Qhη
)

− β K
(
Ψn

ε − V n
ε , Qhη

)h − 1

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 Λε(Ψ

n
ε )∇V n−1

ε ,∇Qhη)

≤ C[ |[Ξ(Un
ε )]

3
2 |0,r(|[Ξ(Un−1

ε )]
1
2 ∇V n−1

ε |0 + |[Ξ(Un
ε )]

3
2 ∇Wn

ε |0)

+ ρb |(Un
ε )

1
2 |0,r |(Un

ε )
1
2 ∇Ψn

ε |0 ]|η|1,q′ + C βK |Ψn
ε − V n

ε |0 |η|0,q′ .
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Moreover, it follows from (2.9) and (1.8) that

‖Bn
ε ‖1,q ≤ C

[
|Un

ε πh[λε(Ψ
n
ε )]|0,q + |Un

ε ∇πh[λε(Ψ
n
ε )]|0,q + |πh[λε(Ψ

n
ε )]∇Un

ε |0,q
]

≤ C
[
‖Un

ε ‖1 + |(Un
ε )

1
2 |0,r |(Un

ε )
1
2 ∇Ψn

ε |0
]
.

(2.39)

Combining (2.37), a similar bound for the discrete Uε time derivative (see [6, (2.73)]),
(2.38), (2.39), the assumptions on τn, and the bounds (2.29a) and (2.30) yields the
bounds (2.31a).

The desired result (2.31b) was proved in Theorem 2.2 in BN.
Finally, summing (2.20) from n = 1 → k, observing that τn ≤ 5

4 ω τn−1, n = 2 →
k, and noting the first and eighth bounds in (2.29a) yields (2.32).

Remark 2.7. We note that all the results in this section hold also in the absence
of attractive van der Waals forces, a = 0. The same holds true for the results quoted
from BN, even though it was not explicitly stated there.

Lemma 2.8. Let u0, v0, ψ0 ∈ H1
≥0(Ω), with u0 ∈ L∞(Ω) and u0(x) ≥ ζ > 0

for a.e. x ∈ Ω, and let the assumptions (A) hold. On choosing either {U0
ε , V

0
ε ,Ψ

0
ε} ≡

{Qhu0, Qhv0, Qhψ0} or {U0
ε , V

0
ε ,Ψ

0
ε} ≡ {πhu0, πhv0, πhψ0} if either d = 1 or

{u0, v0, ψ0} ∈ [W 1,e(Ω)]3 with e > 2, it follows that {U0
ε , V

0
ε , Ψ0

ε} ∈ [Sh
≥0]

3 with

U0
ε ≥ ζ are such that for all h > 0

C0 + (G(U0
ε ), 1)h + (∇πh[φ+(U0

ε )],∇U0
ε ) ≤ C.(2.40)

Proof. The desired result (2.40) follows immediately from (2.29b), (2.12), (2.8),
(2.13), (2.3), (1.12), (1.23), (1.4), and Lemma 2.2 in BN.

3. Convergence. Let

Uε(t) :=
t− tn−1

τn
Un
ε +

tn − t

τn
Un−1
ε , t ∈ [tn−1, tn], n ≥ 1,(3.1a)

and

U+
ε (t) := Un

ε , U−
ε (t) := Un−1

ε , t ∈ (tn−1, tn], n ≥ 1.(3.1b)

We note for future reference that

Uε − U±
ε = (t− t±n )

∂Uε

∂t
, t ∈ (tn−1, tn), n ≥ 1,(3.2)

where t+n := tn and t−n := tn−1. We introduce also τ̄(t) := τn for t ∈ (tn−1, tn], n ≥ 1.
Using the above notation, and introducing analogous notation for Wε, Vε, Ψε, and

Bε (recall (2.31a)), (Ph,τ
ε ) can be restated as follows.

Find {Uε, W
+
ε , Vε, Ψε} ∈ C([0, T ];Sh)×L∞(0, T ;Sh)× [C([0, T ];Sh)]2 such that
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for all χ ∈ L2(0, T ;Sh)

∫ T

0

[(
∂Uε

∂t
, χ

)h

+
1

3
([Ξ(U+

ε )]3 ∇W+
ε ,∇χ)

]
dt

= −1

2

∫ T

0

([Ξ(U+
ε )]

3
2 [Ξ(U−

ε )]
1
2 ∇V −

ε ,∇χ) dt,(3.3a)

∫ T

0

[(
∂Vε

∂t
, χ

)h

+ ρs (∇V +
ε ,∇χ) + (Ξ(U+

ε ) Λε(V
+
ε )∇V +

ε ,∇χ)

−K (Ψ+
ε − V +

ε , χ)h

]
dt = −1

2

∫ T

0

([Ξ(U+
ε )]2 Λε(V

+
ε )∇W+

ε ,∇χ) dt,(3.3b)

∫ T

0

[(
∂Bε

∂t
, χ

)h

+ ρb (U+
ε ∇Ψ+

ε ,∇χ) +
1

3
([Ξ(U+

ε )]3 Λε(Ψ
+
ε )∇W+

ε ,∇χ)

+ β K (Ψ+
ε − V +

ε , χ)h

]
dt

= −1

2

∫ T

0

([Ξ(U+
ε )]

3
2 [Ξ(U−

ε )]
1
2 Λε(Ψ

+
ε )∇V −

ε ,∇χ) dt,(3.3c)

where for a.a. t ∈ (0, T ) and for all zh ∈ Sh

(
W+

ε (·, t), zh
)h

= c (∇U+
ε (·, t),∇zh) +

(
φ+(U+

ε (·, t)) + φ−(U−
ε (·, t)), zh

)h
;(3.3d)

that is, W+
ε ≡ −cΔhU+

ε + πh[φ+(U+
ε ) + φ−(U−

ε )].
Lemma 3.1. Let ρs > 0, φ(·) satisfy (1.4) with δ > 0, and u0 ∈ H1(Ω) ∩ L∞(Ω)

with u0 ≥ ζ > 0 a.e. and v0, ψ0 ∈ H1
≥0(Ω). Let {T h, U0

ε , V
0
ε ,Ψ

0
ε, {τn}Nn=1, ε}h>0 be

such that
(i) either {U0

ε , V
0
ε ,Ψ

0
ε} ≡ {Qhu0, Qhv0, Qhψ0} or {U0

ε , V
0
ε ,Ψ

0
ε} ≡ {πhu0, πhv0,

πhψ0} if either d = 1 or {u0, v0, ψ0} ∈ [W 1,e(Ω)]3 with e > 2;
(ii) Ω and {T h}h>0 fulfill assumption (A), ε ∈ (0, 1), and τn ≤ 5

4 ω τn−1, n =
2 → N , for an ω ∈ (0, 1);

(iii) τ h−d (1− 2
p ) → 0 and ε h−d ( 1

2−
1
p ) → 0 as h → 0, where p = 2 if d = 1 and

p > 2 if d = 2.
Then there exist a subsequence of {Uε,W

+
ε , Vε,Ψε}h, where {Uε,W

+
ε , Vε,Ψε}

solve (Ph,τ
ε ), and functions

u ∈ L∞(0, T ;H1
≥0(Ω)) ∩H1(0, T ; (W 1,q′(Ω))′),(3.4a)

v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
≥0(Ω)) ∩H1(0, T ; (W 1,q′(Ω))′),(3.4b)

ψ ∈ L2(0, T ;L2
≥0(Ω)), such that(3.4c)

λ(v), λ(ψ) ∈ L∞(ΩT ),(3.4d)
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with u(·, 0) = u0(·) in Y1, v(·, 0) = v0(·) in Y2, where H1(Ω)
c
↪→ Y1, L2(Ω)

c
↪→ Y2,

and
∫
−u(·, t) =

∫
−u0 > 0,

∫
−[v(·, t) + 1

β u(·, t)λ(ψ(·, t))] =
∫
−[v0 + 1

β u0 λ(ψ0)] for a.a.

t ∈ (0, T ) such that as h → 0

Uε, U
±
ε → u weak-∗ in L∞(0, T ;H1(Ω)),(3.5a)

Vε, V
±
ε → v weak-∗ in L∞(0, T ;L2(Ω)), weakly in L2(0, T ;H1(Ω)),(3.5b)

Ψ+
ε → ψ weakly in L2(ΩT ),(3.5c)

G ∂Uε

∂t
→ G ∂u

∂t
and G ∂Vε

∂t
→ G ∂v

∂t
weakly in L2(0, T ;W 1,q(Ω)),(3.5d)

(Uε)
α, (U±

ε )α → uα for any α ∈ (0,∞), strongly in L2(0, T ;Ls(Ω)),(3.6a)

Vε, V
±
ε → v strongly in L2(0, T ;Lp(Ω)),(3.6b)

[Ξ(U±
ε )]α → uα I for any α ∈ (0,∞), strongly in L2(0, T ;Ls(Ω)),(3.7a)

Λε(V
+
ε ) → λ(v) I strongly in L2(0, T ;Lp(Ω)),(3.7b)

where s ∈ [2,∞] and q = 2 if d = 1, s ∈ [2,∞), and q ∈ (1, 2) if d = 2.
Furthermore, if d = 1, or d = 2 and ν ≥ 7 in (1.4), then u in addition to (3.4a)

satisfies

u ∈ L2(0, T ;H2(Ω)),(3.8)

and there exists a subsequence of {Uε,W
+
ε , Vε,Ψε}h satisfying (3.5a)–(3.5d), (3.6a)–

(3.6b), (3.7a)–(3.7b), and as h → 0

ΔhU+
ε → Δu weakly in L2(ΩT ),(3.9a)

Uε, U
±
ε → u weakly in L2(0, T ;W 1,p(Ω)),(3.9b)

Uε, U
±
ε → u strongly in L2(0, T ;C0,γ(Ω)) for any γ ∈

(
0, 1 − d

p

)
,(3.9c)

and for a.a. t ∈ (0, T )

u(·, t) ∈ C0,γ(Ω) with u(x, t) ≥ ζ(t) > 0 ∀ x ∈ Ω.(3.9d)

On extracting a further subsequence, it also holds as h → 0 that for a.a. t ∈ (0, T )

πh[φ±(U±
ε )](·, t) → φ±(u(·, t)) strongly in C(Ω),(3.10a)

W+
ε (·, t) → w(·, t) ≡ −cΔu(·, t) + φ(u(·, t)) weakly in H1(Ω),(3.10b)

[Ξ(U+
ε )]

3
2 ∇W+

ε → u
3
2 ∇w weakly in L2(ΩT ).(3.10c)

Moreover, we have that

Uε, U
±
ε → u strongly in L2(0, T ;H1(Ω)).(3.11)

Proof. Noting the definitions (3.1a)–(3.1b) and [6, (1.19)] , the bounds in (2.29a)–
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(2.31b) together with (2.40) and our assumption (i) imply that

‖U (±)
ε ‖2

L∞(0,T ;H1(Ω)) + ‖V (±)
ε ‖2

L∞(0,T ;L2(Ω)) + ρs ‖V (±)
ε ‖2

L2(0,T ;H1(Ω))

(3.12)

+ ε−1‖πh[V +
ε ]−‖2

L∞(0,T ;L2(Ω)) + ‖Ψ+
ε ‖2

L2(ΩT ) + ε−1‖πh[Ψ+
ε ]−‖2

L2(ΩT )

+

∥∥∥∥τ̄ 1
2
∂Uε

∂t

∥∥∥∥2

L2(0,T ;H1(Ω))

+

∥∥∥∥τ̄ 1
2
∂Vε

∂t

∥∥∥∥2

L2(ΩT )

+ ‖ [Ξ(U+
ε )]

3
2 ∇W+

ε ‖2
L2(ΩT )

+ ‖(U+
ε )

1
2 ∇Ψ+

ε ‖2
L2(ΩT ) +

∥∥∥∥G ∂Uε

∂t

∥∥∥∥
L2(0,T ;W 1,q(Ω))

+

∥∥∥∥G ∂Vε

∂t

∥∥∥∥
L2(0,T ;W 1,q(Ω))

≤ C.

Furthermore, we deduce from (3.2), (3.12), and (2.6) that

‖Uε − U±
ε ‖2

L2(0,T ;H1(Ω)) ≤
∥∥∥∥τ̄ ∂Uε

∂t

∥∥∥∥2

L2(0,T ;H1(Ω))

≤ C τ,(3.13a)

‖Vε − V ±
ε ‖2

L2(0,T ;Lp(Ω)) ≤ C h−d (1− 2
p ) ‖Vε − V ±

ε ‖2
L2(ΩT ) ≤ C h−d (1− 2

p ) τ.(3.13b)

Hence on noting (3.12), (3.13a)–(3.13b), Uε > 0, (1.6), assumption (iii), and a stan-
dard compact embedding result (see, e.g., [6, (1.20a)]), we can choose a subsequence
{Uε,W

+
ε , Vε,Ψε}h such that the convergence results (3.4a)–(3.4c), at first without the

nonnegativity constraints on v and ψ, (3.5a)–(3.5d), and (3.6a)–(3.6b) for α = 1 hold.
Then (3.4a)–(3.4c) and Theorem 2.3 yield, on noting a standard compact embedding
result (see, e.g., [6, (1.20b)]), assumption (i), (2.8), and (2.13), that the subsequence
satisfies the additional initial and integral conditions.

The proof of the results (3.6a) for α ∈ (0,∞), (3.7a)–(3.7b) can be found in the
proof of Lemma 3.1 in BN. Furthermore, we note that Lemma 2.1 in BGN and (3.7b)
imply that λ(v) ≥ 0 a.e. ⇒ v ≥ 0 a.e., and hence H1

≥0(Ω) in (3.4b). Moreover, on

noting that ‖[Ψ+
ε ]−‖L2(ΩT ) ≤ ‖πh[Ψ+

ε ]−‖L2(ΩT ), the sixth bound in (3.12) shows that
[Ψ+

ε ]− → 0 weakly in L2(ΩT ), which implies that [Ψ+
ε ]+ → ψ weakly in L2(ΩT ).

Hence L2
≥0(Ω) in (3.4c), and the results (3.4d) hold on noting (1.6).

The proof, using the key entropy estimate (2.32) in the case d = 2, of the results
(3.8)–(3.9b), the result (3.9c) if d = 1, and the result on Uε in (3.9c) if d = 2 can be
found in the proof of Lemma 3.1 in BN. To prove the result on U±

ε in (3.9c) for the
case d = 2, we note the following. For any γ ∈ (0, 1− 2

p ) and any p̄ ∈ ( 2
1−γ , p) it holds

on noting the compact embedding W 1,p̄(Ω)
c
↪→ C0,γ(Ω), (3.13a), and (3.9b) that

‖Uε − U±
ε ‖L2(0,T ;C0,γ(Ω)) ≤ ‖Uε − U±

ε ‖L2(0,T ;W 1,p̄(Ω))

≤ ‖Uε − U±
ε ‖μL2(0,T ;H1(Ω)) ‖Uε − U±

ε ‖1−μ
L2(0,T ;W 1,p(Ω)) ≤ C τ

μ
2 ,(3.14)

where μ = 2 (p−p̄)
(p−2) p̄ ∈ (0, 1). Combining (3.14), assumption (iii), and the established

result on Uε in (3.9c) yields the desired result (3.9c). Then the strong convergence
result (3.9c) yields the remaining results (3.9d)–(3.10c); see the proof of Lemma 3.2
in BN for details.
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Finally, we have that

‖∇(U+
ε − u)‖2

L2(ΩT ) ≤
∣∣∣∣
∫

ΩT

∇(U+
ε − u) · ∇u dxdt

∣∣∣∣
+

∣∣∣∣
∫

ΩT

∇(U+
ε − πhu) · ∇U+

ε dxdt

∣∣∣∣ +

∣∣∣∣
∫

ΩT

∇(πhu− u) · ∇U+
ε dxdt

∣∣∣∣ ,(3.15a)

where, on noting (2.10),∣∣∣∣
∫

ΩT

∇(U+
ε − πhu).∇U+

ε dxdt

∣∣∣∣ =

∣∣∣∣−
∫ T

0

(ΔhU+
ε , U+

ε − πhu)h dt

∣∣∣∣
≤ C ‖ΔhU+

ε ‖L2(ΩT ) ‖U+
ε − πhu‖L2(ΩT ).(3.15b)

Combining (3.15a)–(3.15b), (3.5a), (2.32), (2.7), (3.4a), (3.6a), and (3.13a) yields
(3.11).

Remark 3.2. We remark that in the case d = 1 one can prove stronger versions
of (3.9c)–(3.10b); see the proof of Lemma 3.1 in BN for details. We note that in
BN a further time step assumption was introduced for d = 2, in order to prove the
results (3.9c)–(3.10c). However, the proof given here shows that this assumption is
not necessary; see (3.14).

Remark 3.3. One can adapt the approximation (Ph,τ
ε ) when there are no repulsive

van der Waals forces (δ = 0), by replacing Ξ with Ξε (see Remark 3.2 in BN for details)
and here in addition by replacing Un

ε ∇Ψn
ε with πh[Un

ε ]+ ∇Ψn
ε in (2.5d). Similarly,

to the insoluble surfactant system studied in BN one can now no longer guarantee
the nonnegativity of Uε. However, in contrast to the system studied in BN, it is not
clear that one can prove convergence in the case d = 1 by adapting the techniques in
BGN.

Lemma 3.4. Let all the assumptions of Lemma 3.1 hold, and in addition assume

that if d = 2, then p ∈ (2, 6), q ∈ [ 4p
3p−2 , 2), and τ h−3d( 1

2−
1
p ) → 0 as h → 0. Then

there exists a subsequence of {Uε,W
+
ε , Vε,Ψε}h such that as h → 0

G ∂Bε

∂t
→ G ∂(uλ(ψ))

∂t
weakly in L2(0, T ;W 1,q(Ω)),(3.16a)

Ξ[U+
ε ] Λε(Ψ

+
ε ) → uλ(ψ) I strongly in L2(0, T ;Lp(Ω)),(3.16b)

(U+
ε )

1
2 ∇Ψ+

ε → u
1
2 ∇ψ weakly in L2(ΩT ).(3.16c)

Proof. Noting the definitions (3.1a)–(3.1b) and the bounds in (2.29a)–(2.31b)
together with (2.40), (2.39) for n = 0, our assumption (i), (2.12), (2.13), and (2.8)
imply that

‖B(±)
ε ‖2

L2(0,T ;W 1,q(Ω)) +

∥∥∥∥G ∂Bε

∂t

∥∥∥∥
L2(0,T ;W 1,q(Ω))

≤ C(3.17)

and hence, on noting a standard compact embedding result (see, e.g., [6, (1.20a)]),
that

Bε → b strongly in L2(0, T ;Ls(Ω)) as h → 0,

G ∂Bε

∂t
→ G ∂b

∂t
weakly in L2(0, T ;W 1,q(Ω)) as h → 0,(3.18)
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where b ∈ L2(0, T ;Ls(Ω)) still needs to be identified. Moreover, on noting (2.6),
(1.25), (3.2), and (3.17), it holds for q = p = 2 if d = 1 and q ∈ [ 4p

3p−2 , 2) if d = 2 that

‖Bε −B±
ε ‖2

L2(0,T ;Lp(Ω)) ≤ C h−2d( 1
2−

1
p ) ‖Bε −B±

ε ‖2
L2(0,T ;L2(Ω))

≤ C τ h−2d( 1
2−

1
p )

∥∥∥∥G ∂Bε

∂t

∥∥∥∥
L2(0,T ;W 1,q(Ω))

‖B±
ε ‖L2(0,T ;W 1,q′ (Ω))

≤ C τ h−2d( 1
2−

1
p ) h−d( 1

q−
1
q′ )‖B±

ε ‖L2(0,T ;W 1,q(Ω))

≤ C τ h−2d( 1
2−

1
p ) h−d( 2−q

q ) ≤ C τ h−3d( 1
2−

1
p ) → 0 as h → 0.(3.19)

In addition, on noting (2.8), (1.8), and (2.6), it holds for n = 0 → N that

|Bn
ε − Un

ε λε(Ψ
n
ε )|20,p ≤

∑
κ∈T h

[m(κ)]
2
p |(I − πh)[Un

ε λε(Ψ
n
ε )]|20,∞,κ

≤ C
∑
κ∈T h

[m(κ)]
2
ph2

κ |Un
ε Ψn

ε |21,∞,κ ≤ C
∑
κ∈T h

h2
κ |Un

ε Ψn
ε |21,p,κ

≤ C
∑
κ∈T h

h2
κ h

−2d( 1
q−

1
p )

κ |Un
ε Ψn

ε |21,q,κ ≤ C h2−2d( 1
q−

1
p ) |Un

ε Ψn
ε |21,q

≤ C h2−2d( 1
q−

1
p )
[
|Un

ε |21 + |(Un
ε )

1
2 |20,r |(Un

ε )
1
2 ∇Ψn

ε |20
]
,(3.20)

where r = ∞ if d = 1 and r = 2q
2−q if d = 2. Therefore it follows from (3.20), (3.12),

and our assumptions on p and q that ‖B+
ε −U+

ε λε(Ψ
+
ε )‖L2(0,T ;Lp(Ω)) → 0 and hence,

on noting (3.18) and (3.19), that

U+
ε λε(Ψ

+
ε ) → b strongly in L2(0, T ;Lp(Ω)) as h → 0.(3.21)

Combining (3.21), (3.6a), (3.9d), (3.12), and (1.8) yields, on possibly extracting a
further subsequence, that λε(Ψ

+
ε ) → u−1b strongly in L2(0, T ;Lp(Ω)) as h → 0 and

in particular that u−1b ∈ [0, 1] a.e. in ΩT . Moreover, it follows from (1.6), (1.8),
(3.12), and assumption (iii) that

‖λ(Ψ+
ε ) − λε(Ψ

+
ε )‖L2(0,T ;L2(Ω)) ≤ C ε + ‖[Ψ+

ε ]−‖L2(0,T ;L2(Ω)) ≤ C ε
1
2 → 0 as h → 0.

Hence

λ(Ψ+
ε ) → u−1b strongly in L2(0, T ;L2(Ω)) as h → 0.(3.22)

Combining (3.22), (1.6), and (3.5c) yields that u−1b = ψ = λ(ψ) a.e. where u−1b < 1.
It remains to identify b, where u−1b = 1. Let A := {(x, t) ∈ ΩT : (u−1b)(x, t) =
1, ψ(x, t) < 1}. On assuming that m(A) > 0, it follows from (3.5c), (1.6), and (3.22)
that

m(A) =

∫
ΩT

HA dxdt >

∫
ΩT

ψHA dxdt ←
∫

ΩT

Ψ+
ε HA dxdt

≥
∫

ΩT

λ(Ψ+
ε )HA dxdt →

∫
ΩT

1HA dxdt = m(A),

where HA is the characteristic function of A. This is a contradiction and hence
m(A) = 0. This means that ψ ≥ 1 a.e. where u−1b = 1, i.e., u−1b = 1 = λ(ψ) a.e.
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where u−1b = 1. Combining this with the earlier result on b yields that b = uλ(ψ) a.e.
in ΩT . This proves, on recalling (3.18), that Bε → uλ(ψ) strongly in L2(0, T ;Ls(Ω))
as h → 0, and that (3.16a) holds.

Similarly to (3.20), we have on noting Lemma 2.1 in BGN, Lemma 2.3 in BN,
and (3.7a) that

‖U+
ε λε(Ψ

+
ε ) I − Ξ(U+

ε ) Λε(Ψ
+
ε )‖2

L2(0,T ;Lp(Ω))

≤ ‖U+
ε [λε(Ψ

+
ε ) I − Λε(Ψ

+
ε )]‖2

L2(0,T ;Lp(Ω)) + ‖ [U+
ε I − Ξ(U+

ε )] Λε(Ψ
+
ε )‖2

L2(0,T ;Lp(Ω))

≤
∫ T

0

∑
κ∈T h

h2
κ |U+

ε ∇Ψ+
ε |20,p,κ dt + ‖U+

ε I − Ξ(U+
ε )‖2

L2(0,T ;Lp(Ω)) → 0 as h → 0.

Combining this and (3.21) yields the desired result (3.16b).

Finally, it follows from (3.12) that (U+
ε )

1
2 ∇Ψ+

ε → z weakly in L2(ΩT ), where
z ∈ L2(ΩT ). But for any η ∈ C∞

0 (ΩT ), which is dense in L2(ΩT ), we have, on
recalling (3.6a), (3.5c), and (3.11), that∫ T

0

(u
1
2 z, η) dt ←

∫ T

0

(U+
ε ∇Ψ+

ε , η) dt = −
∫ T

0

[
(Ψ+

ε ∇U+
ε , η) + (Ψ+

ε U+
ε ,∇ · η)

]
dt

→ −
∫ T

0

(ψ∇u, η) dt−
∫ T

0

(ψ u,∇ · η) dt =

∫ T

0

(u∇ψ, η) dt.(3.23)

Hence z = u
1
2 ∇ψ in L2(ΩT ) and (3.16c) holds.

Theorem 3.5. Let all the assumptions of Lemma 3.4 hold. Then there exist
a subsequence of {Uε,W

+
ε , Vε,Ψε}h, where {Uε,W

+
ε , Vε,Ψε} solve (Ph,τ

ε ), and func-
tions {u,w, v, ψ} satisfying (3.4a)–(3.4d), (3.8), and (3.9d). In addition, as h → 0
the following hold: (3.5a)–(3.5d), (3.6a)–(3.6b), (3.7a)–(3.7b), (3.9a)–(3.9c), (3.10a)–
(3.10b) for a.a. t ∈ (0, T ), (3.10c), (3.11), and (3.16a)–(3.16c). Moreover, we have

that u and v fulfill u(·, 0) = u0(·) in Y1, v(·, 0) = v0(·) in Y2, where H1(Ω)
c
↪→ Y1,

L2(Ω)
c
↪→ Y2. Furthermore, {u,w, v, ψ} satisfy for all η ∈ L2(0, T ;W 1,q′(Ω)), with

q′ = 2 if d = 1 and q′ ∈ (2, 4p
p+2 ], where p ∈ (2, 6), if d = 2,

∫ T

0

〈
∂u

∂t
, η

〉
q′

dt +

∫
ΩT

[
1

3
u3 ∇w · ∇η +

1

2
u2 ∇v · ∇η

]
dxdt = 0,(3.24a)

∫ T

0

〈
∂v

∂t
, η

〉
q′

dt +

∫
ΩT

[ ρs ∇v · ∇η + uλ(v)∇v · ∇η ] dxdt

+

∫
ΩT

[
1

2
u2 λ(v)∇w · ∇η −K (ψ − v) η

]
dxdt = 0,(3.24b) ∫ T

0

〈
∂(uλ(ψ))

∂t
, η

〉
q′

dt +

∫
ΩT

[
ρb u∇ψ · ∇η +

1

3
u3 λ(ψ)∇w · ∇η

]
dxdt

+

∫
ΩT

[
1

2
u2 λ(ψ)∇v · ∇η + β K (ψ − v) η

]
dxdt = 0,(3.24c)

where for a.a. t ∈ (0, T )∫
Ω

[w(·, t) ξ − c∇u(·, t).∇ξ − φ(u(·, t)) ξ ] dx = 0 ∀ ξ ∈ H1(Ω).(3.24d)
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Proof. On choosing zh ≡ πhξ̃, where ξ̃ ∈ W 1,p(Ω), in (3.3d); it follows from (2.1),
(2.10), (2.7), (3.5a), and (3.10a)–(3.10b) that (3.24d) holds for ξ ≡ ξ̃. The desired
result (3.24d) then holds for any ξ ∈ H1(Ω) via a density argument.

For any η ∈ L2(0, T ;W 1,q′(Ω)) and η̃ ∈ H1(0, T ;W 1,∞(Ω)), we choose χ ≡ πhη
in (3.3a)–(3.3c) and then analyze the subsequent terms. The results (3.24a) and
(3.24b), for the case K = 0, are then derived from (3.3a) and (3.3b), with K = 0;
their proof can be found in the proof of Theorem 3.1 in BN. Hence it is sufficient to
prove (3.24c), as the convergence of the term involving K in (3.24b) then follows from
the convergence of the corresponding term in (3.24c).

First, (2.11), (2.15), an interpolation estimate in time (see [6, (1.19)]), (3.12),
(3.17), and (2.8), on noting that ‖Bε‖L∞(0,T ;L2(Ω)) ≤ ‖Uε‖L∞(0,T ;L2(Ω)), yield that

∣∣∣∣∣
∫ T

0

[(
∂Bε

∂t
, πhη

)h

−
(
∂Bε

∂t
, πhη

)]
dt

∣∣∣∣∣
(3.25)

≤
∣∣∣∣∣
∫ T

0

[(
∂Bε

∂t
, πh[η − η̃]

)h

−
(
∂Bε

∂t
, πh[η − η̃]

)]
dt

∣∣∣∣∣
+

∣∣∣∣∣−
∫ T

0

(
Bε,

∂(πhη̃)

∂t

)h

dt + (Bε(·, T ), πhη̃(·, T ))h − (Bε(·, 0), πhη̃(·, 0))h

+

∫ T

0

(
Bε,

∂(πhη̃)

∂t

)
dt− (Bε(·, T ), πhη̃(·, T )) + (Bε(·, 0), πhη̃(·, 0))

∣∣∣∣∣
≤ C

∥∥∥∥G ∂Bε

∂t

∥∥∥∥
L2(0,T ;W 1,q(Ω))

‖πh[η − η̃] ‖L2(0,T ;W 1,q′ (Ω))

+ C h ‖Bε‖L∞(0,T ;L2(Ω)) ‖πhη̃‖H1(0,T ;H1(Ω))

≤ C ‖η − η̃‖L2(0,T ;W 1,q′ (Ω)) + C h ‖η̃‖H1(0,T ;W 1,q′ (Ω)).

Furthermore, it follows from (1.25) and (3.17) that∣∣∣∣∣
∫ T

0

(
∂Bε

∂t
, (I − πh)η

)
dt

∣∣∣∣∣ ≤ C

∥∥∥∥G ∂Bε

∂t

∥∥∥∥
L2(0,T ;W 1,q(Ω))

‖(I − πh)η‖L2(0,T ;W 1,q′ (Ω))

≤ C ‖(I − πh)η‖L2(0,T ;W 1,q′ (Ω)).(3.26)

Combining (3.25), the denseness of H1(0, T ;W 1,∞(Ω)) in L2(0, T ;W 1,q′(Ω)), (3.26),
(2.7), (1.25), and (3.16a) yields for all η ∈ L2(0, T ;W 1,q′(Ω)) that

∫ T

0

(
∂Bε

∂t
, πhη

)h

dt →
∫ T

0

〈
∂(uλ(ψ))

∂t
, η

〉
q′

dt as h → 0.(3.27)

Similarly to the above, it follows from (2.1), (2.11), (2.8), (3.5b), and (3.5c) that
for all η ∈ L2(0, T ;W 1,q′(Ω))∫ T

0

(
Ψ+

ε − V +
ε , πhη

)h
dt →

∫ T

0

(ψ − v, η) dt as h → 0.(3.28)

In view of (3.12), (3.4a), [6, (1.19)], and (3.16c), we deduce with r as defined in
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(2.31a) that for all η ∈ L2(0, T ;W 1,q′(Ω)) and for all η̃ ∈ H1(0, T ;W 1,∞(Ω))∣∣∣∣∣
∫ T

0

(U+
ε ∇Ψ+

ε ,∇[η̃ − πhη] ) dt

∣∣∣∣∣ +

∣∣∣∣∣
∫ T

0

(u∇ψ,∇[η̃ − η] ) dt

∣∣∣∣∣
≤ ‖(U+

ε )
1
2 ‖L∞(0,T ;Lr(Ω)) ‖(U+

ε )
1
2 ∇Ψ+

ε ‖L2(ΩT ) ‖η̃ − πhη‖L2(0,T ;W 1,q′ (Ω))

+ ‖u 1
2 ‖L∞(0,T ;Lr(Ω)) ‖u

1
2 ∇ψ‖L2(ΩT ) ‖η̃ − η‖L2(0,T ;W 1,q′ (Ω))

≤ C
[
‖(I − πh)η‖L2(0,T ;W 1,q′ (Ω)) + ‖η − η̃‖L2(0,T ;W 1,q′ (Ω))

]
.(3.29)

Similarly to the above, on noting in addition (2.31b), Lemma 2.1 in BGN, (3.10c),
(3.4d), and (3.4b), we deduce for all η ∈ L2(0, T ;W 1,q′(Ω)) and for all η̃ ∈ H1(0, T ;W 1,∞(Ω))∣∣∣∣
∫ T

0

([Ξ(U+
ε )]3 Λε(Ψ

+
ε )∇W+

ε ,∇[η̃ − πhη] ) dt

∣∣∣∣ +

∣∣∣∣
∫ T

0

(u3 λ(ψ)∇w,∇[η̃ − η] ) dt

∣∣∣∣
≤ ‖[Ξ(U+

ε )]
3
2 ‖L∞(0,T ;Lr(Ω)) ‖[Ξ(U+

ε )]
3
2 ∇W+

ε ‖L2(ΩT ) ‖η̃ − πhη‖L2(0,T ;W 1,q′ (Ω))

+ ‖λ(ψ)‖L∞(ΩT ) ‖u
3
2 ‖L∞(0,T ;Lr(Ω)) ‖u

3
2 ∇w‖L2(ΩT ) ‖η̃ − η‖L2(0,T ;W 1,q′ (Ω))

≤ C
[
‖(I − πh)η‖L2(0,T ;W 1,q′ (Ω)) + ‖η − η̃‖L2(0,T ;W 1,q′ (Ω))

]
and ∣∣∣∣

∫ T

0

([Ξ(U+
ε )]

3
2 [Ξ(U−

ε )]
1
2 Λε(Ψ

+
ε )∇V −

ε ,∇[η̃ − πhη] ) dt

∣∣∣∣
+

∣∣∣∣
∫ T

0

(u2 λ(ψ)∇v,∇[η̃ − η] ) dt

∣∣∣∣
≤ ‖[Ξ(U+

ε )]
3
2 [Ξ(U−

ε )]
1
2 ‖L∞(0,T ;Lr(Ω)) ‖∇V −

ε ‖L2(ΩT ) ‖η̃ − πhη‖L2(0,T ;W 1,q′ (Ω))

+ ‖λ(ψ)‖L∞(ΩT )) ‖u2‖L∞(0,T ;Lr(Ω)) ‖∇v‖L2(ΩT ) ‖η̃ − η‖L2(0,T ;W 1,q′ (Ω))

≤ C
[
‖(I − πh)η‖L2(0,T ;W 1,q′ (Ω)) + ‖η − η̃‖L2(0,T ;W 1,q′ (Ω))

]
.(3.30)

For all η̃ ∈ H1(0, T ;W 1,∞(Ω)), it follows from (3.6a), (3.16c), (3.7a), (3.16b),
(3.10c), (3.4a), (3.4d), [6, (1.19)], (2.31b), (3.1b), (3.12), and (3.5b) that as h → 0∫

ΩT

(U+
ε )

1
2 [(U+

ε )
1
2 ∇Ψ+

ε ]∇η̃ dxdt →
∫

ΩT

u
1
2 [u

1
2 ∇ψ]∇η̃ dxdt,(3.31a) ∫

ΩT

[Ξ(U+
ε )]

1
2 [Ξ(U+

ε ) Λε(Ψ
+
ε )] [ [Ξ(U+

ε )]
3
2∇W+

ε ]∇η̃ dxdt

→
∫

ΩT

u
1
2 [uλ(ψ)] [u

3
2 ∇w]∇η̃ dxdt,(3.31b) ∫

Ω

[Ξ(U+
ε )]

1
2 [Ξ(U−

ε )]
1
2 [ [Ξ(U+

ε )] Λε(Ψ
+
ε )]∇V −

ε ∇η̃ dxdt

→
∫

ΩT

u [uλ(ψ)]∇v∇η̃ dxdt.(3.31c)

Noting that H1(0, T ;W 1,∞(Ω)) is dense in L2(0, T ;W 1,q′(Ω)) and (2.7), we obtain
the desired result (3.24c) on combining (3.3c), (3.27)–(3.30), and (3.31a)–(3.31c).
Hence {u, w, v, ψ} satisfy (3.24a)–(3.24d) as well as the stated results of Lemmas 3.1
and 3.4.
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4. Numerical results. Before presenting some numerical results in both one
and two space dimensions, we briefly state algorithms for solving the resulting system
of algebraic equations for {Un

ε ,W
n
ε , V

n
ε ,Ψn

ε } arising at each time level from the ap-
proximation (Ph,τ

ε ). As (2.5a)–(2.5b) in (Ph,τ
ε ) are independent of {V n

ε ,Ψn
ε }, we first

solve these to obtain {Un
ε ,W

n
ε }; then we solve (2.5c)–(2.5d) for {V n

ε ,Ψn
ε }. We use the

following iterative approach to solve (2.5a)–(2.5b) for {Un
ε ,W

n
ε }: Given Un,0

ε ∈ Sh
>0,

for k ≥ 1 find {Un,k
ε ,Wn,k

ε } ∈ [Sh]2 such that for all χ ∈ Sh

(
Un,k
ε − Un−1

ε

τn
, χ

)h

+
1

3
([Ξ(Un,k−1

ε )]3 ∇Wn,k
ε ,∇χ)

= −1

2
([Ξ(Un,k−1

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 ∇V n−1

ε ,∇χ),(4.1a)

c (∇Un,k
ε ,∇χ) + (φ+(Un,k

ε ) + φ−(Un−1
ε ), χ)h = (Wn,k

ε , χ)h.(4.1b)

Then, having obtained {Un
ε ,W

n
ε }, we solve (2.5c)–(2.5d) for {V n

ε , Ψn
ε } using the

following iterative approach: Given {V n,0
ε ,Ψn,0

ε } ∈ [Sh]2, for k ≥ 1 find {V n,k
ε ,Ψn,k

ε } ∈
[Sh]2 such that for all χ ∈ Sh

(
V n,k
ε − V n−1

ε

τn
, χ

)h

+ ρs (∇V n,k
ε ,∇χ) + (Ξ(Un

ε ) Λε(V
n,k−1
ε )∇V n,k

ε ,∇χ)

−K
(
Ψn,k−1

ε − V n,k
ε , χ

)h
= −1

2
([Ξ(Un

ε )]2 Λε(V
n,k−1
ε )∇Wn

ε ,∇χ),(4.2a)

(
Un
ε λε(Ψ

n,k
ε ) − Un−1

ε λε(Ψ
n−1
ε )

τn
, χ

)h

+ ρb
(
Un
ε ∇Ψn,k

ε ,∇χ
)

+
1

3

(
[Ξ(Un

ε )]3 Λε(Ψ
n,k−1
ε )∇Wn

ε ,∇χ
)

+ β K
(
Ψn,k

ε − V n,k
ε , χ

)h
= −1

2
([Ξ(Un

ε )]
3
2 [Ξ(Un−1

ε )]
1
2 Λε(Ψ

n,k−1
ε )∇V n−1

ε ,∇χ).(4.2b)

Equations (4.1a)–(4.1b) and (4.2a)–(4.2b) are natural extensions of the iterative pro-
cedure proposed in [10] for solving a finite element approximation of the thin film
equation. Note that we have chosen the iterative method such that (4.2a) and (4.2b)
decouple. As Un,k−1

ε > 0, it is easily established on noting Lemma 2.2 in BN that
there exists a unique solution {Un,k

ε ,Wn,k
ε } ∈ Sh

>0 × Sh to (4.1a)–(4.1b). As (4.2a) is
linear, existence of V n,k

ε follows from uniqueness; this is easily established on noting
(2.2a) and ρs ≥ 0. Existence and uniqueness of Ψn,k

ε follow from the monotonicity of
λε and the positivity of Un

ε > 0. Hence the iterations (4.1a)–(4.1b) and (4.2a)–(4.2b)
are well defined.

For the iterative algorithms (4.1a)–(4.1b) and (4.2a)–(4.2b) we set, for n ≥ 1,
{Un,0

ε , V n,0
ε ,Ψn,0

ε } ≡ {Un−1
ε , V n−1

ε ,Ψn−1
ε } and adopted the stopping criteria

|Un,k
ε − Un,k−1

ε |0,∞ < tol, |V n,k
ε − V n,k−1

ε |0,∞ < tol, and |Ψn,k
ε − Ψn,k−1

ε |0,∞ < tol,

respectively, with tol = 10−8. Furthermore, we then set {Un
ε ,W

n
ε , V

n
ε ,Ψn

ε } ≡
{Un,k

ε ,Wn,k
ε , V n,k

ε ,Ψn,k
ε } for (4.1a)–(4.1b) and (4.2a)–(4.2b).

Remark 4.1. The nonlinear system (4.1a)–(4.1b) can be solved using an inexact
Newton’s method, applying a BiCGSTAB algorithm at each Newton iteration. The
linear system (4.2a), on the other hand, can be solved efficiently using a conjugate
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gradient algorithm. The nonlinear system (4.2b) can be solved with a nonlinear SOR
method, similar to the one employed in [7]. In particular, in each step and at each
vertex a scalar nonlinear equation of the form α1 λε(s) + α2 s = α3, s ∈ R, where
α1, α2 > 0, has to be solved, which is straightforward as λε is monotone.

Although we are unable to show convergence of the iterations (4.1a)–(4.1b) and
(4.2a)–(4.2b) for {Un

ε ,W
n
ε } and {V n

ε ,Ψn
ε }, respectively, we observed good convergence

properties in practice.

4.1. Numerical results for d = 1. First, we present numerical experiments in
one space dimension. Throughout we choose a uniform partitioning of Ω = (−L,L),
where L ≥ 1, with mesh points pj = −L+(j−1)h, j = 1 → 210 +1, where h = 2−9 L.
In addition we choose uniform time steps τn = τ = 10−3 and throughout set the
regularization parameter ε = 10−5. For the initial profiles u0, v0, and ψ0, we set

u0(x) = 1 and v0(x) =
1

2
[1 − tanh(10 |x| − 5)] , ψ0(x) = 0,(4.3)

which resembles a uniform liquid film of unit height with surfactant on top of it, and
the film is uncontaminated by the chemical. In the absence of both surfactant and
chemical, a uniform film is a steady state. We choose U0

ε ≡ πhu0, V 0
ε ≡ πhv0, and

Ψ0
ε ≡ πhψ0 as the discrete initial data on noting that u0, v0, ψ0 ∈ W 1,∞(Ω).

We now report on the evolutions of Uε, Vε, and Ψε for similar parameters as
in some of the experiments in [16, Fig. 5]. We set L = 10, c = 10−3, ρs = 10−5,
ρb = 10−2, K = 1, a = 0, δ = 10−5, and ν = 4 and used the initial data (4.3). We
then varied the solubility parameter, by choosing β = 0.01, 1, or 100. The different
evolution results can be seen in Figure 1, where we plot Uε and Vε both at time t = 5
and at different final times T . Note that for brevity only Vε is displayed since in
all cases after a short time Ψε is graphically indistinguishable from it. This is to be
expected from the Lyapunov structure (2.29a) (see also (1.20)) on noting (1.11) and
(1.8).

One can clearly see the effect of the parameter β on the evolution. On the one
hand, the larger the value of β the faster Ψε attains the profile of Vε. On the other
hand, since the quantity

∫
−(V n

ε + 1
β πh[Un

ε λε(Ψ
n
ε )]) =

∫
−(V 0

ε + ε
β ) is preserved, the

value of β dictates how much surfactant material Vε remains on the film surface.
In particular, after a sufficiently long time it holds that

∫
−V n

ε ≈
∫
−Ψn

ε and
∫
−(V n

ε +
1
β πh[Un

ε V n
ε ]) ≈

∫
−V 0

ε . Hence if β is such that ε � β � 1, the original drop of
surfactant almost completely disappears, leading to a comparatively small change in
the liquid film height that quickly smooths out. In the case of a very large β, recall
that β → ∞ models insoluble surfactant spreading; the initial amount of surfactant
is almost completely preserved, leading to a fast propagating wave front.

Finally, note that the presence of repulsive van der Waals forces (δ > 0) has no
effect on the evolution in this case, as the film height is always bounded well away
from zero.

When attractive van der Waals forces are included, however, this has a marked
effect on the film evolution. We repeated the above experiments for a value of a =
5 × 10−4, and the results can be seen in Figure 2. Note that for β = 0.01 and 1 the
film has thinned considerably in some areas due to the presence of attractive van der
Waals forces, although it can never actually rupture (Uε = 0) due to the repulsive van
der Waals forces, φ+. In fact, it holds that minx∈Ω Uε(x, T ) = arg mins∈R>0 Φ(s) =

( δ
a )

1
ν−3 = 0.02. For β = 100, on the other hand, the film has not yet completely

thinned at the displayed time.
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Fig. 1. Uε(x, t) and Vε(x, t) for β ∈ {0.01, 1, 100} and time t = 5 (above), and for different
final times t = T (below).

Fig. 2. Uε(x, T ) and Vε(x, T ) for β ∈ {0.01, 1, 100} for different final times T .
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Fig. 3. Uε(x, T ) for β = 0.01, T = 5 (left), for β = 1, T = 3 (middle), and for β = 100, T = 2
(right).
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Fig. 4. Uε(x, T ) and Vε(x, T ) for β = 0.01 and T = 1. On the right a plot of Uε(x, T ) |x2=0

and Vε(x, T ) |x2=0.

4.2. Numerical results for d = 2. Finally, we present a numerical experiment
in two space dimensions with Ω = (−L,L) × (−L,L). We took a uniform mesh
of squares of length h = 2L

128 , each of which was divided into two triangles by its
northeast diagonal. We chose the following parameters for (Ph,τ

ε ): L = 2.5, c = 10−3,
ρs = 10−5, ρb = 10−2, K = 1, a = 0, δ = 10−5, ν = 7, τn = τ = 10−3, and
ε = 10−5. For the initial profiles we chose (4.3). We set U0

ε ≡ πhu0, V 0
ε ≡ πhv0, and

Ψε ≡ πhψ0. In Figure 3 we plot Uε(x, T ) for β = 0.01, 1, and 100 at different final
times T .

Though on a slower time scale, the results are qualitatively similar to the ex-
periments in one space dimension. The same holds true when including attractive
van der Waals forces in the simulation. See Figure 4, where we plot Uε and Vε for
β = 0.01 and the same parameters as above except a = 0.02. Again for brevity
only Vε is displayed since Ψε is graphically indistinguishable from it. Note that here

minx∈Ω Uε(x, T ) ≈ arg mins∈R>0 Φ(s) = ( δ
a )

1
ν−3 ≈ 0.15.
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Abstract. In this paper we present an extension of the continuous interior penalty method
of Douglas and Dupont [Interior penalty procedures for elliptic and parabolic Galerkin methods,
in Computing Methods in Applied Sciences, Lecture Notes in Phys. 58, Springer-Verlag, Berlin,
1976, pp. 207–216] to Oseen’s equations. The method consists of a stabilized Galerkin formulation
using equal order interpolation for pressure and velocity. To counter instabilities due to the pres-
sure/velocity coupling, or due to a high local Reynolds number, we add a stabilization term giving
L2-control of the jump of the gradient over element faces (edges in two dimensions) to the standard
Galerkin formulation. Boundary conditions are imposed in a weak sense using a consistent penalty
formulation due to Nitsche. We prove energy-type a priori error estimates independent of the local
Reynolds number and give some numerical examples recovering the theoretical results.

Key words. finite element methods, stabilized methods, continuous interior penalty, Oseen’s
equations
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1. Introduction. The construction of finite element methods for the incom-
pressible Navier–Stokes equations that are robust and accurate for a wide range of
Reynolds numbers remains a challenging problem. The standard Galerkin method
requires the fulfillment of the inf-sup or Babuska–Brezzi condition, which leads to
the need for formulations using mixed interpolations (see [7, 27]). From the compu-
tational point of view it is, however, more practical to use equal order interpolation
for the velocity and pressure spaces, which requires that stability is imposed in some
other fashion. One possibility is to construct stabilized finite element methods where
some terms are added to the standard Galerkin formulation in order to enhance the
stability properties of the method. To be useful the method must also be stable with
respect to the convective terms and give sufficient control of the incompressibility
condition.

A favored approach has been to stabilize both the velocities and the pressure
using the streamline upwind Petrov–Galerkin (SUPG) method originally proposed
by Brooks and Hughes in [9]. This method was first analyzed for the Navier–Stokes
equations in a velocity vorticity formulation by Johnson and Saranen in [32], and then
in a pressure velocity formulation by Hansbo and Szepessy in [29], by Franca and Frey
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in [24], and by Tobiska and Verfürth in [38]. The SUPG method owes its success to the
unified treatment of velocities and pressures. It allows for a priori error estimates that
are independent of the Reynolds number and has been used extensively in practice
with good results. Nevertheless, the SUPG method has some undesirable features:

• artificial boundary conditions on velocities and pressure are introduced;
• artificial nonsymmetric terms are introduced;
• the least squares term introduces nonphysical pressure/velocity couplings;
• the least squares term makes mass lumping impossible and the choice of time-

stepping methods limited; most clear-cut from a theoretical point of view is
a space-time finite element approach using discontinuous approximation in
time;

• it is not yet fully understood how to use mixed finite elements in combination
with the SUPG method (for recent advances see [26]).

To overcome these disadvantages, alternative stabilization techniques have been
developed such as the projection method proposed by Codina [17] and Codina and
Blasco [18], the subgrid viscosity method or local projection method proposed by
Guermond [28] and Becker and Braack [1], the polynomial pressure projection method
by Dohrmann and Bochev reported in [19], and the pressure-Poisson stabilization of
the Stokes equations proposed by Bochev and Gunzburger in [2].

Recently, the continuous interior penalty method of Douglas and Dupont [20]
was revived as an alternative. The idea is to add a least squares penalization on the
gradient jump between neighboring elements as a unified treatment of all the above-
mentioned instabilities. It was shown in [13, 15] that the method stabilizes both in-
stabilities due to dominating convection and instabilities due to the velocity/pressure
coupling. Moreover, it was shown in [10] how this method provides a natural link be-
tween conforming and nonconforming stabilized finite element methods. It was used
in [14] to provide a Reynolds number independent stabilized formulation for the clas-
sical nonconforming P1 Crouzeix–Raviart approximation for the velocities combined
with elementwise constant pressures.

In this paper we extend the face oriented stabilization method to Oseen’s equa-
tions, using equal order interpolation for velocities and pressure. For the case of
similar stabilization strategies for element pairs satisfying the inf-sup condition we re-
fer the reader to [11]. We follow the framework proposed in [10] using weakly imposed
boundary conditions as introduced by Nitsche (see [36, 25]). Although the constants
of our analysis inevitably depend on the parameters of the problem (since the solu-
tion depends on the physical parameters), the stabilization terms allow us to trade
the need of coercivity in the H1-norm for coercivity in the weaker L2-norm plus the
stabilization term, which vanishes at optimal rate under refinement. To exploit this
in the analysis, we add a zero order term to Oseen’s equations. With this additional
term we obtain estimates that do not explode as the viscosity goes to zero, provided
the exact solution is sufficiently regular.

With the proposed method, all the above-mentioned inconveniences of the SUPG
method are alleviated. The formulation allows for general unstructured meshes and
variable polynomial degree. The main inconveniences of the present method, however,
are as follows:

• Added couplings in the Jacobian matrix: the bandwidth of the system ma-
trix doubles in two space dimensions and triples in three space dimensions.
This may increase the computational cost of the linear system solution, for
instance, if an incomplete LU factorization is used as preconditioner.
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• The method requires stabilization terms to be evaluated on the faces of the
elements and hence a table of nearest neighbors for computation of the jumps.
Such features are present typically when using adaptivity with a posteriori
error estimation or for discontinuous Galerkin (DG) methods.

However, all stabilization terms have the same structure, allowing for one computation
of one global stabilization matrix based on the gradient jumps of one component. The
parameter values that change from time-step to time-step may then be updated using
locally averaged weights. When time-stepping the Navier–Stokes equations this means
that the stabilization matrix has to be constructed only once and for one component.
This is in stark contrast to the SUPG method, where the stabilization terms have to
be reconstructed at every time-step for consistency.

The outline of the paper is as follows: In the next section we introduce our model
problem, Oseen’s equations, and formulate the interior penalty finite element method.
In section 3 we discuss the question of stability, we prove a lemma of fundamental
importance for the stability of the method, and we show that the discrete problem
has a unique solution. We then proceed and prove (quasi-) optimal a priori error
estimates in section 4 with special focus on how to make the estimates independent
of the local Reynolds number. Finally, in section 5, we study the performance of the
numerical scheme on some linear model cases in three space dimensions. We make
some concluding remarks in section 6 and some outlooks to future developments,
with special emphasis on the relation between the present method and variational
multiscale methods (VMS) in large eddy simulations (LES).

2. A finite element method for Oseen’s equations. Let Ω be a Lipschitz-
continuous domain in R

d (d = 2 or 3) with a polyhedral boundary ∂Ω and outward
pointing normal n. We will consider the Sobolev spaces Wm,q(Ω), with norm ‖·‖m,q,Ω,
m ≥ 0, and q ≥ 1. In particular, we have Lq(Ω) = W 0,q(Ω). We use the standard

notation Hm(Ω)
def
= Wm,2(Ω). The norm of Hm(Ω) is denoted by ‖ · ‖m,Ω and its

seminorm by | · |m,Ω. The space of L2(Ω) divergence free functions is denoted by
H0(div; Ω). The scalar product in L2(Ω) is denoted by (·, ·) and its norm by ‖ · ‖0,Ω.
The closed subspaces H1

0 (Ω), consisting of functions in H1(Ω) with zero trace on ∂Ω,
and L2

0(Ω), consisting of functions in L2(Ω) with zero mean in Ω, will also be used.
Oseen’s equations take the form⎧⎪⎨

⎪⎩
σu + β · ∇u − 2∇ · (νε(u)) + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where u ∈ [H1
0 (Ω)]d ∩ H0(div; Ω), β ∈ [W 1,∞(Ω)]d ∩ H0(div; Ω), p ∈ L2

0(Ω), ε(u)
stands for the strain rate tensor

ε(u)
def
=

1

2

(
∇u + (∇u)T

)
,

f ∈ [L2(Ω)]d is a given source term, and σ, ν are positive constants.
The weak formulation of problem (2.1) reads as follows: find (u, p) ∈ [H1

0 (Ω)]d ×
L2

0(Ω) such that{
a(u,v) + b(p,v) = (f ,v),

b(q,u) = 0
∀(v, q) ∈ [H1

0 (Ω)]d × L2
0(Ω),(2.2)
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where

a(u,v)
def
= (σ u, v) + (β · ∇u, v) + 2(νε(u), ε(v)),

b(p,v)
def
= −(p,∇ · v).

(2.3)

The well-posedness of this problem follows by the Lax–Milgram lemma applied in the
space [H1

0 (Ω)]d ∩H0(div; Ω) (see, for instance, [27]).
Let {Th}0<h≤1 denote a family of triangulations of the domain Ω without hang-

ing nodes. For each triangulation Th, the subscript h ∈ (0, 1] refers to the level of
refinement of the triangulation, which is defined by

h
def
= max

K∈Th

hK ,

with hK the diameter of K. We also define the elementwise constant function h̃|K =

hK . The interior of a triangle K will be denoted by
◦
K, and N (K) will stand for

the set of elements sharing at least one node with the element K. Moreover, we will
assume that the family {Th}0<h≤1 has the following regularity properties:

1. Local shape regularity: for all K ∈ Th with h ∈ (0, 1] there holds

hK

ρK
< c0,(2.4)

where ρK stands for the diameter of the largest ball contained in K, and c0
is a fixed positive constant.

2. Local quasi-uniformity: for all K ∈ Th with h ∈ (0, 1] there holds

1

ρ
hK′ ≤ hK ≤ ρhK′ ∀K ′ ∈ N (K),(2.5)

where ρ > 1 is a given parameter depending on the local uniformity of
{Th}0<h≤1.

We will also assume that the data are sufficiently well resolved in the sense that there
exists ρβ > 1 such that

1

ρβ
‖β‖0,∞,K′ ≤ ‖β‖0,∞,K ≤ ρβ‖β‖0,∞,K′ ∀K ′ ∈ N (K).(2.6)

Note that this is a hypothesis on the mesh and not on the data. Under the assumption
that β ∈ W 1,∞(N (K)) this can be ensured by

|β|1,∞,N (K) ≤ cβh
−1
K ‖β‖0,∞,N (K)(2.7)

for some constant cβ > 0 small enough.
For the error analysis, we shall use the trace inequality

‖v‖2
0,∂K ≤ CT

(
h−1
K ‖v‖2

0,K + hK‖v‖2
1,K

)
∀v ∈ H1(K),(2.8)

where CT is a generic constant independent of hK (for a proof, see [37, p. 26]).
For a given piecewise continuous function ϕ, the jump [[ϕ]] over a face f is defined

by

[[ϕ]](x)
def
=

{
lim
t→0+

(ϕ(x − tnf ) − ϕ(x + tnf )) if f 	⊂ ∂Ω,

0 if f ⊂ ∂Ω,

where nf is a normal unit vector on f and x ∈ f .
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In this paper we let V k
h denote the standard space of continuous functions of

piecewise polynomial order k ≥ 1,

V k
h

def
=

{
v ∈ H1(Ω) : v|K ∈ Pk(K) ∀K ∈ Th

}
,

and H2(Th) the space of piecewise H2 functions

H2(Th)
def
=

{
v : Ω −→ R : v|K ∈ H2(K) ∀K ∈ Th

}
.

For the velocities we will use the space [V k
h ]d and for the pressure we will use Qk

h =
V k
h ∩ L2

0(Ω). In what follows, we let πh,k, ih,k, and Ch,k denote (respectively) the L2-
projection operator, the nodal interpolation operator, and the Clément interpolant
onto the finite element spaces, and we make no notational difference between the
projection onto the velocity and pressure spaces. We also introduce a piecewise linear
approximated velocity βh ∈ [V 1

h ]d such that

‖β − βh‖0,∞,K ≤ ChK |β|1,∞,K ∀K ∈ Th.(2.9)

Here and in the following C denotes a constant independent of the problem pa-
rameters and the local mesh size, but not necessarily of the local mesh geometry.

Denoting the product space W k
h

def
= [V k

h ]d × Qk
h our finite element method reads as

follows: find (uh, ph) ∈ W k
h such that

ah(uh,vh) + bh(ph,vh) − bh(qh,uh) + ju(uh,vh) + jp(ph, qh) = (f ,vh)(2.10)

for all (vh, qh) ∈ W k
h , and with

ah(uh,vh)
def
= a(uh,vh) − 〈2νε(uh)n,vh〉∂Ω − 〈uh, 2νε(vh)n〉∂Ω(2.11)

− 〈β · nuh,vh〉∂Ωin + 〈γ(ν/h̃)uh,vh〉∂Ω

+ 〈γ max{|β|, ν/h̃}uh · n,vh · n〉∂Ω,

bh(ph,vh)
def
= b(ph,vh) + 〈ph,vh · n〉∂Ω,(2.12)

ju(uh,vh)
def
=

∑
K∈Th

γξ(ReK)h2
K

∫
∂K

‖β · n‖0,∞,∂K [[n · ∇uh]] · [[n · ∇vh]] ds(2.13)

+
∑

K∈Th

γξ(ReK)‖β‖0,∞,Kh2
K

∫
∂K

[[∇ · uh]][[∇ · vh]] ds,

jp(ph, qh)
def
=

∑
K∈Th

γξ(ReK)
h2
K

‖β‖0,∞,K

∫
∂K

[[∇ph]] · [[∇qh]] ds,(2.14)

n the outward pointing normal to ∂Ω, and using the notation

ReK
def
=

‖β‖0,∞,KhK

ν
, ξ(λ)

def
= min{1, λ}, ∂Ωin

def
= {x ∈ ∂Ω : (β · n)(x) < 0},

〈x, y〉∂Ω
def
=

∑
K ∈ Th

K ∩ ∂Ω �= ∅

∫
∂K∩∂Ω

xy ds, h̃ ∈ H2(Th) with h̃|K
def
= hK .

To keep down notation we have used a canonical stabilization parameter γ for all
terms. In practice this term, however, can be chosen distinctly for different terms.
The gradient jump terms serve three purposes:
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1. stabilization of the convective terms (the first sum in (2.13));
2. giving additional control of the incompressibility condition (the second sum

in (2.13)); and
3. making the discretization inf-sup stable (the sum in (2.14)).

We will see in the analysis that these three objectives are all obtained in the same
fashion and that essentially the gradient jump operator can stabilize any instability
provoked by a first order term.

Assuming sufficient regularity of the exact solution the above formulation is
strongly consistent. More generally we have the following result.

Lemma 2.1 (modified Galerkin orthogonality). Assume that (u, p), the solution
of (2.1), belongs to the space [H3/2+ε(Ω)]d×L2

0(Ω), with ε > 0, and let (uh, ph) ∈ W k
h

be the solution of (2.10). Then

ah(u − uh,vh) + bh(p− ph,vh) − bh(qh,u − uh) + ju(u − uh,vh) − jp(ph, qh) = 0

for all (vh, qh) ∈ W k
h .

Proof. This is an immediate consequence of the consistency of the standard
Galerkin method and the fact that, under the regularity assumptions, ju(u,vh) = 0
since [[∇u]]f = 0 for all interior faces f .

3. Stability of the method. Stability in the face oriented stabilization method
is based on the following lemma, which was proved for piecewise linear continuous
approximation in [10] (for a similar result with applications to DG methods see [33]).
Here we extend this result to arbitrary polynomial degree. Note that we give a lower
bound as well. This is not needed for the analysis but shows that in some sense the
stabilizing terms are optimal.

Lemma 3.1. There exist an interpolation operator π∗
h,k : [H2(Th)]d −→ [V k

h ]d and
constants γ, γlow depending on the local mesh geometry and the polynomial degree,
but not on the local mesh size, such that

γlowjβ(vh,vh) ≤ ‖h 1
2

(
βh · ∇vh − π∗

h,k(βh · ∇vh)
)
‖2
0,Ω ≤ jβ(vh,vh)

for all vh ∈ [V k
h ]d, where

jβ(vh,vh) = γ
∑

K∈Th

∫
∂K

h2
K |βh · n|2|[[∇vhn]]|2 ds.

Proof. First note that, as pointed out in [10], [[βh · ∇uh]] = βh · n[[n · ∇uh]]. For
each node xi, let ni be the number of elements containing xi as a node. Then we
define a quasi-interpolant π∗

h,k of degree k by

π∗
h,kv(xi)

def
=

1

ni

∑
{K : xi∈K}

v|K(xi) ∀v ∈ [H2(Th)]d.

For each element K ∈ Th consider the function

δK
def
= h

1
2

K

(
βh · ∇vh|K − π∗

h,k(βh · ∇vh)|K
)
.
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Clearly, δK(xj) = 0 for each interior node xj ∈
◦
K, whereas on the element faces, i.e.,

for all nodes xj ∈ ∂K, we have

δK(xj) = h
1
2

K

1

nj

∑
{K′ : xj∈K′}

βh ·
(
∇vh|K(xj) −∇vh|K′(xj)

)
= h

1
2

K

1

nj

∑
{K′ : xj∈K′}

∑
f∈P (K,K′)

βh(xj) · [[∇vh]]f (xj),(3.1)

where P (K,K ′) stands for the set of faces between K and K ′ (the shortest path). We
now introduce the reference element K̂ and, for each K ∈ Th, the affine mapping

FK(x̂) = BK x̂ + bK ∀x̂ ∈ K̂,

such that FK(K̂) = K. Finally, let ϕK
j for j = 1, . . . , k be the basis functions on

K. Since δK(xj) = 0 for each interior node xj ∈
◦
K, ‖δK ◦ FK‖2

0,∂K̂
= 0 implies that

δK ◦ FK = 0 in K̂. Therefore, by equivalence of norms on discrete spaces, using a
standard scaling argument (see [27, p. 96]) and (3.1), it follows that

‖δK‖2
0,K = detBK‖δK ◦ FK‖2

0,K̂

≤ C detBK‖δK ◦ FK‖2
0,∂K̂

=

∫
∂K̂

1

|B−T
K n̂|

|δK ◦ FK |2 detBK |B−T
K n̂|dŝ︸ ︷︷ ︸

ds

≤ C|BT
K |

∫
∂K

|δK |2 ds

≤ ChK

∫
∂K

|δK |2 ds

≤ ChK

∫
∂K

k∑
j=1

|δK(xj)|2(ϕK
j )2 ds

≤ Ch2
K

∫
∂K

k∑
j=1

1

nj

∑
{K′ : xj∈K′}

∑
e∈P (K,K′)

|βh(xj) · [[∇vh]]e(xj)|2(ϕK
j )2 ds

≤ Ch2
K

∫
∂K

k∑
j=1

1

nj

∑
f∈E(K)

|βh(xj) · [[∇vh]]f (xj)|2(ϕK
j )2 ds

≤ Ch2
K

∑
f∈E(K)

∫
f

|βh · [[∇vh]]f |2 ds,

where, in the two last inequalities, E(K) denotes the set of faces containing some node
of K. On the other hand, the local quasi-regularity of Th implies that the maximum
number of occurrences of a face in all the sets E(K) is bounded by a fixed constant
independent of hK . Then, by summation on K, we get the upper bound

‖h 1
2

(
βh · ∇vh − π∗

h,k(βh · ∇vh)
)
‖2
0,Ω ≤ C

∑
K∈Th

h2
K

∑
f∈E(K)

∫
f

|βh · [[∇vh]]e|2 ds,

≤ C
∑

K∈Th

∫
∂K

h2
K |βh · [[∇vh]]|2 ds.
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The lower bound follows by considering the L2-norm of the discontinuous function
δ over the reference patch Ĝ consisting of the reference element K̂ and its nearest
neighbors. Clearly if ‖δ‖Ĝ = 0, then βh · ∇vh = π∗

h,kβh · ∇vh in Ĝ. This means that

βh · ∇vh is continuous in Ĝ and hence
∑

f∈E(K)

∫
f
hK [[βh · ∇vh]]2 ds = 0. Hence by

norm equivalence on discrete spaces we have

∑
f∈E(K)

∫
f

[[βh · ∇vh]]2 ds ≤ ‖δG‖2
0,G.

The claim then follows in the same fashion as the first part of the proof by scaling
and extension to all of Th.

Using the same technique we immediately have the following corollary where for
simplicity the lower bounds are omitted.

Corollary 3.2. Under the same assumptions as Lemma 3.1 we have, with α > 0
and φ some function that is constant per element,

‖φ 1
2

(
∇ · vh − π∗

h,k(∇ · vh)
)
‖2
0,Ω ≤ γ

∑
K∈Th

∫
∂K

φhK [[∇ · vh]]2 ds,

‖φ 1
2

(
∇qh − π∗

h,k(∇qh)
)
‖2
0,Ω ≤ γ

∑
K∈Th

∫
∂K

φhK |[[∇qh]]|2 ds(3.2)

for all (vh, qh) ∈ W k
h and with γ > 0 constants independent of h.

We now introduce the following mesh-dependent norm for the velocity:

|||vh|||2
def
= ‖σ 1

2 vh‖2
0,Ω + ‖ν 1

2∇vh‖2
0,Ω + ju(vh,vh) + ‖|β · n| 12 vh‖2

0,∂Ω

+ ‖γ 1
2 (ν/h̃)

1
2 vh‖2

0,∂Ω + ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω

(3.3)

for all vh ∈ [V k
h ]d.

The following lemma gives the coercivity of our discrete operator with respect to
this mesh-dependent norm.

Lemma 3.3 (coercivity). There exists a constant C > 0, depending only on Ω
and γ, such that

ah(vh,vh) + ju(vh,vh) ≥ C|||vh|||2

for all vh ∈ [V k
h ]d.

Proof. From (2.10) we get

ah(vh,vh) + ju(vh,vh) ≥ ‖σ 1
2 vh‖2

0,Ω + 2‖ν 1
2 ε(vh)‖2

0,Ω + ju(vh,vh)

+
1

2
‖|β · n| 12 vh‖2

0,∂Ω + ‖γ 1
2 (ν/h̃)

1
2 vh‖2

0,∂Ω

+ ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω

− 〈4νε(vh)n,vh〉∂Ω ,

(3.4)

where we used the fact that, after integration by parts and since ∇ · β = 0,

(β · ∇vh,vh) =
1

2
〈β · nvh,vh〉∂Ω .
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The last term in (3.4) can be bounded using the Cauchy–Schwarz inequality followed
by a trace inequality, to obtain

| 〈4νε(vh)n,vh〉∂Ω | ≤ 8
CT

γ
‖ν 1

2 ε(vh)‖2
0,Ω +

1

2
‖γ 1

2 (ν/h̃)
1
2 vh‖2

0,∂Ω.

In what follows we will assume that

γ > 4CT > 0,(3.5)

and therefore

λ(γ)
def
= 2 − 8

CT

γ
> 0.

From (3.4), we then get

ah(vh,vh) + ju(vh,vh) ≥ ‖σ 1
2 vh‖2

0,Ω + λ(γ)‖ν 1
2 ε(vh)‖2

0,Ω + ju(vh,vh)

+
1

2
‖|β · n| 12 vh‖2

0,∂Ω +
1

2
‖γ 1

2 (ν/h̃)
1
2 vh‖2

0,∂Ω

+ ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω,

and consequently

ah(vh,vh) + ju(vh,vh) ≥ ‖σ 1
2 vh‖2

0,Ω + ju(vh,vh)

+ min
K ∈ Th

K ∩ ∂Ω �= ∅

{
λ(γ),

γ

4hK

}(
‖ν 1

2 ε(vh)‖2
0,Ω + ‖ν 1

2 vh‖2
0,∂Ω

)

+
1

2
‖|β · n| 12 vh‖2

0,∂Ω +
1

4
‖γ 1

2 (ν/h̃)
1
2 vh‖2

0,∂Ω

+ ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω.

In particular, since 0 < h ≤ 1 and by choosing (accordingly with (3.5))

γ
def
= ε + 4CT,

with ε > 0 sufficiently small, one obtains

λ(γ) <
γ

4hK
∀K ∈ Th, K ∩ ∂Ω 	= ∅.

We then conclude the proof using Korn’s inequality (see [6]).
In what follows, we shall make use of the following discrete pressure and velocity

subspaces:

C1
h,k

def
=

{
qh ∈ Qk

h : jp(qh, qh) = 0
}
,

V div
h,k

def
=

{
vh ∈ [V k

h ]d : bh(qh,vh) = 0 ∀qh ∈ C1
h,k

}
.

In addition, Qk
h\C1

h,k will stand for the supplementary of C1
h,k in Qk

h, i.e.,

Qk
h = (Qk

h\C1
h,k) ⊕ C1

h,k.
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The following lemma ensures, in particular, that V div
h,k is not trivial.

Lemma 3.4. There exists a constant β > 0, independent of h, such that

inf
qh∈C1

h,k

sup
vh∈[V k

h ]d

|bh(qh,vh)|
‖qh‖0,Ω‖vh‖1,Ω

≥ β.

Proof. Let qh ∈ C1
h,k. From [27, Corollary 2.4], there exists vq ∈ [H1

0 (Ω)]d such
that

∇ · vq = qh, ‖vq‖1,Ω ≤ C‖qh‖0,Ω.(3.6)

Thus, using integration by parts and (2.12), we have

‖qh‖2
0,Ω = (qh,∇ · vq)

= (qh,∇ · vq −∇ · πh,kvq) + (qh,∇ · πh,kvq)

= (∇qh,vq − πh,kvq) − 〈qh, (πh,kvq) · n〉∂Ω

+ (qh,∇ · πh,kvq)

= (∇qh,vq − πh,kvq) − bh(qh, πh,kvq).

(3.7)

Since qh ∈ C1
h,k, it follows that ∇qh ∈ [V k

h ]d. Thus, using the orthogonality of the

L2-projection, we have

(∇qh,vq − πh,kvq) = 0.

Thus, from (3.7), it follows that

|bh(qh, πh,kvq)| = ‖qh‖2
0,Ω.

In addition, using H1-stability of the L2-projection (see [5]) and (3.6), we have

‖πh,kvq‖1,Ω ≤ C‖vq‖1,Ω

≤ C‖qh‖0,Ω,

which completes the proof.
We now state the well-posedness of the discrete problem.
Theorem 3.5. The discrete problem (2.10) has a unique solution.
Proof. Problem (2.10) can be written, in operator form, as

Auh + BT ph = M f in
(
[V k

h ]d
)′
,

Buh = Jph in [Qk
h]′,

(3.8)

with A ∈ L([V k
h ]d, ([V k

h ]d)′), M ∈ L([L2(Ω)]d, ([V k
h ]d)′), B ∈ L

(
[V k

h ]d, (Qk
h)′

)
, and

J ∈ L
(
Qk

h, (Q
k
h)′

)
defined by

〈Auh,vh〉
def
= ah(uh,vh) + ju(uh,vh),

〈M f ,vh〉
def
= (f ,vh),

〈Bvh, qh〉
def
= bh(qh,vh),

〈Jph, qh〉
def
= j(ph, qh).
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We also introduce the operator B1 ∈ L([V k
h ]d, (C1

h,k)
′) defined by

〈B1vh, qh〉
def
= bh(qn,vh) ∀(vh, qh) ∈ [V k

h ]d × C1
h,k;

in other words,

B1vh
def
= (Bvh)|C1

h,k
∀vh ∈ [V k

h ]d.

From Lemma 3.4, it follows that B1 is surjective and (B1)T is injective (see [27,

p. 58]). We then deduce that V div
h,k

def
= Ker(B1) 	= {0}.

Let us consider the following reduced formulation (derived from (2.10) with (vh, qh)
∈ V div

h,k × (Qk
h\C1

h,k)): find (uh, p̃h) ∈ V div
h,k × (Qk

h\C1
h,k) such that

Auh + BT p̃h = M f in
(
V div
h,k

)′
,

Buh = Jp̃h in
(
Qk

h\C1
h,k

)′
.

(3.9)

Since, by construction, C1
h,k = Ker(J), we conclude that J is invertible in Qk

h\C1
h,k.

Hence, from (3.9), we have

p̃h = J−1
|Qk

h\C1
h,k

Buh.(3.10)

By plugging this expression into the first equation of (3.9), we obtain that uh ∈ V div
h,k

solves (
A + BTJ−1

|Qk
h\C1

h,k

B
)
uh = M f in

(
V div
h,k

)′
.

Existence and uniqueness of uh follow by the positivity of A (Lemma 3.3) and the
nonnegativity of BTJ−1

|Qk
h\C1

h,k

B. We may then recover p̃h uniquely from (3.10). There-

fore, the reduced problem (3.9) has a unique solution. On the other hand, from the
first equation of (3.9), it follows that

Auh + BT p̃h −M f ∈
(
Ker(B1)

)0
,

with
(
Ker(B1)

)0
standing for the polar set of Ker(B1). From Lemma 3.4, it follows

that B1 is an isomorphism from C1
h,k onto

(
Ker(B1)

)0
(see [27, p. 58]). Thus, there

exists a unique p1 ∈ C1
h,k such that

Auh + BT p̃h −M f = (B1)Tp1 in
(
[V k

h ]d
)′
.(3.11)

Therefore, from (3.11) and (3.9), and by noticing that (B1)Tp1 = BTp1 and Jp1 = 0,

it follows that problem (2.10) has a unique solution, given by (uh, ph
def
= p̃h−p1).

4. Convergence of the method. The parameter for the pressure stabilization
scales as h2

K/‖β‖0,∞,K when the local Reynolds number ReK is big, and as h3
K/ν

when ReK is small. The stabilizing terms acting on the velocity scale as ‖β‖0,∞,Kh2
K

at a high local Reynolds number and as ReK‖β‖0,∞,Kh2
K for a low Reynolds number.

The factor ReK‖β‖0,∞,Kh2
K in the velocity stabilization may be omitted in the low

Reynolds regime without perturbing the convergence. We will now show that this
scaling gives optimal a priori error estimates in the high (local) Reynolds number



CIP FINITE ELEMENT METHOD FOR OSEEN’S EQUATIONS 1259

regime when the solution is smooth, (u, p) ∈ [Hk+1(Ω)]d+1, and in the low (local)
Reynolds number regime under standard regularity assumptions. We then prove,
using the Aubin–Nitsche duality technique (see, e.g., [21]), that the velocities have
optimal convergence order also in the L2-norm, when the local Reynolds number is
low, without any modification of the stabilization.

First, we summarize some stability properties of the L2-projection with weighted
norms and show an approximability result for the triple norm (3.3).

Remark 4.1. In the remainder of this section, C > 0 stands for a generic
constant independent of h and the physical parameters.

To prove approximability for the L2-projection on locally quasi-uniform meshes
we need some additional stability for the L2-projection from [3] that we state here
without proof.

Lemma 4.2. For ρ, η > 0 sufficiently small and for all φ ∈ V 1
h satisfying

φ > 0, |∇φ(x)| ≤ ηh−1
K φ(x) ∀x ∈ K, ∀K ∈ Th,

there holds

‖φπh,ku‖0,Ω ≤ C‖φu‖0,Ω ∀u ∈ L2(Ω),

‖φ∇πh,ku‖0,Ω ≤ C‖φ∇u‖0,Ω ∀u ∈ H1(Ω).

A direct consequence of this result is stated in the following corollary.
Corollary 4.3. Under the assumptions of the previous lemma, we have⎛

⎝∑
|α|≤l

‖φ∂α(u− πh,ku)‖2
0,Ω

⎞
⎠

1
2

≤ C

( ∑
K∈Th

‖φ‖2
0,∞,Kh2(ru−l)‖u‖2

ru,Ω

) 1
2

for all u ∈ Hr(Ω), with r ≥ 1, ru
def
= min{r, k + 1}, 0 ≤ l ≤ ru, α ∈ N

d, and ∂α the
standard multi-index notation for high order derivatives.

In order to obtain localized estimates we now show that the weights appearing in
our stabilization allow for L2-stability.

Lemma 4.4. Let φi ∈ H2(Th), i = 1, . . . , 5, be piecewise constant functions
defined by

φ1|K
def
= ν−

1
2 min

{
Re

− 1
2

K , 1
}
, φ2|K

def
= ‖β‖

1
2

0,∞,Kh
− 1

2

K ,

φ3|K
def
= h

− 1
2

K ‖β‖
1
2

0,∞,Kξ(ReK)−
1
2 , φ4|K

def
= φ−1

3|K , φ5|K
def
= h−r

K ,

with r ≥ 1, for all K ∈ Th, and let φ∗
i

def
= π∗

h,1φi. Then, there holds

φi(ρβρ)
− 1

2 ≤ φ∗
i ≤ (ρβρ)

1
2φi

|∇φ∗
i | ≤ c0(ρβρ− 1)h−1

K φ∗
i

}
for i = 1, 2,

φiρ
− 1

2

β ρ−1 ≤ φ∗
i ≤ ρ

1
2

βρφi

|∇φ∗
i | ≤ c0(ρβρ

2 − 1)h−1
K φ∗

i

}
for i = 3, 4,

φ5ρ
−r ≤ φ∗

5 ≤ ρrφ5,

|∇φ∗
5| ≤ c0(ρ

2r − 1)h−1
K φ∗

5

in K, for all K ∈ Th, with c0 > 0 the constant in (2.4).
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Proof. We give the proof only for φ1; the argument for the rest is similar. First,
note that for all K ∈ Th,

max
x∈K

φ∗
1 ≤ max

K′∈N (K)
ν−

1
2 min{Re

− 1
2

K′ , 1}

= max
K′∈N (K)

min{‖β‖−
1
2

0,∞,K′h
− 1

2

K′ , ν
− 1

2 }.
(4.1)

We now distinguish two cases. On one hand, if ReK ≤ 1, we have φ1|K = ν−
1
2 . Thus,

from (4.1) and since ρβρ > 1, it follows that

max
x∈K

φ∗
1 ≤ ν−

1
2

≤ (ρρβ)
1
2φ1|K .

On the other hand, if ReK > 1, we get φ1|K = ‖β‖−
1
2

0,∞,Kh
− 1

2

K . Therefore, from (4.1)
and the assumptions on the mesh (2.5) and (2.6), we have

max
x∈K

φ∗
1 ≤ max

K′∈N (K)
{‖β‖−

1
2

0,∞,K′h
− 1

2

K′ }

≤ (ρρβ)
1
2 ‖β‖−

1
2

0,∞,Kh
− 1

2

K

= (ρρβ)
1
2φ1|K .

The lower bound follows in a similar fashion.
Finally, for the derivative, using the bounds on φ∗

1 and the regularity of the mesh
(2.4), and since ρβρ > 1, we obtain

|∇φ∗
1|K | ≤

max
x∈K

φ∗
1 − min

x∈K
φ∗

1

ρK

≤ (ρβρ)
1
2 − (ρβρ)

− 1
2

ρK
φ1|K

≤ c0(ρβρ− 1)h−1
K φ∗

1,

which completes the proof.
Remark 4.5. It follows from Lemma 4.4 that for the weight functions φ∗

i , 1 ≤
i ≤ 5, the stability estimate of Lemma 4.2 holds, provided ρβ and ρ are sufficiently
close to 1. From now on we assume that this is the case.

The following lemma states the approximation properties of the L2-projection in
the triple norm ||| · |||.

Lemma 4.6 (velocity approximability). Assume that ρβ and ρ are sufficiently
close to 1. Then, there holds

|||u − πh,ku|||2 ≤ C
∑

K∈Th

(
σh2ru

K + max {ν, ‖β‖0,∞,KhK}h2(ru−1)
K

)
‖u‖2

ru,K

for all u ∈ [Hr(Ω)]d, with r ≥ 2 and ru = min{k + 1, r}.
Proof. First note that

|||u − πh,ku|||2 ≤ |||ih,ku − πh,ku|||2 + |||ih,ku − u|||2.
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We give the proof for the first term only. The argument for the second term is similar.
By the stability estimate for the L2-projection Lemma 4.2 we have

‖σ 1
2 (ih,ku − πh,ku)‖2

0,Ω ≤ C‖σ 1
2 (u − ih,ku)‖2

0,Ω

≤ C
∑

K∈Th

σh2ru
K ‖u‖2

ru,K .

Using now the H1-stability of the L2-projection on locally quasi-uniform meshes (see
[5]) we get

‖ν 1
2∇(ih,ku − πh,ku)‖2

0,Ω ≤ C‖ν 1
2∇(ih,ku − u)‖2

0,Ω

≤ C
∑

K∈Th

νh2(ru−1)‖u‖ru,Ω.

We treat the boundary terms using the trace inequality (2.8) in combination with
Lemma 4.2 and approximation, which yields

(4.2) ‖max{|β|, ν/h̃} 1
2 (ih,ku − πh,ku)‖2

0,∂Ω

≤ C
∑

K ∈ Th

K ∩ ∂Ω �= ∅

‖max{‖β‖0,∞,K , νh−1
K } 1

2 (ih,ku − πh,ku)‖2
0,K∩∂Ω

≤ C
∑

K∈Th

‖h− 1
2

K max{‖β‖0,∞,K , νh−1
K } 1

2 (ih,ku − πh,ku)‖2
0,K

≤ C
∑

K∈Th

‖φ∗
3(ih,ku − πh,ku)‖2

0,K

= C
∑

K∈Th

‖φ∗
3πh,k(ih,ku − u)‖2

0,K

≤ C
∑
K

max{‖β‖0,∞,KhK , ν}h2(ru−1)
K ‖u‖2

ru,K .

The interior penalty terms are treated in the same fashion as the boundary terms.
We have

ju(u − πh,ku,u − πh,ku) ≤ ju(ih,ku − πh,ku, ih,ku − πh,ku)

+ ju(u − ih,ku,u − ih,ku).
(4.3)

The first term in this inequality can be estimated using that ξ(ReK) ≤ 1, the trace
inequality (2.8), an inverse inequality, and the H1-stability of the L2-projection (see
[5]), which yields

ju(ih,ku − πh,ku, ih,ku − πh,ku) ≤ C
∑

K∈Th

‖β‖0,∞,Kξ(ReK)h2
K‖∇(ih,ku − πh,ku)‖2

0,∂K

≤ C
∑

K∈Th

‖β‖0,∞,Kh−1
K ‖ih,ku − πh,ku‖2

0,K

≤ C‖φ∗
2(ih,ku − πh,ku)‖2

0,Ω

≤ C
∑
K

‖β‖0,∞,Kh2ru−1
K ‖u‖2

ru,K ,

(4.4)

and so the proof is finished.
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For the pressure, we have the following result.

Lemma 4.7 (pressure approximability). Under the assumptions of Lemma 4.6,
there holds

‖h̃ 1
2φ∗

1(p− πh,kp)‖2
0,∂Ω + ‖φ∗

1(p− πh,kp)‖2
0,Ω + j(πh,kp, πh,kp)

≤ C
∑

K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

for all p ∈ Hs(Ω) with s ≥ 1 and sp
def
= min{k + 1, s}.

Proof. As p may be only H1(Ω), we must replace the nodal interpolant by the
Clément interpolant in the analysis. The proof for the first term is similar to (4.2), by
replacing ih,k by Ch,k. The estimate for the second term follows from Corollary 4.3.
Finally, for the interior penalty term, since [[Ch,k∇p]] = 0 and using a trace inequality
followed by an inverse inequality, we have

j(πh,kp, πh,kp) =
∑

K∈Th

ξ(ReK)
h2
K

‖β‖0,∞,K
|[[∇πh,kp− Ch,k∇p]]|2

≤ C
∑

K∈Th

ξ(ReK)
hK

‖β‖0,∞,K
‖∇πh,kp− Ch,k∇p‖2

0,K

≤ C(‖φ∗
4∇πh,k(p− Ch,kp)‖2

0,K + ‖φ∗
4∇(p− Ch,kp)‖2

0,K

+ ‖φ∗
4(∇p− Ch,k∇p)‖2

0,K)

≤ C
∑

K∈Th

min{‖β‖−1
0,∞,KhK , h2

K/ν}h2(sp−1)
K ‖p‖2

sp,K ,

where we concluded using the stability lemma, Lemma 4.2, with weight function φ∗
4,

and the optimal approximation properties of the Clément interpolant (see [16, 21]).

4.1. Energy norm error estimate. In this section we prove convergence in the
triple norm. These results are optimal independently of the local Reynolds number
when the exact solution is sufficiently smooth.

We start by proving a technical lemma.

Lemma 4.8. For all vh ∈ [V k
h ]d, there holds

∑
K∈Th

h2
K

∫
∂K

‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds ≤ C
(
ju(vh,vh) + ‖ν 1

2∇vh‖2
0,Ω

)
,

∑
K∈Th

φ−1
1|KhK

∫
∂K

[[∇ · vh]]2 ds ≤ C
(
ju(vh,vh) + ‖ν 1

2∇vh‖2
0,Ω

)
.

Proof. Let A1 denote the set of elements K ∈ Th such that ξ(ReK) ≥ 1, and A2

the set of elements such that ξ(ReK) < 1. It then follows that |β|∞,0,KhK < ν for
K ∈ A2, and we may write
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∑
K∈Th

h2
K

∫
∂K

‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds

≤
∑

K∈A1

h2
K

∫
∂K

‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds +
∑

K∈A2

hKν

∫
∂K

|[[n · ∇vh]]|2 ds

≤
∑

K∈Th

∫
∂K

h2
Kξ(ReK)‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds + C‖ν 1

2∇vh‖2
0,Ω,

where the last inequality follows by a trace inequality, an inverse inequality in the
second term, and extending the sums over all Th.

The second inequality follows in a similar fashion, noting that

∑
K∈Th

φ−1
1|KhK

∫
∂K

[[∇ · vh]]2 ds ≤ C
∑

K∈Th

hK max{‖β‖0,∞,KhK , ν}
∫
∂K

[[∇ · vh]]2 ds

≤
∑

K∈A1

h2
K‖β‖0,∞,Kξ(ReK)

∫
∂K

[[∇ · vh]]2 ds + ‖ν 1
2∇vh‖2

0,A2
,

and so the proof is completed.
The main result of this paragraph is stated in the following theorem.
Theorem 4.9. Assume (u, p) ∈ [Hr(Ω)]d ×Hs(Ω), with r ≥ 2 and s ≥ 1, is

the solution of (2.1) and (uh, ph) ∈ W k
h is the solution of (2.10). Then, under the

assumptions of Lemma 4.6, there holds

|||u − uh||| ≤ C

[∑
K∈K

(
σh2ru

K + max{‖β‖0,∞,KhK , ν}h2(ru−1)
K

)
‖u‖2

ru,K

] 1
2

+C max
K∈Th

{
σ− 1

2 |β|1,∞,Khru
K

}
‖u‖ru,Ω+C

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

,

with ru = min{k + 1, r} and sp = min{k + 1, s}.
Proof. Let us decompose the error u − uh in two parts:

u − uh = u − πh,ku︸ ︷︷ ︸
eπ

+πh,ku − uh︸ ︷︷ ︸
−eh

= eπ − eh.

We also consider the discrete pressure error

yh
def
= ph − πh,kp.(4.5)

It follows then that

|||u − uh||| ≤ |||eπ||| + |||eh|||.

Lemma 4.6 gives an estimate for |||eπ|||. Hence, it suffices to estimate |||eh|||.
Using coercivity and orthogonality, namely, Lemmas 3.3 and 2.1, we get

C|||eh|||2 + jp(yh, yh) ≤ ah(eh, eh) + ju(eh, eh) + jp(yh, yh)

= ah(eπ, eh) + bh(yπ, eh) − bh(yh, e
π)

+ ju(eπ, eh) − jp(πh,kp, yh).

(4.6)
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By an application of the Cauchy–Schwarz inequality in the symmetric part of the
discrete elliptic operator and integrating by parts in the convective term, we obtain

ah(eπ, eh) ≤ |||eπ||||||eh||| + |(eπ,β · ∇eh)|
− 〈2νε(eπ)n, eh〉∂Ω − 〈eπ, 2νε(eh)n〉∂Ω ,

where, for simplicity, the boundary term from the integration by parts has been
included in the first term on the right-hand side. We note that in the same way
we have, using the Cauchy–Schwarz inequality, a trace inequality and a local inverse
inequality,

〈2νε(eh)n, eπ〉∂Ω ≤ C|||eh||||||eπ|||.(4.7)

For the second boundary term we use the Cauchy–Schwarz inequality followed by a
trace inequality and an approximation argument, similar to (4.3)–(4.4), to obtain

〈2νε(eπ)n, eh〉∂Ω ≤ C

( ∑
K∈Th

νh
2(ru−1)
K ‖u‖2

ru,K

) 1
2

|||eh|||.(4.8)

The convective term is controlled using a local inverse inequality, Lemma 4.4, Corol-
lary 4.3, and the orthogonality of the L2-projection, after having replaced the contin-
uous velocity field β by its piecewise linear interpolant βh,

|(eπ,β · ∇eh)| ≤ |(eπ, (β − βh) · ∇eh)| + |(eπ,βh · ∇eh)|

≤ C
∑

K∈Th

|β|1,∞,K‖eπ‖0,KhK‖∇eh‖0,K

+
∣∣(eπ,βh · ∇eh − π∗

h,k(βh · ∇eh)
)∣∣

≤ C
∑

K∈Th

σ− 1
2 |β|1,∞,Khru

K ‖φ∗
5e

π‖0,K‖σ 1
2 eh‖0,K

+
∣∣(eπ,βh · ∇eh − π∗

h,k(βh · ∇eh)
)∣∣

≤ C max
K∈Th

{σ− 1
2 |β|1,∞,Khru

K }‖u‖ru,Ω|||eh|||

+ ‖φ2e
π‖0,Ω

∥∥φ−1
2

(
βh · ∇eh − π∗

h,k(βh · ∇eh)
) ∥∥

0,Ω
.

Now we apply Lemma 3.1 to obtain

‖φ2e
π‖0,Ω

∥∥φ−1
2

(
βh · ∇eh − π∗

h,k(βh · ∇eh)
)∥∥

0,Ω

≤ C‖φ∗
2e

π‖0,Ω

( ∑
K∈Th

∫
∂K

h2
K‖β · n‖0,∞,∂K |[[n · ∇uh]]|2 ds

) 1
2

≤ C

( ∑
K∈Th

‖β‖0,∞,Kh2ru−1
K ‖u‖2

ru,K

) 1
2

|||eh|||,

where we used Corollary 4.3 and Lemma 4.8 in the last inequality.
Collecting terms we have

ah(eπ, eh) ≤ C|||eπ||||||eh||| + C max
K∈Th

{σ− 1
2 |β|1,∞,Khru

K }|||eh|||

+ C

( ∑
K∈Th

max{‖β‖0,∞,KhK , ν}h2(ru−1)
K ‖u‖2

ru,K

) 1
2

|||eh|||.
(4.9)
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For the second term in (4.6), using the orthogonality of the L2-projection, Lemmas
4.7 and 4.8, and replacing u with p in (4.2), we have

bh(yπ, eh) = −(yπ,∇ · eh − π∗
h,k(∇ · eh)) + 〈yπ, eh · n〉∂Ω

≤ ‖φ∗
1y

π‖0,Ω‖φ−1
1 (∇ · eh − π∗

h,k(∇ · eh))‖0,Ω + ‖φ∗
1h̃

1
2 yπ‖0,∂Ω|||eh|||

≤ C

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

|||eh|||.

(4.10)

In a similar fashion, after integration by parts in the third term, one obtains

bh(yh, e
π) = −(yh,∇ · eπ) + 〈yh, eπ · n〉∂Ω

= (∇yh, e
π)

= (∇yh − π∗
h,k(∇yh), eπ)

≤ C‖φ−1
3

(
∇yh − π∗

h,k(∇yh)
)
‖0,Ω‖φ∗

3e
π‖0,Ω

≤ Cjp(yh, yh)
1
2

( ∑
K∈Th

max{‖β‖0,∞,KhK , ν}h2(ru−1)
K ‖u‖2

ru,K

) 1
2

.

(4.11)

Finally, using Lemma 4.7, for the interior penalty terms we have

(4.12) ju(eπ, eh) + jp(πh,kp, yh) ≤ C|||eπ||||||eh||| + jp(πh,kp, πh,kp)
1
2 jp(yh, yh)

1
2

≤ C|||eπ||||||eh||| + Cjp(yh, yh)
1
2

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

.

We conclude the proof by collecting the results of (4.9)–(4.12) in (4.6) and applying
the approximation lemma, Lemma 4.6.

The following corollary follows from (4.6) in combination with (4.5) and Lemma
4.7.

Corollary 4.10. Under the assumptions of Theorem 4.9, there holds

jp(ph, ph) ≤ C max
K∈Th

{
σ− 1

2 |β|1,∞,Khru
K

}
‖u‖ru,Ω

+ C

[∑
K∈K

(
σh2ru

K + max{‖β‖0,∞,KhK , ν}h2(ru−1)
)
‖u‖2

ru,K

] 1
2

+ C

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

.

Remark 4.11. In a physical situation the velocity gradient on boundaries with no-
slip conditions is known to scale as |β|1,∞,∂Ω ∼ ν−

1
2 . If in the boundary layer hK ∼ ν,

that is, a low local Reynolds number on the boundary, then the estimate is dominated
by the H1(Ω) contribution from the boundary that converges at optimal rate since

the layer is resolved. The condition (2.7) is satisfied with cβ ∼ ν
1
2 showing that the

strongest constraint on the mesh is not that of (2.7), but that of the hK

ν contribution
on the boundary. In laminar free-flow we can expect |β|1,∞,K ≤ c‖β‖0,∞,K to hold,
and hence the convergence in the L2-norm in this regime is of the quasi-optimal rate
hk+ 1

2 for a sufficiently regular solution.
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4.2. Recovering the pressure. In this section, we provide an estimate of the
L2-norm of the pressure error. This is the aim of the following theorem, which ensures
that the pressure converges at the rate of the velocity.

Theorem 4.12. Assume (u, p) ∈ [Hr(Ω)]d ×Hs(Ω), with r ≥ 2 and s ≥ 1, is
the solution of (2.1) and (uh, ph) ∈ W k

h is the solution of (2.10). Then, under the
assumptions of Lemma 4.6, there holds

‖p− ph‖0,Ω ≤ C

(
CLσ

1
2 + max

K∈Th

{‖β‖0,∞,KhK , ν}
1
2 + σ− 1

2 ‖β‖0,∞,Ω

)
Cu,

with Cu the convergence rate of |||u − uh||| given by Theorem 4.9, and CL a positive
constant depending only on Ω.

Proof. Following [27, Corollary 2.4], there exists vp ∈ [H1
0 (Ω)]d such that

∇ · vp = p− ph, ‖vp‖0,Ω ≤ CL‖p− ph‖0,Ω, |vp|1,Ω ≤ C‖p− ph‖0,Ω,(4.13)

with CL > 0 a constant, depending on Ω, which scales as a distance. Thus, using the
modified Galerkin orthogonality (Lemma 2.1), we readily obtain

‖p− ph‖2
0,Ω = (p− ph,∇ · vp)

= (p− ph,∇ · (vp − πh,kvp)) + 〈p− ph, πh,kvp · n〉∂Ω

+ ah(u − uh, πh,kvp) + ju(u − uh, πh,kvp).

Thus, after integrating by parts, we get

‖p− ph‖2
0,Ω = (∇(p− ph),vp − πh,kvp)︸ ︷︷ ︸

T1

+ ah(u − uh, πh,kvp) + ju(u − uh, πh,kvp)︸ ︷︷ ︸
T2

.

(4.14)

For the first term, using the orthogonality of the L2-projection, the Cauchy–
Schwarz inequality, Corollary 3.2, (4.13), and Corollary 4.3, we get

T1 = (∇(p− ph) − πh,k∇p + π∗
h,k∇ph,vp − πh,kvp)

≤ ‖h̃(∇p− πh,k∇p)‖0,Ω‖h̃−1(vp − πh,kvp)‖0,Ω

+ C‖φ−1
3 (∇ph − π∗

h,k∇ph)‖0,Ω‖φ∗
3(vp − πh,kvp)‖0,Ω

≤ C

[( ∑
K∈Th

h
2sp−1
K ‖p‖2

sp,K

) 1
2

+ max
K∈Th

{ν, ‖β‖0,∞,KhK} 1
2 jp(ph, ph)

1
2

]
‖p− ph‖0,Ω.

(4.15)

Using the definition (2.11) of the bilinear form ah, and after integration by parts
in the convective term, we have

T2 ≤ |||u − uh||||||πh,kvp||| + (u − uh,β · ∇πh,kvp)

− 〈2νε(u − uh)n, πh,kvp〉∂Ω − 〈u − uh, 2νε(πh,kvp)n〉∂Ω.
(4.16)

For the convective term we have, using the H1-stability of the L2-projection (see [5])
and (4.13),

(u − uh,β · ∇πh,kvp) ≤ σ− 1
2 ‖β‖0,∞,Ω‖σ

1
2 (u − uh)‖0,Ω‖∇πh,kvp‖0,Ω

≤ Cσ− 1
2 ‖β‖0,∞,Ω|||u − uh|||‖p− ph‖0,Ω.

(4.17)
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The boundary terms are controlled in the following fashion:

(4.18) 〈2νε(u − uh)n, πh,kvp〉∂Ω + 〈u − uh, 2νε(πh,kvp)n〉∂Ω

≤ C‖(νh̃)
1
2 ε(u − uh)‖0,∂Ω|||πh,kvp||| + C‖(νh̃)

1
2 ε(πh,kvp)‖0,∂Ω|||u − uh|||.

In addition, as in (4.7) and (4.8), we have

‖(νh̃)
1
2 ε(u − uh)‖0,∂Ω ≤ ‖(νh̃)

1
2 ε(eπ)‖0,∂Ω + ‖(νh̃)

1
2 ε(eh)‖0,∂Ω,

≤ C

⎡
⎣( ∑

K∈Th

νh
2(ru−1)
K ‖u‖2

ru,K

) 1
2

+ |||eh|||

⎤
⎦ .

(4.19)

In the same fashion, we obtain

‖(2νh̃)
1
2 ε(πh,kvp)‖0,∂Ω ≤ C|||πh,kvp|||.(4.20)

Finally, from (4.13), it follows that

|||πh,kvp||| ≤ C

(
CLσ

1
2 + max

K∈Th

{‖β‖0,∞,KhK , ν}
1
2

)
‖p− ph‖0,Ω.(4.21)

We conclude the proof by collecting the estimations (4.15)–(4.20) in (4.14), using
(4.21) and Theorem 4.9.

Remark 4.13. Let us notice that the three terms appearing in the error estimate
of the previous theorem scale with the right dimensions.

4.3. Low Reynolds number optimality. The following theorem gives an op-
timal L2-error estimate for velocity when the local Reynolds number is low.

Theorem 4.14. Assume that the solution (u, p) of (2.1) belongs to [H2(Ω)]d ×
H1(Ω) and let (uh, ph) ∈ W k

h be the solution of (2.10). Assume also that

‖β‖0,∞,KhK ≤ ν ∀K ∈ Th,(4.22)

and that the solution (ϕ,ψ) of the adjoint problem⎧⎪⎨
⎪⎩

σϕ− β · ∇ϕ− 2ν∇ · ε(ϕ) −∇ψ = u − uh in Ω,

∇ · ϕ = 0 in Ω,

ϕ = 0 on ∂Ω

(4.23)

belongs to [H2(Ω)]d × [H1(Ω)] and satisfies

‖ϕ‖2,Ω + ‖ψ‖1,Ω ≤ C‖u − uh‖0,Ω.(4.24)

Then, there holds

‖u − uh‖0,Ω ≤ ch2
(
‖u‖2,Ω + ‖p‖1,Ω

)
,

with constant c > 0 independent of h, but depending on the physical parameters.
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Proof. Multiplying the first equation of (4.23) by u − uh and the second by
−(p−ph), integrating by parts, and using the modified Galerkin orthogonality (Lemma
2.1), it follows that

‖u − uh‖2
0,Ω = ah(u − uh, ϕ) + bh(p− ph, ϕ) − bh(ψ,u − uh)

= ah(u − uh, ϕ− πh,kϕ) + bh(p− ph, ϕ− πh,kϕ) − bh(ψ − πh,kψ,u − uh)︸ ︷︷ ︸
T1

+ ju(u − uh, ϕ− πh,kϕ)︸ ︷︷ ︸
T2

+ jp(ph, πh,kψ)︸ ︷︷ ︸
T3

.

Following the argument of the proofs of Theorems 4.9 and 4.12, and using Lemma 4.6
and (4.22), we get

T1 ≤ |||u − uh||||||ϕ− πh,kϕ||| + |(u − uh,β · ∇(ϕ− πh,kϕ))|
− 〈2νε(u − uh)n, ϕ− πh,kϕ〉∂Ω − 〈u − uh, 2νε(ϕ− πh,kϕ)n〉∂Ω

≤ Ch (|||u − uh|||‖ϕ‖2,Ω + ‖p− ph‖0,Ω‖ϕ‖2,Ω + |||u − uh|||‖ψ‖1,Ω) .

Using Cauchy–Schwarz, Lemma 4.6, and (4.22), one obtains

T2 ≤ ju(u − uh,u − uh)
1
2 ju(ϕ− πh,kϕ,ϕ− πh,kϕ)

1
2

≤ Ch
3
2 |||u − uh|||‖ϕ‖2,Ω.

Finally, from Lemma 4.7 and (4.22), for the last term we have

T3 ≤ jp(ph, ph)
1
2 jp(πh,kψ, πh,kψ)

1
2

≤ Chjp(ph, ph)
1
2 ‖ψ‖1,Ω.

The proof concludes by combining the above estimations with Theorems 4.9 and 4.12,
Corollary 4.10, (4.22), and the assumed regularizing behavior (4.24).

Let us sum up the results provided by Theorems 4.9 and 4.12. When the local
Reynolds number is high and the solution is regular, we enjoy an optimal O(hk+ 1

2 )
convergence order of the error in the L2-norm for the velocity and the pressure. For
less regular solutions, for instance, when the pressure is in H1(Ω) and the velocity
is in [H2(Ω)]d, we get an optimal O(h) estimate in the energy norm, when the local

Reynolds number is low, but a suboptimal estimate of O(h
1
2 ) when the local Reynolds

number is high. This is due to the fact that the inconsistencies in the pressure
stabilization pollute the energy norm estimate for the velocities.

Remark 4.15. Note that by adding the L2-coercivity, we can use the stabilization
term to control the convective term without using the H1-coercivity; this leads to a
quasi-optimal estimate in the weaker L2-norm, with a ν-weighted H1 contribution
showing that the stabilization handles the numerical instability induced by treating
nonsymmetric terms using the standard Galerkin method. In case σ = 0 the H1

estimate obtained by a standard energy argument will scale as ν−
1
2 , reflecting the

physical instability of the problem.

5. Numerical results. In this section we report several numerical experiments
that show the good convergence properties of our stabilized finite element method.
In particular, we recover the convergence rates obtained in section 4.
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Fig. 5.1. Convergence history: Linear elements (k = 1) (left) and quadratic elements (k = 2)
(right).

We consider problem (2.1) in three dimensions with nonhomogeneous boundary
conditions. The right-hand side f and the boundary data are chosen in order to ensure
that the exact solution of (2.1) is given by the following expression [22]:

u1(x1, x2, x3) = bea(x1−x3)+b(x2−x3) − aea(x3−x2)+b(x1−x2),

u2(x1, x2, x3) = bea(x2−x1)+b(x3−x2) − aea(x1−x3)+b(x2−x3),

u3(x1, x2, x3) = bea(x3−x2)+b(x1−x2) − aea(x2−x1)+b(x3−x1),

p(x1, x2, x3) = (a2 + b2 + ab)

[
ea(x1−x2)+b(x1−x3) + ea(x2−x3)+b(x2−x1)

+ ea(x3−x1)+b(x3−x2)

]
(5.1)

with β = u, σ = 1, ν = 10−4, a = b = 0.75, and Ω = (0, 1)3 the unit cube.
The resulting continuous problem was solved approximately using the stabilized

discrete formulation (2.10); however, the boundary conditions were strongly enforced.
All numerical tests have been performed using conforming linear and quadratic finite
elements for velocity and pressure, namely, P1/P1 and P2/P2 (implemented in a three-
dimensional research code [23]). The stabilization parameter involved in the jumps
terms (2.13) and (2.14) were chosen as

γ =

⎧⎪⎨
⎪⎩

1

8
if k = 1,

1

32
if k = 2.

In Figure 5.1 we show, respectively, the velocity and pressure convergence histories
for k = 1 and k = 2. Note that, in both cases, the numerical solution exhibits optimal
convergence order and is hence in agreement with Theorems 4.9 and 4.12.

We show in Figure 5.2 the pressure contours in two different meshes (which are
depicted in Figure 5.3) using linear elements. No spurious pressure oscillations are
observed. We report in Figure 5.4 the contours of the second component of uh, uh2,
in the left plot with full stabilization and in the right plot setting the stabilization pa-
rameter for the term associated with the streamline derivative to zero, on the cutting
plane x = 0.5. Although the exact solution is smooth, the plot of the unstabilized
solution (right) exhibits spurious oscillations. Note that the spurious velocity oscilla-
tions (right) are completely controlled by the streamline-derivative jumps (left).
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Fig. 5.2. Pressure contours: Coarse mesh (left) and fine mesh (right).

Fig. 5.3. Coarse mesh (2929 tetrahedra) and fine mesh (196608 tetrahedra).

Fig. 5.4. Velocity (uh2) contours on a cutting plane: Stabilized (left), with γβ = 0 (right).

In what follows we will replace, in (5.1), the expression for the pressure by

p(x1, x2, x3) =

⎧⎪⎨
⎪⎩

2x2 if 0 ≤ x2 ≤ 1

2
,

2(1 − x2) if
1

2
≤ x2 ≤ 1.

Clearly, this function satisfies p ∈ H1(Ω) but does not belong to H2(Ω). Figure 5.5
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Fig. 5.5. Cutting plane pressure: Coarse mesh and fine mesh.
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Fig. 5.6. Convergence history: Linear elements, nonsmooth pressure, stabilization, parameters
chosen as in (2.13) and (2.14).
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Fig. 5.7. Convergence history: Linear elements, nonsmooth pressure, parameters chosen as in
(2.13) and (2.14). Left: High Reynolds number. Right: Low Reynolds number.

shows the pressure contours in a cut of a coarse and a fine mesh. Once more no
spurious pressure oscillations are observed. Figure 5.6 shows the velocity and pressure
convergence histories using linear elements. We get the suboptimal O(h

1
2 ) order for

the velocity in the H1-norm in the case of high local Reynolds numbers, in agreement
with Theorem 4.9. The L2-norm of the velocities, on the other hand, is still not
far from the quasi-optimal O(h

3
2 ) convergence order. As expected, when the local

Reynolds is low (for instance ν = 0.1), we recover the optimal O(h); see Figure 5.7,
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left graphic. In addition, as predicted in Theorem 4.14, we notice that the convergence
order for the velocity in the L2-norm is O(h2).

6. Conclusion and outlook. In this paper, we have extended the results re-
ported in [15, 13] to Oseen’s equations using equal order interpolation and finite
element spaces of arbitrary polynomial order. The stability properties of the method
are based on an interior penalty term giving L2-control of the jump of the gradient
over interior element faces. We have shown that such a stabilization operator may
be used to control all the nonsymmetric first order terms of Oseen’s equations and
that they give control only of the part of the operator that is not in the finite element
space. In this sense the proposed method is a minimal stabilized method (see [8]).

The convergence analysis shows that the method has (quasi-) optimal conver-
gence properties both in the L2-norm and in the energy norm when the solution is
sufficiently regular or the local Reynolds number is low. When physically realistic
regularities are considered (p ∈ H1(Ω)) and the local Reynolds number is high, the

convergence may become suboptimal O(h
1
2 ) due to the inconsistencies in the pres-

sure stabilization. In some numerical examples we illustrated the theoretical results.
The method shows very good performance in all regimes. In particular, we observe
that in the high Reynolds number regime the scheme degenerates to the theoretical
O(hk+ 1

2 ) convergence in the L2-norm predicted by the theory only in the case where

the pressure is only H1 and where the theoretical prediction is O(h
1
2 ).

The method presented here has some common features with VMS for LES as
introduced in [30]. However, unlike the VMS, where two scales Vh and VH defined by
hierarchic meshes are considered (see, e.g., [35, 31, 4]), in our case the finite element
space Vh represents the only resolved scale and the “turbulent” viscosity acts only
on the gradient component that is not resolved on Vh. Recently, John and Kaya
[31] proposed a VMS using a projection method framework which essentially takes
the form of a standard Galerkin formulation for uh supplemented with the turbulent
viscosity acting only on the fine scales in the form of an additional term

(νT (I − PH)ε(uh), (I − PH)ε(vh)),(6.1)

where PH is some map from fine scales to coarse scales. Comparing this now with
the face oriented stabilization method, we would choose H = h and thus make the
turbulent viscosity act only on the scales that are not resolved on the space Vh.
Applying Lemma 3.1 we immediately get an interior penalty interpretation of the

term (6.1), with PH
def
= π∗

h,k,

‖ν
1
2

T (I − π∗
h,k)ε(uh)‖2

Ω ≤
∑

K∈Th

∫
∂K

νThK [[ε(uh)]] : [[ε(uh)]] ds,

and we conclude that a possible subgrid modeling term would be

jT (uh,vh) =
∑

K∈Th

∫
∂K\∂Ω

νThK [[ε(uh)]] : [[ε(vh)]] ds,

where the choice of νT now is a modeling issue. It should be noted that the choice
νT = γhK gives us a term which is asymptotically equivalent to the face penalty
operator using the whole gradient. However, other choices of νT based on modeling
considerations are possible.
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For sufficiently high polynomial degree there exists a C1 subspace of Vh with ap-
proximation properties. It follows that the solution may be decomposed into one C1

part which is untouched by the stabilizing terms and another C0 part which is penal-
ized. We conclude that the method enjoys the scale separation property characteristic
for VMS as proposed in [30] by polynomial order rather than by hierarchic meshes.
Future work will focus on the extension of the present method to the Navier–Stokes
equations both from a numerical and a theoretical standpoint.

Finally, we remark that the Nitsche-type weak boundary conditions used in this
paper, while nonstandard, have the benefit of acting as slip boundary conditions in
the high Reynolds number regime and as no-slip conditions when the boundary layers
are resolved; this may be favorable in LES (see Layton [34]).

Acknowledgment. The authors wish to thank the anonymous reviewers for
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Jyväskylä, Finland, 2004.

[13] E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: A con-
tinuous interior penalty method, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp.
2393–2410.

[14] E. Burman and P. Hansbo, A stabilized nonconforming finite element method for incompress-
ible flow, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 2881–2899.

[15] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-
diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1437–
1453.

[16] P. Clément, Approximation by finite element functions using local regularization, Rev.
Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975),
pp. 77–84.

[17] R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using
orthogonal subscales, Publication CIMNE 289, International Center for Numerical Methods



1274 ERIK BURMAN, MIGUEL A. FERNÁNDEZ, AND PETER HANSBO
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1. Introduction. We examine preconditioners for real systems of the form

A
[

x
y

]
≡

[
A BT

C D

] [
x
y

]
=

[
f
g

]
,(1.1)

where A ∈ R
n×n, D ∈ R

m×m, and n > m. For many relevant problems, D = 0 and
B �= C, and such problems are referred to as generalized saddle-point problems [24].
For other problems we consider D �= 0, but ‖D‖2 is small enough that the problem
retains the characteristics of a generalized saddle-point problem. In many such prob-
lems, the nonzero (2,2) block arises from a stabilization term. However, this is not
always the case. In a problem involving metal deformation [35], for example, it derives
from very slight compressibility. In addition, we note that certain approaches to stabi-
lization lead to systems where B �= C [3, 24], [27, sections 7.5 and 9.4] although many
other problems have B = C. Finally, our preconditioners allow A to be singular. We
consider all of these cases, which arise in many applications, ranging from stabilized
formulations of the Navier–Stokes equations [4, 11, 27] to metal deformation [35] and
interior point methods [13].

Problems of this type have been of recent interest [1, 8, 9, 18, 20, 23], as have
their symmetric counterparts [7, 10, 14, 26, 31, 34] and the case where D = 0 [2, 5,
6, 8, 15, 19, 21, 23, 32]. However, preconditioners for the case where B �= C have not
received as much attention. Though they are considered in [8, 18, 23], these papers do
not provide numerical experiments for such problems. We will do this in the present
paper. In [8], a detailed analysis is provided for two classes of preconditioners for

∗Received by the editors July 1, 2004; accepted for publication (in revised form) December 2, 2005;
published electronically July 7, 2006. This work was supported in part by the U.S. Department of
Energy under grant DOE LLNL B341494 through the Center for the Simulation of Advanced Rockets.

http://www.siam.org/journals/sinum/44-3/61090.html
†Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

(siefert@uiuc.edu).
‡Department of Mathematics, 460 McBryde, Virginia Tech, Blacksburg, VA 24061-0123 (sturler

@vt.edu).

1275



1276 CHRIS SIEFERT AND ERIC DE STURLER

the case where B �= C and D = 0. Here, we extend these preconditioners to the
case where D �= 0 and to allow for approximations to the Schur complement matrix
that arises in the preconditioner. Our preconditioners for (1.1) derive from a matrix
splitting, A = F − E. Our purpose is to derive preconditioners that result in tightly
clustered eigenvalues. In general, this leads to fast convergence for Krylov subspace
methods, although in the nonsymmetric case the eigenvectors may play a role as well.

In this paper we assume that the matrix is nonsingular or that the singularity can
be easily removed, such as the constant pressure mode in the Oseen problem [12]. For
the splitting, we assume that F and (D−CF−1BT ) are nonsingular. In section 2, we
propose a block-diagonal preconditioner that is a generalization of the preconditioners
discussed in [18] and [8]. In section 3, we use this preconditioner to derive a second
preconditioned system, which is a generalization of the related system presented in [8].
For the D = 0 case, the related system corresponds to an efficient implementation of
a constraint preconditioner; see also [5, 6, 14, 26]. In section 4, we extend both types
of preconditioner to the use of approximate Schur complements. Our analysis focuses
on the D �= 0 case, but we provide specializations to the D = 0 case as well. While the
block-diagonally preconditioned system may be very effective or more convenient in
certain situations, the related system is generally the better preconditioner, offering
much faster convergence for a modest increase in the computational cost per iteration.
Therefore, in section 5 on numerical experiments we focus on the related system.

We propose preconditioners with exact (sections 2 and 3) and with approximate
(section 4) Schur complements, and we discuss the convergence for the preconditioned
systems and the clustering of the eigenvalues. We explore two model problems in
section 5. The first, which arises from a finite element discretization of the Navier–
Stokes equations, has D �= 0 and A �= AT . The second, which arises from a spectral
collocation approach for an incompressible Stokes problem, has B �= C and D = 0.
We use eigenvalue bounds and numerical experiments to illustrate that reasonable
choices for splittings and approximate Schur complements yield good convergence.
Our analysis also illustrates the issues involved in choosing splittings and approximate
Schur complements to achieve effective preconditioning. Although eigenvalue bounds
are often wide, they nevertheless indicate good eigenvalue clustering for reasonable
choices for splittings and approximate Schur complements.

2. Block-diagonal preconditioners (exact Schur complement). We con-
sider a splitting of the (1,1) block, A = F − E, where F is easy to solve with and
(D−CF−1BT )−1 exists. Note that −(D−CF−1BT ) is the Schur complement of the
matrix [

F BT

C D

]
,(2.1)

and we will use the phrase exact Schur complement to refer to −(D − CF−1BT ).
Next, we introduce the following block-diagonal preconditioner as a straightforward
generalization of preconditioners in [8, 18]:

P(F ) =

[
F−1 0

0 −(D − CF−1BT )−1

]
.(2.2)

Preconditioning from the left or the right with P yields a system of the form

B(F )

[
x̃
ỹ

]
=

[
I − S N
M Q

] [
x̃
ỹ

]
=

[
f̃
g̃

]
,(2.3)
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where B(F ) is either PA or AP. For example, the matrix from the left-preconditioned
system is

P(F )A =

[
I − F−1E F−1BT

−(D − CF−1BT )−1C −(D − CF−1BT )−1D

]
,

implicitly defining S, N , M , and Q in (2.3) for the left-preconditioned case. Apart
from the preconditioned (2,2) block Q, this resembles the system arising from the
zero (2,2) block case. For the rest of this paper, we assume that Q is diagonalizable.
While MN = I for the D = 0 case [23, 8], for D �= 0 we have

MN = −(D − CF−1BT )−1CF−1BT = −(D − CF−1BT )−1(−D + CF−1BT + D)

= I + Q.(2.4)

This is true for both the left- and right-preconditioned cases. In the D = 0 case, NM
is a projector [8]. For the D �= 0 case, it is not, as (NM)2 = NM + NQM .

In section 2.1 we derive the eigendecomposition of the matrix

B0 =

[
I N
M Q

]
,(2.5)

when I+Q (and thus BT and C) have full rank. We use this in section 2.2 to develop
bounds for the eigenvalues of B(F ) using perturbation theory. Finally, in section 2.3,
we discuss the case when I + Q is rank-deficient.

2.1. Eigenvalues and eigenvectors of B0. Assume that I +Q (and thus BT

and C) have full rank. We wish to find λ, u, and v such that

u + Nv = λu,(2.6)

Mu + Qv = λv.(2.7)

First, we assume λ = 1. Substituting this into (2.6) and using Q = MN − I in (2.7)
yields

Nv = 0 and Mu = 2v.(2.8)

Since BT has full column rank by assumption, this implies that v = 0 and that B0

has only eigenpairs of the form(
1,

[
u
0

])
, where u ∈ null (M) .(2.9)

Since C has full row rank, so does M , and B0 has precisely n−m distinct eigenpairs of
this type. Next, we consider the case where λ �= 1. Solving (2.6) for u and substituting
into (2.7) yields

λQvj = (λ2 − λ− 1)vj .(2.10)

Hence, the vj must be eigenvectors of Q. We have assumed that Q has a full set of
eigenpairs, Qvj = δjvj , for j = 1, . . . ,m. We then solve (2.10) for λ to yield

λ±
j =

(1 + δj) ±
√

4 + (1 + δj)2

2
;(2.11)
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cf. [11]. Using (2.6) with the eigenvectors of Q for v yields the vectors u. We finally
rescale the eigenvector by (λ±

j − 1) to yield eigenpairs of the form

(
λ±
j ,

[
Nvj

(λ±
j − 1)vj

])
.(2.12)

Note that λ−
j �= 1 regardless of the choice of δj , and λ+

j = 1 only if δj = −1. However,
the latter would contradict the assumption that I + Q has full rank. Thus, B0 has
2m eigenpairs corresponding to λ �= 1. This completes a full set of eigenpairs for B0.
Let U1 be a matrix whose columns form an orthonormal basis for null (M) (cf. (2.9)),
and let U2 be the matrix with normalized columns uj = Nvj , where Qvj = δjvj ; cf.
(2.12). Furthermore, let Λ+ = diag(λ+

j ) and Λ− = diag(λ−
j ), where diag(·) denotes

the diagonal matrix with the given arguments. Then, the following matrix, Y, is an
eigenvector matrix of B0:

Y ≡
[

Y11 Y12

Y21 Y22

]
=

[
U1 U2 U2

0 V (Λ+ − I) V (Λ− − I)

]
.(2.13)

For our perturbation results we also need

Z = Y−1 =

[
Z11 Z12

Z21 Z22

]
.(2.14)

Using the block-inversion formula in [17, section 0.7.3] we obtain [29, 30]

Z11 =

[
In−m 0

0 Υ+

]
Y −1

11 = ÎnY
−1
11 ,(2.15)

Z21 = −
[

0 Υ− ]
Y −1

11 ,(2.16)

Z12 = −
[

0
(Λ− − Λ+)−1V −1

]
,(2.17)

Z22 =
(
V (Λ− − Λ+)

)−1
,(2.18)

with Υ+ = diag((λ−
j −1)/(λ−

j −λ+
j )) and Υ− = diag((λ+

j −1)/(λ−
j −λ+

j )). For Q = 0
(because D = 0), the eigendecomposition of B0 reduces to the case discussed in [8].

2.2. Perturbation bounds on the eigenvalues of B(F ). We are now ready
to consider the eigenvalues of B(F ) and derive bounds on the spectrum. Throughout
this paper ‖ · ‖ indicates the 2-norm.

Theorem 2.1. Consider matrices B(F ) of the form (2.3). Let Y be the eigen-
vector matrix of B0, as given by (2.13). Then for each eigenvalue λB of B(F ) there
exists an eigenvalue λ of B0 such that

|λB − λ| ≤
∥∥∥∥Y−1

[
S 0
0 0

]
Y
∥∥∥∥(2.19)

≤ 2 max
(
1, ‖Υ+‖, ‖Υ−‖

)
‖Y −1

11 SY11‖.(2.20)

Proof. Since B0 is diagonalizable, (2.19) follows from a classic result in pertur-
bation theory [33, Theorem IV.1.12]. We expand the right-hand side of (2.19) using
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(2.13)–(2.17) to get (see also [8])

|λB − λ| ≤
∥∥∥∥
[

ÎnY
−1
11 SY11 ÎnY

−1
11 SY12

−
[

0 Υ− ]
Y −1

11 SY11 −
[

0 Υ− ]
Y −1

11 SY12

]∥∥∥∥
≤ max(1, ‖Υ+‖, ‖Υ−‖)

·
∥∥∥∥
[

Y −1
11 SU1 Y −1

11 SU2 Y −1
11 SU2

−
[

0 I
]
Y −1

11 SU1 −
[

0 I
]
Y −1

11 SU2 −
[

0 I
]
Y −1

11 SU2

]∥∥∥∥ .
Using the consistency of the 2-norm, we can simplify this to (see also [8])

|λB − λ| ≤
√

2 max(1, ‖Υ+‖, ‖Υ−‖)
∥∥∥∥
[

Y −1
11 SY11

−
[

0 I
]
Y −1

11 SY11

]∥∥∥∥
≤ 2 max(1, ‖Υ+‖, ‖Υ−‖)

∥∥Y −1
11 SY11

∥∥ .
The Υ± terms can be large only if δj ≈ −1 ± 2i. For the problems discussed

in section 5, the δj ’s are well separated from this value, because ‖D‖ is small and
the problem and preconditioner are relatively well conditioned. The following lemma
provides bounds on the ‖Υ±‖. We explicitly consider the special case where the δj ’s
are real (and thus bounded away from −1 ± 2i). This occurs in the important case
that D is symmetric and the Schur complement is definite. For the following proof
and subsequent discussions, we define the function p(z) = 4 + (1 + z)2.

Lemma 2.2. Let Υ+ and Υ− be defined as above.
1. If δj ∈ R, for all j, then

max(1, ‖Υ+‖, ‖Υ−‖) ≤ 1 +
√

2

2
.

Moreover, if δj ≥ −1, for all j, then max(1, ‖Υ+‖, ‖Υ−‖) = 1.
2. If δj ∈ C and ∃α : |δj | ≤ α <

√
5 for j = 1, . . . ,m, then

max(1, ‖Υ+‖, ‖Υ−‖) ≤ max

⎛
⎝1,

1

2
+

1 + α

2
√

2
(√

5 − α
)
⎞
⎠ .

Proof. Substituting λ±
j from (2.11) into Υ+ = diag(λ−

j − 1)/(λ−
j − λ+

j ) and

Υ− = diag(λ+
j − 1)/(λ−

j − λ+
j ) gives

Υ± = diag

(
1 − δj

2
√

4 + (1 + δj)2
± 1

2

)
= diag

(
1 − δj

2
√
p(δj)

± 1

2

)
.(2.21)

The proof for the real case now follows from basic calculus.
For the complex case, note that p(δ) = (δ + 1 + 2i)(δ + 1− 2i). Any δ must be at

least distance 2 from one of the roots of p(δ). We assume without loss of generality
that δ is near −1+2i. The value δ∗ = (−1+2i)α/

√
5 minimizes |δ+1−2i| subject to

|δ| ≤ α, and we have |δ∗ + 1 − 2i| =
√

5 − α. So, we have |p(δ)| ≥ 2
(√

5 − α
)
. Using

this inequality for |p(δ)| after taking norms in (2.21) completes the proof.
In practice, the bound for the complex case is quite modest. For example, if

|δj | ≤ 1 for all j, then our bound on max(1, ‖Υ+‖, ‖Υ−‖) is about 1.136. Likewise, if
|δj | ≤ 2 for all j, the bound is about 1.470.
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We derive a bound on
∥∥Y −1

11 SY11

∥∥ following the approach in [8]. Recall that
Y11 = [U1 U2], where UT

1 U1 = I, and U2 = NV with unit columns. Let U2 = V2Θ,
where V T

2 V2 = I. Furthermore, let ω1 = ‖UT
1 V2‖, which is the cosine of the smallest

principal angle between range (U1) = null (NM) and range (U2) = range (NM).
Lemma 2.3. Define Y11, S, U1, U2, V2, Θ, and ω1 as above, and let κ(.) denote

the 2-norm condition number. Then

∥∥Y −1
11 SY11

∥∥ ≤ κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖.(2.22)

Proof. We have ‖Y −1
11 SY11‖ ≤ κ(Y11)‖S‖, where

Y11 =
[
U1 V2

] [ I 0
0 Θ

]
,

since U2 has unit columns ‖Θ‖ ≥ 1 and ‖Θ−1‖ ≥ 1. So, our bound simplifies to

‖Y −1
11 SY11‖ ≤ κ(Θ) κ

([
U1 V2

])
‖S‖ ≤ κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖,(2.23)

where the second inequality follows from the bound on κ([U1 V2]) from Lemma 3.6 in
[8].

Corollary 2.4. Let Θ and ω1 be defined as above.
1. If δj ∈ R for all j, then

|λB − λ| ≤ (1 +
√

2)κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖.(2.24)

2. If δj ∈ C and ∃α : |δj | ≤ α <
√

5 for j = 1, . . . ,m, then

|λB − λ| ≤ 2 max

⎛
⎝1,

1

2
+

1 + α

2
√

2
(√

5 − α
)
⎞
⎠κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖.(2.25)

Proof. Use Lemmas 2.2 and 2.3 in Theorem 2.1.
We see that the clustering of the eigenvalues depends mainly on ‖S‖ and the size

of the δj , unless ω1 ≈ 1 or κ(Θ) large. This implies that the block-diagonally precon-
ditioned system can have as many as 2m + 1 eigenvalue clusters, one for λ = 1 and
one for each λ±

j . Hence, the convergence of Krylov methods may not be very good for
the block-diagonally preconditioned system, even if ‖S‖ is small. Examples in section
5 will illustrate this. However, when the δj and ‖S‖ are small, the block-diagonal
preconditioner will give good convergence. This typically happens for small mesh
width when D and Q are h-dependent; see Table 5.1. In addition, the block-diagonal
preconditioner provides an intermediate step to a better preconditioner described in
section 3.

2.3. Rank-deficiency of I + Q. In section 2.1, we made the assumption that
I + Q has full rank (for D = 0, this is always true). We now briefly discuss the
rank-deficient case.

There are three sources of potential rank-deficiency in I + Q. The first two are
rank-deficiency in C and BT . The third is when there are vectors v such that Nv �= 0
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and Nv ∈ null (M). This implies that MNv = (I + Q)v = 0 and v is an eigenvector
of Q. This case occurs when F−1 (for left preconditioning) or −(D − CF−1BT )−1

(for right preconditioning) maps a nontrivial vector from range
(
BT

)
into null (C).

Assume that I + Q, C, and BT are rank deficient by k, lc, and lb, respectively.
Note that k ≥ max(lb, lc), since I+Q = −(D−CF−1BT )−1CF−1BT and the product
of matrices cannot be of higher rank than any of its factors.

Our previous analysis remains valid for the 2(m− k) eigenpairs (2.11) that corre-
spond to δj �= −1. It is also valid for the k eigenpairs where δj = −1 that correspond
to λ−

j . Since the Schur complement is invertible, M must also be rank deficient by lc.
Thus, the number of eigenpairs of the form (2.9) equals dim(null (M)) = n−m + lc.
This gives a total of n + m− k + lc eigenpairs, leaving us to find k − lc eigenpairs.

From (2.8), we have that all eigenvectors corresponding to λ = 1 must satisfy
Nv = 0 and Mu = 2v. Since dim(null (N)) = lb, there are lb independent vectors v
that satisfy Nv = 0. Unfortunately, there may be as many as lc independent vectors
v where Mu = 2v has no solution. If we do not have k − lc independent vectors v
such that Mu = 2v has a solution, then B0 is defective. The analysis of section 2.1
does not permit any other eigenvectors.

For the missing eigenpairs we have that λ+
j → 1 as δj → −1. Therefore, we

look for principal vectors of grade two (see [16]) for λ = 1. These vectors satisfy the
equations

Nv = ũ and Mu = 2v,(2.26)

where ũ �= 0 and ũ ∈ null (M). We note that there are k independent vectors v
such that (I + Q)v = 0. Since there are precisely lb independent vectors v such that
Nv = 0, there must be k − lb such vectors v that satisfy Nv = ũ with ũ �= 0 and
Mũ = 0. This gives k independent vectors v that satisfy the first equation of either
(2.8) or (2.26).

There exists a space of dimension lc such that Mu = 2v has no solution. How-
ever, since we have k independent v’s to propose, we are guaranteed to find k − lc
independent vectors v’s that satisfy this equation. This gives us either our remaining
eigenvectors or principal vectors of grade two. This also guarantees us that we have
Jordan blocks of size at most two.

In the special case when k = lb = lc, we have k − lc = 0, so we have a full set
of eigenvectors. We can apply the analysis described in the full rank case with k
additional eigenpairs (1, [ũT

n−m+j , 0
T ]T ) for j = 1, . . . , k, replacing the corresponding

eigenpairs (λ+
j , [(Nvj)

T , (λ+
j −1)vTj ]T ) for which δj = −1. Let U1 be such that UT

1 U1 =

In−m+lc and range (U1) = null (M). Let Ṽ be such that Ṽ T Ṽ = Ilc and range(Ṽ ) =

null (I + Q). Further, let the columns of V̂ be the eigenvectors of Q corresponding

to the eigenvalues δj �= −1, scaled such that U2 = NV̂ has unit columns. Finally, let

the diagonal matrices Λ̂+ and Λ̂− contain the eigenvalues λ+
j and λ−

j corresponding

to the eigenvalues δj �= −1 ordered consistently with the columns of V̂ . Then the
eigenvector matrix of B0 is given by

Y =

[
U

(n−m+lc)
1 U

(m−lc)
2 NṼ (lc) U

(m−lc)
2

0 V̂ (Λ̂+ − I) −2Ṽ V̂ (Λ̂− − I)

]
,(2.27)

where superscripts in the top row indicate the number of columns. The corresponding
eigenvalues are those from (2.9) and (2.11). We can then use the eigenvector matrix
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of B0 given in (2.27) to derive bounds on the eigenvalues, as for the full rank case.
The reduction in the number of columns of U2 may in fact reduce the factor κ(Θ)
in Corollary 2.4. An important example of this case is the stabilized Navier–Stokes
(Oseen) problem [11], where C = B and F is positive definite.

3. Fixed-point method and its related system (exact Schur comple-
ment). We now consider an alternative solution method that leads to faster con-
vergence in general; cf. [8]. In the D = 0 case this approach leads to an efficient
implementation of so-called constraint preconditioners; cf. [6, 5, 14, 26]. We can
derive the following splitting from (2.3):

B(F )

[
x
y

]
=

[
I − S N
M Q

] [
x
y

]
=

(
B0 −

[
S 0
0 0

])[
x
y

]
=

[
f̃
g̃

]
.(3.1)

Note that

B−1
0 =

[
I −NM N

M −I

]
.(3.2)

We left-multiply (3.1) by B−1
0 to yield the fixed-point iteration,[

xk+1

yk+1

]
=

[
(I −NM)S 0

MS 0

] [
xk

yk

]
+

[
f̂
ĝ

]
.(3.3)

Note that this iteration is formally the same as for the D = 0 case in [5, 8]. Since
xk+1 and yk+1 depend only on xk, we need to iterate only on the xk variables; see
also [4, pp. 214–215] and [8]. The x-component of the fixed-point of (3.3) satisfies
the so-called related system for the fixed-point iteration [16],

(I − (I −NM)S)x = f̂ . 1(3.4)

The full-size related system (that is, with the y component) and D �= 0 has been
examined elsewhere for special cases. In [26], A is symmetric positive definite and
spectrally equivalent to the identity, and so the splitting F = I is used. In [14], F is
symmetric positive definite. In both of these cases B = C.

3.1. Eigenvalue bounds for fixed-point matrix and related system. In
this section we assume n−m ≥ m, but equivalent results are obtained for m > n−m.
Let U1 and U2 be defined as in (2.13), Δ = diag(δj), and let U2 = V2Θ with V T

2 V2 = I.
Then, we have NMU1 = 0, NMU2 = NMNV = NV (I + Δ), and therefore

(I −NM) =
[
U1 V2

] [ I 0
0 −ΘΔΘ−1

] [
U1 V2

]−1
.(3.5)

In the rank-deficient case, we can use (2.27). So, for this approach rank-deficiency
has a potential advantage in terms of the conditioning of Θ. To analyze ‖I − NM‖
we need the following singular value decomposition (SVD):

UT
1 V2 = ΦΩΨT , where 1 > ω1 ≥ ω2 ≥ · · · ≥ ωm.(3.6)

1The full-size related system derives from using (2.1) as a left-preconditioner; see also [8].
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Following [8], we define W by WΣ = V2Ψ − U1ΦΩ, where the diagonal matrix Σ =
diag((1 − ω2

j )
1/2) contains the sines of the principal angles between range (U1) and

range (V2). Then, [U1 W ] is orthogonal, and we can decompose V2 as follows:

V2 = U1ΦΩΨT + WΣΨT .(3.7)

Theorem 3.1. Let U1,V2, and ω1 be defined as above. Let λR be an eigenvalue
of the related system matrix in (3.4). Then,

ρ((I −NM)S)
|1 − λR|

}
≤ (1 − ω2

1)−1/2(1 + ‖ΘΔΘ−1‖)‖S‖,

where ρ(·) designates the spectral radius.
Proof. The proof of this theorem largely follows [8]. Note that the result for

ρ((I−NM)S) immediately implies the result for |1−λR|. We have ρ((I−NM)S) ≤
‖I −NM‖‖S‖. Let Z = −ΘΔΘ−1. Then,

‖I −NM‖ =

∥∥∥∥[U1 V2]

[
I 0
0 Z

]
[U1 V2]

−1

∥∥∥∥(3.8)

≤
∥∥∥∥[U1 V2]

[
I 0
0 0

]
[U1 V2]

−1

∥∥∥∥ +

∥∥∥∥[U1 V2]

[
0 0
0 Z

]
[U1 V2]

−1

∥∥∥∥(3.9)

≤ (1 − ω2
1)−1/2 + (1 − ω2

1)−1/2‖Z‖ = (1 − ω2
1)−1/2(1 + ‖Z‖).(3.10)

The first term in (3.9) is the norm of an oblique projection. Given the SVD in (3.6),
this norm equals (1−ω2

1)−1/2 [22, section 5.15]. We establish the bound for the second
term as follows:∥∥∥∥[U1 V2]

[
0 0
0 Z

]
[U1 V2]

−1

∥∥∥∥ = max
U1a+V2b �=0

‖V2Zb‖
‖U1a + V2b‖

.(3.11)

Without loss of generality we may assume ‖b‖ = 1, so that ‖V2Zb‖ ≤ ‖Z‖. From
(3.7) we see that ‖U1a + V2b‖ = ‖U1a + U1ΦΩΨT b + WΣΨT b‖, which for any given
b is minimized by a = −ΦΩΨT b. This gives ‖U1a+ V2b‖ = ‖WΣΨT b‖, which in turn
is minimized for b = ψ1. Hence, we have∥∥∥∥[U1 V2]

[
0 0
0 Z

]
[U1 V2]

−1

∥∥∥∥ = max
U1a+V2b �=0

‖V2Zb‖
‖U1a + V2b‖

≤ (1 − ω2
1)−1/2‖Z‖.(3.12)

Therefore, by using (3.8)–(3.12) we have

ρ((I −NM)S) ≤ (1 − ω2
1)−1/2(1 + ‖ΘΔΘ−1‖)‖S‖.

If the δj are clustered, the influence of κ(Θ) is small.

Corollary 3.2. Let δ̂ = arg minz∈C
maxj |z − δj | and δ̃j = δj − δ̂. Then

ρ((I −NM)S)
|1 − λR|

}
≤ (1 − ω2

1)−1/2(1 + δ̂ + κ(Θ) max |δ̃j |)‖S‖.

Proof. Note that Δ = δ̂I + diag(δ̃j), so ΘΔΘ−1 = δ̂I + Θ diag(δ̃j) Θ−1.
So, the eigenvalues of the related system cluster around 1, and the tightness of the

clustering is controlled through ‖S‖. Note that the factor containing ω1 in Corollary
3.2 is no larger than the corresponding factor for the block-diagonally preconditioned
system in Corollary 2.4. In addition, the influence of the κ(Θ) term is smaller for the
related system if the δj are clustered. This generally leads to better clustering and
tighter bounds for the related system than for the block-diagonally preconditioned
system. Because of these advantages, the related system will generally have faster
convergence than the block-diagonally preconditioned system.
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3.2. Satisfying “constraints”. In the D = 0 case, the second block of equa-
tions in (1.1) often represents a set of constraints. For the D �= 0 case, this may or
may not be the case. So-called constraint preconditioners in the D = 0 case have
the advantage that each iterate of a Krylov subspace method for the preconditioned
system satisfies the constraints if the initial guess is chosen appropriately. Fixed-point
methods such as (3.3) often satisfy the constraints after a single step. This is the case
for the fixed-point method proposed in [8] for D = 0. It turns out that we can prove
an analogous property for the D �= 0 case.

Lemma 3.3. For any initial guess [xT
0 , y

T
0 ]T , the iterates, [xT

k , y
T
k ]T , for k =

1, 2, . . . , of (3.3) satisfy Mxk + Qyk = g̃ in (2.3) and Cxk + Dyk = g in (1.1).

The proof can be found in [29, 30].

Corollary 3.4. After the first iteration of (3.3), all fixed-point updates are in
the null space of [M Q].

This follows trivially from Lemma 3.3.

We can also show that the iterates of a Krylov subspace method will satisfy the
constraints if the initial guess satisfies the constraints (cf. [8]). We first give a general
result and then specialize it to our problem. For the remainder of this section, A
and C are arbitrary matrices, not the matrices referred to in (1.1). We return to the
nomenclature of (1.1) in the next section.

Theorem 3.5. Let A ∈ R
n×n, b ∈ R

n, C ∈ R
m×n, and d ∈ R

m, and define the
iteration xk+1 = Axk + b. Further, let the iterates xk satisfy Cxk = d for k ≥ 1 and
any starting vector x0. Then, the iterates x(m), m ≥ 0, of a Krylov method applied
to the (related) system, (I −A)x = b, will satisfy Cx(m) = d if Cx(0) = d.

The proof can be found in [29, 30].

Corollary 3.6. The iterates, [x(m)T , y(m)T ]T , of any Krylov method applied to
the full n+m related system for (3.3) satisfy Mx(m)+Qy(m) = g̃ and Cx(m)+Dy(m) =
g if the initial guess is the result of at least one step of fixed-point iteration (3.3).

Proof. Use Theorem 3.5, with A as fixed-point iteration matrix in (3.3), b =

[f̂T ĝT ]T , C = [M Q], and d = ĝ.

4. Approximate Schur complement. It may be expensive to compute the
Schur complement matrix (D − CF−1BT ) or to compute and apply its inverse (or
factors). So, we would like to use a cheap approximation to the inverse of the Schur
complement. We now consider the effect of such an approximation on the eigen-
value clustering of the preconditioned matrices and on the resulting convergence. Let
S1 = −(D−CF−1BT ) denote the actual Schur complement and S−1

2 denote our ap-
proximation to its inverse. As we only need to apply S−1

2 , no explicit representation
of S2 is needed. Finally, let S−1

2 S1 = I + E .

4.1. Eigenvalue analysis of the block-diagonally preconditioned system.
Now, the block-diagonal preconditioner is as follows:

P(F, S2) =

[
F−1 0

0 S−1
2

]
.

We multiply (1.1) from the left by P(F, S2). We refer to the resulting preconditioned
matrix as B(F, S2). The system of equations with B(F, S2) is as follows:[

I − S N
M2 Q2

] [
x
y

]
=

([
I N
M Q

]
−
[

S 0
−EM −EQ

])[
x
y

]
=

[
f̃
g̃

]
,(4.1)
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where M , N , and Q are defined as in section 2, M2 = S−1
2 C, and Q2 = S−1

2 D. Note
also that M2 = S−1

2 S1S
−1
1 C = (I + E)M and analogously Q2 = (I + E)Q. Using

(4.1), we can bound the eigenvalues of B(F, S2) by considering the perturbation of
the eigenvalues of B0 analogously to our bounds in section 2.2.

Theorem 4.1. Let λB be an eigenvalue of B(F, S2), λ be an eigenvalue of B0,
and Qvj = δjvj.

1. If δj ∈ R for j = 1, . . . ,m, then

|λB − λ| ≤ (1 +
√

2)κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖ + max
j

{
|1 + δjλ

+
j |, |1 + δjλ

−
j |
}
κ(V )‖E‖.

2. If δj ∈ C and ∃α > 0 s.t. |δj | ≤ α <
√

5 for j = 1, . . . ,m, then

|λB − λ| ≤ 2 max

⎛
⎝1,

1

2
+

1 + α

2
√

2
(√

5 − α
)
⎞
⎠κ(Θ)

(
1 + ω1

1 − ω1

)1/2

‖S‖

+
2 + (1 +

√
5)α + 2α2√

2
(√

5 − α
) κ(V )‖E‖.

3. If D = 0, then

|λB − λ| ≤ 2

(
1 + ω1

1 − ω1

)1/2

‖S‖ +
2
√

5

5
‖E‖.

Proof. In section 2.1 we have already derived the eigendecomposition of B0.
From this decomposition we get the following perturbation bound (see [33, Theorem
IV.1.12]):

|λB − λ| ≤
∥∥∥∥Y−1

[
S 0

−EM −EQ

]
Y
∥∥∥∥

≤
∥∥∥∥Y−1

[
S 0
0 0

]
Y
∥∥∥∥ +

∥∥∥∥Y−1

[
0 0

EM EQ

]
Y
∥∥∥∥ .(4.2)

Corollary 2.4 gives bounds for the first term in (4.2). So, we need bounds only for the
second term.

Define X such that

X = Y−1

[
0 0

EM EQ

]
Y.

We have [
0 0

EM EQ

]
Y =

[
0 0

−E(MY11 + QY21) −E(MY12 + QY22)

]
,

where MU1 = 0 and MU2 = MNV = (I + Q)V = V (I + Δ). This gives MY12 =
MU2 = V (I+Δ), MY11 = [0 V (I+Δ)], QY22 = V Δ(Λ−−I), and QY21 = [0 V Δ(Λ+−
I)]. So, the previous equation reduces to[

0 0
EM EQ

]
Y =

[
0 0 0

0 −EV (I + ΔΛ+) −EV (I + ΔΛ−)

]
.(4.3)
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We then multiply (4.3) from the left by Y−1 (see (2.14)–(2.17)) and refactor to yield

X =

⎡
⎣ 0 0 0

0 (Λ− − Λ+)−1 0
0 0 −(Λ− − Λ+)−1

⎤
⎦
⎡
⎣ 0 0 0

0 V −1EV V −1EV
0 V −1EV V −1EV

⎤
⎦W,

where

W =

⎡
⎣ 0 0 0

0 I + ΔΛ+ 0
0 0 I + ΔΛ−

⎤
⎦ .

Using the consistency of the 2-norm, we have the following bound on ‖X‖:

‖X‖ ≤ 2‖(Λ− − Λ+)−1‖max
j

{
|1 + δjλ

+
j |, |1 + δjλ

−
j |
}
κ(V )‖E‖.(4.4)

The remainder of the proof concerns the bounds on the right-hand side of (4.4)
for each particular case.

For the first part of the theorem, assume δj ∈ R for j = 1, . . . ,m. We have

λ−
j − λ+

j =
1 + δj −

√
4 + (1 + δ)2

2
− 1 + δj +

√
4 + (1 + δ)2

2
= −

√
4 + (1 + δj)2

= −
√
p(δ).

Clearly, |1/(λ−
j − λ+

j )| obtains its maximum at δj = −1. This yields |1/(λ−
j − λ+

j )| ≤
1/2. We can use this in (4.4) to complete the proof of the first bound.

For the second part of the theorem, we assume ∃α > 0 s.t. |δj | ≤ α <
√

5 for
j = 1, . . . ,m. First we derive a bound for ‖(Λ− − Λ+)−1‖. Recall the lower bound
on p(δ) in the proof of Lemma 2.2 and note that |1/(λ−

j − λ+
j )| = 2/

√
|p(δj)|. So, we

have ‖(Λ− − Λ+)−1‖ ≤ (2(
√

5 − α))−1/2. Furthermore, we have

|1 + δjλ
±
j | =

∣∣∣∣∣1 + δj
1 + δj ±

√
4 + (1 + δj)2

2

∣∣∣∣∣ ≤ 1 +
|δj ||1 + δj | + |δj |

√
|4 + (1 + δj)2|

2
.

We can bound |δ+1−2i| and |δ+1+2i| from above by
√

5+α; so,
√

|4 + (1 + δj)2| ≤√
5 + α. Thus, we have

|1 + δjλ
±
j | ≤ 1 +

α(1 + α) + α
(√

5 + α
)

2
= 1 +

1 +
√

5

2
α + α2.

Substituting these bounds into (4.4) yields

‖X‖ ≤ 2 + (1 +
√

5)α + 2α2√
2
(√

5 − α
) κ(V )‖E‖.(4.5)

We can then substitute this result into (4.2) to prove the second part of the theorem.
For the third part of the theorem, we assume D = 0. We bound the first term

in (4.2) using Theorem 2.1, Lemma 2.2 for δ ≥ −1, and Lemma 2.3 where κ(Θ) = 1.
This follows from the fact that U2 can be chosen to be orthogonal (see [8]).

For the second term in (4.2), since Q = 0, δj = 0, so λ−
j − λ+

j = −
√

5, and we
can choose V = I. We then substitute this into (4.4).
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In practice, in the complex case the term involving α will generally be modest.
For example, if α = 1, it is about 4.6022, and for α = 2, it is about 23.9727.

If we compare the bounds from Theorem 4.1 with those from Corollary 2.4 for
the block-diagonal preconditioner with the exact Schur complement, (D−CF−1BT ),
we see that the deterioration of the bounds is O(‖E‖). Note that the factors that
multiply the ‖E‖ are all constants with respect to the choice of the approximate
Schur complement, S−1

2 . This is about as good as we can hope for. The bounds also
demonstrate that there is no point in investing in a really good splitting when a poor
approximation to the Schur complement is used or vice versa. Rather, we should be
equally attentive to both if we want good eigenvalue clustering.

4.2. Eigenvalue analysis of the related system. If we follow the approach in
section 3 to generate the related system for this problem, we would generate precisely
the related system derived from (3.3), with S−1

1 instead of S−1
2 [8]. Therefore, we use

an alternative splitting of B(F ),

B(F ) =

[
I N
M2 Q2 + E

]
−
[

S 0
0 E

]
,

and derive the related system for this splitting. Due to the E term in the splitting,
however, we cannot reduce the size of our system. Instead, we get[

I − (I −NM2)S −NE
−M2S I + E

] [
x
y

]
=

[
f̂
ĝ

]
.(4.6)

For a special problem in magnetostatics, a linear system similar to (4.6) was
derived in [26]. If we use the choices for the splitting and approximations from [26],
we obtain basically the same system to be solved. In [26], the authors only outline
the qualitative behavior of the eigenvalues in the case that E is sufficiently small.

Theorem 4.2. For any eigenvalue, λR, of the related system matrix (4.6),

|1 − λR| ≤
√

1 + ‖N‖2
√

1 + ‖M2‖2 max (‖S‖, ‖E‖) .

Proof. Note that the matrix in (4.6) can be split as follows:[
I − (I −NM2)S −NE

−M2S I + E

]
= I −

[
I −NM2 N

M2 −I

] [
S 0
0 E

]

= I −
[

I −N
0 I

] [
I 0
M2 −I

] [
S 0
0 E

]
.

Expressing our matrix as a perturbation of the identity and using a classic perturba-
tion bound (see [33]) yields

|1 − λR| ≤
∥∥∥∥
[

I −N
0 I

] [
I 0
M2 −I

] [
S 0
0 E

]∥∥∥∥ .
Noting that∥∥∥∥

[
I −N
0 I

]∥∥∥∥ ≤
√

1 + ‖N‖2 and

∥∥∥∥
[

I 0
M2 −I

]∥∥∥∥ ≤
√

1 + ‖M2‖2,

we obtain

|1 − λR| ≤
√

1 + ‖N‖2
√

1 + ‖M2‖2 max (‖S‖, ‖E‖) .
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The terms ‖N‖ and ‖M2‖ in the bound from Theorem 4.2 are fairly benign.
They are bounded by the norms of the off-diagonal blocks of the unpreconditioned
matrix (1.1) and the norms of the inverses of the splitting and approximate Schur
complement. Note that the latter two are chosen by the user. Moreover, if we use a
good preconditioner for this problem and therefore both our splitting and approximate
Schur complement are reasonably accurate, the norms of their inverses will not be large
relative to the norm of (1.1), unless (1.1) is itself poorly conditioned.

Just as for the block-diagonally preconditioned system, the eigenvalue perturba-
tion of the related system depends on both ‖S‖ and ‖E‖. Again, there is no advantage
in making one significantly smaller than the other. Thus, we should be equally atten-
tive to both ‖S‖ and ‖E‖ in order to achieve tight clustering and fast convergence.

5. Numerical experiments. We present numerical experiments for two model
problems, both arising from the Navier–Stokes equations.

The first model problem involves a stabilized finite element discretization of the
Navier–Stokes equations. We use the software toolkit for a two-dimensional leaky lid-
driven cavity problem developed for the Winter School in Scientific Computing and
Iterative Methods hosted by the Chinese University of Hong Kong in December 1995
and made available by David Silvester [11]. Using this toolkit, we can easily apply the
preconditioners and analysis from this paper to the stabilized Navier–Stokes problem
(Oseen case). This problem is nonsymmetric but has B = C. Excellent work has been
done by others on preconditioners for this specific problem [11, 31, 34], which we do not
intend to supplant. Rather, our goal is to illustrate the effect of the preconditioners
proposed in this paper on the convergence behavior and the eigenvalue distributions
for a problem which is well understood and easily accessible to the community.

In particular, we show what happens to the convergence of GMRES, the eigen-
values, and our eigenvalue bounds as we improve the splitting (‖S‖ → 0) and the
approximate Schur complement (‖E‖ → 0). We also succinctly compare the block-
diagonally preconditioned systems (2.3) and (4.1) with the related systems (3.4) and
(4.6), in terms of both eigenvalues and convergence. We also illustrate the importance
of balancing the quality of the splitting and the Schur complement to avoid wasted
effort. Finally, we study the influence of the mesh width on the convergence of the
related system.

The second model problem involves a spectral collocation discretization for the
incompressible Stokes equations on a square [3, 27]. This application has B �= C
and D = 0, and this particular formulation uses the Chebyshev nodes for the col-
location sites to allow the rapid computation of Gauss–Lobatto quadrature. To our
knowledge, this is the first presentation of convergence and eigenvalue results in the
literature for preconditioners for generalized saddle-point problems with B �= C. For
this application, we present GMRES convergence results as well as the locations of
the eigenvalues of the preconditioned system.

5.1. Navier–Stokes with finite elements. For our first experiments, we choose
a 16 × 16 grid, viscosity parameter ν = 0.1, and stabilization parameter β = 0.25.
After removing the constant pressure mode, the system has 705 unknowns. Since
multigrid cycles are actually matrix splittings, we use a number of multigrid V-cycles
to define the splitting of the (1,1) block. For each V-cycle we use three SOR-Jacobi
pre- and post-smoothing steps with relaxation parameter ω = 0.25. As a purely alge-
braic alternative, we also employ an ILUT factorization of the (1,1) block and vary
the drop tolerance to change the accuracy of our splitting [28].
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(a) Block-Diagonal Preconditioner (2.3).
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Fig. 5.1. Convergence of GMRES for both types of preconditioners, using the exact Schur
complement and varying the number of V-cycles for the splitting.

We start with the exact Schur complement, varying the number of V-cycles for
the splitting from one to six. Figures 5.1(a) and 5.1(b) show the convergence his-
tory for preconditioned GMRES for the block-diagonally preconditioned system and
the related system, respectively. Note that the related system converges in signifi-
cantly fewer iterations, for any choice of the number of V-cycles, demonstrating the
performance difference between the two preconditioned systems.

We have also computed the eigenvalue perturbation and the eigenvalue bounds
for both preconditioned systems, using up to nine V-cycles for the splitting, with
the exact Schur complement. Figure 5.2(a) shows the maximum absolute eigenvalue
perturbation from λ ∈ {1, λ±

j } for the block-diagonally preconditioned system (2.3),
and Figure 5.2(b) shows the maximum absolute eigenvalue perturbation from 1 for
the related system (3.4).



1290 CHRIS SIEFERT AND ERIC DE STURLER

1 2 3 4 5 6 7 8 9
10

-6

10
- 4

10
- 2

10
0

10
2

10
4

10
6

# V cycles for Splitting

Eigenvalue Bound
Max |Eigenvalue Change|
‖S‖
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Fig. 5.2. Maximum absolute eigenvalue perturbation and perturbation bounds, for both types
of preconditioners, using the exact Schur complement and varying the number of V-cycles for the
splitting.

As we use a better splitting for A (more V-cycles), we see that the eigenvalue
bound decreases with approximately the same rate as the corresponding eigenvalue
perturbations, although the bound is pessimistic. This pessimism is mostly due to
the κ(Θ) factor. Figure 5.2(b) includes an estimate of the perturbation for the related
system, which consists of the bound in Corollary 3.2 with κ(Θ) replaced by one. Both
the bound and our estimate follow the trend in the actual eigenvalue perturbation
well as the number of V-cycles increases. The figure shows that the bounds and the
estimate give good qualitative, respectively quantitative, descriptions of the eigenvalue
perturbation as the splitting improves.

The eigenvalue perturbation bound for the related system (3.4) is much smaller
than for the block-diagonally preconditioned system (2.3). However, the actual max-
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Fig. 5.3. Convergence results for the related system using an approximate Schur complement.

imum eigenvalue perturbation for both systems is about equal. For the related sys-
tem, this represents a single eigenvalue cluster around 1, which means that the bound
proves fast convergence for about 6 V-cycles or more, and the actual (max) pertur-
bation indicates good convergence already for 1 V-cycle. On the other hand, for the
block-diagonally preconditioned system, this represents 2m + 1 (potentially) distinct
clusters around 1 and λ±

j for j = 1, . . . ,m. The existence of multiple clusters in this
case, compared with the single cluster for the related system, explains the difference
in their convergence behavior. These multiple clusters also explain the diminish-
ing returns of improving the splitting for the block-diagonal preconditioner shown in
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Fig. 5.4. The effects of ‖S‖ and ‖E‖ on the related system using the approximate Schur
complement.

Figure 5.1(a). As we see similar differences between the preconditioners for the other
test cases, we show results only for the related system for the remainder of this section.

We illustrate the convergence behavior for the preconditioner with an approximate
Schur complement as a function of the accuracy of the approximation by using an
ILUT decomposition [28]. While this may not be a practical choice, it serves our
purposes for this paper because it allows us to progressively increase the accuracy of
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Table 5.1

Effect of the number of grid points per dimension (n) on maxj |δj | and the number of GMRES
iterations for the related system (4.6) using a splitting of 5 V-cycles and various approximate Schur
complements.

Number of GMRES iterations
n max |δj | ILUT(1e-3) ILUT(1e-4) ILUT(1e-5) ILUT(1e-6)
4 1.72e+00 5 5 5 5
8 5.92e-01 5 4 4 4
16 1.60e-01 7 5 5 5
32 4.07e-02 13 6 5 5

the approximation to the inverse of the Schur complement. We use drop tolerances
ranging from 1e − 3 to 5e − 8.

Figures 5.3(a) and 5.3(b) show the effects of improving the splitting (for multi-
grid and ILUT) and the approximation to the Schur complement on the convergence
of GMRES for the related system (4.6). First, in Figure 5.3(a), we vary the drop
tolerance for the approximate Schur complement and fix the number of V-cycles for
the splitting at five. Then, in Figure 5.3(b), we demonstrate a number of splittings
using V-cycles and ILUT, and fix the drop tolerance at 1e − 5 for the approximate
Schur complement. The convergence results are quite good, regardless of the choice
of splitting.

The convergence rates in Figures 5.3(a) and 5.3(b) hit a point of diminishing re-
turns, past which improving either the splitting or the approximate Schur complement
while leaving the other unchanged does not improve convergence. To explain this, we
show the eigenvalue perturbations from 1 and the perturbation bound for the same
example in Figure 5.4. In both plots, the eigenvalue perturbation (and bound) cease
to decrease shortly after ‖S‖ is less than ‖E‖ or vice versa. This demonstrates that the
eigenvalue bound from Theorem 4.2 is indicative of the actual eigenvalue perturbation
and the resulting convergence behavior, and that using a significantly more accurate
splitting than approximate Schur complement, or vice versa, yields little additional
benefit. Finally, note that for reasonable choices of splitting and approximation to
the Schur complement the bounds are less than 1, indicating that the eigenvalues are
clustered away from the origin. This should lead to rapid convergence for Krylov
methods.

Varying the number of grid points per dimension, n = 1/h, gives some insight into
how the convergence of the related system (4.6) depends on h. Table 5.1 summarizes
these results. First, note that |δj | decreases with h. This leads to significant reductions
of the factors involving δj in the theorems of sections 2, 3, and 4. In particular, with
respect to Corollary 3.2 for the related system and Corollary 2.4 and Theorem 4.1
for the block-diagonal preconditioner, note that for small h the δj are nearly real.
Moreover, note that the convergence of GMRES for the related system (4.6) depends
only mildly on h. A good splitting and a reasonably accurate approximate Schur
complement seem to lead to h-independent convergence.

5.2. Incompressible Stokes with spectral collocation. We will build dis-
cretizations with polynomials of degree up to 22 for this problem. The largest system
will be of size 1241. We use an odd-even ordering for the velocity unknowns to ex-
ploit the orthogonality properties of Chebyshev polynomials and put the (1,1) block
in block-diagonal form. We use ILUT with a drop tolerance of 1e− 4 for the splitting
of the (1,1) block, and for the approximate Schur complement we use ILUT with a
drop tolerance between 1e − 3 and 1e − 5. Figure 5.5(a) shows the eigenvalues of the
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Fig. 5.5. Eigenvalues and iteration counts for the related system (4.6) from spectral discretiza-
tion of the incompressible Stokes equations with an ILUT(1e−4) splitting and an approximate Schur
complement.

related system for the largest problem, N = 22. Except for a single eigenvalue of
O(1e−2), the eigenvalues are tightly clustered around one. As expected, this leads to
rapid convergence, as shown in Figure 5.5(b). Moreover, the GMRES iteration count
for the related system with an approximate Schur complement (with the exception
of ILUT(1e− 3)) shows only modest dependence on the maximum polynomial degree
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N . Hence, even for fully asymmetric problems, our preconditioners are effective and
show the potential of scaling well to larger problems.

6. Conclusions and future work. We have proposed and analyzed variants
of indefinite preconditioners (the related system) and block-diagonal precondition-
ers for the D �= 0 case, including the use of approximate Schur complements. We
have illustrated their performance in terms of convergence, eigenvalue perturbations,
and eigenvalue bounds using well-known model problems. Further analysis should
help tighten the eigenvalue bounds, in particular using the consistency property of
matrix norms less. We also aim to specialize our methods to particular problems.
We are currently exploring applications from metal deformation, porous media flow,
optimization, and electromagnetics.
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STABILITY PROPERTIES OF THE PERONA–MALIK SCHEME∗
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Abstract. The Perona–Malik scheme is a numerical technique for denoising digital images
without blurring object boundaries (edges). In general, solutions generated by this scheme do not
satisfy a comparison principle. We identify conditions under which two solutions initially ordered
remain ordered, and we state (restricted) comparison principles. These allow us to study stability
properties of the scheme. We also explore what these results say in the limit as the discretization
size goes to 0.

Key words. computer vision, nonlinear diffusion, Perona–Malik equation

AMS subject classifications. 65M12, 68U10

DOI. 10.1137/S0036142903424817

1. Introduction. Denoising is a fundamental procedure in digital image pro-
cessing and an essential tool in many computer vision applications such as edge de-
tection and segmentation. Its goal is to estimate a clean image from a given cor-
rupted one. Mathematically, a two-dimensional grayscale image can be represented
as a function f(x) mapping a domain D in the plane (usually a rectangle, representing
the computer screen) to the unit interval [0, 1]. The value of the function f at a given
point x ∈ D then represents the grayscale intensity (brightness) of the pixel found at
that location: for instance, 0 can represent black, and 1 white. Image denoising tries
to reduce, usually by some averaging operation, the rapid oscillations in f that are
due to the presence of noise.

Partial differential equation (PDE) based image denoising models have enjoyed
a great deal of success and have become very popular in the field. In this approach,
the given noisy image f is taken to be the initial condition for some parabolic PDE,
which is solved for a length of time chosen by the user. The solution at this later
time is then taken to be the denoised version of the image. One of the first and most
elementary denoising techniques, namely, convolution of the image by a Gaussian
kernel, can be interpreted this way: it is the solution of the standard heat equation
with the original noisy image taken as the initial condition, where the variance of the
Gaussian kernel used is related to the length of time for which the PDE is solved.
Although this is an effective denoising technique, it has the important disadvantage
of blurring boundaries of objects (edges) in the image, where the function f has large
gradients or a discontinuity. From an applications point of view, what is desired is a
denoising method that can preserve sharp object boundaries.

In their seminal papers [6, 7], Perona and Malik proposed a numerical scheme
for edge preserving image denoising that appears to be the finite difference discretiza-
tion of a nonlinear diffusion equation which can become backward parabolic. The
continuous in time version of their scheme has the following form:

u̇i,j(t) = D−
1

(
Rκ

(
D+

1 ui,j

))
+ D−

2

(
Rκ

(
D+

2 ui,j

))
,(1)

∗Received by the editors July 31, 2003; accepted for publication (in revised form) December 23,
2005; published electronically July 7, 2006.

http://www.siam.org/journals/sinum/44-3/42481.html
†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 (esedoglu@

umich.edu).

1297



1298 SELIM ESEDOḠLU
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Fig. 1. Violation of comparison principle. The solution represented by the dashed line remains
in the well-posed (parabolic) regime at all times. Nevertheless, order is lost. It is very easy to
understand why this happens: The dashed line has a small enough slope to be completely in the
parabolic regime of scheme (1), so that it is evolved essentially by the heat equation toward a constant
state (its average). On the other hand, the solid line hardly evolves at all because its large gradient
in the middle is far into the “edge preserving” regime of the scheme, where such “discontinuities”
are maintained for large times by the scheme, which was designed precisely to behave as such.

where D+
m and D−

m are the standard forward and backward difference operators in the
mth coordinate direction, and the function Rκ satisfies important properties which
we explain in section 2. The indices i and j run over the pixels arranged in a two-
dimensional uniform grid. In image processing literature, it is common to use either
periodic or homogeneous Neumann boundary conditions so as to keep constant the
total intensity of the image being processed.

The motivation of Perona and Malik in proposing their method (1) was to replace
the standard heat equation with a nonlinear parabolic PDE which is designed to
suppress diffusion at regions of large gradient, since such regions are likely to contain
edges. Indeed, scheme (1) seems to be a natural discretization for the PDE

ut = (Rκ(ux))x + (Rκ(uy))y.(2)

The essence of Perona and Malik’s technique is contained in the choice of the function
Rκ(ξ); the success of the scheme in preserving sharp edges (until they disappear)
is due to this choice. But for the functions Rκ that Perona and Malik advocate in
their papers, PDE (2) becomes backward parabolic in regions where the gradient
of the solution is larger than some threshold that depends on the parameter κ. As
such, there is no well-posedness theory for this PDE. That makes it interesting to
investigate continuum limits (limits as h → 0) for scheme (1). And understanding
how the behavior of a denoising technique such as (1) depends on the discretization
step size is important since it is very common to have the same image at various
resolutions.

In this paper we state a restricted comparison principle for the semidiscrete
Perona–Malik scheme (1). We note that a restriction of the kind we consider is
necessary because the standard comparison result does not hold for scheme (1). We
illustrate this easy-to-see fact by a simple numerical example (Figure 1). Subsequently,
we apply the comparison principle to explore stability properties of the scheme at fixed
discretization step size h > 0 and also in the limit h → 0+. We also expose some
effects the precise shape of the function Rκ has on the behavior of the scheme.
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In practice, scheme (1) exhibits much better stability properties than one would
expect from backward diffusion equations [11], which are notoriously ill-posed. More-
over, it is extremely effective at its intended purpose. It has therefore become an
intriguing issue to explain the better than expected stability properties of Perona and
Malik’s technique. Some aspects of this surprisingly tame behavior have been ex-
plained by previous authors; we believe with this paper we further our understanding
of this problem.

Another interesting issue is what effects the precise shape of the nonlinear function
Rκ has on the scheme. Perona and Malik, and subsequently many other authors,
reported numerical experiments with a variety of choices (each of which conforms
to the fundamental properties we listed in section 2), and on occasion mentioned
differences in observed behavior [8]. Indeed, based on numerical experiments, even
with functions Rκ that have identical parabolicity thresholds, the behavior can still
be quite different. The results presented in this paper allow us to reveal and quantify
some differences.

2. Perona–Malik scheme. As we remarked above, it is the choice of Rκ(ξ)
that distinguishes Perona and Malik’s technique from previous techniques. In [6],
they report numerical experiments using scheme (1) with

Rκ(ξ) =
ξ

1 + ξ2/κ
and Rκ(ξ) = ξ exp

(
−ξ2

κ

)
.

Other choices used in practice include

Rκ(ξ) = ξ

(
1 +

ξ2

κ

)(β−1)

, where β ∈
(

0,
1

2

)
.

These choices share the following essential characteristics:
1. ξRκ(ξ) ≥ 0 for all ξ.
2. The parameter κ defines a positive critical value z(κ) such that

R′
κ(ξ)

{
< 0 for |ξ| > z(κ), and
≥ 0 otherwise.

(3)

3. Rκ(ξ) → 0 as |ξ| → ∞.
Figure 2 illustrates Rκ(ξ) for such a choice. The desirable properties of the Perona–
Malik scheme seem to hold in practice whenever the function Rκ(ξ) in (1) satisfies
the properties above. The results presented in this paper apply to (1) under all such
choices of Rκ(ξ).

In (2), R′
κ appears as the diffusion coefficient. Therefore, as we indicated in the

previous section, the parameter κ constitutes a threshold value: when the gradient of
grayscale intensity, D+

mui,j , is large compared to κ, (2) violates parabolicity.
Encouraged by favorable numerical results, some previous mathematical work on

the Perona–Malik technique deals with understanding whether (2) can be given a well-
posedness theory, so that the PDE (2) can be properly understood as the continuum
limit of scheme (1). The paper [5] by Kichenassamy and the paper [4] by Kawohl and
Kutev pursue this direction. The present work is drastically different from them in
spirit: we do not try to understand (2) at all; instead, we deal directly with scheme (1)
and study its properties. This is also the approach pursued in [2], where a continuum
limit for (1) is established that differs from (2).
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Fig. 2. A typical choice for the function Rh(ξ) that appears in the scheme. Here Rh(ξ) =
ξ/(1 + ξ2/h) with h = 1.

Nevertheless, we make use of ideas from the work of these previous researchers;
indeed, the motivation for this paper came from [4]. There, Kawohl and Kutev estab-
lish a restricted comparison principle for continuum solutions of (2). In this paper, we
strive to find conditions under which two discrete solutions generated by the scheme
(1) can be compared. In the end, however, we did not obtain direct discrete analogues
of Kawohl and Kutev’s results; the conditions and results in this paper are entirely
different.

Let us note that computer vision is not the only context in which Perona–Malik-
type equations and their associated issues come up. The recent paper [10] proposes
a PDE model for granular flow that has much in common with the Perona–Malik
equation and presents analysis directed at questions closely related to the ones raised
in the image denoising literature.

Finally, we must mention that there are other very successful variational, edge
preserving, image denoising techniques. One example is the total variation based image
denoising model of Rudin, Osher, and Fatemi (ROF) [9]. Unlike the Perona–Malik
scheme, the nonlinear PDE involved in this model has a well-understood theory, as
it never becomes backward parabolic (although it can degenerate). Indeed, it is well
known, for instance, that the nonlinear PDE that constitutes the essence of the ROF
model (the total variation flow) is monotone (preserves the order of solutions) without
the need for any restrictions such as the ones considered in this paper.

3. Comparison principle. We begin by introducing some notation. First, from
now on the subscript κ in Rκ will be suppressed, but it will be understood that R
comes with a parameter κ. Notice that for y �∈ {−R(z(κ)), 0, R(z(κ))}, it holds that
R(ξ) = y for exactly two distinct values of ξ: one in [−z(κ), z(κ)], and the other
in [−z(κ), z(κ)]c. We will denote by R1 and R2 the restriction of R to the domains
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[−z(κ), z(κ)] and (−z(κ), z(κ))c, respectively:

R1(ξ) := R(ξ)|[−z(κ),z(κ)] and R2(ξ) := R(ξ)|(−z(κ),z(κ))c .

Then, R1 and R2 are one-to-one functions on their respective domains (the restriction
is on the variable ξ); their inverses will be denoted R−1

1 and R−1
2 , respectively.

We will speak of the “jump set” S(φ) of a function {φi,j} defined on the grid;
with that we mean the collection of indices defined by

S(φ) :=
{
(i, j) : max

(∣∣D+
1 φi,j

∣∣ , ∣∣D+
2 φi,j

∣∣) ≥ z(κ)
}
.

Also, we adopt the terminology in [4] to say that φ is supersonic on S(φ) and subsonic
elsewhere.

Proposition 1. Let {ui,j(t)} and {vi,j(t)} be solutions generated by the Perona–
Malik scheme (1), subject to Neumann boundary conditions. Assume that

1. |D+
mvi,j(t)| < z(κ) for all (i, j), t ∈ [0, T ], and m = 1, 2, and

2. |D+
mui,j(t)| ≤ R−1

2 (R(|D+
mvi,j(t)|)) for all (i, j), t ∈ [0, T ], and m = 1, 2.

Then if {ui,j(t)} and {vi,j(t)} are strictly ordered at t = 0, they remain ordered for
all t ∈ [0, T ]; i.e.,

1. if ui,j(0) > vi,j(0), then ui,j(t) ≥ vi,j(t) for all t ∈ [0, T ], and
2. if ui,j(0) < vi,j(0), then ui,j(t) ≤ vi,j(t) for all t ∈ [0, T ].
Proof. We treat only the first case ui,j(0) > vi,j(0), the second case being com-

pletely analogous. Suppose the conclusion is false. Then there exists t0 ∈ (0, T ] such
that

ui,j(t) > vi,j(t) for all (i, j) and t ∈ [0, t0), and

uk,l(t0) = vk,l(t0) for some (k, l).

Consequently, v̇k,l(t0) − u̇k,l(t0) ≥ 0, and hence

D−
1 R

(
D+

1 vk,l(t0)
)
−D−

1 R
(
D+

1 uk,l(t0)
)

+ D−
2 R

(
D+

2 vk,l(t0)
)
−D−

2 R
(
D+

2 uk,l(t0)
)
≥ 0.

Therefore,

either D−
1 R

(
D+

1 vk,l(t0)
)
−D−

1 R
(
D+

1 uk,l(t0)
)
≥ 0(4a)

or D−
2 R

(
D+

2 vk,l(t0)
)
−D−

2 R
(
D+

2 uk,l(t0)
)
≥ 0.(4b)

Without loss of generality, assume that (4a) is true. That means that

R
(
D+

1 vk,l(t0)
)
−R

(
D+

1 uk,l(t0)
)

+ R
(
D+

1 uk−1,l(t0)
)
−R

(
D+

1 vk−1,l(t0)
)
≥ 0.(5)

But now, by hypotheses 1 and 2 of the proposition,(
R
(
D+

1 vk,l(t0)
)
−R

(
D+

1 uk,l(t0)
))(

D+
1 vk,l(t0) −D+

1 uk,l(t0)
)
≥ 0,(6a)

and (
R
(
D+

1 uk−1,l(t0)
)
−R

(
D+

1 vk−1,l(t0)
))

(6b)

×
(
D+

1 uk−1,l(t0) −D+
1 vk−1,l(t0)

)
≥ 0.

Inequality (6a) can be verified by considering the three cases R(D+
1 uk,l(t0)) ∈

[−R−1
2 (R(|D+

1 vk,l(t0))),−z(κ)), and R(D+
1 uk,l(t0))∈[−z(κ), z(κ)], and R(D+

1 uk,l(t0))
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∈ (z(κ), R−1
2 (R(|D+

1 vk,l(t0))]. Inequality (6b) can be verified by considering the anal-
ogous cases. By definition of t0, we also have

D+
1 vk,l(t0) −D+

1 uk,l(t0) = D+
1 (vk,l − uk,l) (t0) ≤ 0, and

D+
1 uk−1,l(t0) −D+

1 vk−1,l(t0) = D+
1 (uk−1,l − vk−1,l) (t0) ≤ 0.

(7)

So we get, in particular,

(
R
(
D+

1 vk,l(t0)
)
−R

(
D+

1 uk,l(t0)
))

×
(
R
(
D+

1 uk−1,l(t0)
)
−R

(
D+

1 vk−1,l(t0)
))

≥ 0.

By (5),

R
(
D+

1 vk,l(t0)
)
−R

(
D+

1 uk,l(t0)
)
≥ 0,

R
(
D+

1 uk−1,l(t0)
)
−R

(
D+

1 vk−1,l(t0)
)
≥ 0.

By (6a) and (6b) that means that

D+
1 vk,l(t0) −D+

1 uk,l(t0) ≥ 0,

D+
1 uk−1,l(t0) −D+

1 vk−1,l(t0) ≥ 0.
(8)

Finally, (7) and (8) imply that

D+
1 vj,l(t0) = D+

1 uj,l(t0) for j = k − 1, k,

and thus

vj,l(t0) = uj,l(t0) for j = k − 1, k, k + 1.

As a result, equality holds in (4a). Therefore, (4b) is also true. The same line of
reasoning we used for (4a) now gives

vk,j(t0) = uk,j(t0) for j = l − 1, l, l + 1.

Repetition of this argument (with k replaced by k± 1, l replaced by l± 1, and so on)
gives

vi,j(t0) = ui,j(t0) for all (i, j).

But then uniqueness of the solution to system (1) implies that

vi,j(t) = ui,j(t) for all (i, j) and t ≥ t0,

which proves the proposition.
Remark. Proposition 1 has been stated and proved only on a two-dimensional grid

for simplicity; the statement is true, and the proof works, with small modifications,
for any space dimension.

Remark. It is not hard to check that the analogue of Proposition 1 holds for the
discrete-in-time version of scheme (1), when forward Euler time steps are used with

time step size satisfying δt ≤ min{δx,δy}2

4 max{1,‖R′‖L∞} , with δx and δy the uniform grid sizes in

the two coordinate directions. Other statements in this paper can also be generalized
to the fully discrete version of scheme (1).
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Proposition 1 allows for comparison when one of the solutions is “smooth” (i.e.,
subsonic). In the case of one space dimension, we shall say a bit more: the next
proposition allows for the comparison of more general one-dimensional signals. Its
proof is a slight variation on that of Proposition 1. Its hypotheses will be justified
in the next section, especially through Proposition 4. And eventually, it will find
an application in section 4.3, where we will consider the behavior of scheme (1) as
h → 0+.

Proposition 2. Let {uj(t)} and {vj(t)} be one-dimensional solutions generated
by the Perona–Malik scheme (1), subject to Neumann boundary conditions. Assume
that

1. S(v(t)) = S(v(0)) := {p1, . . . , pn} ⊆ S(u(t)) for all t ∈ [0, T ],
2. |D+uj(t)| ≤ R−1

2 (R(|D+vj(t)|) for all j �∈ S(v(0)) and t ∈ [0, T ], and

3. sign(ui(0)−vi(0)) = sign(uj(0)−vj(0))(−1)k−k′ �= 0 for i ∈ {pk +1, . . . , pk+1}
and j ∈ {pk′ + 1, . . . , pk′+1}.

Then, for all t ∈ [0, T ] we have(
uj(t) − vj(t)

)(
uj(0) − vj(0)

)
≥ 0.

Proof. The conclusion is satisfied for some positive time by continuity; suppose
that it fails for the first time at t = t0 < T and at index k. Without loss of generality,
let us assume that uk(0) > vk(0). Define α : Z → {0, 1} as follows:

α(j) :=

{
1 if j ∈ S(v(0)),
0 otherwise.

By definitions of t0 and k, and by hypothesis 3, we have(
D+uk(t0) −D+vk(t0)

)
(−1)α(k) ≥ 0,(

D+uk−1(t0) −D+vk−1(t0)
)
(−1)α(k−1) ≤ 0.

(9)

Hypothesis 2 implies, as in the proof of Proposition 1, that(
R(D+uj(t)) −R(D+vj(t))

)(
D+uj(t) −D+vj(t)

)
≥ 0 if j �∈ S(v(0)).(10)

On the other hand, if j ∈ S(v(0)), then |D+uj |, |D+vj | ≥ z(κ); and since R is
decreasing on (−z(κ), z(κ))c we get(

R(D+uj(t)) −R(D+vj(t))
)(
D+uj(t) −D+vj(t)

)
≤ 0 if j ∈ S(v(0)).(11)

We can summarize (10) and (11) as(
R(D+uj(t)) −R(D+vj(t))

)(
D+uj(t) −D+vj(t)

)
(−1)α(j) ≥ 0.(12)

Furthermore, the definition of t0 implies that

u̇k(t0) − v̇k(t0) = R(D+uk(t0)) −R(D+vk(t0))

−R(D+uk−1(t0)) + R(D+vk−1(t0))

≤ 0.

(13)

But now, (9) and (12) mean that

(14)
(
R(D+uk(t0)) − R(D+vk(t0))

)
×

(
R(D+vk−1(t0)) − R(D+uk−1(t0))

)
≥ 0.
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Combined with (13), (14) implies that

R(D+uk(t0)) −R(D+vk(t0)) ≤ 0,

R(D+vk−1(t0)) −R(D+uk−1(t0)) ≤ 0.
(15)

In light of (12), these inequalities lead to the following conclusion:(
D+uk(t0) −D+vk(t0)

)
(−1)α(k)+1 ≥ 0,(

D+uk−1(t0) −D+vk−1(t0)
)
(−1)α(k−1) ≥ 0.

(16)

But then, (16) and (9) give

D+ (uj(t0) − vj(t0)) = 0 for j = k − 1, k

so that

uj(t0) = vj(t0) for j = k − 1, k, k + 1.

That, much like in the proof of Proposition 1, leads to the conclusion of the proposi-
tion.

4. Applications. The comparison principles stated and proved in the previous
section are simply tools; indeed, their hypotheses require knowledge of the solutions
involved for all time. Here, in section 4.1, we use them to state some down-to-earth
results, such as the stability property that is the content of Theorem 5. Then, in
section 4.2, we give concrete examples of how those results can be applied in practice.
Section 4.3 is devoted to exploring what these results say in the limit as h → 0+.

4.1. Stability results. We begin by recording a few simple but important prop-
erties of scheme (1) that will help us apply Propositions 1 and 2.

Lemma 3. Let {ui,j(t)} be the solution generated by scheme (1) from subsonic
initial data. Then

sup
i,j,t

|D+
mui,j(t)| ≤ sup

i,j
|D+

mui,j(0)| for each m = 1, 2.

Proof. It is easy to see that in the subsonic regime, scheme (1) satisfies a maximum
principle for difference quotients. This in turn prevents the solution from entering
the supersonic regime if the initial data is subsonic. The conclusion of the lemma
follows.

In what follows, we will often specialize to the one-dimensional version of the
Perona–Malik scheme (1), which then reduces to

u̇j(t) = D− (
Rκ

(
D+uj

))
.(17)

Next, we recall an important property of scheme (17): supersonic regions shrink in
time.

Proposition 4. Let {uj(t)} be a solution generated by scheme (17). Then
S(u(t2)) ⊆ S(u(t1)) whenever 0 ≤ t1 ≤ t2.

Proof. See [3], where it first appeared, or [2].
Remark. The conclusion of Proposition 4 is false in two dimensions: supersonic

regions can grow, as shown by the numerical experiment in Figure 3.
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Fig. 3. Jump set (or the supersonic regime) can grow in two dimensions. Here, a small “crack”
in the initial data propagates.

Our first application deals with subsonic data corrupted by low amplitude noise.
We estimate the difference between the evolutions of corrupted and uncorrupted data
in terms of the amplitude of the noise. The hypotheses of Proposition 1 involve all
t ≥ 0. We will use in our proof comparison functions that will bound, one from above
and the other from below, the solution generated from the corrupted data. As we shall
explain, these comparison functions will satisfy the hypotheses of Proposition 1 au-
tomatically for all time. Moreover, their definitions will involve only the uncorrupted
initial data.

Theorem 5. Let {φi,j} be subsonic initial data, i.e.,

M := max
i,j,m

|D+
mφi,j | < z(κ).

Let {ui,j(t)} be the solution generated by scheme (1) from {φi,j}, and let {un
i,j(t)} be

the one generated from {(φ + n)i,j}. If

max
i,j

|ni,j | <
h

2

(
R−1

2 (R(M)) −M
)
,

then

max
i,j

∣∣un
i,j(t) − ui,j(t)

∣∣ ≤ max
i,j

|ni,j | for all t ≥ 0.
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Proof. Fix a δ > 0 such that

max
i,j

|ni,j | < δ <
h

2

(
R−1

2 (R(M)) −M
)
.

The upper and lower comparison functions, which we shall denote by v−i,j(t) and v+
i,j(t),

respectively, will simply be

v±i,j(t) := ui,j(t) ± δ.(18)

Then v±i,j(t) are clearly solutions of (1). Furthermore, un
i,j(0) ∈ (v−i,j(0), v+

i,j(0)). Since

the initial condition φi,j is subsonic, by Lemma 3, ui,j(t) and therefore also v±i,j(t)
are subsonic for all time. Thus, hypothesis 1 in Proposition 1 is satisfied. Moreover,
again by virtue of Lemma 3, we have

max
i,j,m,t

|D+
mui,j(t)| = max

i,j,m,t
|D+

mv±i,j(t)| = M.(19)

Also, the inequality in hypothesis 2 of Proposition 1 is strictly satisfied at t = 0 since

|D+
mun

i,j(0)| ≤ |D+
mui,j(0)| + 2

h
max
i,j

|ni,j | < R−1
2 (R(M)) ≤ R−1

2

(
R(|D+

mui,j(0)|)
)

by our assumption on the amplitude of the noise ni,j . We will now show that in fact
hypothesis 2 is strictly satisfied for all time. Suppose not; then there exists t0 > 0
such that ∣∣D+

mun
i,j(t)

∣∣ < R−1
2

(
R
(
|D+

mui,j(t)|
))

for all (i, j), m ∈ {1, 2}, and t ∈ [0, t0), and∣∣D+
mun

k,l(t0)
∣∣ = R−1

2

(
R
(
|D+

muk,l(t0)|
))

for some (k, l) and some m ∈ {1, 2}. By (19), that means that∣∣D+
mun

k,l(t0)
∣∣ ≥ R−1

2 (R(M)) .(20)

We also have ∣∣D+
mun

k,l(t0)
∣∣ ≤ ∣∣D+

m(un − u)k,l(t0)
∣∣ +

∣∣D+
muk,l(t0)

∣∣
≤

∣∣D+
m(un − u)k,l(t0)

∣∣ + M
(21)

again by (19). Combining (20) and (21) we get

∣∣D+
m(un − u)k,l(t0)

∣∣ ≥ R−1
2 (R(M)) −M >

2δ

h
.

That means we have∣∣un
i,j(t0) − ui,j(t0)

∣∣ > δ for some (i, j) ∈ {k, k + 1} × {l, l + 1}.(22)

On the other hand, since both hypotheses of Proposition 1 are satisfied on t ∈ [0, t0),
we have

v−i,j(t) ≤ un
i,j(t) ≤ v+

i,j(t) for all t ∈ [0, t0)
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and, by continuity, also at t = t0. Combined with (18) this means∣∣un
i,j(t0) − ui,j(t0)

∣∣ ≤ δ for all (i, j),

which contradicts (22).
An immediate consequence of Theorem 5 is the following elementary corollary,

which is, unlike the theorem, one-dimensional. It tells us that a smooth one-dimensional
signal corrupted by low amplitude noise is rapidly denoised and provides an upper
bound on the denoising time.

Corollary 6. Let φj , nj , uj , u
n
j , and M be as in Theorem 5, and assume that

nj satisfies the hypothesis of that theorem. If we set

T := inf{t0 ≥ 0 : S(un) is empty for all t ≥ t0},
then we have the estimate

T ≤ 2 maxj |φj + nj |
R
(

2
h maxj |nj | + M

) .
Proof. The interesting case is when S(un(0)) is nonempty; under that assumption,

for any δ > maxj |nj | we have 2δ/h + M > z(κ). Fix an ε > 0 small enough so that

R (z(κ) − ε) > R

(
2δ

h
+ M

)
.

For k ∈ S(un(0)), let

T ε
k := inf

{
t ≥ 0 : |D+un

k (t)| = z(κ) − ε
}
.

In view of Proposition 4, we have

T < max
k

T ε
k .

So fix a k ∈ S(un(0)); without loss of generality, we may assume that D+un
k (0) > 0.

By Theorem 5,

D+un
k (t) <

2δ

h
+ M for all t ≥ 0.

Furthermore, since R is a decreasing function on [z(κ),∞), for t ∈ [0, T ε
k ] we have

z(κ) − ε ≤ D+un
k (t) <

2δ

h
+ M ⇒ R(D+un

k (t)) > R

(
2δ

h
+ M

)
.(23)

That gives

d

dt

k∑
j=1

h

(
max

j
|φj + nj | − un

j

)
= −R(D+un

k ) ≤ −R

(
2δ

h
+ M

)
,

where the inequality follows via (23) for as long as t ∈ [0, T ε
k ]. Also, since |un

k (t)| ≤
maxj |φj + nj | for all t ≥ 0, we have

2

(
max

j
|φj + nj |

)
− T ε

kR

(
2δ

h
+ m

)
≥ 0.

Letting δ → maxj |nj | from above leads to the desired inequality.

4.2. Examples. In this section, we apply the results of the previous subsection
in some practical situations.

Example 1. Take the function in Figure 4. It has maximum slope M = 4. The
Perona–Malik scheme (17) is applied using the choice
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Fig. 4. An application of the comparison principle. The corrupted initial data (which is not
subsonic) quickly becomes subsonic, and no artificial “edges” are introduced. The noise amplitude
here is 0.05, and the maximum amplitude allowed by Theorem 5 is 0.0525.

R(ξ) =
ξ

1 + ξ2

100

(24)

for the nonlinear function appearing in the scheme. According to this choice, the
threshold value of slope is z(κ) = 10. We calculate the maximum noise amplitude
allowed by Theorem 5 to be 0.0525. The corrupted signal in the example of Figure 4,
which is not subsonic, was obtained by adding noise of amplitude 0.05 to the original
signal.

The evolution shown in Figure 5 is obtained by adding a specific perturbation
of amplitude 0.06 to the original signal. We see how the comparison principle gets
violated.

Example 2. We now compare the effects of the precise shape of the function
R(ξ) on the behavior of the scheme, by using the same original image as in our first
example, but the different nonlinear function

R(ξ) = ξ exp

(
− ξ2

200

)
,(25)

which has the same threshold value of the slope as for (24) of the first example, namely,
z(κ) = 10. The maximum amplitude of noise allowed by Theorem 5 this time (for
R(ξ) given by (25)) turns out to be between 0.034 and 0.03425—significantly smaller
than that for (24).
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Fig. 5. Effects of a perturbation with a (deliberately chosen) noise of amplitude that exceeds
the maximum amplitude allowed. Here, the noise amplitude is 0.06, higher than what Theorem 5
allows, which is 0.0525. The result is an artificial “edge.”

Theorem 5 thus suggests a way to quantify the difference in stability properties
of scheme (1) with respect to the two choices of Rκ(ξ). It is easy to see that this
difference is important; we illustrate it with a numerical example: Figure 6 shows
the evolution of the original image perturbed by a (contrived) noise of amplitude 0.05
under scheme (17) using the two choices for R(ξ) given in (24) and (25). We emphasize
again that although the two choices of R are different, the value of κ in each case has
been chosen so that the critical points of the two functions (that determine boundary
of sub- and supersonic regions) are the same. However, the perturbation amplitude
0.05 is above the allowed limit for (25), and below it for (24). The evolutions can then
be seen to be very different. The perturbation used in this and the previous example
simply consisted of shifting the graph of the initial condition along x ≥ 0 by a small
amount, so as to introduce a “tear” in the middle of the graph where the gradient of
the unperturbed initial condition is largest.

4.3. Limit as h → 0+. In [2], the continuum limit of scheme (17) is investigated
with the function Rκ(ξ) given by

Rκ(ξ) = ξ

(
1 +

ξ2

κ

)(β−1)

, where β ∈
[
0,

1

2

)
.(26)
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Fig. 6. Evolution via different choices for the function Rκ. The upper left-hand figure illustrates
the initial signal and comparison functions; the initial signal was obtained from that of Example 1
(Figure 4) after modifying by a deliberately chosen perturbation. The lower left-hand figure shows
the two distinct choices for the function R(ξ) used in this example: The dashed line is the graph
of R(ξ) = ξ exp(−ξ2/200), and the solid line is the graph of R(ξ) = ξ/(1 + ξ2/100). The second
column shows the evolution of the initial image and comparison functions with R(ξ) = ξ/(1+ξ2/100)
and R(ξ) = ξ exp(−ξ2/200) (comparison functions are shown with dashed lines). For both of these
functions, z(κ) = 10.

When β ∈ (0, 1
2 ) the evolution that (17) generates is the gradient descent for the

discrete energy

Eh
u(t) :=

∑
j

hΦκ,β

(
(D+uj(t))

2
)
,(27)

where

Φκ,β(ξ) :=
κ

β

((
1 +

ξ

κ

)β

− 1

)
.(28)

The continuum limit studied in [2] is obtained by scaling the parameter κ (and hence
the threshold point z(κ)) with respect to the discretization step size h as follows:

κ(h) = h(2β−1)/(1−β) ⇒ z(h) :=
1√

1 − 2β
h(2β−1)/(2−2β).(29)

Such scalings were studied previously in the stationary setting by Chambolle in [1] to
obtain interesting continuum limits for discrete energies similar to (27); the approach
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taken in [2] follows Chambolle’s lead in adjusting the threshold z with respect to
the grid size h but concerns the time dependent problem. The resulting evolution is
defined for piecewise smooth one-dimensional signals; it takes place on a domain that
changes at discrete times and is described as follows.

For a given piecewise smooth initial data φ : [0, 1] → [0, 1] with jump discontinu-
ities at p1, . . . , pN ∈ (0, 1), we solve the linear heat equation ut = uxx on the domain
(0, 1)−{p1, . . . , pN}, subject to homogeneous Neumann boundary conditions at x = 0
and x = 1, and to the nonlinear boundary conditions

ux(p±j , t) =
(
u(p+

j , t) − u(p−j , t)
) ∣∣u(p+

j , t) − u(p−j , t)
∣∣2β−2

(30)

at the discontinuity points. The condition (30) becomes singular whenever one of
the discontinuities, say, the one at pj, heals (i.e., when u(p+

j , t) = u(p−j , t)); at such
special times, we merge the two intervals (pj−1, pj) and (pj , pj+1) into one longer
interval (pj−1, pj+1) and continue the evolution according to the heat equation on the
new (and smaller) collection of intervals.

The claim is that the numerical solutions generated by scheme (17) converge,
as h → 0, to the continuum evolution described above, provided that the threshold
z(κ) is scaled with respect to h according to formula (29), and that the approximate
(discrete) initial data φh converge to the continuum data φ in some suitable sense.
The proof in [2] for this statement involves a number of technical hypotheses. One of
the most restrictive among them requires the “jump sets” of φhand φ to be compatible:
it is assumed that S(φh) and {p1, . . . , pN} are in one-to-one correspondence.

A discussion of the most general conditions under which convergence takes place
would be very technical and out of place. But, as an application of Proposition 2,
we will show that under suitable hypotheses, the jump sets S(φh) of the approximate
initial data become compatible with {p1, . . . , pN} after an arbitrarily small initial
interval of time. To that end, let {hn}∞n=1 be a sequence of positive numbers such that
hn → 0 as n → ∞, and let xhn

j denote the grid points for the uniform discretization

size hn. Assume that a sequence φhn of discrete initial data satisfies

lim
n→∞

max
j

∣∣∣φhn
j − φ(xhn

j )
∣∣∣ = 0.

Then we have the following result.
Theorem 7. Let {uhn(t)}n be the discrete solutions generated from {φhn}n by

scheme (17), where R is given by (26) and κ is scaled as in (29). Then, given any
ε > 0, there exists K ∈ N such that for any n > K the following property holds at
some t ∈ [0, ε) :

|D+uhn
j (t)| ≥ z(κ) only if {p1, . . . , pN} ∩ [xhn

j , xhn
j+1] is nonempty.

Proof. The jump sets of initial data φhn can be much larger than that of φ;
the idea is to construct comparison functions ψn,± whose jump sets precisely match
{p1, . . . , pN}, and then compare using Proposition 2. We first define

M := max
i

max
x∈(pi,pi+1)

|φ′(x)| , m := min
i

∣∣φ(p+
i ) − φ(p−i )

∣∣ ,
S̃n :=

{
j ∈ N :

∣∣∣D+φhn
j

∣∣∣ ≥ m

2hn

}
, α(j) := 


{
i ∈ S̃n : i < j

}
.

Convergence of the approximate initial data φhn to φ uniformly on the grid implies
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that for large enough n we have

j ∈ S̃n ⇒ pi ∈ [xj , xj+1] for some i, and

pi ∈ [xj , xj+1] ⇒ {j, j + 1} ∩ S̃n �= ∅.
(31)

For δ ∈ (0, m
4 ), we construct the pair of comparison functions ψn,±(t) via scheme (17)

from the following initial data:

ψn,±
j (0) = φ(xhn

j ) ± δ(−1)α(j).

Then, ψn,±(0) satisfy the following properties:

S
(
ψn,±(0)

)
= S̃

(
φhn

)
,(32a)


S(ψn,±(0)) = N , and(32b)

sup
n

Ehn

ψn,±(0) < ∞.(32c)

Furthermore,

lim sup
n→∞

max
j 	∈S(ψn,±)

∣∣D+ψn,±∣∣ = M < ∞.(32d)

We recall a few points from [2]: First, by virtue of property (32c), the evolutions
{ψn,±(t)}n are Hölder continuous in time with values in L∞ of space, uniformly in n.
Moreover, the difference quotients of ψn,±(t) satisfy the maximum principle on the
complements of their jump sets, while the jump sets remain constant. In light of these
comments and of Proposition 4, we can determine a T > 0 so that for all t ∈ [0, T ]
the following hold:

S(ψn,±(t)) = S(ψn,±(0)),(33a)

max
j 	∈S(ψn,±)

∣∣D+ψn,±(t)
∣∣ ≤ 2M.(33b)

The dependence of κ on hn, as prescribed in (29), implies that

C := lim inf
n→∞

hnR
−1
2 (R(2M)) > 0(33c)

so that, by (33b) for large enough n,

R−1
2

(
R(D+ψn,±

j (t))
)
>

C

2hn
for all j �∈ S

(
ψn,±
j (0)

)
and t ∈ [0, T ].(33d)

Choose δ < C/4. For large enough n, we will certainly have

(−1)α(j)ψn,−
j (t) < uhn

j (t) < (−1)α(j)ψn,+
j (t)(33e)

for some positive time. Then (32a), (33a), and (33e) verify hypotheses 1 and 3 of
Proposition 2 for positive time. Meanwhile, (33d), (33e), and the choice of δ verify
hypothesis 2 of Proposition 2 at t = 0. But as in the proof of Theorem 5, since (33d)
holds for all t ∈ [0, T ], these are sufficient to ensure that the three hypotheses of
Proposition 2 are satisfied for all t ∈ [0, T ] and lead to the conclusion that we want:

(−1)α(j)ψn,−
j (t) ≤ uhn

j (t) ≤ (−1)α(j)ψn,+
j (t) for all t ∈ [0, T ].(34)
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At this stage, it is possible to repeat the proof of Corollary 6 to get an estimate of
how quickly jumps of height less than 2δ vanish; the upper bound one obtains goes
to 0 when we send first n → ∞ and then δ → 0.

Remark. In some sense, Theorem 7 says that given an initial piecewise smooth
signal corrupted by noise (i.e., a signal with a few large and many small jumps), the
Perona–Malik scheme denoises the signal by quickly removing the small jumps and
maintaining the large ones. This stability property hinged on inequality (33c) in our
proof, and is a result of the choice of the constitutive function (26) and scaling (29).
It is in contrast to the different function and scaling considered in [3] that lead to a
different continuum limit for which such a stability property is not to be expected.

Remark. As h gets smaller, the hypotheses of the discrete comparison principles
discussed in this paper get more restrictive. In fact, if h is sent to 0 while κ is fixed, we
arrive at the Perona–Malik PDE (2), to which our arguments do not extend. However,
scaling (29) implies that z(h) → ∞ as h → 0+ (albeit at a slower rate than 1/h).
This allows for some form of the restricted comparison principle to be maintained in
the limit; it allowed us to state Theorem 2, which concerns a continuum evolution.

Acknowledgment. The author would like to thank his former advisor Robert
V. Kohn for his continuing attention and encouragement.
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MATRIX-FREE INTERPOLATION ON THE SPHERE∗

M. GANESH† AND H. N. MHASKAR‡

Abstract. We study a subspace of bivariate trigonometric polynomials for interpolating func-
tions on the sphere. We give an explicit construction for a system of interpolation nodes, and the
corresponding basis for this space, that allows a (discrete) fast Fourier transform-type formula for the
interpolant. We prove that the uniform norm of our interpolation operator is of the order (logM)2,
where M is the number of interpolation points. We also construct a minimal quadrature rule for
our space (with a number of points equal to the dimension of the space), and describe an associated
interpolation operator.
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AMS subject classifications. 42A15, 65D32, 33C55

DOI. 10.1137/050624005

1. Introduction. Approximation of differentiable functions on the sphere and
analysis of the error in the uniform norm are important ingredients for solving partial
differential equations on spherical geometries [4, 5, 6]. Advances in approximation
theory on the sphere are required, for example, to measure earth’s atmospheric flow
and gravitational potential, to simulate sound waves scattered by spherical geome-
tries, to identify the shape of the scattering objects, and for image reconstructions in
cosmology.

One popular strategy for approximation of functions is interpolation. Construc-
tion of an interpolatory approximation to an unknown function f defined on a set Ω
consists of (i) designing a set of nodes xj ∈ Ω and a class of functions φj defined on
Ω, j = 1, . . . ,M , that forms a basis for a space V and (ii) computing an approximant

IMf =
∑M

j=1 aj(f)φj ∈ V such that IMf(xk) = f(xk), k = 1, . . . ,M . The matrix
A := [φj(xk)]j,k=1,...,M is called the interpolation matrix. We say that {x1, . . . , xM}
is a set of uniqueness for V if A is invertible, or equivalently, for v ∈ V , the fact
that v(xk) = 0 for k = 0, . . . ,M implies that v ≡ 0. It is clear that the vector a of
coefficients in IMf satisfies the matrix equation

Aa = [f(x1), . . . , f(xM )]
T
.(1.1)

Thus, some of the important problems in this theory are an efficient evaluation of the
coefficient vector a and an estimation of the Lebesgue constant (uniform norm) of the
operator IM , defined to be the infimum of all ΛM for which

sup
x∈Ω

|IMf(x)| ≤ ΛM sup
x∈Ω

|f(x)|.

A classical example is the interpolation on the unit circle, {eix : x ∈ [0, 2π)}. We
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define the nodes xj and the basis φj by

xj :=
2(j + N)π

2N + 1
, φj(x) :=

exp(ijx)√
2N + 1

, −N ≤ j ≤ N.

In this case (using a well-known identity for complex exponentials (see (4.1))), the

inverse of the resulting interpolation matrix Atrig is AT
trig. Hence, for a function f

defined on [0, 2π], the solution of the interpolation problem can be written explicitly
as follows:

I2N+1f(x) =

N∑
j=−N

aj(f)φj(x) =

N∑
�=−N

f(x�)KN (x, x�),(1.2)

where

aj(f) :=

N∑
�=−N

f(x�)φj(x�), −N ≤ j ≤ N, KN (x, y) =

N∑
j=−N

φj(x)φj(y).

We note that each aj(f) is the discrete Fourier transform (DFT), and hence, for
a fixed x, the O(N2) summations in I2N+1f(x) can be computed with O(N logN)
operations, using the fast Fourier transform (FFT). The Lebesgue constant in this
case is O(logN).

Formulas similar to (1.2) also hold in the case of interpolation at the zeros of an
arbitrary orthogonal polynomial system on a real interval [3, section I.4]. This fact
is a simple consequence of the Gauss–Jacobi quadrature formula, which, although
based on the zeros of a polynomial of degree n, is exact for integrating polynomials
of degree 2n− 1. In Proposition 2.1 below, we will use the same arguments as in [3,
section I.4] and [10, Lemma 3] to observe that the existence of suitable quadrature
formulas implies the existence of interpolation formulas similar to (1.2). One common
feature in all these examples is that one does not need to solve a matrix equation to
solve the interpolation problem. We say that the interpolation is matrix-free when a
system of interpolation nodes and basis functions is given explicitly, so that a formula
analogous to the FFT-type representation (1.2) defines an interpolation operator.

If Ω is the unit sphere S
2 := {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}, one may think of
a simple strategy for interpolation by considering the coordinate transformation

x̂ = p(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ)T, x̂ ∈ S
2.(1.3)

We may then think of a function on S
2 as a periodic function of θ and φ, and use bi-

variate trigonometric interpolation to fit the data. One problem with this straightfor-
ward approach is that not all the bivariate trigonometric polynomials are continuous
functions of points on S

2. Several authors have considered approximation by special
classes of bivariate trigonometric polynomials and special bases for the same. We
refer the reader to [2, sections 18.26, 18.27] and references therein for an interesting
account.

In [5], a subspace of bivariate trigonometric polynomials was introduced for facil-
itating interpolation of functions on the sphere. However, a matrix-free interpolant
construction was not discussed in [5]. In this paper, we introduce a different sub-
space spanned by a basis of the form Qm

n (cos θ) exp(imφ), where Qm
n is the associated

Chebyshev or Legendre functions of degree n and order at most 2. These two bases
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lead to FFT-type matrix-free interpolation, corresponding to two systems of points
on the sphere. This fact will be proved using a suitable quadrature formula as a
consequence of Proposition 2.1.

We prove that the uniform norm of the interpolation operator, based on one
of the systems of points, is O(log2 N). The other system of points allows us to
construct quadrature formulas that are exact for integration of elements of a higher
order space with respect to the area measure on S

2. We demonstrate numerically that
the two interpolation operators provide the same degree of approximation for the ten
benchmark functions studied in [11] and references therein.

It might be interesting to compare interpolation from our spaces with that from
the classical spherical polynomials. First, we observe that our space XN defined after
Theorem 2.1 below consists of all bivariate trigonometric polynomials of coordinate-
wise degree at most N that are functions on the sphere and that do not contain
terms with the frequencies sinNθ (cf. (1.3)). Therefore, if Pn denotes the class of
all spherical polynomials of degree at most n (i.e., the class of the restrictions to S

2

of all trivariate algebraic polynomials of total degree at most n), then PN−1 ⊂ XN .
Moreover, the dimension of XN is approximately twice that of PN−1.

The case of spherical polynomial interpolation is very different from our con-
structions. Sloan [10] has proved that it is not possible to construct a matrix–free
interpolation operator onto PN for N ≥ 3 using a quadrature formula that is exact on
P2N (see [10, Lemma 3]). Several authors including Sündermann [13], Golitschek and
Light [7], Xu [17, 18], and Láın Fernández [8] have constructed point systems with
various symmetry properties for which a spherical polynomial interpolation matrix is
guaranteed to be invertible. To the best of our knowledge, the norm of the resulting
spherical polynomial interpolation operator as well as the computationally important
condition number of the interpolation matrix have not been investigated.

The problem of finding points on the sphere for which a polynomial interpolation
matrix is invertible and well conditioned has been studied computationally by Sloan
and Womersley [11, 12] by imposing such additional constraints as to minimize the
Lebesgue constant of the resulting operator or to maximize the determinant of the
interpolatory matrix. It is conjectured that the Lebesgue constant of the best qual-
ity interpolation operator constructed in [11, 12] is O(N). In view of the smoothing
properties of the surface integral operators arising in applications in elasticity the-
ory, potential theory, and scattering of sound waves from three dimensional smooth
spherical geometries, it is important for the projection operators to have Lebesgue
constants that are O(Nα) for some α < 1 [4, 5, 6].

In the next section, we discuss the construction of the space and discuss the
degree of approximation, interpolation, and quadrature in this space. Numerical
experiments are presented in section 3, and the proofs of the results in section 2 are
given in section 4.

2. Main results. In this paper, let C∗ denote the class of all continuous func-
tions on R

2 that are 2π-periodic in each of their variables, equipped with the uniform
norm ‖ ◦ ‖∗∞. The space of all continuous functions on S

2, equipped with the uniform
norm ‖ ◦ ‖∞, will be denoted by C(S2). For f ∈ C(S2), let f∗(θ, φ) := f(p(θ, φ)),
where p(θ, φ) are the polar coordinates defined in (1.3). It is clear that f ∈ C(S2) if
and only if f∗ ∈ C∗, and f∗ satisfies the following symmetry conditions:

f∗(−θ, φ + π) = f∗(θ, φ), θ, φ ∈ R,(2.1)
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and

f∗(0, φ), f∗(π, φ) are independent of φ.(2.2)

We will denote by C◦ the subspace of C∗ comprising of functions satisfying the above
two conditions. If g ∈ C◦, there exists a unique f ∈ C(S2) such that g = f∗. We
will write f = g◦. For integer N ≥ 2, the space HN denotes the class of all bivariate
trigonometric polynomials of order at most N ; i.e., the span of {ei�θeimφ}|�|,|m|≤N .
The space of all univariate algebraic polynomials of degree at most N will be denoted
by ΠN .

Our first objective is to obtain a detailed description of C◦ ∩ HN .
Theorem 2.1. Let N ≥ 0 be an integer. We have T ∈ C◦ ∩ HN if and only if

(2.3)

T (θ, φ) = S0(cos θ) + sin2 θ
∑

|�|≤N, � �=0

� even

Q�(cos θ) exp(i�φ) + sin θ
∑
|�|≤N

� odd

R�(cos θ) exp(i�φ)

= L(cos θ) + sin2 θ
∑
|�|≤N

� even

Q�(cos θ) exp(i�φ) + sin θ
∑
|�|≤N

� odd

R�(cos θ) exp(i�φ),(2.4)

where S0 ∈ ΠN , L ∈ Π1, and for |�| ≤ N , Q� ∈ ΠN−2, R� ∈ ΠN−1.
In this paper, we are interested in the spaces

X ∗
N = {T ∈ C◦ ∩ HN : T satisfies (2.3) with R� ∈ ΠN−2},(2.5)

XN = {T ◦ : T ∈ X ∗
N}.

Thus, XN comprises those T ◦ for which the terms corresponding to sinNθ are absent
from the expansion of T . It is easy to see from (2.5) and (2.4) that the dimension of
XN is given by

dN := 2 + (N − 1)(2N + 1) = 2N2 −N + 1.(2.6)

If P ∈ PN−1, then P ∗ ∈ HN−1 ∩C◦. Therefore, PN−1 ⊂ XN . The dimension of PN−1

is N2, which is slightly more than half the dimension of XN . This is partly because
XN consists of polynomials with coordinatewise degree at most N , rather than total
degree at most N , but clearly, XN contains many elements which are not spherical
polynomials of any degree.

Next, we describe the construction of a matrix-free interpolation scheme for the
space XN . Before launching into the details of these constructions, we formulate
in an abstract setting a proposition that shows a close connection between minimal
quadrature formulas and interpolation. If Ω is a nonempty set, and V is a vector
space of functions on Ω, we recall that a subset C ⊆ Ω is a set of uniqueness for V
if P ∈ V and P (x) = 0 for all x ∈ C imply that P ≡ 0. The following proposition
summarizes standard constructions in the theory of interpolation at the zeros of or-
thogonal polynomials on a real interval [3, section I.4] and appears in essence also as
[10, Lemma 3].

Proposition 2.1. Let d ≥ 1 be an integer, Ω be a set containing at least d
elements, V be a d-dimensional vector space of functions on Ω, C = {x1, . . . , xd} ⊆ Ω
be a set of uniqueness for V , and w1, . . . , wd > 0. Let {Φ1, . . . ,Φd} be an orthonormal
basis for V with respect to the inner product

〈P,Q〉 =

d∑
k=1

wkP (xk)Q(xk),
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and

K(x, y) :=

d∑
k=1

Φk(x)Φk(y).

Then

w−1
k =

d∑
j=1

|Φj(xk)|2, k = 1, . . . , d.(2.7)

If Y := {y1, . . . , yd} ⊂ C and

g(Y, x) :=

d∑
k=1

wkykK(x, xk),(2.8)

then g(Y) is the unique element of V satisfying g(Y, xj) = yj, j = 1, . . . , d.
We note that K(◦, ◦) is the reproducing kernel of (V, 〈◦, ◦〉), and that for any

f ∈ V , the interpolant g({f(xk)}k=1,...,d, x) is just 〈f,K(◦, x)〉 = f(x).
We now describe our matrix-free constructions for interpolation from the space

XN . In what follows, we will assume that N ≥ 2 and write

N0 = N, Nm = N − 2 for m �= 0.(2.9)

First, we describe an orthonormal basis for XN . In the remainder of this section, let
Pn denote the Legendre polynomial of degree n, normalized so that Pn(1) = 1. The
associated Legendre function of degree n and order m is defined by

Pm
n (x) := (1 − x2)m/2 dm

dxm
Pn(x).(2.10)

We recall that the classical spherical harmonics are defined by

Y m
n (p(θ, φ)) := αm

n P |m|
n (cos θ) exp(imφ), |m| ≤ n,(2.11)

where the Condon–Shortley phase αm
n is given by

αm
n :=

⎧⎨
⎩ (−1)m

√
2n+1
4π

(n−m)!
(n+m)! if m ≥ 0,

(−1)mα
|m|
n if m < 0.

(2.12)

The polynomials {Y m
n : n = 0, . . . , N, |m| ≤ n} form an orthonormal basis for the

space PN of all spherical polynomials of degree N , are eigenfunctions of the Laplace–
Beltrami operator, and play a very important role in the theory of functions on the
sphere. Following the representation (2.3), we define

Gm
n (p(θ, φ)) :=

⎧⎪⎨
⎪⎩

Y 0
n (p(θ, 0)) if m = 0,

Y 1
n+1(p(θ, 0)) exp (imφ) if m is odd,

Y 2
n+2(p(θ, 0)) exp (imφ) if m is even,m �= 0.

(2.13)

Using (2.5) and (2.3), it is not difficult to check that {Gm
n : n = 0, . . . , Nm, |m| ≤

N} is an orthonormal basis for XN :∫
S2

Gm
n (p(θ, φ))Gm′

n′ (p(θ, φ))d(p(θ, φ)) = δ(n,m),(n′,m′),(2.14)
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where d(p(θ, φ)) is the area element of S
2, given by sin θdθdφ. They satisfy the

following differential equations on S
2 and in the unit ball in R

3, where Δ∗ denotes
the Laplace–Beltrami operator, and Δ denotes the Laplacian in three variables.

(Δ∗ + n(n + 1))Gm
n (p(θ, φ)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if m = 0,

1 −m2

sin2(θ)
Gm

n (p(θ, φ)) if m is odd,

4 −m2

sin2(θ)
Gm

n (p(θ, φ)) if m is even,m �= 0,

(2.15)

Δ (rnGm
n (p(θ, φ))) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if m = 0,

1 −m2

r2 sin2(θ)
Gm

n (p(θ, φ)) if m is odd,

4 −m2

r2 sin2(θ)
Gm

n (p(θ, φ)) if m is even,m �= 0.

(2.16)

In accordance with Proposition 2.1, we obtain a quadrature formula based on dN
points that is exact for integration of elements of X2N−1, and describe an interpolation
operator for these nodes. This construction is based on the Gauss–Lobatto quadrature
rule, given by the zeros of P 1

N (cos θ). Thus, let θ̂0 < · · · < θ̂N−2 be points on (0, π),

such that P
′

N (cos θ̂n) = 0, n = 0, . . . , N − 2, θ̂N−1 = 0, θ̂N = π, and

φ̃m :=
2(m + N)π

2N + 1
, −N ≤ m ≤ N.(2.17)

Let

Cq
N = {p(θ̂n, φ̃m) : n = 0, . . . , N − 2, |m| ≤ N} ∪ {n̂, ŝ},(2.18)

where n̂ and ŝ denote the north and south poles, respectively. We note that Cq
N

contains exactly dN elements. We define the corresponding discrete inner product by

〈f, g〉qN =
4π

N(N + 1)(2N + 1)

∑
|m|≤N

N−2∑
n=0

f(p(θ̂n, φ̃m))g(p(θ̂n, φ̃m))

[PN (cos θ̂n)]2

+
4π

N(N + 1)

{
f(n̂)g(n̂) + f(ŝ)g(ŝ)

}
.(2.19)

With

(gmn )−1 :=

⎧⎨
⎩

2 + 1/N if m = 0 and n = N,
2 − 3/(N + 2) if 0 �= m even and n = N − 2,
1 otherwise,

(2.20)

we will show in the proof of Theorem 2.2 below that the functions {√gmn Gm
n } form an

orthonormal basis for XN , orthonormalized with respect to the inner product 〈◦, ◦〉qN .
In view of Proposition 2.1, a matrix–free interpolation operator can now be defined
easily with the kernel

Kq
N (x̂, ŷ) :=

∑
|m|≤N

Nm∑
n=0

gmn Gm
n (x̂)Gm

n (ŷ).(2.21)

The following theorem summarizes some facts regarding our constructions so far.
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Theorem 2.2. Let N ≥ 2 be an integer. For T ∈ X2N−1, we have

∫
S2

T (p(θ, φ)) d(p(θ, φ)) =
4π

N(N + 1)(2N + 1)

∑
|m|≤N

N−2∑
n=0

T (p(θ̂n, φ̃m))

[PN (cos θ̂n)]2
(2.22)

+
4π

N(N + 1)
{T (n̂) + T (ŝ)} .

For f ∈ C(S2), let

GNf(x̂) :=
4π

N(N + 1)(2N + 1)

∑
|m|≤N

N−2∑
n=0

[PN (cos θ̂n)]−2

×f(p(θ̂n, φ̃m))Kq
N (x̂,p(θ̂n, φ̃m))(2.23)

+
4π

N(N + 1)
{f(n̂)Kq

N (x̂, n̂) + f(ŝ)Kq
N (x̂, ŝ)}.

Then GNf is the unique element of XN that satisfies GNf(ξ) = f(ξ) for ξ ∈ Cq
N .

We believe that our proof of (2.31) below can be adapted to show that the
Lebesgue constant of GN is O(

√
N), and we hope to report on this in the near future,

along with similar constructions for spheres embedded in Euclidean spaces of dimen-
sions higher than 3. On the other hand, we remark that a direct application of the
representation (2.23) leads only to an estimate O(N), using standard techniques as
in [14].

Next, we describe another construction for the nodes that leads to a matrix-free
interpolation operator with uniform norm O((logN)2). Let

θ̃n :=
(n + 1)π

N
, n = 0, . . . , N − 2, θ̃N−1 := 0, θ̃N := π,(2.24)

and φ̃m be defined by (2.17). For the points of interpolation, we choose the set

Ci
N :== {p(θ̃n, φ̃m) : n = 0, . . . , N − 2, |m| ≤ N} ∪ {n̂, ŝ}.

To describe a basis for XN , we recall that the formula Tn(cos θ) = cosnθ defines
a unique polynomial Tn of degree n, called the Chebyshev polynomial (of first kind).
Analogous to the associated Legendre functions, we define the associated Chebyshev
functions by

Cm
n (x) = (1 − x2)m/2 dm

dxm
Tn(x).

Our basis functions are defined by

Zm
n (p(θ, φ)) :=

⎧⎪⎨
⎪⎩

C0
n(cos θ) if m = 0,

C1
n+1(cos θ)eimφ if m is odd,

C2
n+2(cos θ)eimφ if m �= 0, m is even.

(2.25)

These functions are not orthogonal with respect to the standard L2 inner product
on S

2. However, we observe that an application of Proposition 2.1 requires only the
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orthogonality of the functions with respect to a discrete inner product based at the
points in question. Accordingly, we define

〈f, g〉N :=
2π2

N(2N + 1)

∑
|m|≤N

N−2∑
n=0

f(p(θ̃n, φ̃m))g(p(θ̃n, φ̃m))(2.26)

+
2π2

2N
{f(n̂)g(n̂) + f(ŝ)g(n̂)}.

With the normalization factors

(2.27)

(zmn,N )−1 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2π2 if m = 0, n = 0, N ,
π2 if m = 0, n = 1, . . . , N ,
(n + 1)2π2 if m odd, n = 0, . . . , N − 2,
(n + 2)4π2(1 − (n + 2)−2) if m even, m �= 0, n = 0, . . . , N − 3,
2(n + 2)4π2(1 − (n + 2)−1) if m even, m �= 0, n = N − 2,

we will show in the proof of Theorem 2.3 below that the function {√zmn Zm
n } is an or-

thonormal basis for XN with respect to this inner product. The interpolation operator
can now be described using the kernel

KN (x̂, ŷ) :=
∑

|m|≤N

Nm∑
n=0

zmn,NZm
n (x̂)Zm

n (ŷ).(2.28)

Theorem 2.3. Let N ≥ 2 be an integer, f ∈ C(S2), and

INf(x̂) :=
2π2

N(2N + 1)

∑
|m|≤N

N−2∑
n=0

f(p(θ̃n, φ̃m))KN (x̂,p(θ̃n, φ̃m))

+
π2

N
{f(n̂)KN (x̂, n̂) + f(ŝ)KN (x̂, ŝ)} .(2.29)

Then INf is the unique element of XN that satisfies INf(ξ) = f(ξ) for each ξ ∈ Ci
N .

In the next theorem, we discuss the approximation properties of the operator IN .
If V ⊂ C∗, we define

dist (f, V ) := inf
P∈V

‖f − P‖∗∞, f ∈ C∗,(2.30)

with a similar definition for dist (f, V ) when f ∈ C(S2) and V ⊂ C(S2). Throughout
this paper, c denotes a generic constant, independent of N . Its value may be different
at different occurrences, even within a single formula.

Theorem 2.4. For integer N ≥ 2 and f ∈ C(S2), we have

‖INf‖∞ ≤ c(logN)2‖f‖∞(2.31)

and

‖f − INf‖∞ ≤ c(logN)2 dist (f∗,HN−1) ≤ c(logN)2 dist (f,PN−1).(2.32)

The connection between the smoothness of f∗ and the superalgebraic convergence
of dist (f∗,HN−1) to zero has been investigated in detail in classical approximation
theory [16]. We note that since the space P

∗
N−1 corresponding to spherical polynomials

of degree at most N − 1 is contained in HN−1, dist (f∗,HN−1) ≤ dist (f∗,P∗
N−1) =

dist(f,PN−1).
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Table 1

Parameters for f5.

i yi,1 yi,2 yi,3 αi βi γi
1 0 0 1 2 5 1
2 0.932039 0 0.362358 0.5 7 1
3 -0.362154 0.619228 0.696707 -2 6 2
4 0.904035 0.279651 -0.323290 -2 5 1
5 -0.0479317 -0.424684 -0.904072 0.2 2.1 1

3. Numerical experiments. We demonstrate the quality of our interpolatory
operators by computing estimates of the uniform norm errors ‖INfi − fi‖∞ and
‖GNfi − fi‖∞, i = 1, . . . , 10, where f1, . . . , f10 are the benchmark functions on the
sphere (see [11] and references therein), defined for x̂ = (x1, x2, x3) ∈ S

2, by

f1(x̂) = x1x2x3, f2(x̂) = exp(x1), f3(x̂) = exp(x1 + x2 + x3)/10,

f4(x̂) = −5 sin(1 + 10x3), f5(x̂) =

5∑
i=1

αi exp(−βidist(x̂, ŷi)
2γi), f6(x̂) =

1

101 − 100x3
,

f7(x̂) = |x1| + |x2| + |x3|, f8(x̂) =
1

f7(x̂)
, f9(x̂) =

sin2(1 + f7(x̂))

10
,

and

f10(x̂) =

{
cos2

(
3π
2 dist(x̂,p(π/4, 5π/4))

)
if dist(x̂,p(π/4, 5π/4)) < 1/3,

0, if dist(x̂,p(π/4, 5π/4)) ≥ 1/3,

where the dist(x̂, ŷ) = cos−1(x̂ · ŷ) is the geodesic distance between two points x̂, ŷ ∈
S

2, and the parameters ŷi = (yi,1, yi,2, yi,3) and αi, βi, γi, i = 1, . . . , 5, in the test
function f5 are in Table 1. The functions fi, i = 1, . . . , 6, are analytic; f7, f8, and f9

are continuous, but not continuously differentiable, and the locally supported cosine
cap function f10 is once (but not twice) continuously differentiable function on S

2.
We computed approximations of these functions in XN , using the interpolation

operators IN and GN . For each i = 1, . . . , 10, the uniform norm errors ‖fi − INfi‖∞
and ‖fi−GNfi‖∞ were estimated by taking the maximum of errors over 12, 000 points
on the sphere.

The results in Tables 2–5 show that both INfi and GNfi provide a similar quality
of approximation of fi, i = 1, . . . , 10. The tables clearly demonstrate also that our
operators yield a better reconstruction of these functions with their various smooth-
ness properties than the (matrix-dependent) interpolatory and noninterpolatory poly-
nomial approximations of the same functions discussed in [11, pp. 222–223]. (The
functions denoted here by f5 and f6 are denoted in [11, pp. 222–223] by f6 and f5,
respectively.) We note again that the construction of the interpolatory operators
INfi, GNfi, i = 1, . . . , 10, does not require a numerical solution of any linear sys-
tem of equations. Moreover, Theorem 2.4 shows that the Lebesgue constant of IN is
O
(
(logN)2

)
.

4. Proofs.
Proof of Theorem 2.1. It is clear that any expression of the form on the right-hand

side of (2.4) is in C◦ ∩ HN . Let T ∈ C◦ ∩ HN , and

T (θ, φ) =:
∑

|�|,|k|≤N

a�,ke
ikθei�φ.
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Table 2

Error in approximation of fi by INfi, i = 1, . . . , 5.

N ‖f1 − INf1‖∞ ‖f2 − INf2‖∞ ‖f3 − INf3‖∞ ‖f4 − INf4‖∞ ‖f5 − INf5‖∞
4 1.5193e-15 1.0193e-03 5.4374e-02 1.1526e+01 7.0812e-01
8 1.5193e-15 2.1948e-08 1.9515e-05 6.7137e+00 1.3019e-01
16 1.5193e-15 8.2158e-15 2.2205e-14 7.1530e-03 2.6437e-03
32 1.5193e-15 1.5543e-14 2.2205e-14 1.0658e-13 5.9918e-07
64 1.5193e-15 4.4631e-14 2.0872e-14 2.3714e-13 2.1585e-11

Table 3

Error in approximation of fi by GNfi, i = 1, . . . , 5.

N ‖f1 − GNf1‖∞ ‖f2 − GNf2‖∞ ‖f3 − GNf3‖∞ ‖f4 − GNf4‖∞ ‖f5 − GNf5‖∞
4 1.6653e-16 1.2257e-03 6.5224e-02 1.0562e+01 7.5962e-01
8 1.6653e-16 3.4587e-08 3.0874e-05 5.6223e+00 1.0930e-01
16 1.9429e-16 5.2180e-14 1.4522e-13 5.6956e-03 2.2566e-03
32 3.6082e-16 5.4622e-14 1.2346e-13 2.2027e-13 6.4830e-07
64 3.0531e-16 1.7064e-13 5.3824e-13 6.6702e-13 1.4792e-11

Table 4

Error in approximation of fi by INfi, i = 6, . . . , 10.

N ‖f6 − INf6‖∞ ‖f7 − INf7‖∞ ‖f8 − INf8‖∞ ‖f9 − INf9‖∞ ‖f10 − INf10‖∞
8 3.4509e-01 1.0125e-02 9.6995e-02 8.0456e-03 1.0205e-01
16 1.0003e-01 5.2213e-03 5.1501e-02 4.8926e-03 1.6087e-01
32 1.0757e-02 2.9341e-03 2.6055e-02 2.5565e-03 2.3648e-03
64 1.1523e-04 1.3091e-03 1.3079e-02 9.9133e-04 2.5106e-04
128 1.3881e-08 6.5481e-04 6.5467e-03 4.9564e-04 3.6030e-05

Table 5

Error in approximation of fi by GNfi, i = 6, . . . , 10.

N ‖f6 − GNf6‖∞ ‖f7 − GNf7‖∞ ‖f8 − GNf8‖∞ ‖f9 − GNf9‖∞ ‖f10 − GNf10‖∞
8 3.8245e-01 1.0690e-02 1.0331e-01 8.4990e-03 1.5496e-01
16 1.3193e-01 5.7501e-03 5.6980e-01 5.0567e-03 2.7559e-02
32 1.2847e-02 2.9679e-03 2.9636e-02 2.5629e-03 6.4724e-03
64 1.2910e-04 1.4640e-03 1.4645e-02 1.1080e-03 8.3897e-04
128 1.4840e-08 7.2705e-04 7.2712e-03 5.5022e-04 1.8309e-04

Then, recalling that for integers k ≥ 0, cos kθ and sin kθ/ sin θ are polynomials in
cos θ of degree k and k − 1, respectively, we obtain

T (θ, φ) = (1/2)(T (θ, φ) + T (−θ, φ + π))

=
∑

|�|,|k|≤N

a�,k
eikθ + (−1)�e−ikθ

2
ei�φ

=
∑
|�|≤N

� even

N∑
k=0

a�,k cos kθei�φ + i
∑
|�|≤N

� odd

N∑
k=1

a�,k sin kθei�φ

=
∑
|�|≤N

� even

S�(cos θ)ei�φ + sin θ
∑
|�|≤N

� odd

R�(cos θ)ei�φ,

where S� ∈ ΠN and R� ∈ ΠN−1, |�| ≤ N . There exist Q� ∈ ΠN−2, L� ∈ Π1 such that
S�(cos θ) = (1−cos2 θ)Q�(cos θ)+L�(cos θ). Since T (0, φ) and T (π, φ) are independent
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of φ, we have S�(±1) = 0 if � �= 0. Therefore, L� = 0 for |�| ≤ N , � even, and
� �= 0.

Proof of Proposition 2.1. Let A = [aj,k] be the collocation matrix defined by
aj,k = Φk(xj). Since C is a set of uniqueness, A is invertible. Also, the orthonormality

of {Φk : k = 1, . . . , d} is equivalent to the statement that ATDA = I, where

D = diag [w1, . . . , wd]. This leads to ATD = A−1, and D−1 = AAT . This is (2.7).

With y = [y1, . . . , yd]
T
, and b(x) = [Φ1(x), . . . ,Φd(x)]

T
, we have

g(Y, x) = b(x)TATDy = b(x)TA−1y.

This completes the proof.
The next lemma describes some sets of uniqueness for XN .
Lemma 4.1. Let N ≥ 2 be an integer, θ0, . . . , θN−2 be distinct points in (0, π),

and θN−1 = 0, θN = π, and φm, |m| ≤ N , be distinct points on [0, 2π). Then the set

C = {p(θn, φm) : n = 0, . . . , N − 2, |m| ≤ N} ∪ {n̂, ŝ}

consists of dN distinct elements and is a set of uniqueness for XN .
Proof. Let T ∈ X ∗

N , and for |�| ≤ N , Q�, R� ∈ ΠN−2, Q0 ∈ ΠN be found so that

T (θ, φ) = Q0(cos θ) + sin2 θ
∑

|�|≤N, � �=0

� even

Q�(cos θ) exp(i�φ) + sin θ
∑
|�|≤N

� odd

R�(cos θ) exp(i�φ),

and T ◦(p(θn, φm)) = 0, n = 0, . . . , N , |m| ≤ N . For any n, T (θn, ◦) is a trigonometric
polynomial of degree at most N . Since this polynomial has 2N + 1 distinct zeros,
{φm}|m|≤N , it must be identically zero. This yields Q0(cos θn) = 0 for n = 0, . . . , N ,
and Q�(cos θn) = R�(cos θn) = 0, n = 0, . . . , N − 2, � �= 0. Since Q0 ∈ ΠN and
Q�, R� ∈ ΠN−2 for � �= 0, this implies that each of these polynomials is identically
equal to zero. Thus, T ≡ 0, and hence, T ◦ ≡ 0.

We are now in a position to prove Theorems 2.2 and 2.3. We observe that for any
integer M ≥ 1, and integer k,

1

M

M−1∑
m=0

exp(2πikm/M) =

{
1 if k = 0 mod M ,
0 otherwise.

(4.1)

In particular,

∫ 2π

0

eikφdφ =
2π

M

M−1∑
m=0

exp(2πikm/M), |k| ≤ M − 1.(4.2)

Proof of Theorem 2.2. It is well known [1, (25.4.32), p. 888] that for P ∈ Π2N−1,
we have∫ π

0

P (cos θ) sin θdθ(4.3)

=
2

N(N + 1)

N−2∑
n=0

P (cos θ̂n)[
PN (cos θ̂n)

]2 +
2

N(N + 1)

{
P (cos θ̂0) + P (cos θ̂N )

}
.

(The notation in [1] is somewhat different.) The equation (2.22) follows from the
definition of the space XN and the quadrature formulas (4.2) and (4.3).



MATRIX-FREE INTERPOLATION 1325

In this proof only, we adopt the notation P 0
n for the Legendre polynomial Pn and

write

Fm
n (x) :=

⎧⎪⎨
⎪⎩

α0
n P 0

n(x) if m = 0,

α1
n+1 P 1

n+1(x) if m is odd,

α2
n+2 P 2

n+2(x) if m is even,m �= 0,

(4.4)

and we let −N ≤ m, j ≤ N , and n = 0, . . . , Nm, l = 0, . . . , Nj . Using (2.19), (2.13),
(4.4), and (4.1) we get

〈Gm
n , Gj

l 〉
q

N
= δm,j

[
4π

N(N + 1)

N−2∑
q=0

Fm
n (cos θ̂q)F

j
l (cos θ̂q)

[P 0
N (cos θ̂q)]2

]

+
4π

N(N + 1)
[Fm

n (−1)F j
l (−1) + Fm

n (1)F j
l (1)].(4.5)

Let j = m. In view of (2.9) and (4.4), Fm
n (x)Fm

l (x) is a polynomial of degree at most
2N − 1 on [−1, 1] for all l = 0, . . . , Nm, 0 ≤ n < Nm, and also for n = Nm, if m is
odd. Since the associated Legendre functions are orthonormal, (4.3) and (4.5) show
that

〈Gm
n , Gm

l 〉qN = 0 if n �= l,

〈Gm
n , Gm

n 〉qN = 1 if n �= Nm, 〈Gm
n , Gm

n 〉qN = 1 if n = Nm and m odd.

Thus, we have shown that

〈Gm
n , Gj

l 〉
q

N
= (gmn )−1δn,lδm,j(4.6)

for all n,m, l, j in question, except for the case when m is even, and n = l = Nm.
Next, let m = 0, and n = l = N . Using (4.5), (2.9), and (4.4), we have

〈G0
N , G0

N 〉qN =
2N + 1

N(N + 1)

(
N−2∑
q=0

[P 0
N (cos θ̂q)]

2

[P 0
N (cos θ̂q)]2

+ [P 0
N (−1)]2 + [P 0

N (1)]2

)

=
2N + 1

N(N + 1)
(N − 1 + 1 + 1) = 2 + 1/N.(4.7)

Finally, let m be even, m �= 0, and l = n = Nm = N − 2. In view of (4.4) and (2.12),
we see that

[Fm
n (x)]2 =

2N + 1

4π

(N − 2)!

(N + 2)!
[P 2

N (x)]2.

Since P 2
N (x) = (1 − x2) d2

dx2P
0
N (x), and P 0

N is a solution of the Legendre differential

equation [15, (4.2.1) with α = β = 0], we have P 2
N (x) = 2x d

dxP
0
N (x) − N(N +

1)P 0
N (x). Since the Gauss–Lobatto quadrature points xq := cos θ̂q ∈ (−1, 1), q =

0, . . . , N − 2, are zeros of the derivative of P 0
N , we have P 2

N (xq) = −N(N + 1)P 0
N (xq)

for q = 0, . . . , N − 2. We substitute this expression for P 2
N (xq) in (4.5), and recall

that P 2
N (±1) = 0 to obtain for even m

(4.8)

〈Gm
N−2, G

m
N−2〉

q

N
=

2N + 1

(N − 1)(N + 2)

(
N−2∑
q=0

[P 0
N (xq)]

2

[P 0
N (xq)]2

)
=

2N + 1

(N + 2)
= 2 − 3/(N + 2).
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The equations (4.6), (4.7), (4.8), and (2.20) show that {√gmn Gm
n } is a basis for

XN , orthonormalized with respect to the inner product 〈◦, ◦〉qN . Lemma 4.1 shows that
Cq
N is a set of uniqueness for XN . Therefore, the proof of Theorem 2.2 is complete in

view of Proposition 2.1.
The proof of Theorem 2.3 is very similar to that of Theorem 2.2, although the

details are somewhat different. First, we obtain an analogue of (4.3).
Lemma 4.2. Let N ≥ 1 be an integer. For P ∈ Π2N−1, we have

∫ π

0

P (cos θ)dθ =
π

N

N−2∑
j=0

P (cos θ̃j) +
π

2N
{P (cos θ̃N−1) + P (cos θ̃N )}.(4.9)

Proof. We observe that for k = 0, . . . , 2N − 1

1

N

N−2∑
j=0

cos kθ̃j +
1

2N
{cos kθ̃N−1 + cos kθ̃N}

=
1

2N

{
N−1∑
�=1

exp(πik�/N) + exp(πik(2N − �)/N)

}
+

1

2N
{cos k(0) + cos kπ}

=
1

2N

2N−1∑
�=0

exp(2πik�/(2N)) = δk,0.

This implies (4.9) when P (cos θ) = cos kθ, k = 0, . . . , 2N − 1.
In the remainder of this section, we will write

〈f, g〉iN :=
π

N

N−2∑
j=0

f(cos θ̃j)g(cos θ̃j) +
π

2N

{
f(1)g(1) + f(−1)g(−1)

}
.(4.10)

The following lemma summarizes certain properties of the associated Chebyshev func-
tions that we will need.

Lemma 4.3. Let N ≥ 2 be an integer. Then 〈Cm
n , Cm

n′〉iN = 0 if m = 0, 1, 2,
n, n′ = m, . . . , N , n �= n′. Further,

〈Cm
n , Cm

n 〉iN =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π if m = 0, n = 0, N ,
π/2 if m = 0, n = 1, . . . , N − 1,
n2π/2 if m = 1, n = 1, . . . , N − 1,
(n4π/2)(1 − n−2) if m = 2, n = 2, . . . , N − 1,
n4π(1 − n−1) if m = 2, n = N .

(4.11)

Proof. In this proof only, we introduce the polynomials

Un(cos θ) :=
sin(n + 1)θ

sin θ
, Vn(cos θ) := (1/2)U ′

n+1(cos θ).(4.12)

We note that

C0
n = Tn, C

1
n(cos θ) = n sinnθ = n sin θUn−1(cos θ), C2

n(cos θ) = 2n sin2 θVn−2(cos θ).

Further, the polynomials Un and Vn are the ultraspherical polynomials denoted in [15,

p. 80] by P
(1)
n and P

(2)
n , respectively. Therefore, using a straightforward computation
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in the case of C0
n and C1

n, and the orthogonality of {P (2)
n } in the case of C2

n, we obtain∫ π

0

Cm
n (cos θ)Cm

n′(cos θ)dθ = 0, m = 0, 1, 2, n �= n′, n = m,m + 1, . . . .(4.13)

Similarly, using [15, (4.7.15), p. 81] in the case of C2
n, we get

∫ π

0

Cm
n (cos θ)2dθ =

⎧⎪⎪⎨
⎪⎪⎩

π if n = m = 0,
π/2 if m = 0, n = 1, 2, . . . ,
n2π/2 if m = 1, n = 1, 2, . . . ,
(n4π/2)(1 − n−2) if m = 2, n = 2, 3, . . . .

(4.14)

The quadrature formula (4.9) now shows that 〈Cm
n , Cm

n′〉iN = 0 if m = 0, 1, 2, n, n′ =
m, . . . , N , n �= n′, as well as all the equations in (4.11), except for the cases m = 0,
n = N , and m = 2, n = N . The case m = 0, n = N is clear from the definitions.
Let m = 2, n = N . From the differential equation for Chebyshev polynomials, we see
that with x = cos θ,

C2
N (x) = (1 − x2)T ′′

N (x) = xT ′
N (x) −N2TN (x) = N cot θ sin(Nθ) −N2 cos(Nθ).

Thus, C2
N (±1) = 0, and C2

N (cos θ̃j) = (−1)jN2. The last equation in (4.11) is now
easy to obtain from the definitions.

Proof of Theorem 2.3. In this proof only, let

Fm
n (x) :=

⎧⎪⎨
⎪⎩

C0
n(x) if m = 0, n = 0, . . . , N ,

C1
n+1(x) if m is odd, |m| ≤ N , n = 0, . . . , N − 2,

C2
n+2(x) if m is even, |m| ≤ N , m �= 0, n = 0, . . . , N − 2.

Using (4.1) with M = 2N + 1 and the fact that Cm
n+m(±1) = 0 if m = 1, 2, we

obtain as in the proof of Theorem 2.2 that for integers |m|, |m′| ≤ N , n = 0, . . . , Nm,
n′ = 0, . . . , Nm′ ,

〈Zm′

n′ , Zm
n 〉N =

{
0, m �= m′ or n �= n′,

2π〈Fm
n , Fm

n 〉iN if n = n′, m = m′.
(4.15)

Together with (2.27) and (4.11), this shows that {√zmn Zm
n } is an orthonormal basis

for XN . Lemma 4.1 shows that Ci
N is a set of uniqueness for XN . Therefore, the proof

of Theorem 2.2 is complete in view of Proposition 2.1.
In order to prove Theorem 2.4, we need a representation for INf in (2.29) using

the Dirichlet kernels. For integer m ≥ 1, let

D∗
m(θ) =

1

2
+

m−1∑
k=1

cos kθ +
1

2
cosmθ =

sinmθ

2 tan(θ/2)
,

Dm(φ) =
∑

|k|≤m

exp(ikφ) =
sin(m + 1/2)φ

sin(φ/2)
= Dm,e(φ) + Dm,o(φ),(4.16)

where

Dm,e(φ) =
∑

|2k|≤m

exp(2kiφ) =
1

2
{Dm(φ) + Dm(φ + π)},

Dm,o(φ) =
∑

|2k+1|≤m

exp((2k + 1)iφ) =
1

2
{Dm(φ) −Dm(φ + π)}.
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We note that

D∗
N (θ̃j − θ̃k) = Nδj,k, DN (φ̃m − φ̃�) = (2N + 1)δ�,m.(4.17)

Lemma 4.4. For f ∈ C(S2), we have

(4.18)

INf(p(θ, φ))

=
1

N(2N + 1)

N−2∑
j=0

∑
|m|≤N

f(p(θ̃j , φ̃m)){(D∗
N (θ − θ̃j) + D∗

N (θ + θ̃j))DN,e(φ− φ̃m)

+ (D∗
N (θ − θ̃j) −D∗

N (θ + θ̃j))DN,o(φ− φ̃m)}

+
1

N
{f(n̂)D∗

N (θ) + f(ŝ)D∗
N (θ − π)}.

Proof. In this proof only, we denote the right-hand side of (4.18) by T (θ, φ).
Clearly, each of the summands on the right-hand side of (4.18), and hence T , is in
HN . We observe that for all θ, φ, j = 0, . . . , N − 2, |m| ≤ N ,

(D∗
N (−θ − θ̃j) + D∗

N (−θ + θ̃j))DN,e((φ + π) − φ̃m)

= (D∗
N (θ − θ̃j) + D∗

N (θ + θ̃j))DN,e(φ− φ̃m),

and

D∗
N (−θ̃j) + D∗

N (θ̃j) = D∗
N (π − θ̃j) + D∗

N (π + θ̃j) = 0.

Hence, for j = 0, . . . , N − 2, |m| ≤ N ,

(D∗
N (θ − θ̃j) + D∗

N (θ + θ̃j))DN,e(φ− φ̃m) ∈ X ∗
N .

Similarly, for all θ, φ, j = 0, . . . , N − 2, |m| ≤ N ,

(D∗
N (−θ − θ̃j) −D∗

N (−θ + θ̃j))DN,o((φ + π) − φ̃m)

= (D∗
N (θ − θ̃j) −D∗

N (θ + θ̃j))DN,o(φ− φ̃m),

and

D∗
N (−θ̃j) −D∗

N (θ̃j) = D∗
N (π − θ̃j) −D∗

N (π + θ̃j) = 0.

Moreover,

cosN(θ − θ̃j) − cosN(θ + θ̃j) = cos(Nθ − jπ − π) − cos(Nθ + jπ + π) = 0.

Therefore, none of the terms D∗
N (θ − θ̃j) −D∗

N (θ + θ̃j) can contain a term involving
sinNθ. Thus,

(D∗
N (θ − θ̃j) −D∗

N (θ + θ̃j))DN,o(φ− φ̃m) ∈ X ∗
N .

It is clear that D∗
N (θ) and D∗

N (θ−π) are also in X ∗
N . Thus, each of the summands

on the right-hand side in (4.18) may be viewed as functions on S
2, and as such, are

in XN . Thus, T ◦ ∈ XN .
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Now, for � = 0, . . . , N − 2, |ν| ≤ N , we may use (4.17) and (4.1) to conclude that

T (θ̃�, φ̃ν)

=
1

2N + 1

∑
|m|≤N

f(p(θ̃�, φ̃m))
{
DN,e(φ̃ν − φ̃m) + DN,o(φ̃ν − φ̃m)

}
=

1

2N + 1

∑
|m|≤N

f(p(θ̃�, φ̃m))DN (φ̃ν − φ̃m) = f(p(θ̃�, φ̃ν)).

The equation (4.17) also leads to T ◦(n̂) = f(n̂) and T ◦(ŝ) = f(ŝ).
Our next lemma relates the degrees of approximation of a function f ∈ C(S2)

from XN with that of f∗ ∈ C◦ from HN .
Lemma 4.5. Let N ≥ 2 be an integer, f ∈ C(S2). Then

dist (f∗,HN ) ≤ dist (f,XN ) ≤ 5 dist (f∗,HN−1).(4.19)

Proof. The first inequality in (4.19) is obvious since XN ⊂ HN . Let T ∈ HN−1

be chosen so that ‖f∗ − T‖∗∞ = dist (f∗,HN−1). Then U(θ, φ) := (1/2)[T (θ, φ) +
T (−θ, φ + π)] satisfies (2.1), and

‖f∗ − U‖∗∞ = dist (f∗,HN−1).(4.20)

Since U satisfies (2.1), there exist S� ∈ ΠN−1, R� ∈ ΠN−2, |�| ≤ N − 1, such that

U(θ, φ) =
∑

|�|≤N−1

� even

S�(cos θ)ei�φ + sin θ
∑

|�|≤N−1

� odd

R�(cos θ)ei�φ.

For any φ ∈ R, we have

(4.21)

max

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣∣f(n̂) −

∑
|�|≤N−1

� even

S�(1)ei�φ

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣f(ŝ) −

∑
|�|≤N−1

� even

S�(−1)ei�φ

∣∣∣∣∣∣∣
⎫⎪⎬
⎪⎭ ≤ dist (f∗,HN−1).

Therefore,

|f(n̂) − S0(1)| =

∣∣∣∣∣∣∣
1

2π

∫ 2π

0

⎧⎪⎨
⎪⎩f(n̂) −

∑
|�|≤N−1

� even

S�(1)ei�φ

⎫⎪⎬
⎪⎭ dφ

∣∣∣∣∣∣∣ ≤ dist (f∗,HN−1).(4.22)

Similarly,

|f(ŝ) − S0(−1)| ≤ dist (f∗,HN−1).(4.23)

The estimates (4.21), (4.22), (4.23) lead to∣∣∣∣∣∣∣
∑

1≤|�|≤N−1

� even

S�(±1)ei�φ

∣∣∣∣∣∣∣ ≤ 2 dist (f∗,HN−1).(4.24)
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Now, let

S̃�(x) = S�(x) − S�(1)(1 + x)/2 − S�(−1)(1 − x)/2, 1 ≤ |�| ≤ N − 1, � even,

and

Ũ(θ, φ) = S0(cos θ) +
∑

1≤|�|≤N−1

� even

S̃�(cos θ)ei�φ + sin θ
∑

|�|≤N−1

� odd

R�(cos θ)ei�φ.

In view of Theorem 2.1, Ũ ∈ X ∗
N . It is easy to verify using (4.20), (4.22), (4.23), and

(4.24) that ‖f∗ − Ũ‖∗∞ ≤ 5 dist (f∗,HN−1).
Finally, we are in a position to prove Theorem 2.4.
Proof of Theorem 2.4. In this proof only, let

LN := sup
θ,φ∈R

[
1

N(2N + 1)

N−2∑
j=0

∑
|m|≤N

{∣∣D∗
N (θ − θ̃j) + D∗

N (θ + θ̃j)
∣∣|DN,e(φ− φ̃m)|

+
∣∣D∗

N (θ − θ̃j) −D∗
N (θ + θ̃j)

∣∣|DN,o(φ− φ̃m)|
}

+
1

N
{|D∗

N (θ)| + |D∗
N (θ − π)|}

]
.(4.25)

Using [9, (3.4), (3.6)], we estimate the discrete sums above by the integral norms
of the Dirichlet kernels. Well-known bounds on Dirichlet kernels (see, for example,
[5, 19]) now imply that

LN ≤ c

∫ π

−π

|D∗
N (t)|dt

∫ π

−π

{|DN,e(t)| + |DN,o(t)|} dt + c ≤ c(logN)2.

The estimate (2.31) is now clear from (4.18).
If T ∈ XN , then IN (T ) = T . Therefore, using (2.31), we obtain that for any

T ∈ XN ,

‖f − INf‖∞ = ‖f − T − IN (f − T )‖∞ ≤ ‖f − T‖∞ + c(logN)2‖f − T‖∞
≤ c(logN)2‖f − T‖∞.

This implies (2.32).

Acknowledgment. The authors thank the referees for their careful reading and
many suggestions for improving the first draft of this paper.
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A SPECTRAL ORDER METHOD FOR INVERTING SECTORIAL
LAPLACE TRANSFORMS∗
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Abstract. Laplace transforms which admit a holomorphic extension to some sector strictly
containing the right half plane and exhibiting a potential behavior are considered. A spectral order,
parallelizable method for their numerical inversion is proposed. The method takes into account the
available information about the errors arising in the evaluations. Several numerical illustrations are
provided.
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1. Introduction. In a variety of situations, the problem arises of inverting nu-
merically the Laplace transform U(z) of a given mapping of interest u(t). Roughly
speaking, it turns out that the wider the set W where U(z) can be computed, the eas-
ier the inversion is. For instance, if W is an interval (a, b) then the numerical inversion
becomes an ill-posed problem [1, 5, 6]. On the other hand, if W is the complement
of some bounded region, then the efficient Talbot method [16, 22] is at hand.

In the present paper we focus on the particular situation where W is a sector
symmetric with respect to the real axis, strictly containing the right half plane, and
we assume that U(z) exhibits a potential behavior on W . We say then that U(z)
is sectorial. Precisely, there is a renewed interest in the numerical inversion of sec-
torial mappings [7, 8, 9, 10, 13, 14, 18] mainly due to its applicability to linear,
non-homogeneous evolution equations of parabolic type (both in the context of ab-
stract IVPs and Volterra equations), as well as their discretizations in space [3, 4, 11].
In this context, the inversion approach presents several computational advantages (a
drastic reduction of the number of linear systems to be solved and two levels of par-
allelism), its main disadvantages being that the Laplace transform F (z) of the source
term must be sectorial (which in turn, as we comment below, demands the source
term to be holomorphic on a sector containing the half axis t > 0) and that it requires
evaluations of F (z) at nodes with Re z < 0. This issue is considered in [9]. Another
way to overcome these difficulties is presented in [14], where the source term is locally
approximated by holomorphic mappings with simple Laplace transforms. More re-
cently, these restrictions are overcome in [12, 17], where the ideas in the present paper
are adapted so as to provide accurate reconstructions of the traditional Runge–Kutta
approximations to the solutions of such parabolic problems. These reconstructions
require no regularity on the source term of the problem.

In the present paper we consider the issue of the numerical inversion of sectorial
mappings by itself. By definition, a holomorphic mapping taking values in a complex
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Banach space X,

U : W ⊂ C → X,

is said to be sectorial if W is the complement of some acute sector of the form

Σδ = {z ∈ C : | arg(−z)| ≤ δ}, 0 < δ <
π

2
,(1.1)

and if there exist constants M > 0 and μ ∈ R such that

‖U(z)‖ ≤ M

|z|μ , z /∈ Σδ.(1.2)

It is known that a sectorial mapping is a Laplace transform (which for μ ≤ 0
is understood in the Operational Calculus sense). In fact, let U : W → C be a
holomorphic mapping satisfying (1.1) and (1.2) for some 0 < δ < π/2, M > 0, and
μ ∈ R. For t > 0, set

u(t) =
1

2πi

∫
Γ

etzU(z) dz,(1.3)

where Γ is a simple contour, lying in W , and parametrizable by a regular mapping
S : (−∞,+∞) → C such that

lim
x→±∞

ImS(x) = ±∞ and lim
x→±∞

ReS(x)

|x| < 0.

Since the last condition implies

Re z ≤ −b|z| as z → ∞, z ∈ Γ,

for some b > 0, the integrand in (1.3) is absolutely convergent. Moreover, u(t) is
independent of the particular choice of Γ. Then, proceeding as in the proof of Theorem
2.6.1 in [2], it is easy to conclude that:

(i) u admits a holomorphic extension u(τ) to any sector of the form | arg(τ)| ≤ δ′,
with 0 < δ′ < π/2 − δ, and there ‖u(τ)‖ = O(|τ |μ−1).

(ii) If μ > 0, then U is the Laplace transform of u in the classical sense; i.e.,

U(z) =

∫ +∞

0

e−ztu(t) dt, Re z > 0.

(iii) If μ ≤ 0, then u(t) might not be integrable in the neighborhood of the origin.
However, after selecting an integer number m ≥ 1, with m + μ ≥ 1, the
previous comment shows that u is the derivative of order m of a mapping
v : (0,+∞) → X, whose Laplace transform is V (z) = U(z)/zm.

Thus, our goal is to numerically reconstruct u(t) from the knowledge of a moderate
number of evaluations of U(z) at suitable nodes z /∈ Σδ. Let us point out that, from
a practical point of view, it is essential to take into account that these evaluations are
going to be affected by errors.

Notice that in case U(z) satisfies a similar inequality,

‖U(z)‖ ≤ M

|z − ω|μ , z /∈ ω + Σδ,
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for some ω ∈ R, then, by using the shifting theorem, the inversion of U(z) is reduced

to that of a Laplace transform Ũ(z) fulfilling (1.2). Since the respective originals u(t)
and ũ(t) are related by u(t) = eωtũ(t), we can just approximate ũ(t). This is why the
analysis is restricted to the situation ω = 0, i.e., to (1.2).

Now, as in [8, 9, 10, 13, 14], we choose Γ as the branch of a hyperbola and a
parametrization S : (−∞,+∞) → C of Γ which admits a holomorphic extension to a
horizontal strip around the real axis. The numerical method we propose is simply the
truncated trapezoidal rule, applied to the definite integral arising after parametrizing
(1.3) by S, used with 2n + 1 nodes xk = kh, −n ≤ k ≤ n, and a suitable step size
h > 0. The properties of S allow us to use the ideas and results in [20, 21], where the
trapezoidal rule applied to holomorphic mappings on strips is considered. As already
noted in [8, 9, 10, 13], the fast decay of our integrand yields an improvement of the
more general estimates in [20, 21].

Very often, for instance, in the context of IVPs (see Illustration 3 in section 5),
the main computational effort of the method is due to the evaluations of U(z) at the
nodes zk = S(xk), −n ≤ k ≤ n. An important feature of the present approach is that
the same evaluations can be used to approximate u(t) at different t > 0 [7, 8, 9, 13, 16].
Accordingly, our goal is to obtain a uniform error estimate for the approximation of
u(t) on intervals of the form [t0,Λt0], with given t0 > 0 and Λ ≥ 1, rather than
at a fixed t > 0. Essentially, this was the aim in [13], whose basic estimates we
borrow. Notice also that the algorithm presents two levels of parallelism since, first,
the evaluations of U(z) at the involved nodes and, second, the evaluations of u(t) at
a selected finite set of values of t ∈ [t0,Λt0], can be carried out on different processors
[7, 8, 9, 13, 14].

In the present paper, by considering a different choice of the geometrical and scale
parameters from the one in [8, 9, 13], we improve the results there in two different
ways:

(i) We get a better error bound, which now turns out to be a genuine spectral
estimate of the form O(e−cn), instead of O(e−cn/ lnn).

(ii) We also get a weaker dependence of the exponential factor c on Λ than in
[13], since now c = O(1/ ln Λ).

This means, in practice, that with a moderate number of evaluations of U(z) we can
accurately approximate u(t) uniformly on intervals [t0, t1] with Λ = t1/t0 >> 1, say,
Λ = 50. Moreover, it is interesting to note that, for μ > 1 in (1.2), with a different
selection of parameters, we can achieve a uniform error estimate like O(e−c

√
n), for

0 ≤ t ≤ 1, by using the same quadrature nodes. This can be shown by an argument
similar to the one used in the proof of Proposition 2.7 in [9].

On the other hand, for the choice of parameters we propose, the precision ρ used in
the evaluations of U(z) at the required nodes plays a more relevant role than in [13]. In
fact, ignoring that we always have ρ > 0 would result in large actual errors for n >> 1,
as simple numerical experiments show (see Illustration 1 in section 5). This drawback
is overcome by minimizing the estimate we get for the actual error (Theorem 2), which
leads to a (ρ, n)-dependent choice of parameters. With this choice, the actual error
finally behaves for moderate n like O(e−cn), with c = O(1/ ln Λ), and for large n like
O(ρ). This optimal choice of parameters demands, of course, some information about
the size of ρ. In the absence of it, we propose an n-dependent choice of parameters for
which the actual error behaves like O(ρ+ e−cn), with c = O(1/(lnn+ ln Λ)). All the
above estimates are uniform on t0 ≤ t ≤ Λt0, with fixed t0 > 0 and Λ > 1. Moreover,
the error constants are made explicit in the analysis and turn out to be reasonable.



A SPECTRAL METHOD FOR INVERTING LAPLACE TRANSFORMS 1335

The outline of the paper is as follows. In section 2 we describe the numerical
method and show, in Theorem 1, how to achieve (i) and (ii). The propagation of
errors is studied in section 3. The choice of parameters is considered in section 4, and
four simple numerical illustrations of the theoretical results are provided in section 5.

2. The numerical method. Given δ in (1.1) and following the ideas in [13],
we select α, d > 0 such that

0 < α− d < α + d <
π

2
− δ.(2.1)

Defining

T (w) = 1 − sin(α + iw),

this mapping transforms each horizontal straight line Imw = y, −d ≤ y ≤ d, into the
left branch of the hyperbola given by(

Re z − 1

sin(α− y)

)2

−
(

Im z

cos(α− y)

)2

= 1,(2.2)

with center at (1, 0) and foci at (0, 0) and (2, 0), whose asymptotes make angles
±[π/2 − (α− y)] with the real axis. Therefore, T transforms the horizontal strip

Dd = {z ∈ C : |Im z| ≤ d}

into the region in the complex plane limited by the left branches corresponding to
y = ±d in (2.2); cf. Figure 2.1.

−2 −1 0 1 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

d

−d
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Q

−3 −2 −1 0 1

−3

−2

−1

0

1

2

3

δ

α+d

α−d

1

T(P)

T(Q)

Fig. 2.1. The horizontal strip (left) is transformed into the area limited by the left branches of
two hyperbola (right). Additionally the sector Σδ is shown.

Introducing a parameter λ > 0, the parametrization of Γ in (1.3) can be defined
as

Γ = {λT (x) : x ∈ R};
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i.e., Γ is the branch of a hyperbola corresponding to the image of the real axis under
S = λT . This results in

u(t) =

∫ +∞

−∞
Gt(x) dx , t > 0,

where Gt : Dd → X, t > 0, is the mapping

Gt(w) = − λ

2πi
exp(λtT (w))U(λT (w))T ′(w).

Once the parameters α, d, and λ have been fixed, we set xk = kh, k ∈ Z, and consider
the approximation to u(t) given by

un(t) = h

n∑
k=−n

Gt(xk), t > 0.(2.3)

The proof of the main result in [13, Theorem 2], shows that for μ = 1 in (1.2)

‖u(t) − un(t)‖ ≤ M · ϕ(α, d) · L(λt sin(α− d)) · eλt
( 1

e2πd/h − 1
+

1

eλt sinα cosh(nh)

)
,

(2.4)

where

ϕ(α, d) =
2

π

√
1 + sin(α + d)

1 − sin(α + d)
,

and L(x), x > 0, is the function

L(x) = 1 + | ln(1 − e−x)|.

Notice that L(x) is decreasing in x, L(x) ≈ | lnx|, as x → 0+, and L(x) tends to 1,
as x → +∞.

As we commented in the introduction, in many applications the computational
effort to obtain un(t) is mainly due to the evaluations of U(z) at z = λT (xk), −n ≤
k ≤ n, but these evaluations could be carried out in parallel. Another attractive
feature of (2.3) is that the same evaluations of U(z) can be used to compute un(t) for
different t > 0. In fact, as we see below, with the appropriate choice of parameters,
we can use the same evaluations of U(z) so as to have a spectral estimate

‖u(t) − un(t)‖ = O(e−cn)

uniform on intervals t0 ≤ t ≤ t1. The exponential factor c turns out to depend weakly
on the ratio Λ = t1/t0, given that c = O(1/ ln Λ).

For simplicity the next theorem is restricted to the situation μ = 1 in (1.2). The
cases μ > 1 and μ < 1 are treated in subsequent remarks.

Theorem 1. Assume that U satisfies (1.2) with μ = 1. Fixing α and d according
to (2.1), for t0 > 0, Λ ≥ 1, 0 < θ < 1, and n ≥ 1, the choice of parameters

h =
1

n
a(θ), λ =

2πdn(1 − θ)

t0Λa(θ)
,(2.5)
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with

a(θ) = arccosh
( Λ

(1 − θ) sinα

)
,

yields the uniform estimate on t0 ≤ t ≤ Λt0,

‖u(t) − un(t)‖ ≤ M · ϕ(α, d) · L(λt0 sin(α− d)) · 2εn(θ)θ

1 − εn(θ)
,(2.6)

where

εn(θ) = exp
(
− 2πd

a(θ)
n
)
.

The theorem shows, just by selecting any 0 < θ < 1, a genuine spectral order of
convergence in n of the form O(e−cn), where c = O(1/ ln Λ) (cf. [8, 9, 10, 13]).

Proof. Set σ = λt0. For t0 ≤ t ≤ Λt0, (2.4) implies the uniform bound

‖u(t) − un(t)‖ ≤ M · ϕ(α, d) · L(σ sin(α− d)) · eΛσ
( 1

e2πd/h − 1
+

1

eσ sinα cosh(nh)

)
.

Our choice of h and λ is precisely the one guaranteeing that

exp
(2πd

h

)
= exp(σ sinα cosh(nh)) =

1

εn(θ)
;

hence

1

e2πd/h − 1
+

1

eσ sinα cosh(nh)
≤ 2e−2πd/h

1 − e−2πd/h
=

2εn(θ)

1 − εn(θ)
.

The proof ends after remarking that

eΛσεn(θ) = εn(θ)θ−1εn(θ) = εn(θ)θ.

To end the section we comment, in the two following remarks, on the situation
μ 
= 1 in (1.2). We omit details in the proofs, which are completely analogous to the
one of Theorem 1.

Remark 1. Assume that U satisfies (1.2) with μ > 1. By Remark 1 in [13] we
have

‖u(t)−un(t)‖ ≤ M ·ϕ(α, d, μ) ·L(λt sin(α−d)) · eλt

λμ−1

( 1

e2πd/h − 1
+

1

eλt sinα cosh(nh)

)
,

where

ϕ(α, d, μ) =
2

π

√
1 + sin(α + d)

(1 − sin(α + d))2μ−1
.

Thus, for 0 < θ < 1, the same choice of values for h and λ as in Theorem 1 gives the
bound

‖u(t) − un(t)‖ ≤ M · ϕ(α, d, μ) · L(λt0 sin(α− d)) · λ1−μ · 2εn(θ)θ

1 − εn(θ)
,
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uniformly for t0 ≤ t ≤ Λt0. This estimate is again spectral in n, since

λ1−μ = O
((Λt0

n

)μ−1)
.

Remark 2. Assume now that U satisfies (1.2) with μ < 1. By Remark 1 in [13],
for a fixed s ∈ (0, 1), there holds

‖u(t)−un(t)‖ ≤ M ·ϕs(α, d, μ)·L(sλt sin(α−d))· eλt

t1−μ

( 1

e2πd/h − 1
+

1

esλt sinα cosh(nh)

)
,

where now

ϕs(α, d, μ) =
2

π

√
1 + sin(α + d)

1 − sin(α + d)

( 1 − μ

(1 − s)e sin(α− d)

)1−μ

.

In this situation, for θ ∈ (0, 1) we choose

h =
1

n
as(θ), λ =

2πdn(1 − θ)

t0Λas(θ)
,

where

as(θ) = arccosh
( Λ

s(1 − θ) sinα

)
.

Setting

εs,n(θ) = exp
(−2πdn

as(θ)

)
,

we get the spectral estimate

‖u(t) − un(t)‖ ≤ M · ϕs(α, d, μ) · L(sλt0 sin(α− d)) · tμ−1
0

2εs,n(θ)θ

1 − εs,n(θ)

uniformly for t0 ≤ t ≤ Λt0.

3. Error propagation. Numerical experiments (see section 5) show that for
large values of n the estimate (2.6) is no longer true in practice. The explanation
of this apparently contradictory behavior lies in the influence of the errors when
evaluating U and the elementary functions involved. For the sake of simplicity, we
consider first the case μ = 1 in (1.2). The situations μ > 1 and μ < 1 are considered
in subsequent remarks.

Let zk = λT (xk), −n ≤ k ≤ n, be the nodes used in (2.3). Clearly, in practice,
as numerical approximation to u(t) we actually obtain

ūn(t) =

n∑
k=−n

ωk(t)Uk,(3.1)

where, for −n ≤ k ≤ n, ωk(t) ∈ C and Uk ∈ X, are approximations to

− λh

2πi
exp(λtzk)T

′(xk)
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and U(zk), respectively.
To estimate the actual error ‖u(t) − ūn(t)‖ we need to make some assumptions

on the approximations used. To this end, we are going to focus on two frequent
possibilities, depending on whether we have information on absolute or relative errors
due to the evaluations. To be precise, we are going to assume that there exists ρ > 0
such that, simultaneously for all −n ≤ k ≤ n, we have either

‖U(zk) − Uk‖ ≤ ρ and ωk(t) = − λh

2πi
exp(λtzk)T

′(xk)(3.2)

or

∥∥∥∥− λh

2πi
exp(λtzk)T

′(xk)U(zk) − ωk(t)Uk

∥∥∥∥ ≤ ρ

∥∥∥∥− λh

2πi
exp(λtzk)T

′(xk)U(zk)

∥∥∥∥.
(3.3)

Situation (3.2) arises, for instance, when Uk ≈ U(zk) are provided by means
of some auxiliary routine, say, by solving a linear system, with prescribed absolute
accuracy ρ, and moreover the errors due to the evaluations of the elementary functions
involved turn out to be negligible compared to ρ. Situation (3.3) is typical when U(z)
is an elementary function that can be evaluated with relative accuracy ρ.

The next theorem yields an estimate of the actual error for these situations. We
maintain the notation introduced in Theorem 1.

Theorem 2. Assume that U satisfies (1.2) with μ = 1. Fix α, d according to
(2.1). For t0 > 0, Λ ≥ 1, 0 < θ < 1, and n ≥ 1, select the parameters

h =
1

n
a(θ), λ =

2πdn(1 − θ)

t0Λa(θ)
.

Assume also that ωk(t) ∈ C, t0 ≤ t ≤ t1, Uk ∈ X, −n ≤ k ≤ n, satisfy either (3.2) or
(3.3). Then, the actual error is estimated by

‖u(t) − ūn(t)‖ ≤ M · Φ ·Q ·
(
εεn(θ)θ−1 +

εn(θ)θ

1 − εn(θ)

)
,(3.4)

uniformly on t0 ≤ t ≤ Λt0, where either
(a) ε = ρ/(Mt0),

Φ = max

{
2

π

√
1 + sin(α + d)

1 − sin(α + d)
,

1

2π sinα

}
,

and

Q = max{2L(λt0 sin(α− d)), 2 + (2 + λt0)h}

in case (3.2) holds, or
(b) ε = ρ,

Φ =
2

π

√
1 + sin(α + d)

1 − sin(α + d)
,

and

Q = max{2L(λt0 sin(α− d)), 1/2(h + L(λt0 sinα))},

in case (3.3) holds.
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Notice that Q depends logarithmically on α, d, 1 − θ, and Λ.
The estimate (3.4) given by the theorem, with a fixed 0 < θ < 1, shows again a

spectral order of convergence O(e−cn), with c = O(1/ ln Λ), but only for moderate n,
to be more precise, as long as εn(θ) ≥ ε. On the other hand, for fixed θ, (3.4) goes
to +∞ exponentially as n → +∞. However, this apparent drawback is overcome by
selecting θ in a suitable way, as we explain in section 4.

Proof. By writing

‖u(t) − ūn(t)‖ ≤ ‖u(t) − un(t)‖ + ‖un(t) − ūn(t)‖,

and noticing that, for the corresponding Q, (2.6) implies

‖u(t) − un(t)‖ ≤ M · Φ ·Q εn(θ)θ

1 − εn(θ)
,

the proof is reduced to show that

‖un(t) − ūn(t)‖ ≤ M · Φ ·Qεεn(θ)θ−1.(3.5)

Assume first that (3.2) holds. This situation was already studied in section 5 in
[13]. As it is shown there, for t0 ≤ t ≤ Λt0, we have

‖un(t) − ūn(t)‖ ≤ λeλΛt0ρ

2π
h

n∑
k=−n

e−γ cosh xk coshxk,

where γ = λt0 sinα. By noticing that the function se−γs, s ≥ 0, attains its maximum
1/(γe) at the point s0 = 1/γ and is monotonic on the intervals [0, s0] and [s0,+∞),
it is easy to see that

h

n∑
k=−n

e−γ cosh xk coshxk ≤ h + 2h

n∑
k=1

e−γ cosh xk coshxk

≤ h +
4h

γe
+ 2

∫ +∞

0

e−γ cosh x coshx dx

≤ (γ + 2)h + 2

γ
,

whence, recalling that ε = ρ/(t0M), we get

‖un(t) − ūn(t)‖ ≤ M

2π sinα
[2 + (2 + λt0)h]eλΛt0ε.(3.6)

Using now that

eΛλt0 = εn(θ)θ−1,(3.7)

we readily obtain (3.5).
Assume now that (3.3) holds. Proceeding as in the proof of Lemma 1 and Theo-

rem 2 in [13], and denoting

ϕ(α, 0) =
2

π

√
1 + sinα

1 − sinα
,
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we get

‖un(t) − ūn(t)‖ ≤ ρMeλt

2π
h

n∑
k=−n

e−λt sinα cosh xk

∣∣∣∣T ′(xk)

T (xk)

∣∣∣∣
≤ Mϕ(α, 0)

4
ρeλth

n∑
k=−n

e−λt sinα cosh xk

≤ Mϕ(α, 0)

2
ρeλt

(
h +

∫ +∞

0

e−λt sinα cosh x dx

)

≤ Mϕ(α, 0)

2
ρeλt(h + L(λt sinα)).

Hence, using again (3.7) and the inequality ϕ(α, 0) ≤ ϕ(α, d), we deduce (3.5).
The behavior for μ 
= 1 in (1.2) is considered in the following remarks, whose

proofs are a combination of Remarks 1 and 2 and the arguments used in [13, Theorem
2]. Notice that (3.6) is independent of μ.

Remark 3. Assume that μ > 1 in (1.2) and fix 0 < θ < 1. Then, for the choice of
parameters in Theorem 2 and uniformly on t0 ≤ t ≤ Λt0, we have the following.

(a) In case (3.2) it holds that

‖u(t) − ūn(t)‖ ≤ M · Φ ·Q ·
(
εεn(θ)θ−1 + λ1−μ εn(θ)θ

1 − εn(θ)

)
,

with ε = ρ/(Mt0),

Φ = max

{
2

π

√
1 + sin(α + d)

(1 − sin(α + d))2μ−1
,

1

2π sinα

}
,

and

Q = max{2L(λt0 sin(α− d)), 2 + (2 + λt0)h}.

(b) In case (3.3) it holds that

‖u(t) − ūn(t)‖ ≤ M · Φ ·Q · λ1−μ ·
(
εεn(θ)θ−1 +

εn(θ)θ

1 − εn(θ)

)
,

with ε = ρ,

Φ =
2

π

√
1 + sin(α + d)

(1 − sin(α + d))2μ−1
,

and

Q = max{2L(λt0 sin(α− d)), 1/2(h + L(λt0 sinα))}.

Remark 4. Assume that μ < 1 in (1.2) and fix 0 < s, θ < 1. Then, for the choice
of parameters in Remark 2 and uniformly on t0 ≤ t ≤ Λt0, we have the following.
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(a) In case (3.2) it holds that

‖u(t) − ūn(t)‖ ≤ M · Φ ·Q ·
(
εεs,n(θ)θ−1 + tμ−1

0

εs,n(θ)θ

1 − εs,n(θ)

)
,

with ε = ρ/(Mt0),

Φ = max

{
2

π

√
1 + sin(α + d)

1 − sin(α + d)

( 1 − μ

(1 − s)e sin(α− d)

)1−μ

,
1

2π sinα

}
,

and

Q = max{2L(sλt0 sin(α− d)), 2 + (2 + λt0)h}.

(b) In case (3.3) it holds that

‖u(t) − ūn(t)‖ ≤ M · Φ ·Q ·
(
λ1−μεεs,n(θ)θ−1 + tμ−1

0

εs,n(θ)θ

1 − εs,n(θ)

)
,

with ε = ρ,

Φ =
2

π

√
1 + sin(α + d)

1 − sin(α + d)

( 1 − μ

(1 − s)e sin(α− d)

)1−μ

,

and

Q = max{2L(sλt0 sin(α− d)), 1/2(h + L(sλt0 sinα))}.

4. The choice of parameters. With Theorem 2 in mind, we now try to derive
a strategy for the choice of parameters. First, (3.4) shows that it is of interest to
select α away from zero and α+d away from π/2. The dependence of the actual error
on α− d is less important, since it is logarithmic.

Suppose α and d have already been chosen; then for a given n we take h and λ as
indicated in Theorem 2 and we fix 0 < θ < 1. Assume also that we have an estimation
of ρ and set ε = ρ/(Mt0) or ε = ρ as in Theorem 2. Then, since in practice we always
have ρ > 0 and hence ε > 0, it turns out that εεn(θ)θ−1 → +∞ as n → +∞. Hence,
it is clear that increasing the number of nodes might result in a worse estimate (3.4).
In fact, increasing n may result in worse approximations, as Illustration 1 in section 5
shows.

To overcome this drawback we let θ be a free parameter for the moment. Given
ε > 0 and n, after selecting α and d, neglecting the logarithmic factor Q, and taking
into account that typically εn(θ) << 1, the best thing we can do is to choose 0 < θ < 1
so as to minimize the term

εεn(θ)θ−1 + εn(θ)θ;(4.1)

i.e., we must tune θ depending on ε > 0 and n. By a direct calculation it can be proven
that the first derivative of εn(θ)θ−1 with respect to θ is increasing in θ. The same
is true for εn(θ)θ (in this case the proof, though elementary, is more difficult). We
conclude that the expression in (4.1) defines a strictly convex function of θ. Moreover,
its derivative is < 0 at 0+ and tends to +∞ as θ → 1−. Therefore, (4.1) attains its
minimum exactly for one value θε,n ∈ (0, 1), which is the one we propose to be used.
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Though it is not easy to express the dependence of θε,n on n and ε, this can be easily
done numerically (see section 5).

Since, up to logarithmic factors, the choice θ = θε,n in (3.4) is optimal, it is clear
that with this choice we get for the actual error:

(a) A spectral order of convergence O(e−cn), with c = O(1/ ln Λ), for moderate
values of n. In fact, already for any fixed 0 < θ < 1, (3.4) shows that the
error behaves like O(e−cn) as long as εn(θ) ≤ ε, i.e., for n = O(| ln ε|).

(b) The errors are not propagated. In fact, already with the nonoptimal choice

θ = 1 − 1

n
,

(3.4) reads

‖u(t) − ūn(t)‖ = O(ε + e−cn)(4.2)

uniformly on t0 ≤ t ≤ Λt0, with c = O(1/(ln Λ + lnn)). This remark tells us
that, for large values of n, the actual error saturates at level ε, as observed
in the numerical experiments (see section 5).

In the previous discussion it was essential to assume that we had some information
about ε. Notice that, even in case we do not have such information, the choice
θ = 1 − 1/n, which led to (4.2), is always available. This bound is almost spectral in
n, depends weakly on Λ, and prevents error amplification.

5. Numerical illustrations. In this section we give four numerical illustra-
tions. The first two concern elementary Laplace transforms which are assumed to be
computed with a relative error of order ρ ≈ eps, where eps stands for the machine
precision (eps = 10−16 in our computations). In the last two illustrations we do not
assume any information about the errors due to the computations of the Laplace
transforms.

Illustration 1. We first show, by means of a simple example, that for n >> 1
(2.6) fails in the presence of errors in the evaluations. To this end, we consider the
mapping u(t) = e−t, whose Laplace transform is U(z) = 1/(1 + z).

This function satisfies (1.2) for all δ > 0 and M = 1/ sin δ. We fix θ = 0.5, α =
0.7, and d = 0.6, and choose the parameters h, λ as stated in the theorem for all the
values of n. In Figure 5.1 we plot in a semilogarithmic scale the absolute actual error,
i.e.,

ln max
t∈[t0,Λt0]

‖u(t) − ūn(t)‖

versus n (recall that ūn(t) stands for the actual computed approximation to u(t);
see (3.1)). This is done for Λ = 5, 50 and t0 = 1. This figure shows that the error
decays exponentially for the first values of n, saturates near ε level, and then grows
like O(ecn).

Next, to study the behavior of the error and its estimate with respect to θ, we
repeat the previous experiment for Λ = 5, with θ = 0.5 and θ = 0.99. The actual error
and the corresponding theoretical estimate are depicted in Figure 5.2. We observe
that the value of n where the error starts growing is well predicted by Theorem 2.
Also, we see that enlarging θ results in a slower error propagation.

Finally, we tune parameters as explained in section 4. For Λ = 5, 50, in Figure
5.3 (left) we plot the optimal values of θ against n. In Figure 5.3 (right) we plot

ln max
t∈[t0,Λt0]

‖u(t) − ūn(t)‖
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0 25 50 75 100 125 150
−35

−30

−25

−20

−15

−10

−5

0

Number of nodes n

ln
(e

rr
or

)

Λ=5

Λ=50

Fig. 5.1. ln maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖ versus n for u in Illustration 1, with θ = 0.5 fixed,
α = 0.7, d = 0.6, and t0 = 1. The gray line corresponds to Λ = 50 and the black to Λ = 5.
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Fig. 5.2. Observed error (continuous) and theoretical estimate (dashed) for u in Illustration 1
with fixed θ versus n, in semilogarithmic scale. Left: For θ = 0.5. Right: For θ = 0.99. In both
cases, Λ = 5.

(continuous line) and the logarithm of the corresponding values of the theoretical
error estimate (dashed line) obtained in Theorem 2, versus n, once θ is optimal. We
maintain α = 0.7, d = 0.6, and t0 = 1.
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Fig. 5.3. Left: Optimal θ versus n. Right: Natural logarithms of maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖
(continuous) and the theoretical estimate (dashed) versus n, for u in Illustration 1. The gray lines
correspond to Λ = 50 and the black to Λ = 5.

Illustration 2. Take β = 1.5 and set

U(z) =
zβ−1

zβ + 1
;

i.e., U(z) is the Laplace transform of

u(t) = Mβ(−tβ),

where Mβ stands for the Mittag–Leffler function of order β (see [15]). Notice that
U satisfies (1.2) for any δ ∈ (π/3, π/2), with μ = 1 and M = 1/ sin(β(π − δ)).
We consider here as an exact solution the one computed with 500 nodes and take
α = π/12, d = 0.25, and t0 = 1.

This example was already considered in [13]. In order to compare the performance
of the strategy proposed in [13] with the one proposed in the present paper, we first
compute ūn(t) by selecting the parameters as in [13]. In Figure 5.4 (left) we plot in
semilogarithmic scale the theoretical estimate and actual error for Λ = 2, 5, which are
acceptable. In Figure 5.4 (right) we do the same for Λ = 50 and conclude that the
approach in [13] is not at all useful for large values of Λ. However, the corresponding
computation obtained by using the strategy in section 4 yields the plot in Figure 5.5,
which shows a satisfactory spectral order of convergence even for Λ = 50.

Illustration 3. We consider the inhomogeneous heat equation on the unit square
Ω = (0, 1)2 with zero initial value and a convective heat flux at the boundary⎧⎨

⎩
ut(t, x) = Δu(t, x) + f(x), for x ∈ Ω, t ≥ 0,
∂νu(t, x) = −u(t, x), for x ∈ ∂Ω, t ≥ 0,
u(0, x) = 0, for x ∈ Ω,

(5.1)
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Fig. 5.4. Natural logarithms of maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖ (continuous) and the theoretical
estimate (dashed) versus n, for u in Illustration 2 proceeding as in [13] for δ = π/3, t0 = 1. The
gray lines correspond to Λ = 50 and the black to Λ = 5.

where f is the indicator function of the rectangle R = [0.6, 0.8]× [0.2, 0.8], i.e., f = 1
on R and f = 0 elsewhere.

Problem (5.1) is semidiscretized in space by using linear finite elements on a
triangular grid. Denoting by Vh ⊂ L2(Ω) the space of elements and by Uh(z) the
Laplace transform of the semidiscrete solution uh(t), we get

Uh(z) =
1

z
(z − Δh)−1Phf,

with Δh : Vh → Vh the discrete Laplacian and Ph the orthogonal projection of f onto
Vh. Now, for fixed h > 0, we try to approximate uh(t) by inverting Uh(z). Notice
that, since Δh is definite negative, certainly Uh(z) satisfies (1.2) for any 0 < δ < π/2
and M = 1/ sin(δ). Notice also that, working in coordinates relative to the standard
basis of elements, Uh(z) is represented by a vector valued mapping Uh(z) satisfying

zMhUh(z) + ShUh(z) =
1

z
fh,

where Mh and Sh stand for the mass and stiffness matrices and where fh is the vector
formed by the scalar products of f with the elements of the basis. Thus, one evaluation
of U(zk) at a given node zk requires the solution of one linear system of the above
form.

In the experiment we generate a mesh, shown in the left of Figure 5.6, with 542
triangles by means of the mesh generator Triangle [19]. Linear systems are solved
using MATLAB’s sparse LU factorization UMFPACK. Since uh(t) is unknown, the
errors are estimated in the L2(Ω)-norm with respect to a reference solution ūh,500(t)
obtained with 500 nodes. In the absence of precise information about ρ, both for this
reference solution and for the rest of the approximations ūh,n(t) to uh(t), we take
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Fig. 5.5. Natural logarithm of maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖ (continuous) and the theoretical
estimate (dashed) versus n, for u in Illustration 2. The gray lines correspond to Λ = 50 and the
black to Λ = 5.
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Fig. 5.6. Left: Mesh of Ω, with the set R indicated in dark gray. Right: Temperature dis-
tribution at t = 0.5 in false-color representation (white corresponds to temperature 1 and black to
0).

θ = 1 − 1/n, as indicated in section 4. In Figure 5.7, for the parameters α = 0.7,
d = 0.6, t0 = 0.01, and θ = 1 − 1/n, we plot ln maxt∈[t0,Λt0] ‖ūh,500(t) − ūh,n(t)‖
against n for Λ = 5, 50. This plot shows the predicted behavior.

Illustration 4. We consider again the Laplace transform U(z) = 1/(1 + z) of the
exponential function u(t) = e−t as in Illustration 1. The values of α, d, and t0 are
again 0.7, 0.6, and 1, respectively.

We add, on purpose, perturbations of maximum size 10−4 to the evaluations of
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Fig. 5.7. Left: Natural logarithm of maxt∈[t0,Λt0] ‖u(t)−ūn(t)‖ (continuous) and the theoretical
estimate (dashed) versus n, for u in Illustration 3. The gray lines correspond to Λ = 50 and the
black to Λ = 5.
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Fig. 5.8. ln maxt∈[t0,Λt0] ‖u(t)− ūn(t)‖ versus n, for u in Illustration 4 with θ = 1− 1/n, α =
0.7, d = 0.6, t0 = 1, and Λ = 50. Left: Random perturbation. Right: Worst case perturbation.

U at the required nodes. Thus, we use (3.1) with

Uk = U(zk) + ηk, −n ≤ k ≤ n,

with |ηk| ≤ ρ = 10−4. Now we try to approximate u(t) without using the available
information about ρ. In this situation, as explained in section 4, we take θ = 1− 1/n.
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In fact, we compare two types of perturbations.
We first generate complex, random, independent perturbations ηk in such a way

that |ηk| and arg(ηk) are uniformly distributed on [0, 10−4] and [0, 2π], respectively.
In Figure 5.8 (left), we show the resulting actual error, which behaves much better
than predicted by (4.2). The explanation is that cancellations are likely compensating
the effects of the independent random perturbations. A finer analysis of the observed
behavior is beyond the scope of the present paper.

Second, for each −n ≤ k ≤ n, we consider the perturbation

ηk = 10−4 exp(−i arg(ωk(t0))),

with ωk(t0) defined in (3.1). These perturbations correspond to the worst possible
case in (3.2) for t = t0 = 1. Now, the resulting actual error, plotted in Figure 5.8
(right), fits quite well with (4.2).
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paper. The useful comments made by the referees during the revision process also
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[17] A. Schädle, M. López-Fernández, and C. Lubich, Fast and oblivious convolution quadra-
ture, SIAM J. Sci. Comput., 28 (2006), pp. 421–438.
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Abstract. In this paper the authors propose a numerical method for the approximate solution
of some classes of Fredholm and Cauchy integral equations including the “discrete collocation” and
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1. Introduction. This paper deals with the numerical treatment of some classes
of Fredholm and Cauchy integral equations. In the last few decades, several authors
proposed numerical methods in order to obtain polynomial approximations of the
solutions. Among them we mention [1, 4, 12, 14, 15, 16, 17, 18, 19, 32, 41, 45, 46, 47,
48], where the so-called collocation and discrete collocation methods are considered.
Such procedures essentially consist of three steps: first, look for an approximate
solution as a (weighted) polynomial; second, approximate the (Fredholm) integral by
a quadrature formula; and third, project the equation onto a finite dimensional space
of (weighted) polynomials by collocation. The stability and the convergence of the
method are proved on a finite dimensional equation equivalent to the system. But,
as a simple example shows, the uniform boundedness of the condition number of the
discrete operator does not imply the well-conditioning of the system that is crucial in
order to compute the approximate solution.

If the above-mentioned equations are considered in suitable Lp-spaces with 1 <
p < +∞, then, using Marcinkievicz bases (see [20, 21]), one can associate a well-
conditioned system of linear equations to a discrete and well-conditioned operator.
The case p = +∞ is still open and we are going to investigate it in this paper. To be
more precise, we shall consider some classes of Fredholm and Cauchy singular inte-
gral equations in a subspace of continuous functions which are related to the kernels
of the equations. Since in these spaces sequences of uniformly bounded polynomial
projections do not exist, we shall use sequences of projections {Γm}m (essentially of
Lagrange or Fourier type) such that ‖Γm‖ ∼ logm. The simple procedure showed in
section 2 (see Remark 1), constructs uniquely solvable polynomial equations whose
solutions converge as the best approximation (except for an extra log factor). Using
a suitable basis, we derive a well-conditioned linear system equivalent to the finite
dimensional equation, whose solution is the array of the coefficients of the polyno-
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mial. The error estimates are sharp and cover the ones available in the literature
(in the uniform norm). The proposed procedure includes the discrete collocation and
collocation methods.

The case of nonsingular kernels is considered in subsection 2.3. In Theorem 2.2
we show that the approximation error does not change, while the linear system is
strongly simplified.

Section 3 is devoted to the numerical treatment of the Cauchy singular integral
equations with constant coefficients and compact perturbation, having index χ ∈
{0, 1}. By regularization, we derive equivalent Fredholm equations having nonsingular
kernels which are transforms of the original kernels by means of singular operators.
Very recently it was shown in [9] that the problem is led back to the case of Fredholm
equations with nonsingular kernel. In section 4 we give the proofs of the previous
results.

2. Projection methods for Fredholm equations.

2.1. Function spaces. We are going to consider the integral equations in the
space

Cv =
{
f ∈ C0((−1, 1)) : lim

|x|→1
(fv)(x) = 0

}
,

where C0(A) is the collection of the continuous functions in A ⊂ [−1, 1] and v(x) :=
vγ,δ(x) = (1 − x)γ(1 + x)δ is a Jacobi weight. In the case γ = 0 (respectively, δ = 0)
Cv consists of all continuous functions on (−1, 1] (respectively, [−1, 1)) such that

lim
x→−1

(fv)(x) = 0
(

lim
x→1

(fv)(x) = 0
)
.

In the case γ = δ = 0, we set Cv = C0([−1, 1]). The space Cv equipped with the
norm

‖f‖Cv
:= max

|x|≤1
|(fv)(x)| =: ‖fv‖

is complete. For brevity, we shall write ‖f‖A := maxx∈A |f(x)|, A ⊆ [−1, 1].
In what follows we will also consider functions belonging to the Besov space

Br,q(v). In order to define Br,q(v) we introduce the seminorms

‖f‖γ,δ,r,q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∫ 1

0

[
Ωk

ϕ(f, t)vγ,δ

tr

]q
dt

t

) 1
q

, 1 ≤ q < +∞,

k > r > 0,

sup
t>0

Ωk
ϕ(f, t)vγ,δ

tr
, q = +∞,

(2.1)

where [10]

Ωk
ϕ(f, t)vγ,δ := sup

0<h≤t
‖(Δk

hϕf)vγ,δ‖Ih,k
,

k ∈ N, Ih,k := [−1 + 4k2h2, 1 − 4k2h2], 0 < t < 1, ϕ(x) =
√

1 − x2, and

Δk
hϕf(x) :=

k∑
i=0

(−1)i
(
k

i

)
f

(
x + hϕ(x)

(
k

2
− i

))
.
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We will set ‖f‖r,q := ‖f‖0,0,r,q.
Thus, the Besov spaces are [11]

Br,q(v) = {f ∈ Cv : ‖f‖γ,δ,r,q < +∞}, γ, δ ≥ 0, r ∈ R
+, 1 ≤ q ≤ +∞,(2.2)

and they are equipped with the norm

‖f‖Br,q(v) = ‖fv‖ + ‖f‖γ,δ,r,q.(2.3)

As previously done we will set Br,q := Br,q(v
0,0). In the case q = +∞, Br,∞(v), r > 0,

are the well-known Zygmund spaces and we will set Zr(v) := Br,∞(v), Zr := Zr(v
0,0).

In the following C denotes a positive constant which may have different values in
different formulas. We will write C �= C(a, b, . . . ) to say that C is independent of the
parameters a, b, . . . . If A,B ≥ 0 are quantities depending on some parameters, we
write A ∼ B, if there exists a positive constant C independent of the parameters of A
and B, such that

B

C ≤ A ≤ CB.

2.2. Projection methods. Now we consider the Fredholm integral equation of
the second kind

f(y) + λ

∫ 1

−1

h(x, y)f(x)vα,β(x)dx = g(y),(2.4)

where vα,β is a Jacobi weight, λ ∈ R, and h, g are given functions. Letting

(Kf)(y) = λ

∫ 1

−1

h(x, y)f(x)vα,β(x)dx,

we can rewrite (2.4) as

(I + K)f = g,(2.5)

where I denotes the identity operator.
We will consider (2.5) in Cv with γ and δ according to

max

{
0,

α

2
+

1

4

}
≤ γ < min

{
α

2
+

3

4
, 1 + α

}
,

(2.6)

max

{
0,

β

2
+

1

4

}
≤ δ < min

{
β

2
+

3

4
, 1 + β

}
,

and we state the following assumptions:

g ∈ Zr(v),(2.7)

sup
t>0

Ωk
ϕ(Kf, t)v

tr
≤ C‖fv‖, k > r > 0, f ∈ Cv.(2.8)

Note that (2.8) can be true even if the kernel h(x, y) is weakly singular. For example,
if

h(x, y) =
1

|x− y|μ , 0 < μ < 1,
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then (2.8) is true with r ≤ 1−μ (see [30, Lemma 4.1]). Obviously, if the kernel h(x, y)
belongs to the Zygmund space Zr(v) w.r.t. y, then (2.8) is automatically satisfied.

Under the assumptions (2.7)–(2.8), the solution f∗ of (2.4) (if it exists) can be
“well” approximated by polynomials. In order to show this we denote by Lα,β

m the
Lagrange projection based on the zeros of the mth orthonormal Jacobi polynomial
pm(vα,β), i.e., with F ∈ Cv,

Lα,β
m (F, x) =

m∑
i=1

lα,βi (x)F (xi), lα,βi (x) =
pm(vα,β , x)

p′m(vα,β , xi)(x− xi)
,

x1 < x2 < · · · < xm, xi = xα,β
m,i being the zeros of pm(vα,β).

By means of this projection we introduce the polynomial sequence {gm}m, with
gm = Lα,β

m (g), and the sequence of operators {Km}m, where (Kmf)(y) = Lα,β
m (Kf, y).

Obviously, for every f ∈ Cv, we have Kmf ∈ Pm−1, Pm−1 being the set of all algebraic
polynomials of degree at most m − 1. So, we are going to solve the sequence of
polynomial equations

(I + Km)fm = gm, m = 1, 2, . . . ,(2.9)

where fm ∈ Pm−1 is unknown. Denoting by λα,β
k = λk(v

α,β), k = 1, . . . ,m, the
Christoffel numbers w.r.t. vα,β , the following theorem holds.

Theorem 2.1. Assuming that Ker (I + K) = {0} in Cv, we denote by f∗ the
unique solution of (2.5) for a given g. If (2.6)–(2.8) are satisfied, then, for m suffi-
ciently large (say, m > m0), the equation (I + Km)fm = gm has the unique solution
f∗
m ∈ Pm−1 satisfying the estimate

‖(f∗ − f∗
m)v‖ ≤ C logm

mr
‖g‖Zr(v), r ≥ 1,(2.10)

where C �= C(m, f∗).

If we expand f∗
m in the basis {ϕi}i=1,...,m, with ϕi =

lα,β
i

v(xi)
, i.e., we write

f∗
m(y) =

m∑
i=1

aiϕi(y),

then the array a = (a1, . . . , am) of the coefficients is the unique solution of the system
of linear equations

m∑
k=1

[
δi,k + λ λα,β

k

v(xi)

v(xk)
Sα,β
m (h(·, xi), xk)

]
ak = (gv)(xi), i = 1, . . . ,m,(2.11)

where v(x) = vγ,δ(x) and

Sα,β
m (F, x) =

m−1∑
ν=0

cν(y)pν(v
α,β , x), cν(y) =

∫ 1

−1

pν(v
α,β , x)F (x)vα,β(x)dx,

is the Fourier sum of a function F .
Finally, denoting by Am the matrix of the system (2.11) and by cond(Am) =

‖Am‖‖A−1
m ‖ its condition number in uniform norm (the so-called row sum norm), if

sup
|y|≤1

∫ 1

−1

vα−γ,β−δ(x)|h(x, y)| log (2 + vα−γ,β−δ(x)|h(x, y)|)dx < +∞,(2.12)
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we have

sup
m

cond(Am)

logm
< +∞.(2.13)

In conclusion, if the assumptions (2.7)–(2.8) and (2.12) are satisfied, then choose
γ and δ according to (2.6), solve the system (2.11), which is well conditioned (except
for an extra logm factor), and construct the approximate solution f∗

m. The degree of
f∗
m, or, equivalently, the order of the linear system, is chosen according to the required

error and using the estimate (2.10).
The following remark includes a short discussion on the assumptions.
Remark 1. The choice of the space Cv, v = vγ,δ, with γ, δ satisfying (2.6), is

crucial. Indeed the norms in Cv of the projections Lα,β
m and Sα,β

m are the smallest
(except for a constant) (see Lemmas 4.1 and 4.2). Moreover, since, by virtue of (2.6),
we can always choose γ, δ > 0, Theorem 2.1 covers some cases of kernels and known
terms unbounded in ±1.

The assumption (2.8) implies the compactness of the operator K : Cv → Cv (see,
for example, [51, p. 93]). Finally, if the norms in (2.7)–(2.8) are replaced by the Besov
norms, then Theorem 2.1 is still true (see its proof). We used the Zygmund norm
only to simplify the notation in the proofs.

2.3. The case of nonsingular kernels. In the shown procedure the Fourier
sum of h(x, y) generates the main computational effort. On the other hand several
procedures concerning the most frequently used kernels are available in the literature
(among others we mention [42, 43, 34]). It appears necessary if the kernel is weakly
singular. But, if the kernel is smooth (for example, it belongs to the Zygmund space
Zr(v)), then with hx(y) = hy(x) = h(x, y), both the norms

sup
|y|≤1

‖[Sα,β
m hy − hy]v‖ and sup

|y|≤1

‖[Lα,β
m hy − hy]v‖

are dominated by ‖hy‖Zr(v)m
−r logm and we can replace in the system (2.11)

Sα,β
m (h(xi, ·), xk) by Lα,β

m (h(xi, ·), xk) = h(xk, xi). Obviously, the new system

m∑
k=1

[
δi,k + λ λα,β

k

v(xi)

v(xk)
h(xk, xi)

]
ak = (gv)(xi), i = 1, . . . ,m,(2.14)

is much easier. Moreover, if Am is the matrix of the system (2.14) and cond(Am) is
its condition number in uniform norm, we deduce the next theorem.

Theorem 2.2. Assume that in Cvγ,δ , with γ, δ satisfying (2.6), we have Ker(I +
K) = {0}, and let f∗ be the unique solution of (2.5) for a given g. If

‖g‖Zr(v) < +∞,(2.15)

sup
|x|≤1

‖hx‖Zr(v) < +∞,(2.16)

sup
|y|≤1

v(y)‖hy‖Zr
< +∞,(2.17)

then we get

sup
m

cond(Am)

logm
< +∞.(2.18)
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Moreover, denoting by (a1, . . . , am) the unique solution of (2.14), the polynomial

f∗
m(y) =

m∑
i=1

aiϕi(y), ϕi =
lα,βi

v(xi)
,

verifies the estimate

‖(f∗ − f∗
m)v‖ ≤ C

(
logm

mr

)
, r ≥ 1,(2.19)

where the constant C is independent of m and f∗.
In the next section we will give an application of Theorem 2.2.

3. Cauchy singular integral equations with constant coefficients. We
consider one class of Cauchy singular integral equations with constant coefficients a
and b satisfying a2 + b2 = 1 and which can be defined with the help of only one
parameter α ∈ (0, 1). This class of equations appears in several problems of applied
sciences and a wide literature on this topic is available. In particular, we mention
the fundamental books and papers [14, 15, 16, 17, 18, 26, 32, 35, 37, 41, 45] and the
references therein.

In this section we will consider this class of equations in the space of continuous
functions with uniform norm and, using the regularization method [32, 37, 41], we get
Fredholm equations. This procedure seems to be more complicated than the direct
methods [14, 15, 16, 17, 18, 45]. But the authors have recently proved in [9] precise
results on the mapping properties of the singular operators that are the dominant
part of the Cauchy singular integral equations. By virtue of such results and under
suitable assumptions on the kernels and the known terms, the numerical treatment
of such equations goes back to an application of Theorem 2.2.

3.1. Equations with index 0. Consider the equation

(Âf)(y) +

∫ 1

−1

k(x, y)f(x)vα,−α(x)dx = g(y),(3.1)

where

(Âf)(y) = cosπαf(y)vα,−α(y) − sinπα

π

∫ 1

−1

f(x)

x− y
vα,−α(x)dx, 0 < α < 1.(3.2)

Assume g ∈ Zr(v
0,α) and kx ∈ Zr(v

0,α), r ≥ 1, uniformly w.r.t. x. An equivalent
Fredholm equation can be obtained multiplying (3.1) from the left by the operator A
defined as

(Af)(y) = cosπαf(y)v−α,α(y) +
sinπα

π

∫ 1

−1

f(x)

x− y
v−α,α(x)dx.(3.3)

Since (see, e.g., [9, 30]) AÂf = ÂAf = f, f ∈ Zr(v
0,α), under the assumptions on g

and kx we get

f(y) +

∫ 1

−1

(Akx)(y)f(x)vα,−α(x)dx = (Ag)(y).(3.4)
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The equations (3.1) and (3.4) are uniquely solvable if the respective homogeneous
problems have only the trivial solutions. We consider (3.4) in Cvα+γ,δ with (α + γ)
and δ satisfying (2.6) with β = −α, i.e., with γ and δ such that

max

{
0,−α

2
+

1

4

}
≤ γ, δ < min

{
−α

2
+

3

4
, 1 − α

}
.(3.5)

Moreover, setting

Ψ(x, y) := (Akx)(y), G(y) := (Ag)(y),

we rewrite (3.4) as follows:

f(y) +

∫ 1

−1

Ψ(x, y)f(x)vα,−α(x)dx = G(y).(3.6)

If we want to apply Theorem 2.2, it is sufficient that G and Ψ verify in Cvα+γ,δ the
assumptions (2.15)–(2.17). Now, in [9] (see also [30]) the following equivalence has
been proved:

‖g‖Zr(v0,α) ∼ ‖Ag‖Zr(vα,0).(3.7)

The last one is crucial to prove the following lemma.
Lemma 3.1. If 0 < α < 1 and γ, δ ≥ 0, then we have

‖G‖Zr(vα+γ,δ) ≤ C‖g‖Zr(v0,α),(3.8)

sup
|x|≤1

‖Ψx‖Zr(vα+γ,δ) ≤ C sup
|x|≤1

‖kx‖Zr(v0,α),(3.9)

sup
|y|≤1

vα+γ,δ(y)‖Ψy‖Zr
≤ C

[
sup
|y|≤1

vγ,δ+α(y)‖ky‖Zr
+ sup

|y|≤1

vγ,δ+α(y)

∥∥∥∥ ∂

∂y
ky

∥∥∥∥
Zr

]
,

(3.10)

with r > 0, Ψx(y) = Ψy(x) = Ψ(x, y), and C �= C(G,Ψ, x, y).
As a consequence of Lemma 3.1, if the right-hand sides of (3.8)–(3.10) are finite,

then the functions G and Ψ of (3.6) satisfy in Cvα+γ,δ the assumptions (2.15)–(2.17)
of Theorem 2.2 and we can deduce the following proposition.

Proposition 3.1. Assume that the original equation (3.1) is uniquely solvable
in Cvα+γ,δ . If the kernel k and the known term g of (3.1) satisfy

‖g‖Zr(v0,α) < +∞,(3.11)

sup
|x|≤1

‖kx‖Zr(v0,α) < +∞,(3.12)

sup
|y|≤1

vγ,δ+α(y)‖ky‖Zr + sup
|y|≤1

vγ,δ+α(y)

∥∥∥∥ ∂

∂y
ky

∥∥∥∥
Zr

< +∞,(3.13)

with γ, δ according to (3.5), then, for m sufficiently large (say, m > m0), the polyno-
mial

f∗
m(y) =

m∑
i=1

aiϕi(y), ϕi =
lα,−α
i

vα+γ,δ(xi)
, pα,−α

m (xi) = 0,
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where (a1, . . . , am) is the solution of the linear system

(3.14)
m∑

k=1

[
δi,k + λα,−α

k

vα+γ,δ(xi)

vα+γ,δ(xk)
Ψ(xk, xi)

]
ak = G(xi)v

α+γ,δ(xi), i = 1, 2, . . . ,m,

converges to the exact solution f∗ and

‖(f∗
m − f∗)vα+γ,δ‖ ≤ C logm

mr
‖g‖Zr(v0,α),(3.15)

where C �= C(m, f∗, g).

Of course, by virtue of Theorem 2.2, the matrix of the system (3.14) is well
conditioned.

Now we want to give some numerical remarks on the computation of the quantities
Ψ(xk, xi) and G(xi), i, k = 1, . . . ,m, in the system (3.14). Looking at their expressions

Ψ(xk, xi) = cosπαk(xk, xi)v
−α,α(xi) +

sinπα

π

∫ 1

−1

k(xk, t)

t− xi
v−α,α(t)dt(3.16)

and

G(xi) = cosπαg(xi)v
−α,α(xi) +

sinπα

π

∫ 1

−1

g(t)

t− xi
v−α,α(t)dt,(3.17)

we can see that the only difficulty (if the analytical expression is not available) consists
in the computation of the Hilbert transforms. The last ones can be computed using
one of the several methods available in literature which are based on Gaussian rules, on
product rules [5, 6, 7, 8, 33], or on suitable transformation of the integrand [2, 13, 22,
36, 40, 50]. Here, for completeness, we propose substituting G(xi) and Ψ(xk, xi), k, i =
1, . . . ,m, with

Ψm(xk, xi) =
sinαπ

π

m∑
j=1

k(xk, tj)

tj − xi
λ−α,α
m,j(3.18)

and

Gm(xi) =
sinαπ

π

m∑
j=1

g(tj)

tj − xi
λ−α,α
m,j ,(3.19)

where tj are the zeros of p−α,α
m . Then, we solve the new system

m∑
k=1

[
δi,k + λα,−α

k

vα+γ,δ(xi)

vα+γ,δ(xk)
Ψm(xk, xi)

]
āk = Gm(xi)v

α+γ,δ(xi),

i = 1, . . . ,m,

(3.20)

and we construct the approximate solution f∗∗
m (y) =

∑m
i=1 āiϕi(y). Obviously, we

have to compare the norm ‖(f∗ − f∗∗
m )vα+γ,δ‖ with ‖(f∗ − f∗

m)vα+γ,δ‖. To this end
the following propositions hold.
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Proposition 3.2. If we assume that k(x, y) and g satisfy (3.12) and (3.11),
respectively, then we have

sup
1≤i,k≤m

vα,0(xi)|Ψ(xk, xi) − Ψm(xk, xi)| ≤ C logm

mr
sup
|x|≤1

‖kx‖Zr(v0,α)(3.21)

sup
1≤i≤m

vα,0(xi)|G(xi) −Gm(xi)| ≤ C logm

mr
‖g‖Zr(v0,α),(3.22)

where C �= C(m, k, g).
Proposition 3.3. If Am and A∗

m denote the matrices of the systems (3.14) and
(3.20), respectively, then

lim
m

cond(A∗
m)

cond(Am)
= 1(3.23)

and, moreover,

‖(f∗ − f∗∗
m )vα+γ,δ‖ ≤ C

(
log2 m

mr

)
,(3.24)

where the constant C is independent of m and f∗.
Therefore, the condition numbers of the systems (3.14) and (3.20) are comparable,

and, if the system (3.20) replaces (3.14), then the estimate (3.15) is perturbed by a
logm factor.

Finally, note that we could consider (3.1) in the space Cvα,0 as proposed in [30].
But such an approach implies considering two different linear systems in the cases
0 < α < 1

2 and α ≥ 1
2 . Anyway, the results on the condition numbers of the respective

linear systems and the convergence of both methods are equivalent.

3.2. Equation with index 1. Concerning the equation

(Df)(y) +

∫ 1

−1

k(x, y)f(x)v−α,α−1(x)dx = g(y),(3.25)

with

(Df)(y) = cosπαf(y)v−α,α−1(y) +
sinπα

π

∫ 1

−1

f(x)

x− y
v−α,α−1(x)dx,(3.26)

we assume g ∈ Zr(v
α,1−α) and kx ∈ Zr(v

α,1−α), uniformly w.r.t. x. We multiply
(3.25) from the left by the operator D̂ with

(D̂f)(y) = cosπαf(y)vα,1−α(y) − sinπα

π

∫ 1

−1

f(x)

x− y
vα,1−α(x)dx.(3.27)

Since [9] DD̂f = f and

D̂Df = f −
∫ 1

−1
f(x)v−α,α−1(x)dx∫ 1

−1
v−α,α−1(x)dx

,

with ∫ 1

−1
f(x)v−α,α−1(x)dx∫ 1

−1
v−α,α−1(x)dx

= A ∈ R,(3.28)
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(3.25) becomes

f(y) +

∫ 1

−1

(D̂kx)(y)f(x)v−α,α−1(x)dx = (D̂g)(y) + A.(3.29)

Equation (3.25) cannot be uniquely solvable, since the index of the operator in the
spaces under consideration is equal to 1. Consequently, one has to consider (3.25)
together with the additional condition (3.28) for a given constant A. Then (3.25),
(3.28) is equivalent to (3.29). Letting

Γ(x, y) = (D̂kx)(y) and G1(y) = (D̂g)(y),

and assuming A = 0, (3.29) can be rewritten as

f(y) +

∫ 1

−1

Γ(x, y)f(x)v−α,α−1(x)dx = G1(y).(3.30)

We consider (3.30) in Cvγ,δ and we choose γ, δ replacing α by −α and β by α− 1 in
(2.6). Thus, we take

max

{
0,−α

2
+

1

4

}
≤ γ < min

{
−α

2
+

3

4
, 1 − α

}
,

(3.31)

max

{
0,

α

2
− 1

4

}
≤ δ < min

{
α

2
+

1

4
, α

}
.

Now the equivalence

‖g‖Zr(vα,1−α) ∼ ‖D̂g‖Zr(3.32)

was proved by the authors in [9, (3.19)]. Then, as in subsection 3.1, we can deduce
the next proposition.

Proposition 3.4. Assume that (3.30) is uniquely solvable in Cvγ,δ and (3.31)
holds true. If

‖g‖Zr(vα,1−α) < +∞,(3.33)

sup
|x|≤1

‖kx‖Zr(vα,1−α) < +∞,(3.34)

sup
|y|≤1

vα+γ,1−α+δ(y)‖ky‖Zr
+ sup

|y|≤1

vα+γ,1−α+δ(y)

∥∥∥∥ ∂

∂y
ky

∥∥∥∥
Zr

< +∞,(3.35)

then the polynomial

f∗
m(y) =

m∑
i=1

aiϕi(y), ϕi =
l−α,α−1
i

vγ,δ(xi)
, p−α,α−1

m (xi) = 0,

where (a1, . . . , am) is the solution of the linear system

(3.36)
m∑

k=1

[
δi,k + λ−α,α−1

k

vγ,δ(xi)

vγ,δ(xk)
Γ(xk, xi)

]
ak = G1(xi)v

γ,δ(xi), i = 1, 2, . . . ,m,
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converges to the unique solution f∗ of (3.25) with A = 0 and we have

‖(f∗
m − f∗)vγ,δ‖ ≤ C

(
logm

mr

)
,(3.37)

where C �= C(m, f∗).
As in the previous case, the system (3.36) can be replaced by

m∑
k=1

[
δi,k + λ−α,α−1

m,k

vγ,δ(xi)

vγ,δ(xk)
Γm−1(xk, xi)

]
āk = G1,m−1(xi)v

γ,δ(xi),(3.38)

i = 1, . . . ,m,

where

Γm−1(xk, xi) =
sinαπ

π

m−1∑
j=1

k(xk, tj)

xi − tj
λα,1−α
m−1,j ,(3.39)

G1,m−1(xi) =
sinαπ

π

m−1∑
j=1

g(tj)

xi − tj
λα,1−α
m−1,j ,(3.40)

and tj are the zeros of the Jacobi polynomial pα,1−α
m−1 .

Propositions analogous to Propostions 3.2 and 3.3 hold true also in this case, but,
for the sake of brevity, we omit the details.

4. Proofs. We need some notation and preliminary results.
We denote by

Em(f)vγ,δ = inf
P∈Pm

‖(f − P )vγ,δ‖

the error of best approximation of a function f in Cvγ,δ . We set Em(f) := Em(f)v0,0 .
For all functions f ∈ Cvγ,δ we have [10, p. 94]

Em(f)vγ,δ ≤ C
∫ 1

m

0

Ωk
ϕ(f, t)vγ,δ

t
dt.(4.1)

In particular, from (4.1) we deduce

Em(f)vγ,δ ≤ C
mr

‖f‖Zr(vγ,δ) ∀f ∈ Zr(v
γ,δ),(4.2)

Em(f)vγ,δ ≤ C
mr

‖f‖Br,q(vγ,δ) ∀f ∈ Br,q(v
γ,δ).(4.3)

The following lemmas will be useful in what follows.
Lemma 4.1. For α, β, γ, and δ satisfying (2.6) and for every f ∈ Cvγ,δ , we have

‖(Lα,β
m f)vγ,δ‖ ≤ C(logm)‖fvγ,δ‖(4.4)

or, equivalently,

‖(f − Lα,β
m f)vγ,δ‖ ≤ C(logm)Em−1(f)vγ,δ .(4.5)
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Moreover, for every function f ∈ C0([−1, 1]), we have∫ 1

−1

|Lα,β
m (f, x)|vα−γ,β−δ(x)dx ≤ C‖f‖,(4.6) ∫ 1

−1

|f(x) − Lα,β
m (f, x)|vα−γ,β−δ(x)dx ≤ CEm−1(f).(4.7)

Here the constant C is independent of m and f.
Proof. The bound (4.4) is Theorem 2.2 in [27], while (4.6) is a special case of

Nevai’s result in [38].
Lemma 4.2. For α, β, γ, and δ satisfying (2.6) and for every g ∈ Cvγ,δ , we have

‖(Sα,β
m g)vγ,δ‖ ≤ C(logm)‖gvγ,δ‖(4.8)

or, equivalently,

‖(g − Sα,β
m g)vγ,δ‖ ≤ C(logm)Em−1(g)vγ,δ .(4.9)

Moreover, for every function g such that

A(g) :=

∫ 1

−1

vα−γ,β−δ(x)|g(x)| log (2 + vα−γ,β−δ(x)|g(x)|)dx < +∞,(4.10)

we get ∫ 1

−1

|Sα,β
m (g, x)|vα−γ,β−δ(x)dx ≤ CA(g).(4.11)

Here the constant C is independent of m, f , and g.
Proof of Lemma 4.2. The bound (4.8) can be found in [23]. To prove (4.11),

for the sake of simplicity of notation, we assume α = β and γ = δ, and we set
vl(x) = (1 − x2)l. Using the Pollard transformation (cf. [44]) we can write

Sα
m(g, x) = αmpm(vα, x)cm + βm[pm(vα, x)H(pm−1(v

αϕ2)ϕ2gvα, x)

− pm−1(v
α, x)H(pm(vαϕ2)ϕ2gvα, x)],

where αm ∼ βm ∼ 1, cm is the mth Fourier coefficient, and H is the Hilbert transform.
Denote by ‖F‖1 the L1-norm of F . Since, by the Remez inequality (see [29] and [31])
we have

‖Sα
m(g)vα−γ‖1 ≤ C‖Sα

m(g)vα−γ‖L1(Im),

where Im =
[
−1 + C

m2 , 1 − C
m2

]
, we get

‖Sα
m(g)vα−γ‖1 ≤ C

(
‖pm(vα)vα−γ‖L1(Im)|cm|

+ ‖pm(vα)vα−γH(pm−1(v
αϕ2)ϕ2gvα)‖L1(Im)

+ ‖pm−1(v
αϕ2)vα−γϕ2H(pm(vα)vαg)‖L1(Im)

)
:= A1 + A2 + A3.(4.12)

Recalling [49, (8.21.18), p. 198]

|pm(vα;x)v
α
2 + 1

4 (x)| ≤ C �= C(m), x ∈ Im,(4.13)
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for A1 we have

A1 ≤ C‖v α
2 − 1

4−γ‖1

∫ 1

−1

|g(x)pm(vα, x)vα(x)|dx

≤ C‖v α
2 − 1

4−γ‖1‖gv
α
2 − 1

4 ‖1.

Taking into account the assumption γ < α
2 + 3

4 , we have α
2 − 1

4 − γ > −1 and then

‖v α
2 − 1

4−γ‖1 ≤ C. Moreover, from the assumption γ > α
2 + 1

4 we deduce α
2 − 1

4 > α− γ

and then ‖gv α
2 − 1

4 ‖1 ≤ ‖gvα−γ‖1. Therefore, by (4.10), we get

A1 ≤ C‖gvα−γ‖1 ≤ CA(g).(4.14)

Moreover, recalling that [32]∫
f(x)H(g;x)dx = −

∫
g(x)H(f ;x)dx, f ∈ Lp, g ∈ Lq,

1

p
+

1

q
= 1, p > 1,

and applying (4.13), we have

A2 ≤ C
∫ 1

−1

v
α
2 − 1

4−γ(t)|H(pm−1(v
αϕ2)ϕ2vαg; t)|dt.

Letting G = sgn(H(pm−1(v
αϕ2)ϕ2vαg)), we get

A2 ≤ C
∫ 1

−1

|pm−1(v
αϕ2)ϕ2(t)vα(t)g(t)||H(v

α
2 − 1

4−γG; t)|dt

≤ C
∫ 1

−1

(
v

α
2 + 1

4 (t)|g(t)|
∣∣∣∣
∫ 1

−1

v
α
2 − 1

4−γ(x)
G(x)

x− t
dx

∣∣∣∣
)
dt

:=

∫ 1

−1

(v
α
2 + 1

4 (t)|g(t)|I1(t))dt.

It remains to estimate I1(t). Setting σ := α
2 − 1

4 − γ, in virtue of the assumption
α
2 + 1

4 ≤ γ < α
2 + 3

4 , we have −1 < σ < 0 and

I1(t) =

∣∣∣∣vσ(t)H(G; t) + vσ(t)

∫ 1

−1

vσ(x) − vσ(t)

vσ(t)(x− t)
G(x)dx

∣∣∣∣
≤ vσ(t)|H(G; t)| + vσ(t)

∫ 1

−1

∣∣∣∣v−σ(t) − v−σ(x)

v−σ(x)(x− t)

∣∣∣∣ dx
≤ vσ(t)|H(G; t)| + vσ(t)

∫ 1

−1

|x− t|−1−σvσ(x)dx

≤ vσ(t)(|H(G; t)| + C).

Thus, since G ∈ L∞ and (4.10) holds, using a result in [39] we get

A2 ≤ C
∫ 1

−1

|g(t)|(1 + |H(G; t)|)vα−γ(t)dt

≤ C
∫ 1

−1

vα−γ(t)|g(t)| log(2 + vα−γ(t)|g(t)|)dt = CA(g).(4.15)



1364 M. C. DE BONIS AND G. MASTROIANNI

Analogously we can prove that

A3 ≤ CA(g).(4.16)

Finally, combining (4.14)–(4.16) with (4.12), (4.11) follows.
Now we can prove Theorem 2.1.
Proof of Theorem 2.1. Since gm = Lα,β

m (g) and g ∈ Zr(v), using (4.5) and (4.2)
we get

‖(g − gm)v‖ ≤ C logm

mr
‖g‖Zr(v).(4.17)

Moreover, since Kmf = Lα,β
m (Kf), by (4.5), (4.1), and (2.8) we obtain

‖(Kf −Kmf)v‖ ≤ C(logm)Em−1(Kf)v ≤ C
mr

(logm)‖fv‖.(4.18)

By a well-known result of linear algebra we have supm ‖(I + Km)−1‖ < +∞ and

cond(I + Km) = cond(I + K) + O
(

logm

mr

)
.(4.19)

Moreover, by the identity

f∗ − f∗
m = (I + Km)−1[(g − gm) + (Km −K)(I + K)−1g](4.20)

we get

‖(f∗ − f∗
m)v‖ ≤ C[‖(g − gm)v‖ + ‖gv‖‖K −Km‖Cv→Cv

](4.21)

≤ C logm

mr
‖g‖Zr(v),

i.e., (2.10).
In order to obtain the system (2.11), we consider fm + Kmfm = gm and we

expand Kmf, gm, and fm in the basis {ϕi}i=1,...,m, with ϕi =
lm,i(v

α,β)
v(xi)

. Since, for

every q ∈ Pm−1, we have

q(x) =

m∑
i=1

ϕi(x)γi, γi = q(xi)v
γ,δ(xi),

we can write

fm(y) =

m∑
i=1

ϕi(y)ai, gm(y) =

m∑
i=1

ϕi(y)bi, bi = vγ,δ(xi)g(xi),

and

(Kmfm)(y) =

m∑
i=1

ϕi(y)v
γ,δ(xi)(Kfm)(xi).

Moreover,

(Kfm)(xi) = λ

m∑
k=1

ak
v(xk)

∫ 1

−1

h(x, xi)l
α,β
k (x)vα,β(x)dx

= λ

m∑
k=1

λα,β
k

ak
v(xk)

Sα,β
m (h(·, xi), xk)
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and then

(Kmfm)(y) = λ

m∑
i=1

ϕi(y)v
γ,δ(xi)

m∑
k=1

λα,β
k

ak
v(xk)

Sα,β
m (h(·, xi), xk),

λα,β
k , k = 1, . . . ,m, being the Christoffel numbers. Therefore, the finite dimensional

equation

(I + Km)fm = gm

is equivalent to

m∑
i=1

ϕi(y)ai + λ

m∑
i=1

ϕi(y)v
γ,δ(xi)

m∑
k=1

λα,β
k

vγ,δ(xk)
Sα,β
m (h(·, xi), xk)ak =

m∑
i=1

ϕi(y)bi,

and then (2.11) follows.

Now we prove (2.13). By (2.11), using a Marcinkievicz inequality [28] and λα,β
k ∼

vα,β(xk)

√
1−x2

k

m ∼ vα,β(xk)Δxk, Δxk = xk+1 − xk, we have

‖Am‖ ≤ 1 + |λ| max
1≤i≤m

v(xi)

m∑
k=1

λα,β
k

v(xk)
|Sα,β

m (h(·, xi), xk)|

∼ 1 + |λ| max
1≤i≤m

m∑
k=1

vα−γ,β−δ(xk)Δxk|Sα,β
m (h(·, xi), xk)|v(xi)

≤ 1 + C max
1≤i≤m

∫ 1

−1

|Sα,β
m (v(xi)h(·, xi), t)|vα−γ,β−δ(t)dt.

By the assumption (2.12), by virtue of Lemma 4.2, we get

‖Am‖ ≤ C.(4.22)

It remains to estimate ‖A−1
m ‖. By virtue of the equivalence of the system (2.11) with

the equation (I + Km)fm = gm, for every η = (η1, . . . , ηm) there exists a unique
θ = (θ1, . . . , θm) such that θ = A−1

m η if and only if θ̃(y) = (I + Km)−1η̃(y), where

θ̃(y) =
m∑
i=1

ϕi(y)θi, θi = (θ̃v)(xi), and η̃(y) =

m∑
i=1

ϕi(y)ηi, ηi = (η̃v)(xi).

Then, for all η, by (4.19) it results that

‖A−1
m η‖l∞ = ‖θ‖l∞ ≤ ‖θ̃v‖

= ‖(I + Km)−1η̃v‖
≤ ‖(I + Km)−1

|Pm−1
‖ ‖η‖l∞ ‖Lα,β

m ‖Cv→Cv

≤ C‖(I + K)−1‖ ‖η‖l∞‖Lα,β
m ‖Cv→Cv

.

Using (4.4) we get

‖A−1
m ‖ ≤ C logm.(4.23)

Since cond(Am) = ‖Am‖‖A−1
m ‖, by (4.22) and (4.23), (2.13) follows.
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Proof of Theorem 2.2. We first look for a finite dimensional equation equivalent
to the system (2.14). To this end, we introduce the sequence of operators {Km}m
defined as

(Kmf)(y) = Lα,β
m (K∗f, y),

with

(K∗f)(y) = (K∗
mf)(y) = λ

∫ 1

−1

Lα,β
m (hy, x)f(x)vα,β(x)dx,

and the polynomial sequence

gm(y) = Lα,β
m (g, y).

Thus, the equation we are looking for is

(I + Km)fm = gm, m = 1, 2, . . . ,(4.24)

where fm is the unknown polynomial of degree at most m − 1. Expanding Kmfm,

gm, and fm in the basis {ϕi}i=1,...,m, ϕi(x) =
lα,β
i

(x)

vγ,δ(xi)
, we get the system (2.14).

Now we prove (2.18). By (2.14) we have

‖Am‖ ≤ 1 + |λ| max
1≤i≤m

v(xi)

m∑
k=1

λα,β
k

v(xk)
|h(xk, xi)|

∼ 1 + |λ| max
1≤i≤m

m∑
k=1

vα−γ,β−δ(xk)Δxk|h(xk, xi)v(xi)|

≤ 1 + C
(

max
−1≤x,y≤1

|h(x, y)|vγ,δ(y)
)∫ 1

−1

vα−γ,β−δ(x)dx.

By the assumptions (2.6) and (2.16), we deduce

‖Am‖ ≤ C.(4.25)

By (4.25) and (4.23) we obtain (2.18).
To prove (2.19) we will use the inequality (4.21). Taking into account (4.17), we

need to estimate only ‖K −Km‖Cv→Cv
.

Adding and subtracting K∗f, we have

‖(Kf −Kmf)v‖ = ‖(Kf −K∗f)v‖ + ‖(K∗f −Kmf)v‖
:= A + B.(4.26)

We first estimate A. Using (4.7), we get

|(Kf)(y) − (K∗f)(y)|v(y)

= v(y)

∣∣∣∣λ
∫ 1

−1

[hy(x) − Lα,β
m (hy, x)]vα−γ,β−δ(x)(fv)(x)dx

∣∣∣∣
≤ C‖fv‖v(y)

∫ 1

−1

∣∣hy(x) − Lα,β
m (hy, x)

∣∣ vα−γ,β−δ(x)dx

≤ C‖fv‖v(y)Em−1(hy).
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By the assumption (2.17) and (4.2) we have

A ≤ C
mr

‖fv‖.(4.27)

Concerning B, under the assumptions (2.6), by (4.5), we obtain

B ≤ C(logm)Em−1(K
∗f)v.(4.28)

In order to estimate Em−1(K
∗f)v by means of the inequality (4.1), we proceed

to the evaluation of Ωk
ϕ(K∗f, t)v. Using (4.6), we get

|v(y)Δk
hϕ(K∗f)(y)| =

∣∣∣∣λ
∫ 1

−1

Lα,β
m (v(y)Δk

hϕhy, x)vα−γ,β−δ(x)(fv)(x)dx

∣∣∣∣
≤ C‖fv‖

∫ 1

−1

|Lα,β
m (v(y)Δk

hϕhy, x)|vα−γ,β−δ(x)dx

≤ C‖fv‖v(y) sup
|x|≤1

|Δk
hϕhx(y)|.

Taking the supremum on y ∈ [−1+4k2h2, 1− 4k2h2] first and then the supremum on
0 < h ≤ t, we get

Ωk
ϕ(K∗f, t)v ≤ C‖fv‖ sup

|x|≤1

Ωk
ϕ(hx, t)v ≤ Ctr‖fv‖ sup

|x|≤1

‖hx‖Zr(v).

Thus, using inequality (4.1) and the assumption (2.16), (4.28) becomes

B ≤ C
mr

(logm)‖fv‖.(4.29)

Combining (4.27) and (4.29) with (4.26), we get

‖K −Km‖Cv→Cv
≤ C

mr
(logm).(4.30)

Finally, substituting (4.17) and (4.30) into (4.21), we deduce (2.19).
Proofs of section 3. We first give some notation and preliminary results.
We define in Cvγ,δ the rth ϕ-modulus of continuity as

ωk
ϕ(f, t)vγ,δ = Ωk

ϕ(f, t)vγ,δ + inf
P∈Pk−1

‖(f − P )vγ,δ‖C[−1,−1+4k2t2]

+ inf
P∈Pk−1

‖(f − P )vγ,δ‖C[1−4k2t2,1],

where 0 < t ≤ 1
2k . Also we use the notation ωϕ = ω1

ϕ. Note that, if f ∈ Br,q(v
γ,δ), 1 ≤

q ≤ +∞, r ∈ R
+, then ωk

ϕ(f, t)vγ,δ ∼ Ωk
ϕ(f, t)vγ,δ . The following proposition holds.

Proposition 4.3. Let 0 < α < 1. Then, for f ∈ Zr(v
γ,δ+α) and γ, δ satisfying

(3.5), we have

|vα+γ,δ(y)(Af)(y)| ≤ C
[
‖fvγ,δ+α‖ +

∫ 1/2

0

ωϕ(f, t)vγ,δ+α

t
dt

]
,(4.31)

where |y| ≤ 1 and C �= C(f, y).
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Proof. It is not hard to deduce (4.31) by [24, Theorem 3.1] (see also [3, pp. 46–47]
and [30, Proof of Theorem 2.2]).

Proposition 4.4. Let 0 < α < 1. The inequality

inf
P∈Pm

‖vα,0A(f − Pm)‖(4.32)

≤ C
[
Em(f)v0,α logm +

∫ 1
m

0

ωk
ϕ(f, t)v0,α

t
dt

]
∀f ∈ Cv0,α

holds, where 1 ≤ k < m and C �= C(m, f).
Proof. The proof of (4.32) can be found in [30, Proof of Theorem 2.2].
Proof of Lemma 3.1. Recalling (3.7), we obtain

‖G‖Zr(vα+γ,δ) = ‖Ag‖Zr(vα+γ,δ) ≤ ‖Ag‖Zr(vα,0) ≤ C‖g‖Zr(v0,α),(4.33)

i.e., (3.8). Analogously it is possible to prove (3.9).
It remains to prove (3.10). We have

vα+γ,δ(y)‖Ψy‖Zr = vα+γ,δ(y)‖Ψy‖ + vα+γ,δ(y) sup
t>0

Ωk
ϕ(Ψy, t)

tr
:= B1 + B2.(4.34)

Concerning B1, applying (4.31) we get

vα+γ,δ(y)|Ψ(x, y)| = vα+γ,δ(y)|(Akx)(y)|(4.35)

≤ vα+γ,δ(y)

∣∣∣∣k(x, y)v−α,α(y) +

∫ 1

−1

k(x, z)

z − y
v−α,α(z)dz

∣∣∣∣
≤ C sup

|y|≤1

vγ,δ+α(y)|k(x, y)| + C
∫ 1

0

ωϕ(kx, t)vγ,δ+α

t
dt.

Recalling that

ωϕ(kx, t)vγ,δ+α ≤ Ct sup
|y|≤1

∣∣∣∣ϕ(y)vγ,δ+α(y)
∂

∂y
k(x, y)

∣∣∣∣,
we obtain

B1 ≤ C sup
|y|≤1

vγ,δ+α(y) sup
|x|≤1

|k(x, y)| + C sup
|y|≤1

vγ,δ+α(y) sup
|x|≤1

∣∣∣∣ ∂∂y k(x, y)

∣∣∣∣.(4.36)

Analogously, replacing kx by Δk
hϕ(x)kx in (4.35), we deduce

vα+γ,δ(y)|Δk
hϕ(x)Ψ(x, y)| = vα+γ,δ(y)|A(Δk

hϕ(x)kx)(y)|
≤ C sup

|y|≤1

vγ,δ+α(y)|Δk
hϕ(x)k(x, y)|

+ C sup
|y|≤1

vγ,δ+α(y)

∣∣∣∣Δk
hϕ(x)

∂

∂y
k(x, y)

∣∣∣∣
and then, taking the supremum on x ∈ [−1 + 4k2h2, 1 − 4k2h2] as first and the
supremum on 0 < h ≤ t as second, we get

B2 ≤ C sup
|y|≤1

vγ,δ+α(y) sup
t>0

Ωk
ϕ(ky, t)

tr
+ C sup

|y|≤1

vγ,δ+α(y) sup
t>0

Ωk
ϕ

(
∂
∂yky, t

)
tr

.(4.37)

Finally, combining (4.36) and (4.37) with (4.34), (3.10) follows.
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Proof of Proposition 3.2. We first note that (3.18) and (3.19) can be obtained by
replacing g and kx with their Lagrange polynomials based on the zeros t1, . . . , tm of
p−α,α
m and taking into account that by [25]

A

[
p−α,α
m

· − tj

]
(y) =

pα,−α
m (y) − pα,−α

m (tj)

y − tj

and

pα,−α
m (tj)

[p−α,α
m ]′(tj)

=
sinαπ

π
λ−α,α
m,j ,

we have

(Alm,j)(xi) =
sinαπ

π

λ−α,α
m,j

tj − xi
.

Moreover, letting xi = xα,−α
m,i = cos θα,−α

m,i and tj = t−α,α
m,j = cos θ−α,α

m,j , from a result
in [25] we have

min
i,j

|θα,−α
m,i − θ−α,α

m,j | ≥ C
m
.(4.38)

Now we prove (3.22). Recalling that G = Ag and Gm = AL−α,α
m (g) and denoting by

Pm−1 the polynomial of best approximation of g, we get

|G(y) −Gm(y)| = |A[g − L−α,α
m (g)](y)|

≤ |A(g − Pm−1)(y)| + |AL−α,α
m (g − Pm−1)](y)|.

Therefore

vα,0(xi)|G(xi) −Gm(xi)| ≤ vα,0(xi)|A(g − Pm−1)(xi)|

+
1

π
vα,0(xi)

∣∣∣∣∣∣
m∑
j=1

g(tj) − Pm−1(tj)

tj − xi
λ−α,α
m,j

∣∣∣∣∣∣(4.39)

:= B1 + B2.

Using (4.32) and (4.2) we get

B1 ≤ C logm

mr
‖g‖Zr(v0,α).(4.40)

Recalling that [49] λ−α,α
m,j ∼ Δtj v−α,α(tj),Δtj = tj+1 − tj , we obtain

B2 ≤ C‖(g − Pm−1)v
0,α‖vα,0(xi)

m∑
j=1

Δtj
|xi − tj |

v−α,0(tj).

Moreover, since by virtue of (4.38) we have (see, for instance, [3, (5.16)])

m∑
j=1

Δtj
|xi − tj |

v−α,0(tj) ≤ Cv−α,0(xi) logm,
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we get

B2 ≤ C(logm)Em−1(g)v0,α

and, applying (4.2), we obtain

B2 ≤ C logm

ms
‖g‖Zs(v0,α).(4.41)

Combining (4.39) with (4.40) and (4.41), (3.22) follows. Analogously we can prove
(3.21).

Notice that from the previous discrete error estimate one can deduce an estimate
of the (global) operator norm; see, e.g., the proof of Proposition 3.3.

Proof of Proposition 3.3. Denote by Ama = b and A∗
mā = b∗ the systems (3.14)

and (3.20), respectively. We first show that cond(Am) ∼ cond(A∗
m). Since, for m >

m0, A
−1
m exists, the identity

A∗
m = Am[Im + A−1

m (A∗
m −Am)]

holds true. Moreover, ‖A−1
m ‖ ≤ C logm (see the proof of Theorem 2.1) and by Propo-

sition 3.2 we deduce

‖Am −A∗
m‖ ≤ C logm

mr
.(4.42)

Therefore, limm ‖A−1
m (A∗

m −Am)‖ = 0. Consequently (A∗
m)−1 exists and

lim
m

cond(A∗
m)

cond(Am)
≤ 1.

On the other hand, we use the identity

Am = A∗
m[Im + (A∗

m)−1(Am −A∗
m)]

to prove that

lim
m

cond(Am)

cond(A∗
m)

≤ 1

and, consequently,

lim
m

cond(A∗
m)

cond(Am)
= 1.

In order to estimate f∗ − f∗∗
m in Cvα+γ,δ , we premise some notation. Denoting by Bz

the operator B acting w.r.t. the variable z, we set

(Kf)(y) :=

∫ 1

−1

(Akx)(y)f(x)vα,−αdx,

(Kmf)(y) := (Lα,−α
m K̃f)(y)

with

(K̃f)(y) :=

∫ 1

−1

(Lα,−α
m,x Ayk)(x, y)f(x)vα,−α(x)dx



PROJECTION METHODS FOR FREDHOLM INTEGRAL EQUATIONS 1371

and

(K∗
mf)(y) := (Lα,−α

m K∗f)(y)

with

(K∗f)(y) :=

∫ 1

−1

(Lα,−α
m,x AyL

−α,α
m,y k)(x, y)f(x)vα,−α(x)dx.

It is not hard to prove that the finite dimensional equations

fm + Kmfm = LmAg

and

fm + K∗
mfm = Lα,−α

m AL−α,α
m g

are equivalent to the systems (3.14) and (3.20), respectively, in the basis {ϕi}i, with

ϕi =
lα,−α
i

vα+γ,δ(xi)
(xi = xα,−α

i ).

Therefore, to estimate ‖(f∗ − f∗∗
m )vα+γ,δ‖ by means of (4.20) it remains to prove

that K∗
m → K and Lα,−α

m AL−α,α
m g → Ag in Cvα+γ,δ .

It is sufficient to consider the difference Km −K in the set of the polynomial of
degree at most m− 1. Thus, for all fm ∈ Pm, we have

vα+γ,δ(y)|(Kfm)(y) − (K∗
mfm)(y)| ≤ vα+γ,δ(y)|(Kfm)(y) − (Kmfm)(y)|

+ vα+γ,δ(y)|(Kmfm)(y) − (K∗
mfm)(y)|.

The first addendum at the right-hand side is dominated by C logm
mr ‖fmvα+γ,δ‖ in view

of (4.18). About the second addendum, using (4.4), we get

vα+γ,δ(y)|(Kmfm)(y) − (K∗
mfm)(y)|

= |vα+γ,δ(y)Lα,−α
m (K̃fm −K∗fm, y)|

≤ C logm max
i=1,...,m

vα+γ,δ(xi)|(K̃fm)(xi) − (K∗fm)(xi)|

= C logm max
i=1,...,m

vα+γ,δ(xi)

∣∣∣∣
∫ 1

−1

Lα,−α
m ((Ayk)(·, xi)

− (AyL
−α,α
m,y k)(·, xi), x)fm(x)vα,−α(x)dx

∣∣∣∣ .
Applying the Gaussian quadrature rule to the last integral and using (4.42), we get

vα+γ,δ(y)|(Kmfm)(y) − (K∗
mfm)(y)|

≤ C logm max
i=1,...,m

vα+γ,δ(xi)

∣∣∣∣∣
m∑

k=1

λα,−α
k [Ψ(xk, xi) − Ψm(xk, xi)]fm(xk)

∣∣∣∣∣
≤ C max

|x|≤1
|fm(x)vα+γ,δ(x)|(logm)‖Am −A∗

m‖

≤ C‖fmvα+γ,δ‖ log2 m

mr
.

Thus, we have

‖vα+γ,δ(Kf −K∗
mf)‖ ≤ C‖fvα+γ,δ‖ log2 m

mr
.(4.43)
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In order to estimate Ag − Lα,−α
m AL−α,α

m g we have

vα+γ,δ(y)|(Ag)(y) − (Lα,−α
m AL−α,α

m g)(y)|
≤ vα+γ,δ(y)|(Ag)(y) − (Lα,−α

m Ag)(y)|
+ vα+γ,δ(y)|(Lα,−α

m Ag)(y) − (Lα,−α
m AL−α,α

m g)(y)|.

Since, by (4.33), g ∈ Zr(v
0,α) implies Ag ∈ Zr(v

α+γ,δ), using (4.5), (4.2), and (3.7),
the first addendum at the right-hand side is dominated by C logm

mr ‖g‖Zr(v0,α). More-
over, about the second addendum, using (4.4) and (3.22), we get

vα+γ,δ(y)|(Lα,−α
m Ag)(y) − (Lα,−α

m AL−α,α
m g)(y)|

= |vα+γ,δ(y)Lα,−α
m (Ag −AL−α,α

m g)|
≤ C logm max

i=1,...,m
vα+γ,δ(xi)|G(xi) −Gm(xi)|

≤ C log2 m

mr
‖g‖Zr(v0,α).

Consequently, we get

‖vα+γ,δ(Ag − Lα,−α
m AL−α,α

m g)‖ ≤ C log2 m

mr
‖g‖Zr(v0,α).(4.44)

Finally, combining (4.43) and (4.44) with (4.20), (3.24) follows.
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Birkhäuser, Basel, 2001, pp. 327–351.

[24] U. Luther and M. G. Russo, Boundedness of the Hilbert transformation in some weighted
Besov type spaces, Integral Equations Operator Theory, 36 (2000), pp. 220–240.
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ANALYSIS OF DISCONTINUOUS FINITE ELEMENT METHODS
FOR GROUND WATER/SURFACE WATER COUPLING∗
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Abstract. We derive and analyze new numerical approaches for modeling coupled ground
water/surface water flow. In this coupled model, surface water flow is described by the depth-
averaged shallow water equations, while ground water is modeled by saturated Darcy flow. The
coupling between the two models assumes continuity of pressure and water flux across the ground
water/surface water interface. The coupled model is approximated by a local discontinuous Galerkin
method for ground water flow and a discontinuous Galerkin method for surface water flow. A priori
error estimates are derived for this approach. A closely related approach where the well-known mixed
finite element method is applied to the ground water flow equations is also described and analyzed.
One advantage of these approaches is that they allow for the ground water and surface water domains
to be meshed independently, under some mild restrictions.

Key words. ground water flow equations, shallow water equations, mixed finite element method,
discontinuous Galerkin method, coupled method
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1. Introduction. Comprehensive water resource management requires a care-
ful study of the interactions of ground water and surface water. As noted in a recent
report of the United States Geological Survey [45], “Traditionally, management of
water resources has focused on surface water or ground water as if they were sep-
arate entities . . . Effective policies and management practices must be built on a
foundation that recognizes that surface water and ground water are simply two man-
ifestations of a single integrated resource.” This article gives a number of examples
of ground water/surface water interactions and the effect these interactions have on
the environment and the water cycle.

In this paper, we focus on the numerical approximation of coupled ground wa-
ter/surface water flow. Surface water flow models are derived from the incompress-
ible Navier–Stokes equations and can take many forms, including two- and three-
dimensional shallow water models, overland flow, and kinematic and diffusive wave
models; see [42] for an overview of shallow water hydrodynamics. Ground water flow
models include single phase Darcy flow and various multiphase models which account
for unsaturated flow through the vadose zone, e.g., the Richards equation or a two-
phase air-water model [23]. These models are fairly well understood within their
respective regimes. How these models should be coupled is still a question open for
debate.

The coupling of Stokes and Darcy flows has been studied mathematically and nu-
merically in several recent papers; see, for example [27, 35, 5], where the coupling is
imposed through the Beavers–Joseph–Saffman interface conditions [8, 36, 25]. Appli-
cation of these conditions to the coupling of surface and ground water flow is discussed
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in Miglio, Discacciati, and Quarteroni [30], where a three-dimensional nonhydrostatic
shallow water model is coupled with Darcy flow; the authors prove well-posedness of
the model in the case of linear Stokes flow and formulate an iterative method to solve
the coupled system.

In the engineering literature, various numerical models for coupling depth-averaged
shallow water flow equations with single and multiphase ground water flow equations
have been investigated; see, for example, [37, 39, 47, 46, 38]. Within these models, the
coupling between surface and ground water is imposed in various ways. One approach
that has been proposed is to compute an “exchange flux.” This approach assumes
the existence of an interfacial domain connecting the two domains, referred to as the
conductance concept [2, 40]. The interfacial domain is characterized by a thickness
parameter m and permeability k. The flux is then calculated as the ratio λ = k/m
multiplied by the difference between the surface water and ground water pressures at
the interface. The exchange flux enters into the ground water and surface water flow
equations through source terms. The drawback to this approach is that the presence
of such a distinct interfacial domain has not been observed in the field [14]; thus de-
termining k and m is problematic. The use of the conductance concept in numerical
modeling of ground water/surface water coupling dates back to at least 1969 [24].

Another approach, which is often used in multiphysics problems [29, 32], is to as-
sume continuity of normal flux and of an appropriately defined “pressure” across the
interface. This is equivalent to the conductance concept if the thickness parameter m
goes to zero and is also part of the Beavers–Joseph–Saffman interface conditions for
coupling Darcy flow with the three-dimensional nonhydrostatic shallow water equa-
tions as discussed in [30]. This approach is studied for ground water/surface water
coupling in a recent paper by Kollet and Maxwell [26] and is the approach we will
take here, though the way we implement the interface conditions is different. The
flow model we consider is based on the depth-averaged, two-dimensional shallow wa-
ter equations coupled with a saturated ground water flow model. The depth-averaged
shallow water equations are widely used for surface water flow modeling, because
vertical effects are often negligible in comparison to the horizontal. Upon depth aver-
aging, the ground water normal velocity at the ground water/surface water interface
enters the shallow water continuity equation as a source term. The continuity of
pressure is enforced by assuming that the ground water hydraulic head is equal to
the surface water height at the interface. Thus, the ground water flow equations have
a time-dependent Dirichlet boundary condition at the surface water interface, where
the boundary value satisfies the shallow water equations. Unlike the Darcy/Stokes
couplings mentioned above, the surface water momentum equation is not directly
involved in this coupling.

Based upon this model, we derive a weak formulation and discuss the approxi-
mation of the weak solution using discontinuous and mixed finite element methods.
Discontinuous Galerkin (DG) and mixed finite element (MFE) methods have been
extensively studied for elliptic flow problems such as ground water flow [44, 34, 31,
15, 33, 12, 11, 10, 7, 6, 4, 3, 13, 16, 43, 41, 22, 21]. More recently, DG methods have
been applied to the shallow water equations [1, 18, 19]. These methods have cer-
tain features, which have been discussed at length in these and other papers, which
make them of interest for approximating the flow models under consideration here.
One advantage of these methods for modeling ground water/surface water interaction
is that boundary conditions are enforced weakly, which allows for flexibility in the
coupling. In particular, the ground water and surface water domains can be meshed
independently of each other with some minor restrictions. Another advantage of
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Fig. 1. Schematic of a ground water/surface water interface.

these methods, which has been well documented, is that they provide for locally con-
servative, flux-continuous flow fields. This property is important when coupling the
flow equations with a transport model, for example, when considering contaminant
transport [20].

In the next section, we derive the coupled flow model under consideration. We
express the ground water flow equations in mixed form and consider the approximation
of this model using the local discontinuous Galerkin (LDG) method as described in
[17, 15]. We approximate the shallow water flow model also using a DG method as
described in [19]. The coupling between the formulations is through a source term in
the shallow water equations and a boundary term in the ground water flow equation.
We refer to this approach as the LDG/DG method. In section 4 we derive a priori
error estimates for this coupled method under very mild assumptions on how the
ground water and surface water domains are discretized.

The flexibility of the LDG method allows us to easily formulate an approach
based on the MFE method [33] for ground water flow, coupled with the DG method
for surface water. We refer to this approach as MFE/DG, and error estimates for this
approach are derived in section 5.

Finally, in section 6, we give some preliminary numerical results for the LDG/DG
method on a model ground water/surface water flow problem.

2. Problem definition. Let hb denote the bathymetric height of the ground
water/surface water interface, measured relative to a reference z plane; see Figure 1.
We assume that hb is a continuous, piecewise differentiable function. Let hT denote
the total surface water height above this reference plane, and let the surface water
depth hs = hT − hb.

In the ground water domain Ωg, let hg denote the hydraulic head, also measured
relative to the reference z-plane, and let ug = (ug, vg, wg) denote the ground water
velocity. The ground water flow equations are given by

ug = −K∇(x,y,z)hg,
∇(x,y,z) · ug = fg

}
, (x, y, z) ∈ Ωg,(1)
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where K is a symmetric, positive definite, hydraulic conductivity tensor and fg models
ground water source/sink terms. Here

∇(x,y,z) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

Assuming continuity of pressure across the ground water/surface water interface, we
have the boundary conditions

hg = hT on ΓGS ,(2)

hg = hD
g on ΓD,(3)

ug · ng = uN on ΓN .(4)

Here ΓGS ⊂ ∂Ωg represents the ground water/surface water interface, ΓD ⊂ ∂Ωg is the
Dirichlet portion of the boundary external to ΓGS , ΓN is the Neumann portion of the
boundary, and ng is the outward normal to ∂Ωg. We will assume that ΓD ∪ΓGS �= ∅.

The shallow water flow equations are obtained from the three-dimensional Navier–
Stokes equations under the hydrostatic pressure assumption [42]. Note that the sur-
face ΓGS is described by the bathymetry hb(x, y) for points (x, y) contained in some
two-dimensional parameter space Ωs; thus the normal ng to this surface is proportional
to the vector (−∂hb/∂x,−∂hb/∂y, 1). The depth-integrated shallow water equations
are then defined over the domain Ωs. First, the shallow water continuity equation
is obtained by integrating the incompressibility condition ∇(x,y,z) · u = 0 over the
water depth, where u = (us, vs, ws) is the three-dimensional surface water velocity.
Applying the kinematic boundary condition at the free surface [42] and the continuity
of flux across the ground water/surface water interface results in

∂ths + ∇(x,y) · (ushs) = ug · (−∇(x,y)hb, 1), (x, y) ∈ Ωs, t > 0,(5)

where ∇(x,y) is the gradient operator in x-y space. Here us = (ūs, v̄s) is the depth-
averaged horizontal surface water velocity, defined by

ūs(x, y) ≡
1

hs

∫ hs

0

us(x, y, z)dz

with a similar definition for v̄s. In (5), we are neglecting other external sources/sinks
such as rainfall and evaporation. The depth-averaged shallow water momentum equa-
tion is

∂tus + us · ∇(x,y)us + τbfus + g∇(x,y)hT − μ∇(x,y) · (∇(x,y)us) = F ,(6)

where τbf ≥ 0 is a bottom friction coefficient, g is gravitational acceleration, μ > 0
is the horizontal eddy viscosity, and F represents additional forcing terms, such as
wind stress, atmospheric pressure gradient, etc. For simplicity, we will assume linear
bottom friction so that τbf = τbf (x, y).

Let the domain boundary ∂Ωs be divided into inflow and outflow regions ∂Ωs =
∂Ωs,in ∪ ∂Ωs,out defined as

∂Ωs,in = {(x, y) ∈ ∂Ωs : us · ns < 0},(7)

∂Ωs,out = {(x, y) ∈ ∂Ωs : us · ns ≥ 0},(8)
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where ns is the outward normal to ∂Ωs, and consider the following boundary and
initial conditions:

hs(·, 0) = h0
s, Ωs,(9)

us(·, 0) = u0
s, Ωs,(10)

hs = hI
s, ∂Ωs,in × (0, T ],(11)

us = ûs, ∂Ωs × (0, T ],(12)

where hI
s is a specified inflow water height and ûs is a specified velocity.

Therefore, the coupling between ground water and surface water flow equations in
this setting occurs in the boundary conditions for ground water flow and the forcing
term for the surface water elevation. Even though we have assumed a simple ground
water flow model, the same type of coupling would occur if ground water flow were
described by the Richards equation, for example.

We will discretize the ground water flow equation using the LDG method as
described in [15]. Later we will see that the general framework of the LDG method
allows us to also consider the approximation of these equations by the MFE method
[33] by restricting our finite element spaces. We will discretize the primitive continuity
equation (5) and momentum equation (6) also using DG methods. In particular we
apply a method described in [19], where the advection term in (6) is discretized by
the upwinding technique of Lesaint and Raviart [28], and the eddy viscosity terms are
discretized using a nonsymmetric, interior penalty Galerkin method (NIPG) [34].

3. The LDG/DG Method. Let {TΔg,g}Δg>0 denote a family of regular finite
element partitions of Ωg such that no individual element Ωe,g crosses ∂Ωg. Let Δe,g

denote the element diameter with Δg being the maximal element diameter. We also
assume that each element Ωe,g is Lipschitz and affinely equivalent to one of several
reference elements [9]. Similarly, let {TΔs,s}Δs>0 denote a family of regular finite
element partitions of Ωs, where Δs is the maximal element diameter. We do not
require that the partitions match up at the interface ΓGS . We allow TΔg,g and TΔs,s

to be nonconforming within their respective domains; i.e., element boundaries do not
have to align. We assume, however, that the number of elements sharing a face is
bounded independently of Δg or Δs. We assume further that each triangulation is
locally quasi-uniform [9].

On each triangulation TΔg,g we will approximate ug in the space VΔg,g and hg in
the space WΔg,g, where

VΔg,g = {v ∈ L2(Ωg)
3 : v|Ωe,g ∈ (S(Ωe,g))

3 ∀ Ωe,g ∈ Ωg},(13)

WΔg,g = {w ∈ L2(Ωg) : w|Ωe,g ∈ S(Ωe,g) ∀ Ωe,g ∈ Ωg}.(14)

We will assume that S consists of complete polynomials of degree kg ≥ 1.
Similarly, on each triangulation TΔs,s, we approximate hs in the space WΔs,s and

us in the space VΔs,s, which consist of complete polynomials of degree ks ≥ 1 defined
on each element.

In our numerical procedure defined below, ug ≈ Ug ∈ VΔg,g, hg ≈ Hg ∈ WΔg,g,
us ≈ U s ∈ VΔs,s, and hs ≈ Hs ∈ WΔs,s.

Suppose e is an interior face in either finite element mesh; then e has two elements
adjacent to it, which we label Ω−

e and Ω+
e . Further suppose (v, w) are smooth func-

tions defined on these elements. Let (v±, w±) denote the traces of (v, w) on e from the
interiors of the elements Ω+

e and Ω−
e , respectively. Let n− denote the normal vector
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to e pointing from Ω−
e to Ω+ with a similar definition for n+ (hence n+ = −n−). We

define the average {·} and the jump [[·]] for x ∈ e as follows:

{v} = (v− + v+)/2, {w} = (w− + w+)/2,(15)

[[v]] = v+ · n+ + v− · n−, [[w]] = w+n+ + w−n−.(16)

We will use the L2(R) inner product notation (·, ·)R for domains R ∈ R
d and the

notation 〈·, ·〉R to denote integration over (d−1)-dimensional surfaces. Let ‖·‖R denote
the L2(R) norm on any spatial region R. The notation 〈·, ·, 〉Ei,g

denotes integration
over all interior element faces in Ωg, and 〈·, ·, 〉Ei,s denotes integration over all interior
element faces in Ωs.

The LDG and DG weak forms of (1) and (5)–(6) are obtained as follows. Multiply
the first equation in (1) by a function vg which is in (H1(Ωe,g))

3, integrate by parts,
and sum over all elements; define

Ag(ug, hg, hs;vg) ≡ (K−1ug,vg)Ωg − (hg,∇(x,y,z) · vg)Ωg

+〈{hg}, [[vg]]〉Ei,g
+ 〈hg,vg · ng〉ΓN

+ 〈hs,vg · ng〉ΓGS
.(17)

Then by (1), (2), and (3),

Ag(ug, hg, hs;vg) = −〈hb,vg · ng〉ΓGS
− 〈hD

g ,vg · ng〉ΓD
.(18)

By the continuity of hg, {hg} = hg, but this notation will be useful in defining the
LDG method. Next, multiply the second equation in (1) by wg ∈ H1(Ωe,g). Let

Bg(ug, hg, hs;wg) ≡ (∇(x,y,z) · ug, wg)Ωg
− 〈[[ug]], {wg}〉Ei,g

−〈ug · ng, wg〉ΓN
+ 〈σg[[hg]], [[wg]]〉Ei,g + 〈σg(hg − hs), wg〉ΓGS

+ 〈σghg, wg〉ΓD
.(19)

Here we add some jump and penalty terms which are necessary to stabilize the method;
the penalty function σg > 0 will be discussed in more detail below. By (1) and the
boundary conditions (2)–(4),

Bg(ug, hg, hs;wg) = −〈uN , wg〉ΓN
+ 〈σghb, wg〉ΓGS

+〈σgh
D
g , wg〉ΓD

+ (fg, wg)Ωg
.(20)

Multiply (5) by a test function ws ∈ H1(Ωe,s), integrate by parts, and apply the
boundary condition (11); define

Bs(ug,us, hg, hs;ws) ≡ (∂ths, ws)Ωs − (ushs,∇(x,y)ws)Ωs + 〈{us}h↑
s, [[ws]]〉Ei,s

−〈σg(hg − hs), ws〉ΓGS
− 〈ug · ng, ws〉ΓGS

+ 〈us · nshs, ws〉∂Ωs,out

+〈us · nsh
I
s, ws〉∂Ωs,in .(21)

Here we have added a penalty term on the interface ΓGS similar to the fifth term
in (19). The penalty function σg is the same as in the corresponding term in (19).
We have also used the fact that by the definition of the domain Ωs and the surface
integral

〈ug · ng, ws〉ΓGS
= (ug · (−∇(x,y)hb, 1), ws)Ωs .

In addition we define the “upwind” value of hs on an interior element face e by

h↑
s =

{
h−
s , {U s} · n− > 0,

h+
s , {U s} · n+ > 0.

(22)
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For the true solution hs, h
↑
s = hs, but note that in general the upwind value is defined

using the approximation U s ≈ us. Thus by (5)

Bs(ug,us, hg, hs;ws) = −〈σghb, ws〉ΓGS
.(23)

Finally, as in [19], we discretize the momentum equation (6) using the Lesaint–
Raviart upwinding method for the advective terms. For each element Ωe,s ∈ TΔs,s,
let

∂Ω−
e,s = {x ∈ ∂Ωe,s : {U s} · ne < 0},

where ne is the unit outward normal to ∂Ωe,s. This set is defined using the approx-
imation U s. Multiply (6) by a test function vs ∈ (H2(Ωe,s))

2 and apply the NIPG
method for diffusion terms; define

As(us, hs;vs) ≡ (∂tus,vs)Ωs + (us · ∇(x,y)us,vs)Ωs

+
∑

∂Ω−
e,s∈TΔs,s

〈|{us} · ne|(uint
s − uext

s ),vint
s 〉∂Ω−

e,s
+ (τbfus,vs)Ωs

+(g∇(x,y)hs,vs)Ωs − 〈g[[hs]], {vs}〉Ei,s
− 〈ghs,vs · n〉∂Ωs,in

+μ(∇(x,y)us,∇(x,y)vs)Ωs − μ〈{∇(x,y)us}, [[vs]]〉Ei,s + μ〈{∇(x,y)vs}, [[us]]〉Ei,s

−μ〈∇(x,y)us · n,vs〉∂Ωs + μ〈∇(x,y)vs · n,us〉∂Ωs

+〈σs[[us]], [[vs]]〉Ei,s
+ 〈σsus,vs〉∂Ωs

.(24)

Here vint and vext denote the traces of v from the interior and exterior of Ωe,s,
respectively, and when ∂Ωe,s belongs to the domain boundary, we take uext

s = ûs.
Also σs is a positive penalty parameter. Thus, by (6), (11), and (12)

As(us, hs;vs) = −(g∇(x,y)hb,vs)Ωs
− 〈ghI

s,vs · n〉∂Ωs,in

+μ〈∇(x,y)vs · n, ûs〉∂Ωs + 〈σsûs,vs〉∂Ωs + (F ,vs)Ωs .(25)

The LDG/DG method can then be stated as follows. We seek approximations
Ug(·, t) ∈ VΔg,g, Hg(·, t) ∈ WΔg,g, U s(·, t) ∈ VΔs,s, and Hs(·, t) ∈ WΔs,s which
satisfy for each t > 0

Ag(Ug, Hg, Hs;vg) = −〈hb,vg · ng〉ΓGS
− 〈hD

g ,vg · ng〉ΓD
, vg ∈ VΔg,g,(26)

Bg(Ug, Hg, Hs;wg) = −〈uN , wg〉ΓN
+ 〈σghb, wg〉ΓGS

+〈σgh
D
g , wg〉ΓD

+ (fg, wg)Ωg , wg ∈ WΔg,g,(27)

Bs(Ug,U s, Hg, Hs;ws) = −〈σghb, ws〉ΓGS
, ws ∈ WΔs,s,(28)

As(U s, Hs;vs) = −(g∇(x,y)hb,vs)Ωs − 〈ghI
s,vs · n〉∂Ωs,in

+μ〈∇(x,y)vs · n, ûs〉∂Ωs + 〈σsûs,vs〉∂Ωs

+(F ,vs)Ωs , vs ∈ VΔs,s.(29)

Furthermore, Hs(·, 0) and U s(·, 0) are defined to be the L2 projections of h0
s and u0

s,
respectively, defined by

(Hs(·, 0) − h0
s, ws)Ωs

= 0, ws ∈ WΔs,s,(30)

(U s(·, 0) − u0
s,vs)Ωs = 0, vs ∈ VΔs,s.(31)

Computationally, and in the analysis below, we redefine the sets ∂Ωs,in and ∂Ωs,out

in (7) and (8) to coincide with where U s · ns < 0 and U s · ns ≥ 0, respectively.
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4. An a priori error estimate. In this section, we derive an a priori error
estimate for the LDG/DG method (26)–(31).

To begin the estimate, we define πug ∈ VΔg,g, πhg ∈ WΔg,g, πus ∈ VΔs,s, and
πhs ∈ WΔs,s to be projections of the true solution into the approximating spaces.
These projections will be specified below. Next, we define Ψg = Ug − πug, Θg =
ug − πug, κg = Hg − πhg, and ηg = hg − πhg with similar definitions for κs, ηs, Ψs,
and Θs. By linearity and Galerkin orthogonality, we have

Ag(Ψg, κg, κs;vg) = Ag(Θg, ηg, ηs;vg),(32)

Bg(Ψg, κg, κs;wg) = Bg(Θg, ηg, ηs;wg).(33)

Define

Bs,L(ug, hg, hs;ws) ≡ (∂ths, ws)Ωs − 〈σg(hg − hs), ws〉ΓGS
− 〈ug · ng, ws〉ΓGS

.

Then from (23) and (28),

Bs,L(Ψg, κg, κs;ws) − (U sκs,∇(x,y)ws)Ωs + 〈{U s}κ↑
s, [[ws]]〉Ei,s + 〈U s · nsκs, ws〉∂Ωs,out

= Bs,L(Θg, ηg, ηs;ws) − (ushs − U sπhs,∇(x,y)ws)Ωs
+ 〈ushs − {U s}πh↑

s, [[ws]]〉Ei,s

+〈(ushs − U sπhs) · ns, ws〉∂Ωs,out
+ 〈(us − U s) · nsh

I
s, ws〉∂Ωs,in

.(34)

Define

As,L(us, hs;vs) ≡ (∂tus,vs)Ωs + (τbfus,vs)Ωs

+(g∇(x,y)hs,vs)Ωs
− 〈g[[hs]], {vs}〉Ei,s

− 〈ghs,vs · n〉∂Ωs,in

+μ(∇(x,y)us,∇(x,y)vs)Ωs − μ〈{∇(x,y)us}, [[vs]]〉Ei,s + μ〈{∇(x,y)vs}, [[us]]〉Ei,s

−μ〈∇(x,y)us · n,vs〉∂Ωs
+ μ〈∇(x,y)vs · n,us〉∂Ωs

+〈σs[[us]], [[vs]]〉Ei,s + 〈σsus,vs〉∂Ωs .(35)

Then from (25) and (29) (recalling uint
s = uext

s ),

As,L(Ψs, κs;vs)

= As,L(Θs, ηs;vs) + (us · ∇(x,y)us − U s · ∇(x,y)U s,vs)Ωs

−
∑

∂Ω−
e,s∈TΔs,s

〈|{U s} · ne|(U int
s − U ext

s ),vint
s 〉∂Ω−

e,s
.(36)

We now set vg = Ψg, wg = κg, vs = Ψs, and ws = κs above and manipulate
several of the resulting terms.

First, in (36), integrating by parts,

(g∇(x,y)κs,Ψs)Ωs − 〈g[[κs]], {Ψs}〉Ei,s − 〈gκs,Ψs · ns〉∂Ωs,in

= −(gκs,∇(x,y) · Ψs)Ωs + 〈g{κs}, [[Ψs]]〉Ei,s + 〈gκs,Ψs · ns〉∂Ωs,out .(37)

Thus (36) becomes

(∂tΨs,Ψs)Ωs
+ (τbfΨs,Ψs)Ωs

+ μ(∇(x,y)Ψs,∇(x,y)Ψs)Ωs

+〈σs[[Ψs]], [[Ψs]]〉Ei,s + 〈σsΨs,Ψs〉∂Ωs

= As,L(Θs, ηs;vs) + (us · ∇(x,y)us − U s · ∇(x,y)U s,vs)Ωs

−
∑

∂Ω−
e,s∈TΔs,s

〈|{U s} · ne|(U int
s − U ext

s ),vint
s 〉∂Ω−

e,s

+(gκs,∇(x,y) · Ψs)Ωs − 〈g{κs}, [[Ψs]]〉Ei,s − 〈gκs,Ψs · ns〉∂Ωs,out .(38)
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Next, in (34), integrating by parts and using the definitions of ∂Ωs,out and ∂Ωs,in

yields

−(U sκs,∇(x,y)κs)Ωs
+ 〈{U s}κ↑

s, [[κs]]〉Ei,s
+ 〈U s · ns, κ

2
s〉∂Ωs,out

=
1

2
(∇(x,y) · U s, κ

2
s)Ωs

− 1

2
〈[[U sκ

2
s]], 1〉Ei,s

+ 〈{U s}κ↑
s, [[κs]]〉Ei,s

+
1

2
〈|U s · ns|, κ2

s〉∂Ωs,in
+

1

2
〈|U s · ns|, κ2

s〉∂Ωs,out
.(39)

Using [[vw]] = {v} · [[w]] + [[v]]{w} and 1
2 [[w2]] = [[w]]{w} and the definition of κ↑

s, we
obtain

−1

2
〈[[U sκ

2
s]], 1〉Ei,s

+ 〈{U s}κ↑
s, [[κs]]〉Ei,s

= 〈κ↑
s[[κs]]{U s} −

1

2
[[κ2

s]]{U s} −
1

2
{κ2

s}[[U s]], 1〉Ei,s

= 〈(κ↑
s − {κs}){U s}, [[κs]]〉Ei,s −

1

2
〈{κs}2, [[U ]]s}〉Ei,s

=
1

2

[
〈|{U s} · n−|, [κ−

s − κ+
s ]2〉Ei,s

− 〈{κ2
s}, [[U s]]〉Ei,s

]
.(40)

Integration by parts gives

−(ushs − U sπhs,∇(x,y)κs)Ωs + 〈(ushs − {U s}πh↑
s, [[κs]]〉Ei,s

+〈(ushs − U sπhs) · ns, κs〉∂Ωs,out + 〈(us − U s) · nsh
I
s, κs〉∂Ωs,in

= (∇(x,y) · (ushs − U sπhs), κs)Ωs − 〈[[κs(ushs − U sπhs)]], 1〉Ei,s

+〈(ushs − {U s}πh↑
s, [[κs]]〉Ei,s

+ 〈U s · ns(πhs − hI
s), κs〉∂Ωs,in

.(41)

Combining (39)–(41) with (34), we find

(∂tκs, κs)Ωs − 〈σg(κg − κs), κs)ΓGS
− 〈Ψg · ng, κs〉ΓGS

+
1

2

[
〈|{U s} · n−|, [κ−

s − κ+
s ]2〉Ei,s + 〈|U s · ns|, κ2

s〉∂Ωs,in + 〈|U s · ns|, κ2
s〉∂Ωs,out

]
= Bs,L(Θg, ηg, ηs;κs) −

1

2
(∇(x,y) · U s, κ

2
s)Ωs

+
1

2
〈{κ2

s}, [[U s]]〉Ei,s

+(∇(x,y) · (ushs − U sπhs), κs)Ωs
− 〈[[κs(ushs − U sπhs)]], 1〉Ei,s

+〈(ushs − {U s}πh↑
s, [[κs]]〉Ei,s + 〈U s · ns(πhs − hI

s), κs〉∂Ωs,in .(42)

Furthermore, by (32) and (33),

Ag(Ψg, κg, κs; Ψg) + Bg(Ψs, κg, κs;κg)

= (K−1Ψg,Ψg)Ωg
+ 〈κs,Ψg · ng〉ΓGS

+ 〈σg[[κg]], [[κg]]〉Ei,s

+〈σg(κg − κs), κg〉ΓGS
+ 〈σgκg, κg〉ΓD

= Ag(Θg, ηg, ηs; Ψg) + Bg(Θg, ηg, ηs;κg).(43)
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Adding (38), (42), and (43), we find the error equation

||K−1/2Ψg||2Ωg
+ ||σ1/2

g [[κg]]||2Ei,g
+ ||σ1/2

g κg||2ΓD
+ ||σ1/2

g (κg − κs)||2ΓGS

+
1

2

[
〈|{U s} · n−|, [κ−

s − κ+
s ]2〉Ei,s

+ 〈|U s · ns|, κ2
s〉∂Ωs,in

+ 〈|U s · ns|, κ2
s〉∂Ωs,out

]
+(∂tκs, κs)Ωs + (∂tΨs,Ψs)Ωs + ||τ1/2

bf Ψs||2Ωs
+ μ||∇(x,y)Ψs||2Ωs

+||σ1/2
s [[Ψs]]||2Ei,s

+ ||σ1/2
s Ψs||2∂Ωs

= Ag(Θg, ηg, ηs; Ψg) + Bg(Θg, ηg, ηs;κg) + Bs,L(Θg, ηg, ηs;κs) + As,L(Θs, ηs; Ψs)

−
∑

∂Ω−
e,s∈TΔs,s

〈|{U s} · ne|(U int
s − U ext

s ),Ψint
s 〉∂Ω−

e,s

+(us · ∇(x,y)us − U s · ∇(x,y)U s,Ψs)Ωs

−1

2
(∇(x,y) · U s, κ

2
s)Ωs +

1

2
〈{κ2

s}, [[U s]]〉Ei,s

+(∇(x,y) · (ushs − U sπhs), κs)Ωs
− 〈[[κs(ushs − U sπhs)]], 1〉Ei,s

+〈ushs − {U s}πh↑
s, [[κs]]〉Ei,s + 〈U s · ns(πhs − hI

s), κs〉∂Ωs,in

+(gκs,∇(x,y) · Ψs)Ωs
− 〈g{κs}, [[Ψs]]〉Ei,s

− 〈gκs,Ψs · ns〉∂Ωs,out

≡ Ag(Θg, ηg, ηs; Ψg) + Bg(Θg, ηg, ηs;κg) + Bs,L(Θg, ηg, ηs;κs) + As,L(Θs, ηs; Ψs)

+

11∑
i=1

Ei.(44)

Next, we consider the terms on the right-hand side of (44). To begin note that

Ag(Θg, ηg, ηs; Ψg) = (K−1Θg,Ψg)Ωg
− (ηg,∇(x,y,z) · Ψg)Ωg

+ 〈{ηg}, [[Ψg]]〉Ei,g

+〈ηg,Ψg · ng〉ΓN
+ 〈ηs,Ψg · ng〉ΓGS

≡ Ag,1 + · · · + Ag,5.(45)

Adding terms and integrating by parts, we find

Bg(Θg, ηg, ηs;κg) + Bs,L(Θg, ηg, ηs;κs)

= (∇(x,y,z) · Θg, κg)Ωg
− 〈[[Θg]], {κg}〉Ei,g

+ 〈Θg · ng, κg〉ΓN

+〈σg[[ηg]], [[κg]]〉Ei,g + 〈σg(ηg − ηs), κg〉ΓGS
+ 〈σgηg, κg〉ΓD

+(∂tηs, κs)Ωs
− 〈σg(ηg − ηs), κs〉ΓGS

− 〈Θg · ng, κs〉ΓGS

= (Θg,∇(x,y,z)κg)Ωg + 〈{Θg}, [[κg]]〉Ei,g + 〈Θg · ng, κg − κs〉ΓGS
+ 〈Θg · ng, κg〉ΓD

+〈σg[[ηg]], [[κg]]〉Ei,g + 〈σg(ηg − ηs), κg − κs〉ΓGS
+ 〈σgηg, κg〉ΓD

+ (∂tηs, κs)Ωs

≡ B1 + · · · + B8.(46)

Furthermore,

As,L(Θs, ηs; Ψs) = (∂tΘs,Ψs)Ωs + (τbfΘs,Ψs)Ωs

+(g∇(x,y)ηs,Ψs)Ωs − 〈g[[ηs]], {Ψs}〉Ei,s − 〈gηs,Ψs · n〉∂Ωs,in

+μ(∇(x,y)Θs,∇(x,y)Ψs)Ωs − μ〈{∇(x,y)Θs}, [[Ψs]]〉Ei,s + μ〈{∇(x,y)Ψs}, [[Θs]]〉Ei,s

−μ〈∇(x,y)Θs · n,Ψs〉∂Ωs
+ μ〈∇(x,y)Ψs · n,Θs〉∂Ωs

+〈σs[[Θs]], [[Ψs]]〉Ei,s
+ 〈σsΘs,Ψs〉∂Ωs

≡ As,1 + · · · + As,12.(47)
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We choose πug, πhg, πus, and πhs to be the L2 projections of ug, hg, us, and hs

into the spaces VΔg,g, WΔg,g, VΔs,s, and WΔs,s, respectively. These are defined by

(πug − ug,vg)Ωg = 0, vg ∈ VΔg,g,(48)

(πhg − hg, wg)Ωg = 0, wg ∈ WΔg,g,(49)

(πus − us,vs)Ωs
= 0, vs ∈ VΔs,s,(50)

(πhs − hs, ws)Ωs
= 0, ws ∈ WΔs,s.(51)

We note that by our assumptions on the approximating spaces,

vg ∈ VΔg,g ⇒ ∇(x,y,z) · vg ∈ WΔg,g

and

wg ∈ WΔg,g ⇒ ∇(x,y,z)wg ∈ VΔg,g.

Thus by (48)–(51) terms Ag,2 = B1 = B8 = As,1 = 0.
In the estimates below, we will use the trace theorem [9].
Theorem 4.1. Suppose that region R has a Lipschitz boundary. Then there

exists a constant Kt such that

||v||2∂R ≤ Kt[ν−1||v||2R + ν||∇v||2R] ∀v ∈ H1(R),(52)

where ν = diam(R).
We will also use the standard inverse inequality:

||∇w||Ωe
≤ KiΔ−1

e ||w||Ωe ,(53)

where Ωe is in Ωg or Ωs and w is in one of our finite-dimensional approximating spaces.
Based on these results, for v ∈ H1(Ωe) and w in one of our approximating spaces, an
argument we will use repeatedly in various ways is

〈vint, wint〉∂Ωe
≤ ||vint||∂Ωe ||wint||∂Ωe

≤ Kt[Δ−1
e ||v||2Ωe

+ Δe||∇v||2Ωe
]1/2[Δ−1

e ||w||2Ωe
+ Δe||∇w||2Ωe

]1/2

≤ Kt(1 + (Ki)2)1/2[Δ−2
e ||v||2Ωe

+ ||∇v||2Ωe
]1/2||w||Ωe

.(54)

We will make the following assumptions on our solution and projections:

||us||L∞(0,T ;W∞
1 (Ωs)) + ||hs||L∞(0,T ;W∞

1 (Ωs))

+||πus||L∞(0,T ;L∞(Ωs)) + ||πhs||L∞(0,T ;L∞(Ωs)) ≤ Km,(55)

where Km is independent of Δs. We will also assume that a constant KM ≥ 2Km

exists, independent of Δs, for which

||Ψs||L∞(0,T ;L∞(Ωs)) + ||κs||L∞(0,T ;L∞(Ωs)) ≤ KM .(56)

We will show inductively that for ks, kg > 1 our estimate does not in fact depend on
KM .

On any face γ in the mesh TΔg,g(TΔs,s), let Eγ denote the set of elements sharing
the face, and let Δγ be the maximum element diameter over all elements in Eγ . We
will assume that

σg(s)|γ = O(Δ−1
γ ).(57)
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Finally, we make the following assumption on the ground water and surface water
meshes on ΓGS .

Assumption GS. Let the set EGS be defined as follows:

EGS = {Ωe,g ⊂ Ωg : ∂Ωe,g ∩ ΓGS �= ∅}.(58)

For elements Ωe,g in the set EGS , assume that ∂Ωe,g ∩ ΓGS , when mapped to Ωs,
intersects a finite number of elements Ωē,s bounded independently of Δg or Δs and
that

Δē,sΔ
−1
e,g = O(1).

We repeatedly make use of Young’s inequality

ab ≤ ε

2
a2 +

1

2ε
b2, a, b ∈ R, ε > 0.(59)

Furthermore, let C denote a generic positive constant which may depend on other
constants. We will make explicit this dependence in the arguments below.

First, it is easily seen that

Ag,1 ≤ C(K)||Θg||2Ωg
+ ε1||K−1/2Ψg||2Ωg

.(60)

Applying (54), we find

Ag,3 + Ag,4 = 〈[[Ψg]], {ηg}〉Ei,g + 〈ηg,Ψg · ng〉ΓN

≤ ε1||K−1/2Ψg||2Ωg
+ C(Kt,Ki,K)

∑
Ωe,g

[Δ−2
e,g||ηg||2Ωe,g

+ ||ηg||2H1(Ωe,g)].(61)

Applying Theorem 4.1 to Ψg and Assumption GS,

Ag,5 = 〈Ψg · ng, ηs〉ΓGS

≤ C
∑

Ωe∈EGS

||Ψg||∂Ωe,g ||ηs||∂Ωe,g

≤ ε1||K−1/2Ψg||2Ωg
+ C(Kt,Ki,K)

∑
Ωe,g∈EGS

Δ−1
e,g||ηs||2∂Ωe,g

≤ ε1||K−1/2Ψg||2Ωg
+ C(Kt,Ki,K)

∑
Ωe,s

Δ−1
e,s||ηs||2Ωe,s

.(62)

Next, by (57) and Theorem 4.1,

B2 + B3 + B4 = 〈{Θg}, [[κg]]〉Ei,g
+ 〈Θg · ng, κg − κs〉ΓGS

+ 〈Θg · ng, κg〉ΓD

= 〈σ−1/2{Θg}, σ1/2[[κg]]〉Ei,g
+ 〈σ−1/2Θg · ng, σ

1/2(κg − κs)〉ΓGS

+〈σ−1/2Θg · ng, σ
1/2κg〉ΓD

≤ C[ ||σ−1/2Θg||2ΓD
+ ||σ−1/2Θg||2Ei,g

+ ||σ−1/2Θg||2ΓGS
]

+ε2[ ||σ1/2[[κg]]||2Ei,g
+ ||σ1/2(κg − κs)||2ΓGS

+ ||σ1/2κg||2ΓD
]

≤ C(Kt)
∑
Ωe,g

[ ||Θg||2Ωe,g
+ Δ2

e,g||Θg||2H1(Ωe,g)]

+ε2[ ||σ1/2[[κg]]||2Ei,g
+ ||σ1/2(κg − κs)||2ΓGS

+ ||σ1/2κg||2ΓD
].(63)
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Similarly,

B5 + B6 + B7 ≤ C[ ||σ1/2[[ηg]]||2Ei,g
+ ||σ1/2ηg||2ΓGS

+||σ1/2ηs||2ΓGS
+ ||σ1/2ηg||2ΓD

]

+ε2[ ||σ1/2[[κg]]||2Ei,g
+ ||σ1/2(κg − κs)||2ΓGS

+||σ1/2κg||2ΓD
]

≤ C(Kt)
∑
Ωe,g

[Δ−2
e,g||ηg||2Ωe,g

+ ||ηg||2H1(Ωe,g)]

+ε2[ ||σ1/2[[κg]]||2Ei,g
+ ||σ1/2(κg − κs)||2ΓGS

+||σ1/2κg||2ΓD
].(64)

Next, consider

As,2 + As,3 + As,6 = (τbfΘs,Ψs)Ωs
+ (g∇(x,y)ηs,Ψs)Ωs

+ μ(∇(x,y)Θs,∇(x,y)Ψs)Ωs

≤ C[ ||τ1/2
bf Θs||2Ωs

+ ||∇(x,y)ηs||2Ωs
+ μ||∇(x,y)Θs||2Ωs

]

+
1

2
||τ1/2

bf Ψs||2Ωs
+ C||Ψs||2Ωs

+
μ

8
||∇(x,y)Ψs||2Ωs

.(65)

By (54),

As,4 + As,5 + As,8 + As,10 = −〈g[[ηs]], {Ψs}〉Ei,s − 〈gηs,Ψs · n〉∂Ωs,in

+μ〈{∇(x,y)Ψs}, [[Θs]]〉Ei,s + μ〈∇(x,y)Ψs · n,Θs〉∂Ωs

≤ C||Ψs||2Ωs
+

μ

8
||∇(x,y)Ψs||2Ωs

+C(Kt,Ki)
∑
Ωe,s

[Δ−2
e,s||ηs||2Ωe,s

+ ||ηs||2H1(Ωe,s)
]

+C(Kt,Ki, μ)
∑
Ωe,s

[Δ−2
e,s||Θs||2Ωe,s

+ ||Θs||2H1(Ωe,s)
].(66)

By (57) and Theorem 4.1,

As,7 + As,9 = −μ〈{∇(x,y)Θs}, [[Ψs]]〉Ei,s − μ〈∇(x,y)Θs · n,Ψs〉∂Ωs

≤ C(μ)[ ||σ−1/2{∇(x,y)Θs}||2Ei,s
+ ||σ−1/2∇(x,y)Θs||2∂Ωs

]

+ε3[ ||σ1/2
s [[Ψs]]||2Ei,s

+ ||σ1/2
s Ψs||2∂Ωs

]

≤ C(Kt, μ)
∑
Ωe,s

[ ||∇(x,y)Θs||2Ωe,s
+ Δ2

e,s||∇(x,y)Θs||2H1(Ωe,s)
]

+ε3[ ||σ1/2
s [[Ψs]]||2Ei,s

+ ||σ1/2
s Ψs||2∂Ωs

].(67)

Furthermore,

As,11 + As,12 = 〈σs[[Θs]], [[Ψs]]〉Ei,s + 〈σsΘs,Ψs〉∂Ωs

≤ ε3[ ||σ1/2
s [[Ψs]]||2Ei,s

+ ||σ1/2
s Ψs||2∂Ωs

]

+C[ ||σ1/2
s [[Θs]]||2Ei,s

+ ||σ1/2
s Θs||2∂Ωs

]

≤ ε3[ ||σ1/2
s [[Ψs]]||2Ei,s

+ ||σ1/2
s Ψs||2∂Ωs

]

+C(Kt)
∑
Ωe,s

[ Δ−2
e,s||Θs||2Ωe,s

+ ||Θs||2H1(Ωe,s)
].(68)
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Consider next

E1 = −
∑

∂Ω−
e,s∈TΔs,s

〈|{U s} · ne|(U int
s − U ext

s ),Ψint
s 〉∂Ω−

e,s

≤
∑

∂Ω−
e,s∈TΔs,s

〈|{Ψs + πus} · ne||[[Ψs]] − [[Θs]]|, |Ψint
s |〉∂Ω−

e,s

≤ C(KM ,Km)
∑

∂Ω−
e,s∈TΔs,s

[ ||σ1/2
s [[Θs]]||∂Ω−

e,s
+ ||σ1/2

s [[Ψs]]||∂Ω−
e,s

]||σ−1/2
s Ψint

s ||∂Ω−
e,s

≤ C(Kt,Km,KM )
∑
Ωe,s

[Δ−2
e,s||Θs||2Ωe,s

+ ||Θs||2H1(Ωe,s)
] + C(KM ,Km,Kt,Ki)||Ψs||2Ωs

+ε3[ ||σ1/2
s [[Ψs]]||2Ei,s

+ ||σ1/2
s Ψs||2∂Ωs

],(69)

E2 = (us · ∇(x,y)us − U s · ∇(x,y)U s,Ψs)Ωs

= ((us − U s) · ∇(x,y)us,Ψs)Ωs + ((Ψs + πus) · ∇(x,y)(Θs − Ψs),Ψs)Ωs

≤ C(Km,KM )[ ||Θs||2Ωs
+ ||∇(x,y)Θs||2Ωs

] + C(Km,KM , μ−1)||Ψs||2Ωs

+
μ

8
||∇(x,y)Ψs||2,(70)

E3 = −1

2
(∇(x,y) · U s, κ

2
s)Ωs

= −1

2
(∇(x,y) · (Ψs − Θs + us), κ

2
s)Ωs

≤ μ

8
||∇(x,y)Ψs||2Ωs

+ C(KM )||∇(x,y)Θs||2Ωs
+ C(Km,KM , μ−1)||κs||2Ωs

,(71)

E4 =
1

2
〈{κ2

s}, [[U s]]〉Ei,s

=
1

2
〈{κ2

s}, [[Ψs − Θs]]〉Ei,s

≤ C(KM )[ ||σ1/2
s [[Ψs]]||Ei,s + ||σ1/2

s [[Θs]]||Ei,s ] ||σ−1/2
s {κs}||Ei,s

≤ ε3||σ1/2
s [[Ψs]]||2Ei,s

+ C(Kt)
∑
Ωe,s

[ Δ−2
e,s||Θs||2Ωe,s

+ ||Θs||2H1(Ωe,s)
]

+C(KM ,Kt,Ki)||κs||2Ωs
,(72)

E5 = (∇(x,y) · (ushs − U sπhs), κs)Ωs

= (∇(x,y) · (us(hs − πhs)), κs)Ωs + (∇(x,y) · ((us − U s)πhs), κs)Ωs

= ((∇(x,y) · us)ηs, κs)Ωs
+ (us · ∇(x,y)ηs, κs)Ωs

+(πhs∇(x,y) · (Θs − Ψs), κs)Ωs + ((Θs − Ψs) · ∇(x,y)(hs − ηs), κs)Ωs

≤ C(Km,KM )||Θs||2H1(Ωs)
+ C(Km,KM )||ηs||2H1(Ωs)

+
μ

8
||∇(x,y)Ψs||2Ωs

+C(Km,KM , μ−1)||κs||2Ωs
.(73)

Using [[ab]] = {a}[[b]] + [[a]]{b} and {ab} = {a}{b} + 1
4 [[a]][[b]], we find

E6 + E7 = −〈[[κs(ushs − U sπhs)]], 1〉Ei,s
+ 〈ushs − {U s}πh↑

s, [[κs]]〉Ei,s

= 〈(η↑s − {ηs}){U s} −
1

4
[[ηs]][[U s]], [[κs]]〉Ei,s

+〈{πhs}([[Ψs]] − [[Θs]]) − [[ηs]]{U s}, {κs}〉Ei,s .(74)
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By (54)

〈(η↑s − {ηs}){U s}, [[κs]]〉Ei,s ≤ C(Km,KM )
∑
Ωe,s

[ Δ−2
e,s||ηs||2Ωe,s

+ ||ηs||2H1(Ωe,s)
]

+C(Ki)||κs||2Ωs
(75)

with similar estimates for the above terms involving [[ηs]]. An identical bound to (72)
is obtained for the remaining term, 〈{πhs}([[Ψs]]−[[Θs]], {κs}〉Ei,s

, in (74). Continuing,

E8 = 〈U s · ns(πhs − hI
s), κs〉∂Ωs,in

≤ C(Km,KM )||ηs||2∂Ωs,in
+ ε4〈|U s · ns|, |κs|2〉∂Ωs,in

≤ C(Km,KM ,Kt)
∑
Ωe,s

[ Δ−1
e,s||ηs||2Ωe,s

+ Δe,s||ηs||2H1(Ωe,s)
]

+ε4〈|U s · ns|, |κs|2〉∂Ωs,in
(76)

and

E9 = (gκs,∇(x,y) · Ψs)Ωs

≤ C(μ−1)||κs||2Ωs
+

μ

8
||∇(x,y)Ψs||2Ωs

.(77)

Finally,

E10 + E11 = −〈g{κs}, [[Ψs]]〉Ei,s − 〈gκs,Ψs · ns〉∂Ωs,out

≤ C||σ−1/2
s {κs}||Ei,s ||σ1/2

s [[Ψs]]||Ei,s

+C||σ−1/2
s κs||∂Ωs,out ||σ1/2

s Ψs||∂Ωs,out

≤ C(Kt,Ki)||κs||2Ωs

+ε3[ ||σ1/2
s [[Ψs]]||2Ei,s

+ ||σ1/2
s Ψs||2∂Ωs,out

].(78)

By standard approximation theory, for ug, hg, us, and hs sufficiently smooth,

||Θg||Ωe,g + Δe,g||Θg||H1(Ωe,g) ≤ C(ug)Δ
kg+1
e,g ,(79)

||ηg||Ωe,g + Δe,g||ηg||H1(Ωe,g) ≤ C(hg)Δ
kg+1
e,g ,(80)

||Θs||Ωe,s
+ Δe,s||Θs||H1(Ωe,s) + Δ2

e,s||Θs||H2(Ωe,s) ≤ C(us)Δ
ks+1
e,s ,(81)

||ηs||Ωe,s + Δe,s||ηs||H1(Ωe,s) ≤ C(hs)Δ
ks+1
e,s .(82)

Using (60)–(78) to bound the right-hand side of (44), choosing ε1–ε4 sufficiently small,
and applying (79)–(82), we find

1

2
||K−1/2Ψg||2Ωg

+
1

2
∂t||κs||2Ωs

+
1

2
∂t||Ψs||2Ωs

+
μ

4
||∇(x,y)Ψs||2Ωs

+
1

2
[ ||σ1/2

g [[κg]]||2Ei,g
+ ||σ1/2

g κg||2ΓD
+ ||σ1/2

g (κg − κs)||2ΓGS
]

≤ C(K,Kt,Ki,Km,KM , μ,ug, hg,us, hs)(Δ
2kg
g + Δ2ks

s )

+C(Kt,Ki,Km,KM , μ−1)[ ||κs||2Ωs
+ ||Ψs||2Ωs

].(83)

Integrating in time from 0 to T and applying (30), (31), Gronwall’s lemma, and the
triangle inequality, we obtain the following error estimate.
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Theorem 4.2. Assume ug, hg, us, and hs are sufficiently smooth so that ap-
proximation bounds (79)–(82) hold. Assume that the ground water and surface water
meshes satisfy Assumption GS and that the penalty functions σg and σs satisfy (57).
Then the LDG/DG method (26)–(31) satisfies(∫ T

0

||K1/2Ψg||2Ωg
dt

)1/2

+

(∫ T

0

[ ||σ1/2
g [[κg]]||2Ei,g

+ ||σ1/2
g κg||2ΓD

+ ||σ1/2
g (κg − κs)||2ΓGS

]dt

)1/2

+||κs(·, T )||Ωs + ||Ψs(·, T )||Ωs ≤ C̃(Δkg
g + Δks

s ),

where C̃ depends on K, μ, Kt, Ki, KM , Km, ug, hg, us, and hs. Applying the
triangle inequality, we obtain(∫ T

0

||K1/2(ug − Ug)||2Ωg
dt

)1/2

+||(hs −Hs)(·, T )||Ωs + ||(us − U s)(·, T )||Ωs ≤ C̃(Δkg
g + Δks

s ).

We recall another inverse inequality, valid in two dimensions,

||w(·, t)||L∞(Ωs) ≤ C∞Δ−1
s ||w(·, t)||Ωs ,(84)

where C∞ is independent of Δs and w(·, t) is in either WΔs,s or VΔs,s. Assuming that
kg and ks ≥ 2 and Δs and Δ−1

s Δ2
g are sufficiently small, we have

||κs||L∞(0,T ;L∞(Ωs)) ≤ C∞C̃Δ−1
s [ Δ2

g + Δ2
s] � KM(85)

and similarly for Ψs. Then we can remove the dependence of C̃ on KM .

4.1. An estimate for Hg. The estimate (4.2) does not say anything about the
accuracy of Hg. Estimates for the error hg −Hg follow from a duality argument.

In this section, let ∇ = ∇(x,y,z), let eg = hg −Hg, and assume that φ satisfies

−∇ · (K∇φ) = eg, Ωg(86)

with the boundary conditions

φ = 0, ΓD ∪ ΓGS ,(87)

K∇φ · ng = 0, ΓN .(88)

Define q = −K∇φ. We assume problem (86)–(88) satisfies the standard elliptic
regularity bounds, so that

||φ||H2(Ωg) + ||q · ng||ΓD∪ΓGS
≤ Cr||eg||Ωg ,(89)

where the constant Cr depends on the domain Ω and the coefficient K.
Multiplying (86) by eg and integrating by parts,

||eg||2Ωg
= (hg −Hg,∇ · q)Ωg

= −(∇hg,q)Ωg + 〈hg,q · ng〉ΓD
+ 〈hT ,q · ng〉ΓGS

+(∇Hg,q)Ωg
− 〈[[Hg]],q〉Ei,g

− 〈Hg,q · ng〉ΓD
− 〈Hg,q · ng〉ΓGS

.(90)
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Let π again denote L2 projection into the appropriate LDG approximating space.
Then

−(∇hg,q) = (∇hg, πq − q)Ωg − (∇hg, πq)Ωg

= (∇hg − π(∇hg), πq − q)Ωg
+ (K−1ug, πq)Ωg

.(91)

An alternate form of (17) is obtained by integration by parts:

Ag(Ug, Hg, Hs;vg) = (K−1Ug,vg)Ωg
+ (∇Hg,vg)Ωg

−〈Hg,vg · ng〉ΓD
− 〈[[Hg]], {vg}〉Ei,g

−〈Hg −Hs,vg · ng〉ΓGS
.

Therefore, by (26),

(∇Hg,q)Ωg
= (∇Hg, πq)Ωg

= −(K−1Ug, πq)Ωg + 〈[[Hg]], {πq}〉Ei,g

+〈Hg − hD
g , πq · ng〉ΓD

+ 〈Hg −HT , πq · ng〉ΓGS
,(92)

where HT = Hs + hb. Combining (90)–(92) and using [[hg]] = 0 on Ei,g, we obtain

||eg||2Ωg
= (K−1(ug − Ug), πq)Ωg

+ 〈[[Hg − hg]], {πq} − q〉Ei,g

+〈hg −Hg, (q − πq) · ng〉ΓD
+ 〈hT −HT ,q · ng〉ΓGS

+〈Hg −HT , (πq − q) · ng〉ΓGS
+ (∇hg − π(∇hg), πq − q)Ωg

.(93)

Next, consider

(K−1(ug − Ug), πq)Ωg = (K−1(ug − Ug),q)Ωg + (K−1(ug − Ug), πq − q)Ωg .(94)

Integrating by parts,

(K−1(ug − Ug),q)Ωg = −(K−1(ug − Ug),K∇φ)Ωg

= (∇ · (ug − Ug), φ)Ωg + 〈[[Ug]], φ〉Ei,g

+〈Ug · ng − uN , φ〉ΓN
.(95)

Furthermore,

(∇ · (ug − Ug), φ)Ωg
= (∇ · (ug − Ug), φ− πφ)Ωg + (∇ · (ug − Ug), πφ)Ωg ,(96)

and by (20) and (27),

(∇ · (ug − Ug), πφ)Ωg = 〈[[ug − Ug]], {πφ}〉Ei,g + 〈ug · ng − Ug · ng, πφ〉ΓN

+〈σg[[Hg − hg]], [[πφ]]〉Ei,g
+ 〈σg(Hg −HT ), πφ〉ΓGS

+〈σg(Hg − hg), πφ〉ΓD
.(97)

Combining (94)–(97), we find

(K−1(ug − Ug), πq)Ωg = (K−1(ug − Ug), πq − q)Ωg + (∇ · (ug − Ug), φ− πφ)Ωg

+〈[[Ug − ug]], φ− {πφ}〉Ei,g + 〈Ug · ng − ug · ng, φ− πφ〉ΓN

+〈σg[[Hg − hg]], [[πφ]]〉Ei,g + 〈σg(Hg −HT ), πφ〉ΓGS

+〈σg(Hg − hg), πφ〉ΓD
.(98)
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Finally, substituting (98) into (93), we obtain

||eg||2Ωg
= (K−1(ug − Ug), πq − q)Ωg + (∇ · (ug − Ug), φ− πφ)Ωg

+〈[[Ug − ug]], φ− {πφ}〉Ei,g + 〈Ug · ng − ug · ng, φ− πφ〉ΓN
.

+〈[[Hg − hg]], {πq} − q〉Ei,g
+ 〈hg −Hg, (q − πq) · ng〉ΓD

+〈Hg −HT , (πq − q) · ng〉ΓGS
+ 〈hT −HT ,q · ng〉ΓGS

+〈σg[[Hg − hg]], [[πφ]]〉Ei,g + 〈σg(Hg −HT ), πφ〉ΓGS

+〈σg(Hg − hg), πφ〉ΓD
+ (∇hg − π(∇hg), πq − q)Ωg

≡ F1 + · · · + F12.(99)

By approximation theory,

||πq − q||Ωe,g + Δe,g||πq − q||H1(Ωe,g) ≤ C(Cr)Δe,g||φ||H2(Ωe,g),(100)

||πφ− φ||Ωe,g + Δe,g||πφ− φ||H1(Ωe,g) ≤ C(Cr)Δ2
e,g||φ||H2(Ωe,g).(101)

In the arguments below, let C̄ be a generic constant which depends on Cr and C̃
from Theorem 4.2. Integrating (99) in time and applying Theorem 4.1 and inverse
inequality (53), the bounds (100)–(101), (89), and the result of Theorem 4.2, we
obtain ∫ T

0

[F1 + · · · + F4]dt

≤
∫ T

0

∑
e

||K−1/2(ug − Ug)||Ωe,g
||πq − q||Ωe,g

dt

+

∫ T

0

∑
e

||ug − Ug||H1(Ωe,g)||φ− πφ||Ωe,gdt

+

∫ T

0

∑
e

[ ||ug − Ug||2Ωe,g
+ Δ2

e,g||∇(ug − Ug)||2Ωe,g
]1/2

×[ Δ−2
e,g||φ− πφ||2Ωe,g

+ ||∇(φ− πφ)||2Ωe,g
]1/2dt

≤ C̄Δg(Δ
kg
g + Δks

s )

(∫ T

0

||eg||2Ωg
dt

)1/2

.(102)

Consider

F5 = 〈[[Hg − hg]], {πq − q}〉Ei,g

= 〈σ1/2
g [[κg − ηg]], σ

−1/2
g {πq − q}〉Ei,g

≤
(
||σ1/2

g [[κg]]||Ei,g + ||σ1/2
g [[ηg]]||Ei,g

)
||σ−1/2

g {πq − q}||Ei,g .(103)

By (57), Theorem 4.1, and (100),

||σ−1/2
g {πq − q}||Ei,g ≤ C

∑
e

[ ||πq − q||2Ωe,g
+ Δ2

e,g||∇(πq − q)||2Ωe,g
]1/2

≤ CΔg||eg||Ωg ;(104)

hence by Theorem 4.2 and estimates on ηg we find∫ T

0

F5dt ≤ C̄Δg(Δ
kg
g + Δks

s )

(∫ T

0

||eg||2Ωg
dt

)1/2

.(105)
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A similar argument gives the same bound for F6 and F7, since Hg −HT = κg − κs +
ηs − ηg. For F8,∫ T

0

〈hT −HT ,q · ng〉ΓGS
dt =

∫ T

0

〈ηs − κs,q · ng〉ΓGS
dt

≤ C̄
∫ T

0

[||ηs||Ωs
+ ||κs||Ωs

] ||eg||Ωg
dt

≤ C̄(Δkg
g + Δks

s )

(∫ T

0

||eg||2Ωg
dt

)1/2

(106)

by Theorem 4.2. Next, consider

F9 = 〈σg[[Hg − hg]], [[πφ]]〉Ei,g

= 〈σg[[κg − ηg]], [[πφ− φ]]〉Ei,g

≤
(
||σ1/2

g [[κg]]||Ei,g + ||σ1/2
g [[ηg]]||Ei,g

)
||σ1/2

g [[πφ− φ]]||Ei,g
.(107)

Similar to (104),

||σ1/2
g [[πφ− φ]]||Ei,g ≤ CΔg||eg||Ωg ;(108)

therefore

∫ T

0

F9 dt ≤ C̄Δg(Δ
kg
g + Δks+1/2

s )

(∫ T

0

||eg||2Ωg
dt

)1/2

.(109)

A similar argument gives the same bound for F10 and F11, since φ = 0 on ΓD and
ΓGS . Finally,

F12 = (∇hg − π(∇hg), πq − q)Ωg

≤ C̄Δkg+1
g

(∫ T

0

||eg||2Ωg
dt

)1/2

.(110)

Combining bounds (102)–(110) with (99), we obtain the following estimate for eg.
Theorem 4.3. Under the assumptions of Theorem 4.2 and the regularity of the

dual solution φ, we have(∫ T

0

||hg −Hg)||2dt
)1/2

≤ C(Cr, C̃)(Δkg
g + Δks

s ).

This estimate unfortunately does not give the additional power of Δg which is
obtained in the purely elliptic case considered in [15]. The problem is in the term F8,
which involves the coupling between ground water and surface water. Theorem 4.3
essentially tells us that the error in Hg is no better than the error in Hs, which is not
terribly surprising.

5. The MFE/DG method. The flexibility of the LDG framework (26)–(29)
easily allows for a MFE approximation of the ground water flow equations. This
can be accomplished by restricting the finite element spaces VΔg,g and WΔg,g to be
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standard mixed spaces; see, for example, [33, 12, 10, 11, 16]. In this section, we
assume that the mesh TΔg,g is regular and conforming and denote by VM

Δg,g
and

WM
Δg,g

MFE approximating spaces of order kg ≥ 0. Thus, functions in WM
Δg,g

are

piecewise polynomials of degree kg, VM
Δg,g

⊂ H(div; Ωg), and the spaces satisfy the

Babuška–Brezzi (BB) inf-sup condition. Furthermore,

∇(xyz) · v ∈ WM
Δg,g ∀ v ∈ VM

Δg,g.(111)

For simplicity, in this section we will assume that uN = 0. When this is not the
case, we enforce the Neumann boundary condition by setting Ug ·ng = ũN , where ũN

is the projection of uN into a space of Lagrange multiplier functions defined on ΓN ;
see, for example, [4]. The analysis below carries through with this modification at
the expense of including some additional terms which have been analyzed in previous
papers. Denote

VM,0
Δg,g

= VM
Δg,g ∩ {vg : vg · ng|ΓN

= 0}.

Define

AM
g (ug, hg, hs;vg) ≡ (K−1ug,vg)Ωg

− (hg,∇(x,y,z) · vg)Ωg
(112)

+〈hs,vg · ng〉ΓGS
,

BM
g (ug;wg) ≡ (∇(x,y,z) · ug, wg)Ωg ,(113)

BM
s (ug,us, hs;ws) ≡ (∂ths, ws)Ωs − (ushs,∇(x,y)ws)Ωs + 〈{us}h↑

s, [[ws]]〉Ei,s

−〈ug · ng, ws〉ΓGS
+ 〈us · nshs, ws〉∂Ωs,out

+〈us · nsh
I
s, ws〉∂Ωs,in .(114)

The MFE/DG method then is to find Ug ∈ VM,0
Δg,g

, Hg ∈ WM
Δg,g

, U s ∈ VΔs,s, and
Hs ∈ WΔs,s which satisfy

AM
g (Ug, Hg, Hs;vg) = −〈hb,vg · ng〉ΓGS

− 〈hD
g ,vg · ng〉ΓD

, vg ∈ VM,0
Δg,g

,(115)

BM
g (Ug;wg) = (fg, wg)Ωg , wg ∈ WM

Δg,g,(116)

BM
s (ug,us, hs;ws) = 0, ws ∈ WΔs,s,(117)

As(U s, Hs;vs) = −(g∇(x,y)hb,vs)Ωs
− 〈ghI

s,vs · n〉∂Ωs,in

+μ〈∇(x,y)vs · n, ûs〉∂Ωs + 〈σsûs,vs〉∂Ωs

+(F ,vs)Ωs , vs ∈ VΔs,s, vs ∈ VΔs,s.(118)

Furthermore, Hs(·, 0) and U s(·, 0) are defined to be the L2 projections of h0
s and u0

s,
respectively.

5.1. An a priori error estimate. Proceeding as above, let Πug, πhg, πus,
and πhs be projections of the true solutions. The projections πhg, πus, and πhs are
defined to be L2 projections as before; Πug will denote the well-known “Π-projection”

of ug into VM,0
Δg,g

[33], which satisfies, among other properties,

(∇(x,y,z) · (Πug − ug), wg)Ωg
= 0, wg ∈ WM

Δg,g.(119)

Defining Ψg, Θg, κg, ηg, κs, and ηs as above, we obtain

AM
g (Ψg, κg, κs;vg) = AM

g (Θg, ηg, ηs;vg),(120)

BM
g (Ψg;wg) = BM

g (Θg;wg).(121)
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Define

BM
s,L(ug, hs;ws) ≡ (∂ths, ws)Ωs

− 〈ug · ng, ws〉ΓGS
.(122)

Then

BM
s,L(Ψg, κs;ws) − (U sκs,∇(x,y)ws)Ωs

+ 〈{U s}κ↑
s, [[ws]]〉Ei,s

+ 〈U s · nsκs, ws〉∂Ωs,out

= BM
s,L(Θg, ηs;ws) − (ushs − U sπhs,∇(x,y)ws)Ωs + 〈ushs − {U s}πh↑

s, [[ws]]〉Ei,s

+〈(ushs − U sπhs) · ns, ws〉∂Ωs,out
+ 〈(us − U s) · nsh

I
s, ws〉∂Ωs,in

.(123)

Furthermore, (36) holds as before. Manipulating (123) as in (39)–(41) and adding the
result to (36), (120), and (121), we find

||K−1/2Ψg||2Ωg
+ (∂tκs, κs)Ωs

+ (∂tΨs,Ψs)Ωs
+ ||τ1/2

bf Ψs||2Ωs
+ μ||∇(x,y)Ψs||2Ωs

+
1

2

[
〈|U s · n−|, [κ−

s − κ+
s ]2〉Ei,s + 〈|U s · ns|, κ2

s〉∂Ωs,in + 〈|U s · ns|, κ2
s〉∂Ωs,out

]
+〈σs[[Ψs]], [[Ψs]]〉Ei,s

+ 〈σsΨs,Ψs〉∂Ωs

= AM
g (Θg, ηg, ηs; Ψg) + BM

g (Θg, ηg, ηs;κg) + BM
s,L(Θg, ηs;κs) + As,L(Θs, ηs; Ψs)

−
∑

∂Ω−
e,s∈TΔs,s

〈|{U s} · ne|(U int
s − U ext

s ),Ψint
s 〉∂Ω−

e,s

+(us · ∇(x,y)us − U s · ∇(x,y)U s,Ψs)Ωs

−1

2
(∇(x,y) · U s, κ

2
s)Ωs +

1

2
〈{κ2

s}, [[U s]]〉Ei,s

+(∇(x,y) · (ushs − U sπhs), κs)Ωs
− 〈[[κs(ushs − U sπhs)]], 1〉Ei,s

+〈ushs − {U s}πh↑
s, [[κs]]〉Ei,s

+ 〈U s · ns(πhs − hI
s), κs〉∂Ωs,in

+(gκs,∇(x,y) · Ψs)Ωs − 〈g{κs}, [[Ψs]]〉Ei,s − 〈gκs,Ψs · ns〉∂Ωs,out

≡ AM
g (Θg, ηg, ηs; Ψg) + BM

g (Θg, ηg, ηs;κg) + BM
s,L(Θg, ηs;κs) + As,L(Θs, ηs; Ψs)

+

11∑
i=1

Ei,(124)

where E1 through E11 are the same as in (44).
By the properties of the Π-projection and L2 projection,

AM
g (Θg, ηg, ηs; Ψg) = (K−1Θg,Ψg)Ωg + 〈ηs,Ψg · ng〉ΓGS

(125)

and

BM
g (Θg;κg) + BM

s,L(Θg, ηs;κs) = −〈Θg · ng, κs〉ΓGS
.(126)

The two terms on the right-hand side of (125) are handled precisely as in (60) and
(62). The term on the right-hand side of (126) is bounded by

C||Θg · ng||2ΓGS
+ ||κs||2Ωs

.(127)

The approximation properties of the Π-projection and L2 projection give

||ηg||Ωg + ||Θg||Ωg + ||Θg · ng||ΓGS
≤ C(ug)Δ

kg+1
g .
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The remaining terms on the right-hand side of (124) are handled as in section 4. We
obtain the following result.

Theorem 5.1. Assume ug, hg, us, and hs are sufficiently smooth and that the
ground water and surface water meshes satisfy Assumption GS. Then the MFE/DG
method (115)–(118) satisfies

(∫ T

0

||K1/2(ug − Ug)||2dt
)1/2

+||(hs −Hs)(·, T )||Ωs + ||(us − U s)(·, T )||Ωs ≤ C̃(Δkg+1
g + Δks

s ),

where C̃ depends on K, Kt, Ki, Km, KM , μ, ug, hg, us, and hs.

5.2. An estimate for Hg. Let ∇ = ∇(x,y,z). We consider again a dual problem

−∇ · (K∇φ) = Hg − πhg, Ωg(128)

with the boundary conditions

φ = 0, ΓD ∪ ΓGS ,(129)

K∇φ · ng = 0, ΓN .(130)

Define q = −K∇φ, and let Πq be its Π-projection. Then, using properties of the Π-
and L2 projections,

||κg||2Ωg
= (κg,∇ · q)Ωg

= (κg,∇ · Πq)Ωg

= (Hg − hg,∇ · Πq)Ωg

= (K−1(Ug − ug),Πq)Ωg + 〈hs −Hs,Πq · ng〉ΓGS
,(131)

where in the last step we have used the orthogonality relation

AM
g (ug − Ug, hg −Hg, hs −Hs;vg) = 0.

By the definition of q and integration by parts,

(K−1(Ug − ug),Πq)Ωg
= (K−1(Ug − ug),q)Ωg

+ (K−1(Ug − ug),Πq − q)Ωg

= (K−1(Ug − ug),−K∇φ)Ωg + (K−1(Ug − ug),Πq − q)Ωg

= (∇ · (Ug − ug), φ)Ωg + (K−1(Ug − ug),Πq − q)Ωg .(132)

By the fact that

BM
g (ug − Ug;wg) = 0,

we easily see that

∇ · (Ug − Πug) ≡ 0,

and therefore

(∇ · (Ug − ug), φ)Ωg
= (∇ · (Πug − ug), φ− πφ)Ωg

,(133)
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where πφ is the L2 projection of φ into WM
Δg,g

. Substituting into (131), we obtain

||κg||2Ωg
= (∇ · (Πug − ug), φ− πφ)Ωg + (K−1(Ug − ug),Πq − q)Ωg

+〈hs −Hs,Πq · ng〉ΓGS
.(134)

Using the well-known estimate for the Π-projection

||∇ · (ug − Πug)||Ωg ≤ CΔkg+1
g(135)

and the approximation properties of πφ and Πq,(∫ T

0

||κg||2Ωg
dt

)1/2

≤ C

⎡
⎣Δkg+2

g +

(∫ T

0

[
Δ2

g||K−1/2(Ug − ug)||2Ωg
+ ||hs −Hs||2Ωs

]
dt

)1/2
⎤
⎦ .

Therefore by Theorem 5.1 we obtain the following result.
Theorem 5.2. Under the assumptions of Theorem 5.1 and elliptic regularity of

the adjoint problem (128)–(130), the scheme (115)–(117) satisfies

(∫ T

0

||Hg − πhg||2Ωg
dt

)1/2

≤ C(Δkg+1
g + Δks

s ).(136)

Using the triangle inequality, an immediate result of this theorem is the following
corollary.

Corollary 5.3.(∫ T

0

||Hg − hg||2Ωg
dt

)1/2

≤ C(Δkg+1
g + Δks

s ).(137)

6. Numerical results. In this section, we present some preliminary numerical
results for the LDG/DG method described above. We consider a two-dimensional
ground water domain Ωg, pictured in Figure 2 with a coarse triangular discretization.
The dimensions of the domain are roughly 100 by 100 cm. The top boundary of Ωg

is the ground water/surface water interface ΓGS ; thus Ωs is the interval 0 < x < 100
cm.

In Ωs, we solve the full surface water flow equations (5)–(6) with g = 9.81 cm/s
and μ = F = 0. The bottom friction coefficient τbf = 10 s−1. The initial water height
hT = 101 cm. At the left boundary x = 0, we assume a total inflow height of 106 cm,
which is ramped up linearly over a 60 s time period. The right boundary x = 100 is
treated as a land boundary with us = 0. Piecewise linear approximations are used
for both us and hs.

In the analysis presented above, we have not considered time discretization. This
is an important issue in ground water/surface water coupling, as the temporal scales
in the two regimes can be vastly different. We will examine this issue in more detail
in future work. For now, the system (5)–(6) is discretized in time using an explicit
second-order Runge–Kutta method with a time step of size Δts. Typically, Δts is
fairly small, on the order of a second. The ground water flow equations are then
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Fig. 2. Ground water domain Ωg with a coarse finite element mesh.
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Fig. 3. Ground water head Hg at t = 1200 s, computed on the mesh in Figure 2.

solved at time steps Δtg = MΔts with M ≥ 1. For the problem considered here,
Δts = .1 s, and we have varied M to examine its effect.

In the ground water domain, the boundary conditions are no-flow (uN = 0) on
all boundaries except ΓGS . We introduce a point sink

fg(x, y) = f̄ δ(x− x̄, y − ȳ),

where (x̄, ȳ) = (30, 45) cm and f̄ = −.3 s−1. The hydraulic conductivity K = .00922
cm/s. The approximations Ug and Hg are both piecewise linear.

In Figure 3, the ground water head Hg is shown at time t = 1200 s, computed
on the triangular mesh given in Figure 2. This mesh contains 1256 elements. We can
see from the head contours that flow is directed from the surface water domain into
the ground water and towards the sink. In this case, the ground water flow equations
were solved every 60 s or every 600 shallow water time steps. A new flux Ug · ng
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Fig. 4. Ground water head Hg at t = 1200 s, computed on once refined mesh.

X

Y

0 20 40 60 80 100
0

20

40

60

80

100

P

104
102
100
98
96
94
92
90
88
86
84
82
80
78
76
74

Fig. 5. Ground water head Hg at t = 1200 s, computed on twice refined mesh.

was computed at the end of each of these steps and fed back into the shallow water
continuity equation (5).

The mesh was then refined twice, using edge bisection, giving meshes with 5024
and 20096 elements, respectively. On the second mesh, the ground water flow equa-
tions were solved every 30 s and, for the finest mesh, every 15 s. Contours of the
solution hg on these meshes are given in Figures 4 and 5. As observed in these fig-
ures, there is little difference between the solutions, except near the point sink. As
the mesh is refined, the sink is better approximated. These results were not seen to
be sensitive to the choice of M . In all of these simulations, the penalty parameter
σg = .01(Δγ)−1 with Δγ defined as in (57).

The surface water heights at different times for the three different meshes are
plotted in Figures 6–8. Figure 6 presents a plot of the total water height HT = Hs+hb

at time t = 60 s. Figures 7 and 8 are at 600 and 1200 s, respectively. In our runs, the
surface water mesh aligns with the faces of the ground water mesh on ΓGS mapped
onto Ωs. Thus, for the coarsest discretization, seen in Figure 2, there are 20 elements
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Fig. 6. Surface water height HT at t = 60 s, computed with 20 elements (solid), 40 elements
(−), and 80 elements (+).
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Fig. 7. Surface water height HT at t = 600 s, computed with 20 elements (solid), 40 elements
(−), and 80 elements (+).

in the surface water domain 0 < x < 100 cm. The two finer discretizations of the
domain have 40 and 80 elements in the interval, respectively. As seen in the figures,
the solutions agree fairly well at the earlier time, but as time increases, the difference
between the solutions also increases. The solutions with 40 and 80 elements are more
similar, however, indicating that the surface water solution is starting to converge.
These results suggest the need to further refine the mesh in the surface water domain,
perhaps independently of the mesh used in the ground water domain. This issue will
be explored further in future research.



ANALYSIS OF GROUND WATER/SURFACE WATER COUPLING 1401

0 10 20 30 40 50 60 70 80 90 100
104

104.2

104.4

104.6

104.8

105

105.2

105.4

105.6

105.8

106

Fig. 8. Surface water height HT at t = 1200 s, computed with 20 elements (solid), 40 elements
(−), and 80 elements (+).

Table 1

Total ground water flux across ΓGS for the three different meshes.

Mesh Total flux
1 −360.01
2 −359.98
3 −359.99

As another check on the numerical solutions, we examined a “quantity of interest,”
namely, the total ground water flux across the interface ΓGS . By setting wg ≡ 1 in
(20), we see that the true flux satisfies in this case∫ T

0

∫
ΓGS

ug · ngdsdt =

∫ T

0

∫
Ωg

fgdxdt =

∫ T

0

f̄dt = −.3T.

Our numerical solution Ug satisfies∫ T

0

∫
ΓGS

[Ug · ng + σg(Hg −HT )]dsdt =

∫ T

0

∫
Ωg

fgdxdt.

In Table 1, we have computed ∫ T

0

∫
ΓGS

Ug · ngdsdt

for the three meshes used to compute the solutions above with T = 1200. As observed
in this table, the total flux agrees with the exact value of −360 to about five significant
digits; the difference shows the effect of the penalty term σg(Hg −HT ).

7. Conclusions. In this paper, we have analyzed DG and MFE methods for
ground water/surface water coupling. The analysis gives the expected order of accu-
racy for the ground water velocity ug and surface water velocity us but is suboptimal
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for the ground water head hg and the surface water height hs. This appears to be
unavoidable due to the coupling but deserves further study.

Our preliminary numerical results indicate that the ground water response to
rapid changes in the surface water height is fairly slow, and one does not need to solve
the ground water flow equations on the time scale of the surface water time step. Our
results also suggest the need to use finer spatial discretization in the surface water
domain than in the ground water domain. Numerical issues in temporal and spatial
scaling which arise in these couplings will be the subject of future research, as will
extensions to higher dimensions and to multiphase ground water flow.
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[31] J. T. Oden, I. Babuška, and C. E. Baumann, A discontinuous hp finite element method for
diffusion problems, J. Comput. Phys, 146 (1998), pp. 491–519.

[32] M. Peszynska, Q. Lu, and M. F. Wheeler, Coupling different numerical algorithms for
two phase fluid flow, in Proceedings of the Conference on the Mathematics of Finite Ele-
ments and Applications: MAFELAP X, J. R. Whiteman, ed., Elsevier, Oxford, UK, 2000,
pp. 205–214.

[33] P. A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic
problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Math.
606, I. Galligani and E. Magenes, eds., Springer-Verlag, Berlin, 1977, pp. 292–315.

[34] B. Rivière, M. F. Wheeler, and V. Girault, Improved energy estimates for interior penalty,
constrain and discontinuous Galerkin methods for elliptic problems I, Comput. Geosci., 3
(1999), pp. 337–360.

[35] B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J.
Numer. Anal., 42 (2005), pp. 1959–1977.

[36] P. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math.,
50 (1971), pp. 292–315.

[37] J. H. Schmidt and L. C. Roig, The adaptive hydrology (adh) model: A flow and trans-
port model for coupled surface water-groundwater analyses, in Proceedings of Theme C,
Groundwater: An Endangered Resource, XXVII IAHR Congress, A. N. Findikakis, ed.,
ASCE, Reston, VA, 1997, pp. 367–372.

[38] V. Singh and S. M. Bhallamudi, Conjunctive surface-subsurface modeling of overland flow,
Advances in Water Resources, 21 (1998), pp. 567–579.

[39] C. A. Talbot, C. W. Downer, H.-C. Lin, S. E. Howington, and D. Richards, Compu-
tational mdethods for simualting interaction between surface and subsurface hydrologic
systems, in Computational Methods in Water Resources XIV, Vol. 2, W. G. Gray, S.
M. Hassanizadeh, R. J. Schotting, and G. F. Pinder, eds., Elsevier, Amsterdam, 2002,
pp. 1511–1518.

[40] H. E. VanderKwaak and K. Loague, Hydrologic-response simulations for the r-5 catchment
with a comprehensive physics-based model, Water Resources Research, 37 (2001), pp. 999–
1013.

[41] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic
problems, SIAM J. Numer. Anal., 25 (1988), pp. 351–375.

[42] T. Weiyan, Shallow Water Hydrodynamics, Elsevier Oceanography Series 55, Elsevier, Am-
stedam, 1992.

[43] M. F. Wheeler and R. Gonzales, Mixed finite element methods for petroleum reservoir
engineering problems, in Computing Methods in Applied Sciences and Engineering VI,
R. Glowinski and J. L. Lions, eds., North–Holland, New York, 1984, pp. 639–658.

[44] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J.
Numer. Anal., 15 (1978), pp. 152–161.

[45] T. C. Winter, J. W. Harvey, O. L. Franke, and W. M. Alley, Ground Water and Surface
Water: A Single Resource. U. S. Geological Survey Circular 1139, United States Geological
Survey, Denver, CO, 1998.



1404 CLINT DAWSON

[46] G. T. Yeh, P. Cheng, R. Cheng, J. Lin, and W. D. Martin, A Numerical Model Simu-
lating Water Flow and Contaminant and Sediment Transport in Watershed Systems of
1-d Stream-River Network, 2-d Overland Regime and 3-d Subsurface Media (wash123d:
Version 1.0), Technical report CHL-98-19, U.S. Army Engineer Waterways Experiment
Station, Vicksburg, MS, 1998.

[47] G. T. Yeh, R. Cheng, M. Li, P. Cheng, and J. Lin, COSFLOW: A Finite Element Model
Coupling One-Dimensional Canal, Two-Dimensional Overland, and Three-Dimensional
Subsurface Flow, Technical report CHL-97-20, U.S. Army Engineer Waterways Experiment
Station, Vicksburg, MS, 1997.



SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 1405–1419

CONVERGENCE OF AN IMPLICIT FINITE ELEMENT METHOD
FOR THE LANDAU–LIFSHITZ–GILBERT EQUATION∗
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Abstract. The Landau–Lifshitz–Gilbert equation describes the dynamics of ferromagnetism,
where strong nonlinearity and nonconvexity are hard to tackle: so far, existing explicit schemes to
approximate weak solutions suffer from severe time-step restrictions. In this paper, we propose an
implicit fully discrete scheme and verify unconditional convergence.
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1. Introduction. The phenomenological Landau–Lifshitz–Gilbert equation
(LLG) describes the dynamics of ferromagnetism; let α ≥ 0 denote the damping pa-
rameter, and then the magnetization m : (0, T )×Ω → S2, for S2 = {x ∈ R

3| |x | = 1},
solves

mt = −αm × (m × Δm) + m × Δm ,(1.1)

supplemented by initial and boundary conditions, m(0) = m0 ∈ W 1,2(Ω;S2), and
∂nm = 0 on (0, T ) × ∂Ω. A proper definition of weak solutions is given below.
Limiting equations are the Heisenberg equation (α → 0) and heat flow for harmonic
maps (α → ∞) (see [1, Propositions 5.1, 5.2]):

mt = m × Δm (α → 0) , mt = Δm + | ∇m |2m (α → ∞) .(1.2)

The construction of convergent schemes for (1.1) is a nontrivial task, due to the non-
convex side-constraint |m | = 1 a.e. in (0, T ) × Ω, which is difficult to realize in
a numerical approximation scheme. Explicit time integrators of high order coupled
with occasional updates to ensure the sphere constraint are common strategies in
engineering literature but suffer from nonreliable dynamics [5]. Implicit strategies to
discretize LLG in time often introduce artificial damping, which prevents computed
iterates from remaining on the sphere and excludes a (discrete) energy law to hold to
conclude convergence. Remedies have been made, partially addressing the dual re-
quirements of efficiency and reliability: (i) projection methods have been constructed,
which independently deal with the nonconvex algebraic constraint; however, no (dis-
crete) energy principle is available, and convergence to LLG is known only in the case
of existing classical/strong solutions to LLG (see [4, 10, 9]); (ii) explicit/implicit dis-
cretizations of Ginzburg–Landau penalizations that involve an additional parameter
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ε > 0 are used [8, 9], which allow for a discrete energy principle, possibly for restricted
choices of spatiotemporal discretization parameters; see [5]. We refer the reader to [7]
for a recent review of mathematical ferromagnetism.

Recently, a first explicit scheme is proposed in [2], where also (weak sub-) con-
vergence towards weak solutions is verified; this program is continued in [3], where
k = o

(
α2h1+n

2

)
is identified to be sufficient for stability and convergence; sharpness of

these restrictions is evidenced by computational studies in [3]. From this background,
we look for an implicit scheme exempt from restricting requirements for numerical
parameters, and with higher flexibility with respect to (small) choices of α > 0. The
construction of our discretization is based on a reformulation of (1.1) by Gilbert (see,
e.g., [7]),

mt + αm × mt = (1 + α2)m × Δm .

Given the lowest order finite element space Vh ⊂ W 1,2(Ω; R3) subordinate to a tri-
angulation Th of Ω and a time-step size k > 0, our approximation scheme reads as
follows.

Algorithm 1.1. Let m0
h ∈ Vh. Given j ≥ 0 and mj

h ∈ Vh, determine mj+1
h ∈

Vh from

(dtm
j+1
h ,φh)h + α (mj

h × dtm
j+1
h ,φh)h

= (1 + α2)(m
j+1/2
h × Δ̃hm

j+1/2
h ,φh)h ∀φh ∈ Vh .

Here (·, ·)h denotes a discrete version (reduced integration) of the inner product
in L2(Ω; R3), Δ̃h : W 1,2(Ω; R3) → Vh is a discrete version of the Laplace operator,
and we use dtϕ

j := k−1
(
ϕj − ϕj−1

)
for j ≥ 1 and ϕj+1/2 := 1

2

(
ϕj+1 + ϕj) for j ≥ 0

and a sequence {ϕj}j≥0; we refer the reader to section 2 for details.
Remark 1.1. The (linear) second term in Algorithm 1.1 is motivated by the

identity

mj
h × dtm

j+1
h =

(
m

j+1/2
h − k

2
dtm

j+1
h

)
× dtm

j+1
h = m

j+1/2
h × dtm

j+1
h .

It is well known that weak solutions to (1.1) solve

mt = div
(
m ×∇m

)
+ α

(
Δm + | ∇m |2m

)
in the distributional sense; cf. [1, 6]. Corresponding relations need not hold for dis-
cretizations, due to the competition of local and nonlocal aspects inherent to fully
discrete finite element based methods. Lemma 6.1 below shows that solutions of
Algorithm 1.1 satisfy

(dtm
j+1
h ,φh)h + α

(
∇m

j+1/2
h ,∇φh

)
= α

(
| ∇m

j+1/2
h |2mj+1/2

h ,φh

)
−
(
m

j+1/2
h ×∇m

j+1/2
h ,∇φh

)
+ Corr

(1.3)

for all φh ∈ Vh and a correcting term “Corr”.
Lemma 3.1 below states conservation of |mj

h | = 1 at the nodes of the trian-
gulation Th and verifies a discrete energy law for solutions to Algorithm 1.1. This
indicates that the forcing correction term Corr serves to balance the damping effect
of the implicit Euler method with employed reduced integration and local averaging
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tools in Algorithm 1.1. The unconditional stability of Algorithm 1.1 allows us to prove
subconvergence to a weak solution of (1.1).

The remainder of this paper is organized as follows. Preliminaries are stated in
section 2. Our main result is Theorem 3.1, which verifies unconditional convergence
for Algorithm 1.1; a simple fixed-point iteration is proposed in Algorithm 4.1, whose
convergence is established for k = O(h2), uniformly for values α ≤ C, in section 4.
We discuss numerical experiments which motivate finite-time blow-up in section 5,
allowing for direct comparison with results for values α = O(1) in [3] and study of
the limiting case α → 0. Section 6 proves (1.3) and illustrates difficulties in the
construction of convergent implicit finite element schemes.

2. Preliminaries. Throughout this paper we assume that Th is a quasi-uniform
regular triangulation of the polygonal or polyhedral bounded Lipschitz domain Ω ⊂
R

n into triangles or tetrahedra for n = 2 or n = 3, respectively. We define the lowest
order finite element space Vh ⊂ W 1,2(Ω; R3) by

Vh =
{
φh ∈ C(Ω; R3) : φh|K ∈ P1(K; R3) ∀K ∈ Th

}
,

where P1(K; R3) denotes the set of polynomials of total degree less than or equal
to one restricted to the element K ∈ Th. Given the set of nodes

{
x� : � ∈ L

}
of

the triangulation Th, the nodal interpolation operator Ih : C(Ω; R3) → Vh satisfies
Ihφ(x�) = φ(x�) for all � ∈ L. Given functions f ,g ∈ L2(Ω; Rm) and letting 〈·, ·〉
denote the inner product in R

m we set

(
f ,g

)
=

∫
Ω

〈f ,g〉dx .

For continuous functions φ,Z ∈ C(Ω; R3) we define

(
φ, Z

)
h

=

∫
Ω

Ih
(
〈φ,Z〉

)
dx =

∑
�∈L

β�〈φ(x�),Z(x�)〉

for certain weights β� > 0, � ∈ L. If for each � ∈ L we denote by ϕ� ∈ C(Ω) the nodal
basis function which is Th-elementwise affine and satisfies ϕ�(x�) = 1 and ϕ�(xm) = 0
for all m ∈ L \ {�}, then we have β� =

∫
Ω
ϕ� dx. We define ||φ||2h =

(
φ, φ

)
h

and
notice that

‖φh ‖2
L2 ≤ ‖φh ‖2

h ≤ (n + 2) ‖φh ‖2
L2

for all φh ∈ Vh. We define a discrete Laplace operator Δ̃h : W 1,2(Ω; R3) → Vh by

−(Δ̃hφ,χh)h = (∇φ,∇χh) ∀χh ∈ Vh .(2.1)

It is well known that there exists a constant c1 > 0 such that for all φh ∈ Vh there
holds

||∇φh||L2 ≤ c1h
−1||φh||L2 ,(2.2)

where h is the maximal mesh-size in Th, i.e., h = max{diam(K) : K ∈ Th}. Choosing
χh = Δ̃hφh in (2.1) and using (2.2) we observe that for all φh ∈ Vh there holds

||Δ̃hφh||2h = −
(
∇φh,∇Δ̃hφh) ≤ ||∇φh||L2 ||∇Δ̃hφh||L2 ≤ c1h

−1||∇φh||L2 ||Δ̃hφh||h.
(2.3)
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Given φh ∈ Vh and a node x� for some � ∈ L, we obtain from using χh = ϕ�Δ̃hφh(x�)
in (2.1) that

|Δ̃hφh(x�)|2 = β−1
�

(
Δ̃hφh,χh

)
h

= −β−1
�

(
∇φh,∇χh

)
= −β−1

�

∑
m∈L:∃K∈T ,

xm,x�∈K

〈φh(xm), Δ̃hφh(x�)〉(∇ϕm ,∇ϕ�)

≤ c2h
−2||φh||L∞ |Δ̃hφh(x�)|,

(2.4)

where we used (2.2), that given a node x� the cardinality of the set {m ∈ L : ∃K,

xm,x� ∈ K} is bounded h-independently, and that ||ϕm||L2 ≤ cβ
1/2
� for all m ∈ L.

3. Unconditional convergence. We first recall the definition of a weak solu-
tion to LLG. Throughout this section we abbreviate ΩT = (0, T ) × Ω.

Definition 3.1. Let m0 ∈ W 1,2(Ω;S2); then m is called the weak solution to
LLG if for all T > 0

(1) m ∈ W 1,2(ΩT ; R3) such that |m | = 1 a.e. in ΩT ;
(2) for all φ ∈ C∞(

ΩT ; R3
)

there holds∫
ΩT

〈mt,φ〉dxdt + α

∫
ΩT

〈m × mt,φ〉dxdt

= −(1 + α2)

∫
ΩT

〈m ×∇m,∇φ〉dxdt ;

(3) m(0) = m0 in the sense of traces;
(4) for almost all T ′ ∈ (0, T ) there holds

1

2

∫
Ω

| ∇m(T ′) |2 dx +
α

1 + α2

∫
ΩT ′

|mt |2 dxdt ≤ 1

2

∫
Ω

| ∇m0 |2 dx .

The following lemma provides discrete counterparts of (1) and (4). We remark
that the well-posedness of Algorithm 1.1, i.e., the existence of a unique sequence
{mj

h}j≥0 that solves Algorithm 1.1, can be deduced from a classical argument; see,
e.g., [1, sect. 3].

Lemma 3.1. Suppose that |m0
h(x�)| = 1 for all � ∈ L. Then the sequence

{mj
h}j≥0 produced by Algorithm 1.1 satisfies for all j ≥ 0

(i) |mj+1
h (x�) | = 1 ∀� ∈ L ,

(ii)
1

2
dt‖∇mj+1

h ‖2
L2 +

α

1 + α2
‖ dtmj+1

h ‖2
h = 0 .

Proof. Verification of (i) follows from choosing φh = ϕ�m
j+1/2
h (x�) ∈ Vh for

� ∈ L in Algorithm 1.1. In order to verify (ii), we first choose φh = −Δ̃hm
j+1/2
h and

find

1

2
dt‖∇mj+1

h ‖2
L2 + α

(
m

j+1/2
h × dtm

j+1
h , Δ̃hm

j+1/2
h

)
h

= 0 .

Choosing φh = dtm
j+1
h yields

α

1 + α2
‖ dtmj+1

h ‖2
h = α

(
m

j+1/2
h × Δ̃hm

j+1/2
h , dtm

j+1
h

)
h
.
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A combination of the two identities proves (ii) and completes the proof of the lem-
ma.

Definition 3.2. For x ∈ Ω and t ∈ [tj , tj+1) define

M(t,x) :=
t− tj
k

mj+1
h (x) +

tj+1 − t

k
mj

h(x) ,

M−(t,x) := mj
h(x) , M+(t,x) := mj+1

h (x) , M(t,x) := m
j+1/2
h .

Given any T ′ > 0, (ii) in Lemma 3.1 may be rewritten as

1

2
||∇M+(T ′)||2L2 +

α

1 + α2

∫ T ′

0

||Mt||2h dt ≤ 1

2
||∇M(0)||2L2 .

This bound yields the existence of some m ∈ W 1,2(ΩT ; R3) which is the weak limit
(as k, h → 0) of a subsequence such that

M ⇀ m in W 1,2(ΩT ,R
3) ,

∇M−, ∇M+,∇M ⇀ ∇m in L2(ΩT ,R
3) ,

M−, M+, M → m in L2(ΩT ,R
3) .

Since |M−(t,x�) | = 1 for every � ∈ L and almost all t ∈ (0, T ), there holds for every
K ∈ Th

‖ |M− |2 − 1 ‖L2(K) ≤ Ch ‖∇
(
|M− |2 − 1

)
‖L2(K) = Ch ‖ 2(∇M−)M− ‖L2(K)

≤ 2Ch ‖∇M− ‖L2(K) ,

which implies |M− | → 1 in L2(ΩT ; R3), and hence |m | = 1 a.e. in ΩT . Algorithm 1.1
may be written as follows: taking φh(t) := Ihφ(t, ·), for φ ∈ C∞(ΩT ; R3), there holds

∫ T

0

(Mt,φh)h dt + α

∫ T

0

(M− × Mt,φh)h dt = (1 + α2)

∫ T

0

(
M × Δ̃hM,φh

)
h

dt .

(3.1)

Effects of reduced integration are controlled using the fact that for all χh,ηh ∈ Vh

there holds

| (χh,ηh)h − (χh,ηh) | ≤ Ch ‖χh ‖L2‖∇ηh ‖L2 .

This implies that for almost all t ∈ (0, T ) we have∣∣(Mt,φh)h − (Mt,φh)
∣∣ ≤ Ch ‖Mt ‖L2‖∇φh ‖L2

and allows us to prove that∫ T

0

(Mt,φh)h dt →
∫ T

0

(mt,φ) dt.

Using that for χh ∈ Vh and η ∈ C(Ω; R3) there holds (χh,η)h = (χh, Ihη)h, and
employing a triangle inequality and standard estimates for nodal interpolation results
in∣∣(Mt,M

− × φh)h −
(
Mt, (Id ± Ih)(M− × φh)

)∣∣ ≤ Ch ‖Mt ‖L2‖∇(M− × φh) ‖L2 .
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This yields ∫ T

0

(M × Mt,φh)hdt →
∫ T

0

(m × mt,φ)dt .

The only troublesome limit is for the last term in (3.1). We write(
M × Δ̃hM,φh

)
h

= (M × φh, Δ̃hM)h =
(
(Id − Ih)(M × φh), Δ̃hM

)
h

+
(
∇(Ih − Id)(M × φh),∇M

)
+
(
∇(M × φh),∇M

)
=: I + II + III .

Control of I uses the bound ‖ Δ̃hχ ‖L2 ≤ c1h
−1 ‖∇χ ‖L2 and estimates for nodal

interpolation

I ≤ Ch2h−1
∑

K∈Th

‖D2(M × φh) ‖L2(K) ‖∇M ‖L2(K)

≤ Ch‖∇M ‖L2‖∇φh ‖L∞‖∇M ‖L2 .

A similar argumentation proves

II ≤ Ch
∑

K∈Th

‖D2
(
M × φh

)
‖L2(K)‖∇M ‖L2(K) ≤ Ch‖∇M ‖L2‖∇φh ‖L∞‖∇M ‖L2 .

We use that given any Z,χ ∈ W 1,2(Ω; R3) there holds 〈∇Z,∇(Z×χ)〉 = 〈∇Z,Z×∇χ〉
to verify

III =
(
∇(M × φh),∇M

)
=

(
M ×∇φh,∇M

)
.

A combination of the last four assertions shows∫ T

0

(
M × Δ̃hM,φh

)
h

dt →
∫ T

0

(m ×∇φ,∇m) dt =

∫ T

0

(
∇(m × φ),∇m

)
dt .

This proves our main theorem.
Theorem 3.1. Suppose |m0

h(x�)| = 1 for all � ∈ L, and let {mj
h}j≥0 solve

Algorithm 1.1. Assume that m0
h → m0 in W 1,2(Ω,R3) for h → 0. For k, h → 0 there

exists m ∈ W 1,2(ΩT ; R3) such that M subconverges to m in W 1,2(ΩT ,R
3), and m is

a weak solution of LLG.

4. Solving the nonlinear system. In the numerical experiments reported be-
low we employ the following fixed-point iteration to solve the nonlinear system in
Algorithm 1.1.

Algorithm 4.1. Set mj+1,0
h := mj

h and � := 0.

(i) Compute mj+1,�+1
h ∈ Vh such that for all φh ∈ Vh there holds

1

k
(mj+1,�+1

h ,φh)h +
α

k
(mj

h × mj+1,�+1
h ,φh)h − 1 + α2

4
(mj+1,�+1

h × Δ̃hm
j+1,�
h ,φh)h

− 1 + α2

4
(mj+1,�+1

h × Δ̃hm
j
h,φh)h − 1 + α2

4
(mj

h × Δ̃hm
j+1,�+1
h ,φh)h

=
1

k
(mj

h,φh)h +
1 + α2

4
(mj

h × Δ̃hm
j
h,φh)h.

(4.1)
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(ii) If ||mj+1,�+1
h − mj+1,�

h ||h ≤ ε, then stop and set mj+1
h := mj+1,�+1

h .
(iii) Set � := � + 1 and go to (i).
Setting ε = 0, the following lemma shows that the iteration converges, provided

that k ≤ ch2/(1+α2) for an (h, k, α)-independent constant factor c > 0 that depends
only on the geometry of Th.

Lemma 4.1. Suppose that |mj
h(xm)| ≤ c3 for some c3 > 0 and all m ∈ L and

that γ :=
√

5(1+α2)c21c3h
−2k/4 < 1. Then for all � ≥ 0 there exists a unique solution

mj+1,�+1
h to (4.1). For all � ≥ 1 there holds

||mj+1,�+1
h − mj+1,�

h ||h ≤ Θ
γ

1 − γ
||mj+1,�

h − mj+1,�−1
h ||h,(4.2)

provided that Θ := 1+c3ρ
(1/c3)−ρ > 0 for ρ := (1 + α2)c2kh

−2/4. Moreover, for all � ≥ 0

and all φh ∈ Vh there holds∣∣(dtmj+1,�+1
h ,φh)h + α(mj

h × dtm
j+1,�+1
h ,φh)h

−(1 + α2)(m
j+1/2,�+1
h × Δ̃hm

j+1/2,�+1
h ,φh)h

∣∣
≤ Θ

√
5
1 + α2

4
c21h

−2||mj+1,�+1
h − mj+1,�

h ||h||φh||h,

where dtm
j+1,�+1
h = k−1(mj+1,�+1

h − mj
h) and m

j+1/2,�+1
h = 1

2 (mj+1,�+1
h + mj

h).

By the Banach fixed-point theorem, contraction property (4.2) implies for |mj
h(xm) |

= 1 for all m ∈ L the existence of a unique mj+1,∗
h ∈ Vh which solves Algorithm 1.1

for j′ := j, and thus again satisfies Lemma 3.1.
Proof. We abbreviate μ = (1 + α2)/4. For φh = mj+1,�+1

h the left-hand side of
(4.1) is bounded from below by

1

k
||mj+1,�+1

h ||2h − μ(mj
h × Δ̃hm

j+1,�+1
h ,mj+1,�+1

h )h

≥ 1

k
||mj+1,�+1

h ||2h − μ||mj
h||L∞ ||Δ̃hm

j+1,�+1
h ||h||mj+1,�+1

h ||h

≥
(

1

k
− μ

√
5c21c3h

−2

)
||mj+1,�+1

h ||2h,

where we used ||mj
h||L∞ ≤ c3 and ||Δ̃hm

j+1,�+1
h ||h ≤ c21

√
5h−2||mj+1,�+1

h ||h. There-
fore, the bilinear form defined by the left-hand side of (4.1) is positive definite on
Vh × Vh if γ < 1, and then (4.1) admits a unique solution. Let m ∈ L be such

that ||mj+1,�
h ||L∞ = |mj+1,�

h (xm)|. Choosing φh = ϕmmj+1,�
h (xm) in the equation for

mj+1,�
h proves

1

k
|mj+1,�

h (xm)|2 ≤ μ|mj
h(xm)| |Δ̃hm

j+1,�
h (xm)| |mj+1,�

h (xm)|

+
1

k
|mj

h(xm)| |mj+1,�
h (xm)| + μ|mj

h(xm)| |Δ̃hm
j
h(xm)| |mj+1,�

h (xm)|

≤ c3μ|Δ̃hm
j+1,�
h (xm)| |mj+1,�

h (xm)| + c3
1

k
|mj+1,�

h (xm)|

+ c3μ|Δ̃hm
j
h(xm)| |mj+1,�

h (xm)|.

There holds |Δ̃hφh(xm)| ≤ c2h
−2||φh||L∞ for all φh ∈ Vh, and hence

||mj+1,�
h ||L∞ ≤ 1 + c3kμc2h

−2

(1/c3) − kμc2h−2
= Θ.
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Subtraction of two subsequent equations in the fixed-point iteration yields

1

k
(mj+1,�+1

h − mj+1,�
h ,φh)h +

α

k
(mj

h × [mj+1,�+1
h − mj+1,�

h ],φh)h

−μ([mj+1,�+1
h −mj+1,�

h ]× Δ̃hm
j+1,�
h ,φh)h−μ(mj+1,�

h × Δ̃h[mj+1,�
h −mj+1,�−1

h ],φh)h

−μ([mj+1,�+1
h −mj+1,�

h ]× Δ̃hm
j
h,φh)h−μ(mj

h× Δ̃h[mj+1,�+1
h −mj+1,�

h ],φh)h = 0

for all φh ∈ Vh. Choosing φh := mj+1,�+1
h − mj+1,�

h shows

||mj+1,�+1
h − mj+1,�

h ||h ≤ kμΘ||Δ̃h[mj+1,�
h − mj+1,�−1

h ]||h
+c3kμ||Δ̃h[mj+1,�+1

h − mj+1,�
h ]||h.

Using ||Δ̃hφh||h ≤ c21
√

5h−2||φh||h for all φh ∈ Vh we deduce the first estimate
of the lemma. In order to verify the second estimate we notice that owing to (4.1),

mj
h×mj

h = 0, and the above estimate ||mj+1,�+1
h ||L∞ ≤ Θ there holds for all φh ∈ Vh

(dtm
j+1,�+1
h ,φh)h + α(mj

h × dtm
j+1,�+1
h ,φh)h − μ(m

j+1/2,�+1
h × Δ̃hm

j+1/2,�+1
h ,φh)h

=
1

k
(mj+1,�+1

h ,φh)h − 1

k
(mj

h,φh)h

+
α

k
(mj

h × mj+1,�+1
h ,φh)h − α

k
(mj

h × mj
h,φh)h

− μ(mj+1,�+1
h × Δ̃hm

j+1,�+1
h ,φh)h − μ(mj+1,�+1

h × Δ̃hm
j
h,φh)h

− μ(mj
h × Δ̃hm

j+1,�+1
h ,φh)h − μ(mj

h × Δ̃hm
j
h,φh)h

= μ(mj+1,�+1
h × Δ̃hm

j+1,�
h ,φh)h − μ(mj+1,�+1

h × Δ̃hm
j+1,�+1
h ,φh)h

≤ μ||mj+1,�+1
h ||L∞ ||Δ̃h(mj+1,�

h − mj+1,�+1
h )||h||φh||h

≤ Θμc21
√

5h−2||mj+1,�
h − mj+1,�+1

h ||h||φh||h,

which completes the proof of the lemma.

5. Numerical experiments. The implementation of Algorithms 1.1 and 4.1
was performed in MATLAB with an assemblation of the stiffness matrices in C. We
set ε = h4 for the termination criterion in Algorithm 4.1, and it terminated after at
most five iterations in all of our experiments. The experiments are defined through
the following example which is taken from [3].

Example 5.1. Let Ω = (−1/2, 1/2)2, and let m0 : Ω → S2 be defined by

m0(x) =

{
(0, 0,−1) for |x| ≥ 1/2,(
2xA,A2 − |x|2

)
/
(
A2 + |x|2

)
for |x| ≤ 1/2,

where A := (1− 2|x|)4/s for some s > 0. The triangulations T� used in the numerical
simulations are defined through a positive integer � and consist of 22�+1 halved squares
with edge length h = 2−�. Motivated by Lemma 4.1 we use k = h2/(10(1 + α2)). As
discrete initial data we employ the nodal interpolant of m0; i.e., we set m0 = IT�

m0

in all experiments.
Figures 1 and 2 display snapshots of the numerical approximation provided by

Algorithm 1.1 with α = 1, s = 1, and � = 4. The plots in Figure 1 display the
first two components of the vector field M at the nodes of the triangulation (after
an appropriate rescaling) and at various times. Figure 2 shows a zoom towards the
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Fig. 1. Numerical approximation M(t, ·) in Example 5.1 with s = 1, � = 4, and α = 1 for
t = 0, 0.0119, 0.0295, 0.0529, 0.0588, 0.0646.
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Fig. 2. Nodal values M(t,xm) for nodes xm close to the origin in Example 5.1 with s = 1,
� = 4, and α = 1 for t = 0, 0.0119, 0.0295, 0.0529, 0.0588, 0.0646.

origin and reveals that in this experiment regularity of the exact solution cannot be
expected. At time t ≈ 0.0529 the vector at the origin points in another direction than
all surrounding vectors, resulting in a large (maximal) W 1,∞ norm.
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Fig. 3. Numerical approximation M(t, ·) in Example 5.1 with s = 1, � = 4, and α = 1/64 for
t = 0, 0.0102, 0.0297, 0.0492, 0.0687, 0.1078, 0.1371, 0.1664, 0.2054, 0.2347, 0.2738, 0.3031.

Figures 3 and 4 show similar snapshots for α = 1/64, s = 1, and � = 4. Owing
to the significantly smaller stabilization corresponding to the small value of α, the
numerical solution is even less regular than in the previous experiment and fails to
become stationary for times t ≤ 1/2.

For fixed α = 1 and s = 4 we used � = 4, 5, 6 in Example 5.1. In Figure 5 we
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Fig. 4. Nodal values M(t,xm) for nodes xm close to the origin in Example 5.1 with s = 1,
� = 4, and α = 1/64 for t = 0, 0.0102, 0.0297, 0.0492, 0.0687, 0.1078, 0.1371, 0.1664, 0.2054, 0.2347,
0.2738, 0.3031.

displayed the energy

E(M(t)) =
1

2

∫
Ω

|∇M(t, ·)|2 dx

and the W 1,∞ seminorm |M(t)|1,∞ = ||∇M(t)||L∞ as functions of t for t ∈ (0, 6/100)
for � = 4, 5, 6. For each � = 4, 5, 6 the function t → ||∇M(t)||L∞ assumes the



1416 SÖREN BARTELS AND ANDREAS PROHL

maximum value 2
√

2h−1 (among functions φh ∈ Vh with |φh(xm)| = 1 for all nodes
xm). We observe that for decreasing mesh-size h the blow-up time (the time at
which ||∇M(t)||L∞ assumes its maximum) approaches t ≈ 0.03. In order to study
the dependence of blow-up behavior on the parameter α we ran Algorithm 1.1 in
Example 5.1 for fixed � = 5, s = 1 and for α = 1, 1/4, 1/16, 1/64, 1/256. The plot in
Figure 6 indicates that the blow-up time approaches the time t ≈ 0.06 for decreasing
α. The experimental values for α = 1/64 and α = 1/256 almost coincide.

We remark that the results of our experiments for α = 1, 1/4, 1/16 are similar to
the results obtained in [3] with an explicit scheme. The implicit scheme of this article
allows us to use smaller values for α which lead to too restrictive conditions on the
time step size for the explicit scheme of [3]. For the triangulations employed here and
for α = 1 the total runtimes of the explicit scheme (using reduced integration) and
the implicit scheme are comparable. We stress, however, that for small values of α or
three-dimensional problems the explicit scheme from [3] is of limited practical use.

6. Proof of (1.3).

Lemma 6.1. Assume that |m0
h(x�)| = 1 for all � ∈ L, and let {mj

h}j≥0 solve
Algorithm 1.1. There holds for all φh ∈ Vh

(dtm
j+1
h ,φh)h + α

(
∇m

j+1/2
h ,∇φh

)
= α

(
| ∇m

j+1/2
h |2mj+1/2

h ,φh

)
−
(
m

j+1/2
h ×∇m

j+1/2
h ,∇φh

)
+ Corr

for a correcting term Corr = CorrA + CorrB, with

CorrA :=
α

2

(
∇|mj+1/2

h |2,∇〈mj+1/2
h ,φh〉

)
+

α2

1 + α2

(
dtm

j+1
h , [1 − |mj+1/2

h |2]φh

)
h

+ α
(
∇m

j+1/2
h ,∇[(1 − |mj+1/2

h |2)φh]
)
,

and CorrB =
∑3

i=1 CorrBi
given in the proof below.

Proof. Given any Zh ∈ Vh choose φh = Ih(m
j+1/2
h ×Zh) in Algorithm 1.1; then

the properties of (·, ·)h imply

(
m

j+1/2
h × dtm

j+1
h ,Zh

)
h

+ α
(
m

j+1/2
h × (m

j+1/2
h × dtm

j+1
h ),Zh

)
h

(6.1)

= (1 + α2)
(
m

j+1/2
h × (m

j+1/2
h × Δ̃hm

j+1/2
h ),Zh

)
h
.

Owing to a × (b × c) = 〈a, c〉b − 〈a,b〉c for all a,b, c ∈ R
3, the second term on the

left-hand side in (6.1) may be rewritten as

α
(
〈mj+1/2

h , dtm
j+1
h 〉mj+1/2

h ,Zh

)
h
− α

(
|mj+1/2

h |2dtmj+1
h ,Zh

)
h

=
α

2

(
(dt|mj+1

h |2)mj+1/2
h ,Zh

)
h
− α

(
|mj+1/2

h |2dtmj+1
h ,Zh

)
h
,

and the first term on the left-hand side vanishes owing to Lemma 3.1. We again use
the above vector identity to recast the right-hand side of (6.1) as

(1 + α2)
(
〈mj+1/2

h , Δ̃hm
j+1/2
h 〉mj+1/2

h ,Zh

)
h
− (1 + α2)

(
|mj+1/2

h |2Δ̃hm
j+1/2
h ,Zh

)
h
.

(6.2)
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Fig. 5. Energy and W 1,∞ seminorm for decreasing mesh-sizes in Example 5.1 with α = 1 and
s = 4.
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Fig. 6. Energy and W 1,∞ seminorm in Example 5.1 for � = 5, s = 1, and α = 1, 1/4, 1/16,
1/64, 1/256.
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We proceed independently with arising two terms: intermitting the Lagrange inter-
polant for the nonlinear term in the first case to benefit from (2.1) yields

((
Id ± Ih

)(
〈mj+1/2

h ,Zh〉mj+1/2
h

)
, Δ̃hm

j+1/2
h

))
h

=
((

Id − Ih
)(
〈mj+1/2

h ,Zh〉mj+1/2
h

)
, Δ̃hm

j+1/2
h

))
h

+
(
∇
(
(Id − Ih)(〈mj+1/2

h ,Zh〉mj+1/2
h )

)
,∇m

j+1/2
h

)
−
(
∇
(
〈mj+1/2

h ,Zh〉mj+1/2
h

)
,∇m

j+1/2
h

)
,

where the first two terms on the right-hand side are referred to as CorrB1 . For the
last term, we resume

(
∇m

j+1/2
h ,∇(〈mj+1/2

h ,Zh〉mj+1/2
h )

)
=

(
| ∇m

j+1/2
h |2mj+1/2

h ,Zh

)
+

1

2

(
∇|mj+1/2

h |2,∇〈mj+1/2
h ,Zh〉

)
.

Similarly, we account for effects of reduced integration and local averaging inherent
to the scheme for the second term in (6.2),

((
Id ± Ih

)(
|mj+1/2

h |2Zh

)
, Δ̃hm

j+1/2
h

)
h

=
((

Id − Ih
)(
|mj+1/2

h |2Zh

)
, Δ̃hm

j+1/2
h

)
h

+
(
∇
(
(Id − Ih)(|mj+1/2

h |2Zh)
)
,∇m

j+1/2
h

)
−
(
∇(|mj+1/2

h |2Zh),∇m
j+1/2
h

)
,

where the first two terms on the right-hand side are gathered in CorrB2
. Finally, by

Algorithm 1.1 and 〈a × b, c〉 = −〈a × c,b〉, the first term in (6.1) is identical to

− 1

α

(
dtm

j+1
h ,Zh

)
h

+
1 + α2

α

(
m

j+1/2
h × Δ̃hm

j+1/2
h ,Zh

)
h

= − 1

α

(
dtm

j+1
h ,Zh

)
h

+
1 + α2

α

(
∇(m

j+1/2
h × Zh),∇m

j+1/2
h

)
+ CorrB3

for CorrB3 = −((Id − Ih)(m
j+1/2
h × Zh), Δ̃hm

j+1/2
h )h − (∇

(
(Id − Ih)(m

j+1/2
h ×

Zh)
)
,∇m

j+1/2
h ). Reassembling (6.1) then yields to

(
(1 + α2|mj+1/2

h |2)dtmj+1
h ,Zh

)
h

= (1 + α2)
(
∇(m

j+1/2
h × Zh),∇m

j+1/2
h

)
+ α(1 + α2)

[(
| ∇m

j+1/2
h |2mj+1/2

h ,Zh

)
+

1

2

(
∇|mj+1/2

h |2,∇〈mj+1/2
h ,Zh〉

)
−

(
∇m

j+1/2
h ,∇(|mj+1/2

h |2Zh)
)]

+ α
(
CorrA +

(
1 + α2

)
CorrB

)
.

Rearranging terms then yields to the assertion.
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ANALYSIS OF A MULTISCALE DISCONTINUOUS GALERKIN
METHOD FOR CONVECTION-DIFFUSION PROBLEMS∗
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Abstract. We study a multiscale discontinuous Galerkin method introduced in [T. J. R. Hughes,
G. Scovazzi, P. Bochev, and A. Buffa, Comput. Meth. Appl. Mech. Engrg., 195 (2006), pp. 2761–2787]
that reduces the computational complexity of the discontinuous Galerkin method, seemingly without
adversely affecting the quality of results. For a stabilized variant we are able to obtain the same error
estimates for the convection-diffusion equation as for the usual discontinuous Galerkin method. We
assess the stability of the unstabilized case numerically and find that the inf-sup constant is positive,
bounded uniformly away from zero, and very similar to that for the usual discontinuous Galerkin
method.

Key words. multiscale, discontinuous Galerkin, convection-diffusion
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1. Introduction. The discontinuous Galerkin method has undergone rapid de-
velopment in recent years (see, e.g., [10] and [9]). Although it has been shown to
possess advantageous properties in a number of circumstances, its practical utility
has been limited by the much larger number of degrees-of-freedom it requires com-
pared with continuous Galerkin methods [13]. This problem has persisted since the
inception of the method and has only been recently addressed with the development of
a multiscale discontinuous Galerkin method [17] that has the computational structure
and cost of a conforming method. The new method utilizes local, element-wise prob-
lems to develop a transformation between the parameterization of the discontinuous
space and a related, smaller, continuous space. The transformation enables a direct
construction of the global matrix problem in terms of the degrees-of-freedom of the
continuous space. In the multiscale interpretation, the continuous field is viewed as
the coarse scales, and the discontinuous field is viewed as the sum of the coarse and
fine scales. The discontinuous part of the solution can be determined by elementwise
postprocessing of the continuous solution. In [17] it was shown numerically that the
new method at least retains the quality of the discontinuous Galerkin method, and
in some instances improves upon it, while at the same time it has the potential to
significantly reduce computational cost. A more general framework encompassing the
ideas is presented in [3].

In this paper we initiate the mathematical analysis of the method developed
in [17]. In section 2 we present the boundary-value problem under consideration,
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namely, convection-diffusion, and give general definitions necessary for subsequent
developments. In section 3 we introduce a discontinuous Galerkin (DG) method
that employs interior penalty stabilization and allows for symmetric, neutral, and
skew-symmetric treatment of element interface terms corresponding to the diffusion
operator. We also introduce a stabilized variant (SDG) that accounts for control of the
streamline derivative on element interiors. The DG method is shown to be coercive
with respect to the norm induced by its bilinear form, referred to as the DG-norm,
and, likewise, the SDG method is shown to be coercive with respect to the SDG-norm
induced by its bilinear form. However, the DG-norm is weak in that, in the convective
limit, it controls only jumps on element interfaces. In [11], convergence of the DG
method in the DG-norm was proved by utilizing the L2-interpolant, circumventing the
need for a stronger stability condition. Here we prove that the DG method is inf-sup
stable with respect to the SDG-norm, and this enables us to prove its convergence in
the SDG-norm by standard means.

In section 4 we present the multiscale generalizations of DG and SDG, referred to
as MDG and SMDG, respectively. We define the local, elementwise problems, which
amount to the DG method on individual elements with weakly enforced boundary
conditions specified by the shared degrees-of-freedom of the continuous representa-
tion, and we define the “interscale transfer spaces” which emanate from the solutions
of the local problems. The MDG and SMDG methods amount to the DG and SDG
methods in interscale transfer spaces. We prove the inf-sup stability of the local prob-
lems in term of the SDG-norm, without streamline-derivative stabilization in the local
problems. We also establish the approximation properties of the interscale transfer
spaces. With these, and the fact that SDG is coercive on the discontinuous space, we
are able to prove convergence and establish the same error estimates for SMDG as for
SDG (and DG). Thus, the behavior of the SMDG method is completely understood.
This is not the case for the easier MDG method. Indeed, the convergence proof for
MDG poses an additional obstacle, namely, DG is inf-sup stable with respect to the
SDG-norm on the entire discontinuous space but not necessarily inf-sup stable on
the interscale transfer subspace. This problem remains open. However, a numerical
assessment of the situation is made in section 5, where the inf-sup constant is calcu-
lated for a class of boundary-value problems over a range of convection and diffusion
parameters, and on structured meshes. For the cases considered, we find that the
MDG method is inf-sup stable with respect to the SDG-norm, and the values of the
inf-sup constant are very similar to those for the DG method. These results are con-
sistent with the numerical evaluations performed in [17]. We also assess the stability
behavior of the methods in terms of the interior penalty parameter and confirm that
MDG behaves in a similar fashion to DG. Results for SMDG are analogous to those
for MDG and thus are omitted for brevity. Conclusions are drawn in section 6.

2. Preliminaries.

2.1. Problem description. Let Ω be a bounded polygonal domain in R
nd . The

strong form of the boundary value problem we are interested in is the following:

−κΔφ + a · ∇φ = f in Ω,

φ = g on Γ,
(2.1)

where κ ≥ 0 is the diffusion coefficient, a is the solenoidal velocity vector field de-
fined on Ω, and Γ = ∂Ω is the boundary on which Dirichlet conditions are imposed.
More general boundary conditions may be considered as well; see [15] and [17]. We
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assume that the values of the diffusion coefficient κ and the velocity field a ensure
wellposedness of (2.1). Additional assumptions on these coefficients will be set later.

2.2. General definitions. We introduce the following partition of the bound-
ary:

Γ− = {x ∈ Γ : a(x) · n(x) ≤ 0},(2.2)

Γ+ = {x ∈ Γ : a(x) · n(x) > 0},(2.3)

where n is the outward unit normal with respect to Γ. Γ− will be referred to as the
inflow boundary and Γ+ as the outflow boundary.

Let {Th}h be a family of partitions of Ω into elements T . Each Th is assumed to
be admissible in the sense of Ciarlet [8], and shape regular (i.e., the elements verify
a minimum angle condition, uniformly with respect to h). The elements T ∈ Th are
either triangles/quadrilaterals in two dimensions or tetrahedra/hexahedra in three
dimensions. Let hT denote the diameter of T and h = maxT∈Th

hT . We denote by
Eh the set of all edges of Th (including edges on the boundary Γ) and by Eo

h the set
of internal edges (excluding edges on the boundary Γ) and, by abuse of notation, we
denote by Γ both the boundary ∂Ω and the collection of edges lying on it.

We also define a partition of the element boundary ∂T :

Γ−
T = {x ∈ ∂T : a(x) · n(x) ≤ 0},(2.4)

Γ+
T = {x ∈ ∂T : a(x) · n(x) > 0}.(2.5)

Here Γ∓
T represent the element inflow/outflow boundary, respectively, so that ∂T =

ΓT = Γ+
T ∪ Γ−

T .
In order to derive a discontinuous Galerkin formulation, following [1], jumps and

averages for scalar and vector fields have to be defined on the edges in Eh. There-
fore, consider an interior edge e ∈ Eo

h, and denote by T+ and T−, respectively, the
downwind and upwind elements that share it, and by n+ and n− their respective
outward-pointing unit normals. Given a scalar field ν, possibly discontinuous across
e, we set ν± = ν|T± on e and define

〈ν〉 =
1

2
(ν+ + ν−) [[ν]] = ν+n+ + ν−n−.(2.6)

Analogously, for a vector field τ we set τ± = τ |T± on e and define

〈τ 〉 =
1

2
(τ+ + τ−) [[τ ]] = τ+ · n+ + τ− · n−.(2.7)

The previous definitions are specialized on the edges on Γ as

〈ν〉 = ν, [[ν]] = ν n, 〈τ 〉 = τ , ∀e ∈ Γ.(2.8)

We will extensively make use of the following biased identity (based on [1, For-
mula (3.3)]):

∑
T∈Th

∫
ΓT

τ · n ν =
∑
e∈Eo

h

(∫
e

ν±[[τ ]] +

∫
e

[[ν]] · τ∓
)

+
∑
e∈Γ

∫
e

ν τ · n.

(2.9)
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In what follows, C is a constant, possibly different at each occurrence, which is
independent of h and of the coefficients κ and a. Moreover, α � β means α ≤ Cβ,
while α ∼ β means α � β and β � α.

We suppose that κ and a are constant on each element T ∈ Th. We make use of
the following notation: κT = κ|T , aT = a|T , and aT = |aT |. Finally, we assume that
for any pair of elements T+ and T− sharing an edge,

κT+ ∼ κT− .(2.10)

3. The discontinuous Galerkin method.

3.1. Method description. Given a positive index k, the following approxima-
tion space is introduced:

Vh = {v ∈ L2(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th},(3.1)

where Pk(T ) is the space of polynomials of degree at most k supported on T .

A possible DG formulation for (2.1) is as follows: find φDG ∈ Vh such that

BDG(φDG, μ) = LDG(g, f ;μ) ∀μ ∈ Vh,(3.2)

where

BDG(ν, μ) = −
∑
T∈Th

∫
T

∇μ · (aν − κ∇ν)

+
∑
e∈Eo

h

∫
e

(
[[μ]] · (aν− − κ−∇ν−) + sκ−∇μ−[[ν]]

)
+
∑
e∈Γ

∫
e

sκ∇μ · nν − κ∇ν · nμ

+
∑
e∈Γ+

∫
e

μνa · n + ε
∑
e∈Eh

∫
e

〈κ〉
h⊥

[[μ]] · [[ν]],

and

LDG(g, f ;μ) =

∫
Ω

μf +
∑
e∈Γ

(
ε

∫
e

〈κ〉
h⊥

μg +

∫
e

sκ∇μ · ng

)

−
∑
e∈Γ−

∫
e

a · nμg;

s is either −1 , 0 , or 1 (corresponding to symmetric, neutral, and skew-symmetric

interior penalty methods), and for each e ∈ Eo
h, we set h⊥ = |T+|+|T−|

2 |e| , while for

e ∈ Γ we set h⊥ = |T |
|e| .

Remark 3.1. Notice that on each internal edge e ∈ Eo
h the normal component of

the velocity field a is continuous, owing to the assumption div(a) = 0.

It will be useful to write the bilinear form BDG(·, ·) as a sum of two contributions:
the “diffusive” part and the “convective” part:

BDG(ν, μ) = BDG
D (ν, μ) + BDG

C (ν, μ),(3.3)
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where

BDG
D (ν, μ) =

∑
T∈Th

∫
T

∇μ · κ∇ν −
∑
e∈Eo

h

∫
e

[[μ]] · κ−∇ν− + sκ−∇μ−[[ν]](3.4)

+
∑
e∈Γ

∫
e

sκ∇μ · nν − κ∇ν · nμ + ε
∑
e∈Eh

∫
e

〈κ〉
h⊥

[[μ]] · [[ν]],

BDG
C (ν, μ) =

∑
T∈Th

−
∫
T

∇μ · aν +
∑
e∈Eo

h

∫
e

[[μ]] · aν− +
∑
e∈Γ+

∫
e

μνa · n.(3.5)

We also define the DG-norm

‖ν‖2
DG = ‖ν‖2

D + ‖ν‖2
C,(3.6)

where

‖ν‖2
D =

∑
T∈Th

(
κT |ν|2H1(T ) + h2

TκT |ν|2H2(T )

)
+ ε

∑
e∈Eh

(
h−1
⊥ ‖〈κ〉[[ν]]‖2

L2(e)

)
,

‖ν‖2
C =

∑
e∈Eh

‖|a · n|1/2[[ν]]‖2
L2(e).

(3.7)

The DG formulation is consistent: let φ be the solution of (2.1); then it is easy
to verify that

BDG(φ, μ) = LDG(g, f ;μ) ∀μ ∈ Vh.

As far as the stability is concerned, we first recall that the form BDG(·, ·) is coercive
with respect to the DG-norm, as stated in the next proposition.

Proposition 3.2. For each value of s, there exists positive ε̄ such that, for all
ε > ε̄, there exists αDG > 0 such that BDG(μ, μ) ≥ αDG‖μ‖2

DG for all μ ∈ Vh.
Moreover, αDG is independent of the mesh-size h and the coefficients κ and a.

Proof. The coercivity of the convection term easily follows by integration by parts:

BDG
C (μ, μ) ≥ 1

2
‖μ‖2

C.

Moreover, analogously to the stability proof provided in [1], there exists ε̄ such that,
under the assumption ε > ε̄, the coercivity of the diffusive term holds; that is,

BDG
D (μ, μ) ≥ β1‖μ‖2

D.(3.8)

Actually, when s = 1 (skew-symmetric case) the result holds for any ε > 0.
The coercivity as given in Proposition 3.2 is enough to provide an estimate of the

form

‖φ− φDG‖2
DG �

∑
T∈Th

[(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

]
,(3.9)

which can be obtained by reasoning as in [11], for example. On the other hand, if the
convection dominates and the exact solution φ is smooth, the quantity ‖φ−φDG‖DG

is basically a measure of the jumps of the discrete solution. In this case the estimate
(3.9) gives very little information on the error φ− φDG.
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In order to improve the control of the error, we can add an SUPG (streamline-
upwind Petrov–Galerkin) stabilization [7] to the DG formulation. Then, we set

BSDG(ν, μ) = BDG(ν, μ) +
∑
T∈Th

τT

∫
T

(LT ν)(a · ∇μ),(3.10)

LSDG(g, f ;μ) = LDG(g, f ;μ) +
∑
T∈Th

τT

∫
T

f(a · ∇μ),(3.11)

where LT ν = −κΔν+a·∇ν on T and τT is a stabilization parameter. The combination
of SUPG and DG formulations was first proposed in [18] for linear convection prob-
lems, and then in [22] for convection-diffusion problems. In particular, the method
proposed in [22] is similar to the present one (the difference being that, in [22], only
the convective flux is upwinded).

For the purpose of the error analysis, the required asymptotic behavior of τT is

τT ∼ hT

aT
in the convection-dominated regime (i.e., when κT

hT aT
� 1), and τT ∼ h2

T

κT
in

the diffusion-dominated regime (i.e., when hT aT

κT
� 1). We simply set

τT = τ min

{
hT

aT
,
h2
T

κT

}
,(3.12)

where τ is a positive real number at our disposal.
The SDG (stabilized discontinuous Galerkin) formulation reads as follows: find

φSDG ∈ Vh such that

BSDG(φSDG, μ) = LSDG(g, f ;μ) ∀μ ∈ Vh.(3.13)

For the theoretical analysis of the SDG scheme (3.13), we will need the SDG-norm

‖ν‖2
SDG = ‖ν‖2

DG +
∑
T∈Th

τT ‖a · ∇ν‖2
L2(T )(3.14)

and the related

|||ν|||2SDG = ‖ν‖2
SDG +

∑
e∈E0

h

‖|a · n|1/2ν−‖2
L2(e) +

∑
T∈Th

τ−1
T ‖ν‖2

L2(T ).(3.15)

It is immediate that the SDG formulation is consistent. Moreover, the problem (3.13)
admits a unique solution under suitable assumptions, as a consequence of the following
known result.

Proposition 3.3. For each value of s, there exist positive τ and ε such that, for
all τ < τ and ε > ε, there exists αSDG > 0 such that

BSDG(μ, μ) ≥ αSDG‖μ‖2
SDG ∀μ ∈ Vh,(3.16)

where αSDG is independent of the mesh-size h and the coefficients κ and a. Moreover,

BSDG(ν, μ) � |||ν|||SDG‖μ‖SDG ∀ ν ∈ Vh + H1(Ω) , μ ∈ Vh.(3.17)

Proof. We first note that, due to (3.12),∑
T∈Th

τT ‖κΔμ‖2
L2(T ) �

∑
T∈Th

τκTh
2
T |μ|2H2(T ) � ‖μ‖2

D.(3.18)
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Thanks to Proposition 3.2, when ε is greater than a suitable ε we have

BSDG(μ, μ) ≥ αDG‖μ‖2
SDG −

∑
T∈Th

τT

∫
T

(κΔμ)(a · ∇μ).

By the Cauchy–Schwarz inequality and (3.18), (3.16) is proved by choosing τ suffi-
ciently small.

In order to prove (3.17), we proceed in a standard way as follows:

BSDG(ν, μ) = BDG
D (ν, μ) + BDG

C (ν, μ) +
∑
T∈Th

τT

∫
T

(a · ∇μ)(LT ν) = I + II + III.

We estimate the three terms separately. First, by reasoning similar to that of [1],

I = BDG
D (ν, μ) � ‖ν‖D‖μ‖D.(3.19)

Second, by the Cauchy–Schwarz inequality,

II =
∑
T∈Th

−
∫
T

a · ∇μ ν +
∑
e∈Eo

h

∫
e

[[μ]] · aν− +
∑
e∈Γ+

∫
e

μνa · n

� ‖μ‖SDG

( ∑
e∈E0

h
∪Γ+

‖|a · n|1/2ν−‖2
L2(e) +

∑
T∈Th

τ−1
T ‖ν‖2

L2(T )

)1/2

� ‖μ‖SDG|||ν|||SDG.

(3.20)

Third, again by the Cauchy–Schwarz inequality, and by (3.18),

III =
∑
T∈Th

τT

∫
T

(a · ∇μ)(−κΔν + a · ∇ν) � ‖μ‖SDG‖ν‖SDG.(3.21)

3.2. Error estimate. We first provide an error estimate for the SDG method
(3.13).

Proposition 3.4. Let φ be the solution of (2.1), and assume φ ∈ Hk+1(Ω). Let
φSDG be given by (3.13). Under the assumption of Proposition 3.3, the following error
estimate holds:

‖φ− φSDG‖SDG �
( ∑

T∈Th

(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

)1/2

.(3.22)

Proof. Let φI ∈ Vh be the usual nodal interpolant of φ. Using coercivity and
continuity, and (3.16) and (3.17), together with consistency, we get

αSDG‖φSDG − φI‖2
SDG ≤ BSDG(φSDG − φI , φSDG − φI)

= BSDG(φ− φI , φSDG − φI)

� |||φ− φI |||SDG‖φSDG − φI‖SDG.

(3.23)

For the usual local estimates on the interpolation error φ− φI we readily obtain

|||φ− φI |||SDG �
( ∑

T∈Th

(
κTh

2k
T + τTa

2
Th

2k
T + τ−1

T h2k+2
T + τTκ

2
Th

2k−2
T

)
|φ|2Hk+1(T )

)1/2

.
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When choosing the stabilization parameter τT according to (3.12), by direct compar-
ison, we see that (3.22) follows.

For the pure discontinuous Galerkin method (3.2), a suitable control on the
streamline derivative can be obtained, as was first studied in [19] for the pure con-
vection (scalar hyperbolic) equation. In the following result, we prove an inf-sup
condition for the bilinear form BDG(·, ·) with respect to the SDG-norm. This im-
proves the stability result stated in Proposition 3.2.

Theorem 3.5. There exists ε such that for all ε ≥ ε,

inf
ν∈Vh

sup
μ∈Vh

BDG(ν, μ)

‖ν‖SDG‖μ‖SDG
≥ βDG > 0,(3.24)

where βDG is independent of h, κ, a, and the domain.
Proof. Given ν ∈ Vh, we choose μ = ν + γ

∑
T∈Th

τT (a · ∇ν)|T = ν + γμ2, where
γ is a positive parameter at our disposal. Note that μ ∈ Vh, as the velocity field is
piecewise constant on Th. We prove the following:

‖μ‖SDG � ‖ν‖SDG,(3.25)

B(ν, μ) ≥ β‖ν‖2
SDG.(3.26)

We start by proving (3.25). To this end, we need to estimate the different terms
of ‖μ2‖SDG. Recall that, from (3.12),

τT ≤ τ
h2
T

κT

(3.27)

and

τT ≤ τ
hT

aT
.(3.28)

Using (3.28) and a local inverse inequality, we have

τT ‖a · ∇(τT a · ∇ν)‖2
L2(T ) ≤ τ3

Ta
2
T ‖∇(a · ∇ν)‖2

L2(T )

≤ (τCinv)
2τT ‖a · ∇ν‖2

L2(T ),
(3.29)

where Cinv is the constant of the local inverse inequality. From (3.29) we get∑
T∈Th

τT ‖a · ∇μ2‖2
L2(T ) � ‖ν‖2

SDG.(3.30)

Consider an internal edge e ∈ Eo
h, and denote by T− and T+ the adjacent upwind and

downwind elements. We have

‖[[μ2]]‖2
L2(e) � ‖μ2|T−‖2

L2(e) + ‖μ2|T+‖2
L2(e)

≤ τ2
T−‖(a · ∇ν)|T−‖2

L2(e) + τ2
T+‖(a · ∇ν)|T+‖2

L2(e).
(3.31)

Using the trace inequality,

‖ξ‖2
L2(e) ≤ Ctr(h

−1
T ‖ξ‖2

L2(T ) + ‖ξ‖L2(T )‖∇ξ‖L2(T )),

which holds for all ξ ∈ H1(T ), and a local inverse inequality, we also have

‖(a · ∇ν)|T±‖2
L2(e) ≤ C ′

invh
−1
T±‖a · ∇ν‖2

L2(T±),(3.32)
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where C ′
inv = Ctr(1 + Cinv). From (3.31) and (3.32) together with (3.28), we obtain

‖|a · n|1/2[[μ2]]‖L2(e) � τ
1/2
T+ ‖a · ∇ν‖L2(T+) + τ

1/2
T− ‖a · ∇ν‖L2(T−).

Similarly, for a boundary edge e ∈ Γ, if e ⊂ ΓT , then

‖|a · n|1/2[[μ2]]‖L2(e) � τ
1/2
T ‖a · ∇ν‖L2(T ).

Summarizing, we have proved

‖μ2‖2
C �

∑
T∈Th

τT ‖a · ∇ν‖2
L2(T ).(3.33)

By the inverse inequality, as in (3.29), we have

κT ‖∇μ2‖2
L2(T ) ≤ κTa

2
T τ

2
T |ν|2H2(T ) � C2

invκT ‖∇ν‖2
L2(T ).(3.34)

On the other hand, recalling (2.10), (3.31)–(3.32) implies that, for each e ∈ Eo
h,

〈κ〉
h⊥

‖[[μ2]]‖2
L2(e) � κT+‖∇ν‖2

L2(T+) + κT−‖∇ν‖2
L2(T−),(3.35)

or, for e ∈ Γ,

〈κ〉
h⊥

‖[[μ2]]‖2
L2(e) � κT ‖∇ν‖2

L2(T ).(3.36)

This proves that

‖μ2‖D ≤ CD‖ν‖D(3.37)

where CD is a constant independent of the mesh-size and the problem parameters.
The bounds (3.30), (3.33), and (3.37) give ‖μ2‖SDG � ‖ν‖SDG and finally (3.25).

We turn now to the proof of (3.26). First of all, we have

BDG
C (ν, ν) =

1

2

∑
e∈Eh

‖|a · n|1/2[[ν]]‖2
L2(e).

On the other hand, by integration by parts and (2.9),

BDG
C (ν, μ2) =

∑
T∈Th

(
τT

∫
T

|a · ∇ν|2 −
∫

Γ−
T

τT (a · ∇ν)
+

[[aν]]

)
,(3.38)

and, using (3.32),∑
T∈Th

∫
Γ−
T

τT (a · ∇ν)
+

[[aν]] ≤
∑
T∈Th

τT ‖|a · n|1/2(a · ∇ν)+‖L2(Γ−
T

)

· ‖|a · n|1/2[[ν]]‖L2(Γ−
T

)

≤ 1

2λ

∑
T∈Th

τ2
T ‖|a · n|1/2(a · ∇ν)+‖2

L2(Γ−
T

)

+
λ

2

∑
T∈Th

‖|a · n|1/2[[ν]]‖2
L2(Γ−

T
)

≤ τC ′
inv

2λ

∑
T∈Th

τT ‖a · ∇ν‖2
L2(T )

+
λ

2

∑
e∈Eh

‖|a · n|1/2[[ν]]‖2
L2(e)
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for any λ > 0. Using these estimates, we have

BDG
C (ν, μ) ≥

(
1 − γ λ

2

) ∑
e∈Eh

‖|a · n|1/2[[ν]]‖2
L2(e)

+ γ

(
1 − τC ′

inv

2λ

) ∑
T∈Th

τT ‖a · ∇ν‖2
L2(T ).

(3.39)

For the estimation of the diffusion part BDG
D (ν, μ), we use coercivity (3.8), conti-

nuity (e.g., see (3.19)) of BDG
D (·, ·), and the estimate (3.37) to obtain

BDG
D (ν, μ) = BDG

D (ν, ν) + γBDG
D (ν, μ2)

≥ β1‖ν‖2
D − γβ̃2‖μ2‖D‖ν‖D

≥ (β1 − γCDβ̃2)‖ν‖2
D.

(3.40)

Summing equations (3.39) and (3.40), and setting β2 = CDβ̃2, we obtain

BDG(ν, μ) ≥ (β1 − γβ2)‖ν‖2
D

+

(
1 − γ λ

2

) ∑
e∈Eh

‖|a · n|1/2[[ν]]‖2
L2(e)

+ γ

(
1 − τC ′

inv

2λ

) ∑
T∈Th

τT ‖a · ∇ν‖2
L2(T ).

The theorem is then proved by choosing λ = τC ′
inv and γ = min

{
λ−1, β1

2β2

}
.

Remark 3.6. Results analogous to those of Theorem 3.5 can be obtained for other
DG formulations, such as the interior penalty method.

From Theorem 3.5 we deduce the following error estimate for the DG scheme.
Corollary 3.7. Let φ be the solution of (2.1), and assume φ ∈ Hk+1(Ω); let

φDG be the solution of (3.2). We have

‖φ− φDG‖SDG �
( ∑

T∈Th

(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

)1/2

.(3.41)

Proof. Let φI ∈ Vh be the nodal interpolant of φ and let ζ = φDG−φI . Let μ ∈ Vh

be a test function satisfying (3.25)–(3.26). Using consistency and Proposition 3.3,

β‖ζ‖2
SDG ≤ BDG(ζ, μ) = BDG(φ− φI , μ)

� |||φ− φI |||SDG‖μ‖SDG

�
( ∑

T∈Th

(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

)1/2

‖ζ‖SDG.

We deduce (3.41) by the triangle inequality.

4. The multiscale discontinuous Galerkin method. In this section, we
present a reduction technique, referred to as the MDG method, which was first intro-
duced in [17]. Furthermore, a stabilized variant of this method, referred to as SMDG,
will be introduced subsequently.
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The main idea is the following: (i) Solve (3.2) or (3.13) on a suitable subspace
of Vh preserving the stability and approximation properties; (ii) Use a multiscale
paradigm and local problems to perform the elimination of degrees-of-freedom for
both the test and trial spaces.

4.1. Method description. We introduce the spaces V h = Vh ∩H1(Ω) and, for
all T ∈ Th, Vh(T ) = Vh|T (note that this is nothing other than the space of degree k
polynomials on T ). The local problems read as follows: for all ν̄ ∈ V h, find ν ∈ Vh

such that for all T ∈ Th,

bT (ν, μ) = �T (ν̄, f ;μ) ∀μ ∈ Vh(T ),(4.1)

where we have set

bT (ν, μ) =

∫
T

κ∇ν · ∇μ−
∫

ΓT

(κ∇ν · nμ− sκ∇μ · nν) + ε

∫
ΓT

κ

h⊥
μν

−
∫
T

∇μ · aν +

∫
Γ+
T

(1 + δ)μνa · n,

�T (ν̄, f ;μ) = −
∫

Γ−
T

μν̄a · n + δ

∫
Γ+
T

μν̄a · n + ε

∫
ΓT

κ

h⊥
μν̄

+

∫
ΓT

sκ∇μ · nν̄ +

∫
T

f μ.

(4.2)

Observe that (4.1) is a DG formulation for the local problem LT ν = f on T , with
ν = ν̄ on the boundary ΓT . Comparing the local DG formulation (4.1) with the global
DG formulation (3.2), notice that the former has an extra term, which depends on
a new parameter δ > 0. This new term is needed for implementation purposes (see
[17]).

We denote by Th : V h × L2(Ω) → Vh the operator which associates to each
(ν̄, f) ∈ V h × L2(Ω) the solution ν of the local problems (4.1) on each element T ∈
Th. The stability of (4.1), which is stated below (in Lemma 4.4), implies that the
problems (4.1) admit unique solutions on each element T ∈ Th; that is, the operator
Th is well defined. Th represents the “interscale transfer operator,” and the associated
“interscale transfer spaces” are the (affine) manifold

Th(V h, f) =
{
Th(ν̄, f) | ν̄ ∈ V h

}
and the (linear) manifold

Th(V h, 0) =
{
Th(ν̄, 0) | ν̄ ∈ V h

}
.

With this notation, the MDG method reads as follows: find φMDG ∈ Th(V h, f) such
that

BDG(φMDG, μ) = LDG(g, f ;μ) ∀μ ∈ Th(V h, 0).(4.3)

Its stabilized version SMDG reads as follows: find φSMDG ∈ Th(V h, f) such that

BSDG(φSMDG, μ) = LSDG(g, f ;μ) ∀μ ∈ Th(V h, 0).(4.4)

Notice that SMDG is an SUPG stabilization of MDG.
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Remark 4.1. The spaces Th(V h, f) and Th(V h, 0) can be parameterized by means
of the degrees-of-freedom of V h lying on the “skeleton” Σ = ∪e∈Eh

e.
Remark 4.2. The MDG method can be interpreted as a multiscale technique (see

[4, 12, 14, 16]). Both trial and test discontinuous functions ν ∈ Vh can be split into
a continuous coarse scale ν̄ plus a discontinuous fine scale ν′ = ν − ν̄. Performing
integration by parts in (4.1), we find that ν′ satisfies

bT (ν′, μ) =

∫
T

(f − LT ν̄)μ ∀μ ∈ Vh(T ).(4.5)

Equation (4.5) suggests a relationship between the MDG approach and the RFB
(residual-free bubble) approach (see, e.g., [5, 6, 21]). Consider, for the sake of sim-
plicity, the case of lowest order approximation k = 1. Actually ν′ in (4.5) can be
understood as the DG approximation of the exact residual-free bubble νbubble, which
satisfies LT ν

bubble = f − LT ν̄ on T , with νbubble = 0 on the boundary ∂T . A DG
approximation of the exact residual-free bubble has also been used in the DB (dis-
continuous bubble) implementation of the RFB formulation (see [20]). The major
difference between MDG and DB is that for the latter the space of test functions was
V h instead of Th(V h, 0). The relation between these two approaches deserves further
investigation.

4.2. Approximation properties of Th(V h, f). The first step in the analy-
sis of problems (4.3) and (4.4) is the study of the approximation properties of the
interscale transfer affine space Th(V h, f).

Theorem 4.3 (approximation). Let φ be the solution of (2.1); then there exists
ν ∈ Th(V h, f) such that

|||φ− ν|||SDG �
( ∑

T∈Th

(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

)1/2

.(4.6)

Before proving Theorem 4.3, we need some lemmas. On each element T ∈ Th, we
introduce the following local norm:

‖ν‖2
SDG(T ) := κT |ν|2H1(T ) + h2

TκT |ν|2H2(T ) + τT ‖a · ∇ν‖2
L2(T )

+ εh−1
T κT ‖ν‖2

L2(ΓT ) + ‖|a · n|1/2ν‖2
L2(ΓT ).

(4.7)

The next lemma states that the local problems (4.1) are stable.
Lemma 4.4 (local stability). There exist positive ε and δ such that for all ε ≥ ε

and δ ≤ δ,

inf
ν∈Vh(T )

sup
μ∈Vh(T )

bT (ν, μ)

‖ν‖SDG(T )‖μ‖SDG(T )
≥ βb > 0 ∀T ∈ Th,(4.8)

and the constant βb is independent of T , κ, and a.
Proof. If δ = 0, then (4.8) is a particular case of (3.24) where the domain is T

(endowed with a one-element mesh) instead of Ω. Then, for δ = 0, given ν ∈ Vh(T )
there exists μ ∈ Vh(T ) such that

‖μ‖SDG(T ) ≤ ‖ν‖SDG(T ),

bT (ν, μ) ≥ βDG‖ν‖2
SDG(T ).

(4.9)
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If δ �= 0, given ν ∈ Vh(T ) and for the same μ ∈ Vh(T ) as in (4.9), we have

‖μ‖SDG(T ) ≤ ‖ν‖SDG(T ),

bT (ν, μ) ≥ βDG‖ν‖2
SDG(T ) +

∫
Γ+
T

δμνa · n.
(4.10)

Moreover, ∣∣∣∣∣
∫

Γ+
T

δμνa · n
∣∣∣∣∣ ≤ δ‖μ‖SDG(T )‖ν‖SDG(T ).

Then, for δ ≤ δ = βDG/2, from (4.10) we get

‖μ‖SDG(T ) ≤ ‖ν‖SDG(T ),

bT (ν, μ) ≥ βDG

2
‖ν‖2

SDG(T ),
(4.11)

which gives (4.8) for βb = βDG/2.
The local problems are consistent: let φ be the solution of (2.1); then

bT (φ, μ) = �T (φ, f, μ) ∀μ ∈ Vh, ∀T ∈ Th.(4.12)

In the following lemma we state a Poincaré-like estimate for the norm ‖ ·‖SDG(T ).
Lemma 4.5. For each element T ∈ Th and each function ν ∈ H1(T ), the following

estimate holds:

τ−1
T ‖ν‖2

L2(T ) � ‖ν‖2
SDG(T ).(4.13)

Proof. Fix an element T ∈ Th. Because of the definition (3.12) of τT , (4.13) is a
consequence of the two Poincaré estimates

aT
hT

‖ν‖2
L2(T ) � hT

aT
‖a · ∇ν‖2

L2(T ) + ‖|a · n|1/2ν‖2
L2(ΓT ),(4.14)

κT

h2
T

‖ν‖2
L2(T ) � κT |ν|2H1(T ) + h−1

T ‖κ1/2ν‖2
L2(ΓT ).(4.15)

The inequality (4.15) is a consequence of the standard Poincaré inequality plus a
scaling argument. Therefore, we concentrate on the less common (4.14). Let η be the
solution of the problem

a · ∇η = 1 on T and η|Γ−
T

= 0.

It is easy to verify that ‖η‖L∞(T ) ≤ hT

aT
. Given v ∈ H1(T ), we estimate ‖ · ‖L2(T ) as

follows:

‖ν‖2
L2(T ) =

∫
T

ν2 a · ∇η = −
∫
T

a · ∇(ν2) η +

∫
Γ+
T

a · n η ν2

≤ ‖η‖L∞(T )(2‖a · ∇ν‖L2(T )‖ν‖L2(T ) + ‖|a · n|1/2ν‖2
L2(ΓT ))

≤ hT

aT
(2‖a · ∇ν‖L2(T )‖ν‖L2(T ) + ‖|a · n|1/2ν‖2

L2(ΓT ))

≤ 2h2
T

a2
T

‖a · ∇ν‖2
L2(T ) +

1

2
‖ν‖2

L2(T ) +
hT

aT
‖|a · n|1/2ν‖2

L2(ΓT ).

The inequality (4.14) follows, dividing both sides by hT

aT
.
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Proof of Theorem 4.3. Let φI ∈ Vh be the nodal interpolant of φ and let ν be the
solution of the following local problems:

bT (ν|T , μ) = �T (φI , f, μ) ∀μ ∈ Vh, ∀T ∈ Th.

We have ν ∈ Th(V h, f) and will show that ν verifies the estimate (4.6). First, we
prove that

|||φ− ν|||2SDG �
∑
T∈Th

‖φ− ν‖2
SDG(T ).(4.16)

It is immediate that

‖φ− ν‖2
SDG +

∑
e∈E0

h
∪Γ+

‖|a · n|1/2(φ− ν)−‖2
L2(e) �

∑
T∈Th

‖φ− ν‖2
SDG(T ),(4.17)

and, making use of (4.13), we also have∑
T∈Th

τ−1
T ‖ν‖2

L2(T ) �
∑
T∈Th

‖φ− ν‖2
SDG(T ).(4.18)

Therefore, from (4.16) and the usual triangle inequality, we get

|||φ− ν|||2SDG �
∑
T∈Th

‖φ− φI‖2
SDG(T ) +

∑
T∈Th

‖φI − ν‖2
SDG(T ) = I + II.

Let us concentrate on II first. Fix a generic T ∈ Th; then consistency (4.12)
implies

bT (φ− ν, μ) = �T (φ− φI , 0;μ) ∀μ ∈ Vh(T ).(4.19)

By Lemma 4.4, there exists μ̃ ∈ Vh(T ) such that ‖μ̃‖SDG(T ) � ‖φI − ν‖SDG(T ) and

‖φI − ν‖2
SDG(T ) � bT (φI − ν, μ̃)

= bT (φI − φ, μ̃) + bT (φ− ν, μ̃)

= bT (φI − φ, μ̃) + �T (φ− φI , 0; μ̃).

(4.20)

We have

bT (φI − φ, μ̃) � (‖φI − φ‖SDG(T ) + τ−1
T ‖φI − φ‖L2(T ))‖μ̃‖SDG(T ),

�T (φ− φI , μ̃) � ‖φI − φ‖SDG(T )‖μ̃‖SDG(T ).
(4.21)

Thanks to (4.20)–(4.21) and the Poincaré estimate (4.13), we obtain

‖φI − ν‖SDG(T ) � ‖φI − φ‖SDG(T ) + τ−1
T ‖φI − φ‖L2(T )

� ‖φI − φ‖SDG(T ).

Squaring and summing over all the elements, we end up with

II � I.

Finally, observe that, by using the standard estimates for the interpolation error, we
easily get

I �
( ∑

T∈Th

(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

)1/2

.

This gives (4.6).
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4.3. Error estimate. An optimal error estimate for the SMDG method readily
follows from Theorem 4.3 and Proposition 3.3.

Theorem 4.6. Let φ and φSMDG be the solutions of (2.1) and (4.4), respectively.
Under the same assumption as in Proposition 3.3,

‖φ− φSMDG‖SDG �
( ∑

T∈Th

(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

)1/2

.(4.22)

Proof. Let ν ∈ Th(V h, f) be the approximant of φ given by Theorem 4.3, and
let ζ = φSMDG − ν. Linearity ensures that ζ ∈ Th(V h, 0); that is, it is an admissible
test function for (4.4). Repeating the same steps as in Proposition 3.4, we obtain the
estimate

‖φ− φSMDG‖SDG � |||φ− ν|||SDG.

The statement is then proved by using Theorem 4.3.
Remark 4.7. The problem of providing an optimal error estimate for MDG re-

mains open. The error estimate (3.9) for DG, proved in [11], makes use of an inter-
polant which is the L2-projection of φ onto Vh, which is not generally available in
Th(V h, f). On the other hand, the stronger error estimate (3.41) we have proved in
section 3, still for DG, relies on the validity of the inf-sup condition (3.24). A similar
error analysis for the MDG method would need the following inf-sup condition:

inf
ν∈Th(V h,0)

sup
μ∈Th(V h,0)

BDG(ν, μ)

‖ν‖SDG‖μ‖SDG
≥ βMDG > 0,(4.23)

where βMDG has to be independent of h. The inf-sup condition (4.23) is not a
consequence of (3.24). One of the objectives of the next section is the numerical
evaluation of the inf-sup constant βMDG in (4.23).

5. Selection of parameters. The stability of the numerical schemes we have
considered depends on the parameters ε (which specify the amount of interior penalty
stabilization in all the formulations) and τ (which specifies the amount of streamline
stabilization in SDG and SMDG). In this section, we want to investigate in more detail
the relation between the stability of the schemes and the value of the parameters for
a specific model problem. Moreover, we investigate numerically the validity of (4.23)
and we demonstrate that (4.23) holds, at least for the cases covered by our numerical
experiments.

We consider a square domain Ω = [0, 1]2 and a uniform partition Th of N × N
square elements. Then, we select bilinear finite element spaces, discontinuous for Vh

and globally continuous for V̄h. We restrict ourselves to the simplest case of constant
coefficients κ and a. Numerical testing of this configuration has been performed in
[17]. Here, we want to measure the stability of the schemes by a numerical evaluation
of the inf-sup constant

inf
ν∈Vh

sup
μ∈Vh

B(ν, μ)

‖ν‖SDG‖μ‖SDG
(5.1)

for the DG and SDG formulations (where B(·, ·) ≡ BDG(·, ·) and B(·, ·) ≡ BSDG(·, ·),
resp.) and

inf
ν∈Th(V h,0)

sup
μ∈Th(V h,0)

B(ν, μ)

‖ν‖SDG‖μ‖SDG
(5.2)
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Fig. 5.1. Inf-sup constant of the DG method versus ε.

for the MDG and SMDG formulations (where B(·, ·) ≡ BDG(·, ·) and B(·, ·) ≡
BSDG(·, ·), resp.). The evaluation of (5.1) and (5.2) can be performed through a
generalized eigenvalue computation (see, e.g., [2] for details). In what follows we as-
sume δ = 0. Very similar results are obtained with the choice δ = 0.01, proposed in
[17], which has advantages from the implementation standpoint.

5.1. The interior penalty parameter. First, we study the effect of ε, the
amount of interior penalty stabilization. We focus on the diffusion-dominated regime,
where the interior penalty term plays a role, setting κ = 1 and ‖a‖ = 10−10. The
values of (5.1) and (5.2) are plotted in Figure 5.1 and 5.2, respectively, for the DG
and MDG schemes (similar result are obtained for the stabilized SDG and SMDG
schemes), and for a partition of 10 × 10 elements (N = 10). The symmetric version
(s = −1), the skew-symmetric version (s = 1), as well as the neutral version (s = 0)
are considered. We confirm that the skew-symmetric version is stable for all positive
ε, while the other two formulations are unstable if the interior penalty stabilization
is too small. Nevertheless, the symmetric version attains more accurate numerical
solutions and is preferred (see [17]). We also observe that the MDG scheme needs
less interior penalty stabilization than the DG scheme. This is not surprising: indeed,
roughly speaking, in the diffusive regime, Th(V h, 0) is composed of functions that are
almost continuous, and therefore the interior penalty stabilization is needed only on
the boundary of Ω.

5.2. The SUPG parameter and the inf-sup stability of MDG. Second, we
analyze the role of the streamline stabilization. We select, from now on, the symmetric
version (s = −1) and we take ε = 6 (this gives sufficient interior penalty stabilization
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Fig. 5.2. Inf-sup constant of the MDG method versus ε.

to both DG and SDG, as seen in section 5.1). We know, from Theorem 3.5, that
there is no need of streamline stabilization in the DG method. This is confirmed
in Figure 5.3, where (5.1) is plotted for different κ and a = [cos θ, sin θ], on a grid
of 10 × 10. We have set τ = 1/2 in the definition of ‖ · ‖SDG. The values of (5.1)
are bounded away from zero, uniformly with respect to the operator coefficients.
In Figure 5.4 we focus the attention on the convection-dominated regime, which is
now the most interesting case: we set κ = 10−6 and compute (5.1) for different
a = [cos θ, sin θ] on different uniform meshes of N ×N elements. We confirm that the
inf-sup condition holds uniformly with respect to the mesh-size.

The major result of this section is the evaluation of the stability of the MDG
scheme. Actually, the MDG scheme turns out to be stable with respect to the ‖·‖SDG

for the model case considered here: in Figure 5.5 we plot the inf-sup constant (5.2)
for different κ and a = [cos θ, sin θ] on the uniform 10 × 10 grid, while in Figure 5.6
we plot (5.2) in the convection-dominated regime (κ = 10−6) for different directions
of the convective field a and different uniform meshes. Our conclusion is that, at
least for this model case, the MDG scheme is inf-sup stable; that is, condition (4.23)
holds with βMDG independent of the problem coefficients and the mesh-size. From
this, and reasoning as in Theorem 4.6, we can infer the optimal error estimate for the
MDG scheme:

‖φ− φMDG‖SDG �
( ∑

T∈Th

(
aTh

2k+1
T + κTh

2k
T

)
|φ|2Hk+1(T )

)1/2

.(5.3)

Similar plots and results are obtained for the stabilized SDG and SMDG methods,
in accordance with Proposition 3.3, and are omitted.
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Fig. 5.3. Inf-sup constant of the DG method versus a = [cos θ, sin θ] and κ.
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6. Conclusions. The mathematical analysis of the multiscale discontinuous
Galerkin MDG method introduced in [17] was initiated. This method alleviates a
longstanding drawback of discontinuous Galerkin methods, namely, the large size of
the solution space. It utilizes local, elementwise problems to generate an interscale
transfer operator, enabling the size of the matrix problem to be significantly reduced,
apparently without degradation in the quality of results.

We studied MDG and a stabilized version, SMDG. We were able to characterize
the approximation properties of the interscale transfer spaces. The corresponding
global discontinuous Galerkin methods, DG and SDG, are inf-sup stable and coercive,
respectively, with respect to the norm induced by the bilinear form of SDG. Coercivity,
but not necessarily inf-sup stability, is inherited by the interscale transfer subspaces.
Consequently, we were able to obtain the same error estimates for SMDG as for DG
and SDG, but the situation for MDG remains open. Numerical evaluations of the inf-
sup constant for MDG indicated that it was positive, bounded uniformly away from
zero, and very similar to that for DG. These results are consistent with the numerical
calculations performed in [17].
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[19] C. Johnson, and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a
scalar hyperbolic equation, Math. Comp., 46 (1986), pp. 1–26.

[20] G. Sangalli, A discontinuous residual-free bubble method for advection-diffusion problems, J.
Engrg. Math., 49 (2004), pp. 149–162.

[21] G. Sangalli, Global and local error analysis for the residual-free bubbles method applied to
advection-dominated problems, SIAM J. Numer. Anal., 38 (2000), pp. 1496–1522.

[22] E. Süli, P. Houston, and C. Schwab, hp-finite element methods for hyperbolic problems, in
The Mathematics of Finite Elements and Applications, X, MAFELAP 1999, J. R. White-
man, ed., Elsevier, Oxford, UK, 2000, pp. 143–162.



SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 1441–1465

TRUNCATION ERRORS IN EXPONENTIAL FITTING FOR
OSCILLATORY PROBLEMS∗

J. P. COLEMAN† AND L. GR. IXARU‡

Abstract. A generalization of Peano’s kernel theorem due to Ghizzetti and Ossicini [Quadra-
ture Formulae, Birkhaüser, Basel, Switzerland, 1970] provides expressions, in the form of integrals,
for the truncation errors in a variety of exponential-fitting formulae for oscillatory problems. In
some circumstances this leads to an expression analogous to the Lagrange form of remainder; more
generally the error can be expressed as a sum of two terms of Lagrange type. Our examples include
formulae for quadrature and numerical differentiation, and linear multistep methods for ordinary
differential equations. Two families of exponential-fitting quadrature formulae are investigated, one
with evenly spaced abscissas and the other based on the philosophy of Gaussian quadrature. In
particular, the integral representation can be used to determine the asymptotic rate of decay of the
error with increasing frequency for a class of oscillatory integrands.
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1. Introduction. In recent decades a sustained effort has been devoted to the
construction of approximate formulae specially adapted for numerical operations on
oscillatory functions. Integration of differential equations with oscillatory solutions is
an area of current research interest; aspects of the problem were reviewed by Petzold,
Jay, and Yen [17]. Quadrature with oscillatory integrands is of interest in its own right,
for example, in connection with finite Fourier integrals. Furthermore, the efficient
evaluation of such integrals is an essential requirement in the implementation of some
methods for differential equations with oscillatory solutions; see Iserles [9].

Many classical approximation formulae are designed to be exact for polynomials
of sufficiently low degree. However, a polynomial of low degree can provide a good
approximation for a rapidly varying function only on a very short interval. In contrast,
approximations based on a few terms of a more appropriate set of basis functions may
provide a much better approximation. An exponential-fitting method is designed to be
exact when the solution of the differential equation, or the integrand in a quadrature
problem, is some suitably chosen combination of exponential functions, perhaps with
polynomial terms, or products of polynomials and exponentials. Similar ideas may be
applied to interpolation and numerical differentiation, as in [11]. The technique for
the construction of the coefficients of such formulae is now well established, and some
efficient computer codes are available; see Ixaru and Vanden Berghe [14] and the CD
therein. Since we are concerned here with oscillatory problems, the arguments of the
exponential functions are purely imaginary.

When the value of a function f at x0 + h is approximated by a truncated Taylor
expansion about x0, that is, by fK(x0 +h) =

∑K
k=0 h

kf (k)(x0)/k!, the resulting error
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may be expressed in the Lagrange form

err := f(x0 + h) − fK(x0 + h) =
hK+1

(K + 1)!
f (K+1)(η),

for some η ∈ (x0, x0 + h), if f (K+1)(x) is continuous on [x0, x0 + h]. That error
may also be written, less usefully, as the formal expansion

∑∞
k=K+1 h

kf (k)(x0)/k!.
Expressions of Lagrange type are also available for the truncation errors in some
polynomial-based approximations; examples include the errors in Newton–Cotes and
Gaussian quadrature formulae, and the local truncation errors in the explicit and
implicit Adams formulae. Although such formulae rarely give useful quantitative
bounds, they can give valuable qualitative information. In contrast to the situation
for polynomial-based methods, the truncation errors of exponential-fitting methods
are not well understood. Comments in the literature are mainly based on the so-called
leading term of a formal expansion of the error.

Our objective in this paper is to contribute to the understanding of the truncation
errors in exponential fitting methods wherever they are applied. Our starting point
is the work of Ghizzetti and Ossicini [8] concerning a class of quadrature formulae
which includes exponential-fitting formulae. Their results, which are summarized
in section 2, provide both a technique for deriving formulae and, of more relevance
to our concern, an expression for the error as an integral. The error formula is a
generalization of Peano’s kernel theorem. If the kernel function is of constant sign, this
leads to an expression analogous to the Lagrange form of remainder. More generally,
the error can be expressed as a sum of two terms of Lagrange type.

Several specific formulae obtained by exponential fitting are considered in sec-
tion 3. It is found that the error is expressible as a single Lagrange term only under
severe restrictions on the value of the fitted frequency, and the relationship with the
concept of the “leading term” is elucidated. The next section begins with a derivation
of an explicit formula for the kernel function for exponential fitting based on the 2N
functions xp exp(± iωx) for p = 0, 1, . . . , N − 1. That provides an expression for the
truncation error for a particular class of exponential-fitting quadrature formulae and
paves the way for analytical and numerical investigations of the errors in two fam-
ilies of such formulae, one with evenly spaced abscissas and the other based on the
philosophy of Gaussian quadrature. Some of the methods investigated here compare
favorably with a Filon–Lobatto method advocated by Iserles [9], when applied to an
example which he considered.

Section 5 is devoted to a detailed study of the error in a particular two-point
exponential-fitting Gaussian formula for a class of oscillatory integrands. It is shown
that the integral for the truncation error can provide valuable information on the
qualitative behavior of that error at large frequencies.

2. A general scheme. The work of Ghizzetti and Ossicini [8] is concerned with
quadrature formulae of the form∫ b

a

g(x)f(x) dx =

n∑
i=1

m−1∑
k=0

Akif
(k)(xi) + E[f ](2.1)

such that E[f ] = 0 when f is a solution of a linear differential equation L[f ] = 0 of
order m. It is assumed that

a ≤ x1 < x2 < · · · < xn ≤ b.
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The operator L has the form

L =

m∑
k=0

ak(x)
dm−k

dxm−k
,

with a0(x) = 1. Smoothness conditions on the coefficients are specified in [8]. Here
it will be assumed that the functions arising are as smooth as required. The adjoint
differential operator L∗ is defined by

L∗[u] =

m∑
k=0

(−1)m−k dm−k

dxm−k
[ak(x)u(x)],

which may also be written as

L∗[u] =

m∑
k=0

a∗k(x)
dm−ku(x)

dxm−k
.

The reduced operators corresponding to L are

Lr =

r∑
k=0

ak(x)
dr−k

dxr−k
for r = 0, . . . ,m− 1.

Similarly,

L∗
r =

r∑
k=0

a∗k(x)
dr−k

dxr−k
for r = 0, . . . ,m− 1.

For example, if

L =
d2

dx2
+ a1(x)

d

dx
+ a2(x),

then

L1 =
d

dx
+ a1(x) and L0 = 1.

For a sufficiently differentiable function u,

L∗[u] = u′′ − (a1u)′ + a2u;

thus

L∗
1[u] = u′ − a1u and L∗

0[u] = u.

For any two sufficiently differentiable functions u and v, Lagrange’s identity takes
the form

vL[u] − uL∗[v] =
d

dx

m−1∑
k=0

u(k)(x)L∗
m−k−1[v].

Integration gives

∫ β

α

u(x)L∗[v](x) dx =

∫ β

α

v(x)L[u](x) dx−
[
m−1∑
k=0

u(k)(x)L∗
m−k−1[v](x)

]x=β

x=α

.
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In particular, this can be applied with u = f , v = φi (any solution of the differential
equation L∗[φ] = g(x)), α = xi, and β = xi+1. It is convenient to define x0 = a and
xn+1 = b, to allow for cases where the end-points of the integration interval are not
quadrature abscissas. Let φ0 and φn be the particular solutions of L∗[φ] = g(x) which
satisfy the conditions

L∗
m−k−1[φ0](a) = 0

and

L∗
m−k−1[φn](b) = 0

for k = 0, 1, . . . ,m−1. Then, by summing over the index i, as shown by Ghizzetti and
Ossicini [8], and also on page 294 of Davis and Rabinowitz [4], we get a quadrature
formula of the form (2.1). The quadrature coefficients are

Aki = L∗
m−k−1 [φi(x) − φi−1(x)]

∣∣
x=xi

(2.2)

for k = 0, . . . ,m − 1 and i = 1, . . . , n; here the functions φi, for i = 1, . . . , n − 1, are
any solutions of the differential equation L∗[φ](x) = g(x). The error term is

E[f ] =
n∑

i=0

∫ xi+1

xi

φi(x)L[f ](x) dx =

∫ b

a

Φ(x)L[f ](x) dx,(2.3)

where

Φ(x) = φi(x) for xi < x < xi+1, i = 0, . . . , n.

It is clear from the form of (2.3) that the truncation error vanishes if L[f ] = 0.
Milne [16] approached this problem in a different way, expressing the approximat-

ing formula and its error in terms of determinants. He also expressed the truncation
error in the form (2.3), but without associating the kernel Φ with solutions of the
adjoint equation.

If f (m) is bounded, then

|E[f ]| ≤ sup
a≤x≤b

∣∣∣L[f ](x)
∣∣∣ ∫ b

a

|Φ(x)| dx.

If f ∈ Cm(a, b) and the kernel Φ(x) is of constant sign, the second mean-value
theorem for integrals gives

E[f ] = L[f ](η)

∫ b

a

Φ(x) dx(2.4)

for some η ∈ (a, b). However, Φ(x) may not be of constant sign, and even when it is
that fact can be difficult to establish.

We can always write Φ(x) = Φ+(x) + Φ−(x), where

Φ+(x) :=

{
Φ(x) for all x such that Φ(x) ≥ 0,

0 otherwise

and

Φ−(x) :=

{
Φ(x) for all x such that Φ(x) ≤ 0,

0 otherwise
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so that the integral in (2.3) can be expressed as the sum of two integrals,

E[f ] =

∫ b

a

Φ+(x)L[f ](x) dx +

∫ b

a

Φ−(x)L[f ](x) dx.(2.5)

Assuming that f ∈ Cm(a, b), the mean-value theorem can be applied to both integrals
to give

E[f ] = L[f ](η+)

∫ b

a

Φ+(x) dx + L[f ](η−)

∫ b

a

Φ−(x) dx(2.6)

for some η+ , η− ∈ (a , b).
There is an immense amount of freedom to derive formulae here. Only the func-

tions φ0 and φn are determined. Every other φi can be any solution of the inhomo-
geneous adjoint equation L∗[φ](x) = g(x). Equation (2.2) would allow us to calculate
the quadrature coefficients corresponding to any particular choice of the functions
φi(x), but perhaps the more interesting situation is that in which the coefficients
have been determined in some other way and we want to have an expression for the
truncation error.

2.1. The truncation error of a given formula. Suppose that the coefficients
Aki are known. The expression (2.3) for the truncation error may be used if we can
find the corresponding functions φi. Theorem 2.4.1 of Ghizzetti and Ossicini [8] gives

φi(x) = −
∫ x

a

K(t, x)g(t) dt +

m−1∑
k=0

i∑
j=1

Akj

[
∂k

∂tk
K(t, x)

]
t=xj

(2.7)

for i = 0, 1, . . . , n, with the convention that the sum does not appear when i = 0.
Here K is the resolvent kernel corresponding to the operator L; i.e., K(x, z) is the
solution of L[u](x) = 0 such that[

∂k

∂xk
K(x, z)

]
x=z

= δk,m−1(2.8)

for k = 0, 1, . . . ,m− 1. It follows that

φi+1(x) = φi(x) +

m−1∑
k=0

Ak,i+1

[
∂k

∂tk
K(t, x)

]
t=xi+1

;

thus it is easy to build up the φ-functions recursively once K(t, x) and φ0(x) are
known.

3. Some examples. Here we investigate the errors in several exponential-fitting
formulae by means of the general scheme presented in the previous section. We are
especially interested in checking if the function Φ(x) is of constant sign. It will be
seen that in most cases this is not true and therefore the Lagrange form of remainder
(2.4) does not hold, but (2.6) always applies for sufficiently smooth functions.

3.1. Quadrature based on function values only. The integer m in (2.1) is
the order of the differential operator L. For quadrature formulae of the form∫ b

a

g(x)f(x) dx ≈
n∑

i=1

aif(xi),
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exact for functions f which are annihilated by L, we have A0i = ai for i = 1, . . . , n
and, for those values of i, Aki = 0 for k = 1, . . . ,m− 1. Then (2.7) becomes

φi(x) = −
∫ x

a

K(t, x)g(t) dt +

i∑
k=1

akK(xk, x).(3.1)

Example 1. The formula∫ h

0

f(x) dx ≈ 1 − cosωh

ω sinωh
[f(0) + f(h)](3.2)

is exact for cosωx and sinωx. This formula and its error were derived by Van-
den Berghe, de Meyer, and Vanthournout [19] as an example of Ehrenmark’s tech-
nique [6].

Here g(x) = 1, n = 2, and m = 2 with L[f ] = f ′′ + ω2f . Also, x0 = x1 = 0 and
x2 = x3 = h. The function K(x, t) may be expressed as

K(x, t) = A cosω(x− t) + B sinω(x− t).

The constants A and B are determined by the initial conditions (2.8) and we find
that

K(x, t) =
1

ω
sinω(x− t).(3.3)

Integration of −K(t, x) with respect to t, from 0 to x, gives φ0(x) = (1 − cosωx)/ω2

and, from (3.1),

φ1(x) = φ0(x) +
1 − cosωh

ω sinωh
K(0, x) =

1

ω2
+

sinω(x− h) − sinωx

ω2 sinωh
.

To investigate the sign of φ1(x) on (0, h) it is convenient to define y = ωx, θ = ωh,
and

F (y, θ) =
sin(y − θ) − sin y

sin θ
+ 1 = 1 − cos(y − θ/2)

cos(θ/2)

for θ �= (2m + 1)π for integral m. Then F (y, θ) = 0 if and only if y = 2kπ or
y = 2kπ+ θ for integral k. It follows that F (y, θ) does not change sign on (0, θ) when
θ < 2π. For θ > 2π, however, F (y, θ) changes sign when y = θ−2π. We can conclude
that, for steplengths h such that 0 < θ < 2π and θ �= π, the truncation error in (3.2)
for a sufficiently smooth integrand is

E[f ] =
[
f ′′(η) + ω2f(η)

] ∫ h

0

φ1(x) dx =
2

ω3

(
θ

2
− tan

θ

2

)[
f ′′(η) + ω2f(η)

]
(3.4)

for some η ∈ (0, h), a result obtained earlier by Vanden Berghe, de Meyer, and
Vanthournout [19]. This analysis does not allow any such conclusion if θ > 2π.

It is instructive to see how this result compares with what is available in the
literature on exponential fitting, where the error is presented as a formal infinite
series; see Ixaru and Vanden Berghe [14]. If O is an operator acting on some function
y(x) and A[h, a]y(x) is its approximation with parameters a = [a1, a2, . . .], then an
operator L is introduced by

L[h, a]y(x) = (O −A[h, a])y(x).
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If the coefficients of the formula are determined by requiring that L[h, a]y(x) is iden-
tically vanishing in x and h when y(x) satisfies the equation Ly = 0, where

L = Dm + c1D
m−1 + c2D

m−2 + · · · + cm

with constant c1, c2, . . . , cm and D = d/dx, then, formally,

L[h, a]y(x) = hl+m
∞∑
k=0

hkT ∗
k (z, a(z))DkLy(x),

where the integer l depends of the operator O, and z = [z1, z2, . . .] is a set of param-
eters depending on the coefficients cm and the steplength h. The coefficients T ∗

k can
be calculated by some algebraic manipulations. In particular, T ∗

0 has a simple form,
as can be seen in the next paragraph and more generally in section 4.2, where this
quantity is denoted by T ∗.

For the example under discussion we have

Oy(x) =

∫ x+h

x

y(x′)dx′, A[h, a]y(x) = h[a1y(x) + a2y(x + h)],

m = 2, c1 = 0, c2 = ω2, the vector z has only one component z1 = θ, the coefficients
of the quadrature formula are a1(θ) = a2(θ) = (1 − cos θ)/(θ sin θ), and

T ∗
0 =

1 − a1(θ) − a2(θ)

θ2
=

2

θ3

(
θ

2
− tan

θ

2

)
.

The error of the formula (3.2) is then

err = L[h, a]y(x)|x=0.

The first term of the corresponding formal series has the same form as the right-hand
side of (3.4), but with the unknown η replaced by 0. However, the new analysis clearly
shows that a single term of Lagrange type is correct only if θ < 2π.

Example 2. The formula∫ h

−h

f(x) dx ≈ a1f(−h) + a2f(0) + a3f(h)

is exact for 1, x, cosωx, and sinωx. With θ = ωh the coefficients are

a1 = a3 =
θ − sin θ

ω(1 − cos θ)
, a2 = 2

sin θ − θ cos θ

ω(1 − cos θ)
;

see equations (4.16) of Ixaru [11]. In this case g(x) = 1, and the relevant linear
differential operator is

L =
d4

dx4
+ ω2 d2

dx2
;

thus m = 4. The truncation error is

E[f ] =

∫ h

−h

Φ(x)L[f ](x) dx =

∫ 0

−h

φ1(x)L[f ](x) dx +

∫ h

0

φ2(x)L[f ](x) dx.
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The function K(x, t) may be expressed as

K(x, t) = A + B(x− t) + C cosω(x− t) + D sinω(x− t).

The constants A, B, C, and D are determined by the initial conditions (2.8), and we
find that

K(x, t) =
x− t

ω2
− sinω(x− t)

ω3
.

Further calculation gives

φ1(x) =
1

ω4

[
1

2
ω2(x + h)2 − 1 + cosω(x + h) +

θ − sin θ

1 − cos θ
{sinω(x + h) − ω(x + h)}

]
.

Then

φ2(x) = φ1(x) + a2K(0, x),

and some further algebra shows that φ2(x) = φ1(−x).
Numerical computations indicate that φ1(x) ≤ 0 on [−h, 0], for all values of θ for

which it is defined, and if this is taken for granted, then

E[f ] = 2
[
f iv(η) + ω2f ′′(η)

] ∫ 0

−h

φ1(x) dx

=
h5

6θ2

[
6

θ
cot

(
θ

2

)
− 3 cot2

(
θ

2

)
− 1

] [
f iv(η) + ω2f ′′(η)

]
,

in accordance with the “leading term” given by (4.17) of [11]. This result was first
obtained by Ehrenmark [6] and rederived using ideas of Ghizzetti and Ossicini [8] in
[7], where a five-point formula is also considered.

3.2. Numerical differentiation. Equation (2.1) can provide approximations
for derivatives in terms of function values if the integral is removed by choosing g(x) ≡
0. In that case the functions φi satisfy the homogeneous adjoint equation L∗[φ](x) = 0
and, in particular, φ0(x) ≡ 0 and φn(x) ≡ 0. Previously the inhomogeneous term gave
the appropriate normalization; now we simply choose a particular value for one of the
coefficients.

Example 3. The formula

y′′(0) ≈ a1[y(h) + y(−h)] + a2y(0),(3.5)

with

a1 =
θ

h2 sin θ
and a2 =

θ(sin θ − 2 cos θ)

h2 sin θ
,

is exact for cosωx, sinωx, x cosωx, and x sinωx. Here

L =

(
d2

dx2
+ ω2

)2

.

The formula (3.5) corresponds to (2.1) without the error term if we take g(x) ≡ 0,
m = 4, n = 3, x1 = −h = −x3, x2 = 0, A01 = A03 = a1, A02 = a2, A22 = −1,
A21 = 0 = A23, and A1k = 0 for k = 1, 2, 3.
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In this case

K(x, t) =
1

2ω3

[
sinω(x− t) − ω(x− t) cosω(x− t)

]
,

and

φ1(x) = a1K(−h, x) =
ω(x + h) cosω(x + h) − sinω(x + h)

2ωθ sin θ
.

Further calculation gives φ2(x) = φ1(−x); thus Φ(x) is an even function.
To investigate the sign of φ1(x) on (−h, 0), let z = ω(x + h) and consider

u(z) = z cos z − sin z

on [0, θ]. This oscillatory function of increasing amplitude is negative on (0, θ1), where
θ1 ≈ 4.4934 is the smallest positive root of the equation z = tan z. On larger intervals
u(z) is not of constant sign. For 0 < θ ≤ θ1, when y ∈ C4[−h, h], the truncation error
in the formula (3.5) is

−E[y] = −2
[
yiv(η) + 2ω2y′′(η) + ω4(η)

] ∫ 0

−h

φ1(x) dx

=
2h2

θ3 sin θ
(2 + θ sin θ − 2 cos θ)

[
yiv(η) + 2ω2y′′(η) + ω4y(η)

]
.

This is in agreement with the “leading term” given by (3.19) of Ixaru [11]. Here, as
elsewhere, the concept of “leading term” needs to be treated with caution; when the
mean-value theorem is applicable, η is unknown, and its replacement by some chosen
number could give erroneous results. For example, it may be tempting to replace η
by 0. If we take y = x6, the “leading term” then vanishes, but the actual error is
easily seen to be −2h4θ cosec θ.

It is evident from the symmetry of the formula (3.5) that it is exact for every odd
function. That is also clear when the truncation error is expressed as

−E[y] = −
∫ h

−h

Φ(x)L[y](x) dx,

since Φ is an even function and L[y] involves the function y and derivatives of even
order only.

3.3. Multistep methods for ODEs. As in section 3.2, we remove the integral
in (2.1) by taking g(x) ≡ 0.

Example 4. Theorem 4 of Ixaru [11] is concerned with a two-step formula for
differential equations of the form y′′ = f(x, y), which may be written as

yn+1 − a0yn + yn−1 = h2(a1fn+1 + a2fn + a3fn−1).

If this formula is exact for xp exp(±iωx) with p = 0, 1, 2, the coefficients are

a0 =
6 cos θ sin θ − 2θ cos2 θ + 4θ

3 sin θ + θ cos θ
, a1 = a3 =

sin θ

3 sin θ + θ cos θ
,

and

a2 =
4θ sin2 θ − 2 cos θ(θ cos θ − sin θ)

θ(3 sin θ + θ cos θ)
.
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The two-step formula corresponds to (2.1) with g(x) ≡ 0,

L =

(
d2

dx2
+ ω2

)3

,

m = 6, n = 3, and the coefficients A01 = −1 = A03, A02 = a0, A11 = 0 = A12 = A13,
A21 = A23 = h2a1, A22 = h2a2, and Aik = 0 for i = 3, 4, 5 and k = 1, 2, 3. In the
usual way we find

φ1(x) =
4 sin θ − 2θ cos θ

4ω5(3 sin θ + θ cos θ)
[sinω(x + h) − 3ω(x + h) cosω(x + h)]

− sin θ

2ω3(3 sin θ + θ cos θ)
(x + h)2 sinω(x + h).

A symmetry argument shows that φ2(x) = φ1(−x).
The local truncation error is

−E[y] = −
∫ h

−h

Φ(x)L[y](x) dx.

When the sign of Φ(x) is constant on [−h, h], the coefficient of L[y](η) in the resulting
expression for the truncation error is

−
∫ h

−h

Φ(x) dx.

Evaluation shows that this is the same as the factor quoted in (5.6) of [11]. However,
calculations show that the sign of Φ(x) is no longer constant on [−h, h] when θ exceeds
θmax ≈ 1.625.

3.4. Interpolation. Modifying (2.1), by introducing a parameter x and taking
m = 1, we can write∫ b

a

g(x, t)f(t) dt =

n∑
i=1

ai(x)f(xi) + E[f ](x).(3.6)

When g is the delta function g(x, t) = δ(x− t) this becomes

f(x) =

n∑
i=1

ai(x)f(xi) + E[f ](x)

for x ∈ (a, b). If the functions ai satisfy the interpolation conditions

ai(xj) = δij for i, j = 1, . . . , n,

the truncation error in the corresponding interpolation formula is given by (2.2) as

E[f ](x) =

∫ b

a

Φ(x, t)L[f ](t) dt,

with

Φ(x, t) = φi(x, t) for xi < t < xi+1, i = 0, . . . , n,
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and, from (2.7),

φi(x, t) = −
∫ t

a

K(z, t)δ(x− z) dz +

n∑
j=1

aj(x)K(t, x)

= −K(x, t)Θ(t− x) +

n∑
j=1

aj(x)K(t, x),

where Θ is the unit step function

Θ(α) =

{
0, α < 0,
1, α > 0.

Interpolation involving derivative values may be accommodated in this approach
by adapting (3.6) to include additional sums.

Example 5. For interpolation by a linear combination of cosωx and sinωx, with
two interpolation points a and b, a problem considered in [12], the canonical functions
are

a1(x) =
sinω(x− b)

sinω(a− b)
, a2(x) =

sinω(x− a)

sinω(b− a)
.

In that case L[f ] = f ′′+ω2f , and the kernel function is given by (3.3). The truncation
error is

E[f ](x) =

∫ b

a

φ1(x, t)L[f ](t) dt,

with

φ1(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
− sinω(x− b) sinω(a− t)

ω sinω(b− a)
, a < t < x,

− sinω(x− a) sinω(b− t)

ω sinω(b− a)
, x < t < b.

The second expression was obtained by using trigonometric identities to simplify the
form of a1K(a, t) −K(x, t). In the limit as ω → 0,

φ1(x, t) →

⎧⎪⎪⎨
⎪⎪⎩

(x− b)(t− a)

b− a
, a < t < x,

(x− a)(t− b)

b− a
, x < t < b,

the Peano kernel for linear interpolation; see, for example, (3.7.12) of [3].
The function φ1(x, t) is of constant sign (negative) for all x and t in (a, b) when

ω(b−a) < π. Then the truncation error of the two-point trigonometric interpolation,
for f ∈ C2[a, b], is

E[f ](x) =
[
f ′′(η) + ω2f(η)

] ∫ b

a

φ1(x, t) dt

=
1

ω2

[
1 − cosω {(b + a)/2 − x}

cosω {(b− a)/2 − x}

] [
f ′′(η) + ω2f(η)

]
for some η ∈ (a, b). The external factor is the same as that given in [12] and in (4.171)
of [14].

Other expressions for the truncation error in mixed interpolation have been ob-
tained in [5], [1], and [2].
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4. Quadrature formulae with L = (D2 + ω2)N . In this section we consider
a subset of the formulae (2.1), which we write as

∫ b

a

f(x)dx =

∫ X+h

X−h

f(x)dx =

J∑
k=0

hk+1
N∑
i=1

a
(k)
i f (k)(X + x∗

i h) + L[h, a]f(X) ,(4.1)

where X = (a + b)/2 and h = (b− a)/2. Two families of N -point exponential-fitting
quadrature formulae will be considered here, one involving values of the integrand and
its first derivative, corresponding to J = 1, and the other involving function values
only, in which case J = 0. For both families we take

L = (D2 + ω2)N ,

where D = d/dx; in the notation of section 2, m = 2N .

4.1. The kernel function. A set of 2N linearly independent solutions of the
differential equation

(D2 + ω2)Ny = 0(4.2)

is

{xp exp(±iωx)}, p = 0, 1, . . . , N − 1,

but it is preferable to use a different set of solutions based on functions which were
introduced in [10] and which appear in a slightly different notation in [14]. Let

η−1(−ω2x2) := cosωx,

and

η0(−ω2x2) :=

⎧⎨
⎩

sinωx

ωx
for ωx �= 0,

1 for ωx = 0.

For integers s > 0 the functions ηs are defined by the recurrence relation

ηs(Z) :=
1

Z
[ηs−2(Z) − (2s− 1)ηs−1(Z)], s = 1, 2, . . . ,(4.3)

and have the power series expansion

ηs(Z) = 2s
∞∑
q=0

(q + 1)(q + 2) · · · (q + s)Zq

(2q + 2s + 1)!
.

When Z → 0 they behave as

ηs(Z) =
2ss!

(2s + 1)!
+ O (Z) .(4.4)

These functions are related to the spherical Bessel functions by the equation

ηs(−x2) = x−sjs(x), s = 0, 1, 2, . . . .
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Differentiation gives

η′s(Z) =
1

2
ηs+1(Z), s = −1, 0, 1, . . . .(4.5)

Those properties allow us to derive an explicit expression for the resolvent kernel
corresponding to the operator L = (D2 + ω2)N .

Let

yN (x) = x2N−1ηN−1(−ω2x2).

Then (4.5) and (4.3) give

y′N (x) = x2N−2ηN−2(−ω2x2),

and a second differentiation gives

(D2 + ω2)yN (x) = 2(N − 1)x2N−3ηN−2(−ω2x2) = 2(N − 1)yN−1(x).

In particular, (D2 + ω2)y1(x) = 0, with the result that

L[yN ](x) := (D2 + ω2)NyN (x) = 0.

Furthermore, from (4.4),

yN (x) =
2N−1(N − 1)!

(2N − 1)!
x2N−1 + O

(
x2N+1

)
as x → 0; thus y

(k)
N (0) = 0 for 0 ≤ k ≤ 2N − 2 and y

(2N−1)
N (0) = 2N−1(N − 1)!. It

follows that the resolvent kernel corresponding to the operator L is

K(t, x) =
yN (t− x)

2N−1(N − 1)!
=

1

2N−1(N − 1)!
(t− x)2N−1ηN−1(−ω2(t− x)2).(4.6)

The kernel functions derived specifically for Examples 1, 3, and 4 of section 3 are
special cases of this formula, corresponding to N = 1, 2, and 3, respectively.

4.2. The quadrature error. It is convenient to introduce the dimensionless
variables x∗= (x−X)/h and t∗= (t−X)/h, in which case x∗, t∗∈ [−1, 1]. Then

K(t, x) = h2N−1K∗(t∗, x∗),

where

K∗(t∗, x∗) =
1

2N−1(N − 1)!
(t∗ − x∗)2N−1ηN−1(−θ2(t∗ − x∗)2).(4.7)

The partial derivatives of K with respect to t are

∂k

∂tk
K(t, x) = h2N−1−k ∂k

∂t∗k
K∗(t∗, x∗).

Then Φ(x) = h2NΦ∗(x∗), with

Φ∗(x) = φ∗
i (x

∗) for x∗
i < x∗ < x∗

i+1, i = 0, 1, . . . , N,
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where x∗
0 = −1, x∗

N+1 = 1, and

φ∗
0(x

∗) = −
∫ x∗

−1

K∗(t∗, x∗) dt∗ ,

φ∗
i+1(x

∗) = φ∗
i (x

∗) +

J∑
k=0

a
(k)
i+1

[
∂k

∂t∗k
K∗(t∗, x∗)

]
t∗=x∗

i+1

for i = 0, 1, 2, . . . , N − 1.

The formulae given in the previous section are sufficient to build up all these functions
in analytic form.

Let D∗ = d/dx∗= hD. In terms of the dimensionless variables, the quadrature
error is

erref = h

∫ 1

−1

Φ∗(x∗)(D∗2 + θ2)NF (x∗) dx∗,(4.8)

where F (x∗) = f(x).
When the integrand in (4.1) is the unit function, the quadrature error is∫ X+h

X−h

Φ(x)ω2N dx = hθ2N

∫ 1

−1

Φ∗(x∗) dx∗ =: hθ2NT ∗(θ).

From the quadrature formula, that error may also be expressed as∫ X+h

X−h

dx− h

N∑
i=1

a
(0)
i = h

(
2 −

N∑
i=1

a
(0)
i

)
.

Therefore,

T ∗(θ) =
2 −

∑N
i=1 a

(0)
i

θ2N
.

The quadrature coefficients are functions of θ, as in the examples in section 3.
With Φ∗(x∗) split into Φ∗

+(x∗) and Φ∗
−(x∗) as was done earlier for Φ(x), and with

T ∗
±(θ) :=

∫ 1

−1

Φ∗
±(x∗) dx∗ ,

the quadrature error may be expressed as

erref = h[T ∗
+(θ)(D∗2 + θ2)Nf(η+) + T ∗

−(θ)(D∗2 + θ2)Nf(η−)](4.9)

for some η+ , η− ∈ (a , b), which depend on θ and on the integrand f . It follows that
the error can be expressed as a sum of two terms of Lagrange type for any θ at which
the method is defined, that is, for all θ with the possible exception of a discrete set
θ1, θ2, . . . of critical values. In at least some cases the simpler form in (2.4) is valid
when θ is sufficiently small.

The asymptotic behaviors of T ∗(θ), on one hand, and those of its components
T ∗
±(θ), on the other, are not necessarily similar. Suppose that for large values of θ the

functions T ∗
±(θ) are well described by the approximation

T ∗
±(θ) ≈ ±c(θ)θ−(2N−N̄) + c±(θ)θ−2N ,(4.10)
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where 0 < N̄ < 2N and the functions c(θ) and c±(θ), with c+(θ) �= −c−(θ), are
oscillating between constant limits; think, for example, of the case where c(θ) =
c+(θ) = 1 + cos θ and c−(θ) = −1 + cos θ. Then T ∗

±(θ) will damp out as θ−(2N−N̄),
that is, more slowly than their sum T ∗(θ) which decays as θ−2N . The determination
of this N̄ therefore represents a key issue if we want to characterize the asymptotic
behavior of the error by means of (4.9).

4.3. Exponential-fitting extended Newton–Cotes rules with J = 1. In
the N -point rule the (dimensionless) evenly spaced abscissas are

x∗
i = 2(i− 1)/(N − 1) − 1 (i = 1, 2, . . . , N),(4.11)

and there are 2N coefficients to be determined, namely, a
(0)
i and a

(1)
i for i = 1, . . . , N .

The condition that L[h, a]y(x) is identically vanishing in x and in h when y(x) is
a solution of the reference differential equation (4.2) is imposed with this aim. The
technique is explained in [14]. For the numerical evaluation of these coefficients we
used the subroutine EFEXTQS.
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Fig. 1. Exponential-fitting N-point extended Newton–Cotes rule with J = 1: variation with θ

of the scaled T ∗
+(θ) (the first of (4.12) with N̄ = N − 2) for N = 2 (dash and dots), N = 3 (dashes),

N = 4 (dash pairs), N = 5 (dots), and N = 6 (solid).

To determine N̄ for each given N , trial values 0, 1, . . . were considered for N̄ , and
for each of these the behavior of the product θ2N−N̄T ∗

±(θ) was scanned for large θ.
The desired value is that for which this product oscillates between constant limits.
This kind of search was undertaken for 2 ≤ N ≤ 6, and it led to the conclusion that
N̄ = N − 2. To illustrate this fact, in Figures 1 and 2 we represent the dependence
on θ of the functions

N N̄θ2N−N̄T ∗
+(θ) and N N̄θ2N−N̄T ∗

−(θ),(4.12)

respectively, for 2 ≤ N ≤ 6 in Figure 1, and for 3 ≤ N ≤ 6 in Figure 2, with
N̄ = N − 2. The factor N N̄ was introduced to have the graphs for different N
collected in a reduced number of figures.
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Fig. 2. Exponential-fitting N-point extended Newton–Cotes rule with J = 1: variation with θ

of the scaled T ∗
−(θ) (the second of (4.12) with N̄ = N − 2) for N = 3 (dashes), N = 4 (dash pairs),

N = 5 (dots), and N = 6 (solid).

It is seen that all these curves exhibit oscillatory variation within limits which
become approximately constant as θ → ∞, thus confirming that N̄ = N − 2 is the
right value of N̄ . For N = 2 we have N̄ = 0. The reason is that Φ∗(x∗) is nonnegative
everywhere on x∗ ∈ [−1 , 1] irrespective of θ and then Φ∗

−(x∗) = 0; this is also why
the case N = 2 is absent from Figure 2.

In order to use our conclusion to predict the asymptotic behavior of the quadrature
error as θ → ∞ it is necessary to specify the class of integrands to be considered. Using
the dimensionless variable introduced in section 4.2 we assume that the integrand has
the form

f(x) = F (x∗) = f1(x
∗) cos θx∗ + f2(x

∗) sin θx∗,(4.13)

where f1 and f2 are sufficiently differentiable functions independent of θ. Then

(D∗2 + θ2)f(x) ∼ 2θ [f ′
2(x

∗) cos θx∗ − f ′
1(x

∗) sin θx∗] ,

as θ → ∞. It follows that

(D∗2 + θ2)Nf(x) ∼ θNg(x∗, θ),(4.14)

where g(x∗, θ) is bounded as θ → ∞.

Numerical calculations [15] indicate that limθ→∞ a
(0)
i = 0 for i = 1, 2, . . . , N ;

thus T ∗(θ) ∼ 2θ−2N as θ → ∞. For integrands of the assumed form the amplitude
of the quadrature error given by (4.9) will, in general, damp out asymptotically as
θN̄−N = θ−2, that is, with one and the same rate for all N . A faster decay is possible
only if the unknown points η∗± have the property that, in the notation of (4.14),
g(η∗±, θ) = 0.

To illustrate the quality of this prediction we take the test case

I(ω) =

∫ 1

−1

cos[(ω + 1/2)x] dx =
2 sin(ω + 1/2)

ω + 1/2
,(4.15)
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Fig. 3. Exponential-fitting N-point extended Newton–Cotes rule with J = 1 for the integral

(4.15): variation with ω of the scaled absolute error (4.16) for N = 2 (dash and dots), N = 3
(dashes), N = 4 (dash pairs), N = 5 (dots), and N = 6 (solid).

in which h = 1 and θ = ω, and in Figure 3 we present the scaled absolute error

N N̄ω2[I(ω) − Icomput(ω)](4.16)

for 2 ≤ N ≤ 6. Each of the five curves oscillates between limits which become
approximately constant at large ω, in full agreement with the prediction.

The formal series for the quadrature error, as developed in [14], is

L[h, a(θ)]f(X) = h2N+1
∞∑
k=0

hkT ∗
k (θ, a(θ))Dk(D2 + ω2)Nf(X) .(4.17)

The first term of that series is

lteef = hT ∗
0 (θ, a(θ))(D∗2 + θ2)Nf(X) ,(4.18)

where T ∗
0 (θ, a(θ)) is the function denoted by T ∗(θ) in section 4.2. It is clear from the

discussion above that, in general, lteef damps out as θ−N as θ → ∞. The authors of
[14] recognized that in practice this decay rate is usually too optimistic. In fact, the
two-point formula is the only one in this family of methods for which the prediction
from the lteef coincides with that from the integral representation of the error. Our
analysis, based on the integral representation of the error, shows why the “leading
term” lteef is not a reliable predictor of the dependence of the quadrature error on θ.

4.4. Exponential-fitting Gaussian rules. These formulae are of the type
(4.1) where J = 0, but the abscissas are no longer fixed in advance. Again 2N pa-
rameters are to be determined, but now they are the abscissas x∗

n and the coefficients

a
(0)
n for n = 1, 2, . . . , N . All these parameters are θ-dependent (see [13]), and they

were calculated numerically by the subroutine EFGAUSS in [14]. As for the extended

Newton–Cotes formulae, numerical computations indicate that limθ→∞ a
(0)
n (θ) = 0

for all relevant values of n.
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Fig. 4. Exponential-fitting N-point Gaussian rule: variation with θ of the scaled T ∗

+(θ) (the

first of (4.12) with N̄ = �(N − 1)/2�) for N = 2 (dash and dots), N = 3 (dashes), N = 4 (dash
pairs), N = 5 (dots), and N = 6 (solid).

For large θ, the approximation (4.10) applies as in section 4.3, but the values of
N̄ are different. The same numerical procedure as before was used to determine N̄ ,
and in this case we conclude that N̄ = �(N − 1)/2� where �u� is the biggest integer
less than or equal to u. For N ≤ 6 these values are N̄ = 0 for N = 1, 2, N̄ = 1
for N = 3, 4, and N̄ = 2 for N = 5, 6. Thus for N ≥ 4 they are smaller than the
corresponding values for the Newton–Cotes rules. In Figures 4 and 5 we present the
two scaled functions displayed in (4.12), the first for 2 ≤ N ≤ 6 in Figure 4 and the
second for 3 ≤ N ≤ 6 in Figure 5; of course, the value N̄ = �(N − 1)/2� is now used.

For integrands of the form (4.13) this leads to the conclusion that in general the
quadrature error decays like θN̄−N as θ → ∞. In particular, for N = 3 it decays at
least as fast as θ−2, as for the corresponding extended Newton–Cotes rule, but for
N = 4 or 5 it decays at least as fast as θ−3, and faster decay rates are predicted for
larger values of N .

The scaled absolute error

N N̄ωN−N̄ [I(ω) − Icomput(ω)](4.19)

for the test case (4.15) is presented in Figure 6 for 2 ≤ N ≤ 6. It confirms the
predicted behavior of the quadrature error for this problem. In contrast, the analysis
based on the “leading term” of the formal series does not distinguish between the
extended Newton–Cotes rule and the corresponding Gaussian rule.

Van Daele, Vanden Berghe, and Vande Vyver [18] recently considered a variety of
exponential-fitting Gaussian rules. Truncation error was not their primary concern,
and they merely quoted the first nonzero terms in the corresponding formal series for
the quadrature error, as developed in [14].

4.5. A numerical comparison with Filon integration. As an illustration of
the effectiveness of Filon-type methods for oscillatory integrands, Iserles [9] applied
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Fig. 6. Exponential-fitting N-point Gaussian rule for the integral (4.15): variation with ω of

the scaled absolute error (4.19) for N = 2 (dash and dots), N = 3 (dashes), N = 4 (dash pairs),
N = 5 (dots), and N = 6 (solid).

the three-point Filon–Lobatto formula to the integral

I =

∫ b

0

exp[(1 + iω)x] dx =
exp[(1 + iω)b] − 1

1 + iω

for b = 1/10, denoted by h in [9]. In our notation, h = b/2, so 2θ = bω.
To provide a comparison with the bottom graph of Figure 3 of [9], our Figure 7

shows the variation with 2θ of the normalized absolute error (2θ)2|I − Icomput| for
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the two exponential-fitting three-point rules discussed above. The solid line is for the
extended Newton–Cotes rule (ENC), and the broken line corresponds to the Gaussian
rule (G). To allow the detail to be seen more clearly, the plotting interval here is [0, 250]
rather than the larger interval used in [9]. For both methods the error envelope decays
as θ−2 as predicted. Figure 3 of [9] shows the same rate of decay for Filon–Lobatto
integration, but the amplitude of the error is greater by almost an order of magnitude
than that of either of the exponential-fitting formulae.

It is also interesting to consider what happens when N = 4, since the predicted
behaviors of the two exponential-fitting methods are different. The behavior of the
extended Newton–Cotes formula is expected to be as for N = 3, but for the Gaussian
formula the error envelope is expected to decrease at least as fast θ−3. Figure 8 shows
(2θ)2|I − Icomput| for ENC (solid) and (2θ)3|I − Icomput| for G (broken), confirming
those predictions. The analysis of [9] shows that for the Filon–Lobatto method the
same rate of decay is expected for N = 4 as for N = 3.

5. A quadrature formula with L = D2(D2 + ω2). The way in which the
expression for the error was exploited above, to draw conclusions on the behavior
of the error at large θ, consisted of combining separate results on the asymptotic
behaviors of T ∗

±(θ) and L[F ](x∗). It worked successfully in all cases investigated in
sections 4.2–4.4, but there are situations when it may fail to reveal correct asymptotic
behaviors. Such a case is discussed in this section, where we also present an alternative
way based on the use of the integral form of the error without invoking the mean-value
theorem.

We consider the two-point exponential-fitting Gaussian rule∫ X+h

X−h

f(x)dx ≈ h
[
a
(0)
1 f(X + x∗

1h) + a
(0)
2 f(X + x∗

2h)
]
,(5.1)
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Fig. 8. Exponential-fitting four-point rules: variation with 2θ of the scaled absolute errors

(2θ)2|I − Icomput| for ENC (solid) and (2θ)3|I − Icomput| for G (broken).

which is exact for 1, x, and exp(±iωx). The parameters of the required quadrature
rule are

a
(0)
1 (θ) = a

(0)
2 (θ) = 1, x∗

1(θ) = −x∗
2(θ) = − arccos[sin(θ)/θ]/θ = − arccos[η0(−θ2)]/θ

and, by considering the error when f(x) = x2,

T ∗
0 (θ, a(θ)) = T ∗(θ) =

1/3 − [x∗
1(θ)]

2

θ2
=

1/3 − {arccos[η0(−θ2)]}2/θ2

θ2
.(5.2)

It is easy to check that, as expected, when θ → 0 this formula tends to the classi-
cal two-point Gauss–Legendre formula, i.e., x∗

1(θ), x
∗
2(θ), and T ∗

0 (θ) tend to −1/
√

3,
1/
√

3, and 1/135, respectively. This quadrature formula was considered, with several
others, in [18].

The functions which are to be integrated exactly satisfy the reference differential
equation D2(D2 + ω2)y = 0, and the quadrature error is

erref = h

∫ 1

−1

Φ∗(x∗)D∗2(D∗2 + θ2)F (x∗) dx∗,(5.3)

where F (x∗) = f(x).
The kernel function corresponding to the operator D2(D2 + ω2) was derived in

connection with Example 2 of section 3. In terms of the dimensionless variables
introduced at the beginning of section 4.2,

K∗(t∗, x∗) =
t∗ − x∗

θ2
− sin θ(t∗ − x∗)

θ3
.

Let x∗
0 = −1 and x∗

3 = 1. Then

Φ∗(x∗) =

⎧⎨
⎩
φ∗

0(x
∗) for −1 < x∗ < x∗

1,
φ∗

1(x
∗) for x∗

1 < x∗ < x∗
2,

φ∗
2(x

∗) for x∗
2 < x∗ < 1,
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where

φ∗
0(x

∗) = −
∫ x∗

−1

K∗(t∗, x∗) dt∗

=
(1 + x∗)2

2θ2
− 1

θ4
+

cos θ(1 + x∗)

θ4
,

φ∗
1(x

∗) = φ∗
0(x

∗) +
x∗

1 − x∗

θ2
− sin θ(x∗

1 − x∗)

θ3
,

φ∗
2(x

∗) = φ∗
1(x

∗) +
x∗

2 − x∗

θ2
− sin θ(x∗

2 − x∗)

θ3
.

Using the fact that cos θx∗
1 = sin θ/θ, it can be shown that φ∗

1 is an even function and
that φ∗

2(x
∗) = φ∗

0(−x∗). It follows that Φ∗ is an even function.
It is easily seen that φ∗

0(x
∗) > 0 for −1 < x∗ ≤ x∗

1; thus Φ∗(x∗) > 0 for −1 <
x∗ ≤ x∗

1 and x∗
2 ≤ x∗ < 1. Numerical evidence indicates that Φ∗(x∗) > 0 for all

x∗ ∈ (−1, 1). If that is so, then

erref = hT ∗(θ)D∗2

(D∗2

+ θ2)F (η)(5.4)

for some unknown η ∈ (−1, 1).
As in section 4, to investigate the asymptotic behavior of the quadrature error we

assume that the integrand has the form (4.13). Then, for fixed x∗, independent of θ,

D∗2(D∗2 + θ2)F (x∗) ∼ 2θ3 [f ′
1(x

∗) sin(θx∗) − f ′
2(x

∗) cos(θx∗)](5.5)

as θ → ∞. Equation (5.2) shows that T ∗(θ) ∼ θ−2. Combining the two asymptotic
estimates as in earlier sections we can conclude only that erref could increase like θ as
θ → ∞. This estimate is not confirmed on the test integral (4.15); it is too pessimistic.
Indeed, it is clear that I(ω) = O(1/ω) as ω → ∞ and that the approximation given
by the two-point formula (5.1), namely,

Icomput = cos[(ω + 1/2)x∗
1(ω)] + cos[(ω + 1/2)x∗

2(ω)] = 2 cos[(ω + 1/2)x∗
1(ω)],

has the same asymptotic behavior. Since the leading terms of the two expansions in
powers of 1/ω are different, it also follows that

I(ω) − Icomput = O(1/ω) as ω → ∞.

In other words, the actual error decays as 1/ω instead of increasing as ω, as predicted;
notice that for this test case we have h = 1 and then θ = ω.

The reason for the discrepancy is not the forms (5.3) or (5.4) of the error but
the way in which the latter was exploited. An alternative way consists of using the
integral representation (5.3) directly.

In view of (5.5) and the fact that Φ∗ is an even function, the asymptotic form of
the quadrature error, for fixed h as θ → ∞, is

erref ∼ 4hθ3

∫ 0

−1

Φ∗(x∗)G(x∗) dx∗,(5.6)

where

G(x∗) = f ′
1o(x

∗) sin(θx∗) − f ′
2e(x

∗) cos(θx∗),
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f ′
1o is the odd part of f ′

1, and f ′
2e is the even part of f ′

2. This can be written as

4hθ3 [I1(θ) + I2(θ)] ,

where

I1(θ) =

∫ 0

−1

φ∗
0(x

∗)G(x∗) dx∗

and

I2(θ) =

∫ 0

x∗
1

[φ∗
1(x

∗) − φ∗
0(x

∗)]G(x∗) dx∗.

The integrand in I1 may be written as a sum of three terms, corresponding to the three
terms in φ∗

0. Because of the trigonometric factors in the function G, the Riemann–
Lebesgue lemma shows that the contributions from the two terms containing θ−4 tend
to zero faster than θ−4, and we need only consider

1

2θ2

∫ 0

−1

(1 + x∗)2 [f ′
1o(x

∗) sin(θx∗) − f ′
2e(x

∗) cos(θx∗)] dx∗.

Integration by parts, noting that the odd function f ′
1o(x

∗) vanishes when x∗ = 0,
allows us to write this as

1

2θ3

∫ 0

−1

[g1(x
∗) cos(θx∗) + g2(x

∗) sin(θx∗)] dx∗ = O(θ−4);

the precise form of the functions g1 and g2 arising from the integration by parts is
not of any interest.

In the integral

I2(θ) =

∫ 0

x∗
1

[
x∗

1 − x∗

θ2
− sin θ(x∗

1 − x∗)

θ3

]
G(x∗) dx∗,

the magnitude of the second term is less than |x∗
1| θ−3‖G‖ = O(θ−4) as θ → ∞. The

first term in I2(θ) is

1

θ2

∫ 0

x∗
1

(x∗
1 − x∗) [f ′

1o(x
∗) sin(θx∗) − f ′

2e(x
∗) cos(θx∗)] dx∗.

Integration by parts, again using the fact that f ′
1o(0) = 0, reduces this to

1

θ3

∫ 0

x∗
1

[k1(x
∗) cos(θx∗) + k2(x

∗) sin(θx∗)] dx∗ = O(θ−4),

and the precise forms of the functions k1 and k2 are not important. This leads to the
conclusion that for all integrands of the assumed form the error in the approximation
provided by the two-point formula (5.1) tends to zero at least as fast as 1/θ, as θ → ∞
for fixed h, in full agreement with our observations for the test integral.
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A by-product of this analysis is that the parameter η of (5.4) depends on θ in

such a way that D∗2

(D∗2

+ θ2)F (η) increases no faster than the first power of θ as
θ → ∞.

6. Conclusion. The integral representation of the truncation error, based on the
work of Ghizzetti and Ossicini [8], is applicable to a wide variety of exponential-fitting
methods for oscillatory problems. The detailed investigations of sections 4 and 5 are
concerned with quadrature methods but the truncation errors in exponential-fitting
methods for ordinary differential equations and in numerical differentiation formulae
could be analyzed in the same way.

Section 4.5 shows that, for the particular example considered there, two three-
point exponential-fitting formulae have the same qualitative behavior as a three-point
Filon–Lobatto method advocated for such problems [9], but their errors are less by
almost an order of magnitude than that of the Filon–Lobatto method. Furthermore,
the errors in exponential-fitting Gaussian formulae with larger numbers of abscissas
have faster decay rates, whereas the analysis of Iserles [9] shows that the decay rate
of the error in Filon–Lobatto methods is not improved by increasing the number of
nodes. This suggests that exponential-fitting quadrature methods, and particularly
those of Gaussian type, are worthy of further investigation as practical methods for
the numerical integration of oscillatory integrands.

Acknowledgment. We are grateful to the referees for their helpful comments,
and particularly for an improved argument used just before (3.4).
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Abstract. A parallel method for time discretization of backward parabolic problems is proposed.
The problem is reformulated to a set of Helmholtz-type problems with a parameter on a suitably
chosen contour in the complex plane. After solving the resulting elliptic equations, which can be
solved in parallel, we obtain a regularized solution with high frequency terms cut off by the inverse
Laplace transforms without requiring the knowledge of the eigenfunctions of the differential operator.
Since the regularized solution is obtained without artificial perturbation and high frequency compo-
nents of the noise are suppressed, the quality of the solution is improved significantly compared to
those obtained by other methods. Two different numerical inversions of Laplace transforms, with an
arbitrary high order of accuracy and spectral accuracy, respectively, are used. Error estimates and
numerical examples are presented.
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1. Introduction. We consider the following backward parabolic problem: given
u0 ∈ L2(Ω), find u = u(t) = u(·, t) ∈ H1

0 (Ω) such that

ut + Au = 0 for t ∈ (0, T ], with u(·, 0) = u0(·) in Ω,(1.1)

where −A is a uniformly elliptic second-order partial differential operator on a domain
Ω with a homogeneous Dirichlet boundary condition. Furthermore, we assume that A
is a closed operator in the Hilbert space L2(Ω) which generates an analytic semigroup
E(t) = etA and the spectrum σ(−A) of −A is contained in a sector {z ∈ C : | arg z| <
ζ} for some ζ ∈ (0, π/2). We also assume that the resolvent (zI+A)−1 of −A satisfies

‖(zI + A)−1‖ ≤ C

1 + |z| for z ∈ Σζ ,

where the complementary sector Σζ is given by

Σζ = {z ∈ C : ζ < | arg z| ≤ π} ∪ {O}.

Problem (1.1) is a well-known ill-posed problem in the sense that the solution does
not depend continuously on the data u0 [15, 19, 29]. However, it can be formulated as
a well-posed problem, for instance, by imposing a prescribed bound on the solution
at t = T [19]. More precisely, given data g ∈ L2(Ω) with noise, let u(j), j = 1, 2, be
any two solutions of (1.1) satisfying

‖u(j)(T )‖ ≤ M and ‖u(j)
0 − g‖≤ δ,(1.2)
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where M and δ are given positive constants and ‖ · ‖ denotes the L2(Ω)-norm. Then
it is known [29] that

‖u(1)(t) − u(2)(t)‖ ≤ 2M t/T δ1−t/T for t ∈ (0, T ],(1.3)

which follows directly from the convexity of F (t) = log ‖u(1)(t) − u(2)(t)‖2. We thus
have continuous dependence on the data, and any numerical solution of the problem
can be regarded as a kind of regularized solution depending on the two constraints M
and δ in (1.2).

Stable numerical methods for backward parabolic problems can be applied to
several practical areas such as image processing, mathematical finance, and physics.
However, the ill-posedness nature of the problems requires certain types of regulariza-
tion techniques. One approach to regularize the ill-posed problems is based on the use
of eigenfunction expansion [17, 28, 23, 25, 30], where the eigenpairs of the correspond-
ing elliptic operator are available. Another approach is to use the method of quasi
reversibility [4, 7, 8, 12, 13, 14, 21, 27]. Other approaches include the least squares
methods with Tikhonov-type regularization [2, 16, 18, 24, 26] and the use of heat
kernel [9]. Buzbee and Carasso [4] introduced a method of transforming the problem
(1.1) into a second-order in time problem. Later Carasso [5, 6] introduced the concept
of a supplementary constraint such as that of slow evolution from the continuation
boundary (SECB). The methods of quasi reversibility and Tikhonov regularization
introduce artificial contamination, which is not from noises, to the numerical solu-
tions. We thus expect to improve the solution quality if we can avoid any artificial
perturbation and effectively suppress the influence of high frequency noises, which is
the purpose of this paper. We also indicate that parallel algorithms have not yet been
seriously addressed; however, see [24].

In this paper, we develop a parallel numerical method without any perturbation
to obtain a regularized solution to problem (1.1). Instead of attacking problem (1.1)
in the original space-time domain setting, we take the Laplace transform in time to
have a set of complex-valued, Helmholtz-type problems with a parameter on a suitably
chosen contour Γ in a control domain. After solving the resulting elliptic problems, the
regularized time-domain solution with high frequency terms cut off can be recovered
by applying the inverse Laplace transformation numerically. Two different choices of
contour Γ will be described in detail in the next section. The first contour introduced
in [32] requires no information on eigenpairs of the operator A, while the second one
proposed in [22], which is more efficient, requires information on eigenvalues only.
Since we obtain solutions without modifying the original problem and high frequency
terms of noise are cut-off automatically, solution quality is improved significantly,
especially as time goes on to the final time T (see the end of section 2.3).

The outline of the rest of the paper is as follows. In the next section, two numerical
schemes are introduced based on the Laplace transformation of (1.1). In section 3,
basic stability and error estimates are derived for these numerical schemes. Some
numerical results are given in section 4.

2. The numerical schemes. Let us reformulate problem (1.1) by formally per-
forming the Laplace transformation in time. Then

zû + Aû = u0 in Ω for z ∈ ρ(−A)(2.1)

with the homogeneous Dirichlet boundary condition on ∂Ω, where ρ(−A) is the resol-
vent set of −A. First, denote by {φk}∞k=1 and {λk}∞k=1 the orthonormal eigenfunctions
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of −A and the corresponding eigenvalues which satisfy 0 < Reλ1 ≤ Reλ2 ≤ · · · →
+∞. The solution û(z) of (2.1) is then given in the following form:

û(z) = (zI + A)−1u0 =

∞∑
k=1

1

z − λk
(u0, φk)φk,(2.2)

since the solution of (1.1), if any, admits the representation

u(t) =
∞∑
k=1

eλkt(u0, φk)φk.(2.3)

In (2.3) we can observe that small errors on u0 grow without bound, which is the
source of ill-posedness. Among several regularization methods [17, 23] to avoid such
an error growth, we shall employ a method of cutting off high frequency terms in the
current paper.

From now on, denote by ûu0 and ûg the solutions to (2.1) with data u0 and
g, respectively. We begin by defining our regularization uΓ,u0(t), using the Laplace
inversion formula, by

uΓ,u0(t) =
1

2πi

∫
Γ

eztûu0(z) dz,(2.4)

where, for some positive integer N ,

Γ = {z ∈ C|ReλN < Re z < ReλN+1} ⊂ ρ(−A),(2.5)

and the direction of Γ is taken such that Im(z) is increasing from −∞ to +∞. The
contour Γ will be deformed subsequently for the sake of computational efficiency, and
we will see that λi’s need not be known explicitly for Γ = Γ1 (see section 2.1 for the
definition of Γ1).

Notice that
∞∑

k=N+1

1

z − λk
(u0, φk)φk is analytic in the half plane left of the straight line contour Γ,

which, incorporated into (2.2) and (2.4), implies that

uΓ,u0(t) =
1

2πi

∞∑
k=1

∫
Γ

ezt

z − λk
(u0, φk)φk dz

=
1

2πi

N∑
k=1

∫
Γ

ezt

z − λk
(u0, φk)φk dz =

N∑
k=1

eλkt(u0, φk)φk,(2.6)

which is a spectral representation of uΓ,u0(t) with high frequency terms cut off. The
resulting uΓ,g(t) with a given data g satisfying (1.2) instead of u0 fulfills the following
stability condition:

‖u(t) − uΓ,g(t)‖ ≤ 2M t/T δ1−t/T for t ∈ (0, T ](2.7)

if we choose N in (2.5) to be the largest integer such that

ReλN ≤ 1

T
log

M

δ

holds. See section 3 for more details.
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2.1. The numerical procedure using a hyperbolic contour. We now de-
form the straight line contour Γ in (2.4) into the left-hand branch of a hyperbola, as
in [32], with the asymptotes having slopes ±κ, which crosses the real axis at γ − ν,
by setting

Γ1 = {z : z = z(ω) = σ(ω) + iκω, −∞ < ω < ∞} ⊂ ρ(−A),(2.8)

σ(ω) = γ −
√

ω2 + ν2,

for suitable parameters ν > 0 (usually ν = 0.5) and κ > 0, where γ will be chosen
such that γ − ν = (1/T ) log(M/δ), provided γ − ν does not coincide with any Reλi.
Then we have ReλN < γ− ν < ReλN+1 for N used in Theorem 3.1. The parameters
of Γ1 are chosen such that the eigenvalues λ1, . . . , λN are to the left of the contour
Γ1, while the rest of eigenvalues are to the right of Γ1. At the end of section 3.1 we
will remark on the flexible choice of Γ1. With the deformed contour Γ1, the integral
(2.4) can be written as

uΓ1,u0(t) =
1

2πi

∫ ∞

−∞
ez(ω)tûu0(z(ω))z′(ω) dω.(2.9)

We notice that, as ω → ±∞, ez(ω)t goes to zero rapidly, which accelerates convergence.
Next, we transform the infinite interval (−∞,∞) for ω in (2.9) into a finite one.
For this, let ψ : (−∞,∞) → (−1, 1) be defined by ψ(ω) = tanh( τω2 ) as in [32].
In particular, by applying the change of variables y = ψ(ω) or, equivalently, ω =
ψ−1(y) = 1

τ log 1+y
1−y with the parameter τ > 0 to be determined later, the integral

(2.9) can be transformed into one on (−1, 1) for y, where the trapezoidal rule can be
applied to get

UΓ1,u0

L1,τ
(t) =

1

2πi

1

L1

j=L1−1∑
j=−L1+1

ezjtûu0(zj)
dz

dω
(ωj)

dψ−1

dy
(yj),(2.10)

where

zj = z(ωj), ωj = ψ−1(yj) =
1

τ
log

1 + yj
1 − yj

, and yj =
j

L1
, −L1 < j < L1.(2.11)

The change of variables here spreads the equidistant points yj ’s in (−1, 1) over R to
ωj ’s such that we have a finer grid near the origin where the integrand is relatively
larger and a coarser grid where the integrand becomes relatively smaller. In [32],
it is shown that this quadrature scheme has an arbitrary high order of accuracy for
forward parabolic problems. In this paper we prove similarly that the same accuracy
holds, although the properties of integrands are slightly different. The basic error
estimate essentially shows that, for any positive integer r,

‖uΓ,u0(t) − UΓ1,u0

L1,τ
(t)‖ ≤ C

Lr
1

(
βM

δ

)t/T

‖u0‖ for t > rτ,(2.12)

where C depends on various parameters and β > 1 is a constant.

2.2. The numerical procedure using a union of small circles. When the
eigenvalues of the operator −A are known, we can deform the contour in (2.4) into
a union of disjoint small circles around the eigenvalues of −A [22], which enables us
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to reduce computational costs significantly when the number of dominant eigenvalues
is relatively small. Set d = min1≤k≤N minl �=k |λk − λl| and assume that d > 0. For
a sufficiently small ε ∈ (0, d) (such that the circle |z − λk| = ε contains no other
eigenvalues than λk for all k), we define the second contour Γ2 by

Γ2 =

N⋃
k=1

Ck ⊂ ρ(−A), Ck = {z : z = λk + εeiθ, 0 ≤ θ ≤ 2π},(2.13)

where N is again the largest integer such that ReλN ≤ (1/T ) log(M/δ) holds. With
this Γ2, (2.4) can be written as

uΓ2,u0(t) =
1

2πi

N∑
k=1

∫
Ck

eztûu0(z) dz.(2.14)

After applying the change of variables z = λk + εeiθ on each circle Ck and the trape-
zoidal rule, we have

UΓ2,u0

L2
(t) =

1

2π

N∑
k=1

2π

L2

L2−1∑
j=0

ezk,jtûu0(zk,j)εe
iθj ,(2.15)

where zk,j = λk +εeiθj and θj = 2π
L2

j for 0 ≤ j ≤ L2−1. The efficiency of this scheme
originates in that the interval of the integral could be arbitrarily small by letting ε be
small (it should not be too small because of the machine precision; see section 3.2).
The error estimate of this scheme results in spectral accuracy of the form

‖UΓ2,u0

L2
(t) − uΓ,u0(t)‖ = C

(
β′M

δ

)t/T (
ε′

L2 +
eps

ε

)
‖u0‖,(2.16)

where C is independent of ε and L2, eps is the machine precision, and ε′ = ε/d, for
β′ = eεT > 1. With a double precision calculation, eps can be as small as about 10−16.

2.3. The fully discrete schemes. The fully discrete scheme is achieved by
combining the time-discretization procedure, either (2.10) or (2.15), with the finite
element method for spatial approximation procedure. For this, let (Vh)h>0 denote a
family of standard piecewise linear finite element subspaces of H1

0 (Ω). Let a(·, ·) be the
natural sesquilinear form associated with A. Then the finite element approximation
ûu0

h (z) ∈ Vh to the solution ûu0(z) of (2.1) satisfies

z(ûu0

h (z), v) + a(ûu0

h (z), v) = (u0, v) ∀v ∈ Vh,∀z ∈ ρ(−A).(2.17)

Thus the spatially discretized approximation UΓ,u0

h to uΓ,u0 in (2.4) is given by

UΓ,u0

h (t) =
1

2πi

∫
Γ

eztûu0

h (z) dz.(2.18)

By combining the time-discretization procedure, either (2.10) or (2.15), with the finite
element method the fully discretized solution is given by either

UΓ1,u0

L1,h,τ
(t) =

1

2πi

1

L1

j=L1−1∑
j=−L1+1

ezjtûu0

h (zj)
dz

dω
(ωj)

dψ−1

dy
(yj)(2.19)
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or

UΓ2,u0

L2,h
(t) =

1

L2

N∑
k=1

L2−1∑
j=0

ezk,jtûu0

h (zk,j)εe
iθj ,(2.20)

respectively. If inexact data g is given, g will be used instead of u0, which will be
analyzed in section 3.

To conclude this section, let us indicate two special features of the proposed meth-
ods. First, the methods can be implemented in parallel in the main part, solving a
set of elliptic equations (2.1), of the procedures without any essential data commu-
nication among processors since they are independent of each other. This idea goes
back to [11, 10] for solving wave propagation problems in the space-frequency domain
setting, and it was later applied to forward parabolic problems [31, 32] and to a for-
ward integro-differential equation with positive memory [20]. Second, the methods
proposed in the current paper do not introduce any perturbation from the original
problem, unlike others [2, 4, 7, 8, 12, 13, 14, 16, 18, 24, 26, 30], and therefore the
solution quality of our method is much better than that of others. The trick is in
formally reformulating the problem into problems in the Laplace transformed setting
as in (2.1). The reformulated equation (2.1) is well defined and well posed, although
one cannot perform the Laplace transform of the solution (2.3) since it does not exist
for any z ∈ C. Thus we choose to start from this equation. When it is inverted by
using the Laplace inversion formula (2.4), the contour Γ has to be selected, and it
gives a natural way of controlling the frequency terms. Noticing that eigenvalues of
−A correspond to the poles of û(z) (see (2.2)) we see that the poles to the left of Γ are
taken and those to the right of Γ are discarded (see (2.6)). In this way the regular-
ization is performed naturally without perturbing anything, and the high frequency
components of noise whose eigenvalues are bigger than λN cause no influence on the
numerical solutions. This feature improves the quality of the solutions remarkably,
which will be illustrated in section 4.

3. Stability and error estimates. In this section we analyze the stability
of and error estimates of the two numerical procedures introduced in the previous
section. Before going into the details of both properties, we first state and prove an
error estimate between the exact solution u of (1.1) with constraints (1.2) and the
regularized solution uΓ,g in (2.4) with given data g satisfying (1.2).

Theorem 3.1. Let g ∈ L2(Ω) be given. Suppose that u is an exact solution of
(1.1) with constraints (1.2). If N in (2.5) is chosen to be the largest integer such that
ReλN ≤ (1/T ) log(M/δ) < ReλN+1, then the following error bound holds:

‖u(t) − uΓ,g(t)‖ ≤ 2M t/T δ1−t/T for t ∈ (0, T ].(3.1)

Proof. Let us consider the regularized solution with exact data u0, say uΓ,u0(t),
and N be the largest integer such that ReλN ≤ (1/T ) log(M/δ) ReλN+1. From (1.2)
and (2.3), it follows that

∑∞
k=1 c

2
ke

2 ReλkT ≤ M2 with ck = (u0, φk), and therefore

‖u(t) − uΓ,u0(t)‖2 =

∞∑
k=N+1

c2ke
2 Reλkt =

∞∑
k=N+1

c2ke
2 Reλkte2 ReλkT e−2 ReλkT

≤ e2(t−T ) ReλN+1

∞∑
k=N+1

c2ke
2 ReλkT

≤ (δ/M)2(1−t/T )M2 = δ2(1−t/T )M2t/T .(3.2)
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Similarly, the difference between the two regularizations with initial data u0 and g is
estimated as follows: with gk = (g, φk),

‖uΓ,u0(t) − uΓ,g(t)‖2 =

N∑
k=1

(ck − gk)
2e2 Reλkt ≤ e2 ReλN t

N∑
k=1

(ck − gk)
2

≤ (M/δ)2t/T δ2 = M2t/T δ2(1−t/T )(3.3)

since we have
∑∞

k=1(ck − gk)
2 ≤ δ2 by (1.2). The assertion is then obtained by the

triangle inequality.

3.1. Analysis of the numerical procedure using a hyperbolic contour.
As we mentioned in section 2.1, we put γ − ν = (1/T ) log(M/δ), provided it does not
coincide with any λi. Let

Σζ1,γ−ν = {z ∈ C : ζ1 < | arg(z − γ + ν)| < π − ζ1} ∪ Nγ−ν ⊂ ρ(−A),(3.4)

where Nγ−ν is a neighborhood of γ − ν that does not contain any eigenvalue of −A,
and ζ1 ∈ (0, π/2) is chosen such that Γ1 ⊂ Σζ1,γ−ν . By (2.2), we can find a constant
B1 > 0, independent of z, such that

‖(zI + A)−1‖ ≤ B1

1 + |z − γ + ν| for z ∈ Σζ1,γ−ν .(3.5)

We notice that B1 = O(η−1), where η is a distance between the two sets Σζ1,γ−ν and
σ(−A), the spectrum of −A. From now on set β = eνT . We then have the following
stability estimate.

Theorem 3.2. Let UΓ1,g
L1,τ

be the approximation defined by (2.10) of the regularized

solution uΓ1,g given by (2.9), with u0 replaced by g. Then, for t > τ ,

‖UΓ1,g
L1,τ

‖ ≤ C(βM/δ)t/T ‖g‖,

where C =
√

2(2 − 1
L1

)
√

1 + κ2B1/(τπ).
Proof. From (2.8), (2.10), and (2.11) it follows that

‖UΓ1,g
L1,τ

(t)‖ ≤ 1

2π

1

L1

L1−1∑
j=−L1+1

|ezjt|‖ûg(zj)‖
∣∣∣∣ dzdω (ωj)

dψ−1

dy
(yj)

∣∣∣∣
≤

√
1 + κ2eγt√

2πL1

L1−1∑
j=−L1+1

e−|ωj |t
∣∣∣∣dψ−1

dy
(yj)

∣∣∣∣ ‖ûg(zj)‖

≤
√

1 + κ2eγt√
2πL1

√√√√ L1−1∑
j=−L1+1

(
e−|ωj |t dψ

−1

dy
(yj)

)2 L1−1∑
j=−L1+1

‖ûg(zj)‖2(3.6)

since
∣∣ dz
dω (ωj)

∣∣ ≤ √
2. Now, for j ≥ 0,

e−|ωj |t dψ
−1

dy
(yj) = e

− t
τ log

1+yj
1−yj

2

τ

1

1 − y2
j

=
2

τ

(1 − yj)
t/τ−1

(1 + yj)t/τ+1
≤ 2

τ
if t > τ.(3.7)

The same bound holds for j < 0. Since γ = log(M/δ)/T + ν, we have

eγt = (βM/δ)t/T ,(3.8)
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where we recall that β = eνT . Next, by using (2.8) and (3.5), we have, for z ∈ Σζ1,γ−ν ,

‖ûg(z(ω))‖ = ‖(z(ω)I + A)−1g‖ ≤ B1

1 + |z(ω) − γ + ν| ‖g‖

≤ B1

1 + κ|ω| ‖g‖ ≤ B1‖g‖,(3.9)

which, combined with (3.6), completes the proof.
Our error analysis is based on an Euler–Maclaurin-type proposition [32].
Proposition 3.3 (Sheen, Sloan, and Thomeé [32]). Let r ≥ 1 be given and

assume that v ∈ Cr(R;L2(Ω)) and

‖v(j)(ω)‖ = O(e−rτ |ω|) for j ≤ r as |ω| → ∞.

Furthermore, if ‖v(ω)‖ = o(e−τ |ω|) for r = 1, then we have the error estimate

‖QL1,τ (v) − I(v)‖ ≤ Cr
1

Lr
1

(
1 +

1

τ r

)∫ ∞

−∞
erτ |ω|

r∑
j=0

‖v(j)(ω)‖ dω,

where

I(v) :=

∫ ∞

−∞
v(ω) dω and QL1,τ (v) :=

1

L1

L1−1∑
j=−L1+1

v(ωj)
dψ−1

dy
(yj).(3.10)

The proof of Proposition 3.3 is given in [32].
Proposition 3.3 implies that the formula (3.10) is of an arbitrary high order of

accuracy, provided v(ω) vanishes appropriately fast at infinity. Based on Proposi-
tion 3.3, we derive an error estimate between the regularized solution uΓ1,g given in
(2.4) and its time-discretized approximation UΓ1,g

L1,τ
(t) given in (2.10) using g instead

of u0.
Lemma 3.4. Let uΓ1,g(t) and UΓ1,g

L1,τ
(t) be the regularized solution defined by (2.4)

and its approximation defined by (2.10), respectively, with initial data g instead of u0

and r a positive integer. Then, for t > rτ , we have

‖uΓ1,g(t) − UΓ1,g
L1,τ

(t)‖ ≤ Cr,t

Lr
1

(
βM

δ

)t/T

‖g‖,(3.11)

where Cr,t = Cr
(1+κ2)r/2

k (1 + tr)(1 + 1
τr )(1 + log+

κ
t−rτ ) and log+ x = max(0, log x).

Proof. Set v(ω, t) = 1
2πie

z(ω)tûg(z(ω))z′(ω). Then, from (2.9) and (2.10), with u0

replaced by g, it follows that

uΓ1,g(t) − UΓ1,g
L1,τ

(t) = I(v(·, t)) −QL1,τ (v(·, t)).

Our aim is to apply Proposition 3.3, and for this we need to bound the derivatives of

the function ûg(z) on Γ1. Since dj

dzj (zI + A)−1 = (−1)jj!(zI + A)−j−1, (3.9) and an
induction on j imply that∥∥∥∥ dj

dzj
ûg(z)

∥∥∥∥ ≤ Cj

1 + κ|ω| ‖g‖ for z ∈ Γ1.(3.12)
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The Leibniz rule is then applied to obtain∥∥∥∥ ∂j

∂ωj
v(t, ω)

∥∥∥∥ ≤ Cr (1 + tr)
(1 + κ2)r/2etσ(ω)

1 + κ|ω| ‖g‖ for j ≤ r, ω ∈ R,

where Cr > 0 is a constant depending on ‖ dj

dωj σ(ω)‖L∞(R) for j ≤ r. Since σ(ω) ≈
−|ω| for large |ω| the assumptions of Proposition 3.3 are thus satisfied if t > rτ, and
the proposition implies that

‖uΓ1,g(t) − UΓ1,g
L1,τ

(t)‖ ≤ CrL
−r
1

(
1 + τ−r

)
(1 + tr) eγt

∫ ∞

−∞

(1 + κ2)r/2e−|ω|(t−rτ)

1 + κ|ω| dω ‖g‖,

since we have σ(ω) ≤ γ − |ω|. To bound the integral that remains, notice that∫∞
0

e−ωt(1 + ω)−1 dω ≤ C(1 + log+(1/t)), which can be verified easily by arithmetic
calculations. Then (3.8) is used to complete the proof of the lemma.

Remark 3.5. The parameter r appears only in the theorem, not in the method.
Its implication is that the larger the r, the faster the convergence. And the above
estimate is valid at least for t > τ . In the numerical examples in section 4, we choose
τ = 1/2.

Next we deal with the space-discretization error.
Lemma 3.6. Let UΓ1,g

L1,τ
(t) and UΓ1,g

L1,h,τ
(t) be defined as in (2.10) and (2.19),

respectively, using g instead of u0. Then, for t > τ , we have

‖UΓ1,g
L1,τ

(t) − UΓ1,g
L1,h,τ

(t)‖ ≤ Ch2(βM/δ)t/T ‖g‖,(3.13)

where C = C
√

1 + κ2
(

2L1−1
L1τ

)
.

Proof. Combining (2.10), (2.19), and (2.8) we have

‖UΓ1,g
L1,τ

(t) − UΓ1,g
L1,h,τ

(t)‖ ≤ 1

2π

1

L1

L1−1∑
j=−L1+1

|ezjt|‖ûg(zj) − ûg
h(zj)‖

∣∣∣∣ dzdω (ωj)
dψ−1

dy
(yj)

∣∣∣∣
≤ C

√
1 + κ2h2‖g‖eγt 1

L1

L1−1∑
j=−L1+1

e−|ωj |t
∣∣∣∣dψ−1

dy
(yj)

∣∣∣∣(3.14)

since, for h small (see [33]),

‖ûg(z) − ûg
h(z)‖ ≤ Ch2‖g‖ for z ∈ Γ1.

Owing to (3.7),

1

L1

L1−1∑
j=−L1+1

e−|ωj |t
∣∣∣∣dψ−1

dy
(yj)

∣∣∣∣ ≤ 2

τ

(
2L1 − 1

L1

)
.

Then (3.8) is used to complete the proof.
Finally, combining Theorem 3.1, Lemma 3.4, Lemma 3.6, and the triangle in-

equality, we obtain the main result of this subsection.
Theorem 3.7. Let u(t) be an exact solution of (1.1), g ∈ L2(Ω) be given sat-

isfying (1.2), and UΓ1,g
L1,h,τ

(t) be our fully discretized approximation to u(t) defined by
(2.19). Then we have, for any integer r ≥ 1,

‖u(t) − UΓ1,g
L1,h,τ

(t)‖ ≤ 2M t/T δ1−t/T

+C

(
βM

δ

)t/T (
(1 + κ2)r/2

κ

1

Lr
1

+
√

1 + κ2h2

)
‖g‖ for rτ < t < T.
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Remark 3.8. The choice of contour Γ1 is flexible by letting the parameter κ
variable with the asymptotes having slopes ±1 and the real axis cut at γ− ν. Indeed,
in (2.8), let κ = κ(ω) be chosen such that the contour Γ1 can be nearly parallel to
the imaginary axis until it meets the line y = ± tan ζ if the eigenvalue ReλN−1 is
close to ReλN . Inside the sector Σζ the contour can be deformed analytically to have
asymptotes with slopes ±1 in order to have fast convergence. Corresponding to the
contour

Γ1 = {z : z = z(ω) = σ(ω) + iκ(ω)ω, −∞ < ω < ∞} ⊂ ρ(−A),

σ(ω) = γ −
√

ω2 + ν2,

suitable modifications in the analysis can be carried out accordingly.

3.2. Analysis of the numerical procedure using a union of small circles.
Let us turn to analyzing the case of the second numerical scheme under the assumption
that the eigenvalues of −A are known. We shall see that the quadrature scheme (2.15)
with Γ2 is of spectral accuracy. Since Γ2 is a compact subset of ρ(−A), we may assume
that

‖(zI + A)−1‖ ≤ B2 for z ∈ Γ2,(3.15)

with B2 independent of z. From (2.2) and (2.13) it follows that B2 = O(ε−1).
Set β′ = eεT . We then have the following stability estimate.
Theorem 3.9. Let UΓ2,u0

L2
(t) be the approximation defined by (2.15) of the regu-

larized solution (2.14). Then we have

‖UΓ2,u0

L2
(t)‖ ≤ CN(β′M/δ)t/T ‖u0‖ for t > 0.

Proof. By using (2.2), (2.15), and (3.15), a direct estimation leads to

∥∥∥UΓ2,u0

L2
(t)

∥∥∥ =

∥∥∥∥∥∥
N∑

k=1

1

L2

L2−1∑
j=0

ezk,jtû(zk,j)εe
iθj

∥∥∥∥∥∥
≤ B2Nεe(λN+ε)t‖u0‖ ≤ CNe(ReλN+ε)t‖u0‖,

owing to the fact B2 = O(ε−1). Finally, since ReλN ≤ log(M/δ)/T , one has

e(ReλN+ε)t ≤ (β′M/δ)t/T ,(3.16)

which proves the theorem.
Recalling that d = min1≤k≤N minl �=k |λk−λl| and ε < d (see section 2.2), we have

the following lemma.
Lemma 3.10. Let uΓ2,g(t) and UΓ2,g

L2
(t) be the regularized solution defined by

(2.14) and its approximation defined by (2.15), respectively, with g instead of u0 and
L2 a positive integer. Then we have, for some C > 0 independent of ε and L2,

‖uΓ2,g(t) − UΓ2,g
L2

(t)‖ ≤ CN

(
β′M

δ

)t/T (
ε′

L2 +
eps

ε

)
‖g‖ for t > 0,(3.17)

where eps is the machine precision, and ε′ = ε/d.
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Proof. Let F (z) = eztûg(z). By (2.2), F (z) has simple poles at z = λk and thus
has a Laurent series expansion of the form

F (z) =

∞∑
m=−1

ck,m(z − λk)
m for |z − λk| < d,(3.18)

where ck,m = 1
2πi

∫
Ck

F (z)
(z−λk)m+1 dz. Due to Cauchy’s residue theorem, we get

uΓ2,g(t) =

N∑
k=1

ck,−1.(3.19)

Plugging (3.18) into (2.15) with u0 replaced by g and rearranging the summand, we
have

UΓ2,g
L2

(t) =

N∑
k=1

1

L2

∞∑
m=−1

ck,mεm+1

⎛
⎝L2−1∑

j=0

(eiθm+1)j

⎞
⎠

=
N∑

k=1

(
ck,−1 + ck,L2−1ε

L2 + ck,2L2−1ε
2L2 + · · ·

)
.(3.20)

The last equality follows from the fact that if m+ 1 is a multiple of L2, the sum with

index j becomes L2; otherwise, it is 1−(eiθm+1 )L2

1−eiθm+1
, which is 0. Under the assumption

of no machine round-off error, one then has the following type of bound: ‖uΓ2,g(t) −
UΓ2,g
L2

(t)‖ ≤ CNεL2 . However, the extra term eps/ε in (3.17) will be included due
to the round-off errors which become significant if ε is too small. For the derivation
of this and various examples which show the validity of this estimation, we refer the
reader to [22].

Now we calculate ck,m explicitly to get the final error form. By inserting (2.2)
into ck,m, for m ≥ 0, we get ck,m = (1/2πi)

∫
Ck

G(z)/(z − λk)
m+1dz, where G(z) =∑

l �=k
ezt

z−λl
glφl, and gl = (g, φl). Notice that G(z) is analytic inside Ck and recall

the definition of d. Since β′ = eεT > 1, we have, by Cauchy’s integral theorem for
derivatives, the Leibniz rule, and (3.16), that

‖ck,m‖ =
1

m!
‖G(m)(λk)‖ =

∥∥∥∥∥∥
m∑
r=0

1

m!

(
m

r

)
tm−reλkt(−1)rr!

∑
l �=k

glφl

(λk − λl)r+1

∥∥∥∥∥∥
≤ tmeReλN t

∥∥∥∥∥∥
m∑
r=0

t−r

(m− r)!

∑
l �=k

glφl

|λk − λl|r+1

∥∥∥∥∥∥
≤ tmeReλN t 1

d

m∑
r=0

1

(m− r)!

(
1

dt

)r

‖g‖

=
1

d
eReλN t

m∑
s=0

(dt)s

s!

1

dm
‖g‖

≤ 1

dm+1
edt

(
β′M

δ

)t/T

‖g‖ for k ≤ N.(3.21)
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The last estimate combined with (3.19) and (3.20) leads to

‖uΓ2,g(t) − UΓ2,g
L2

(t)‖ =

N∑
k=1

∞∑
m=1

‖ck,mL2−1ε
mL2‖

≤ N

∞∑
m=1

( ε
d

)mL2

edt
(
β′M

δ

)t/T

‖g‖

= N
(ε′)L2

1 − (ε′)L2
edt

(
β′M

δ

)t/T

‖g‖

≤ CN

(
β′M

δ

)t/T (
ε′

L2 +
eps

ε

)
‖g‖,

with C = edT

1−(ε′)L2
, where the machine precision truncation was considered in the last

estimate. This completes the proof.
Remark 3.11. Inequality (3.21) is the worst case estimate. Although there exist

concrete examples that show that the above estimate is sharp, most experiments
similar to the examples in section 4 exhibit that d acts as 1.

Remark 3.12. For a fixed L2, we should have ( ε
d )L2 + eps

ε ≥ 2( epsd )L2/(L2+1) with

equality holding for ε = dL2/(L2+1)eps1/(L2+1), which is an optimal choice of ε for a
fixed L2. With this ε the error bound tends to C · eps/d as L2 tends to ∞.

Remark 3.13. In our case of computing F (z) numerically, the smaller the ε one
chooses, the more computational costs one needs in order to achieve a given tolerance.
Thus Remark 3.12 says that any choice of ε and L2 such that (ε/d)L2 is less than a
given tolerance is economic, provided ε > dL2/(L2+1)eps1/(L2+1). In the examples in
section 4 we regard d as 1.

Next we consider the space-discretization error.
Lemma 3.14. Using g instead of u0, let UΓ2,g

L2
(t) and UΓ2,g

L2,h
(t) be as in (2.15) and

(2.20), respectively. Then we have

|UΓ2,g
L2

(t) − UΓ2,g
L2,h

(t)‖ ≤ CNh2(β′M/δ)t/T ‖g‖ for t > 0.(3.22)

Proof. The lemma is a consequence of the estimate ‖ûg(z) − ûg
h(z)‖ ≤ Ch2‖g‖

for z ∈ Γ2 and Theorem 3.9 with u0 replaced by g.
We are, finally, in a position to state the main result of this subsection.
Theorem 3.15. Let g ∈ L2(Ω) be given data satisfying (1.2), u(t) be an exact

solution of (1.1), and UΓ2,g
L2,h

be the fully discretized approximation to u(t) defined by
(2.20). Then we have

‖u(t) − UΓ2,g
L2,h

(t)‖ ≤ 2M t/T δ1−t/T + CN

(
β′M

δ

)t/T (
ε′

L2 +
eps

ε
+ h2

)
‖g‖,(3.23)

for 0 < t < T, with ε′ = ε/d.
Proof. The proof is just a combination of Theorem 3.1, Lemma 3.10, Lemma 3.14,

and the triangle inequality.

4. Numerical examples. Examples 1, 2, and 3 have been chosen to illustrate
the convergence theory developed in section 3. The complicated solution profiles pro-
duced in Examples 4 and 5 demonstrate the high quality of the regularized numerical
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solutions compared with that of other recently proposed numerical methods [2, 24].
Parallel performance is reported in Example 6.

In each example the initial data with noise are generated by adding a perturbation
to the exact initial data. Let xi, 1 ≤ i ≤ J , be a uniform partition of Ω. For each i, let
rd(xi) be a pseudorandom number selected from (−1, 1). Then define rd : Ω → [−1, 1]
by linear interpolation of rd(xi) and set per(x) := δ · rd(x)/|Ω|d/2, where d and δ
denote the dimension of Ω and amplitude, respectively.

Example 1. Let Ω = (0, π) and T = 4. Then consider the following backward
parabolic problem:

ut + uxx = 0 in Ω × (0, T ),(4.1a)

u = 0 on ∂Ω × (0, T ),(4.1b)

u0(x) = e−4 sinx + e−16 sin 2x for x ∈ Ω,(4.1c)

with the exact solution u(x, t) = et−4 sinx+ e4(t−4) sin 2x. Notice that the eigenpairs
are φk =

√
2/π sin kx, and λk = k2, k = 1, 2, . . . . In this case we have ‖u(·, T )‖ = 1.89.

Set M = 2 and δ = 10−2 in (1.2). Then λN ≤ (1/T ) log(M/δ) = 1.32, by which λ1 = 1
is the largest eigenvalue bounded. Thus we have N = 1 in Theorem 3.1.

In implementation, (2.19) is applied with the contour Γ1 given in (2.8) with the
parameters chosen in the following fashion without requiring information on eigen-
pairs:

• we take ν = 0.5 and τ = 0.5;
• γ is chosen such that γ − ν = (1/T ) log(M/δ) = 1.32 at which the contour

crosses the real axis; in this case, γ = 1.82.
In practice where the exact eigenvalues are not known, we recommend that γ is chosen
such that γ − ν = (1/T ) log(M/δ) if it does not coincide with any eigenvalue of −A.
If (1/T ) log(M/δ) happens to be an eigenvalue of −A (this occurs with probability 0),
replace (1/T ) log(M/δ) with a slightly larger number so that it is not an eigenvalue
and assign the resulting value as γ − ν to choose γ such that (3.4) is satisfied.

Now we would like to verify Theorem 3.1, or equivalently Theorem 3.7, provided
the term 2M t/T δ1−t/T is dominant. To use (2.19), L1 = 64 and h = π/600 are chosen
so that the term 2M t/T δ1−t/T is dominant in (3.15).

Table 1

L2 errors for Example 1: actually computed L2 errors and the predicted L2 error bounds for
δ = 10−2 and 10−4.

L2 errors with δ = 10−2 L2 errors with δ = 10−4

t
Computed Predicted Computed Predicted

1 0.586E-02 0.752E-01 0.592E-04 0.238E-02

2 0.159E-01 0.283E+00 0.450E-03 0.283E-01

3 0.490E-01 0.106E+01 0.230E-01 0.336E+00

4 0.126E+01 0.400E+01 0.125E+01 4.000E+00

Table 1 shows the computational results for the L2 errors and the error bounds,
2M t/T δ1−t/T , predicted by the Theorem 3.1. To illustrate the effects of different
noise levels, we also showed errors with δ = 10−4, leaving the other parameters fixed
except γ = (1/T ) log(M/δ) + ν = 2.98. Observe that the computational results
in Table 1 are better than those predicted bounds by the theorem. However, it is
well known [5, 17] that the estimate (3.1) is sharp, and one cannot improve this
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without introducing a supplementary constraint such as that of slow evolution from
the continuation boundary (SECB) [5, 6].

Example 2. In this example we report the L2 error estimates for the first method
(2.19) of time discretization to solve the same problem as in Example 1 with the
data u0 replaced by u0 = e−4 sinx without adding noise. This enables the term
2M t/T δ1−t/T in (3.15) to be neglected. In this case, 1/T log(M/δ) is infinity, which
implies that the contour should contain all eigencomponents of the solution. The
solution u(x, t) = et−4 sinx contains 1 eigencomponent, and thus γ − ν should be
greater than 1. Therefore we assigned γ = 1.82, ν = 0.5, and τ = 0.5 as in Example 1.
Keeping the term C(βM/δ)t/T /Lr

1 to be dominant in (3.15) by choosing a sufficiently
small h(= π/5000), we vary L1 to see the error behavior. Table 2 summarizes the
L2 errors. The values in the parentheses denote the error reduction ratios defined by
log2(eL1/2/eL1), where eL1 is the L2 error with L1 in (3.15). Notice that the rates of
convergence, while erratic, are asymptotically as large as the order t/τ = 2t predicted
by Theorem 3.7. That is, the error reduction ratios at time t become larger than 2t
as L1 is chosen sufficiently large.

Table 2

L2 errors (and their reduction ratios) for Example 2.

t\L1 4 8 16 32

1.0 0.144E-02 0.645E-03(1.16) 0.305E-05(7.72) 0.419E-06(2.86)

2.0 0.120E-01 0.154E-02(2.97) 0.613E-05(7.97) 0.109E-07(9.13)

3.0 0.112E+00 0.196E-02(5.84) 0.192E-04(6.67) 0.455E-07(8.73)

4.0 0.842E+00 0.162E-01(5.70) 0.791E-04(7.68) 0.164E-06(8.91)

Example 3. Now we examine the second method (2.20) for the same problem as in
Example 2. Thus parameters in (2.13) are chosen such that N = 1 and λ1 = 1. Since
the time-discretization errors for this method become small very rapidly, it is not easy
to make the term εL2 + eps/ε be dominant in (3.23). However, in [22] the theoretical
and computational results have already been shown for this scheme without space
variable to show the rate εL2 + eps/ε. In the current example, instead of varying ε
and L2, we thus fix L2 = 4 and ε = 10−2 > eps(1/L2+1) ≈ 10−3 (see Remark 3.13)
in (3.23) and vary h eight times smaller at each step which will reduce errors 1/64
times. This would verify that the space-discretization errors are dominant compared
to their time-discretization counterparts.

Table 3

L2 errors (and their reduction ratios) for Example 3.

t\h 1/30 1/240 1/1920 1/15360

1.0 0.665E-04 0.976E-06(6.09) 0.154E-07(5.99) 0.510E-08(1.59)

2.0 0.330E-03 0.496E-05(6.05) 0.790E-07(5.97) 0.124E-07(2.67)

3.0 0.131E-02 0.200E-04(6.04) 0.328E-06(5.93) 0.202E-07(4.02)

4.0 0.471E-02 0.722E-04(6.03) 0.126E-05(5.84) 0.395E-07(5.00)

The numerical results in Table 3 provide confirmation of the behavior predicted by
Theorem 3.15, where the predicted space-discretization error-reduction ratio is 6 since
we choose h to be 1/8 times smaller at each step and the predicted time-discretization
error εL2 + eps/ε is about 10−8. In the columns with h = 1/240 and h = 1/1920, the
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apparent reduction ratios are more or less in agreement with the theory, while the
ratios in the last column are less than 6 since the time-discretization errors, which are
about 10−8, are actively deteriorating the numerical solutions.

We now proceed to deal with two more complicated examples than the previous
ones: the example employed in [24] which has severely oscillatory data and a similar
example which appeared in [1, 2] with nonsmooth data. Consider the backward
parabolic problem:

ut + cuxx = 0, Ω × (0, T ),(4.2a)

u = 0, ∂Ω,(4.2b)

with given noisy data g ∈ L2(Ω). Let Ω = (0, l), l = 1, or π. Here c is a positive
constant that controls the diffusion speed. In this case, eigenvalues are c(kπ/l)2, k =
1, 2, . . . . Thus when we apply Γ2, in (2.13) λk = c(kπ/l)2, and N is chosen by the
maximum integer k such that c(kπ/l)2 ≤ (1/T ) log(M/δ).

Example 4. Consider the problem (4.2) with l = 1, T = 16, c = 1/87960, and
u(x, T ) = sin(25πx2). Since no analytic expression for u0 is available, we solved a
forward problem starting from u(·, T ) using the method introduced in [32] to approx-
imate u0 as well as u(·, T/4), u(·, T/2), u(·, 3T/4), u(·, 7T/8), and u(·, 15T/16), with
errors less than 10−7, which are served as reference solutions for (4.2).

The constant c is chosen so that the size of the oscillations in u0 close to the right
endpoint is less than 1 percent of that of u(T ) at the right endpoint. In [24], a similar
data u0 is used such that the size of oscillations in u0 close to the right endpoint is less
than 10 percent of their initial size. (Indeed, in [24] the constant c = 1 is used with
very small time duration, with which the solutions agree with ours. Observe that any
c and T in (4.2) give equivalent solutions if cT is constant.) Once u0 is calculated,
multiplicative noise is added (see Figure 1(c)) to make g such that g = u0(1+per(x))
with δ = 10−3, which should be stressed by comparing this with the choice δ = 10−6

in [24].
We have ‖u(·, T )‖ = M ≈ 0.69, and (1/T ) log(M/δ) ≈ 0.41. Thus when applying

Γ1, we choose ν = 0.5, τ = 0.5, and γ = 0.91. Also we used the discretization
parameters L1 = 200 and h = 1/1000. When we apply Γ2, we choose L2 = 3, ε =
eps1/(L2+1) ≈ 10−4, and h = 1/5000. Figures 1(a) and 1(b) show the exact and the
computed solutions at t = T based on the contours Γ1 and Γ2, respectively.

Table 4 shows the predicted L2 error bounds by Theorem 3.7 and the computed
errors at various t values for the two contours Γ1 and Γ2. In order to compare with
the method proposed in [24], computational results in [24] are also presented. The
results from [24] are given in L∞ errors, and thus we calculate L∞ errors also in the
parenthesis, although they are not much different since solutions are smooth.

We observe that the method [24] gives better results at t = T/4, but as we pro-
ceed to the final time our methods provide better solutions. Such an observation is
expected for the following reasons. First, our methods recover information on eigen-
pairs without artificial contaminant since they do not perturb the original differential
equation. Second, high frequency components of noise (larger than λN ) do not affect
our numerical solutions since they are automatically cut off in implementation.

We remark that the noise amplitude of our data g is 103 times as big as that in
[24], and the loss of information on given data is worse than that of [24] by 10 times.
With such a bad data our methods recover solutions relatively well.

We should also remark that the computed errors are much better than the pre-
dicted bounds given in Theorem 3.7. Even at t = T when we lose continuous depen-
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Fig. 1. (a) Exact and computed solutions at t = T using the contour Γ1, (b) the contour Γ2,
and (c) the perturbed initial data profile with noise.
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Table 4

Comparison of errors for Example 4.

Time Predicted errors L2(L∞) errors us-
ing the contour Γ1

L2(L∞) errors us-
ing the contour Γ2

L∞ errors from
[24]

T/4 1.02E-02 1.56E-04 (6.83E-
04)

1.46E-03 (2.42E-
03)

6.25E-05

T/2 5.25E-02 5.88E-04 (2.16E-
03)

1.57E-03 (3.64E-
03)

1.09E-03

3T/4 2.69E-01 2.63E-03 (8.04E-
03)

2.92E-03 (9.20E-
03)

1.40E-02

7T/8 6.09E-01 5.71E-03 (1.62E-
02)

5.65E-03 (1.69E-
02)

4.44E-02

15T/16 9.16E-01 8.47E-03 (2.30E-
02)

8.19E-03 (2.36E-
02)

7.77E-02

T 1.38E+00 1.26E-02 (3.30E-
02)

1.20E-02 (3.33E-
02)

-

dence on the data theoretically, the computed L∞ errors are of only 3.30 and 3.33
percent. This is typically the case when the diffusion coefficient is small, and the very
high frequency components of the noise do not play a dominant role. This can be
explained theoretically if we introduce further constraints, SECB [5, 6], which would
be treated in a future work.

Finally, we would like to discuss our choice of (c, T ) = (1/87960, 16), which cor-
responds to (c, T ) = (1, 0.0001819). Although our T with c = 1 is bigger than that
of [24], it is still small. While making “reasonable recovery,” how large a T can one
choose? It depends on the definition of “reasonable recovery” and which method one
uses. Let us fix the L2-norm of noises; say it is about 10−3. We can say, for example, if
the L2 error of the recoverd image is less than 0.2, it is a “reasonable recovery.” With
our method, we can make (c, T ) = (1, 0.0002018). Recovered and the exact solutions
are shown in Figure 2(a), where we observe highly tilted values as x approaches 1,
which come from noises. Thus it is still challenging to make T as large as possible
with such highly oscillating profiles.

Example 5. Now we consider (4.2) with l = π, T = 4, and c = 1/32, and the
piecewise linear solution at t = T given by

u(·, T ) =

⎧⎨
⎩

0, 0 ≤ x ≤ π
2 ,

16
π x− 8, π

2 ≤ x ≤ 3
4π,

16 − 16
π x, 3

4π ≤ x ≤ π.

(4.3)

As in Example 4, we integrate forward in time starting from u(T ) to generate u0,
u(T/4), u(T/2), and u(3T/4), which are served as reference solutions for the problem.
Additive noises are introduced by g = u0 + per with δ = 10−3. In this case ‖u(T )‖ =
M ≈ 2.89, and we choose γ = (1/T ) log(M/δ) + ν ≈ 2.49, L1 = 100, and h = π/1000
for Γ1. For Γ2 we take L2 = 4, ε = 10−2 > eps1/(L2+1) ≈ 10−3, and h = π/1000.
Table 5 shows L2 errors, and Figure 2(b) presents the exact and the computed solution
profiles at t = T based on the contour Γ1. Although the authors in [1, 2] stated a
pessimistic opinion about approximating u(T ) /∈ C1, our methods recover this profile
in relatively good shape even with noisy data. The noise used for Example 5 is plotted
in Figure 2(c).

Example 6. Finally, in order to observe the parallel performance of the pro-
posed method, we solve a spatially three-dimensional (3D) problem version of (4.1)
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Fig. 2. (a) Numerical and exact solutions with bigger T in Example 4 (L2 error = 0.19), (b)
profiles of computed and exact solutions of Example 5 using Γ1 at t = T , (c) per(x) used for Example
5.
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Table 5

Predicted and computed errors for Example 5.

Time Predicted errors L2 errors using the
contour Γ1

L2 errors using the
contour Γ2

T/4 1.47E-02 7.05E-05 2.96E-04

T/2 1.08E-01 3.12E-04 8.51E-04

3T/4 7.89E-01 4.61E-03 7.13E-03

T 5.79E+00 1.48E-01 1.54E-01

Table 6

The computing time in seconds and speedup for Example 6. The relative L2(Ω) error of the
approximation is 5.99 × 10−3.

# of processor(p) 1 2 4 8 16 32

Computing time 635.9 327.7 164.9 83.1 41.7 21.1

Speedup 1 1.9 3.9 7.7 15.2 30.1

(Ω = (0, 1)3 and T = 1) with u0(x) = sin(πx) sin(πy) sin(πz). In this case, the exact

solution is u(x, t) = e3π2t sin(πx) sin(πy) sin(πz). For a fully discretized numerical so-
lution, (2.19) is applied with L1 = 32. γ = 31.5, and ν = τ = 0.5 are used for defining
Γ1 (see Example 2 for these selections). To obtain ûu0

h (zj) (j = 1, . . . , L1−1) in (2.19),
we solved (2.1) using the Q1-conforming (e.g., trilinear) finite element space Vh based
on the 64 × 64 × 64 uniform hexahedron triangulation of Ω (see, for instance, [3]).

Then in order to calculate UΓ1,u0

L1,h,τ
(1), p processors (p = 1, 2, 4, 8, 16, 32) are employed

to compute L1(=32) independent elliptic problems (2.1) for zj , j = 0, . . . , L1, by
evenly distributing them to p processors. For example if p = 32, each processor solves
only one equation. The computing clock time in seconds from solving linear equations
derived from (2.17) until obtaining UΓ1,u0

L1,h,τ
(1) required with p processors are reported

in Table 6. The speedup defined by (computing time for 1 processor)/(computing
time for p processors) is also presented and a nearly perfect speedup is observed.
The result is expected since the most time-consuming part in obtaining ûu0

h (zj) for
j = 0, . . . , L1 − 1 can be solved independently without data communication. Finally,
we remark that obviously such a perfect speedup is expected when p ≤ L1. The
computation of this example was carried out using a parallel machine whose nodes
are based on the IBM PowerPC970 (2.2GHz) 2-way CPUs with 1 Giga Byte Myrinet
network link.

5. Conclusion. In this paper, a parallel method has been proposed to solve
backward parabolic problems. The algorithm is based on the Laplace transformation
in time of the original time-dependent problems on a suitable contour in the complex
plane. The time dependence of the resulting Laplace transformed problems is thus
suppressed. After solving elliptic problems for each point on the complex contour, a
numerical inversion of Laplace transformed solutions will recover the time-dependent
solutions.

The proposed scheme to solve parabolic problems backwards in time does not in-
troduce an artificial parameter in order to regularize the numerical solutions. Theories
and numerical examples show the proposed method gives optimal stability without
perturbing anything, resulting in improved quality of the regularized solutions.

Additionally our scheme is highly scalable for parallel implementaion in the realm
of time discretization.
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Abstract. In this paper we obtain upper and lower bounds on the spectrum of the stiffness ma-
trix arising from a finite element Galerkin approximation (using nodal basis functions) of a bounded,
symmetric bilinear form which is elliptic on a Sobolev space of real index m ∈ [−1, 1]. The key point
is that the finite element mesh is required to be neither quasi-uniform nor shape-regular, so that
our theory allows anisotropic meshes often used in practice. (However, we assume that the polyno-
mial degree of the elements is fixed.) Our bounds indicate the ill-conditioning which can arise from
anisotropic mesh refinement. In addition we obtain spectral bounds for the diagonally scaled stiffness
matrix, which indicate the improvement provided by this simple preconditioning. For the special
case of boundary integral operators on a two-dimensional screen in R

3, numerical experiments show
that our bounds are sharp. We find that diagonal scaling essentially removes the ill-conditioning due
to mesh degeneracy, leading to the same asymptotic growth in the condition number as arises for a
quasi-uniform mesh refinement. Our results thus generalize earlier work by Bank and Scott [SIAM
J. Numer. Anal., 26 (1989), pp. 1383–1394] and Ainsworth, McLean, and Tran [SIAM J. Numer.
Anal., 36 (1999), pp. 1901–1932] for the shape-regular case.
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1. Introduction. Edge and corner singularities are characteristic features of
solutions to three-dimensional (3D) elliptic boundary value problems and, in both
finite element and boundary element methods, are commonly dealt with by some
kind of local mesh refinement. Typically, an edge singularity is strongly anisotropic:
the lack of smoothness occurs only in directions normal to the edge. For this reason,
the local mesh refinement should also be anisotropic if we are to minimize the number
of degrees of freedom used to achieve a sufficiently small error in, say, the energy norm.
Extra refinement is not needed parallel to an edge, except maybe in the vicinity of
a corner. The meshes that result from such local refinement are certainly not quasi-
uniform and usually even fail to be shape-regular because elements near edges but
away from any corner may have a very large aspect ratio.

In this paper we investigate the influence of such meshes on the condition number
of the stiffness matrix arising in the Galerkin approximation of a class of symmetric
elliptic problems. Our general framework includes as special cases the single layer
and the hypersingular boundary integral equations for the Laplacian on the surface
of a 3D Lipschitz domain or on a Lipschitz screen as well as the Dirichlet problem for
second-order symmetric elliptic PDEs. We obtain general bounds for the spectrum of
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the resulting Galerkin matrix in terms of quantities which depend on the geometry of
the elements and the particular basis functions utilized.

In addition we study in detail two model problems—the weakly singular and
hypersingular equations for the Laplacian on a rectangular screen, discretized using
classical tensor-product power-graded meshes. For these model problems our general
estimates yield explicit bounds in terms of the number of degrees of freedom and the
strength of the power grading. We show by numerical experiments that our estimates
are sharp and, moreover, exhibit a strong increase in the condition number as the
maximum aspect ratio of the elements increases.

These results have practical implications for the performance of iterative tech-
niques such as conjugate gradients, which are often used as solvers for the dense
linear systems which arise in these methods (usually combined with a fast matrix-
vector multiplication such as fast multipole [12] or panel-clustering [8]). Efficient
solvers require effective preconditioners, and as a first step in this direction we also
analyze in detail the use of diagonal scaling. We obtain general estimates for the
spectrum of the diagonally scaled matrix and again investigate this in fine detail for
the special cases of the model problems mentioned above.

Throughout the paper Γ will denote either a bounded, d-dimensional Lipschitz
surface in R

d+1, for d = 2, or a bounded Lipschitz domain in R
d, for d = 2 or 3.

In the former case, the surface Γ may be open or closed. B will denote a bounded
and symmetric bilinear form such that, for some Sobolev index m satisfying |m| ≤ 1,

B : H̃m(Γ) × H̃m(Γ) → R , and

c‖v‖2
H̃m(Γ)

≤ B(v, v) ≤ C‖v‖2
H̃m(Γ)

for all v ∈ H̃m(Γ),(1.1)

where c and C are positive constants. Thus the energy space for B is equivalent to

the Sobolev space H̃m(Γ). (Here we are working with standard Sobolev spaces on Γ;
see section 3 for more detail.)

We shall consider approximations of the following variational problem: Find u ∈
H̃m(Γ) such that

B(u, v) = 〈f, v〉Γ for all v ∈ H̃m(Γ),(1.2)

where, with dσ denoting the usual surface element on Γ,

〈f, v〉Γ =

∫
Γ

fv dσ.

By the Lax–Milgram lemma, (1.2) has a unique solution u ∈ H̃m(Γ) for each f ∈
H−m(Γ).

Within this abstract framework we can treat not only some boundary element
methods, in particular with m = ±1/2, but also finite element methods for symmetric
H1 elliptic PDEs with homogeneous Dirichlet boundary conditions.

To approximate the solution u of (1.2), we introduce a finite-dimensional sub-

space X ⊆ H̃m(Γ) and then apply Galerkin’s method, seeking uX ∈ X such that

B(uX , v) = 〈f, v〉Γ for all v ∈ X.(1.3)

In this paper we are concerned only with the h-version of the finite element method in
which X is a space of piecewise polynomials of fixed degree with respect to a family
of increasingly refined partitions (or meshes) {P} on Γ. The partition P contains
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elements K ∈ P which have diameter hK and diameter of largest inscribed ball ρK .
We will introduce a basis for X consisting of nodal basis functions {φj : j ∈ N}, where
N is a suitable index set with cardinality N . We will define the allowable partitions,
elements, and basis functions more precisely in section 3. Writing uX =

∑
k∈N αkφk,

inserting into (1.3), and choosing v = φj for each j ∈ N leads to the N × N linear
system

Bα = f ,(1.4)

with a symmetric positive definite matrix B = [B(φk, φj)], a solution vector α = [αk],
and a right-hand side vector f = [〈f, φj〉].

The conditioning of B in the case of shape-regular mesh refinement (i.e., hK � ρK
for all K ∈ P) was investigated by Ainsworth, McLean, and Tran in [1, 2], where the
condition number estimate

cond(B) �
(
hmax

hmin

)d−2m

N2|m|/d for 2|m| < d(1.5)

was proved. Here, hmax = maxK∈P hK and hmin = minK∈P hK . (For matrices B
with positive spectrum, cond(B) := λmax(B)/λmin(B), where λmax(B) and λmin(B)
denote the largest and smallest eigenvalues of B, respectively. The symbols � and 	
indicate (in)equality up to a hidden constant, independent of the mesh; see section 3.)
In the limiting cases 2m = −d and 2m = d an additional logarithmic factor occurs in
the bound (1.5).

For quasi-uniform meshes, hmax 	 hmin 	 h so the bound (1.5) gives the well-
known result that cond(B) = O(N2|m|/d) = O(h−2|m|). However, this bound deterio-
rates if the global mesh ratio hmax/hmin becomes large, and the deterioration becomes
stronger as the Sobolev index m becomes more negative. Fortunately, such additional
growth in the condition number is easily eliminated by diagonal scaling. In fact, let
D denote the diagonal matrix formed from B by setting all the off-diagonal entries
to zero, and put

B′ = D−1/2BD−1/2.(1.6)

Then it is shown in [1] that in the shape-regular case we have

cond(D−1B) = cond(B′) � N2|m|/d for 2|m| < d.(1.7)

We remark that B′ = [B(φ′
j , φ

′
k)] is just the Galerkin matrix that arises if we scale

the nodal basis so that φ′
j = φj/

√
B(φj , φj) has unit energy; i.e., B(φ′

j , φ
′
j) = 1.

This paper obtains bounds analogous to (1.5) and (1.7) for the case when the {P}
is no longer required to be shape-regular, and each partition P may contain elements
K for which the aspect ratio hK/ρK approaches infinity as the mesh is refined.

In particular we show that in the case of the weakly singular and hypersingular
boundary integral operators (and except possibly for some logarithmic factors), diag-
onal scaling removes the ill-conditioning produced by the high aspect ratios, restoring
the rate of growth of the condition number (in terms of the number of degrees of free-
dom) to essentially what it would be for a quasi-uniform mesh with the same number
of degrees of freedom.

We remark that our results not only generalize the results [1, 2] to more general
meshes, but they also generalize some of the earlier results of Bank and Scott [3],
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who obtained the analogous result for H1 finite elements and shape-regular mesh
sequences.

The layout of this paper is as follows. In section 2 we motivate the theory by
describing the results for the weakly singular and hypersingular operators in detail,
without proofs. In section 3 we set the theoretical scene by describing the class of
finite (boundary) elements which we shall consider (which allow degenerate meshes),
and we introduce the corresponding nodal bases. A key step in the theory in [1, 2] is
the proving of estimates for Sobolev norms of nodal basis functions. In section 4 we
extend these estimates to the case of non–shape-regular meshes. Here we make essen-
tial use of recently derived inverse estimates for finite element functions on anisotropic
meshes [7]. In section 5 we obtain general bounds on the spectra of B and B′ in terms
of the geometry of the elements and the Sobolev norms of the nodal basis functions.
For the case of power graded meshes and the weakly singular and hypersingular oper-
ators these lead to quantitative spectral estimates which are tested in the numerical
experiments in section 6. These eperiments show that the results for B′ are not com-
pletely sharp. Sharper results for special cases, which explain the numerical results,
are proved in section 7. Finally, section 8 presents some additional numerical results
using a more complicated family of meshes.

2. Examples.

2.1. Two integral equations. The weakly singular (or single-layer) boundary
integral equation,

1

4π

∫
Γ

u(y)

|x− y| dσy = f(x) for x ∈ Γ,(2.1)

arises, for example, in the solution of the Dirichlet problem for the Laplace equation
in the region exterior to Γ. This equation (2.1) may be written in the form (1.2), with

B(u, v) =
1

4π

∫∫
Γ×Γ

u(y)v(x)

|x− y| dσx dσy.(2.2)

Then B satisfies the norm equivalence (1.1) for m = −1/2.
The hypersingular integral equation,

− 1

4π

∫
Γ

(
∂

∂νx

∂

∂νy

1

|x− y|

)
u(y) dσy = f(x) for x ∈ Γ,(2.3)

arises, for example, in the solution of the Neumann problem for the Laplace equation.
(Here ∂/∂νx denotes the normal derivative at x ∈ Γ, and the integral is defined as the
finite part integral in the sense of Hadamard.) The integration by parts procedure of
Nédélec [10], [9, Theorem 9.15] allows us to write the associated bilinear form as

B(u, v) =
1

4π

∫∫
Γ×Γ

curlΓu(x) · curlΓv(y)

|x− y| dσx dσy,(2.4)

where curlΓ denotes the surface curl operator. The norm equivalence (1.1) holds
for m = +1/2. If the surface Γ is flat, then curlΓ can be replaced by the two-
dimensional (2D) gradient operator ∇.

It is well known that the solutions of (2.1) and (2.3) in general exhibit singular
behavior near the edges and corners of Γ. In particular near the interior of an edge,
the solution u of (2.1) typically has a singularity of order O(ρα−1) as ρ → 0, where ρ
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is the distance of a point from the edge and α > 1/2 depends on the angle subtended
by the boundary Γ near the edge. The solution of (2.3) typically has a singularity of
order O(ρα). More complicated behavior appears near corners. The full detail is well
known; see, e.g., [4, 5, 11].

2.2. Power-graded meshes. For the h-version of the boundary integral method,
it is common to approximate (2.1) and (2.3) using power-graded meshes. To describe
these, first consider the special case of a flat, square screen

Γ = {x ∈ R
3 : 0 < x1 < 1, 0 < x2 < 1, x3 = 0 },(2.5)

and think of Γ as a subset of R
2 by writing x = (x1, x2) = (x1, x2, 0) for x ∈ Γ.

Choose a grading exponent β ≥ 1 and define a mesh on the interval (0, 1) by

tj =

⎧⎪⎪⎨
⎪⎪⎩

1

2

(
2j

n

)β

if 0 ≤ j ≤ n/2,

1 − tn−j if n/2 < j ≤ n.

(2.6)

For β = 1 the mesh is uniform, but as β increases from 1, the points are more
concentrated at each end of the interval. The length Δtj = tj−tj−1 of the jth interval
satisfies

Δtj 	
1

n

(
j

n

)β−1

	 Δtn−j for 1 ≤ j ≤ n/2.(2.7)

We construct the corresponding product mesh with n2 elements on Γ with vertices

t(j1,j2) = (tj1 , tj2) for 0 ≤ j1 ≤ n and 0 ≤ j2 ≤ n.(2.8)

Elements K near any corner are shape-regular with hK 	 (1/n)β 	 ρK . Away
from the boundary they are also shape-regular with hK 	 1/n 	 ρK . However,
near the middle of an edge we have hK 	 1/n and ρK 	 (1/n)β ; hence if β > 1, then
degeneracy occurs with the maximum aspect ratio for the elements growing like nβ−1;
see Figure 1. This construction can be generalized to other polyhedral surfaces; see,
e.g., [11, 5] and Example 5.5 below.

Fig. 1. Power-graded tensor-product mesh with β = 3 and N = 142 elements.
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2.3. Condition number estimates. As an illustration of the results which
we shall prove later in this paper, let us suppose we apply the Galerkin method
to the weakly singular equation (2.1), with Γ given by (2.5) and with the subspace

X ⊂ H̃−1/2(Γ) chosen to be the space of piecewise-constant functions on the mesh
(2.8). The dimension of X is N = n2. In Theorems 5.7 and 7.4 we will prove
that in this case the Galerkin matrix B satisfies the spectral bounds λmax(B) �
N−1 and λmin(B) � N−3β/2, whereas the diagonally scaled Galerkin matrix B′

satisfies

λmax(B
′) � N1/2 ×

⎧⎪⎨
⎪⎩

1 if 1 ≤ β < 2,

(1 + logN)1/2 if β = 2,

(1 + logN)2 if β > 2

and

λmin(B′) �
{

1 if β = 1,

(1 + logN)−1 if β > 1.

Hence, cond(B) grows like N (3β/2)−1, whereas cond(B′) essentially grows like N1/2,
which is the rate of growth in the case of shape-regular meshes.

On the other hand, suppose we solve (2.3), with Γ given by (2.5) and with X ⊂
H̃1/2(Γ) chosen to be the space of continuous piecewise-bilinear functions on the mesh
(2.8) which vanish at the boundary of Γ. The dimension of X is N = (n−1)2 = O(n2).
In Theorems 5.8 and 7.5, we shall prove that

λmax(B) � N−1/2 and λmin(B) �

⎧⎪⎨
⎪⎩
N−1 for 1 ≤ β < 2,

N−1(1 + logN)−1 for β = 2,

N−β/2 for β > 2,

whereas B′ satisfies

λmax(B
′) � 1 and λmin(B′) � N−1/2 ×

⎧⎪⎨
⎪⎩

1 for 1 ≤ β < 2,

(1 + logN)−1/2 for β = 2,

(1 + logN)−2 for β > 2.

Thus, in this case the condition number of B grows like N (β−1)/2 (for β > 2), whereas
the condition number of B′ again essentially grows only like N1/2 (for any β ≥ 1),
which is again the rate of growth in the shape-regular case.

3. General framework. In this section we set up the theoretical apparatus in
which the general spectral estimates of section 5 will be proved. Recall that Γ denotes
either a bounded (open or closed) d-dimensional Lipschitz surface in R

d+1, for d = 2,
or a bounded Lipschitz domain in R

d, for d = 2 or 3.
We define the Sobolev spaces Hs(Γ), H̃s(Γ), |s| ≤ 1 in the usual way; see, for

example, [9] for details. In particular, when Γ is a Lipschitz domain or an open

Lipschitz surface, u ∈ H̃1(Γ) implies that u has vanishing trace on the boundary of

Γ. For 0 < s < 1, H̃s(Γ) interpolates between L2(Γ) and H̃1(Γ). In any case, H−s(Γ)

is the dual of H̃s(Γ) and H̃−s(Γ) is the dual of Hs(Γ) for all |s| ≤ 1. When Γ is a

closed surface, H̃s(Γ) = Hs(Γ) for all |s| ≤ 1. (Higher order Sobolev spaces can be
defined on domains and on smooth enough surfaces, but we do not need these here.)
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In what follows we will also be interested in Sobolev norms of various functions
defined over subdomains Γ̂ ⊂ Γ. Since different equivalent norms for Hs(Γ̂) or H̃s(Γ̂)
might scale differently with the size of Γ̂, we follow the notation used in [1] and write
|||u|||Hs(Γ̂) and |||u|||

H̃s(Γ̂)
to indicate the specific norms obtained for |s| ≤ 1 by real

interpolation and duality, starting from the usual norm in L2(Γ̂) and the Sobolev
norms

|||u|||2
H1(Γ̂)

= ‖u‖2
L2(Γ̂)

+ |u|2
H1(Γ̂)

and |||u|||2
H̃1(Γ̂)

= |u|2
H1(Γ̂)

=
∑
|α|=1

‖∂αu‖2
L2(Γ̂)

.

Note that | · |H1(Γ̂) is only a seminorm on H1(Γ̂) but is a norm on H̃1(Γ̂). (The

distinction between ‖ · ‖Hs(Γ̂) and ||| · |||Hs(Γ̂) is significant only when Γ̂ is a proper

subset of Γ. In what follows we will freely interchange ‖ · ‖Hs(Γ) and ||| · |||Hs(Γ).)
For later use, we recall [11, Lemma 3.2], [1, Theorem 4.1] that if Γ1,Γ2, . . . ,ΓN is a

partitioning of a bounded Lipschitz domain Γ into nonoverlapping Lipschitz domains,
then for |s| ≤ 1,

|||v|||2
H̃s(Γ)

≤
N∑
j=1

|||v|||2
H̃s(Γj)

and

N∑
j=1

|||u|||2Hs(Γj)
≤ |||u|||2Hs(Γ).(3.1)

We also note that (see [1, eq. (4.1)])

‖u‖Hs(Γ) � ‖u‖
H̃s(Γ)

if u ∈ H̃s(Γ) ∩ L2(Γ), for all |s| ≤ 1,(3.2)

and that [9, p. 320]

|||v|||
H̃s(Γ̂)

� |||v|||1−s

L2(Γ̂)
|||v|||s

H̃1(Γ̂)
and |||v|||

H̃−s(Γ̂)
� |||v|||1−s

L2(Γ̂)
|||v|||s

H̃−1(Γ̂)
(3.3)

for 0 < s < 1.

As mentioned in section 1, we will be considering a family of partitions {P} of Γ.
Each partition P consists of relatively open, pairwise-disjoint finite elements K ⊂ Γ
with the property Γ = ∪{K : K ∈ P}. For each K ∈ P, hK denotes its diameter and
ρK the diameter of the largest sphere whose intersection with Γ lies entirely inside K.
Also, for any measurable subset S of Γ, |S| denotes its d-dimensional measure.

In order to impose a simple geometric character on the mesh P, we assume that
each K ∈ P is diffeomorphic to a simple reference element. More precisely, let σ̂d

denote the unit simplex and κ̂d = [0, 1]d the unit cube in R
d. Thus, σ̂2 is the triangle

with vertices (0, 0), (1, 0), (0, 1) and σ̂3 is the tetrahedron with vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1).

We assume that for each K ∈ P, there exists a reference element K̂ = σ̂d or
κ̂d and a bijective map χK : K̂ → K, with both χK and χ−1

K smooth. (Here, for
simplicity, “smooth” means C∞.) Each element has vertices and edges, defined to
be the images of the vertices and edges of the corresponding unit element under χK .
In the 3D case, the element also has faces, comprising the images of the faces of the
unit element. We assume each partition is conforming ; i.e., for each K, K ′ ∈ P with
K �= K ′, the intersection K ∩K ′ is allowed to be either empty, a vertex, an edge, or
(when d = 3) a face of both K and K ′. The requirement that χK is smooth ensures
that edges of Γ (d = 2) and edges of ∂Γ (d = 3) are confined to edges of elements
K ∈ P.
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Let JK denote the 3 × d Jacobian of χK . Then∫
K

f(x)dx =

∫
K̂

f(χK(x̂))gK(x̂)dx̂, where gK :=
(
det JT

KJK
)1/2

.(3.4)

In addition to the assumption that χK and χ−1
K are smooth, we also require the

following assumption on JK .
Assumption 3.1. There exist positive constants D, E such that

D−1|K|2 ≤ det
(
JK(x̂)TJK(x̂)

)
≤ D|K|2,(3.5a)

Eρ2
K ≤ λmin

(
JK(x̂)TJK(x̂)

)
,(3.5b)

uniformly for x̂ ∈ K̂, K ∈ P, and P ∈ F .
Assumption 3.1 holds, for example, when K is a planar triangle (d = 2) or a

tetrahedron (d = 3) and χK is affine. It is also satisfied by bilinear maps from the
unit square to quadrilaterals (d = 2), provided that the quadrilaterals are not too far
from parallelograms. These and other examples are explored in [7].

Assumption 3.1 describes the quality of the maps which take the unit element
K̂ to each K. We also need assumptions on how the size and shape of neighboring
elements in our mesh may vary. Here we impose only very weak local conditions which
require the meshes to be neither quasi-uniform nor shape-regular. In addition, we need
a uniform bound on the number of elements that touch the ith node xi.

Assumption 3.2. There exist positive constants F,G,H and an integer M such
that for all P ∈ F ,

hK ≤ F hK′ , ρK ≤ G ρK′ , |K| ≤ H |K ′| for all K,K ′ ∈ P with K ∩K ′ �= ∅,
(3.6a)

and also max
i∈N

#{K ∈ P : xi ∈ K} ≤ M.(3.6b)

Note that condition (3.6a) requires that hK and ρK do not vary too rapidly be-
tween neighboring elements. This allows elements with a large aspect ratio, provided
that their immediate neighbors have a comparable aspect ratio. It is clear that the
power meshes (2.8) satisfy Assumption 3.2.

From now on, if A(P) and B(P) are two mesh-dependent quantities, then the
inequality A(P) � B(P) will mean that there is a constant C independent of P,
such that A(P) ≤ CB(P). (C may depend on D,E, F,G, or M .) Also the notation
A(P) 	 B(P) will mean that A(P) � B(P) and B(P) � A(P).

For an integer  ≥ 0 and a reference element K̂ ∈ {σ̂d, κ̂d}, we define

P
�(K̂) =

{
polynomials of total degree ≤  on K̂ if K̂ = σ̂d,

polynomials of coordinate degree ≤  on K̂ if K̂ = κ̂d

and the finite element spaces

S�
0(P) = {u ∈ L∞(Γ) : u ◦ χK ∈ P

�(K̂),K ∈ P} for  ≥ 0,

S�
1(P) = {u ∈ C0(Γ) : u ◦ χK ∈ P

�(K̂),K ∈ P } for  ≥ 1.

Finally we introduce suitable bases for these spaces. In this paper we consider
standard nodal bases defined as follows. Let d() denote the dimension of P

�(K̂)
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and choose a set of nodes {x̂p : p = 1, . . . , d()} ⊂ K̂ with the property that each

û ∈ P̂
�(K̂) is uniquely determined by its values at the x̂p. Then there are basis

functions {φ̂p , p = 1, . . . , d()} with the property φ̂p(x̂q) = δp,q. From these we can

define basis functions on the open set K (implicitly) by φp,K ◦ χK = φ̂p. We extend
φp,K to K by continuity and then (discontinuously) to the whole of Γ by zero. If we
introduce the nodes xp,K := χK(x̂p) ∈ K, then clearly

φp,K(xq,K′) = δ(p,K),(q,K′) for p, q = 1, . . . , d(), K,K ′ ∈ P.(3.7)

The functions

{φp,K : p = 1, . . . d(), K ∈ P}(3.8)

then constitute a suitable basis of S�
0(P). When  = 0 we have the simple piecewise

constant functions, and the nodes xK = x1,K can be chosen as the centroids of each
K.

For S�
1(P), we require further that if two elements K and K ′ share a common edge

e, then this edge is parametrized equally from both sides. More precisely, we require
that if χ−1

K (e) = ê and χ−1
K′ (e) = ê′, then there exists an affine mapping γ : ê → ê′

such that χK and χK′ ◦γ coincide pointwise on ê. We assume that the points xp,K and
xp,K′ restricted to e coincide and that the values of u at these points are sufficient to
determine uniquely u|e on e. (This condition is satisfied in the simplest case when χK

and χK′ are both affine maps.) In this case any u ∈ S�
1(P) is determined uniquely by

its values at the set of global nodes {xp,K : p = 1, . . . , d(), K ∈ P}, where coincident
nodes on the boundary of more than one element now constitute a single degree of
freedom. Denoting this set more abstractly by {xk : k ∈ N} for some suitable index
set of nodes (or degrees of freedom) N , our basis for S�

1(P) is

{φk : k ∈ N},(3.9)

where φk ∈ S�
1(P) is the unique function satisfying

φk(xk′) = δk,k′ for all k, k′ ∈ N .(3.10)

A simple example is the space of the continuous bilinear functions on a mesh of
quadilaterals, with nodes chosen to be the vertices of the elements.

Clearly the basis (3.8) may be written in the abstract form (3.9) by allowing the
set N to contain double indices of the form (p,K). With this notation, (3.10) follows
from (3.7). Moreover, in any case,

Γk ⊆
⋃{

K : xk ∈ K
}
, where Γk := suppφk.(3.11)

Throughout the rest of the paper N denotes the cardinality of the nodal set N .

4. Sobolev norm of a nodal basis function. We now establish some technical
estimates needed in the next section in our proofs of the spectral bounds for B and
B′. For these we need the following notation. For k ∈ N , define

hk = average of those hK for which xk ∈ K,

ρk = average of those ρK for which xk ∈ K,
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and note that the second inequality in (3.6a) implies that

min
xk∈K

ρK � ρk � max
xk∈K

ρK for k ∈ N .(4.1)

The following theorem is closely related to [7, Theorems 3.2 and 3.6].

Theorem 4.1. Let {φk}k∈N be a nodal basis for S�
i (P) ⊂ H̃m(Γ), where i = 0

or 1.
(i) If 0 ≤ m ≤ 1, then |||φk|||H̃m(Γk)

� ρ−m
k ‖φk‖L2(Γk).

(ii) If −1 ≤ m ≤ 0, then ρ−m
k ‖φk‖L2(Γk) � |||φk|||Hm(Γk).

Proof. The proof follows the same lines as the proofs of [7, Theorems 3.2 and
3.6], in which the same result is proved on the whole domain Γ. To get the proof of
the present result, one has to check only that the arguments in [7] remain true if the
global norm ||| · |||

H̃s(Γ)
is replaced by the local norm ||| · |||

H̃s(Γk)
. We recall that the

latter norm is obtained for s ∈ (0, 1) by interpolation between the norms ‖ · ‖L2(Γk)

and | · |H1(Γk) and then by duality for s ∈ [−1, 0]. Now, following the arguments in
[7, Theorem 3.2], it is easily seen that

|φk|2H1(Γk) =
∑
K∈P
K⊂Γk

∫
K

|∇φk|2 � ρ−2
k

∑
K∈P
K⊂Γk

‖φk‖2
L2(K) = ρ−2

k ‖φk‖2
L2(Γk).

The proof of (i) for m = 1 follows directly, and result (i) then follows by interpola-
tion (3.3).

For (ii), note first that when m ∈ [−1, 0], the definition of the dual space implies

|||φk|||Hm(Γk) ≥
|(φk, w)Γk

|
|||w|||

H̃−m(Γk)

(4.2)

for any w ∈ H̃−m(Γk), not identically zero. The proof is completed by constructing

a test function w ∈ H̃−m(Γk) with the properties

|(φk, w)Γk
| � ρ2

k‖φk‖2
L2(Γk),(4.3)

|||w|||
H̃−m(Γk)

� ρ2+m
k ‖φk‖L2(Γk).(4.4)

The required construction of w is given in the proof of [7, Theorem 3.6], where the
estimates (4.3) and (4.4) with m = −1 are established (see [7, eqs. (3.14), (3.15)] and
put α = 0 and k = 1). The proof of (4.4) for m ∈ [−1, 0] is obtained by establishing it
for m = 0 and then interpolating with m = −1. To establish (4.4) for m = 0 one has to
look closely at the argument in [7, Theorem 3.6]. For any K ∈ P, K ⊂ Γk, it is shown

that there exists a subset t(K) ⊂ K and a function Pt(K) ∈ H̃1(K) such that φk|t(K)

is one-signed and such that ‖Pt(K)‖L2(K) 	 |t(K)|1/2. The hidden constants in this
estimate are independent of k,K and the mesh. Then the w which satisfies (4.3) and
(4.4) with m = −1 is defined as w =

∑
K⊂Γk

ρ2
Ksign(φk|t(K)) infx∈t(K) |φk(x)|Pt(K).

Then

‖w‖2
L2(Γk) =

∑
K⊂Γk

ρ4
K

(
inf

x∈t(K)
|φk(x)|

)2

‖Pt(K)‖2
L2(t(K))

� ρ4
k

∑
K⊂Γk

(
inf

x∈t(K)
|φk(x)|

)2

|t(K)| � ρ4
k‖φk‖2

L2(Γk),

as required.
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Theorem 4.1 is the key component in the proof of the next result, which in turn
is a partial generalization of [1, Lemma 4.7] and [1, Theorem 4.8].

Theorem 4.2. Let k ∈ N .
(i) If 1 ≤ p ≤ ∞, then ‖φk‖Lp(Γ) = ‖φk‖Lp(Γk) 	 |Γk|1/p.
(ii) If 0 ≤ m ≤ 1, then ‖φk‖2

H̃m(Γ)
� |||φk|||2H̃m(Γk)

� |Γk|ρ−2m
k .

(iii) If −1 ≤ m ≤ 0, then |Γk|ρ−2m
k � |||φk|||2Hm(Γk) � ‖φk‖2

Hm(Γ).

(iv) If 0 ≤ 2m < d, then ‖φk‖2
Hm(Γ) � |Γk|1−2m/d.

(v) If −d < 2m ≤ 0, then ‖φk‖2
H̃m(Γ)

� |Γk|1−2m/d.

Proof. (i) By the definition of φk,

‖φk‖pLp(Γk) =
∑
K∈P
K⊂Γk

∫
K

|φk|p.

For a typical K ⊂ Γk, recall (3.4) and write
∫
K
|φk|p =

∫
K̂
|φ̂k|pgK 	 |K|

∫
K̂
|φ̂k|p 	

|K| by Assumption 3.1. Now sum over all elements K ⊂ Γk to obtain the result.
The left-hand inequality in (ii) follows directly from the left-hand inequality in

(3.1), while the right-hand inequality in (ii) follows from part (i) of Theorem 4.1 and
part (i) of the present theorem.

Similarly, in part (iii), we use the right-hand inequality in (3.1) and part (ii) of
Theorem 4.1, combined with part (i) of the present theorem.

To prove (iv), we put p = 2d/(d−2m) ∈ [2,∞) and apply the Sobolev imbedding
theorem together with part (i) above to obtain

‖φk‖2
Hm(Γ) � ‖φk‖2

Lp(Γ) 	 |Γk|2/p = |Γk|1−2m/d.

Part (v) follows using a dual imbedding: For q = 2d/(d− 2m) ∈ (1, 2],

‖φk‖2
H̃m(Γ)

� ‖φk‖2
Lq(Γ) 	 |Γk|2/q = |Γk|1−2m/d.

5. Bounds on the extremal eigenvalues. In this section we obtain general
bounds on the spectra of the matrices B and B′ which were defined in (1.4) and
(1.6). Since B is symmetric, these may be obtained by estimating the Rayleigh
quotient αTBα/αTα from above and from below. For a typical v ∈ X we write

v =
∑
k∈N

vk, where vk = αkφk and αk = v(xk).(5.1)

Then, since

αTBα = B(v, v) 	 ‖v‖2
H̃m(Γ)

and αTα =
∑
k∈N

v(xk)
2,

if we show the bounds

λX

∑
k∈N

v(xk)
2 � ‖v‖2

H̃m(Γ)
� ΛX

∑
k∈N

v(xk)
2 for all v ∈ X,(5.2)

then we have the estimates λmax(B) � ΛX and λmin(B) � λX .
Similarly, for the diagonally scaled matrix B′, note that

αTDα =
∑
k∈N

α2
kB(φk, φk) =

∑
k∈N

B(vk, vk) 	
∑
k∈N

‖vk‖2
H̃m(Γ)

.
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Thus if we can show that

λ′
X

∑
k∈N

‖vk‖2
H̃m(Γ)

� ‖v‖2
H̃m(Γ)

� Λ′
X

∑
k∈N

‖vk‖2
H̃m(Γ)

for all v ∈ X,(5.3)

then it will follow that λmax(B
′) � Λ′

X and λmin(B′) � λ′
X .

For each element K ∈ P, let N (K) = { k ∈ N : Γk ∩K �= ∅ }. Our assumptions
on the family of partitions {P} imply that

the cardinality of N (K) for K ∈ P is bounded independently of P(5.4)

and that for each P the index set N may be partitioned into disjoint subsets N1,
N2, . . . ,NL having the property

interior(suppφk) ∩ interior(suppφk′) = ∅ if k, k′ ∈ N� and k �= k′,(5.5)

in such a way that L is bounded independently of P.
In Lemmas 5.1 and 5.2 we will obtain bounds on the spectra of B and B′, some

of which involve the quantities

Φm,k :=
|Γk|ρ−2m

k

‖φk‖2
H̃m(Γ)

, k ∈ N .(5.6)

Simple bounds on Φm,k may be obtained by employing Theorem 4.2 and (3.2) to
obtain

Φm,k � 1 for −1 ≤ m ≤ 0 and Φm,k � |Γk|2m/d

ρ2m
k

for −d < 2m ≤ 0,(5.7)

Φm,k � 1 for 0 ≤ m ≤ 1 and Φm,k � |Γk|2m/d

ρ2m
k

for 0 ≤ 2m < d.(5.8)

(Note that in the shape-regular case, (5.8) and (5.7) are sharp estimates, since |Γk|1/d 	
hk 	 ρk, and thus Φm,k 	 1 for 2|m| < d.)

In the next two lemmas we shall decompose an arbitrary v ∈ X ⊂ H̃m(Γ) as
in (5.1).

Lemma 5.1. For −1 ≤ m ≤ 0 and −d < 2m, we have

min
k∈N

|Γk|ρ−2m
k � λmin(B) ≤ λmax(B) �

(∑
k∈N

|Γk|1−d/2m

)−2m/d

,

min
k∈N

Φm,k � λmin(B′) ≤ λmax(B
′) �

(∑
k∈N

|Γk|ρ−d
k

)−2m/d

.

The lower bounds continue to hold if the hypothesis is weakened to just −1 ≤ m ≤ 0.
Proof. With q = 2d/(d− 2m) ∈ (1, 2], and using the dual Sobolev embedding, we

obtain ‖v‖
H̃m(Γ)

� ‖v‖Lq(Γ). Now, using Hölder’s inequality and property (5.5), we

obtain

‖v‖
H̃m(Γ)

� ‖v‖Lq(Γ) �
L∑

�=1

∥∥∥∥∥ ∑
k∈N�

vk

∥∥∥∥∥
Lq(Γ)

(5.9)

�

⎛
⎝ L∑

�=1

∥∥∥∥∥ ∑
k∈N�

vk

∥∥∥∥∥
q

Lq(Γ)

⎞
⎠1/q

�
(∑

k∈N
‖vk‖qLq(Γ)

)1/q

.
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Moreover from Hölder’s inequality with 1/p + q/2 = 1 and with wk denoting any
positive weight, we have

∑
k∈N

‖vk‖qLq(Γ) ≤
(∑

k∈N

(
w

q/2
k

)p)1/p(∑
k∈N

(
w

−q/2
k ‖vk‖qLq(Γ)

)2/q
)q/2

�
(∑

k∈N
w

pq/2
k

)1/p(∑
k∈N

w−1
k ‖vk‖2

Lq(Γ)

)q/2

.

Combining this with (5.9), we obtain

‖v‖2
H̃m(Γ)

�
(∑

k∈N
w

pq/2
k

)2/(pq) ∑
k∈N

w−1
k ‖vk‖2

Lq(Γ).(5.10)

Note that 2/q = 1 − 2m/d, p = 1 − d/(2m), and pq/2 = −d/(2m). By choosing
wk = |Γk|2/q in (5.10) and applying Theorem 4.2 (i), we obtain

‖v‖2
H̃m(Γ)

�
(∑

k∈N
|Γk|1−d/2m

)−2m/d ∑
k∈N

v(xk)
2,

which, together with (5.2) implies the upper bound for λmax(B).
On the other hand, with wk = |Γk|2/q−1ρ2m

k , it follows from Theorem 4.2(i), (iii)
that

w−1
k ‖vk‖2

Lq(Γ) 	 v(xk)
2|Γk|ρ−2m

k � v(xk)
2‖φk‖2

Hm(Γ) = ‖vk‖2
Hm(Γ).

Since w
pq/2
k = |Γk|p−pq/2(ρ2m

k )pq/2 = |Γk|ρ−d
k , (5.10) leads to

‖v‖2
H̃m(Γ)

�
(∑

k∈N
|Γk|ρ−d

k

)−2m/d ∑
k∈N

‖vk‖2
Hm(Γ).

The upper bound for λmax(B
′) follows by (3.2) and (5.3).

Now consider the lower bounds. Given k ∈ N , choose an element K ∈ P such that
xk ∈ K. Then, with v̂ = v ◦χK , and using equivalence of norms on finite-dimensional
spaces, we have

v(xk)
2 ≤ ‖v‖2

L∞(K) = ‖v̂‖2
L∞(K̂)

	 ‖v̂‖2
L2(K̂)

	 |K|−1‖v‖2
L2(K).(5.11)

Moreover, using [7, Theorem 3.6, Remark 3.8] applied on the single element K, we
obtain ‖v‖L2(K) � ρmK |||v|||Hm(K). Combining this with (5.11) and using Assumption
3.2, we get

v(xk)
2 � |K|−1ρ2m

K |||v|||2Hm(K) � |Γk|−1ρ2m
k |||v|||2Hm(K).(5.12)

Hence using (5.4) and (3.1),

∑
k∈N

v(xk)
2 �

(
max
k∈N

|Γk|−1ρ2m
k

) ∑
K∈P

|||v|||2Hm(K) �
(

max
k∈N

|Γk|−1ρ2m
k

)
‖v‖2

Hm(Γ),
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and the lower bound for λmin(B) follows by (3.2). To obtain the lower bound for
λmin(B′), we use the definition (5.6) of Φm,k combined with (5.12) to obtain

‖vk‖2
H̃m(Γ)

= v(xk)
2‖φk‖2

H̃m(Γ)
= Φ−1

m,k

[
v(xk)

2|Γk|ρ−2m
k

]
� Φ−1

m,k|||v|||2Hm(K).(5.13)

Then the required estimate follows by summing over k and using (3.1).
Lemma 5.2. For 0 ≤ m ≤ 1 and 2m < d, we have(∑

k∈N
|Γk|1−d/2m

)−2m/d

� λmin(B) ≤ λmax(B) � max
k∈N

|Γk|ρ−2m
k ,

(∑
k∈N

|Γk|ρ−d
k

)−2m/d

� λmin(B′) ≤ λmax(B
′) � max

k∈N
Φm,k.

The upper bounds continue to hold if the hypothesis is weakened to just 0 ≤ m ≤ 1.
Proof. Using the decomposition (5.1) of v, we have

‖v‖2
H̃m(Γ)

=

∥∥∥∥ L∑
�=1

∑
k∈N�

vk

∥∥∥∥2

H̃m(Γ)

≤
( L∑

�=1

∥∥∥∥ ∑
k∈N�

vk

∥∥∥∥
H̃m(Γ)

)2

≤ L

L∑
�=1

∥∥∥∥ ∑
k∈N�

vk

∥∥∥∥2

H̃m(Γ)

�
∑
k∈N

|||vk|||2H̃m(Γk)
,(5.14)

where we used the left-hand inequality in (3.1) and the property (5.5). By Theo-
rem 4.2(ii),

|||vk|||2H̃m(Γk)
= v(xk)

2|||φk|||2H̃m(Γk)
� v(xk)

2|Γk|ρ−2m
k .(5.15)

Substituting this into (5.14) yields

‖v‖2
H̃m(Γ)

�
(

max
j∈N

|Γj |ρ−2m
j

) ∑
k∈N

v(xk)
2,

which, recalling (5.2), implies the upper bound for λmax(B).
To obtain the upper bound for λmax(B

′), we use (5.15) to write

|||vk|||2H̃m(Γk)
� v(xk)

2|Γk|ρ−2m
k = v(xk)

2Φm,k‖φk‖2
H̃m(Γ)

= Φm,k‖vk‖2
H̃m(Γ)

.

Then we combine this with (5.14) and (5.3) to obtain the result.
Now we consider the lower bounds. Let p = 2d/(d − 2m) ∈ [2,∞) so that

‖v‖Lp(Γ) � ‖v‖Hm(Γ). Clearly v(xk)
2 ≤ ‖v‖2

L∞(K) for some K ∈ P, K ⊆ Γk. Also

v◦χK = v̂, with v̂ ∈ P
�(K̂), and by equivalence of norms on finite-dimensional spaces,

combined with Assumptions 3.1 and 3.2, we have

v(xk)
2 ≤ ‖v‖2

L∞(K) = ‖v̂‖2
L∞(K̂)

	 ‖v̂‖2
Lp(K̂)

	 |K|−2/p‖v‖2
Lp(K) � |Γk|−2/p‖v‖2

Lp(Γk).

(5.16)

Hence, by Hölder’s inequality with 2/p + 1/q = 1,

∑
k∈N

v(xk)
2 �

(∑
j∈N

(
|Γj |−2/p

)q)1/q(∑
k∈N

‖v‖pLp(Γk)

)2/p

�
(∑

j∈N
|Γj |−2q/p

)1/q

‖v‖2
Lp(Γ),
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where we used the property (5.4). Now, since 2/p = 1 − 2m/d we have 1/q = 2m/d
and

∑
k∈N

v(xk)
2 �

(∑
j∈N

|Γj |1−d/2m

)2m/d

‖v‖2
Hm(Γ),

which, in view of (3.2) and (5.2), proves the lower bound for λmin(B).

To estimate λmin(B′), we use Theorem 4.2(ii) and (5.16) to obtain

‖vk‖2
H̃m(Γ)

= v(xk)
2‖φk‖2

H̃m(Γ)
� v(xk)

2|Γk|ρ−2m
k � |Γk|1−2/pρ−2m

k ‖v‖2
Lp(Γk).(5.17)

Thus, recalling 1 − 2/p = 2m/d and employing again (5.4),

∑
k∈N

‖vk‖2
H̃m(Γ)

�
∑
k∈N

|Γk|2m/dρ−2m
k ‖v‖2

Lp(Γk)

�
(∑

j∈N

(
|Γj |2m/dρ−2m

j

)q)1/q(∑
k∈N

‖v‖pLp(Γk)

)2/p

�
(∑

j∈N
|Γj |ρ−d

j

)2m/d

‖v‖2
Hm(Γ),

which, again using (3.2) and (5.3), gives the lower bound for λmin(B′).

Remark 5.3. The left-hand side of the first inequality in Lemma 5.2 and the
right-hand side of the first inequality in Lemma 5.1 should be interpreted as the ap-
propriate limit when m → 0. Observe that these lemmas reproduce several known
results as special cases. For example, putting m = 0, we obtain estimates for the
“mass matrix” corresponding to an operator of order 0:

min
k∈N

|Γk| � λmin(B) ≤ λmax(B) � max
k∈N

|Γk| and 1 � λmin(B′) ≤ λmax(B
′) � 1.

These are well-known, at least for the shape-regular case (i.e., |Γk| ∼ ρdk ∼ hd
k).

Moreover, in the shape-regular case for general m and d, it is easy to see that Lemmas
5.2 and 5.1 imply the previously proved estimate (1.7). Lemmas 5.2 and 5.1 can be
combined with (5.8) and (5.7) to obtain general spectral estimates in the non–shape-
regular case, in terms of the computable quantities |Γk| and ρk and generic mesh-
independent constants. In what follows we shall illustrate the uses of these estimates
for operators of general order m, but (since boundary integral equations is our main
application), we shall restrict this illustration to the case

d = 2 and |Γk| ∼ hkρk for each k ∈ N .(5.18)

Then we have the following corollary for operators of general order m.

Corollary 5.4. (i) Assume (5.18). For −1 < m ≤ 0,

min
k∈N

(hkρ
1−2m
k ) � λmin(B) ≤ λmax(B) �

(∑
k∈N

(hkρk)
1−1/m

)−m

,

min
k∈N

(hkρ
−1
k )m � λmin(B′) ≤ λmax(B

′) �
(∑

k∈N
hkρ

−1
k

)−m

.
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(ii) For 0 ≤ m < 1,(∑
k∈N

(hkρk)
1−1/m

)−m

� λmin(B) ≤ λmax(B) � max
k∈N

(
hkρ

1−2m
k

)
,

(∑
k∈N

hkρ
−1
k

)−m

� λmin(B′) ≤ λmax(B
′) � max

k∈N

(
hkρ

−1
k

)m
.

The hypersingular and weakly singular examples considered in section 2.1 are
then obtained from the special cases m = 1/2 and m = −1/2. These estimates can
be applied to any mesh specified by the user. To illustrate its use on a typical class
of meshes, let us consider the following example.

Example 5.5. Suppose Γ is a plane convex polygon with perimeter γ. For some
fixed δ > 0, let γ‖ be the inscribed polygon, each of whose edges e‖ is parallel to and a
perpendicular distance δ from a corresponding edge e of γ. To mesh Γ, extend each e‖

in a straight line at each end until it touches γ. For δ sufficiently small, this subdivides
Γ into near-vertex rhombi, near-edge trapezia, and an inner polygon. For each e, draw
n−1 parallel lines inside Γ, a perpendicular distance (i/n)β from e, for i = 1, . . . , n−1.
(The last of these lines is an extension of e‖.) This defines a mesh of quadrilaterals on
each of the rhombi. For each near-edge trapezium, introduce a quadrilateral mesh by
subdividing each of its parallel sides uniformly with n subintervals and draw straight
lines between corresponding points. Finally subdivide the interior polygon Γint with a
quasi-uniform mesh with O(n2) (triangular or quadrilateral) elements, whose nodes on
γ coincide with the nodes already specified. (See Figure 2.) This mesh has N = O(n2)
elements, and the mesh in Figure 1 is a particular case.

e

Γint

e‖

δ

Fig. 2. Section of mesh on polygon Γ, depicting two near-vertex rhombi and a near-edge
trapezium.

Lemma 5.6. For the class of meshes specified in Example 5.5 we have

∑
k∈N

hkρ
−1
k �

⎧⎪⎨
⎪⎩
N for 1 ≤ β < 2,

N(1 + logN) for β = 2,

Nβ/2 for β > 2,

(5.19)

∑
k∈N

(ρkhk)
−1 �

⎧⎪⎨
⎪⎩
N2, for 1 ≤ β < 2,

N2(1 + logN)2, β = 2,

Nβ , for β > 2.
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Proof. For the quasi-uniform mesh on Γint the required estimates follow from
the standard inequalities ρk � hk � N−1/2. Therefore we have to consider only the
near-vertex rhombi and the near-edge trapezia.

Any typical near-vertex rhombus is the image of the unit square [0, 1]2 under an
invertible affine map. Moreover, the mesh on any near-vertex rhombus can be obtained
by applying this affine map to the tensor product mesh with vertices

(
(i/n)β , (j/n)β

)
.

Without loss of generality, we can estimate the quantities (5.19) for this unit square
because mesh-independent constants are not important. In this case, with tj = (j/n)β

we have Δtj = tj − tj−1 	 n−1(j/n)β−1 and so we have

∑
k∈N

hkρ
−1
k 	

n∑
i=1

i∑
j=1

Δti
Δtj

	
n∑

i=1

i∑
j=1

(i/n)β−1

(j/n)β−1

= n2
n∑

i=1

(
i

n

)β−1
1

n

i∑
j=1

(
j

n

)1−β
1

n
	 n2

∫ 1

1/n

sβ−1

∫ s

1/n

t1−β dt ds,

from which the left-hand inequality in (5.19) follows (on recalling that N ∼ n2).
Similarly,

∑
k∈N

(ρkhk)
−1 	

n∑
i=1

n∑
j=1

1

Δti Δtj
	

n∑
i=1

i∑
j=1

n2

(
i

n

)1−β(
j

n

)1−β

	 n4
n∑

i=1

(
i

n

)1−β
1

n

i∑
j=1

(
j

n

)1−β
1

n
	 n4

∫ 1

1/n

s1−β

∫ s

1/n

t1−β dt ds,

from which the right-hand inequality in (5.19) follows.
The meshes on the near-edge trapezia can be obtained as images of the unit square

under a nonsingular bilinear map, meshed with the tensor-product mesh
(
i/n, (j/n)β

)
,

and the estimates (5.19) are then obtained analogously to those above.
The following theorems now follow by combining Corollary 5.4 with Lemma 5.6.
Theorem 5.7. Consider the weakly singular boundary integral equation (2.1) on

the polygon Γ discretized as in Example 5.5. Then for conforming boundary elements
of any degree in H̃−1/2(Γ) and with the nodal basis introduced in section 3,

1. the Galerkin matrix B satisfies the spectral bounds λmax(B) � N−1 and
λmin(B) � N−3β/2, and

2. the diagonally scaled Galerkin matrix B′ satisfies

λmax(B
′) �

⎧⎪⎨
⎪⎩
N1/2 for 1 ≤ β < 2,

N1/2(1 + logN)1/2 for β = 2,

Nβ/4 for β > 2,

and λmin(B′) � N−(β−1)/4.

Proof. Elementary estimates for the meshes in Example 5.5 yield, for each k ∈ N ,

N−β/2 � ρk ≤ hk � N−1/2.(5.20)

We apply Corollary 5.4 with m = −1/2. The bounds for λmax(B) and λmin(B)
and the lower bound for λmin(B′) follow immediately from (5.20), whereas the upper
bound for λmax(B

′) follows from Lemma 5.6.
Theorem 5.8. Consider the hypersingular boundary integral equation (2.3) on

the polygonal screen Γ discretized as in Example 5.5. For conforming boundary ele-
ments of any degree in H̃1/2(Γ) and with the nodal basis introduced in section 3,
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1. the Galerkin matrix B satisfies the spectral bounds λmax(B) � N−1/2 and

λmin(B) �

⎧⎪⎨
⎪⎩
N−1 for 1 ≤ β < 2,

N−1(1 + logN)−1 for β = 2,

N−β/2 for β > 2,

2. the diagonally scaled Galerkin matrix B′ satisfies λmax(B
′) � N (β−1)/4 and

λmin(B′) �

⎧⎪⎨
⎪⎩
N−1/2 for 1 ≤ β < 2,

N−1/2(1 + logN)−1/2 for β = 2,

N−β/4 for β > 2.

Proof. Note that the condition that the finite element space is H̃1/2(Γ)-conforming
implies that it must be chosen from the class {v ∈ S�

1(P) : v|∂Γ = 0} for some  ≥ 1.
We apply Corollary 5.4 with m = 1/2. The upper bounds for λmax(B) and

λmax(B
′) follow immediately from (5.20), whereas the lower bounds follow from

Lemma 5.6.

6. Numerical experiments. In this section we report some numerical experi-
ments with the integral equations from section 2 on the square screen (2.5), with the
power-graded meshes (2.8).

First we consider the weakly singular equation discretized using piecewise-constant
basis functions. For β = 2 and β = 3, Tables 1 and 2 show the extremal eigenval-
ues and the condition numbers of B and of B′. From one row of the table to the
next, the number of subintervals along each axis doubles, so the number of degrees
of freedom N increases by a factor of 4. For each of the six quantities under in-
vestigation, the left-hand column shows the quantity itself whereas the right-hand
column gives the apparent exponent μ such that the quantity is proportional to Nμ.
(To compute μ, we simply divide the logarithm of the ratio of successive values by
log 4.) The observed exponent values indicate that the estimates of Theorem 5.7 are
sharp for B but not for B′. However, the improved spectral bounds for B′, proved

Table 1

Weakly singular integral equation (2.1) on the screen (2.5) with β = 2.

N λmax(B) λmin(B) cond(B)

64 9.89E-02 -0.896 7.54E-05 -2.991 1.31E+03 2.095
256 2.57E-02 -0.973 1.18E-06 -3.000 2.18E+04 2.026

1024 6.48E-03 -0.993 1.84E-08 -3.000 3.52E+05 2.007
4096 1.62E-03 -0.998 2.88E-10 -3.000 5.64E+06 2.002

16384 4.06E-04 -1.000 4.50E-12 -3.000 9.03E+07 2.000

Theorem 5.7 � N−1 � N−3 � N2

N λmax(B′) λmin(B′) cond(B′)

64 7.09E+00 0.477 3.53E-01 -0.060 2.01E+01 0.537
256 1.40E+01 0.492 3.20E-01 -0.071 4.38E+01 0.563

1024 2.79E+01 0.497 2.71E-01 -0.121 1.03E+02 0.618
4096 5.58E+01 0.499 2.31E-01 -0.115 2.42E+02 0.615

16384 1.12E+02 0.500 1.99E-01 -0.105 5.59E+02 0.605

Theorem 5.7 � N1/2(1 + logN)1/2 � N−1/4 � N3/4(1 + logN)1/2

Theorem 7.4 � N1/2(1 + logN)1/2 � (1 + logN)−1 � N1/2(1 + logN)3/2
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Table 2

Weakly singular integral equation (2.1) on the screen (2.5) with β = 3.

N λmax(B) λmin(B) cond(B)

64 1.78E-01 -0.755 1.28E-06 -4.496 1.39E+05 3.741
256 4.90E-02 -0.932 2.50E-09 -4.500 1.96E+07 3.568

1024 1.26E-02 -0.982 4.89E-12 -4.500 2.57E+09 3.518
4096 3.16E-03 -0.995 9.54E-15 -4.500 3.31E+11 3.505

16384 7.91E-04 -0.999 1.86E-17 -4.500 4.25E+13 3.502

Theorem 5.7 � N−1 � N−9/2 � N7/2

N λmax(B′) λmin(B′) cond(B′)

64 6.43E+00 0.463 3.25E-01 -0.096 1.98E+01 0.559
256 1.26E+01 0.488 2.45E-01 -0.204 5.16E+01 0.692

1024 2.51E+01 0.496 1.86E-01 -0.200 1.35E+02 0.696
4096 5.02E+01 0.499 1.48E-01 -0.165 3.39E+02 0.663

16384 1.00E+02 0.499 1.22E-01 -0.137 8.21E+02 0.637

Theorem 5.7 � N3/4 � N−1/2 � N5/4

Theorem 7.4 � N1/2(1 + logN)2 � (1 + logN)−1 � N1/2(1 + logN)3

later in Theorem 7.4, appear to be sharp up to logarithmic factors. We remark that
β = 3 gives the optimal convergence rate O(N−3) for the capacitance of Γ, when
piecewise constant elements are used (see, e.g., [6]).

Our second experiment is for the hypersingular equation discretized using contin-
uous piecewise-bilinear basis functions. Tables 3 and 4 give our results for β = 2 and
β = 3, which indicate that the estimates in Theorem 5.8 are (essentially) sharp for B
but not for B′. However, the improved spectral bounds for B′, proved later in The-
orem 7.5, appear to be sharp up to logarithmic factors.

Table 3

Hypersingular integral equation (2.3) on the screen (2.5) with β = 2.

N λmax(B) λmin(B) cond(B)

49 1.00E-01 -0.342 2.27E-02 -0.798 4.41E+00 0.456
225 5.78E-02 -0.397 5.69E-03 -1.000 1.02E+01 0.602
961 3.14E-02 -0.440 1.42E-03 -1.000 2.21E+01 0.560

3969 1.65E-02 -0.465 3.56E-04 -1.000 4.63E+01 0.535
16129 8.49E-03 -0.479 8.89E-05 -1.000 9.54E+01 0.521

Theorem 5.8 � N−1/2 � N−1(1 + logN)−1 � N1/2(1 + logN)

N λmax(B′) λmin(B′) cond(B′)

49 1.64E+00 0.156 5.97E-01 0.055 2.74E+00 0.101
225 1.84E+00 0.084 4.28E-01 -0.240 4.29E+00 0.323
961 1.94E+00 0.041 2.18E-01 -0.487 8.92E+00 0.528

3969 1.99E+00 0.018 1.09E-01 -0.497 1.82E+01 0.515
16129 2.02E+00 0.008 5.48E-02 -0.499 3.68E+01 0.508

Theorem 5.8 � N1/4 � N−1/2(1 + logN)−1/2 � N3/4(1 + logN)1/2

Theorem 7.5 � 1 � N−1/2(1 + logN)−1/2 � N1/2(1 + logN)1/2
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Table 4

Hypersingular integral equation (2.3) on the screen (2.5) with β = 3.

N λmax(B) λmin(B) cond(B)

49 1.38E-01 -0.348 1.52E-02 -1.189 9.12E+00 0.840
225 8.47E-02 -0.354 1.90E-03 -1.500 4.47E+01 1.146
961 4.72E-02 -0.422 2.37E-04 -1.500 1.99E+02 1.078

3969 2.51E-02 -0.456 2.96E-05 -1.500 8.46E+02 1.044
16129 1.30E-02 -0.473 3.70E-06 -1.500 3.51E+03 1.027

Theorem 5.8 � N−1/2 � N−3/2 � N

N λmax(B′) λmin(B′) cond(B′)

49 1.68E+00 0.104 5.40E-01 0.043 3.11E+00 0.061
225 1.87E+00 0.078 4.30E-01 -0.165 4.36E+00 0.243
961 1.96E+00 0.033 2.72E-01 -0.330 7.21E+00 0.363

3969 2.00E+00 0.015 1.37E-01 -0.494 1.46E+01 0.509
16129 2.02E+00 0.006 6.87E-02 -0.498 2.94E+01 0.505

Theorem 5.8 � N1/2 � N−1/2(1 + logN)−2 � N(1 + logN)2

Theorem 7.5 � 1 � N−1/2(1 + logN)−2 � N1/2(1 + logN)2

The remainder of the paper is devoted to explaining our numerical results for B′.

7. Sharper results for special cases.

7.1. Improved spectral bounds for B′. For each of the model problems of
section 2, the observed rate of growth for cond(B′) is slower than the rate predicted by
the results proved in section 5 if the mesh grading is sufficiently strong, more precisely,
if β > 2. However, the next lemma leads to bounds that are sharp to within loga-
rithmic factors for λmax(B

′) (weakly singular case) and for λmin(B′) (hypersingular
case). Recall that γ denotes the perimeter of the open surface Γ.

Lemma 7.1. Let dk = supx∈Γk
dist(x, γ) and assume that dmin := mink∈N dk is

sufficiently small.
1. For the weakly singular boundary integral equation (2.1) on an open surface

discretized with conforming finite elements of any degree in H̃−1/2(Γ),

λmax(B
′) �

(
log

1

dmin

)2

max
j∈N

dj
ρj

.

2. For the hypersingular boundary integral equation (2.3) on an open surface

discretized with conforming finite elements of any degree in H̃1/2(Γ),

λmin(B′) �
(

log
1

dmin

)−2

min
j∈N

ρj
dj

.

Proof. First we prove part 2. Let v ∈ X ⊂ H̃1/2(Γ) and decompose v as in (5.1).
Taking p = 2 in (5.17) we have

‖vk‖2
H̃m(Γ)

≤ ρ−2m
k ‖v‖2

L2(Γk) for 0 ≤ m ≤ 1 and 0 ≤ 2m < d.(7.1)

Now define w(x) by w(x) = dist(x, γ). It can be shown [9, Lemma 3.32] that

‖vw−s‖2
L2(Γ) =

∫
Γ

w(x)−2sv(x)2 dx � 1

( 1
2 − s)2

‖v‖2
Hs(Γ) for 1

4 ≤ s < 1
2 ,(7.2)
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where the hidden constant is independent of s ∈ [ 14 ,
1
2 ). Since w(x) � dk for x ∈ Γk,

using (7.1) with m = 1/2, we obtain

‖vk‖2
H̃1/2(Γ)

� ρ−1
k ‖v‖2

L2(Γk) � ρ−1
k ‖(dk/w)sv‖2

L2(Γk) =
d2s
k

ρk
‖vw−s‖2

L2(Γk), s > 0.

Hence, using (7.2), we have

∑
k∈N

‖vk‖2
H̃1/2(Γ)

�
(

max
j∈N

d2s
j

ρj

) ∑
k∈N

‖vw−s‖2
L2(Γk)

�
(

max
j∈N

d2s
j

ρj

)
‖vw−s‖2

L2(Γ) � 1

( 1
2 − s)2

(
max
j∈N

d2s
j

ρj

)
‖v‖2

Hs(Γ),

where the hidden constants are independent of s ∈ [ 14 ,
1
2 ). Now with ε := (log 1/dmin)−1,

it follows that d−2ε
j � 1 for all j ∈ N . Hence putting s = 1

2 − ε, we obtain

∑
k∈N

‖vk‖2
H̃1/2(Γ)

�
(

log
1

dmin

)2(
max
j∈N

dj
ρj

)
‖v‖2

H1/2(Γ).

The estimate in part 2 follows at once.

To prove part 1, we apply a duality argument. Suppose 1
4 ≤ s < 1

2 . Then applying
Cauchy–Schwarz together with (7.2) we obtain

∣∣〈v, ψ〉L2(Γ)

∣∣= ∣∣〈vws, ψw−s〉L2(Γ)

∣∣�‖vws‖L2(Γ)‖ψw−s‖L2(Γ) �
1

1
2−s

‖vws‖L2(Γ)‖ψ‖Hs(Γ),

and hence ‖v‖
H̃−s(Γ)

� ( 1
2 − s)−1‖vws‖L2(Γ). Recalling (5.1) and (5.4), this implies

that

‖v‖2
H̃−1/2(Γ)

� ‖v‖2
H̃−s(Γ)

� ( 1
2 − s)−2‖vws‖2

L2(Γ) � ( 1
2 − s)−2

∑
k∈N

‖vkws‖2
L2(Γ).

(7.3)

Taking p = 2 in Theorem 4.2(i), and then using Theorem 4.2(iii) and (3.2), we see
that

‖vkws‖2
L2(Γ) � d2s

k α2
k‖φk‖2

L2(Γ) 	
d2s
k

ρk
α2
k|Γk|ρk

� d2s
k

ρk
α2
k‖φk‖2

H̃−1/2(Γ)
=

d2s
k

ρk
‖vk‖2

H̃−1/2(Γ)
, where αk = v(xk).(7.4)

So, combining (7.3) and (7.4) and putting s = 1
2 −ε with ε = (log 1/dmin)−1, as above,

we obtain

‖v‖2
H̃−1/2(Γ)

�
(

log
1

dmin

)2(
max
j∈N

dj
ρj

) ∑
k∈N

‖vk‖2
H̃−1/2(Γ)

,

which proves part 1.
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7.2. Improved bounds for Φm,k. For the rest of the paper, we restrict our
attention to piecewise-constant and continuous piecewise-bilinear basis functions on
power-graded tensor-product meshes as defined in section 2.2.

We saw in (5.7) that Φm,k � 1 if −1 ≤ m ≤ 0. The next lemma gives a sharp
two-sided bound for the special case that occurs in our numerical experiments.

Lemma 7.2. For the piecewise-constant nodal basis on a rectangular mesh,

1 � Φ−1/2,k � 1

1 + log(hk/ρk)
.

Proof. We may assume without loss of generality that Γk = [−hk/2, hk/2] ×
[−ρk/2, ρk/2]. For brevity we omit the subscript k for the remainder of the proof.
Define the one-dimensional (1D) piecewise-constant basis function

ψ(x, h) =

{
1 for −h/2 < x < h/2,

0 otherwise,

and write the tensor-product basis function as φ(x) = ψ(x1, h)ψ(x2, ρ). Recalling
(5.7), we see that the result will follow from the upper bound

‖φ‖2
H̃−1/2(Γ)

� hρ2

(
1 + log

h

ρ

)
.(7.5)

Denote the 2D Fourier transform of φ by

φ̂(ξ) =

∫
R2

e−i2πξ·xφ(x) dx = ψ̂(ξ1, h)ψ̂(ξ2, ρ),

where ψ̂, the 1D Fourier transform of ψ, is given by

ψ̂(ξ1, h) =

∫ h/2

−h/2

e−i2πξ1x1 dx1 = h sinc(ξ1h), sinc(z) =

⎧⎨
⎩

sinπz

πz
, z �= 0,

1, z = 0.

Note that |ψ̂(ξ, h)| ≤ min(h, |ξ|−1). We have the norm equivalence

‖φ‖2
H̃−1/2(Γ)

= ‖φ‖2
H̃−1/2(R2)

	
∫

R2

(1 + |ξ|2)−1/2|φ̂(ξ)|2 dξ

=

∫ ∞

−∞
|ψ̂(ξ1, h)|2

∫ ∞

−∞
(1 + ξ2

1 + ξ2
2)−1/2|ψ̂(ξ2, ρ)|2 dξ2 dξ1

=: I1 + I2 + I3 + I4 + I5,

with

I1 =

∫
−∞<ξ1<∞
|ξ2|>ρ−1

, I2 =

∫
|ξ1|<h−1

|ξ2|<h−1

, I3 =

∫
|ξ1|<h−1

h−1<|ξ2|<ρ−1

,

I4 =

∫
|ξ1|>h−1

|ξ2|<h−1

, I5 =

∫
|ξ1|>h−1

h−1<|ξ2|<ρ−1

.

By Plancherel’s theorem,

I1 ≤
∫ ∞

−∞
|ψ̂(ξ1, h)|2 dξ1

∫
|ξ2|>ρ−1

|ξ2|−1|ψ̂(ξ2, ρ)|2 dξ2

≤ 2

∫ ∞

−∞
|ψ(x1, h)|2 dx1

∫ ∞

ρ−1

ξ−3
2 dξ2 = hρ2.
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Using polar coordinates we find that

I2≤
∫ h−1

−h−1

h2

∫ h−1

−h−1

(1+ξ2
1 +ξ2

2)−1/2ρ2 dξ2 dξ1≤h2ρ2

∫ h−1
√

2

0

(1+r2)−1/22πr dr≤2π
√

2hρ2,

and simple estimation gives

I3 ≤ 4

∫ h−1

0

h2 dξ1

∫ ρ−1

h−1

ξ−1
2 ρ2 dξ2 = 4hρ2

∫ ρ−1

h−1

dξ2
ξ2

= 4hρ2 log
h

ρ
,

I4 ≤ 4

∫ ∞

h−1

ξ−2
1

∫ h−1

0

ξ−1
1 ρ2 dξ2 dξ1 = 4h−1ρ2

∫ ∞

h−1

ξ−3
1 dξ1 = 2hρ2,

I5 ≤ 4

∫ ∞

h−1

ξ−2
1 dξ1

∫ ρ−1

h−1

ξ−1
2 ρ2 dξ2 = 4hρ2 log

h

ρ
.

Lemma 7.3. Let Γ be the square screen (2.5). For the continuous, piecewise-
bilinear nodal basis on the power-graded mesh with vertices defined by (2.8), we have

Φm,k 	 1 for 0 ≤ m ≤ 1.

Proof. Without loss of generality, we may assume that xk is the origin and that
Γk = [−h−, h+]× [−ρ−, ρ+] with h± 	 hk and ρ± 	 ρk. We define the 1D continuous,
piecewise-linear basis function on the interval (−h−, h+),

ψ(x, h+, h−) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 +
x

h−
for −h− < x < 0,

1 − x

h+
for 0 < x < h+,

0 otherwise,

and write the bilinear basis function on Γk by φ(x) = ψ(x1, h+, h−)ψ(x2, ρ+, ρ−).
Recalling (5.8), we see that the result will follow from the lower bound

‖φ‖2
H̃m(Γ)

� hρ1−2m.(7.6)

Since ‖φ‖2
L2(Γ) 	 hρ and |φ|2H1(Γ) 	 hρ(h−2 + ρ−2), the cases m = 0 and m = 1 are

obvious. If 0 < m < 1, then we use the norm equivalence

‖φ‖2
H̃m(Γ)

= ‖φ‖2
H̃m(R2)

	
∫

R2

(1 + |ξ|2)m|φ̂(ξ)|2 dξ,

where

φ̂(ξ) = ψ̂(ξ1, h+, h−)ψ̂(ξ2, ρ+, ρ−)

and

ψ̂(ξ, h+, h−) =
1

(2πξ)2

{
1 − ei2πξh−

h−
+

1 − e−i2πξh+

h+

}
.

Since (1 + |ξ|2)m ≥ |ξ2|2m we see that

‖φ‖2
H̃m(R2)

�
∫

R2

|ξ2|2m|φ̂(ξ)|2 dξ=

∫ ∞

−∞

∣∣ψ̂(ξ1, h+, h−)
∣∣2 dξ1∫ ∞

−∞
|ξ2|2m

∣∣ψ̂(ξ2, ρ+, ρ−)
∣∣2 dξ2,

(7.7)
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and by Plancherel’s theorem,∫ ∞

−∞

∣∣ψ̂(ξ1, h+, h−)
∣∣2 dξ1 =

∫ ∞

−∞

∣∣ψ(x1, h+, h−)
∣∣2 dx1 =

h+ + h−
3

.(7.8)

Now define h = (h+ + h−)/2, Δh = (h+ − h−)/2, ρ = (ρ+ + ρ−)/2, and Δρ =
(ρ+ − ρ−)/2, so that h± = h±Δh and ρ± = ρ±Δρ. Using the substitution ξ2 = t/ρ
in (7.7), we see that

‖φ‖2
H̃m(R2)

�h

∫ ∞

−∞
|t/ρ|2m

∣∣ψ̂(t/ρ, ρ+, ρ−)
∣∣2 dt

ρ
= hρ1−2m

∫ ∞

−∞
|t|2m

∣∣ρ−1ψ̂(t/ρ, ρ+, ρ−)
∣∣2 dt.

Putting ε = Δρ/ρ = (ρ+ − ρ−)/(ρ+ + ρ−) ∈ (−1, 1), a simple calculation gives

ρ−1ψ̂(t/ρ, ρ+, ρ−) = (1 − ε)f+[(1 − ε)t] + (1 + ε)f−[(1 + ε)t], where f±(t) =
1 − e±i2πt

(2πt)2
.

Since f±(t) = ∓i/(2πt) + O(1) as t → 0 and f±(t) = O(t−2) as t → ∞, the integral

I(ε) =

∫ ∞

−∞
|t|2m

∣∣ρ−1ψ̂(t/ρ, ρ+, ρ−)
∣∣2 dt

is analytic for |ε| < 1, and (since ρ− = ρ+ = ρ when ε = 0) we have

I(0) =

∫ ∞

−∞
|t|2m

(
sinπt

πt

)4

dt 	 1 for 0 ≤ m ≤ 1.

The lower bound (7.6) follows for 0 < m < 1 because maxk∈N εk → 0 as N →
∞.

7.3. Sharper versions of the theorems in section 5.
Theorem 7.4. Consider the weakly singular boundary integral equation (2.1) on

the square screen (2.5). Then for piecewise-constant nodal basis functions with the
mesh (2.8),

λmax(B
′) � N1/2 ×

⎧⎪⎨
⎪⎩

1 if 1 ≤ β < 2,

(1 + logN)1/2 if β = 2,

(1 + logN)2 if β > 2,

and

λmin(B′) �
{

1 if β = 1,

(1 + logN)−1 if β > 1.

Proof. Note that dmin (defined in Lemma 7.1) satisfies dmin = n−β 	 N−β/2.
Note also that

max
k∈N

dk
ρk

= max
1≤j≤n/2

tj
Δtj

	 max
1≤j≤n/2

(j/n)β

n−1(j/n)β−1
= max

1≤j≤n/2
j 	 n 	 N1/2.(7.9)

Hence, from part 1 of Lemma 7.1 we obtain

λmax(B
′) � N1/2(1 + logN)2 for all β ≥ 1.
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We can combine this with Theorem 5.7 to obtain the required bounds on λmax(B
′).

The proof is completed by using Lemmas 5.1 and 7.2 to obtain

λmin(B′) � min
k∈N

Φ−1/2,k 	 1

1 + log(n−1/n−β)
	 1

1 + (β − 1) log n

	
{

1 for β = 1,

(1 + logN)−1 for β > 1.

Theorem 7.5. Consider the hypersingular boundary integral equation (2.3) on
the square screen (2.5). Then with conforming piecewise bilinear nodal basis functions
on the mesh (2.8),

λmax(B
′) � 1 and λmin(B′) � N−1/2 ×

⎧⎪⎨
⎪⎩

1 for 1 ≤ β < 2,

(1 + logN)−1/2 for β = 2,

(1 + logN)−2 for β > 2.

Proof. Lemmas 5.1 and 7.3 imply that λmax(B
′) � maxk∈N Φ1/2,j � 1. For

β > 2 we sharpen the bound in Theorem 5.8 by using part 2 of Lemma 7.1. In
fact, dmin 	 n−β 	 N−β/2 and, by (7.9), mink∈N ρk/dk 	 N−1/2. Hence λmin(B′) �
N−1/2/(1 + logN)2, completing the proof.

8. Numerical experiments with a different family of meshes. To con-
clude, we present some numerical results for the weakly singular equation (2.1) over
the nonconvex, polygonal screen

Γ = (−1, 1)2 \ ([0, 1] × [−1, 0]).(8.1)

The meshes are constructed by a pseudoadaptive procedure that starts with a uniform
mesh and then selectively bisects elements so that the relation between hK , ρK and
the distance to the nearest edge or corner is equivalent to that for a power-graded
mesh with a chosen grading exponent β ≥ 1. For simplicity, we grade only into the
edges and vertex of the re-entrant corner; i.e., we ignore the other four edges and
five corners. Figure 3 shows a typical mesh. Strictly speaking, our theory does not

Fig. 3. Anisotropic mesh on nonconvex screen, produced by a pseudoadaptive procedure, N =
488, β = 3.
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Table 5

Weakly singular integral equation (2.1) on the nonconvex screen (8.1) with β = 2.

N λmax(B) λmin(B) cond(B)

73 2.82E-01 9.15E-04 3.08E+02
296 7.15E-02 -0.981 1.43E-05 -2.971 5.00E+03 1.990

1185 1.79E-02 -0.999 2.23E-07 -2.998 8.01E+04 1.999
4743 4.47E-03 -0.999 3.49E-09 -2.999 1.28E+06 1.999

18958 1.12E-03 -1.000 5.46E-11 -3.002 2.05E+07 2.001

Expected � N−1 � N−3 � N2

N λmax(B′) λmin(B′) cond(B′)

73 8.40E+00 3.61E-01 2.33E+01
296 1.67E+01 0.491 3.11E-01 -0.106 5.37E+01 0.597

1185 3.33E+01 0.497 2.67E-01 -0.111 1.25E+02 0.608
4743 6.65E+01 0.499 2.30E-01 -0.108 2.89E+02 0.607

18958 1.33E+02 0.500 2.00E-01 -0.101 6.65E+02 0.601

Expected � N1/2(1 + logN)1/2 � (1 + logN)−1 � N1/2(1 + logN)3/2

Table 6

Weakly singular integral equation (2.1) on the nonconvex screen (8.1) with β = 3.

N λmax(B) λmin(B) cond(B)

111 2.81E-01 1.44E-05 1.95E+04
488 6.66E-02 -0.972 2.82E-08 -4.213 2.37E+06 3.241

2017 1.67E-02 -0.976 5.50E-11 -4.396 3.03E+08 3.421
8095 4.21E-03 -0.991 1.07E-13 -4.489 3.92E+10 3.499

Expected � N−1 � N−9/2 � N7/2

N λmax(B′) λmin(B′) cond(B′)

111 1.03E+01 2.72E-01 3.78E+01
488 2.12E+01 0.489 2.04E-01 -0.194 1.04E+02 0.683

2017 4.29E+01 0.497 1.60E-01 -0.169 2.67E+02 0.666
8095 8.75E+01 0.498 1.31E-01 -0.145 6.53E+02 0.643

Expected � N1/2(1 + logN)2 � (1 + logN)−1 � N1/2(1 + logN)3

cover this example because we require conforming meshes, although in practical terms
there is no need to enforce any interelement continuity condition at the hanging nodes
because we use discontinuous (piecewise-constant) nodal basis functions. Tables 5 and
6 give our numerical results using meshes with β = 2 and β = 3. The asymptotic
behavior of the extremal eigenvalues and the condition numbers is essentially the same
as we observed previously, in Tables 1 and 2, for simple tensor-product, power-graded
meshes on a square screen with the same choices of β.
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[10] J. C. Nédélec, Integral equations with non-integrable kernels, Integral Equations Operator
Theory, 4 (1982), pp. 563–572.

[11] T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder—Singularitäten
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Abstract. Preconditioned conjugate gradient methods based on two-level overlapping Schwarz
methods often perform quite well. Such a preconditioner combines a coarse space solver with local
components which are defined in terms of subregions that form an overlapping covering of the region
on which the elliptic problem is defined. Precise bounds on the rate of convergence of such iterative
methods have previously been obtained in the case of conforming lower order and spectral finite
elements as well as in a number of other cases. In this paper, this domain decomposition algorithm
and analysis are extended to mortar finite elements. It is established that the condition number of
the relevant iteration operator is independent of the number of subregions and varies with the relative
overlap between neighboring subregions linearly as in the conforming cases previously considered.

Key words. domain decomposition, elliptic finite element problems, preconditioned conjugate
gradients, mortar finite elements, overlapping Schwarz algorithms
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1. Introduction. In this paper, the well-known two-level Schwarz method (see,
e.g., [15, Chap. 3]) is extended to mortar finite element methods. Mortar finite element
methods were first introduced in [7]. They are nonconforming finite element methods
based on a partitioning, not necessarily geometrically conforming, of the region Ω into
substructures Ωi. Thus, in three dimensions, vertices and edges of one substructure
can fall in the interior of edges and/or faces of its neighbors and in two dimensions
vertices can divide edges of neighboring substructures. In each of the substructures,
we choose a conforming standard finite element or a spectral element method without
much regard for its neighbors. Even if the substructures are geometrically conforming,
e.g., when the set of substructures forms a regular finite element triangulation, the
local finite element meshes need not. We can also use spectral finite element spaces
of different order in different substructures, and we can mix finite elements and spec-
tral elements as well. In this paper, we will work out a theory only for the case of
piecewise linear mortar finite elements; we treat both the more conventional mortar
finite elements and those introduced by Wohlmuth [16, 17].

We note that Achdou and Maday have considered a related problem in [1]. How-
ever, in their paper, the principal issue is to establish the convergence and best possible
error bounds for finite element methods based on overlapping subdomains. Typically,
the meshes in the regions common to two or more overlapping subdomains do not
match, and mortar conditions are used to introduce a weak continuity between the
boundary values of one component of the finite element solution and the interior val-
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ues of different components along the boundary of the first subdomain. In the final
subsection of their paper a convergence result similar to ours, and that for standard
conforming elements, is formulated and established. We note that in our paper, we
instead consider overlapping Schwarz methods for the standard mortar methods. For
references to earlier work by Cai, Dryja, and Sarkis, which is related to Achdou’s and
Maday’s work, see the reference section of [1].

Finally, a word about the history of this project. The second author worked on
algorithms of this kind almost ten years ago; the work was then not completed, but
some results were presented in a talk at the 1996 ECCOMAS conference in Paris.
The basic idea of using three independent decompositions of the region, including
one for a conforming finite element space on a regular coarse grid, was inspired by a
paper by Chan, Smith, and Zou [9]. Around the same time, Dan Stefanica conducted
numerical experiments which demonstrated that there is very little difference in the
performance of the two-level overlapping Schwarz method for a mortar case and a
regular conforming finite element case if the subdomains and the overlap are chosen
similarly. The work then lay dormant until it recently was reexamined by the present
authors; many details have now been added and a more complete theory has now
been developed.

2. The elliptic problem and mortar finite element methods. To simplify
the notation, we consider only Poisson’s equation. As usual, we formulate our elliptic
problem as follows: find u ∈ V, such that

a(u, v) =

∫
Ω

∇u · ∇v dx = f(v) ∀v ∈ V.(2.1)

The definition of V ⊂ H1(Ω) incorporates the boundary conditions, and the region
Ω is assumed to be bounded and polyhedral; a homogeneous Dirichlet condition is
imposed on a nonempty subset ∂ΩD of the boundary ∂Ω of Ω and a natural boundary
condition is given on ∂ΩN = ∂Ω\∂ΩD. (Inhomogeneous Neumann boundary data can
be incorporated into the right-hand side of (2.1).) It is well known that the bilinear
form a(·, ·) is self-adjoint, elliptic, and bounded in V × V. Our analysis is equally
valid for two and three dimensions. The bilinear form a(u, v) is directly related to the
Sobolev space H1(Ω) that is defined by the seminorm and norm

|u|2H1(Ω) = a(u, u) and ‖u‖2
H1(Ω) = |u|2H1(Ω) + ‖u‖2

L2(Ω),

respectively.
The discretization of an elliptic, second order problem starts by partitioning the

computational domain Ω into a union of nonoverlapping substructures, {Ωi}Ii=1, and
an interface Γ, defined by (∪i �=j∂Ωi ∩ ∂Ωj)\∂ΩD, which is a set of points that belong
to the boundaries of at least two substructures. The restriction to an individual sub-
structure Ωi, of the mortar finite element space considered in detail in this paper, will
just be a standard piecewise linear finite element space defined on a quasi-uniform
mesh. The meshes of two neighboring substructures do not necessarily match on their
common interface, and the elements of the discrete space V h are typically discontin-
uous across the interface Γ. Instead of pointwise continuity, the interface jumps are
made orthogonal to a carefully chosen space of trial functions. In our work, we pri-
marily consider the second generation mortar element methods for which continuity is
not even imposed at the vertices or wire baskets (the union of the edges and vertices)
of the substructures. Even if the meshes match across the interface between adjacent
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substructures, the mortar finite element functions will not, generally, be pointwise
continuous.

This weak continuity is introduced in terms of a set of mortars {γm}Mm=1 obtained
by selecting open edges/faces of the substructures such that

Γ = ∪M
m=1γm, γm ∩ γn = ∅ if m 
= n.

Each edge/face and mortar γm is viewed as belonging to just one substructure. The
remaining edges/faces are the nonmortars and are denoted by δn. The restrictions
of the triangulations of the different substructures to the mortars and nonmortars
typically will not match and are denoted by γh

m and δhn, respectively; discontinuous
mortar finite element functions have two different traces on the interface Γ given by
one-sided limits of finite element functions defined on the individual substructures.
The continuity across the interface of a conforming finite element method is replaced
by weak continuity across the individual nonmortars: for each n, we define a space of
test functions M(δn) given by the restriction, to the nonmortar δn, of the finite element
space defined on the substructure of which δn is an edge/face. In two dimensions, the
elements of M(δn) are subject to the constraints that they are constant in the first and
last mesh intervals of δhn. In three dimensions, the value of a test function of M(δn)
at a node on ∂δn is given by a fixed convex combination of nodal values at its next
neighbors in δn; cf. Belgacem and Maday [5]. We will call this the standard Lagrange
multiplier space. In the spectral case, we would use as test functions polynomials of
a degree two less.

Lagrange multiplier spaces with dual bases have been developed by Wohlmuth [16,
17]. Each basis function associated with these Lagrange multiplier spaces is supported
on a few mesh intervals just as for the standard Lagrange multiplier spaces. They
are discontinuous and lead to a diagonal matrix instead of the mass matrix appearing
in the standard mortar matching condition. Our algorithm and our proofs can be
applied both to the standard and dual Lagrange multiplier spaces, and M(δn) can
therefore represent either the standard or the dual Lagrange multiplier space.

In this paper, we consider partitions {Ωi}Ii=1, where the Ωi are geometrically
nonconforming. We assume that {Ωi}Ii=1 form a regular partition of Ω, i.e., the size
of Ωi is comparable to that of its neighboring substructures. We will impose some
assumptions on the meshes and the Lagrange multiplier space M(δn). A nonmortar
δn ⊂ ∂Ωi can be partitioned into several edges/faces {δn,j}j by mortar neighbors
Ωm(n,j) with boundaries which intersect ∂Ωi along δn,j , i.e., δn,j = ∂Ωm(n,j) ∩ ∂Ωi.
We will use the following assumptions on the meshes and the Lagrange multiplier
space in some of our work.

Assumption 1. Each subpartition δn,j of a nonmortar is the union of entire
elements.

Assumption 2. The Lagrange multiplier space M(δn,j) are defined on each
edge/face of the partition δn,j individually. Standard or dual Lagrange multiplier
spaces are thus given on each δn,j which inherits the triangulation from δhn. The
Lagrange multiplier space M(δn) on δn is then defined by

M(δn) =
∏
δn,j

M(δn,j).

With these assumptions, mortar methods provide a best approximation even for
geometrically nonconforming partitions. Without them, an additional factor |log(h)|
will appear in the error bound; see [2]. See also [3, 4, 5, 7], where error bounds of
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the same type as for standard conforming methods are derived. We will first analyze
two-level overlapping Schwarz algorithms for mortar methods under Assumptions 1
and 2 and later derive a slightly weaker result after removing these assumptions.

The mortar projection πn maps all of L2(δn) onto the finite element space defined
on the nonmortar mesh δhn. For two dimensions and for a given w ∈ L2(δn) with given
values at vn1

and vn2
, the endpoints of δn, we define πn(w,w(n)(vn1

), w(n)(vn2
)) on

δhn by ∫
δn

(w − πn(w,w(n)(vn1), w
(n)(vn2)))ψds = 0 ∀ψ ∈ M(δn).(2.2)

We note that only the values at the interior nodes of δn are determined by this con-
dition; the values w(n)(vn1) and w(n)(vn2

) are genuine degrees of freedom. Similarly,
for three dimensions, the values in the interior of δn are determined not only by the
values on the part of Γ opposite the nonmortar, but also by the nodal values on ∂δn.

As when working with other nonconforming methods, the original bilinear form
a(·, ·) is replaced by aΓ(·, ·) defined as the sum of the contributions from the individual
substructures to a(·, ·):

aΓ(uh, vh) =

I∑
i=1

aΩi(uh, vh).(2.3)

For uh = vh, we obtain the square of what is often called a broken norm. The norm
has been broken along Γ and it is finite for any element of the mortar space even if
it is discontinuous across Γ. The resulting discrete variational problem gives rise to a
linear system with a symmetric, positive definite matrix.

After these preparations, the mortar finite element space V h, and the problem as
a whole, can be fully defined. The discrete problem is then the following: find u ∈ V h

such that

aΓ(u, v) = fΓ(v) ∀v ∈ V h,(2.4)

where aΓ(u, v) is defined in (2.3) and, similarly, fΓ(v) is the sum of contributions
from the different substructures.

3. The Dryja–Widlund algorithm. We now describe the additive Schwarz
method introduced in Dryja and Widlund [10]; cf. also Smith, Bjørstad, and Gropp [14,
Chap. 5] and, for many details, Toselli and Widlund [15, Chap. 3]. This additive
Schwarz method for an overlapping subdomain partition performs quite well even for
partitions with small overlap as first established in Dryja and Widlund [11]. The con-
dition number bound given in [11] has also been proven to be optimal by Brenner [8].
We now use two additional decompositions of the region Ω, in addition to the set of
substructures {Ωi}, used to define the mortar finite element problem, namely, a set of

overlapping subregions {Ω̃j} and an independent coarse mesh {τHl }. Let Xh
i be the

finite element space on the substructure Ωi equipped with a quasi-uniform triangu-
lation T h(Ωi). Throughout this paper, we will impose the following assumptions on
these partitions.

Assumption 3. The diameter Hi of a substructure Ωi is comparable to the
diameter H of any triangle τHl that intersects it.

Assumption 4. The diameter Hi of a substructure Ωi satisfies

Hi ≤ CH̃j ,
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where H̃j is the diameter of any subregion Ω̃j that intersects it.
Assumption 5. The mesh sizes of the substructures that intersect along a com-

mon edge/face are comparable.

The Ω̃j can be quite arbitrary; a local subspace Vj will be associated with each
of them, essentially by making all genuine degrees of freedom associated with nodes
outside Ω̃j equal to zero. More precisely, the space Vj is given by

Vj =

{
v ∈

I∏
i=1

Xh
i : v(x) = 0 for x ∈ Ω \ Ω̃j , or x ∈ δn

}
, j = 1, . . . , N,

where δn denotes any nonmortar edges/faces. The space V0 is V H , the space of
continuous, piecewise linear functions on an independent coarse mesh given by its
elements τHl . We further impose zero Dirichlet conditions, on the elements of Vj , on

∂Ω̃j ∩ ∂ΩD and on the elements of V0, on ∂ΩD.
We note that the overlap can be quite small. Thus, if no degrees of freedom

are shared between neighboring subregions, the overlap is on the order of h, the
diameter of the elements of the fine discretization. Our analysis applies in this case as
well, in which case our Schwarz method corresponds to a block Jacobi preconditioner
augmented by a coarse solver.

It is now appropriate essentially to follow the description and analysis of Schwarz
methods given in Smith, Bjørstad, and Gropp [14] and Toselli and Widlund [15]. Our
iterative method is given in terms of N + l finite element spaces V h

j , j = 0, . . . , N,
which are subspaces of V h and are associated with the space Vj :

V h
j = Im(Vj).

The interpolation operator Im :
∏I

i=1 C(Ωi) → V h is defined by

Im(u) =

I∑
i=1

(
Ihi (u) +

∑
δn⊂∂Ωi

π̃n

(
Ihm(δn)(u) − Ihi (u)

))
,(3.1)

where Ihi (u) is the nodal value interpolant in the space Xh
i and π̃n(w) is the zero

extension of πn(w) to Ωi. Here πn(w) denotes πn(w, 0, 0); see (2.2). (In the following,
we will use the simple notation πn(w) instead of πn(w, 0, 0).) It has been shown that
πn(w) is L2-stable but not H1-stable; see [17, Chap. 1]. We recall that δn denotes
a nonmortar edge/face of ∂Ωi and that {δn,j}j is the partition of δn described in
section 2, i.e., δn,j = ∂Ωm(n,j) ∩ ∂Ωi. The interpolant Ihm(δn)(u) is defined by

Ihm(δn)(u) = Ihm(n,j)(u) on δn,j ,

and it can thus be discontinuous across the boundaries of δn,j . The mortar finite
element space V h can then be represented as the sum

V h = V h
0 + V h

1 + · · · + V h
N .(3.2)

Remark 1. The local spaces {V h
j }Nj=1, in which our Schwarz algorithm will be

considered, consist of functions defined on the whole domain Ω, and not just on the
subregion Ω̃j , as in the standard Schwarz algorithms described in [15, Chap. 3]. There-
fore the trivial extension operator from V h

j to V h will not appear in our algorithm.
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We note that the support of each function in V h
j is contained in the union of the

substructures Ωi that intersect the subregion Ω̃j .
It is often more economical to use approximate rather than exact solvers for

the subspace problems. The approximate solvers can be described in terms of inner
products ãj(·, ·) defined on V h

j × V h
j . One assumption that needs to be checked for

each of them is the existence of a constant ω such that

aΓ(u, u) ≤ ωãj(u, u) ∀u ∈ V h
j .(3.3)

In terms of matrices, this inequality becomes a one-sided bound of a submatrix of the
stiffness matrix, given by aΓ(·, ·) and V h

j , in terms of the matrix given by ãj(·, ·).
A projection-like operator Tj : V h → V h

j is now defined for each j by

ãj(Tju, φh) = aΓ(u, φh) ∀φh ∈ V h
j .(3.4)

It is easy to show that the operator Tj is positive semidefinite and symmetric with
respect to aΓ(·, ·) and that the minimal constant ω in (3.3) is ‖Tj‖a, i.e.,

‖Tj‖a ≤ ω;(3.5)

see [15, Chap. 2]. Additive and multiplicative Schwarz methods can now be defined
straightforwardly in terms of polynomials of the operators Tj . We note that if exact
solvers, and thus genuine projections Pj , are used, then ω = 1. The operator relevant
to an additive Schwarz operator is T =

∑N
j=0 Tj . In the case of no coarse space and

the local spaces forming a direct sum, this operator is a block-Jacobi operator, with
one block for each subspace.

In order to estimate the rate of convergence of our special, or any other, additive
Schwarz methods, we need upper and lower bounds for the spectrum of the operator
relevant in the conjugate gradient iteration. A lower bound can be obtained by using
the following lemma; see, e.g., Zhang [18], Smith, Bjørstad, and Gropp [14], or Toselli
and Widlund [15, Chap. 2].

Lemma 1. Let Tj be the operators defined in (3.4) and let T = T0 +T1 + · · ·+TN .
Then

a(T−1u, u) = min
u=
∑

uj

∑
ãj(uj , uj), uj ∈ V h

j .

Therefore, if a representation, u =
∑

uj , can be found, such that∑
ãj(uj , uj) ≤ C2

0a(u, u) ∀u ∈ V h,

then

λmin(T ) ≥ C−2
0 .

For the algorithms considered in this paper, and many other domain decompo-
sition algorithms, it is easy to show that there is an upper bound for T which is
proportional to ω.

In this paper, our results are formulated only for additive algorithms and with
exact solvers for the subdomain problems. The corresponding bounds for the multi-
plicative variants, etc., can easily be worked out using the general Schwarz theory;
see, e.g., Smith, Bjørstad, and Gropp [14] or Toselli and Widlund [15, Chap. 2].
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Ω

Ω∼ j

i
Γi,δ

Ωi,δ

Ω∼ ,j δ
δ

Fig. 1. The substructure Ωi intersects the subregion Ω̃j (interior of the dashed circle); Ω̃j,δ

(the part between the dashed and the solid circles) is the support of ∇θj , Ωi,δ is the part of Ω̃j,δ

which belongs to Ωi, and Γi,δ is a part of the boundary of Ωi,δ that divides Ωi into two parts.

4. The lower bound. We will find a lower bound of the two-level Schwarz
algorithm. A stable decomposition of u =

∑N
j=0 uj will be provided with

C2
0 = C max

j=1,...,N
{(1 + Hj/δj)} .

Here Hj is the diameter of the subregion Ω̃j and δj is the overlapping width of Ω̃j ,

i.e., the minimal width of the subset of Ω̃j which is common to some neighbors, and C
is a constant independent of the mesh sizes, the subregion diameters, and the number
of subregions; see Figure 1. We first assume that the five assumptions hold and later
derive a bound for C2

0 with an additional log(H/h) factor for the general case for
which Assumptions 1 and 2 are removed.

4.1. Technical tools. In this section, we will collect a number of technical tools
that are used in proving our main results. Some of the tools can be borrowed directly
from Toselli and Widlund [15, Chap. 3], but some work also needs to be done that is
directly related to the mortar finite element method.

As before, Ω ⊂ Rd, d = 2 or 3, is a bounded, polygonal region, {Ωi}Ii=1 is a
nonoverlapping decomposition of Ω into substructures, and {Ω̃j}Nj=1 that of a set
of overlapping subregions. Let {θ̃j}Nj=1 be a partition of unity for the overlapping
partition {Ω̃j}Nj=1 of Ω, with the following properties (see, e.g., [15, sect. 3.2]):

0 ≤ θ̃j(x) ≤ 1, x ∈ Ω̃j ,

supp (θ̃j) ⊂ Ω̃j ,

N∑
j=1

θ̃j = 1,

|∇θ̃j | ≤
C

δj
.

We will employ a modified partition of unity θj obtained by interpolating θ̃j on the
triangulations {T h(Ωi)}Ii=1. The θj will be discontinuous across substructure inter-
faces. However, we can easily check that the modified partition of unity {θj}Nj=1 has

the same properties as {θ̃j}Nj=1 when restricted to any substructure Ωi because these

properties hold for each elements of {T h(Ωi)}Ii=1.
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We now consider the case in Figure 1. The substructure Ωi intersects the subre-
gion Ω̃j . We denote the support of ∇θj by Ω̃j,δ and the intersection of Ωi and Ω̃j,δ

by Ωi,δ. As in Figure 1, we select Γi,δ as a part of the boundary of Ωi,δ that divides
the domain Ωi into two parts. We will prove the following lemma, which is similar to
[15, Lem. 3.10].

Lemma 2. Let u be an arbitrary element of H1(Ωi). Then

‖u‖2
L2(Ωi,δ)

≤ C δ2
(
(1 + Hi/δ)|u|2H1(Ωi)

+ 1/(Hiδ)‖u‖2
L2(Ωi)

)
,

where Hi denotes the diameter of Ωi and δ is the overlapping width of Ω̃j, a subregion
that intersects Ωi.

Proof. Let us cover Ωi,δ by shape-regular patches {Pl}l with O(δ) diameters. We
may assume that the Pl,Γ (:= ∂Pl∩Γi,δ) have positive measure. By using a Friedrichs
inequality (see Toselli and Widlund [15, Lem. A.17]) for each patch Pl and summing
over all patches, we obtain

‖u‖2
L2(Ωi,δ)

≤ C
(
δ2|u|2H1(Ωi,δ)

+ δ‖u‖2
L2(Γi,δ)

)
.(4.1)

From the embedding H1/2(Γi,δ) ⊂ L2(Γi,δ), a trace theorem, and a scaling argument,
we obtain

‖u‖2
L2(Γi,δ)

= Hd−1
i ‖û‖2

L2(Γ̂i,δ)

≤ CHd−1
i ‖û‖2

H1/2(Γ̂i,δ)

≤ CHd−1
i ‖û‖2

H1(Ω̂i,1)

= CHd−1
i

(
|û|2

H1(Ω̂i)
+ ‖û‖2

L2(Ω̂i)

)
= CHd−1

i

(
H2−d

i |u|2H1(Ωi)
+ H−d

i ‖u‖2
L2(Ωi)

)
.

Here the hat designates a dilated domain with diameter 1 or a function defined on
the scaled domain, and Ωi,1 is a part of Ωi divided by Γi,δ. By combining the above
estimate with (4.1), the desired bound follows.

We also have the following generalized Poincaré–Friedrichs inequality (see Nečas
[13]).

Lemma 3. Let Φ be a seminorm on H1(Ω) with the following properties:
(1) Φ(φ) ≤ C1‖φ‖1,Ω ∀φ ∈ H1(Ω).
(2) For a constant function c, Φ(c) = 0 iff c = 0.

Then we have a generalized Poincaré–Friedrichs inequality for H1(Ω),

‖φ‖0,Ω ≤ CHd/2
(
H(2−d)/2|φ|1,Ω + Hk(Φ)Φ(φ)

)
∀φ ∈ H1(Ω),

where d is the dimension of the domain Ω, H is the diameter of Ω, and the constant
C is independent of H; Φ(φ) is homogeneous of degree k(Φ), i.e., k(Φ) is the real
number which makes Hk(Φ)Φ(φ) invariant to scaling.

A prime example is provided by

Φ(φ) =

∣∣∣∣
∫
γ

φds

∣∣∣∣ ∀φ ∈ H1(Ω).
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Then the two assumptions of Lemma 3 hold for Φ(φ) and the application of the
Poincaré–Friedrichs inequality for φ with a zero average on γ, i.e., Φ(φ) = 0, gives

‖φ‖0,Ω ≤ CH|φ|1,Ω.(4.2)

We will now consider two cases. In the first, the meshes and Lagrange multipliers
satisfy Assumptions 1 and 2 on the nonconformity of the subdomain partition {Ωi}Ii=1.
In the second, we will drop these assumptions. In the latter case, the Lagrange
multiplier space M(δn) is then a standard or dual Lagrange multiplier space defined on
the triangulation δhn, without partitioning it into {δn,j}j . The following approximation
properties hold for both the standard and the dual Lagrange multiplier spaces; see
[7, 12, 17].

Lemma 4. Let 0 < α ≤ 1/2. For v ∈ Hα(δn,j), there exists a ψ ∈ M(δn,j) such
that

‖v − ψ‖0,δn,j ≤ Chα|v|Hα(δn,j),

where h denotes the diameter of the elements of the nonmortar δn.
Lemma 5. Let 0 < α ≤ 1/2. For v ∈ Hα(δn), there exists ψ ∈ M(δn) such that

‖v − ψ‖(Hα(δn))′ ≤ Ch2α|v|Hα(δn),

where h denotes the diameter of the nonmortar elements and (Hα(δn))′ is the dual
space of Hα(δn).

Lemma 6. Let the meshes and Lagrange multiplier spaces satisfy Assumptions 1
and 2. Then, for v = (v1, . . . , vI) ∈ V h, we have

‖vi − vj‖0,δn,j
≤ Ch

1/2
i

(
|vi|1,Ωi

+ |vj |1,Ωj

)
,

where Ωi and Ωj are the nonmortar and mortar substructures of the interface δn,j =
∂Ωi ∩ ∂Ωj.

Proof. We have

‖vi − vj‖2
0,δn,j

=

∫
δn,j

(vi − vj)(vi − vj − ψ) ds

≤ ‖vi − vj‖0,δn,j
‖vi − vj − ψ‖0,δn,j

.

This inequality holds for an arbitrary ψ ∈ M(δn,j). Applying Lemma 4 with α = 1/2
and a trace theorem, we obtain

min
ψ∈Mδn,j

‖vi − vj − ψ‖0,δn,j ≤ Ch
1/2
i

(
|vi|1,Ωi + |vj |1,Ωj

)
.

We now consider a general case without the extra Assumptions 1 and 2 on the
meshes and Lagrange multiplier spaces. The set of nonmortars {δn}n is selected from
the edges/faces of the subdomain partition, and the Lagrange multiplier spaces M(δn)
are defined on the finite elements associated with the nonmortar interfaces δn. We
recall that any nonmortar edge/face δn ⊂ ∂Ωi is partitioned into

δn = ∪jδn,j , δn,j = δn ∩ ∂Ωnj .

The mortar matching condition is then∫
δn

(vi(n) − φ)ψ ds = 0 ∀ψ ∈ M(δn),(4.3)
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where φ is given by φ = vnj
on δn,j . We see that φ ∈ H1/2−ε(δn) for any 0 < ε ≤ 1/2.

Moreover the following estimate holds for φ; see [6].
Lemma 7. Let each subdomain Ωnj

be scaled by Hi, the diameter of the subdomain
Ωi. Then, for any 0 < ε ≤ 1/2, we have

√
ε‖φ‖H1/2−ε(δn) ≤ C

∑
j

‖vnj
‖1,Ωnj

,

where φ is given by φ = vnj on δn ∩ ∂Ωnj
.

In the general case, without Assumptions 1 and 2, the space V h consists of func-
tions v = (v1, . . . , vI) satisfying the mortar matching condition (4.3) on each nonmor-
tar edge/face δn. Let us denote by {ψl}l a basis for the Lagrange multiplier space
Mh(δn). We also select {ψjk}k from {ψl}l such that supp (ψjk) ⊂ δn,j (= δn∩∂Ωnj ),
and set ψn,j =

∑
k ψjk ; we assume that at least one such ψjk exists for every δn,j .

We will then show that the L2-norm of the jump across δn is bounded by the sum
of H1-seminorms of the functions on the subdomains Ωk for which ∂Ωk intersects δn
with a positive measure.

Lemma 8. Let δn ⊂ ∂Ωi be a nonmortar edge/face. For the general case, without
Assumptions 1 and 2, we have

‖vi − φ‖0,δn ≤ Ch
1/2
i

(
log

Hi

hi

)1/2
⎛
⎝|vi|1,Ωi

+
∑
j

|vnj
|1,Ωnj

⎞
⎠

for v = (v1, . . . , vI) ∈ V h, where φ is given by φ = vnj on δn,j.
Proof. We first dilate Ωi and Ωnj so that the diameter of Ωi is 1. The tri-

angles/tetrahedra of each subdomain are then also scaled by the diameter Hi. We
obtain

‖vi − φ‖2
0,δn =

∫
δn

(vi − φ)(vi − φ− ψ) ds

≤ ‖vi − φ‖H1/2−ε(δn)‖vi − φ− ψ‖(H1/2−ε(δn))′

≤ C‖vi − φ‖H1/2−ε(δn)h
2(1/2−ε)
i |vi − φ|H1/2−ε(δn)

≤ Ch1−2ε
i ‖vi − φ‖2

H1/2−ε(δn).(4.4)

Here ψ ∈ M(δn) is the best approximation and hi is the scaled mesh size. We have also
used the mortar matching condition and Lemma 5 for the function vi−φ ∈ H1/2−ε(δn).

We now define

ṽi = vi − cij , φ̃ = vnj − cij on δn,j ,

where

cij =

∫
δn,j

viψn,j ds∫
δn,j

ψn,j ds
=

∫
δn,j

vnj
ψn,j ds∫

δn,j
ψn,j ds

.

The equality above holds because of the mortar matching condition for v = (v1, . . . , vI)
∈ V h and the fact that the function ψn,j ∈ Mh(δn) is supported in δn,j . We also have

ṽi − φ̃ = vi − φ in L2(δn), ṽi − φ̃ ∈ H1/2−ε(δn).
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From these properties and by applying (4.4) to ṽi − φ̃i, we obtain

‖vi − φ‖2
0,δn ≤ Ch1−2ε

i ‖ṽi − φ̃‖2
H1/2−ε(δn).

Applying Lemma 7 to ṽi and φ̃ gives

‖vi − φ‖0,δn ≤ Ch
1/2−ε
i ε−1/2

∑
j

(
‖vi − cij‖1,Ωi

+ ‖vnj
− cij‖1,Ωnj

)
.

Let

Φij(w) =

∣∣∣∣∣
∫
δn,j

wψn,j ds

∣∣∣∣∣ .
Since ψn,j is bounded from above by a constant, independent of the mesh parameters,
and

∫
δn,j

ψn,j ds > 0, Φij(w) satisfies the two properties of Lemma 3; positivity of the

integral also holds for the dual Lagrange multiplier case. By applying Lemma 3 to
vi − cij and vnj − cij , with the seminorm Φij , we obtain

‖vi − cij‖1,Ωi
≤ C|vi|1,Ωi

, ‖vnj
− cij‖1,Ωnj

≤ C|vnj
|1,Ωnj

.

Therefore,

‖vi − φ‖0,δn ≤ Ch
1/2−ε
i ε−1/2

⎛
⎝|vi|1,Ωi +

∑
j

|vnj |1,Ωnj

⎞
⎠ .

Letting ε = 1/| log hi| gives log(h−ε
i ) = 1 and results in the bound

‖vi − φ‖0,δn ≤ Ch
1/2
i |loghi|1/2

⎛
⎝|vi|1,Ωi +

∑
j

|vnj |1,Ωnj

⎞
⎠ .(4.5)

By considering the scaling, we find

‖v‖0,δn = H
(d−1)/2
i ‖v̂‖0,δ̂n

, |v|1,Ωi
= H

(d−2)/2
i |v̂|1,Ω̂i

.(4.6)

Here δ̂n and Ω̂i denote the scaled domains and v̂ denotes the function defined on the
scaled set δ̂n or Ω̂i. We then obtain

‖vi − φ‖0,δn = H
(d−1)/2
i ‖v̂i − φ̂‖0,δ̂n

≤ CH
(d−1)/2
i ĥ

1/2
i | log ĥi|1/2

⎛
⎝|v̂i|1,Ω̂i

+
∑
j

|v̂nj
|1,Ω̂nj

⎞
⎠

≤ CH
(d−1)/2
i H

−(d−2)/2
i ĥ

1/2
i | log ĥi|1/2

⎛
⎝|vi|1,Ωi

+
∑
j

|vnj
|1,Ωnj

⎞
⎠

≤ CH
1/2
i

(
hi

Hi

)1/2(
log

Hi

hi

)1/2
⎛
⎝|vi|1,Ωi

+
∑
j

|vnj
|1,Ωnj

⎞
⎠ .

Here we have used (4.5), (4.6) and that ĥi = hi/Hi.
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4.2. The stability of a certain interpolation operator. Let IH : V h → V H

be a stable quasi interpolant in both the H1- and L2-norms in the following sense:

I∑
i=1

|IHu|21,Ωi
≤ C

I∑
i=1

|u|21,Ωi
,

I∑
i=1

1

H2
i

‖u− IHu‖2
0,Ωi

≤ C

I∑
i=1

|u|21,Ωi
,

where Hi denotes the diameter of Ωi. We then obtain the same bound for u0 =
Im(IHu).

Lemma 9. Let u0 = Im(IHu) for u ∈ V h. Then u0 satisfies

I∑
i=1

|u0|21,Ωi
≤ C

I∑
i=1

|u|1,Ωi ,

I∑
i=1

1

H2
i

‖u− u0‖2
0,Ωi

≤ C

I∑
i=1

|u|21,Ωi
.

Proof. We find, using (3.1), that

|u0|21,Ωi
≤ C

{
|Ihi (IHu)|21,Ωi

+
∑

δn⊂∂Ωi

∣∣∣π̃n

(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∣∣∣2

1,Ωi

}
.

From the H1-stability of the nodal value interpolant Ihi for functions in V H (see [15,
Lem. 3.8]), the first term above is bounded by

|Ihi (IHu)|21,Ωi
≤ C|IHu|21,Ωi

.(4.7)

We estimate the second term by∣∣∣π̃n

(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∣∣∣2

1,Ωi

≤ Ch−1
i

∥∥∥πn

(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥2

0,δn
(4.8)

≤ Ch−1
i

{
‖Ihm(δn)(I

Hu) − IHu‖2
0,δn + ‖Ihi (IHu) − IHu‖2

0,δn

}

≤ Ch−1
i

⎧⎨
⎩ ∑

δn,j⊂δn

hm(n,j)|IHu|21,Ωm(n,j)
+ hi|IHu|21,Ωi

⎫⎬
⎭ ,(4.9)

where δn,j = ∂Ωm(n,j) ∩ ∂Ωi. We have used an inverse inequality, the stability of πn

in L2(δn), and the approximation property of the nodal value interpolation operator
for IHu ∈ V H provided by [15, Lem. 3.8]. Adding (4.7) and (4.9) over all nonmortar
sides and subdomains and using Assumption 5 and the H1-stability of the coarse
interpolation operator IH , we obtain

I∑
i=1

|u0|21,Ωi
≤ C

I∑
i=1

|u|21,Ωi
.



1526 HYEA HYUN KIM AND OLOF B. WIDLUND

We now estimate

‖u− u0‖2
0,Ωi

≤ C

{∥∥u− Ihi (IHu)
∥∥2

0,Ωi
+
∑

δn⊂∂Ωi

∥∥∥π̃n

(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥2

0,Ωi

}
.(4.10)

The first term is bounded by

‖u− Ihi (IHu)‖2
0,Ωi

≤ 2‖u− IHu‖2
0,Ωi

+ 2‖Ihi (IHu) − IHu‖2
0,Ωi

≤ C
{
‖u− IHu‖2

0,Ωi
+ h2

i |IHu|21,Ωi

}
.

By using (4.8) and (4.9), we bound the second term of (4.10) as follows:∥∥∥π̃n

(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥2

0,Ωi

≤ Chi

∥∥∥πn

(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥2

0,δn

≤ C

⎛
⎝h2

i |IHu|21,Ωi
+
∑

δn,j⊂δn

hihm(n,j)|IHu|21,Ωm(n,j)

⎞
⎠

≤ C

⎛
⎝H2

i |IHu|21,Ωi
+
∑

δn,j⊂δn

H2
m(n,j)|IHu|21,Ωm(n,j)

⎞
⎠ .

In (4.10), summing the second term over the nonmortar sides gives

‖u− u0‖2
0,Ωi

≤ C

⎛
⎝‖u− IHu‖2

0,Ωi
+
∑

δn⊂∂Ωi

∑
|∂Ωl∩δn|>0

H2
l |IHu|21,Ωl

⎞
⎠ .

From the assumption that the diameter of Ωi is comparable to those of its neighbors
Ωl, a coloring argument, and the L2- and H1-stability of the interpolation IHu, we
obtain the second bound of the lemma.

We now introduce our coarse interpolation operator IH : V h → V H . Let K be a
triangle/tetrahedron in the coarse triangulation of Ω. Each vertex yl of the triangle
belongs to at least one substructure Ωk (or to ∂Ωk) of the nonoverlapping partition.
We denote the subdomain containing the vertex yl by Ωl. The set wK is the union
of the elements in TH , the boundary of which intersects the boundary of the given
element K. We consider a case as in Figure 2. The interpolation is defined by the
values

(IHu)(yl) =
1

|wyl
|

∫
wyl

u dx,

where wyl
= wK ∩ Ωl and |wyl

| denotes the volume of wyl
. In the following, we show

that this coarse interpolation operator is stable in both the H1- and L2-norms.
Lemma 10. The coarse interpolant IH : V h → V H satisfies

I∑
i=1

1

H2
i

‖u− IHu‖2
0,Ωi

≤ C

I∑
i=1

|u|21,Ωi
,

I∑
i=1

|IHu|21,Ωi
≤ C

I∑
i=1

|u|21,Ωi
.
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Fig. 2. The region wK divided by a geometrically nonconforming subdomain partition.

Proof. We first estimate

‖IHu‖2
0,K ≤ C

3∑
l=1

|(IHu)(yl)|2‖φl‖2
0,K ≤ C

3∑
l=1

‖u(x)‖2
0,wyl

|K|
|wyl

| ,(4.11)

where φl is the nodal basis function of the vertex yl of the coarse triangle K. In
general, we can have more than one subdomain Ωk which intersects K and does not
contain any vertices of K. For simplicity, we assume that we have only one such
subdomain and denote it by Ω4 (see Figure 2).

Let us denote by cl the average of u over the subdomain Ωl, and by Kl the
common part of K and Ωl, and let

cl =
1

|Ωl|

∫
Ωl

u dx, Kl = K ∩ Ωl ∀ l = 1, . . . , 4.(4.12)

We then obtain

‖u− IHu‖2
0,K = ‖u− c1 − IH(u− c1)‖2

0,K

≤ 2‖u− c1‖2
0,K + 2‖IH(u− c1)‖2

0,K

≤ C

{
‖u− c1‖2

0,K +

3∑
l=1

‖u− c1‖2
0,wyl

|K|
|wyl

|

}
(4.13)

≤ C

{
3∑

l=1

‖u− c1‖2
0,wyl

+ ‖u− c1‖2
0,K4

}
.(4.14)

Here we have used the identity IH(c1) = c1, the estimate (4.11), and the fact that
the factor |K|/|wyl

| is bounded from above independently of any mesh parameters.
From the Poincaré inequality and Assumption 3, we have

‖u− cl‖2
0,wyl

≤ CH2
K |u|21,Ωl

, l = 1, 2, 3.

We now consider

‖u− c1‖2
0,wy2

≤ 2‖u− c2‖2
0,wy2

+ 2‖c2 − c1‖2
0,wy2

.

Let

c12 =
1

|Γ12|

∫
Γ12

u|Ω1 ds =
1

|Γ12|

∫
Γ12

u|Ω2 ds,
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where Γ12 is the common edge/face of Ω1 and Ω2. The identity follows from the
mortar matching condition for the function u. We then have

‖c2 − c1‖2
0,wy2

≤ C
{
|c2 − c12|2 + |c1 − c12|2

}
|wy2 |.

The first term in the above equation is written as

c2 − c12 =
1

|Ω2|

∫
Ω2

u2 dx− 1

|Γ12|

∫
Γ12

u2 ds

=
1

|Ω2|

∫
Ω2

(
u2 −

1

|Γ12|

∫
Γ12

u2 ds

)
dx,

where u2 = u|Ω2
. Let

ũ2 = u2 −
1

|Γ12|

∫
Γ12

u2.

Applying the Poincaré inequality to ũ2 and using the Hölder inequality, we obtain

|c2 − c12|2 ≤ CH2−d
2 |u|21,Ω2

.

Similarly, we obtain

|c1 − c12|2 ≤ CH2−d
1 |u|21,Ω1

.

We then have

‖c2 − c1‖2
0,wy2

≤ CH2
K(|u|21,Ω1

+ |u|21,Ω2
).

Here we have used that |wy2 | ≤ Hd
K for d = 2, 3 and Assumption 3. The estimate of

the remaining terms in (4.14) can be done similarly and gives

‖u− IHu‖2
0,K ≤ CH2

K

4∑
l=1

|u|21,Ωl
.(4.15)

By summing the above inequality over all K which intersect Ωi, we obtain

1

H2
i

‖u− IHu‖2
0,Ωi

≤ 1

H2
i

∑
K∩Ωi �=∅

‖u− IHu‖2
0,K

≤ C
1

H2
i

∑
K∩Ωi �=∅

H2
K

⎛
⎝ ∑

Ωl∩K �=∅
|u|21,Ωl

⎞
⎠ .

The fact that the Hi is comparable to HK and a coloring argument give the first
estimate of the lemma. We note that we also have the following estimate from (4.13)
and (4.15):

‖u− c1‖2
0,K ≤ CH2

K

4∑
l=1

|u|1,Ωl
.(4.16)
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We now estimate

|IHu|21,K = |IHu− c1|21,K
≤ CH−2

K ‖IHu− c1‖2
0,K

≤ CH−2
K

(
‖IHu− u‖2

0,K + ‖u− c1‖2
0,K

)
,

where c1 is the constant defined in (4.12). We have used an inverse inequality. By
using (4.15) and (4.16), we obtain

|IHu|21,K ≤ C

4∑
l=1

|u|21,Ωl
.

The second estimate of the lemma follows by summing the above term over all triangles
K and a coloring argument.

Remark 2. For the general case, without Assumptions 1 and 2, we choose

c12 =

∫
Γ12

u|Ω1ψ12 ds∫
Γ12

ψ12 ds
=

∫
Γ12

u|Ω2ψ12 ds∫
Γ12

ψ12 ds
,

where ψ12 is the sum of the basis functions for Mh(δn) that are supported in Γ12.
The identity holds for u ∈ V h. The arguments in the proof of Lemma 10 can also be
applied to this general case and give the same bounds.

Lemma 11. Under Assumptions 1 and 2, and for u ∈ V h, there exists a stable
decomposition

u = u0 + u1 + · · · + uN

such that

N∑
i=0

aΓ(ui, ui) ≤ C max
i=1,...,N

{(
1 +

Hi

δi

)}
aΓ(u, u),

where Hi and δi denote the diameter of the subregion Ω̃i and the overlapping width of
Ω̃i.

Proof. We take u0 = Im(IH(u)) using the interpolants Im and IH provided in
Lemmas 9 and 10. We then define

ui = Im(ũi), ũi = θi(u− u0) for i = 1, . . . , N.

From u− u0 ∈ V h and
∑N

i=1 θi = 1, we see that

u− u0 = Im(u− u0) =

N∑
i=1

ui.

The function ui is supported as in Figure 3 and can be written as

ui = Im(ũi) =

6∑
l=1

⎛
⎝Ihkl

(ũi) +
∑

δn⊂∂Ωkl

π̃δn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)⎞⎠ .
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Ωk1
Ωk2

Ωk3

Ωk5

Ωk
Ωk4

6

~Ωi

nδ

Fig. 3. Nonconforming subdomain partition: mortar sides of interfaces (black bars), support

of the functions ui ∈ V h
i (= Im(Vi)) corresponding to the overlapping subdomain Ω̃i (interior of the

dotted line); the subdomain Ωk3
meets Ωk1

and Ωk5
along the nonmortar interface δn.

Here Ihm(δn)(ũi), on δn in Figure 3, is given by

Ihm(δn)(ũi) =

{
Ihk1

(ũi) on δn,1 = ∂Ωk1
∩ δn,

Ihk5
(ũi) on δn,5 = ∂Ωk5 ∩ δn.

We will now prove that

N∑
i=1

aΓ(ui, ui) ≤ C max
i=1,...,N

{(
1 +

Hi

δi

)}
aΓ(u, u).

The required bound then follows by combining with Lemma 9. We consider

aΓ(ui, ui) =

6∑
l=1

|ui|21,Ωkl

=

6∑
l=1

∣∣∣∣∣∣Ihkl
(ũi) +

∑
δn⊂∂Ωkl

π̃δn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)∣∣∣∣∣∣

2

1,Ωkl

.(4.17)

We note that ũi|Ωkl
is a continuous and piecewise quadratic function defined on

Th(Ωkl
). From [15, Lem. 3.9], we have

|Ihkl
(ũi)|21,Ωkl

≤ C|ũi|21,Ωkl
.(4.18)

For the second term of (4.17), we obtain

∣∣∣π̃δn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)∣∣∣2

1,Ωkl

≤ Ch−2
kl

hkl

∥∥∥πδn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)∥∥∥2

0,δn

≤ Ch−1
kl

∥∥∥Ihm(δn)(ũi) − Ihkl
(ũi)
∥∥∥2

0,δn
.(4.19)

Here we have used an inverse inequality, the quasi uniformity of the triangulation
in the subdomain Ωkl

, and the L2-continuity of the mortar projection πδn . We now
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consider the term ‖Ihm(δn)(ũi) − Ihkl
(ũi)‖2

0,δn
for δn and l = 3 in Figure 3:

∥∥∥Ihm(δn)(ũi) − Ihk3
(ũi)
∥∥∥2

0,δn

=
∥∥Ihk1

(ũi) − Ihk3
(ũi)
∥∥2

0,δn,1
+
∥∥Ihk5

(ũi) − Ihk3
(ũi)
∥∥2

0,δn,5

≤ C
(∥∥Ihk1

(ũi) − ũi|Ωk1

∥∥2
0,δn,1

+
∥∥Ihk3

(ũi) − ũi|Ωk3

∥∥2
0,δn,1

+
∥∥ũi|Ωk1

− ũi|Ωk3

∥∥2
0,δn,1

+
∥∥Ihk5

(ũi) − ũi|Ωk5

∥∥2
0,δn,5

+
∥∥Ihk3

(ũi) − ũi|Ωk3

∥∥2
0,δn,5

+
∥∥ũi|Ωk5

− ũi|Ωk3

∥∥2
0,δn,5

)
,

where δn,j = ∂Ωkj ∩ ∂Ωk3 for j = 1, 5.

Let w = u− u0. We now consider

‖ũi|Ωk1
− ũi|Ωk3

‖2
0,δn,1

= ‖Ihk1
(θ̃i)w|Ωk1

− Ihk3
(θ̃i)w|Ωk3

‖2
0,δn,1

≤ C

⎛
⎝∑

l=1,3

‖(Ihkl
(θ̃i) − θ̃i)w|Ωkl

‖2
0,δn,1

+ ‖θ̃i(w|Ωk1
− w|Ωk3

)‖2
0,δn,1

⎞
⎠ .(4.20)

Using the approximation property of the nodal value interpolant, ‖∇θ̃i‖∞ ≤ C/δi,
and a trace theorem, the first term above can be estimated:

‖(Ihkl
(θ̃i) − θ̃i)w|Ωkl

‖2
0,δn,1

≤ ‖Ihkl
(θ̃i) − θ̃i‖2

0,δn,1
‖w|Ωkl

‖2
0,δn,1

≤ Chkl
|θ̃i|21,Ωkl

‖w‖2
1,Ωkl

≤ Chkl

1

δ2
i

|Ωkl,δi |‖w‖2
1,Ωkl

,

where |Ωkl,δi | denotes the volume of the set Ωkl,δi , which is the support of ∇θ̃i con-
tained in Ωkl

. In general, we have |Ωk1,δi | ≤ Cδd−1
i Hkl

with d = 2 or 3. Using this,
we obtain

‖(Ihkl
(θ̃i) − θ̃i)w|Ωkl

‖2
0,δn,1

≤ Chkl

(
1 +

Hkl

δi

)(
|w|21,Ωkl

+
1

H2
kl

‖w‖2
0,Ωkl

)
.(4.21)

Using Lemma 6, the second term in (4.20) is bounded by

∥∥∥θ̃i(w|Ωkj
− w|Ωk3

)
∥∥∥2

0,δn,j

(4.22)

≤ C
∥∥∥θ̃i∥∥∥2

∞,δn,j

∥∥∥w|Ωkj
− w|Ωk3

∥∥∥2
0,δn,j

≤ Chk3

(
|w|21,Ωkj

+ |w|21,Ωk3

)
, j = 1, 5.

Combining (4.20) with (4.21) and (4.22), and the approximation property of the
nodal interpolation operators Ihkj

, j = 1, 3, 5, for the functions ũi, which are continu-
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ous and piecewise quadratic on Th(Ωkj
), lead to the following estimate:

∥∥∥Ihm(δn)(ũi) − Ihk3
(ũi)
∥∥∥2

0,δn
≤ Chk3

⎛
⎝ ∑

j=1,3,5

|ũi|21,Ωkj

+

(
1 +

Hi

δi

) ∑
j=1,3,5

(
|w|21,Ωkj

+
1

H2
kj

‖w‖2
0,Ωkj

)⎞⎠ ,

(4.23)

where Hi is the diameter of the subregion Ω̃i. Here we have used Assumptions 4 and
5.

Combining the estimates in (4.23), (4.19), and (4.18) with (4.17), we obtain

aΓ(ui, ui) ≤ C

(∑
l∈Si

|ũi|21,Ωkl
+

(
1 +

Hi

δi

)∑
l∈Si

(
|u− u0|21,Ωkl

+
1

Hkl

‖u− u0‖2
0,Ωkl

))
,

where Si = {l : Ωkl
∩Ω̃i 
= ∅}, the set of indices kl of the substructures which intersect

the subregion Ω̃i. The first term of the above equation is estimated as follows:

|ũi|21,Ωkl
=
∥∥∥∇(θ̃i(u− u0)

)∥∥∥2
0,Ωkl

≤ C

{∫
Ωkl

∣∣∣(u− u0)∇θ̃i

∣∣∣2 dx +

∫
Ωkl

∣∣∣θ̃i∇(u− u0)
∣∣∣2 dx

}

≤ C

{
1

δ2
i

∫
Ωkl,δi

(u− u0)
2 dx + |u− u0|21,Ωkl

}
,

where Ωkl,δi is the support of ∇θ̃i contained in Ωkl
. We then obtain by applying

Lemma 2 to
∫
Ωkl,δi

(u− u0)
2 dx:

1

δ2
i

∫
Ωkl,δi

(u− u0)
2 dx ≤ C

((
1 +

Hkl

δi

)
|u− u0|21,Ωkl

+
1

Hkl
δi
‖u− u0‖2

0,Ωkl

)
.

Using Assumption 4, we have

aΓ(ui, ui) ≤ C

(
1 +

Hi

δi

)(∑
l∈Si

|u− u0|21,Ωkl
+
∑
l∈Si

1

H2
kl

‖u− u0‖2
0,Ωkl

)
.

By summing the above estimate over all the subregions Ω̃i, using a coloring argument
and the estimates in Lemma 9, we obtain

N∑
i=1

aΓ(ui, ui) ≤ C max
i=1,...,N

{(
1 +

Hi

δi

)}( N∑
l=1

|u− u0|21,Ωl
+

N∑
l=1

1

H2
l

‖u− u0‖2
0,Ωl

)

≤ C max
i=1,...,N

{(
1 +

Hi

δi

)}
aΓ(u, u).

Remark 3. In the above lemma, we use Assumption 5, which states that the
mesh sizes are comparable between neighboring subdomains. On any interface of two
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subdomains, denote by hm and hnm the mesh sizes of the mortar subdomain and the
nonmortar subdomain, respectively. If they satisfy

hm ≤ Chnm,(4.24)

then the result of Lemma 11 holds without the assumption of comparable meshes
between neighboring subdomains. However, condition (4.24) is the opposite of the
one considered in previous work on the mortar methods; see [17, sect. 1.5.3].

By combining the bound in Lemma 11 with Lemma 1 and the upper bound (3.5),
we obtain the following condition number bound.

Theorem 1. With Assumptions 1 and 2, the two-level additive algorithm satisfies

κ

(
N∑
i=0

Ti

)
≤ C max

i=1,...,N

{(
1 +

Hi

δi

)}
,

where C depends on the constant ω in (3.5).
For the general case, we bound the term in (4.22) by using Lemma 8:

∑
j=1,5

‖θ̃i(w|Ωkj
− w|Ωk3

)‖2
0,δn,j

≤ Chk3
log

(
Hk3

hk3

) ∑
j=1,3,5

|w|21,Ωkj
.

This gives the bound in the general case:

N∑
i=0

aΓ(ui, ui) ≤ C max
i=1,...,N

{(
1 +

Hi

δi

)
max

Ωkl
∩ supp(V h

i ) �=∅

{
log

(
Hkl

hkl

)}}
aΓ(u, u),

where supp(V h
i ) denotes the support of the functions in the space V h

i . By combin-
ing this bound with Lemma 1 and the upper bound (3.5), we obtain the following
condition number bound.

Theorem 2. Without Assumptions 1 and 2, the two-level additive algorithm
satisfies

κ

(
N∑
i=0

Ti

)
≤ C max

i=1,...,N

{(
1 +

Hi

δi

)
max

Ωkl
∩ supp(V h

i ) �=∅

{
log

(
Hkl

hkl

)}}
,

where C depends on the constant ω in (3.5).
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de Poisson, Ph.D. thesis, Université Pierre et Marie Curie, Paris, Tech. report HI-72/93017,
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J.-L. Lions, eds., Pitman Res. Notes Math. Ser. 299, Longman Scientific, Harlow, 1994, pp.
13–51. This paper appeared as a technical report about five years earlier.

[8] S. C. Brenner, Lower bounds of two-level additive Schwarz preconditioners with small overlap,
SIAM J. Sci. Comput., 21 (2000), pp. 1657–1669.

[9] T. F. Chan, B. F. Smith, and J. Zou, Overlapping Schwarz methods on unstructured meshes
using nonmatching coarse grids, Numer. Math., 73 (1996), pp. 149–167.

[10] M. Dryja and O. B. Widlund, An Additive Variant of the Schwarz Alternating Method for
the Case of Many Subregions, Tech. report 339, also Ultracomputer Note 131, Department
of Computer Science, Courant Institute, New York, 1987.

[11] M. Dryja and O. B. Widlund, Domain decomposition algorithms with small overlap, SIAM
J. Sci. Comput., 15 (1994), pp. 604–620.

[12] C. Kim, R. D. Lazarov, J. E. Pasciak, and P. S. Vassilevski, Multiplier spaces for the
mortar finite element method in three dimensions, SIAM J. Numer. Anal., 39 (2001),
pp. 519–538.
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SUBSPACE TRUST-REGION METHODS FOR LARGE
BOUND-CONSTRAINED NONLINEAR EQUATIONS∗

STEFANIA BELLAVIA† AND BENEDETTA MORINI†

Abstract. Trust-region methods for solving large bound-constrained nonlinear systems are con-
sidered. These allow for spherical or elliptical trust regions where the search for an approximate
solution is restricted to a low-dimensional space. A general formulation for these methods is in-
troduced and global and superlinear/quadratic convergence is shown under standard assumptions.
Viable approaches for implementation in conjunction with Krylov methods are discussed and the
practical performance of the resulting algorithms is shown.

Key words. bound-constrained nonlinear systems, subspace trust-region methods, inexact
Newton step, Krylov subspace methods

AMS subject classifications. 65H10, 65F10, 90C06

DOI. 10.1137/040611951

1. Introduction. A number of applications arising in chemical engineering [18,
21], power engineering [37], and PDE-constrained optimization [4] are naturally stated
as large constrained nonlinear systems. In particular, systems where the variables
are subjected to lower and upper bounds are fairly general because sets of algebraic
equations and inequalities and the Karush–Kuhn–Tucker (KKT) systems can be cast
in such form.

This paper is concerned with the development of a trust-region method for solving
large bound-constrained nonlinear systems

F (x) = 0, x ∈ Ω.(1.1)

Here F : X → R
n is a continuously differentiable mapping, X ⊆ R

n is an open set
containing the feasible region Ω, and Ω is an n-dimensional box, Ω = {x ∈ R

n :
l ≤ x ≤ u}. These inequalities are meant componentwise and l ∈ (R ∪ −∞)n,
u ∈ (R ∪∞)n.

The development of globally convergent methods for large unconstrained nonlin-
ear systems has received a great deal of attention; see, e.g., [2, 6, 7, 15, 23, 26, 27]. The
methods proposed suggest that the search directions employed in the global strategy
might belong to a low-dimensional subspace as such directions may often be com-
puted cheaply. Therefore, they avoid the factorization of the matrices involved and
consider the combination of global strategies such as linesearch techniques and model
trust-region algorithms with Krylov methods. The resulting procedures belong to the
framework of the inexact Newton methods [12].

The main computational effort in trust-region methods is the solution of the so-
called trust-region problem, which is to find the minimizer of some model of the
objective function within a region where the model adequately reflects the objective
function. For small and medium problems, solving the trust-region problem relies on
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matrix factorization. When n is large, several authors have suggested restricting the
search for an approximate solution to such a problem to a low-dimensional subspace.
Thus, the full space trust-region problem is replaced with a subspace trust-region prob-
lem and a large overhead of computing is avoided; see [10] and the references therein.
Proposed approaches include the truncated conjugate gradient method [32, 33], the
truncated Lanczos approach [9, 17], the two-dimensional subspace minimization [5, 8],
and a subspace dogleg method [6, 7].

Numerical methods for problem (1.1) differ from the procedures for unconstrained
nonlinear systems in several respects. They are augmented with strategies that en-
force feasibility of the iterates. In addition, major modifications in the globalization
techniques are necessary. We are aware of the trust-region methods [1, 3, 16, 34, 35]
tailored for small- and medium-size problems and of the procedures [28, 29] appropri-
ate for large systems. Focusing on the approaches for large problems, Qi, Tong, and
Li [28] propose an active set projected trust-region algorithm for bound-constrained
nonlinear systems. As a result of the active set strategy, the trust-region problem may
be of reduced dimension, which is potentially cheaper when the method is applied to
large problems. The method by Qi, Qi, and Sun [29] concerns the solution of the KKT
systems. The trust-region problem is built around those components of the current
iterates which are far from the boundary of the positive orthant, and it is solved by
the truncated conjugate gradient method.

In this paper we introduce a prototype subspace trust-region method for large
bound-constrained nonlinear systems. Our proposal is to investigate the idea of solv-
ing the trust-region problem in a small subspace while still attaining global and local
fast convergence. Both spherical and elliptical trust-regions are allowed. To ensure
global convergence properties we use a generalized Cauchy step. Fast local conver-
gence relies on mild conditions on the subspace and is independent of the way of
computing an approximate trust-region solution. At each iteration the trial step used
to compute the new iterate is a linear combination of the generalized Cauchy step
and the approximate trust-region solution.

The general scheme proposed serves as a paradigm for some specific implementa-
tions. In particular, the theoretical results obtained suggest ways to implement it by
using Krylov solvers [30]. The first proposal is a two-dimensional subspace strategy.
The second is a dogleg subspace strategy in conjunction with the iterative linear solver
GMRES [31]. Both strategies compute an approximate solution of the related sub-
space trust-region problem with a low computational cost and require matrix-vector
products only. In this regard, we remark that the computation of the generalized
Cauchy point calls for the product of the transpose of the Jacobian of F with vectors.
Thus, the proposed strategies cannot be implemented in a matrix-free manner, i.e.,
without computing the whole Jacobian matrix. On the other hand if the Jacobian of
F is not available, these products can be effectively computed by using software for
automatic differentiation [36].

We mention that [6, 7] propose a matrix-free Newton-GMRES dogleg strategy for
unconstrained nonlinear systems where the Cauchy point is replaced by the steepest
descent direction in a space generated by GMRES. But, in our opinion, this approach
cannot be easily extended to constrained problems.

In section 2 we describe the main features of a trust-region method for problem
(1.1), and in section 3 we propose a prototype method for large problems. In sec-
tion 4 we provide global and local convergence properties. In section 5 we discuss
ways in which an implementation of our procedure may be developed. Finally, in
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section 6 we provide computational experiments showing the practical performance
of our algorithm.

1.1. Notation. Throughout the paper we use the following notation. For any
mapping F : X → R

n, differentiable at a point x ∈ X ⊂ R
n, the Jacobian matrix of F

at x is denoted by F ′(x) and F (xk) is denoted by Fk. To represent the ith component
of x, the symbol (x)i is used but, when clear from the context, the brackets are
omitted. For any vector y ∈ R

n, the 2-norm is denoted by ‖y‖ and the open ball with
center y and radius ρ is indicated by Bρ(y), i.e., Bρ(y) = {x : ‖x − y‖ < ρ}. The
identity matrix of dimension n is denoted by I.

2. Preliminaries. In this section we provide the essential features of a trust-
region method for the solution of (1.1). The sequence {xk} generated is expected to
converge to a point which solves the optimization problem

min
x∈Ω

f(x) = min
x∈Ω

1

2
‖F (x)‖2.(2.1)

In fact, the solutions to (1.1) solve the constrained minimization problem (2.1). A
solution x∗ of (2.1) satisfies

D−2(x∗)∇f(x∗) = 0,(2.2)

where ∇f(x) = F ′(x)
T
F (x), D(x) is the diagonal scaling matrix

D(x) = diag(|v1(x)|−1/2, |v2(x)|−1/2, . . . , |vn(x)|−1/2),(2.3)

and

vi(x) =

⎧⎪⎪⎨
⎪⎪⎩

xi − ui if (∇f(x))i < 0 and ui < ∞,
xi − li if (∇f(x))i > 0 and li > −∞,
min{xi − li, ui − xi} if (∇f(x))i = 0 and li > −∞ or ui < ∞,
1 otherwise

for i = 1, . . . , n; see [11].
Numerical methods for (1.1) need well-angled directions to handle the bounds. In

particular, search directions biased toward the interior of Ω are required. This way,
sufficiently large steps in these directions are allowed before violating the constraints.
If xk lies in Ω, the following scaled gradient of f is well angled with respect to the
bounds:

dk = −D−2
k ∇fk.

This is due to the fact that D−2
k penalizes the step ∇fk, preventing a step directly

toward a boundary point. Moreover, by (2.2) dk monitors the progress toward a
solution of problem (2.1).

In a framework for (1.1), we consider the trust-region problem

min
p∈Rn

{mk(p) : ‖Gk p‖ ≤ Δk},(2.4)

where Δk is the current trust-region radius, mk is the quadratic model for f at xk,

mk(p) =
1

2
‖Fk + F ′

kp‖2,
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and Gk = G(xk) ∈ R
n×n with G : R

n → R
n×n defined as

G(x) = I or G(x) = D(x).

The first choice of G is used in [28, 34, 35] and yields the standard spherical
trust-region problem. The choice G(x) = D(x), x ∈ R

n, has been considered in [1, 3]
and gives rise to an elliptical trust region. In this case, for decreasing values of Δk,
the solution to problem (2.4) tends to become parallel to dk.

For all the proposed methods, the iterates xk are forced to belong to Ω in order
to deal with problems where F is not defined outside Ω. Moreover, since D is not
defined on the boundary of Ω, the methods given in [1, 3] generate strictly feasible
iterates, xk ∈ int(Ω) = {x ∈ R

n : l < x < u}.
To find the next iterate, a key role is played by a so-called generalized Cauchy

step pc(Δk) depending on the scaled gradient dk. The vector pc(Δk) has the form

pc(Δk) = τk dk,(2.5)

and it is such that xk + pc(Δk) ∈ int(Ω). The value of τk is fixed as follows. Consider

τ̂k = min

{
‖D−1

k ∇fk‖2

‖F ′
kD

−2
k ∇fk‖2

,
Δk

‖GkD
−2
k ∇fk‖

}
= argmin

‖τGkdk‖≤Δk

mk(τdk).(2.6)

If xk + τ̂kdk ∈ int(Ω), we let τk = τ̂k in (2.5). Otherwise we let λk be the stepsize
along dk to the boundary, i.e.,

λk = min
1≤i≤n

Λi, where Λi =

{
max{ li−(xk)i

(dk)i
, ui−(xk)i

(dk)i
} if (dk)i �= 0,

∞ if (dk)i = 0,

and set τk smaller than λk. Summarizing, the parameter τk is given by

τk =

{
τ̂k if xk + τ̂kdk ∈ int(Ω),
θλk, θ ∈ (0, 1), otherwise.

(2.7)

In [11], it has been shown that global convergence to a first-order stationary point
of (2.1) depends on obtaining, at each iteration, at least as much decrease in mk as
a fixed fraction of the decrease attained by the generalized Cauchy step pc(Δk). In
particular, letting p(Δk) be the step taken to update xk, p(Δk) must satisfy the
following condition

ρc(p(Δk)) =
mk(0) −mk(p(Δk))

mk(0) −mk(pc(Δk))
≥ β1(2.8)

for a given constant β1 ∈ (0, 1).
Finally, as for the unconstrained problems, the sufficient improvement condition

ρf (p(Δk)) =
f(xk) − f(xk + p(Δk))

mk(0) −mk(p(Δk))
≥ β2(2.9)

is required to hold for a given constant β2 ∈ (0, 1). Namely, if (2.9) is satisfied, then
p(Δk) is accepted, the new iterate xk+1 = xk + p(Δk) is formed, and the trust-region
radius may be increased. Otherwise, p(Δk) is rejected and Δk is shrunk.



TRUST-REGION METHODS FOR LARGE CONSTRAINED SYSTEMS 1539

3. A paradigm method for large-scale problems. In this section we present
a general trust-region scheme for large bound-constrained nonlinear systems. Since
the main source of computational effort of a trust-region algorithm is the work for
solving problem (2.4), we replace (2.4) by the following subspace trust-region problem:

min
p∈Sk

{mk(p) : ‖Gk p‖ ≤ Δk}.(3.1)

In fact, for a small subspace Sk of R
n the solution of (3.1) can be computed cheaply.

At each iteration our scheme includes the choice of the subspace Sk, the solution of the
subspace trust-region problem (3.1), and the construction of a step which combines
the generalized Cauchy step and the subspace trust-region solution.

Our subspace model trust-region approach is based upon finding a small-dimension
subspace Sk of R

n such that the minimum value of mk on Sk is a fraction of mk(0).
In particular, we fix Sk so that

pk = argmin
p∈Sk

mk(p), mk(pk) ≤ η2
k mk(0),(3.2)

with ηk ∈ [0, 1). Clearly, by (3.2)

F ′
k pk = −Fk + rk, ‖rk‖ ≤ ηk‖Fk‖,(3.3)

i.e., pk is an inexact Newton step for the problem F (x) = 0; see [12].
To provide a flexible scheme, here we deliberately do not specify how to determine

Sk and the solution ptr(Δk) to (3.1). In section 5 we will show that these tasks can
be readily implemented in different ways.

In regard to the problem of finding the actual step from xk, our aim is to find
a step p(Δk) producing a strictly feasible iterate xk+1 = xk + p(Δk) and a sufficient
reduction in the values of both the model function mk and the objective function f .

To maintain strict feasibility we employ the interior modification of the projection
onto Ω proposed in [19]. Namely, we form the vector

p̄tr(Δk) = αk(P (xk + ptr(Δk)) − xk),(3.4)

where αk ∈ (0, 1) and P (x) is the classical projection of x onto Ω, i.e., (P (x))i =
max{li, min{xi, ui}}, i = 1, . . . , n. Clearly, xk + p̄tr(Δk) ∈ int(Ω) and (ptr(Δk))i
and (p̄tr(Δk))i have the same sign. In fact, the point xk + p̄tr(Δk) is the classical
projection of xk + ptr(Δk) onto Ω, followed by a small step toward the interior of Ω.
We remark that

‖p̄tr(Δk)‖ < ‖ptr(Δk)‖.(3.5)

Then we follow along the lines of [3] and seek a vector of the form

p(Δk) = t pc(Δk) + (1 − t)p̄tr(Δk), t ∈ [0, 1),(3.6)

satisfying (2.8). Specifically, if ρc(p̄tr(Δk)) ≥ β1, we take t = 0. Otherwise, since
mk(t pc(Δk) + (1 − t) p̄tr(Δk)) is a quadratic function in t and ρc(pc(Δk)) = 1, it is
easy to see that there exists t ∈ (0, 1) such that p(Δk) satisfies ρc(p(Δk)) = β1. Next,
we summarize the process for finding p(Δk).
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Algorithm I. Finding a step that satisfies the model decrease (2.8).
Input parameters: xk ∈ int(Ω), p̄tr(Δk), pc(Δk).

1. Set t = 0.
2. If ρc(p̄tr(Δk)) < β1

Compute u1 = F ′
k pc(Δk) , u2 = F ′

kp̄tr(Δk) , u = u1 − u2 , z = −Fk − u2,

w = (zT u)2 − 2 ‖u‖2
(
FT
k (u2 − β1u1) + ‖u2‖2/2 − ‖u1‖2/2

)
.

Set t = ( zT u− w
1
2 )/‖u‖2.

3. Compute p(Δk) by (3.6).

We point out that the inclusion of pc(Δk) in (3.6) ensures the existence of a vector
p(Δk) satisfying (2.8). Then it enables the method to converge globally. Furthermore,
the use of p̄tr(Δk) in (3.6) and suitable choices of the sequences {ηk} and {αk} yield
rapid local convergence. The convergence analysis provided in the next section will
highlight these features.

Below we summarize the overall procedure named the subspace interior affine
trust-region (SIATR) method.

SIATR method.

Input parameters: the starting point x0 ∈ int(Ω), the function G, Δmin > 0, the
initial trust-region size Δ̄0 ≥ Δmin, β1, β2, δ, θ ∈ (0, 1).

For k = 0, 1, . . .
1. Set Δk = Δ̄k/δ.
2. Choose αk ∈ (0, 1), ηk ∈ [0, 1).
3. Repeat

3.1 Set Δk = δΔk.
3.2 Find Sk ⊂ R

n s.t. (3.2) holds.
3.3 Compute the solution ptr(Δk) to (3.1).
3.4 Form p̄tr(Δk) by (3.4).
3.5 Compute pc(Δk) by (2.5) and (2.7).
3.6 Find p(Δk) by Algorithm I.

Until ρf (p(Δk)) ≥ β2

4. Set xk+1 = xk + p(Δk).
5. Choose Δ̄k+1 ≥ Δmin.

In the SIATR method, Δ̄k is the initial value of the trust-region radius at the
kth iteration. To develop our convergence analysis, we force Δ̄k to be greater than or
equal to a fixed threshold Δmin > 0 for all k ≥ 0. In this regard, we remark that the
strategy for choosing Δ̄k+1 does not affect our convergence results and that in step
5 it can be chosen following classical strategies based on the agreement between the
model function mk and the function f at iteration k.

4. Convergence analysis. In this section we develop a theoretical foundation
for the SIATR method. We assume the following.

Assumption 1. F ′ is Lipschitz continuous in L = ∪∞
k=0 {x ∈ X : ‖x− xk‖ ≤ r},

r > 0, with constant 2γL.
Assumption 2. ‖F ′‖ is bounded above on L and χJ = supx∈L ‖F ′(x)‖.
We begin studying the features of p(Δk). First, if ‖∇fk‖ �= 0, then condition (2.9)

is met after a finite number of repetitions of step 3. This can be proved following along
the lines of [3, Lemma 3.2]. Second, by Algorithm I we have ρc(p(Δk)) ≥ ρc(p̄tr(Δk))
i.e.,

mk(p(Δk)) ≤ mk(p̄tr(Δk)).(4.1)
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Third, the decrease attained in the value of mk by p(Δk) is given in the following
result.

Lemma 4.1. Assume that ‖∇fk‖ �= 0. If p(Δk) satisfies (2.8), then

mk(0) −mk(p(Δk)) ≥
1

2
β1‖D−1

k ∇fk‖min

{
Δk

‖GkD
−1
k ‖

,
‖D−1

k ∇fk‖
‖F ′

kD
−1
k ‖2

,
θ‖D−1

k ∇fk‖
‖∇fk‖∞

}
.

Proof. To prove the thesis we provide a lower bound for mk(0) − mk(pc(Δk)).
By (2.5) we know that pc(Δk) takes the form pc(Δk) = τkdk. Suppose τk = τ̂k with
τ̂k = Δk/‖GkD

−2
k ∇fk‖. Since (2.6) implies τ̂k ≤ ‖D−1

k ∇fk‖2/‖F ′
kD

−2
k ∇fk‖2, we get

mk(0) −mk(pc(Δk)) = τ̂k

(
‖D−1

k ∇fk‖2 − 1

2
τ̂k‖F ′

kD
−2
k ∇fk‖2

)
≥ 1

2
τ̂k‖D−1

k ∇fk‖2

≥ 1

2

Δk

‖GkD
−1
k ‖

‖D−1
k ∇fk‖.(4.2)

In the case that either τk = τ̂k = ‖D−1
k ∇fk‖2/‖F ′

kD
−2
k ∇fk‖2 or τk = θλk, we know

from [1, Lemma 3.3] that

mk(0) −mk(pc(Δk)) ≥
1

2

‖D−1
k ∇fk‖2

‖F ′
kD

−1
k ‖2

,(4.3)

mk(0) −mk(pc(Δk)) ≥
1

2
θ
‖D−1

k ∇fk‖2

‖∇fk‖∞
,(4.4)

respectively. From (2.8), (4.2), (4.3), and (4.4) the thesis follows.
Now we can formalize the global convergence properties of the SIATR method.

They essentially derive from forcing (2.8) and can be easily proved following along
the lines of [3, Theorem 3.1] and using Lemma 4.1.

Theorem 4.1. If the sequence {xk} generated by the SIATR method is bounded,
then all the limit points of {xk} are stationary points for the problem (2.1), i.e.,

lim
k→∞

‖D−1
k ∇fk‖ = 0.

Further, if there exists a limit point x∗ ∈ int(Ω) of {xk} such that F ′(x∗) is nonsin-
gular, then ‖Fk‖ → 0 and all the accumulation points of {xk} solve problem (1.1).

Moreover, if there exists a limit point x∗ ∈ Ω such that F (x∗) = 0 and F ′(x∗) is
invertible, then {xk} converges to x∗. To prove this fact, we first recall some technical
results.

Lemma 4.2. Let x∗ ∈ Ω be a limit point of the sequence {xk} generated by the
SIATR method such that F (x∗) = 0 and F ′(x∗) is nonsingular. Let K1 = 2 ‖F ′(x∗)‖,
K2 = 2 ‖F ′(x∗)−1‖, and μ = max{K1,K2}/2 and let Γ ∈ (0, 1/μ) be given. Then
there exists ρ > 0 so that if x ∈ Bρ(x

∗), then x ∈ L and

‖x− x∗‖ ≤ K2 ‖F (x)‖,(4.5)

‖F (x)‖ ≤ K1 ‖x− x∗‖,(4.6)

‖F ′(x)
−1‖ ≤ K2,(4.7)

‖F (x) − F (z) − F ′(z)(x− z)‖ ≤ Γ‖x− z‖2 for all z ∈ Bρ(x
∗).(4.8)

Proof. The existence of ρ > 0 so that if ‖x− x∗‖ ≤ ρ, then x ∈ L is shown in [3,
Lemma 3.3]. Conditions (4.5)–(4.7) follows from [22, Lemma 4.3.1]. Finally, (4.8) is
given in [25, Lemma 3.2.10].
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The next theorem shows the convergence of the sequence {xk}.
Theorem 4.2. Assume that x∗ is a limit point of the sequence {xk} generated

by the SIATR method such that F (x∗) = 0 and F ′(x∗) is nonsingular. Then {xk}
converges to x∗.

Proof. First, note that, by (4.5), there exists a neighborhood of x∗ where ‖F (x)‖ >
0 if x �= x∗. This implies that x∗ is an isolated solution of (1.1). Moreover, since
the sequence {‖Fk‖} is monotone decreasing, it is convergent. Then the assumption
F (x∗) = 0 implies ‖Fk‖ → 0 and every limit point of {xk} is a solution of (1.1).
Then, as the point x∗ is an isolated solution of (1.1), it is an isolated limit point of
the sequence {xk}.

Let ρ be as in Lemma 4.2, let {xkj} be a subsequence such that xkj → x∗,
and let j0 be the index such that xkj

∈ Bρ(x
∗) ∩ Ω when kj ≥ kj0 . Note that

limkj→∞ ‖∇fkj‖ = 0. Assume kj ≥ kj0 . To prove the thesis, we examine the asymp-

totic behavior of pc(Δkj ) and p̄tr(Δkj ). By (2.5) and τk ≤
‖D−1

kj
∇fkj

‖2

‖F ′
kj

D−2
kj

∇fkj
‖2

, we obtain
the following:

‖pc(Δkj )‖ ≤
‖D−1

kj
∇fkj‖2

‖D−2
kj

∇fkj
‖
‖F ′

kj

−1‖2 =
∇fT

kj
(D−2

kj
∇fkj )

‖D−2
kj

∇fkj
‖

‖F ′
kj

−1‖2

≤ ‖∇fkj‖‖F ′
kj

−1‖2.(4.9)

By (4.7) and limkj→∞ ‖∇fkj‖ = 0, we conclude that limkj→∞ ‖pc(Δkj )‖ = 0.
Regarding ptr(Δkj

), by construction mk(ptr(Δkj
)) ≤ mk(0) i.e., letting r̂kj

=
F ′
kj
ptr(Δkj ) + Fkj we have ‖r̂kj

‖ ≤ ‖Fkj‖. Then

‖ptr(Δkj )‖ = ‖F ′−1
kj

(−Fkj + r̂kj )‖ ≤ 2 ‖F ′−1
kj

‖ ‖Fkj‖ ≤ 2K2 ‖Fkj‖.

Thus, ‖Fk‖ → 0 and (3.5) yield limkj→∞ ‖p̄tr(Δkj )‖ = 0.
Hence, we have limkj→∞ ‖p(Δkj

)‖ = 0 and using [24, Lemma 4.10] we conclude
that {xk} converges to x∗.

We now move on to discuss the convergence rate issues. We make the additional
hypothesis ‖Gkpk‖ → 0 as k → ∞. In practice, this condition may fail to hold only
when Gk = Dk and x∗ belongs to the boundary of Ω. On the other hand, it is
guaranteed when Gk = I or when Gk = Dk and x∗ lies in the interior of Ω. To show
this, note that by (3.3) and (4.7) we get

‖pk‖ = ‖F ′−1
k (−Fk + rk)‖ ≤ (1 + ηk) ‖F ′−1

k ‖ ‖Fk‖ ≤ 2K2 ‖Fk‖,(4.10)

and this implies that ‖pk‖ → 0 as k → ∞. Also, it is easy to see that ‖Dk‖ ≤
√

2/ρ̄
whenever xk ∈ Bρ̄/2(x

∗) with x∗ ∈ int(Ω) and ρ̄ sufficiently small that Bρ̄(x
∗) ⊂

int(Ω) [1, Corollary 3.1]. Then ‖Dkpk‖ → 0 as k → ∞ when x∗ ∈ int(Ω).
First, we prove that eventually, for Δk equal to the initial trust-region radius Δ̄k,

the trust-region constraint in (3.1) becomes inactive, i.e., ptr(Δ̄k) is the minimizer pk
of mk on Sk. Moreover, we study the features of ptr(Δ̄k), p̄tr(Δ̄k), and p(Δ̄k) when
xk is sufficiently near to x∗. Then we will show how the choice of ηk’s and αk’s affects
the convergence rate of the SIATR method.

From now on, with γL and χJ as in Assumptions 1 and 2 and K1, K2, and Γ as
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in Lemma 4.2, we let

K∗ = ‖F ′(x∗)‖ ‖F ′(x∗)−1‖,(4.11)

ν = 8K∗ (K2χJ + 1),(4.12)

δk = K2Γν
2‖xk − x∗‖ + 4K∗ ηk,(4.13)

ψk = χJδk + γLν
2‖xk − x∗‖ + K1(1 − αk),(4.14)

σk = max{ψk, K2( Γν2‖xk − x∗‖ + ψk)}.(4.15)

Lemma 4.3. Assume that there exists a solution x∗ of (1.1) such that F ′(x∗) is
nonsingular and that the sequence {xk} generated by the SIATR method converges to
x∗. Suppose that either

• Gk = I, k ≥ 0, or
• Gk = Dk, k ≥ 0, and ‖Dkpk‖ → 0 as k → ∞.

Then, for ρ as in Lemma 4.2, there exists ρ1 ≤ ρ such that for all xk ∈ Bρ1
(x∗) ∩

int(Ω),

ptr(Δ̄k) = pk,(4.16)

where pk is given in (3.2) and Δ̄k is the initial trust-region radius at kth iteration.
Further, when xk ∈ Bρ1(x

∗) ∩ int(Ω) we have

‖Fk + F ′
kptr(Δ̄k)‖ ≤ K1 ηk‖xk − x∗‖,(4.17)

‖p̄tr(Δ̄k)‖ < ‖ptr(Δ̄k)‖ ≤ ν‖xk − x∗‖,(4.18)

‖p(Δ̄k)‖ ≤ ν‖xk − x∗‖.(4.19)

Proof. The relationship (4.16) is proved by using the fact that Δ̄k ≥ Δmin, i.e.,
Δ̄k is bounded below from zero for each k ≥ 0. Let Gk = I for all k ≥ 0. By
(4.10) limk→∞ ‖pk‖ = 0. Then, there exists ρ1 ≤ ρ such that ‖pk‖ ≤ Δ̄k when
xk ∈ Bρ1

(x∗) ∩ int(Ω). Since pk is feasible for the trust-region problem (3.1), the
thesis (4.16) follows. Now consider the case Gk = Dk for all k ≥ 0. The assumption
limk→∞ ‖Dkpk‖ = 0 implies that there exists ρ1 ≤ ρ such that pk solves the trust-
region problem (3.1) whenever xk ∈ Bρ1(x

∗) ∩ int(Ω) and (4.16) again follows.
The remaining results are proved independently of the form of Gk. By (4.16) and

(3.2) we obtain ‖Fk + F ′
kptr(Δ̄k)‖ ≤ ηk‖Fk‖. Thus, (4.6) implies (4.17).

The result (4.18) is derived noting that by (3.5), (4.16), (4.10), (4.6), and (4.11)
we get

‖p̄tr(Δ̄k)‖ < ‖ptr(Δ̄k)‖ ≤ 2K2 ‖Fk‖ ≤ 8K∗ ‖xk − x∗‖.(4.20)

Then, by (4.12) relation (4.18) follows.
Finally, (4.9), (4.7), (4.6), and Assumption 2 yield ‖pc(Δ̄k)‖ ≤ 4K∗K2χJ‖xk −

x∗‖. Hence, by (3.6) and (4.20)

‖p(Δ̄k)‖ ≤ ‖pc(Δ̄k)‖ + ‖p̄tr(Δ̄k)‖ ≤ 8K∗ (K2 χJ + 1) ‖xk − x∗‖.

This, along with (4.12), proves (4.19).
Lemma 4.4. Assume that there exists a solution x∗ of (1.1) such that F ′(x∗) is

nonsingular and that the sequence {xk} generated by the SIATR method converges to
x∗. Suppose that either

• Gk = I, k ≥ 0, or
• Gk = Dk, k ≥ 0, and ‖Dkpk‖ → 0 as k → ∞.
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Then, for ρ1 as in Lemma 4.3 and xk ∈ Bρ2(x
∗) ∩ int(Ω), ρ2 ≤ ρ1/(1 + ν), we have

‖Fk + F ′
k p̄tr(Δ̄k)‖ ≤ σk‖xk − x∗‖,(4.21)

‖xk + p̄tr(Δ̄k) − x∗‖ ≤ σk‖xk − x∗‖,(4.22)

where Δ̄k is the initial trust-region radius at the kth iteration.
Proof. Let 0 < ρ2 ≤ ρ1/(1 + ν) and let k be sufficiently large to have xk ∈

Bρ2
(x∗)∩int(Ω). To begin, note that from (4.5) and (4.8), any vector xk+q ∈ Bρ1(x

∗)
satisfies

‖xk + q − x∗‖ ≤ K2(‖F (xk + q) − Fk − F ′
kq‖ + ‖Fk + F ′

kq‖)
≤ K2(Γ‖q‖2 + ‖Fk + F ′

kq‖).(4.23)

From (4.18) we get ‖xk+ptr(Δ̄k)−x∗‖ ≤ ‖xk−x∗‖+‖ptr(Δ̄k)‖ ≤ ρ2(1+ν) ≤ ρ1.
Analogously, ‖xk + p̄tr(Δ̄k)−x∗‖ ≤ ρ1. Hence, xk + ptr(Δ̄k) and xk + p̄tr(Δ̄k) belong
to Bρ1(x

∗). Further, from (4.23), (4.17), and (4.18) we get

‖xk + ptr(Δ̄k) − x∗‖ ≤ δk‖xk − x∗‖,(4.24)

where δk is given in (4.13).
Now, letting p̂ = P (xk +ptr(Δ̄k))−xk, we derive an upper bound for ‖Fk +F ′

kp̂‖.
First, we note that ‖p̂‖ ≤ ‖ptr(Δ̄k)‖ and recall the nonexpansivity of the projection
operator P (·), i.e., ‖xk + p̂− x∗‖ ≤ ‖xk + ptr(Δ̄k) − x∗‖. Then, by

Fk + F ′
kp̂ = F (xk + p̂) − F (x∗) +

∫ 1

0

(F ′(xk) − F ′(xk + tp̂))p̂ dt

=

∫ 1

0

F ′(x∗ + t(xk + p̂− x∗))(xk + p̂− x∗)dt(4.25)

+

∫ 1

0

(F ′(xk) − F ′(xk + tp̂))p̂ dt

and using Assumptions 1–2, (4.24), and (4.18), we obtain

‖Fk + F ′
kp̂‖ ≤ χJ‖xk + ptr(Δ̄k) − x∗‖ + γL‖ptr(Δ̄k)‖2

≤ (χJδk + γLν
2‖xk − x∗‖)‖xk − x∗‖.(4.26)

Further, from (3.4), (4.26), (4.6), and (4.14) we get

‖Fk + F ′
kp̄tr(Δ̄k)‖ ≤ αk‖Fk + F ′

kp̂‖ + (1 − αk)‖Fk‖(4.27)

≤ ψk‖xk − x∗‖,(4.28)

and (4.15) yields the thesis (4.21).
Finally (4.22) is derived by (4.23), (4.18), (4.28), and (4.15), as follows:

‖xk + p̄tr(Δ̄k) − x∗‖ ≤ K2(Γν
2‖xk − x∗‖ + ψk) ‖xk − x∗‖.

4.1. Superlinear convergence. In this section we show that if ηk → 0 and
αk → 1 as k → ∞, then eventually the step p̄tr(Δ̄k) satisfies both conditions (2.8)
and (2.9). Then, for k sufficiently large, p(Δ̄k) = p̄tr(Δ̄k) and the actual step is not
biased toward the generalized Cauchy step. Moreover,

• xk → x∗ superlinearly;
• xk → x∗ quadratically if ηk = O(‖Fk‖) and αk = 1 −O(‖Fk‖) as k → ∞.
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Theorem 4.3. Assume that there exists a solution x∗ of (1.1) such that F ′(x∗)
is nonsingular and that the sequence {xk} generated by the SIATR method converges
to x∗. Suppose that ηk → 0, αk → 1, as k → ∞, and either

• Gk = I, k ≥ 0, or
• Gk = Dk, k ≥ 0, and ‖Dkpk‖ → 0 as k → ∞.

Then, eventually, p̄tr(Δ̄k) satisfies (2.8) and (2.9) and the sequence {xk} converges
to x∗ superlinearly. Moreover, if ηk = O(‖Fk‖), αk = 1 − O(‖Fk‖) as k → ∞, the
convergence rate is quadratic.

Proof. Let ζ be such that

ζ < min

{
ρ2,

1 − β2

2K2Γν2

}
,(4.29)

with ρ2 as in Lemma 4.4, K2 and Γ as in Lemma 4.2, and ν as in (4.12). Let k be
sufficiently large to have xk ∈ Bζ(x

∗) ∩ int(Ω) and

σk <
1

K2
min

{√
1 − β1,

1

2

}
,(4.30)

where σk is given in (4.15). This condition is met for k sufficiently large since

σk = O(‖xk − x∗‖ + ηk + (1 − αk)), k → ∞.(4.31)

First, we prove that p̄tr(Δ̄k) satisfies (2.8), i.e., p(Δ̄k) = p̄tr(Δ̄k). By (2.8), (4.21),
(4.5), and (4.30), it follows that

ρc(p̄tr(Δ̄k)) ≥ 1 − ‖Fk + F ′
kp̄tr(Δ̄k)‖2

‖Fk‖2
≥ 1 − σ2

kK
2
2 > β1.(4.32)

Second, we prove that ρf (p̄tr(Δ̄k)) ≥ β2. Note that

ρf (p̄tr(Δ̄k)) = 1 − ‖F (xk + p̄tr(Δ̄k))‖2 − ‖Fk + F ′
kp̄tr(Δ̄k)‖2

‖Fk‖2 − ‖Fk + F ′
kp̄tr(Δ̄k)‖2

(4.33)

and

‖F (xk + p̄tr(Δ̄k))‖2 − ‖Fk + F ′
kp̄tr(Δ̄k)‖2 = ‖F (xk + p̄tr(Δ̄k)) − Fk − F ′

kp̄tr(Δ̄k)‖2

+ 2(F (xk + p̄tr(Δ̄k)) − Fk − F ′
kp̄tr(Δ̄k))

T

× (Fk + F ′
kp̄tr(Δ̄k)).

Note that (4.29) implies ζ < 1/(2K2Γν
2) and (4.30) implies 2σk < 1/K2. Then by

(4.8), (4.21), and (4.18) we get

‖F (xk + p̄tr(Δ̄k))‖2 − ‖Fk + F ′
kp̄tr(Δ̄k)‖2 ≤ Γ2‖p̄tr(Δ̄k)‖4 + 2σkΓ‖p̄tr(Δ̄k)‖2‖xk − x∗‖

≤ Γν2(Γν2‖xk − x∗‖ + 2σk)‖xk − x∗‖3

≤ 3Γν2

2K2
‖xk − x∗‖3.

Further, from (4.5), (4.21), and (4.30) we get

‖Fk‖2 − ‖Fk + F ′
kp̄tr(Δ̄k)‖2 ≥

(
1

K2
2

− σ2
k

)
‖xk − x∗‖2 >

3

4K2
2

‖xk − x∗‖2.
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Therefore, by (4.33) and (4.29) we get

ρf (p̄tr(Δ̄k)) ≥ 1 − 2K2Γν
2‖xk − x∗‖ > β2.

Hence, xk+1 = xk + p̄tr(Δ̄k) and from (4.22) we conclude ‖xk+1 −x∗‖ ≤ σk‖xk −x∗‖.
The form of σk given in (4.31) ensures superlinear convergence rate if ηk → 0 and
αk → 1 as k → ∞. Moreover, if ηk = O(‖Fk‖) and 1−αk = O(‖Fk‖), by (4.5)–(4.6),
we get σk = O(‖xk − x∗‖), and this yields the quadratic convergence rate.

4.2. Linear convergence and norm weighted analysis. In this section we
characterize the convergence order of the SIATR method dropping the assumption
ηk → 0 for k → ∞. In particular, we let ηk ≤ ηmax < η̄ < 1, k ≥ 0, and provide
convergence results which are in accordance with those of inexact Newton methods
for unconstrained nonlinear systems [12].

Following along the lines of the previous analysis, in the next theorem we show
that if η̄ is sufficiently small, then the sequence {xk} converges at a linear rate.

Theorem 4.4. Assume that there exists a solution x∗ of (1.1) such that F ′(x∗)
is nonsingular and that the sequence {xk} generated by the SIATR method converges
to x∗. Suppose that either

• Gk = I, k ≥ 0, or
• Gk = Dk, k ≥ 0, and ‖Dkpk‖ → 0 as k → ∞.

Then there exists η̄ < 1 such that if ηk ≤ ηmax < η̄ for k ≥ 0 and αk → 1, as k → ∞,
then eventually p̄tr(Δ̄k) satisfies (2.8)–(2.9) and the sequence {xk} converges to x∗

linearly.
Proof. Let k be sufficiently large to have xk ∈ Bζ(x

∗) ∩ int(Ω) with ζ given
in (4.29). Since we intend to proceed as in Theorem 4.3, we need to ensure (4.30).
Further, to provide linear convergence rate, σk given in (4.15) must be such that
σk < 1.

Note that from (4.13)–(4.15) it follows that

ψk ≤ ν2(γL + K2ΓχJ)‖xk − x∗‖ + K1(1 − αk) + 4χJK
∗ηmax,

σk ≤ max{1, K2}ψk + K2Γν
2‖xk − x∗‖.

Since limk→∞ αk = 1, limk→∞ ‖xk − x∗‖ = 0, letting

η̄ < min

{
1,

1

4K∗ χJ max{1, K2}
,

min{
√

1 − β1,
1
2}

4K∗ K2 χJ max{1, K2}

}
,(4.34)

we can take ζ > 0 sufficiently small such that σk < min{1, 1
K2

min{
√

1 − β1,
1
2}} for

xk ∈ Bζ(x
∗) ∩ int(Ω) and k sufficiently large. Thus, both σk < 1 and (4.30) hold,

and proceeding as in Theorem 4.3, we conclude that p̄tr(Δ̄k) satisfies (2.8)–(2.9) and
xk+1 = xk + p̄tr(Δ̄k). Finally, (4.22) yields linear convergence rate.

Trivially, (4.34) implies that p̄tr(Δ̄k) is not guaranteed to satisfy (2.8) for any
η̄ < 1. On the other hand, if no other condition is imposed than requiring the
sequence {ηk} to be uniformly bounded away from 1, the linear convergence of the
sequence {xk} depends on the norm used. Introducing the weighted norm

‖ · ‖∗ = ‖F ′(x∗) · ‖,

we prove that {xk} converges to x∗ linearly in the sense that ‖xk+1 − x∗‖∗ ≤ η̄ ‖xk −
x∗‖∗ for any η̄ < 1. To prove this result we need to provide some useful bounds
employing the weighted norm. With μ and Γ as in Lemma 4.2, we let

ω1 = 1/(1 − Γμ), ω2 = 1 + Γμ.(4.35)
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Lemma 4.5. Assume that there exists a solution x∗ of (1.1) such that F ′(x∗) is
nonsingular and that the sequence {xk} generated by the SIATR method converges to
x∗. Suppose that either

• Gk = I, k ≥ 0, or
• Gk = Dk, k ≥ 0, and ‖Dkpk‖ → 0 as k → ∞.

Then there exists ρ3 > 0 so that if xk ∈ Bρ3
(x∗) ∩ int(Ω), then

‖xk − x∗‖∗ ≤ ω1‖Fk‖,(4.36)

‖Fk‖ ≤ ω2‖xk − x∗‖∗,(4.37)

‖Fk + F ′
kptr(Δ̄k)‖ ≤ ηkω2‖xk − x∗‖∗,(4.38)

‖ptr(Δ̄k)‖ ≤ ν∗ ‖xk − x∗‖∗,(4.39)

‖p(Δ̄k)‖ ≤ ν∗ ‖xk − x∗‖∗,(4.40)

with ν∗ = 2K2ω2 (K2 χJ + 1).
Proof. Note that

1

μ
‖y‖ ≤ ‖y‖∗ ≤ μ‖y‖ for all y ∈ R

n.(4.41)

Let ρ1 be as in Lemma 4.3 and Γ as in Lemma 4.2. From the continuity of F ′ there
exists 0 < ρ3 < ρ1, so that

‖F ′(x) − F ′(x∗)‖ ≤ Γ, ‖F ′(x)−1 − F ′(x∗)−1‖ ≤ Γ(4.42)

for x ∈ Bρ3
(x∗) ∩ int(Ω). In what follows, let xk ∈ Bρ3

(x∗) ∩ int(Ω).
By (4.42), (4.41), and (4.35) we obtain (4.36) as follows:

‖Fk‖ = ‖F ′(x∗)(x∗ − xk) −
∫ 1

0

(F ′(x∗ + t(xk − x∗)) − F ′(x∗))(xk − x∗) dt‖,

≥
∣∣∣∣ ‖xk − x∗‖∗ −

∥∥∥∥
∫ 1

0

(F ′(x∗ + t(xk − x∗)) − F ′(x∗))(xk − x∗) dt

∥∥∥∥
∣∣∣∣

≥ (1 − Γμ)‖xk − x∗‖∗.

Further, (4.37) follows from

‖F (x)‖ ≤
∫ 1

0

‖F ′(x∗ + t(xk − x∗)) − F ′(x∗)‖ ‖xk − x∗‖ + ‖F ′(x∗)(xk − x∗)‖dt

≤ (Γμ + 1)‖xk − x∗‖∗

and (4.35).
Since from Lemma 4.3 it follows that ptr(Δ̄k) = pk, by (3.2) and (4.37) we trivially

obtain (4.38). Moreover, from (4.10) and (4.37) we get ‖ptr(Δ̄k)‖ ≤ 2K2ω2‖xk−x∗‖∗,
and this yields (4.39). Finally, (4.9), Assumption 2, (4.7), and (4.37) yield ‖pc(Δ̄k)‖ ≤
K2

2 χJ ω2‖xk − x∗‖∗. Then (4.40) is obtained by (3.6) and (3.5) as follows:

‖p(Δ̄k)‖ ≤ ‖pc(Δ̄k)‖ + ‖p̄tr(Δ̄k)‖ ≤ 2ω2 K2 (K2 χJ + 1) ‖xk − x∗‖∗.

Next we establish conditions under which xk+1 = xk + p(Δ̄k) for k sufficiently
large and for any η̄ < 1. Then the linear convergence rate of {xk} in the weighted
norm is shown.
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Theorem 4.5. Assume that there exists a solution x∗ of (1.1) such that F ′(x∗)
is nonsingular and that the sequence {xk} generated by the SIATR method converges
to x∗. Suppose that ηk ≤ ηmax < η̄ < 1, k ≥ 0, αk → 1, as k → ∞ and either

• Gk = I, k ≥ 0, or
• Gk = Dk, k ≥ 0, and ‖Dkpk‖ → 0 as k → ∞,

If, for k sufficiently large,

P (xk + ptr(Δ̄k)) − xk = ptr(Δ̄k),(4.43)

then p(Δ̄k) satisfies (2.9) and the sequence {xk} converges to x∗ linearly in the sense
that

‖xk+1 − x∗‖∗ ≤ η̄ ‖xk − x∗‖∗.

Proof. Let 0 < ρ4 ≤ ρ3/(1 + ν), where ρ3 is as in the proof of Lemma 4.5 and
ν is given in (4.12). Let k be sufficiently large to have xk ∈ Bρ4(x

∗) ∩ int(Ω). From
(4.19) it follows that xk + p(Δ̄k) belongs to Bρ3

(x∗) ∩ int(Ω). Let

ε̄k = ω2(αk ηk + 1 − αk),(4.44)

εk = ω1(Γν
2
∗‖xk − x∗‖∗ + ε̄k).(4.45)

By hypothesis, p̂ = P (xk+ptr(Δ̄k))−xk = ptr(Δ̄k). Then by (4.1), (4.27), (4.38),
(4.37), and (4.44) it follows that

‖Fk + F ′
kp(Δ̄k)‖ ≤ ‖Fk + F ′

kp̄tr(Δ̄k)‖ ≤ ω2(αkηk + 1 − αk)‖xk − x∗‖∗
= ε̄k ‖xk − x∗‖∗.(4.46)

Using (4.36) and proceeding as in (4.23), we obtain

‖xk + q − x∗‖∗ ≤ ω1‖F (xk + q)‖ ≤ ω1(Γ‖q‖2 + ‖Fk + F ′
kq‖)

for any vector xk + q ∈ Bρ3(x
∗). Then (4.40), (4.46), and (4.45) give

‖xk + p(Δ̄k) − x∗‖∗ ≤ εk ‖xk − x∗‖∗.(4.47)

Note that ω1 → 1, ω2 → 1 as Γ → 0. Since αk → 1 as k → ∞, there exist Γ and
ζ sufficiently small such that

ω1ω2 <
η̄

ηmax
, ε̄k <

η̄

ω1
<

1

ω1
, and εk < η̄(4.48)

whenever xk ∈ Bζ(x
∗) ∩ int(Ω) for k sufficiently large. As a consequence, eventually

p(Δ̄k) satisfies (2.9). In fact, following along the lines of Theorem 4.3 and using (4.46),
(4.40), and (4.36), we obtain

ρf (p(Δ̄k)) = 1 − ‖F (xk + p(Δ̄k))‖2 − ‖Fk + F ′
kp(Δ̄k)‖2

‖Fk‖2 − ‖Fk + F ′
kp(Δ̄k)‖2

≥ 1 − Γ2‖p(Δ̄k)‖4 + 2Γε̄k‖p(Δ̄k)‖2‖xk − x∗‖∗
( 1
ω2

1
− ε̄2k)‖xk − x∗‖2

∗

≥ 1 − Γν2
∗(Γν2

∗‖xk − x∗‖∗ + 2ε̄k)‖xk − x∗‖∗
1
ω2

1
− ε̄2k

.
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Hence for k sufficiently large, ρf (p(Δ̄k)) ≥ β2, xk+1 = xk + p(Δ̄k), and from (4.47)
and (4.48) the proof is completed.

We conclude this section by noting that the assumption (4.43) is guaranteed
whenever x∗ belongs to the interior of Ω, as ‖ptr(Δ̄k)‖ tends to zero, while it is an
additional condition when x∗ lies on the boundary of Ω. This assumption allows
us to obtain (4.47) where εk < η̄ as k → ∞. This yields linear convergence in the
weighted norm for any η̄ < 1. On the contrary, if P (xk + ptr(Δ̄k)) − xk �= ptr(Δ̄k),
proceeding as in Lemma 4.4, we cannot derive a bound on ‖xk + p(Δ̄k) − x∗‖∗ with
analogous properties. In fact, we only manage to get a bound of the form (4.47) where
εk < η̄ χJK2 for k sufficiently large.

5. Applications. To develop viable approaches for large-scale problems, this
section discusses the two issues left unspecified in the description of the SIATR
method: the choice of the subspace Sk and the way of solving the subspace trust-
region problem (3.1).

Since there is no finite method of determining the exact solution of (3.1), an ap-
proximation to it is used. Remarkably, it is easy to see that the convergence properties
of the SIATR method take place using an approximate solution ptr(Δk) to (3.1) which
satisfies the following two mild conditions:

(a) mk(ptr(Δk)) ≤ mk(0);
(b) ptr(Δk) = pk when pk is feasible for (3.1).

The key is that global convergence is provided by pc(Δk) and rapid local convergence
is ensured if eventually pk is the solution of (3.1).

We outline a subspace dogleg strategy for solving (3.1) approximately. Let Sk =
span{s1, s2, . . . , sr}, SG

k = span{Gks1, Gks2, . . . , Gksr}. Once an orthonormal basis
W ∈ R

n×r for SG
k has been constructed, a vector p ∈ Sk is such that Gkp = Wq for

some q ∈ R
r, and instead of (3.1), one can consider the spherical trust-region problem

min
q∈Rr

{φk(q) : ‖q‖ ≤ Δk},(5.1)

where φk is the quadratic model on R
r

φk(q) =
1

2
‖Fk + F ′

kG
−1
k Wq‖2.(5.2)

Let qtr(Δk) be the dogleg solution to (5.1); see [10]. Its evaluation calls for the
Cauchy point qc(Δk) for (5.1) and for the vector

qk = argmin
q∈Rr

φk(q).(5.3)

We remark that qk = WTGkpk with pk given in (3.2). Therefore, if one of the two
vectors pk and qk is known, the other one can be trivially evaluated.

Once qtr(Δk) has been computed, coming back into the original space, the vector

ptr(Δk) = G−1
k Wqtr(Δk)(5.4)

is built. It approximately solves (3.1) and satisfies both (a) and (b). In fact, (a) is
straightforward and (b) is due to the fact that Gkpk ∈ SG

k , i.e., WWTGkpk = Gkpk.
This yields ‖qk‖ = ‖WTGkpk‖ = ‖Gkpk‖. Then qk is feasible for (5.1) if pk is
feasible for (3.1). Consequently, qtr(Δk) = qk whenever ‖qk‖ ≤ Δk, and this implies
ptr(Δk) = pk whenever ‖Gkpk‖ ≤ Δk.
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This discussion leads to the subspace dogleg strategy sketched below.

Algorithm II. A subspace dogleg strategy for (3.1).
Input parameters xk ∈ int(Ω), Δk > 0, ηk ∈ [0, 1), Gk, ∇fk.

1. Choose a subspace Sk = span{s1, s2, . . . , sr} such that (3.2) holds.
2. Find an orthonormal basis W ∈ R

n×r for SG
k = span{Gks1, Gks2, . . . , Gksr}.

3. Compute the vector qk ∈ R
r satisfying (5.3).

4. Compute the Cauchy step qc(Δk) = −μ̂kW
TG−1

k ∇fk with

μ̂k = argmin
‖μWTG−1

k ∇fk‖≤Δk

φk(−μWTG−1
k ∇fk)

= min

{
‖WTG−1

k ∇fk‖2

‖F ′
kG

−1
k WWTG−1

k ∇fk‖2
,

Δk

‖WTG−1
k ∇fk‖

}
.(5.5)

5. Find the dogleg solution qtr(Δk) to (5.1):

qtr(Δk) =

⎧⎨
⎩
qk if ‖qk‖ ≤ Δk,
qc(Δk) if ‖qc(Δk)‖ = Δk,
sqk + (1 − s)qc(Δk), s ∈ (0, 1), s.t. ‖qtr(Δk)‖ = Δk otherwise.

6. Compute ptr(Δk) by (5.4).

We recall that (3.2) holds whenever the subspace Sk contains an inexact Newton
step pIk for the problem F (x) = 0 such that

F ′
kp

I
k = −Fk + rk, ‖rk‖ ≤ ηk‖Fk‖.(5.6)

Our main purpose now is to show that Krylov subspace methods for solving
(5.6) provide the way to perform steps 1–3 of the above algorithm effectively. The
resulting methods belong to the class of trust-region Newton–Krylov methods [6, 7,
15]. Moreover, thanks to our convergence results, the linear system (5.6) can be solved
with an accuracy that increases as the solution is approached, and oversolving can be
avoided by choosing suitable sequences {ηk}; see [27].

Two-dimensional subspace minimization. A possible approach consists in
determining pIk by a Krylov method and fixing

Sk = span{pIk, G−2
k ∇fk}.

This way, Algorithm II sketches a two-dimensional subspace trust-region strategy.
Step 2 requires one step of the Gram–Schmidt procedure to compute W . The least-
squares problem minq∈R2 ‖Fk + F ′

kG
−1
k Wq‖2 in step 3 can be solved without much

effort either by the QR factorization of the n× 2 matrix F ′
kG

−1
k W or by solving the

normal equations.
In the case Gk = Dk, k ≥ 0, the vector ptr(Δk) produces as much decrease

in the quadratic model mk as the generalized Cauchy point pc(Δk). To show this
fact, note that by dk ∈ Sk and Gkdk = −D−1

k ∇fk ∈ SG
k , it trivially follows that

D−1
k ∇fk = WWTD−1

k ∇fk. Consequently, it is easy to see that G−1
k Wqc(Δk) = τ̂kdk,

where τ̂k is given in (2.6) and

mk(ptr(Δk)) = φk(qtr(Δk)) ≤ φk(qc(Δk)) = mk(pc(Δk)),

i.e., ptr(Δk) satisfies (2.8).
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GMRES subspace strategy. Another implementation of the subspace dogleg
strategy can be proposed in connection with the GMRES method [31]. GMRES
shows a certain optimality among all Krylov methods, BICGSTAB, TFQMR etc.,
commonly used in the solution of general linear systems. In practice, it minimizes
the residual norm (2mk(p))

1
2 = ‖Fk +F ′

k p‖ over all corrections in the current Krylov
subspace. Due to this property it is possible to define subspace dogleg strategies using
information provided by GMRES; see, e.g., [6, 7, 20].

For the sake of clarity, we sketch the application of GMRES to F ′
kp = −Fk in

order to solve (5.6). For details we refer to [31]. Given p0
k ∈ R

n, GMRES generates
a sequence of iterates {pmk }, pmk ∈ R

n, m ≥ 0, until ‖F ′
k p

m
k + Fk‖ ≤ ηk‖Fk‖. Then

pIk = pmk is set. Each vector pmk solves the least-squares problem

min
p∈p0

k+Km

‖Fk + F ′
k p‖,(5.7)

where Km is the Krylov subspace Km = span{r0
k, F

′
kr

0
k, (F

′
k)

2r0
k, . . . , (F

′
k)

m−1r0
k} and

r0
k = −F ′

k p
0
k − Fk. To accomplish the solution of (5.7), GMRES computes an or-

thonormal basis Vm = [v1, . . . , vm] ∈ R
n×m of Km by the Arnoldi process. It is

known that F ′
kVm = Vm+1Hm, where Vm+1 = [v1, . . . , vm+1] ∈ R

n×(m+1) is the or-
thonormal basis for Km+1 and Hm ∈ R

(m+1)×m is an Hessenberg matrix. The QR
factorization of Hm is required and cheaply performed for all m ≥ 0.

Typically the restarted procedure GMRES(mM ) is applied. Suppose the vector pIk
is generated using the GMRES(mM ) method. By construction, pIk minimizes mk(p)
within the affine subspace p0

k +Km. Then if p0
k = 0, it is convenient to perform steps

1–3 of the subspace dogleg strategy as follows. Setting

Sk = Km,

trivially, we get pk = pIk. Moreover, W = Vm if Gk = I, k ≥ 0, while for the other
choice of G the matrix W has to be computed. Finally, step 3 is completed by setting
qk = WTGkpk.

If p0
k �= 0, let

Sk = span{v1, . . . , vm, p0
k}.

If Gk = I, k ≥ 0, an orthonormal basis W for Sk is easily obtained adding one
column to the matrix Vm. Such a column can be computed with one step of the
Gram–Schmidt procedure. Otherwise, the whole matrix W must be computed. To
evaluate qk we compute the solution pk to problem (3.2) and let qk = WTGkpk. In
particular, letting Tk = [Vm, p0

k] ∈ R
n×r, r = m + 1, pk has the form

pk = Tkyk, yk = argmin
y∈Rr

‖Fk + F ′
k Tk y‖.

If the columns of F ′
k Tk are linearly independent, i.e., the columns of Tk are linearly

independent, the solution yk is unique. Moreover, the Cholesky factorization RT
k Rk of

the matrix (F ′
k Tk)

TF ′
k Tk ∈ R

r×r can be computed, exploiting the QR factorization
of the Hessenberg matrix Hm provided by GMRES and solving one upper triangular
system of dimension m; see [6]. A complication to this global strategy arises when
F ′
kTk is ill-conditioned. We can monitor this occurrence estimating the condition

number of the small matrix Rk. If such a number is greater than a fixed threshold,
we may perturb the quadratic model ‖Fk + F ′

k Tk y‖2 following the strategy given in
[13, p. 151].
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Finally, we make some comments on the use of preconditioning techniques. Let
P−1 be the preconditioner employed. Since our stopping criterion for computing
the inexact Newton step pIk is based on the unpreconditioned residuals, we focus on
the linear system F ′

k P
−1 s = −Fk with p = P−1 s. Without loss of generality, we

concentrate on the case where a null initial guess for GMRES, s0
k = 0, is chosen,

restart is not used, and the choice Gk = I, k ≥ 0, is adopted. Then the Krylov space
generated by GMRES has the form

Kp
m = {r0

k, (F
′
kP

−1)r0
k, (F

′
kP

−1)2r0
k, . . . , (F

′
kP

−1)m−1r0
k},

where r0
k = −Fk. Clearly, the vector sIk ∈ Kp

m such that ‖F ′
k P

−1 sIk + Fk‖ ≤ ηk‖Fk‖
gives rise to the vector pIk = P−1sIk satisfying (5.6).

To design the subspace dogleg strategy, it is convenient to set Sk = span{P−1v1,
P−1v2, . . . , P

−1vm}, where v1, . . . , vm is the orthonormal basis of Kp
m computed by

GMRES. This way, pIk ∈ Sk and pk = pIk holds. Moreover, computing an orthonormal
basis for Sk requires the application of an orthonormalization procedure.

6. Numerical experiments. In this section, some computational results are
discussed to illustrate the viability of our proposals. They have been selected to show
the behavior of both of the subspace dogleg strategies on problems with different
features and are not meant to be exhaustive.

We implemented the SIATR method with spherical trust regions, Gk = I, k ≥ 0,
in a Fortran code. We refer to the SIATR method with the two-dimensional subspace
strategy as SIATR-2D and to the SIATR method with the GMRES subspace strategy
as SIATR-G.

The inexact Newton step pIk was computed using the iterative linear solver GM-
RES with null initial guess [31]. Restart was not employed and a maximum of 50
GMRES iterations was allowed. If after 50 GMRES iterations condition (5.6) had
not been met, our algorithm continued with pIk given by the last computed GMRES
iterate.

In all runs, we set Δ̄0 = 1, Δmin =
√
εm, where εm denotes the machine precision,

β1 = 0.1, β2 = 0.25, θ = 0.99995. For the computation of the projected step (3.4) we
used αk = max{0.95, 1 − ‖Fk‖}, k > 0. The strategy for updating Δk was the same
as in [3, p. 17]

Here we report numerical experiments performed with machine precision εm =
2 × 10−16 on a 1.7 GHz Intel Pentium M with 512K cache. Convergence is declared
when ‖Fk‖ ≤ 10−8, while failure is declared when a maximum number of 200 iterations
are performed. We conducted experiments with two choices of the forcing terms ηk
proposed in [27]: Choice 1 and Choice 2. In our implementation we use η0 = 0.9 and
the safeguards suggested in [27, p. 305]. In Choice 2 we set the parameters as γ = 0.9
and α = 2.

For the purpose of this presentation we consider two representative test problems:
the seven diagonal problem [23] and the Bratu complementarity problem [14]. The
first problem was solved with n = 5000. It has more than one solution, and in order to
approximate the positive solution, we formulated it as a bound-constrained nonlinear
system with li = 0, ui = ∞, i = 1, . . . , n. The Bratu complementarity problem
was reformulated as a system of n = 5 × 104 smooth bound-constrained nonlinear
equations with li = 0 and ui = ∞ for i = 1, . . . , n. It depends on a parameter λ and
we considered the value λ = 6.

The two problems display different features: the seven diagonal problem has the
solution in the interior of Ω and preconditioning is not required. On the other hand
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Table 6.1

Performance with Choice 1 and Choice 2 of ηk’s.

Seven diagonal Bratu

SIATR-2D SIATR-G SIATR-2D SIATR-G

ηk l NIT NF NLIT NIT NF NLIT NIT NF NLIT NIT NF NLIT

Choice 1 0 34 35 377 37 38 514 30 31 197 28 29 257

1 * * * 40 41 632 30 31 373 29 30 297

2 20 21 65 20 21 65 30 31 432 30 31 443

3 38 41 104 35 37 89 * * * * * *

Choice 2 0 22 23 157 24 25 243 18 19 355 15 16 195

1 62 66 1284 27 28 251 19 20 406 16 17 304

2 7 8 65 7 8 67 19 20 358 20 21 408

3 33 38 112 29 35 106 * * * * * *

the solution of the Bratu problem lies on the boundary of the feasible set and a
preconditioner is needed to speed up the convergence of GMRES. In our runs we
employed the ILU(0) preconditioner. For both problems we used four initial guesses:

x
(l)
0 = 10l−2 with l = 0, 1, 2, 3.

In reporting the numerical results we provide the following: the parameter l used
to form the initial guess; the number NIT of nonlinear iterations; the number NF of
function evaluations; and the number NLIT of linear iterations performed by GMRES.
An asterisk indicates a failure.

Table 6.1 shows the performance of the subspace dogleg strategies achieved with
both choices of ηk’s. It gives an indication of the computational cost in terms of
nonlinear iterations and GMRES iterations. The SIATR-G method seems to perform
slightly better in terms of nonlinear iterations and GMRES iterations. This behavior
could be predictable since in the SIATR-G method we search for an approximate trust-
region solution within a subspace of dimension larger than two. On the other hand, as
we pointed out in the previous section, performing the GMRES Subspace strategy may
be more expensive than performing the two-dimensional subspace strategy. Hence, for
the runs where the two approaches are comparable in terms of linear and nonlinear
iterations, the overall cost of the SIATR-2D method may be expected to be lower.
However, comparing the two strategies in terms of execution time, it comes out that
the extra work for the GMRES subspace strategy has a minor impact on the overall
performance of the SIATR-G method.

7. Conclusions. We have introduced a prototype trust-region method for large
bound-constrained nonlinear systems. The proposed method involves the solution of
the subspace trust-region problems (3.1). The crucial issue in such an approach is the
choice of the subspaces Sk. We have investigated this point, showing how to choose
such subspaces in order to ensure both strong convergence properties and practical
viability in the large scale setting. The convergence results provided are in accordance
with those of inexact Newton methods for unconstrained nonlinear systems. To our
knowledge, this is the first contribution in interior methods for general large-scale
nonlinear systems with simple bounds.

We have implemented algorithms that are based on the proposed paradigm. They
are consistent with the convergence theory and involve Krylov methods to construct
the subspaces Sk. The numerical results provided indicate that our subspace trust-
region approaches are a promising tool for large-scale computation.
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1. Introduction. Evolution Galerkin (EG) methods were proposed to approxi-
mate first order hyperbolic problems. These schemes were introduced by Lin, Morton,
and Süli; see, e.g., [8] for scalar problems and [9] for one-dimensional systems. The
first generalization to two-dimensional systems was made in [23] by Ostkamp for the
wave equation system as well as for the Euler equations of gas dynamics. In [13]
Lukáčová-Medvid’ová, Morton, and Warnecke studied systematically approximate
evolution operators and constructed new EG schemes with better accuracy and sta-
bility properties. Further EG schemes as well as the approximate evolution operator
of the solution for the wave equation system in three space dimensions were derived
in [28]. These methods and their finite volume versions were applied to the linearized
Euler equations and Maxwell equations [16]. Higher order finite volume EG (FVEG)
methods have been introduced and studied in [12], [14], [15], and [17]. In [11], [15],
[6] the FVEG schemes have been generalized to fully nonlinear systems of hyper-
bolic conservation laws, such as the Euler equations of gas dynamics, shallow water
equations, and the shallow water magnetohydrodynamic equations. For hyperbolic
conservation laws with source terms, the so-called well-balanced FVEG schemes are
proposed in [20]. In general, the FVEG schemes produce very accurate numerical
solutions within CPU time comparable to some other well-known finite volume meth-
ods. In particular, genuinely multidimensional features, such as oblique shocks, are
resolved very well; cf., e.g., [11], [15]. For example, it has been shown in [15] that the
global error of the second order FVEG scheme using (7.1)–(7.3) and (8.1)–(8.3) is ap-
proximately six times smaller than the error of the Lax–Wendroff (rotated Richtmyer)
scheme as well as of the second order wave propagation algorithm of LeVeque [7].

The FVEG methods belong to the class of the so-called genuinely multidimen-
sional schemes. The goal is to have a method which approximates possibly all of the
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infinitely many directions of wave propagation. The reader is referred, for example,
to [3], [4], [7], [22], [25] for other genuinely multidimensional schemes.

The main objective of this paper is the analysis of the stability of the evolution
Galerkin schemes. In [13] we have proven that the EG schemes are conditionally
stable. However, the precise stability limits were not computed there. The goal of
this paper is to find stability limits by analysis of the spectrum of the corresponding
discrete operators for the EG as well as FVEG schemes; cf. [11], [13]. First, we consider
the so-called EG3 scheme for the wave equation system in two space dimensions. We
apply the discrete Fourier transform to obtain the amplification matrix. It turns out
that its structure is too complex in order to derive precise stability limits theoretically.
Anyway, we find theoretical stability estimates for a simplified problem. This is then
compared with the experimental estimate of the spectrum of the amplification matrix
of the EG3 scheme.

Further, we derive amplification matrices for the first- and the second order FVEG
schemes based on the approximate evolution operators. The spectral radius of the
amplification matrices is estimated experimentally by a built-in MATLAB procedure.
Hence the stability limit of the schemes is estimated numerically.

The outline of this paper is as follows: in the next section we survey the general
theory that we used to derive the exact integral equations. The exact integral equa-
tions as well as the approximate evolution operators for the two-dimensional wave
equation system are given in section 3. In section 4 we recall the evolution Galerkin
schemes. In section 5 we introduce the discrete Fourier transform as well as the spec-
tral norm that serve as tools in our analysis. In section 6 we present the derivation of
a stability condition for a simplified problem and compare the theoretical estimate,
which we obtained by means of the Fourier analysis, with the experimental limit of
the original problem. In section 7 we consider the first order finite volume schemes
based on the approximate evolution operator Econst

Δ . We determine the amplifica-
tion matrices and estimate their stability limits. Finally in section 8 we determine
the amplification matrices of the second order finite volume schemes based on the
approximate evolution operator Ebilin

Δ and estimate the stability limits.

2. General theory. In this section we recall the exact integral equations for a
general linear hyperbolic system using the concept of bicharacteristics. Consider a
general form of linear hyperbolic system

Ut +

d∑
k=1

AkUxk
= 0, x = (x1, . . . , xd)

T ∈ R
d,(2.1)

where the coefficient matrices Ak, k = 1, . . . , d, are elements of R
p×p and the depen-

dent variables are U = (u1, . . . , up)
T = U(x, t) ∈ R

p. Let A(n) =
∑d

k=1 nkAk be
the pencil matrix, where n = (n1, . . . , nd)

T is a unit vector in R
d. Since the system

(2.1) is hyperbolic the matrix A(n) has p real eigenvalues λk, k = 1, . . . , p, and p
corresponding linearly independent right eigenvectors rk = rk(n), k = 1, . . . , p. Let
R = [r1|r2| . . . |rp] be the matrix of right eigenvectors. We define the characteris-
tic variable W = W(n) as ∂W(n) = R−1∂U. Since the system (2.1) has constant
coefficient matrices Ak we have W = R−1U or U = R W.

Transforming system (2.1) by multiplying it with R−1 from the left we get

R−1Ut +

d∑
k=1

R−1AkRR−1Uxk
= 0.(2.2)
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Fig. 1. Bicharacteristics along the Mach cone through P and Qi(n), d = 2.

Let Bk = R−1AkR = (bkij)
p
i,j=1, where k = 1, 2, . . . , d; then the system (2.2) can be

rewritten in the following form using the characteristic variables:

Wt +

d∑
k=1

BkWxk
= 0.

Now we decompose Bk into the diagonal part Dk and the remaining part B′
k, i.e.,

Bk = Dk + B′
k. We obtain

Wt +

d∑
k=1

DkWxk
= −

d∑
k=1

B′
kWxk

=: S.(2.3)

The ith bicharacteristic corresponding to the ith equation of (2.3) is defined by

dxi

dt̃
= bii(n) = (b1ii, b

2
ii, . . . , b

d
ii)

T ,

where i = 1, . . . , p. The diagonal entries bkii of the matrices Bk, k = 1, . . . , d, i =
1, . . . , p, create the ray velocity vector bii; cf. [1]. We consider the bicharacteristics
backwards in time and set the initial conditions xi(t + Δt,n) = x for all n ∈ R

d and
i = 1, . . . , p, i.e., xi(t̃,n) = x − bii(n)(t + Δt− t̃).

We will integrate the ith equation of the system (2.3) from the point P ≡
(x, t + Δt) ∈ R

p × R+ down to the point Qi(n) = (xi(t,n), t) = (x − Δtbii, t),
where the bicharacteristic hits the plane at time t; see Figure 1. Note that bicharac-
teristics are straight lines because the system is linear and has constant coefficients.
Now the ith equation reads

∂wi

∂t
+

d∑
k=1

bkii
∂wi

∂xk
= −

(
d∑

j=1,i �=j

(
b1ij

∂wj

∂x1
+ b2ij

∂wj

∂x2
+ · · · + bdij

∂wj

∂xd

))
= Si.(2.4)

Taking a vector σi = (b1ii, b
2
ii, . . . , b

d
ii, 1), we can define the directional derivative

dwi

dσi
=

(
∂wi

∂x1
,
∂wi

∂x2
, . . . ,

∂wi

∂xd
,
∂wi

∂t

)
· σi =

∂wi

∂t
+ b1ii

∂wi

∂x1
+ b2ii

∂wi

∂x2
+ · · · + bdii

∂wi

∂xd
.

Hence the ith equation (2.4) can be rewritten as follows:

dwi

dσi
= Si = −

d∑
j=1,i �=j

(
b1ij

∂wj

∂x1
+ b2ij

∂wj

∂x2
+ · · · + bdij

∂wj

∂xd

)
.
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Integration from P to Qi(n) gives

wi(P ) − wi(Qi(n)) = S′
i,(2.5)

where

S′
i =

∫ t+Δt

t

Si(xi(t̃,n), t̃,n)dt̃ =

∫ Δt

0

Si(xi(t + Δt− τ,n), t + Δt− τ,n)dτ.

The reverse transformation of (2.5) into a system written in the original physical
variables is done by multiplication with R from the left and (d − 1)-dimensional
integration of the variable n over the unit sphere O in R

d. This leads to the integral
representation of the solution in the point x at time t + Δt:

U(P ) = U(x, t + Δt) =
1

|O|

∫
O

R(n)

⎛
⎜⎜⎜⎜⎜⎝

w1(Q1(n),n)
w2(Q2(n),n)
w3(Q3(n),n)

...
wp(Qp(n),n)

⎞
⎟⎟⎟⎟⎟⎠dO + S̃,(2.6)

where

S̃ = (S̃1, S̃2, . . . , S̃p)
T =

1

|O|

∫
O

R(n)S′dO =
1

|O|

∫
O

∫ Δt

0

R(n)S(t + Δt− τ,n)dτdO

and |O| corresponds to the measure of the domain of integration.

3. Exact integral equations and approximate evolution operators for
the wave equation system. In this section we illustrate the application of the
general theory of bicharacteristics for the two-dimensional system of wave equations.
We recall the exact integral equations and present their possible approximation, the
so-called EG3 approximate evolution operator. Consider the two-dimensional wave
equation system

φt + c(ux + vy) = 0,
ut + cφx = 0,
vt + cφy = 0,

(3.1)

where c is a given positive constant representing the speed of sound. We will recall
here the exact integral equations derived in [13]. Let P = (x, y, t+Δt), P ′ = (x, y, t),
Q = (x + cΔt cos θ, y + cΔt sin θ, t) = (x + cΔtn(θ), t) and let the so-called source
term be given as

S = c
[
ux sin2 θ − (uy + vx) sin θ cos θ + vy cos2 θ

]
;(3.2)

then exact integral equations for the wave equation system (3.1) are given as

φP =
1

2π

∫ 2π

0

(φQ − uQ cos θ − vQ sin θ) dθ + S̃1,(3.3)

uP =
1

2
uP ′ +

1

2π

∫ 2π

0

(−φQ cos θ + uQ cos2 θ + vQ sin θ cos θ) dθ + S̃2,(3.4)

vP =
1

2
vP ′ +

1

2π

∫ 2π

0

(−φQ sin θ + uQ cos θ sin θ + vQ sin2 θ) dθ + S̃3,(3.5)
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where

S̃1 =
−1

2π

∫ 2π

0

∫ �t

0

S(x + cτn(θ), t + Δt− τ, θ) dτ dθ,

S̃2 =
1

2π

∫ 2π

0

∫ �t

0

cos θS(x + cτn(θ), t + Δt− τ, θ) dτ dθ

− 1

2π

∫ 2π

0

∫ �t

0

[
cφx(x, t + Δt− τ) sin2 θ − cφy(x, t + Δt− τ) sin θ cos θ

]
dτ dθ,

S̃3 =
1

2π

∫ 2π

0

∫ �t

0

sin θS(x + cτn(θ), t + Δt− τ, θ) dτ dθ

− 1

2π

∫ 2π

0

∫ Δt

0

[
cφy(x, t + Δt− τ) cos2 θ − cφx(x, t + Δt− τ) sin θ cos θ

]
dτ dθ.

The above integral equations give us an implicit formulation of the solution at the
point P = (x, y, tn+1). In order to obtain an explicit numerical scheme it is necessary
to use numerical quadrature rules in order to approximate the time integral from 0
to Δt. Using the backward rectangle rule leads to an O(Δt2) approximation of the
time integrals appearing in S̃1, S̃2, and S̃3. Further we use the following result [13,
Lemma 2.1]:

Δt

∫ 2π

0

S(t, θ)dθ =

∫ 2π

0

(u cos θ + v sin θ)dθ,

Δt

∫ 2π

0

S(t, θ) cos θdθ =

∫ 2π

0

(u cos 2θ + v sin 2θ)dθ,

Δt

∫ 2π

0

S(t, θ) sin θdθ =

∫ 2π

0

(u sin 2θ + v cos 2θ)dθ.(3.6)

Note that these formulae allow us to replace the derivatives of our dependent variables
in S by the variables themselves. Rectangle rule approximation for the time integral
and (3.6) yield the so-called EG3 approximate evolution operator.

Approximate evolution operator for EG3.

φP =
1

2π

∫ 2π

0

(φQ − 2uQ cos θ − 2vQ sin θ)dθ+O(Δt2),(3.7)

uP =
1

2
uP ′+

1

2π

∫ 2π

0

(−2φQ cos θ+uQ(3 cos2 θ − 1)+ 3vQ sin θ cos θ)dθ+O(Δt2),(3.8)

vP =
1

2
vP ′+

1

2π

∫ 2π

0

(−2φQ sin θ+ 3uQ sin θ cos θ+ vQ(3 sin2 θ − 1))dθ+O(Δt2).(3.9)
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We refer the reader to [13, 28] for other approximate evolution operators EG1,
EG2, EG4. In what follows we will concentrate on the stability analysis of the EG3
scheme, for which the best numerical results have been obtained; see [13]. The stability
analysis for other schemes can be done in an analogous way.

4. Evolution Galerkin schemes. In this section we describe EG schemes in
the finite difference framework as well as FVEG schemes. The main idea behind
EG schemes is the following. Transported quantities are evolved in time along the
bicharacteristics and then projected onto a finite element space. These methods con-
nect finite element methods with the theory of bicharacteristics. In the finite volume
framework the approximate operators are used only in order to compute fluxes on
cell interfaces. Thus, instead of one-dimensional Riemann solvers, which work only in
the normal directions to the cell interfaces, we compute the approximate solution at
cell interfaces by a multidimensional evolution operator. This can be considered as a
predictor step. In the corrector step the finite volume update is made.

Consider a mesh in R
2, which consists of the square mesh cells

Ωkl =

[(
k − 1

2

)
h,

(
k +

1

2

)
h

]
×
[(

l − 1

2

)
h,

(
l +

1

2

)
h

]

=

[
xk − h

2
, xk +

h

2

]
×
[
yl −

h

2
, yl +

h

2

]
,

where h > 0 is the mesh size parameter, and k, l ∈ Z. Let us denote by E(s) :
(L2(R2))p → (L2(R2))p the exact evolution operator for a general hyperbolic system
(2.1), i.e.,

U(., t + s) = E(s)U(., t).(4.1)

We suppose that Sm
h is a finite element space consisting of piecewise polynomials

of degree m ≥ 0 with respect to the square mesh. Assume a constant time step,
i.e., tn = nΔt. Let Un be an approximation in the space Sm

h to the exact solution
U(., tn) at time tn ≥ 0. We consider Eτ : (L2(R2))p → (L2(R2))p to be a suitable
approximate evolution operator for E(τ). In practice we will use restrictions of Eτ to
the subspace Sm

h for m ≥ 0. Then we can define the general class of EG methods as
follows.

Definition 4.1. Starting from some initial data U0 ∈ Sm
h at time t = 0, an EG

method is recursively defined by means of

Un+1 = PhEτU
n,(4.2)

where Ph is the L2-projection given by the integral averages in the following way:

PhU
n|Ωkl

=
1

|Ωkl|

∫
Ωkl

U(x, y, tn)dxdy.(4.3)

In this paper we will limit our considerations to the cases where m = 0. In this
case the integrals that we obtain from the projection are evaluated either exactly
using the fact that the approximate values Un are piecewise constant or by means of
some numerical quadrature rules. Using piecewise constants, the resulting schemes
will only be of first order accuracy, even when Eτ is approximated to a higher order.
Higher order accuracy can be obtained either by taking m > 0 or by inserting a
recovery stage Rh before the evolution step in (4.2) to give

Un+1 = PhEτRhU
n.(4.4)
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Here we have denoted by Rh : Sm
h → Sr

h a recovery operator, r > m ≥ 0, and consider
our approximate evolution operator Eτ on Sr

h. To implement (4.4), rather complex
three-dimensional integrals need to be evaluated exactly. This approach seems to be
hardly feasible for efficient derivation and implementation of higher order methods.
A simplification that we used is to apply the multidimensional evolution only on the
cell interfaces. This latter approach leads to the FVEG methods.

Definition 4.2. Starting from some initial data U0 ∈ Sm
h , the finite volume

evolution Galerkin (FVEG) method is recursively defined by means of

Un+1 = Un − 1

h

∫ Δt

0

2∑
j=1

δxj fj(Ũ
n+ τ

Δt )dτ,(4.5)

where δxj fj(Ũ
n+ τ

Δt ) represents an approximation to the edge flux difference and δx is

defined by δxv(x) = v(x + h
2 ) − v(x− h

2 ). The cell boundary value Ũn+ τ
Δt is evolved

using the approximate evolution operator Eτ to tn + τ and averaged along the cell
boundary, i.e.,

Ũn+ τ
Δt =

∑
k,l∈Z

(
1

|∂Ωkl|

∫
∂Ωkl

EτRhU
ndS

)
χkl,(4.6)

where χkl is the characteristic function of ∂Ωkl.
For more details on higher order FVEG schemes, see [10], [15], [17], where the

error analysis as well as numerical experiments are presented. Using the L2-projection
(4.3), the approximate evolution operator Eτ , and (4.5), (4.6), the EG and FVEG
schemes can be written in the finite difference form

Un+1
kl = Un

kl +

1∑
r=1−

1∑
s=−1

CrsUn
k+r,l+s,(4.7)

where

Crs =

⎛
⎜⎝ α1

rs β1
rs γ1

rs

α2
rs β2

rs γ2
rs

α3
rs β3

rs γ3
rs

⎞
⎟⎠ .(4.8)

Here the entries αm
rs, β

m
rs, γ

m
rs, m = 1, 2, 3, are chosen appropriately according to the

approximate evolution operator Eτ used. In the appendix the stencil matrices αm,
βm, and γm, m = 1, 2, 3, are displayed for some EG schemes.

5. Basic tools. As we mentioned above our stability considerations are based on
Fourier analysis. We first recall some basic concepts; see, e.g., [24]. Let {ψn

kl}∞k,l=−∞
be a two-dimensional sequence in �2.

Definition 5.1. The discrete Fourier transformation of {ψn
kl} ∈ �2 is the func-

tion ψ̂n ∈ L2

([
− π

h ,
π
h

]
×
[
− π

h ,
π
h

])
defined by

ψ̂n(ξ, η) = h2
∞∑

k=−∞

∞∑
l=−∞

ψn
kl exp−ih(kξ+lη) .

Similarly to the continuous Fourier transform, we have both an inverse formula
and Parseval’s identity.
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Lemma 5.2 (inverse formula). If {ψn
kl} ∈ �2 and ψ̂n is the discrete Fourier

transform of {ψn
kl}, then

ψn
kl =

1

4π2

∫ π
h

−π
h

∫ π
h

−π
h

ψ̂n(ξ, η) expih(kξ+lη) dξ dη.

Lemma 5.3 (Parseval’s identity). If {ψn
kl} ∈ �2 and ψ̂n is the discrete Fourier

transform of {ψn
kl}, then

||ψ̂n|| = ||ψn
kl||,

where the first norm is the L2-norm on
[
−π

h ,
π
h

]
×
[
−π

h ,
π
h

]
and the second norm is

the �2-norm.
Hence we have the following result.
Lemma 5.4. The sequence {ψn

kl} is bounded in �2 if and only if the sequence

{ψ̂n} is bounded in L2

([
−π

h ,
π
h

]
×
[
−π

h ,
π
h

])
.

In order to study the stability of linear numerical schemes the Fourier transform
is used. This leads to a bound on the spectral radius of the so-called amplification
matrix. The spectral radius of a square complex matrix A with eigenvalues λi is
defined to be

ρ(A) = max
i

|λi|.(5.1)

The spectral norm of the matrix A is defined as

||A|| = sup
x�=0

||Ax||
||x|| .(5.2)

The norms on the right-hand side of (5.2) are the Euclidean norms of the vectors Ax
and x, respectively. Note that for the spectral norm, as for any matrix norm, we
always have ||A|| ≥ ρ(A).

6. Estimate of the stability limit. In [13, Lemma 5.1] Lukáčová-Medvid’ová,
Morton, and Warnecke proved the following stability result for EG schemes. There
exists νmax < 1 such that EG schemes for the two-dimensional wave equation system
(3.1) are stable for any ν such that 0 ≤ ν ≤ νmax, where ν = cΔt

h is the CFL number.
The goal of this section is to estimate νmax for the EG3 scheme by means of a von
Neumann stability analysis. We refer to [2] for a related approach used to estimate
stability limits of other finite volume schemes for the Maxwell equations. Analogous
calculations can be done also for other EG schemes of type EG1, EG2, EG4 as well
as for the FVEG schemes. First we apply the discrete Fourier transform to both sides
of (4.7):

Ûn+1 = Ûn + h2
∞∑

k=−∞

∞∑
l=−∞

(
1∑

r=−1

1∑
s=−1

CrsUn
k+rl+s

)
exp−ih(kξ+lη) .(6.1)

By making the change of variables k′ = k + r and l′ = l + s we get
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h2
∞∑

k=−∞

∞∑
l=−∞

(
1∑

r=−1

1∑
s=−1

CrsUn
k+rl+s

)
exp−ih(kξ+lη)

=

1∑
r=−1

1∑
s=−1

Crs expih(rξ+sη)

(
h2

∞∑
k′=−∞

∞∑
l′=−∞

Un
k′l′ exp−ih(k′ξ+l′η)

)

=
1∑

r=−1

1∑
s=−1

Crs expih(rξ+sη) Ûn.(6.2)

Thus, using this expression in (6.1), we get

Ûn+1 =

(
I +

1∑
r=−1

1∑
s=−1

Crs expih(rξ+sη)

)
Ûn,(6.3)

where I is the identity matrix. The coefficient of Ûn in (6.3),

T (ξ, η) = I +

1∑
r=−1

1∑
s=−1

Crs expih(rξ+sη),(6.4)

is called the amplification matrix of the finite difference scheme (4.7). Applying
recursively the result of (6.3) n + 1 times yields

Ûn+1 =

(
I +

1∑
r=−1

1∑
s=−1

Crs expih(rξ+sη)

)n+1

Û0 = T n+1(ξ, η)Û0.(6.5)

We note that if ||T (ξ, η)|| ≤ 1, then ||Ûn+1|| ≤ ||Û0||, which means that the {Ûn} is
L2-stable. Consider the EG3 scheme, i.e., the numerical scheme based on equations
(3.7)–(3.9); see also the stencil matrices in the appendix. After some calculation we
obtain the entries of the amplification matrix T (ξ, η):

T11(ξ, η) = 1 +
ν2

π
− 4ν

π
+

ν2

π
cos(hξ) cos(hη) +

(
2ν

π
− ν2

π

)
(cos(hξ) + cos(hη)) ,

T12(ξ, η) = −i

(
4ν2

3π
sin(hξ) cos(hη) +

(
ν − 4ν2

3π

)
sin(hξ)

)
,

T13(ξ, η) = −i

(
4ν2

3π
cos(hξ) sin(hη) +

(
ν − 4ν2

3π

)
sin(hη)

)
,

T22(ξ, η) = 1 − 2ν

π
+

ν2

2π
+

ν2

2π
cos(hξ) cos(hη) +

(
2ν

π
− ν2

2π

)
cos(hξ) − ν2

2π
cos(hη),

T23(ξ, η) =
−3ν2

8
sin(hξ) sin(hη),

T33(ξ, η) = 1 − 2ν

π
+

ν2

2π
+

ν2

2π
cos(hξ) cos(hη) +

(
2ν

π
− ν2

2π

)
cos(hη) − ν2

2π
cos(hξ),

T21(ξ, η) = T12(ξ, η), T31(ξ, η) = T13(ξ, η), T32(ξ, η) = T23(ξ, η).

Using the substitutions Sξ = sin(hξ), sξ = sin(hξ2 ), Sη = sin(hη), and sη = sin(hη2 ),
we can write the amplification matrix T = T (ξ, η) as

T =

⎛
⎝ C11 −iνCξ −iνCη

−iνCξ C22 ν2Cξη

−iνCη ν2Cξη C33

⎞
⎠ ,
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where

C11 = 1 − 4ν

π
(s2

ξ + s2
η) +

4ν2

π
s2
ξs

2
η,

Cξ = Sξ

(
1 − 8ν

3π
s2
η

)
,

Cη = Sη

(
1 − 8ν

3π
s2
ξ

)
,

Cξη =
−3

8
SξSη,

C22 = 1 − 4ν

π
s2
ξ +

2ν2

π
s2
ξs

2
η,

C33 = 1 − 4ν

π
s2
η +

2ν2

π
s2
ξs

2
η.

Set

E =

⎛
⎝ i 0 0

0 1 0
0 0 1

⎞
⎠ ;

then

Q =

⎛
⎝ C11 −νCξ −νCη

νCξ C22 ν2Cξη

νCη ν2Cξη C33

⎞
⎠ = E−1T E ,

which means that T and Q are similar matrices and thus have the same eigenvalues.
Moreover, the matrix Q can be decomposed as

Q = I − ν (D + C) + ν2C̃,

where

D =

⎛
⎝ d + f 0 0

0 d 0
0 0 f

⎞
⎠ , C =

⎛
⎝ 0 Cξ Cη

−Cξ 0 0
−Cη 0 0

⎞
⎠ , C̃ =

⎛
⎝ 0 0 0

0 0 Cξη

0 Cξη 0

⎞
⎠ ,

d =
4

π
s2
ξ −

2ν

π
s2
ξs

2
η =

2

π
s2
ξ(2 − νs2

η), f =
4

π
s2
η −

2ν

π
s2
ξs

2
η =

2

π
s2
η(2 − νs2

ξ).

Let

H = I − ν(D + C),(6.6)

and let ||.||� be an operator norm such that ||H||� = ||J ||∞, where J is a scaled
Jordan normal form of H having ε � 1 on the first off-diagonal and eigenvalues of H
on the diagonal. According to [5] we know that the following property holds: ρ(H) < 1
if and only if ||H||� < 1. Since all norms in finite-dimensional spaces are equivalent
we have

||Q − (I − ν(D + C))||� ≤ c ||Q − (I − ν(D + C))|| = c ν2|Cξη| = O(ν2).(6.7)

Thus, using (6.7) we obtain

ρ(Q) ≤ ||Q||� ≤ ||H||� + cν2,(6.8)
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and it suffices to study the spectrum of matrix H, since ρ(H) < 1 if and only if
||H||� < 1.

Further, since H = I − ν(D + C) and due to the form of D, C it can be shown
readily that ||H||∞ = |1 + c1ν + c2ν

2| for some constants c1, c2 ∈ R. Since all norms
in finite-dimensional spaces are equivalent, there exist k1, k2 > 0, such that for any
matrix M ∈ R

(3,3)

k1||M||∞ ≤ ||M||� ≤ k2||M||∞ .

In particular, if M = H, we have for any ν > 0

k1|1 + c1ν + c2ν
2| ≤ ||H||� ≤ k2|1 + c1ν + c2ν

2|.(6.9)

Thus, it is clear that ||H||� depends at most quadratically on ν, i.e., ||H||� = |1 +
c3ν + c4ν

2|. Now, if we assume that ||H||� < 1, the linear term has to be negative,
i.e., c3 < 0, as otherwise ||H||� cannot be strictly less than 1 for ν ≤ 1. Thus, if
||H||� < 1, we can find small enough ν such that ||H||� + cν2 ≤ 1 and ρ(Q) ≤ 1 due
to (6.8).

Unfortunately, we cannot give any quantitative estimate on ν since we do not
know how large the constant c in (6.8) is. However, we know from [13] that there
exists νmax > 0 such that for all ν ∈ (0, νmax] we have ρ(Q) ≤ 1.

In what follows we will study the spectrum of the matrix H and find ν such that
ρ(H) < 1. Note that for all (ξ, η) ∈ [−π

h , π
h ] × [−π

h , π
h ] the entries of H are bounded.

We need to estimate the spectral radius of H for all choices of ξ, η, and ν, 0 < ν ≤ 1.
First of all, it is easy to see that in a special case when ξ = 0 = η we have

d = f = Cξ = Cη = Cξη = 0 and Q = I = H. Thus, trivially ρ(H) = ρ(Q) = 1 for
any ν. Therefore in what follows it suffices to study the case when ξ 	= 0 or η 	= 0.

Since 0 ≤ s2
ξ ≤ 1 and 0 ≤ s2

η ≤ 1 and ν ≤ 1, then d ≥ 0 and f ≥ 0. Now the
matrices D, C are real and C is skewsymmetric. Hence D + C has either three real
eigenvalues or one real eigenvalue and two complex conjugate eigenvalues.

Consider a real eigenvalue, say λ = λr. Let v = (v1, v2, v3) be the corresponding
eigenvector; then vT (D + C)v = vTλrv. Since C is skewsymmetric, then vTCv = 0.
Hence we get

(d + f − λr)v
2
1 + (d− λr)v

2
2 + (f − λr)v

2
3 = 0.(6.10)

The coefficients in (6.10) cannot all have the same sign for v2
1 , v

2
2 , v

2
3 > 0. Therefore,

we get the estimates

0 ≤ min(d, f) ≤ λr ≤ d + f.(6.11)

Let μr be a real eigenvalue of H; then μr = 1 − νλr. Hence |μr| < 1 is equivalent to
−1 < 1 − νλr < 1. According to (6.11) we assume now that

λr > 0;(6.12)

the case λr = 0 will be treated separately later; cf. (6.22). Further,

1 − 4ν

π

(
s2
ξ + s2

η

)
+

4ν2

π
s2
ξs

2
η ≤ 1 − νλr < 1.

To ensure that |μr| < 1 we need

1 − 4ν

π

(
s2
ξ + s2

η

)
+

4ν2

π
s2
ξs

2
η > −1.
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The last inequality reads

ν2

(
4

π
s2
ξs

2
η

)
− ν

(
4

π

(
s2
ξ + s2

η

))
+ 2 > 0.(6.13)

It suffices to bound ν so that 2 − ν 4
π (s2

ξ + s2
η) > 0. Since (s2

ξ + s2
η) ≤ 2, this is true if

ν <
π

4
≈ 0.7854.(6.14)

Now let us assume that μc is a complex eigenvalue of H. Then μc = 1 − νλc,
where λc is a complex eigenvalue of the matrix D + C. This implies that

|μc|2 = 1 − 2νRe(λc) + ν2|λc|2.

Thus |μc|2 < 1 is equivalent to ν2|λc|2 − 2νRe(λc) < 0. Since λr > 0 (cf. (6.12)), we
have

ν2λr|λc|2 − 2νλrRe(λc) < 0.(6.15)

Let b = Cξ and c = Cη. It is well known that

det(D + C) = d2f + f2d + b2f + c2d = λr|λc|2,
Tr(D + C) = 2(d + f) = λr + λc + λ̄c = λr + 2Re(λc).

Hence (6.15) reads

p(λr) = λ2
r − 2(d + f)λr + ν(d2f + f2d + b2f + c2d) < 0.(6.16)

Let us consider the polynomial

p = p(λ) = λ2 − 2(d + f)λ + ν(d2f + f2d + b2f + c2d).

The discriminant of p gives

Δ = 4(d + f)2 − 4ν(d2f + f2d + b2f + c2d)

= 4(d2 + f2) + 8fd− 4ν(d2f + f2d + b2f + c2d).

It suffices to show that the following inequality holds:

8fd− 4ν(d2f + f2d + b2f + c2d) > 0,

which leads to Δ > 4(d2 + f2) ≥ 0. Now

8fd =
32

π2
s2
ξs

2
η(2 − νs2

η)(2 − νs2
ξ) =

32

π2
s2
ξs

2
η(4 − 2ν(s2

ξ + s2
η) + ν2s2

ξs
2
η)

≥ 32

π2
s2
ξs

2
η(4 − 2ν(s2

ξ + s2
η)).

Note that the last inequality is strict if ξ 	= 0 and η 	= 0. Hence,

8fd ≥ 32

π2
s2
ξs

2
η(4 − 4ν) =

128

π2
s2
ξs

2
η(1 − ν).(6.17)

If ξ 	= 0 and η 	= 0, the inequality in (6.17) is strict.
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Further, we have

d2f =
8

π3
s4
ξs

2
η(2 − νs2

η)
2(2 − νs2

ξ) ≤
64

π3
s4
ξs

2
η ≤ 64

π3
,(6.18)

b2f = S2
ξ (1 − 8ν2

3π
s2
η)

2 2

π
s2
η(2 − νs2

ξ) ≤
4

π
S2
ξ s

2
η ≤ 4

π
.(6.19)

Again, note that in the case that either ξ = 0 or η = 0, the inequality in (6.18) is
strict.

Analogously, we obtain

f2d ≤ 64

π3
and c2d ≤ 4

π
.

Therefore,

−4ν(d2f + f2d + b2f + c2d) ≥ −4
128 + 8π2

π3
ν;(6.20)

if ξ = 0 or η = 0, the above inequality is strict.
Combining (6.17) and (6.20) we get

8df − 4ν(d2f + f2d + b2f + c2d) >
128

π2
s2
ξs

2
η(1 − ν) − 4

(
128 + 8π2

π3

)
ν

=
128

π2
s2
ξs

2
η − ν

(
128

π2
s2
ξs

2
η + 4

(
128 + 8π2

π3

))
≥ 0.

The last inequality implies

ν ≤
128
π2 s

2
ξs

2
η

4
(

128+8π2

π3

)
+ 128

π2 s2
ξs

2
η

≤
128
π2

4
(

128+8π2

π3

)
+ 128

π2 s2
ξs

2
η

.

Since

4

(
128 + 8π2

π3

)
+

128

π2
s2
ξs

2
η ≥ 4

(
128 + 8π2

π3

)

we then have

1

4
(

128+8π2

π3

)
+ 128

π2 s2
ξs

2
η

≤ 1

4
(

128+8π2

π3

) .
Therefore we get

ν ≤
128
π2

4(128+8π2)
π3

=
32π

128 + 8π2
≈ 0.4858.(6.21)

Thus we have obtained a sufficient condition on ν for Δ > 0. For ν ≤ 0.4858 we have
Δ > 4(d2 + f2) ≥ 0.

Since λr > 0 (cf. (6.12)), p(λ) has two distinct real roots r1 and r2, where

r1 = (d + f) −
√

Δ

2
, r2 = (d + f) +

√
Δ

2
.
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Inequality (6.11) gives λr < r2. To show that λr > r1 note that from Δ > 4(d2 + f2)

we have r1 < (d + f) −
√
d2 + f2. Furthermore

√
d2 + f2 ≥ max(d, f). Therefore

r1 < (d + f) −
√
d2 + f2 ≤ (d + f) − max(d, f) = min(d, f) ≤ λr.

Hence λr ∈ (r1, r2). This implies that p(λr) < 0, as we wished to show; cf. (6.16).
Moreover, since λr ≥ 0 (cf. (6.11)), we need to consider the case λr = 0. Then

either d = 0 or f = 0. Suppose d = 2
π s

2
ξ(2 − νs2

η) = 0; the case f = 0 is analogous.
Then we have that sξ = 0, ξ = 0, and

D + C =

⎛
⎝ 4

π s
2
η 0 Sη

0 0 0
−Sη 0 4

π s
2
η

⎞
⎠ .(6.22)

Note that in this case Q = H, μr = 1 and we need to find the condition on ν to
ensure that ρ(H) = ρ(Q) ≤ 1. The eigenvalues of D + C are 0, 4

π s
2
η ± iSη. Now

|μc|2 = |1 − νλc|2 ≤ 1 gives

(
1 − ν

(
4

π
s2
η + iSη

))(
1 − ν

(
4

π
s2
η − iSη

))
=

((
1 − 4

π
νs2

η

)2

+ ν2S2
η

)

= 1 − 8ν

π
s2
η +

16ν2

π2
s4
η + ν2S2

η ≤ 1.

This leads to

−8ν

π
s2
η + ν2

(
16

π2
s4
η + S2

η

)
≤ 0.

Suppose sη 	= 0, as otherwise η = 0 and ξ = 0, which is a special case that has already
been considered above. Then we have

− 8

π
+ ν

(
16

π2
s2
η +

(
Sη

sη

)2
)

≤ 0,

ν

(
16

π2
s2
η +

(
Sη

sη

)2
)

≤ 8

π
.

The last inequality yields

ν ≤
8
π(

16
π2 s2

η +
(

Sη

sη

)2
) .(6.23)

Since

16

π2
s2
η +

(
Sη

sη

)2

≤ 4,

it suffices to take ν such that

ν ≤ 2

π
≈ 0.6366.(6.24)
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Finally (6.14), (6.21), and (6.24) imply that if

ν ≤ 32π

128 + 8π2
≈ 0.4858,(6.25)

then either ρ(Q) = ρ(H) = 1 or ρ(H) < 1. Hence we have proved the following result.
Lemma 6.1. Consider the EG3 scheme. Then there exists ν small enough such

that ρ(T ) ≤ 1, where T is the amplification matrix of the discrete operator represent-
ing the EG3 scheme.

More precisely, we know that ρ(T ) ≤ ‖H‖∗+O(ν2), where H is the matrix defined
in (6.6). Moreover, if ν ≤ 32π

128+8π ≈ 0.4858, then ρ(H) < 1 and ‖H‖∗ < 1, except for
the special case when ρ(H) = ρ(T ) = 1. Otherwise, there is ν small enough such that
ρ(T ) ≤ 1.

Table 1

Stability limit using ρξ,η(T (ξ, η)).

cΔt
h

ρξ,η(T (ξ, η)) for EG3

0.10 1.000000000000000
0.20 1.000000000000000
0.30 1.000000000000000
0.40 1.000000000000000
0.50 1.000000000000000
0.58 1.000000000000000
0.59 1.000003244461521
0.60 1.000112236111448
0.70 1.008474049696319

In Table 1 we have estimated the stability limit of the scheme EG3 using the
standard MATLAB procedure eig for the eigenvalues of the matrix T . Note that our
theoretical result ν ≈ 0.4858 for a simplified problem gives a stronger estimate on the
CFL number than the experimental results for the original problem. They show that
the EG3 scheme stays stable up to ν = 0.58. In Figure 2 (left) we plot the eigenvalues
of the matrix H as well as the unit circle. A similar plot with different scale is shown
in Figure 2 (right). In Figure 3 we show, using different scales, the eigenvalues of the
amplification matrix corresponding to the first order EG3 scheme. We illustrate that
it is possible to include all eigenvalues inside the unit circle for the CFL number up to
0.58. Throughout the paper in order to plot the eigenvalues of amplification matrices
we have used 100 × 100 values of hξ, hη ∈ [−π, π].

7. Approximate evolution operator Econst
Δ for piecewise constant data.

In [11], Lukáčová-Medvid’ová, Morton and Warnecke proposed new approximate evo-
lution operators Econst

Δ and Ebilin
Δ for the two-dimensional wave equation system and

for the Euler equations of gas dynamics. Extensive numerical experiments presented
in [11] indicate that these new operators improve the stability of the FVEG schemes
considerably; i.e., in particular, our numerical tests indicated that they have a larger
stability range than the EG3 method, which we considered in section 6. We will show
that for special choices of discretization techniques stability limits close to the natural
limit of 1 can be achieved. Numerical experiments, presented in [11], for these FVEG
schemes confirm high accuracy as well as good multidimensional behavior of the new
FVEG schemes. The key idea of the development of these new operators was to ex-
ploit the fact that the exact explicit solution to the one-dimensional wave equation
system is available. Our new approximate operators are constructed in such a way
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Fig. 2. Eigenvalues of the matrix H, CFL = 0.48.
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Fig. 3. Eigenvalues of the amplification matrix of the first order EG3 scheme for CFL = 0.58.

that this exact solution is reproduced exactly for given one-dimensional data. Thus,
the approximate evolution operator Econst

Δ calculates exactly any one-dimensional
wave which is represented by a piecewise constant data and propagates either in the
x- or the y-direction. An analogous situation holds for the operator Ebilin

Δ and ap-
proximated waves by means of continuous piecewise bilinear data. The approximate
evolution operator Econst

Δ for piecewise constant data reads (cf. [11])

φP =
1

2π

∫ 2π

0

(φQ − uQsgn(cos θ) − vQsgn(sin θ))dθ,(7.1)

uP =
1

2π

∫ 2π

0

(
−φQsgn(cos θ) + uQ

(
1

2
+ cos2 θ

)
+ vQ sin θ cos θ

)
dθ,(7.2)

vP =
1

2π

∫ 2π

0

(
−φQsgn(sin θ) + uQ sin θ cos θ + vQ

(
1

2
+ sin2 θ

))
dθ.(7.3)
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Integrations from 0 to 2π around the sonic circle in (7.1)–(7.3) are evaluated exactly.
In this way all of the infinitely many directions of wave propagation are taken into
account explicitly. For the cell interface integration along ∂Ω in (4.6) we have two
possibilities. These edge integrals can be computed either exactly or numerically.
Exact cell interface integration yields, e.g., for the vertical edge, the intermediate
values

Φ̃
n+ 1

2

edge =

(
1 +

ν

2π
δ2
y

)
μxΦn −

(
1

2
+

ν

4π
δ2
y

)
δxU

n − ν

π
μxμyδyV

n,

Ũ
n+ 1

2

edge = −
(

1

2
+

ν

4π
δ2
y

)
δxΦn +

(
1 +

5ν

12π
δ2
y

)
μxU

n +
ν

6π
δxμyδyV

n,(7.4)

where μxf(x) = 1
2

(
f
(
x + h

2

)
+ f
(
x− h

2

))
, δ2

xf(x) = f(x + h) − 2f(x) + f(x− h).
The stencil matrices of this FVEG scheme are given in the appendix. Another

possibility for evaluating the cell interface integrals is to use some numerical quadra-
ture. In this way, further simplification in the derivation of the scheme can be made.
Instead of the two-dimensional integrals along the cell interfaces and around the sonic
circle, only the sonic circle integrals need to be evaluated exactly. In our experiments
we used the trapezoidal rule and Simpson’s rule for the cell interface integration.
Thus, we need to determine Ũn+ 1

2 :

Φ̃
n+ 1

2
vertex = μxμyΦ

n − 1

2
μyδxU

n − 1

2
μxδyV

n,

Ũ
n+ 1

2
vertex = −1

2
μyδxΦn + μxμyU

n +
1

4π
δxδyV

n,

Φ̃
n+ 1

2

midpoint = μxΦn − 1

2
δxU

n,

Ũ
n+ 1

2

midpoint = −1

2
δxΦn + μxU

n.(7.5)

The stencil matrices of the FVEG scheme with trapezoidal and Simpson quadratures
for the cell interface integration are given in the appendix.

Analogously to section 6, we can show that the amplification matrix T of the first
order FVEG scheme with exact edge integrals is similar to the matrix

Q = I − ν (D + C) + ν2C̃,

where the matrix D is defined, as before, with

d = 2s2
ξ

(
1 − 2ν

π
s2
η

)
, f = 2s2

η

(
1 − 2ν

π
s2
ξ

)
.

The matrices C and C̃ are given as

C =

⎛
⎝ 0 Cξ − ν

3πSξs
2
η Cη − ν

3πSηs
2
ξ

−Cξ 0 0
−Cη 0 0

⎞
⎠ , C̃ =

⎛
⎝ 0 0 0

0 0 Cξη

0 Cξη 0

⎞
⎠ ,

where

Cξ = Sξ

(
1 − 2ν

π
s2
η

)
, Cη = Sη

(
1 − 2ν

π
s2
ξ

)
,

Cξη =
−1

π
SξSη.
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Since the matrix C is not skewsymmetric, it is now not possible to carry out an analysis
similar to the one in section 6 in order to estimate the stability limit. Instead we use
the MATLAB procedure eig to estimate the stability limit. The results are given in
Table 2. In column 2 we present the stability limit of the first order FVEG scheme
with exact edge integrals. The stability limit of this scheme is improved considerably:
the scheme is stable approximately up to CFL = 0.89. Column 3 demonstrates that
the first order scheme based on the trapezoidal rule is stable up to the natural stability
limit 1. Column 4 shows that the stability of the first order scheme based on Simpson’s
rule is also increased: the scheme is stable approximately up to CFL = 0.75.

Table 2

Stability limit using ρξ,η(T (ξ, η)).

cΔt
h

Exact Trapezoidal Simpson

0.70 1.0000000000 1.0000000000 1.0000000000
0.75 1.0000000000 1.0000000000 1.0000000000
0.76 1.0000000000 1.0000000000 1.0266666667
0.80 1.0000000000 1.0000000000
0.89 1.0000000000 1.0000000000
0.90 1.0007993640 1.0000000000
1.00 1.0000000000
1.01 1.0200000000

In Figure 4 we plot, using different scales, the eigenvalues of the amplification
matrices corresponding to the first order FVEG schemes based on the operator (7.1)–
(7.3). The top two panels are obtained using exact integration along cell interfaces;
in the middle panels the trapezoidal rule was used to approximate interface integrals.
In the bottom two panels we have plotted eigenvalues of the amplification matrix of
the FVEG3 scheme with Simpson’s quadrature for the cell interface integrals. Anal-
ogously to the previous section, it is possible to include all eigenvalues into the unit
disc.

8. Approximate evolution operator Ebilin
Δ for piecewise bilinear data.

In this section we investigate the stability of the second order finite volume schemes
proposed by Lukáčová-Medvid’ová, Morton, and Warnecke in [11]. These schemes
are based on the approximate evolution operator Ebilin

Δ , which is given as follows:

φP =

(
1 − π

2

)
φ′
P +

1

2π

∫ 2π

0

(
π

2
φQ − 2uQ cos θ − 2vQ sin θ

)
dθ + O(Δt2),(8.1)

uP =

(
1 − π

4

)
u′
P +

1

2π

∫ 2π

0

(
− 2 cos θφQ +

π

2
uQ

(
3 cos2 θ − 1

)
(8.2)

+
3π

2
vQ sin θ cos θ

)
dθ + O(Δt2),

vP =

(
1 − π

4

)
v′P +

1

2π

∫ 2π

0

(
− 2 sin θφQ +

3π

2
uQ sin θ cos θ(8.3)

+
π

2
vQ
(
3 sin2 θ − 1

))
dθ + O(Δt2).

Analogously to Econst
Δ , this approximate evolution operator is designed so that it

computes any one-dimensional linear plane wave propagating in the x- or y-direction
exactly; for more details see [11]. In order to obtain second order finite volume schemes
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Fig. 4. Eigenvalues of the amplification matrices; top: exact interface integration for the
CFL = 0.89 (right zoom); middle: interface integrals approximated using the trapezoidal rule for
the CFL = 0.9, 1.0.; bottom: interface integrals approximated by Simpson’s rule for the CFL = 0.75
(right zoom).
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we carry out a recovery stage before applying the approximate evolution operator; see
Definition 4.2. The following two types of bilinear recoveries have been considered
in [11]:

RC
h U
∣∣
Ωkl

=

(
μ2
xμ

2
y +

x− xk

h
μxμ

2
yδx +

y − yl
h

μ2
xμyδy(8.4)

+
(x− xk)(y − yl)

h2
μxμyδxδy

)
Ukl,

RD
h U
∣∣
Ωkl

=

(
1 +

x− xk

h
μxμ

2
yδx +

y − yl
h

μ2
xμyδy(8.5)

+
(x− xk)(y − yl)

h2
μxμyδxδy

)
Ukl.

Note that the recovery (8.4) is continuous, while the recovery (8.5) is discontinuous
and conservative. We use the midpoint rule to approximate the time integral in (4.5).
Denoting the cell interface intermediate value that is computed in the predictor step
(4.6) by Ũn+ 1

2 , we obtain the following schemes:

scheme A Ũn+ 1
2 = Ebilin

Δ RC
h Un + Econst

Δ (1 − μ2
xμ

2
y)U

n,

scheme B Ũn+ 1
2 = Ebilin

Δ RC
h Un,

scheme C Ũn+ 1
2 = Ebilin

Δ RD
h Un.

Each of these schemes has two further types according to the evaluation of the cell
interface integrals. We used the subscripts 1, 2 to distinguish between them. Thus,
1 corresponds to Simpson’s rule and 2 to the trapezoidal rule. For example, for the
scheme C2 the predicted values along the right cell interface are

Φ̃n+ 1
2 =

[
1 +

(
−π

32
+

ν

16

)
δ2
xμ

2
y +

(
−π

32
+

ν

16

)
δ2
yμ

2
x +

(
π

32
− ν

8
+

ν2

32

)
δ2
xδ

2
y

]
μxμyΦ

n

+

[
−2

π
+

(
1

2π
− ν

8

)
μ2
xμ

2
y +

(
1

8π
− ν

16π

)
δ2
yμ

2
x +

(
−1

2π
+

ν

8
+

ν

4π
− ν2

6π

)
μ2
xδ

2
y

]
δxμyU

n

+

[
−2

π
+

(
1

8π
− ν

16π

)
δ2
xμ

2
y +

(
1

2π
− ν

8

)
μ2
xμ

2
y +

(
−1

2π
+

ν

8
+

ν

4π
− ν2

6π

)
μ2
yδ

2
x

]
δyμxV

n,

Ũn+ 1
2 =

[
−2

π
+

(
1

2π
− ν

8

)
μ2
xμ

2
y +

(
1

8π
− ν

16π

)
δ2
yμ

2
x

+

(
−1

2π
+

ν

8
+

ν

4π
− ν2

6π

)
μ2
xδ

2
y

]
δxμyΦ

n

+

[
1 +

(
−π

64
+

ν

16

)
δ2
xμ

2
y −

π

64
δ2
yμ

2
x +

(
π

64
− ν

16
+

ν2

64

)
δ2
xδ

2
y

]
μxμyU

n

+

[
1

8
+

(
1

16
− ν

8
+

πν2

64

)
μ2
xμ

2
y

]
3δxδyV

n,

with the equation for Ṽ n+ 1
2 that is analogous to that for Ũn+ 1

2 . Further, we can
express analogously the predicted values for the other cell interfaces as well as for
other schemes. Substituting the predicted values in the corrector step (4.5) yields, for
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all second order finite volume schemes FVEG-A, B, C,

Un+1
kl = Un

kl +

1∑
r=−1

1∑
s=−1

CrsUn
k+rl+s + Cx

rsU
n
xk+rl+s

+ Cy
rsU

n
yk+rl+s

+ Cxy
rs Un

xyk+rl+s
,

(8.6)

where Cx
rs, Cy

rs, and Cxy
rs are the coefficient matrices corresponding to the approxima-

tion of x-, y-, and xy-slopes. Moreover,

Un
xk+rl+s

= μxμ
2
yδxU

n
k+rl+s, Un

yk+rl+s
= μ2

xμyδyU
n
k+rl+s,

Un
xyk+rl+s

= μxμyδxδyU
n
k+rl+s.

Applying a von Neumann analysis and the Fourier transforms we obtain the amplifi-
cation matrices T . It should be pointed out that their structure is too complicated to
apply estimates of the spectral radius similar to those in section 6 for the first order
EG3 scheme. Anyway, we can use the standard MATLAB procedure to determine
the eigenvalues of T . The corresponding stability limits for the FVEG schemes are
given in Table 3.

Table 3

Stability limits of the second order FVEG schemes.

Trapezoidal rule Simpson’s rule

Scheme A 0.94 0.75
Scheme B 0.78 -
Scheme C 0.78 0.58

We should note that all CFL limits given in Table 3 have also been confirmed by
various numerical experiments. In Figures 5 and 6 we plot, using different scales, the
eigenvalues of the amplification matrices corresponding to the second order FVEG
schemes: scheme Ai, Bi, and Ci, where i = 1, 2. Similarly to the previous cases,
these plots indicate that all eigenvalues are included in the unit disc. Note that
different quadrature rules have a considerable effect on the form of the spectrum of
the resulting amplification matrix. For example, Simpson’s quadrature rule for cell
interface integrals yields the spectrum which is more compact. Further, it follows from
Figure 5 that the second order FVEG scheme based on the operator (8.1)–(8.3) with
the continuous nonconservative recovery (8.4) with Simpson’s rule, i.e., scheme B1,
is unconditionally unstable. This fact has also been confirmed by other numerical
tests for the wave equation system with discontinuous solution. We have found for
all CFL numbers, no matter how small they were chosen, instabilities in the solution
for fine enough meshes. We would like to remark that the loss of stability of EG
schemes under numerical integration has been also observed even for the scalar linear
hyperbolic equation by Morton, Priestly, and Süli [21].

Remarks. The derivation of the EG and FVEG schemes might be considered at
first sight a rather complex task. In fact, the finite difference formulation (4.7), (4.8)
which uses the stencil matrices (cf. appendix) is used only for theoretical analysis. In
practice we implement the approximate evolution operators (3.7)–(3.9), (7.1)–(7.3),
or (8.1)–(8.3) directly. Thus, for example, in the FVEG scheme the flux integrals
along cell interfaces are approximated by the Simpson or the trapezoidal rule and
the only complexity lies in the implementation of the exact integrals of the type
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Fig. 5. Eigenvalues corresponding to the amplification matrices of scheme A1 (CFL = 0.75),
scheme B1 (CFL = 0.1), and scheme C1 (CFL = 0.58).
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Fig. 6. Eigenvalues corresponding to the amplification matrices of scheme A2 (CFL = 0.94),
scheme B2 (CFL = 0.78), and scheme C2 (CFL = 0.78).
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∫ β

α
cosn θ sinm θdθ, where n,m ≥ 0 integers, and α, β ∈ [0, 2π] are corresponding an-

gles according to a position of the (slanted) Mach cone. Alternatively, the integrals
along the sonic circle, i.e., for θ from 0 to 2π, can be approximated by a suitable numer-
ical quadrature, which further simplifies the implementation of the FVEG schemes.

Based on our knowledge of the EG and FVEG schemes for regular rectangular
two-dimensional meshes, some further generalizations have been done. In particular,
the FVEG schemes with the approximate evolution operators (3.7)–(3.9), (7.1)–(7.3),
and (8.1)–(8.3) have been generalized to three-dimensional problems using regular
cubic meshes; see [19]. Further, in [26], [27] the FVEG schemes have been general-
ized for unstructured triangular meshes. Of course, the stability analysis of the EG
schemes on general unstructured meshes is much more involved. One possible way
would be to apply the energy analysis in the L2(R2)-norm, i.e., to show at least the
weak L2-stability ‖PhEΔt‖L2(R2)→L2(R2) ≤ 1 + CΔt. This is a nontrivial problem,
which can be considered in the future.

The absorbing boundary conditions have been studied for the EG schemes ex-
tensively in [18]. We have considered simple extrapolation boundary conditions, the
characteristic boundary conditions, as well as a perfectly matched layer approach.
Numerical experiments reported in [18] indicate that the best results are obtained by
combining the EG and FVEG schemes with the perfectly matched layer technique.
We have observed no influence of these boundary conditions on stability of the EG
schemes. It would be interesting to investigate this question theoretically in the future.

Conclusion. In this paper we have studied the stability of various EG schemes
by a von Neumann analysis. The schemes are applied to the linear wave equation
system. First, we have discussed theoretical stability estimates of the EG3 schemes,
the most favorable one among the finite difference EG schemes considered. Due to the
complex structure of the amplification matrix we were able to give theoretical stabil-
ity estimates only for a simplified problem. Further, we analyzed experimentally the
spectral radius of amplification matrix of the EG3 scheme. The experimental analysis
indicates that the scheme is stable up to the CFL number 0.58. The stability of the
FVEG schemes was studied experimentally, too. It has been shown that new quadra-
tures in time for time integrals in the exact evolution operator, which were proposed
in our recent paper [11], improve the stability limits considerably. For example, if the
trapezoidal rule is used for the cell interface integrals, the CFL number is 1 and 0.94
for the first and the second order FVEG schemes, respectively. On the other hand,
Simpson’s quadrature rule reduces the stability range slightly.

Appendix.

EG3 scheme. For the discrete form of the scheme, see (4.4), (4.7), (4.8), and
(3.7)–(3.9) for the approximate evolution operator EG3.

α1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

4π
ν
π − ν2

2π
ν2

4π

ν
π − ν2

2π − 4ν
π + ν2

π
ν
π − ν2

2π

ν2

4π
ν
π − ν2

2π
ν2

4π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

3π 0 −ν2

3π

ν
2 − 2ν2

3π 0 −ν
2 + 2ν2

3π

ν2

3π 0 − ν2

3π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ν2

3π −ν
2 + 2ν2

3π − ν2

3π

0 0 0

ν2

3π
ν
2 − 2ν2

3π
ν2

3π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , α2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

3π 0 − ν2

3π

ν
2 − 2ν2

3π 0 −ν
2 + 2ν2

3π

ν2

3π 0 −ν2

3π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,
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β2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

8π − ν2

4π
ν2

8π

ν
π − ν2

4π − 2ν
π + ν2

2π
ν
π − ν2

4π

ν2

8π − ν2

4π
ν2

8π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , γ2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3ν2

32 0 3ν2

32

0 0 0

3ν2

32 0 − 3ν2

32

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

α3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ν2

3π −ν
2 + 2ν2

3π − ν2

3π

0 0 0

ν2

3π +ν
2 − 2ν2

3π
ν2

3π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3ν2

32 0 3ν2

32

0 0 0

3ν2

32 0 − 3ν2

32

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

8π
ν
π − ν2

4π
ν2

8π

− ν2

4π − 2ν
π + ν2

2π − ν2

4π

ν2

8π
ν
π − ν2

4π
ν2

8π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

FVEG scheme with Econst
Δ operator using exact cell interface integra-

tion. For the discrete form of the scheme, see (4.5)–(4.8), and see (7.1)–(7.3) for the
approximate evolution operator Econst

Δ .

α1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

2π
ν
2 − ν2

π
ν2

2π

ν
2 − ν2

π −2ν + 2ν2

π
ν
2 − ν2

π

ν2

2π
ν
2 − ν2

π
ν2

2π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7ν2

24π 0 −7ν2

24π

ν
2 − 7ν2

12π 0 −ν
2 + 7ν2

12π

7ν2

24π 0 −7ν2

24π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−7ν2

24π
−ν
2 + 7ν2

12π
−7ν2

24π

0 0 0

7ν2

24π
ν
2 − 7ν2

12π
7ν2

24π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , α2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

4π 0 −ν2

4π

ν
2 − ν2

2π 0 −ν
2 + ν2

2π

ν2

4π 0 −ν2

4π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

β2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

4π − ν2

2π
ν2

4π

ν
2 − ν2

2π −ν + ν2

π
ν
2 − ν2

2π

ν2

4π − ν2

2π
ν2

4π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , γ2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν2

4π 0 ν2

4π

0 0 0

ν2

4π 0 −ν2

4π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

α3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν2

4π
−ν
2 + ν2

2π
−ν2

4π

0 0 0

ν2

4π
ν
2 − ν2

2π
ν2

4π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν2

4π 0 ν2

4π

0 0 0

ν2

4π 0 −ν2

4π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν2

4π
ν
2 − ν2

2π
ν2

4π

− ν2

2π −ν + ν2

π − ν2

2π

ν2

4π
ν
2 − ν2

2π
ν2

4π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .
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FVEG with Econst
Δ operator using Simpson’s quadrature for cell inter-

face integration. For the discrete form of the scheme, see (4.5), (4.6) with Simp-
son’s quadrature, (4.7), (4.8), and (7.1)–(7.3) for the approximate evolution operator
Econst

Δ .

α1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
12

ν
3

ν
12

ν
3 − 5ν

3
ν
3

ν
12

ν
3

ν
12

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
24

(
1 + 1

π

)
0 − ν

24

(
1 + 1

π

)
ν
24

(
10 − 2

π

)
0 − ν

24

(
10 − 2

π

)
ν
24

(
1 + 1

π

)
0 − ν

24

(
1 + 1

π

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ν
24

(
1 + 1

π

)
− ν

24

(
10 − 2

π

)
− ν

24

(
1 + 1

π

)
0 0 0

ν
24

(
1 + 1

π

)
ν
24

(
10 − 2

π

)
ν
24

(
1 + 1

π

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , α2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
24 0 − ν

24

10ν
24 0 − 10ν

24

ν
24 0 − ν

24

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

β2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
24 − 2ν

24
ν
24

10ν
24 − 20ν

24
10ν
24

ν
24 − 2ν

24
ν
24

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , γ2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ν
24 0 ν

24

0 0 0

ν
24 0 − ν

24

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

α3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ν
24 − 10ν

24 − ν
24

0 0 0

ν
24

10ν
24

ν
24

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ν
24 0 ν

24

0 0 0

ν
24 0 − ν

24

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
24

10ν
24

ν
24

− 2ν
24 − 20ν

24 − 2ν
24

ν
24

10ν
24

ν
24

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

FVEG with Econst
Δ operator using the trapezoidal quadrature for cell

interface integration. For the discrete form of the scheme, see (4.5), (4.6) with the
trapezoidal quadrature, (4.7), (4.8), and (7.1)–(7.3) for the approximate evolution
operator Econst

Δ .

α1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
4 0 ν

4

0 −ν 0

ν
4 0 ν

4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
8

(
1 + 1

π

)
0 −ν

8

(
1 + 1

π

)
ν
8

(
2 − 2

π

)
0 −ν

8

(
2 − 2

π

)
ν
8

(
1 + 1

π

)
0 −ν

8

(
1 + 1

π

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν
8

(
1 + 1

π

)
−ν

8

(
2 − 2

π

)
−ν

8

(
1 + 1

π

)
0 0 0

ν
8

(
1 + 1

π

)
ν
8

(
2 − 2

π

)
ν
8

(
1 + 1

π

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , α2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
8 0 −ν

8

2ν
8 0 − 2ν

8

ν
8 0 −ν

8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,
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β2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
8 − 2ν

8
ν
8

2ν
8 − 4ν

8
2ν
8

ν
8 − 2ν

8
ν
8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , γ2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν
8 0 ν

8

0 0 0

ν
8 0 −ν

8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

α3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν
8 − 2ν

8 −ν
8

0 0 0

ν
8

2ν
8

ν
8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , β3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν
8 0 ν

8

0 0 0

ν
8 0 −ν

8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

γ3 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
8

2ν
8

ν
8

− 2ν
8 − 4ν

8 − 2ν
8

ν
8

2ν
8

ν
8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .
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UNCONDITIONAL STABILITY OF CORRECTED
EXPLICIT-IMPLICIT DOMAIN DECOMPOSITION ALGORITHMS

FOR PARALLEL APPROXIMATION OF HEAT EQUATIONS∗

HAN-SHENG SHI† AND HONG-LIN LIAO‡

Abstract. A class of corrected explicit-implicit domain decomposition (CEIDD) methods is
investigated for the parallel approximation of linear heat equations. Explicit-implicit domain decom-
position (EIDD) methods are computationally and communicationally efficient for each time step
but always suffer from small time step size restrictions. By adding an interface correction step to
Kuznetsov’s EIDD, the one-dimensional CEIDD procedure achieves unconditional stability without
discarding the time-stepwise efficiency of the EIDD method. In order to maintain the virtues of
the CEIDD method and improve the flexibility in domain partitioning, for solving multidimensional
problems, special zigzag-shaped interfaces are suggested in the CEIDD method. Based on non-
crossover and crossover types of zigzag interfaces, the resulting CEIDD-ZI algorithms are studied for
two strategies of subdomain partition. By the energy method, it shows that the proposed algorithms,
including their degenerate cases—the corrected explicit hopscotch schemes—are convergent in the
discrete H1 seminorm and L2 norm. Numerical experiments confirm the results in our analysis.

Key words. heat equations, nonoverlapping domain decomposition, zigzag-shaped interior
boundary, explicit-implicit difference method, stability, convergence
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1. Introduction. We propose a class of corrected explicit-implicit domain de-
composition (CEIDD) algorithms for the numerical solution of heat equations

ut =

d∑
m=1

∂

∂xm

(
am(x)

∂u

∂xm

)
+ f(x, t), (x, t) ∈ Ω × (0, T ],(1.1)

together with initial and Dirichlet boundary conditions

u(x, 0) = u0(x), x ∈ Ω,(1.2)

u(x, t) = ub(x, t), (x, t) ∈ ∂Ω × (0, T ],(1.3)

where Ω = (0, 1)d with d = 1 or 2, and the spatial variable x = (xm)dm=1 ∈ Rd. The
functions am(x), f(x, t) are smooth and am(x) ≥ a0 for a positive constant a0.

The spatial domain Ω is discretized uniformly with spacing h = 1/N for each
spatial variable, where N is an even integer, although different spacing for different
spatial variables may be considered in a similar way. And selecting a time step τ and
an integer J so that Jτ = T , the time interval (0, T ] is also discretized uniformly. As
usual, the discrete space grid, its boundary, and the discrete time-spatial mesh are
denoted by Ωh, ∂Ωh, and Ωτ

h, respectively.
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For parallel solutions of time-dependent PDE problems, an interesting approach
is to use explicit-implicit alternating algorithms on nonoverlapping domain decompo-
sition; see [4, 5, 6, 8] for related discussions. Kuznetsov [8] proposed a mixed scheme,
where the stable implicit scheme is used inside each subdomain while the explicit Eu-
ler scheme is applied to obtain the interface solutions on the new time level. Once the
interface values are available, the whole problem is completely decoupled and thus can
be computed in parallel. Due to the stability constraint, the method is not stable un-
less time step size τ ≤ h2/2. A similar hybrid scheme was studied by Dawson, Du, and
Dupont [4], where instead of using the same spacing h as for the interior points where
the fully implicit scheme is applied, a larger spacing hD is used at interface points
where the one-directional implicit predictor scheme is applied. Correspondingly, the
stability constraint becomes τ ≤ h2

D/2. These globally noniterative explicit-implicit
domain decomposition (EIDD) algorithms are computationally and communication-
ally efficient for each time step when compared with Schwarz-type domain decomposi-
tion elliptic solvers [2, 3] incorporated into implicit temporal discretizations; however,
they suffer from stability-related time step restrictions, while Schwarz methods could
maintain the good stability of implicit temporal discretization schemes.

Recently, many investigators have turned to improve the stability of EIDD meth-
ods because the time-stepwisely efficient EIDD procedures will process great potential
for large-scale parallel simulations on distributed memory computers if they are free
from time step size restrictions. A penalized EIDD algorithm proposed by Black
[1] achieves numerically verified unconditional stability by employing a stable Du
Fort–Frankel-type scheme as the explicit predictor; however, it makes the algorithm
inconsistent unless τ/h → 0. Thus consistency comes only after paying a price of
restricting time step size τ = O(h2) to achieve a first order temporal accuracy, a
restriction quantitatively similar to the restriction on the EIDD methods.

An alternative approach for improving the stability is to apply an implicit cor-
rection technique to EIDD algorithms. The idea of implicit correction is to replace
the interface predictor value by a new solution on the interface boundaries computed
by an implicit corrector scheme. In 1998, Qian and Zhu [9] investigated experi-
mentally the implicit correction technique for Kuznetsov’s EIDD method [8] for the
one-dimensional (1-D) heat equation and showed the better stability by comparing its
results with several other methods. As the generalizations of Qian’s algorithm [9], the
stabilized EIDD methods proposed by Zhuang and Sun [11] exhibit unconditional sta-
bility experimentally for a wide range of multidimensional parabolic problems, from
heat equation to convection-diffusion to nondissipative convection-diffusion. However,
(P1) both attempts failed to consider the mathematical proofs of the improved stabil-
ity. Furthermore, for multidimensional problems, the methods in [11] (P2) suffer from
a parallel time overload for the interface correction step because some elliptic solver
should be used to obtain the interface solutions, and (P3) decrease the flexibility of
domain partitioning due to the noncrossover assumption of interior boundaries.

To remedy the disadvantages (P1)–(P3), in this paper, a new class of CEIDD
algorithms is reported. First, a generic parallel version of the CEIDD algorithm for
computing the solution uk

h is presented below (also see [11]).
The parallel CEIDD algorithm.

0. Determine the shape of man-made interior interfaces Γh and the strategy of
domain partitioning. Then divide the entire domain Ωh into p =

∏d
m=1 pm

subdomains Ωh,1, . . . ,Ωh,p with interface boundary between Ωh,i and Ωh,j

denoted by Γij (1≤ i < j < p). Assign subdomain Ωh,i and interface Γij to
processor Pi. Go to step 1 with k := 1.
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1. On each processor Pi, compute all of the interface predictors ũk
h on Γij in

parallel using an explicit scheme and then pass ũk
h from Pi to Pj for the

subdomain operation. Go to step 2.
2. Compute solutions uk

h in parallel inside each subdomain Ωh,i using any un-
conditionally stable scheme with the predictors ũk

h computed at step 1 as the
interface boundary conditions of Dirichlet type. Then pass part of subdomain
data uk

h from Pj to Pi for the correction computation. Go to step 3.
3. On each processor Pi, throw away the interface predictors obtained at step 1

and bring back uk−1
h on Γij . Compute the interface correctors uk

h on Γij in
parallel using a fully implicit scheme. If k = J , stop the procedure; if not,
return to step 1 for the next time level iteration with k := k + 1.

In the above algorithm, we consider noncrossover and crossover types of zigzag-
shaped interfaces and the corresponding strategies of domain decomposition in step
0. The forward Euler scheme is used at step 1 and the backward Euler scheme is
applied at steps 2–3. In other words, the implicit correction technique [9] and special
zigzag-shaped interfaces are added to Kuznetsov’s EIDD method [8]. The resulting
method is denoted by CEIDD-ZI (CEIDD based on zigzag-shaped interfaces). Since
the interface between two subdomains is only one point in the 1-D case, the 1-D
CEIDD-ZI algorithm is also denoted by CEIDD.

For practical implementations, we always assume that 2 ≤ p � |Ωh| so that the
parallel algorithms are of coarse granularity, where |Ωh| is the number of unknown
points inside Ωh. However, for theoretical approaches, it is reasonable to assume that

each subdomain has at least one interior grid point.(1.4)

For a negative example, let p = |Ωh|; then each subdomain has no interior point and
step 2 of the algorithm can be omitted. Actually, step 1 is also not needed because
the interface predictors ũk

h at Γh are thrown away at step 3. Therefore, an elliptic
solver has to be employed to find the solutions uk

h on Γh(= Ωh) at step 3. The solver
is carried out on only one processor with other processors standing idle. In such
a case, however, CEIDD algorithms are unconditionally stable since it essentially
equals a sequential backward Euler scheme. On the other hand, if there exists an
empty subdomain, i.e., a subdomain has no interior grid points, the interface nearby
can be deleted to make the new subdomain contain at least one interior point.

Under the subdomain-width assumption (1.4), we obtain following results.
1. The CEIDD-ZI methods add negligible computation cost to EIDD algorithms

(Propositions 3.1 and 5.1).
2. The CEIDD-ZI methods are unconditionally stable (Theorems 4.3 and 6.3).

3. With an order of O
(√

1 +
∑d

m=1(pm − 1)h−1(τ + h2)
)
, the numerical solu-

tions of the CEIDD-ZI methods converge to the exact solution of continuous
problem (Theorems 4.4 and 6.4).

For the linear problem considered in the present paper, the unconditional stability
of a domain decomposition algorithm is theoretically proved in the sense that the
numerical solutions of the algorithm are continuously dependent on the initial value
u0(x) and the outer-forced term f(x, t) without any restrictions of the mesh ratio
r = τ/h and the strategy of domain decomposition.

The context will be organized as follows. The next section presents some nota-
tion and auxiliary lemmas. The detailed presentation of the CEIDD method for the
1-D problem is given in section 3. Section 4 has witnessed the rigorous study of the
stability and convergence of the CEIDD method based on multisubdomain decompo-
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sition. Designing noncrossover and crossover types of zigzag-line interior boundary,
we present two-dimensional (2-D) CEIDD-ZI procedures for two strategies of domain
decomposition in section 5 together with analysis of computation and communication
overhead of the correction. Section 6 provides the theoretical analysis of the two
parallel CEIDD-ZI approaches. Numerical experiments are addressed in section 7,
and some comments, including the three-dimensional (3-D) extension of CEIDD-ZI
algorithms, are presented in the concluding section.

2. Notation and some auxiliary lemmas. For 1-D problems, Ωτ
h = {(ih, kτ)|

1 ≤ i ≤ N − 1, 0 ≤ k ≤ J}. With v a mesh function on Ωτ
h, we denote ∂tv

k =
(vk − vk−1)/τ , δxvi− 1

2
= (vi − vi−1)/h, and

Δhvi = (ai+ 1
2
δxvi+ 1

2
− ai− 1

2
δxvi− 1

2
)/h = (ai+ 1

2
vi+1 − 2āivi + ai− 1

2
vi−1)/h

2,

where ai− 1
2

= a(xi− 1
2
), āi = (ai+ 1

2
+ai− 1

2
)/2. Supposing that grid functions u, v ∈ Ωh,

we define the discrete inner product by 〈u, v〉 = h
∑N−1

i=1 uivi, the discrete L2 norm

by ‖v‖ =
√
〈v, v〉, and the H1 seminorm by

|v|a,1 = ‖
√
aδxv‖ ≡

√√√√h

N∑
i=1

ai− 1
2
(δxvi− 1

2
)2.

In the 2-D case, Ωτ
h = {(ih, jh, kτ)|1 ≤ i, j ≤ N − 1, 0 ≤ k ≤ J}. The difference

operators are defined similarly, such as δx1
vi− 1

2 ,j
= (vi,j − vi−1,j)/h,

Δh,1vij = (a1
i+ 1

2 ,j
δx1

vi+ 1
2 ,j

− a1
i− 1

2 ,j
δx1

vi− 1
2 ,j

)/h,

and Δhvij = Δh,1vij + Δh,2vij . We also denote that ā1
ij = (a1

i+ 1
2 ,j

+ a1
i− 1

2 ,j
)/2,

ā2
ij = (a2

i,j+ 1
2

+a2
i,j− 1

2

)/2, and ā12
ij = ā1

ij + ā2
ij . The inner product is defined by 〈u, v〉 =

h2
∑N−1

i,j=1 uijvij , the discrete L2 norm by ‖v‖ =
√
〈v, v〉, and the H1 seminorm by

|v|a,1 =

√
‖
√
a1δx1v‖2 + ‖

√
a2δx2v‖2.

Throughout this paper, the discrete energy method is employed to establish the
stability and convergence of parallel CEIDD-ZI algorithms. Some preparatory lemmas
are given below.

Lemma 2.1. Let v ∈ Ωτ
h. Then it holds that

(a) 2vk∂tv
k = ∂t[(v

k)2] + τ(∂tv
k)2;

(b) 2vk−1∂tv
k = ∂t[(v

k)2] − τ(∂tv
k)2.

Proof. Equality (a) can be derived directly from

2vk(vk − vk−1) = (vk)2 − (vk−1)2 + (vk − vk−1)2,

and (b) similarly.
Lemma 2.2. Assume that v ∈ Ωτ

h, and v(x) = 0 for x ∈ ∂Ωh. Then
(a) 〈v,Δhv〉 = −|v|2a,1;
(b) 2〈∂tvk,Δhv

k〉 = −∂t(|vk|2a,1) − τ |∂tvk|2a,1.
Proof. The zero boundary condition and Abel integrate formulation of parts lead

to (a). Equality (b) can be derived from (a) and Lemma 2.1(a).
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Lemma 2.3 (discrete Gronwall inequality). Assume that {Gk|k ≥ 0} is a non-
negative sequence, σ ≥ 0, Φ0 ≥ 0, and that F k satisfies F 0 ≤ Φ0,

F k ≤ Φ0 + σ

k−1∑
l=0

F l +

k∑
l=0

Gl, k ≥ 1.

Then F k satisfies

F k ≤ ekσ

(
Φ0 +

k∑
l=0

Gl

)
, k ≥ 0.

Proof. An induction argument gives the result; see also [10] for a detail.

3. Parallel CEIDD algorithm for 1-D problems. We decompose the do-
main (0, 1) into p nonoverlapping subdomains. In general, p is related to the problem
size and the number of processors in the computer platform, and the subdomains may
be of different widths; however, for theoretical considerations, the subdomain-width
assumption (1.4) implies that 2 ≤ p ≤ N/2, and that there are (p − 1) interfaces

Γh =
⋃p−1

α=1 Γh,α, where

Γh,α = {iαh| 4 ≤ iα + 2 ≤ iα+1 ≤ N − 2}.(3.1)

Then Ωh is decoupled into p nonoverlapping subdomains Ωh,1 = {ih| 0 < i < i1},
Ωh,ξ = {ih| iξ−1 < i < iξ} (ξ = 2, . . . , p − 1), and Ωh,p = {ih| ip−1 < i < N}, where
Γh,α (1 ≤ α ≤ p− 1) is the common interface of subdomains Ωh,α and Ωh,α+1.

Suppose that uk
i is the numerical approximation of exact solution u(ih, kτ) on

Ωτ
h; the 1-D CEIDD method on general p subdomains is described below.

The 1-D parallel CEIDD algorithm on p subdomains.

0. We have p processors denoted as Pξ (ξ = 1, . . . , p). Assign subdomain Ωh,ξ to
processor Pξ and interface Γh,α to processor Pα (α = 1, . . . , p − 1). To start
the procedure, the initial condition (1.2) is discretized as

u0
i = u0(ih) on Ωh.(3.2)

Set k = 1 and go to step 1.
1. On each processor Pα, we obtain the predictor value ũk

iα
in parallel by apply-

ing the explicit Euler scheme to (1.1), that is,

ũk
iα

− uk−1
iα

τ
= Δhu

k−1
iα

+ fk−1
iα

at Γh,α.(3.3)

Then pass ũk
iα

from Pα to Pα+1 and go to step 2.
2. The implicit Euler scheme is adopted on each subdomain Ωh,ξ, where the

predictor values ũk
h at Γh are served the Dirichlet boundary condition, viz.,⎧⎨

⎩
∂tu

k
i = Δhu

k
i + fk

i on Ωh,ξ

uk
i = ũk

i at ∂Ωh,ξ ∩ Γh

uk
i = ub(ih, kτ) at ∂Ωh,ξ ∩ ∂Ωh

(
ξ = 1, 2, . . . , p

)
,(3.4)

where ∂Ωh,ξ ∩ Γh = {ih|i = iξ−1 and/or i = iξ}, ∂Ωh,ξ ∩ ∂Ωh is always
empty except ∂Ωh,1 ∩ ∂Ωh = {0}, and ∂Ωh,p ∩ ∂Ωh = {Nh}. Thus, the
Thomas algorithm can be applied in parallel on each processor to find the
subdomain solutions. Then pass the subdomain data uk

iα+1 from Pα+1 to Pα

for the correction computation. Go to step 3.
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3. On each processor Pα, throw away the interface predictors ũk
iα

obtained at

step 1 and bring back uk−1
iα

at Γh,α. We obtain the interface solution uk
iα

in
parallel by using the implicit Euler scheme,

∂tu
k
iα = Δhu

k
iα + fk

iα at Γh,α.(3.5)

If k = J , stop the procedure; else, return to step 1 with k := k + 1.
For each interface boundary Γh,α (α = 1, 2, . . . , p− 1), the interface-related steps

(steps 1 and 3) are carried out on the assigned processor Pα, and then data transfer
operations between Pα and Pα+1 are necessary for each time level, as is the case with
any EIDD method; however, the implicit correction step of the CEIDD method adds
zero communication cost to EIDD algorithms because the data communication at step
2 is also necessary for computing the interface predictors at new time level tk+1 in
EIDD algorithms.

On the other hand, given the solutions on subdomains, the implicit scheme (3.5)
obtains the interface solution explicitly,

(1 + 2āiαr)u
k
iα = uk−1

iα
+ r

(
aiα− 1

2
uk
iα−1 + aiα+ 1

2
uk
iα+1

)
+ τfk

iα , 1 ≤ α ≤ p− 1,

where mesh ratio r = τ/h2. That is to say, the implicit correction (step 3) of the
CEIDD algorithm adds negligible computation cost to any EIDD algorithm. Thus
the CEIDD method maintains the efficiency in computation and communication of
the EIDD methods, as the following proposition states.

Proposition 3.1. The implicit correction step of the CEIDD algorithm (3.2)–
(3.5) adds zero communication and negligible computation cost to EIDD algorithms.

Furthermore, in the next section, we will show that the proposed CEIDD algo-
rithm is unconditionally stable. To end this section, we mention a special CEIDD
procedure here for completeness. If there are N

2 subdomains, or each subdomain has
only one interior point, then Kuznetsov’s EIDD method is just the so-called explicit
hopscotch scheme [7] and the CEIDD algorithm degenerates to a corrected explicit
hopscotch (CEH) scheme, which is a small-block explicit method since the subdomain
solution can be computed explicitly by using (3.4). Specifically, for computing solu-
tion uk

h from the data at time level tk−1, the CEH procedure can be described as the
following point-related schemes, for 1 ≤ i ≤ N − 1:

ũk
i = uk−1

i + τΔhu
k−1
i + τfk−1

i , i ∈ even,(3.6)

(1 + 2āir)u
k
i = uk−1

i + r(ai− 1
2
ũk
i−1 + ai+ 1

2
ũk
i+1) + τfk

i , i ∈ odd,(3.7)

(1 + 2āir)u
k
i = uk−1

i + r(ai− 1
2
uk
i−1 + ai+ 1

2
uk
i+1) + τfk

i , i ∈ even,(3.8)

where the notation ũk
0 and ũk

N is used in (3.7) with complementary definitions: ũk
0 ≡

uk
0 and ũk

N ≡ uk
N . Obviously, the CEH scheme is a fast CEIDD algorithm; however,

as revealed later, it suffers from more loss of accuracy compared with the coarsely
granular algorithm in the case of 2 < p � N .

4. Theoretical analysis of the 1-D CEIDD algorithm. In this section, the
prior estimations of the solution are established by the energy method. And the
theoretical results on stability and convergence of the CEIDD algorithm are obtained
by using those prior estimations.

Lemma 4.1 (H1-estimation). Let vkh = {vki |0 ≤ i ≤ N, 0 ≤ k ≤ J} satisfy the
CEIDD algorithm on p subdomains decoupled by the interfaces Γh defined by (3.1):

ṽki − vk−1
i

τ
= Δhv

k−1
i + g̃k−1

i at Γh, 1 ≤ k ≤ J,(4.1)
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∂tv

k
i = Δhv

k
i + gki on Ωh,ξ

vki = ṽki at Γh

(
ξ = 1, 2, . . . , p

)
, 1 ≤ k ≤ J,(4.2)

∂tv
k
i = Δhv

k
i + gki at Γh, 1 ≤ k ≤ J,(4.3)

v0
i = φi, 0 ≤ i ≤ N, 1 ≤ k ≤ J,(4.4)

vk0 = vkN = 0, 0 ≤ k ≤ J.(4.5)

Then it holds that

Ek
1 ≤ 3

2
e

3
2kτ

[
E0

1 + τ

k∑
l=1

(
‖gl‖2 + ‖|gl‖|2I,1

) ]
, 1 ≤ k ≤ J,(4.6)

for 0 < τ ≤ 1/3, where

Ek
1 = |vk|2a,1 + 2τ2h−1

p−1∑
α=1

āiα(Δhv
k
iα)2,

‖|gk‖|2I,1 =

p−1∑
α=1

[
2āiατh

−1(g̃k−1
iα

)2 +
1

2

(
h + 4āiαh

−1
)
(gkiα − g̃k−1

iα
)2
]
.

Proof. To make the calculations more transparent and the notation simpler, we
are going to write out the proof of this lemma only for two subdomains Ωh,ξ (ξ = 1, 2)
decoupled by the one-point interface Γh,1 = {i1h}. The proof in the general p-
subdomain case is similar to the 2-subdomain case, but the notation is messier.

For the 2-subdomain case, the interface schemes (4.1) and (4.3) lead to

(ṽki1 − vki1) = −τ2(∂tΔhv
k
i1) − τ(gki1 − g̃k−1

i1
),

and the solution schemes (4.2)–(4.3) read as

∂tv
k
i = Δhv

k
i + gki , 0 < i < i1 − 1, 1 ≤ k ≤ J,(4.7)

∂tv
k
i1−1 = Δhv

k
i1−1 + gki1−1 + ai1− 1

2
(ṽki1 − vki1)/h

2, 1 ≤ k ≤ J,(4.8)

∂tv
k
i1 = Δhv

k
i1 + gki1 , 1 ≤ k ≤ J,(4.9)

∂tv
k
i1+1 = Δhv

k
i1+1 + gki1+1 + ai1+ 1

2
(ṽki1 − vki1)/h

2, 1 ≤ k ≤ J,(4.10)

∂tv
k
i = Δhv

k
i + gki , i1 + 1 < i < N, 1 ≤ k ≤ J.(4.11)

Multiplying (4.7)–(4.11), respectively, by 2h∂tv
k
i , 2h∂tv

k
i1−1, 2h∂tv

k
i1

, 2h∂tv
k
i1+1, and

2h∂tv
k
i , summing i, and adding the resulting equalities, we get

2〈∂tvk, ∂tvk〉 = 2〈∂tvk,Δhv
k〉 + 2〈∂tvk, gk〉 + Qk

1i1 .

By using Lemma 2.2(b) and inequality

2〈∂tvk, gk〉 ≤ ‖∂tvk‖2 + ‖gk‖2,

it follows that

∂t(|vk|2a,1) ≤ − ‖∂tvk‖2 − τ |vk|2a,1 + ‖gk‖2 + Qk
1i1 ≤ ‖gk‖2 + Qk

1i1 .(4.12)

And, for the interface term Qk
1i1

, it holds that

Qk
1i1 = 2h−1(ṽki1 − vki1)

(
ai1− 1

2
∂tv

k
i1−1 + ai1+ 1

2
∂tv

k
i1+1

)
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= 2h−1(ṽki1 − vki1)
(
h2∂tΔhv

k
i1 + 2āi1∂tv

k
i1

)
= −2h−1

[
τ2(∂tΔhv

k
i1) + τ(gki1 − g̃k−1

i1
)
](

h2∂tΔhv
k
i1 + 2āi1Δhv

k
i1 + 2āi1g

k
i1

)
= I1 + I2 + I3 + I4 + I5,

where, applying Lemma 2.1 and the well-known Young inequality,

I1 = −2τ2h−1(∂tΔhv
k
i1)

(
h2∂tΔhv

k
i1 + 2āi1Δhv

k
i1

)
= −2τ2h(∂tΔhv

k
i1)

2 − 2āi1τ
2h−1∂t[(Δhv

k
i1)

2] − 2āi1τ
3h−1(∂tΔhv

k
i1)

2,

I2 = −4āi1τ
2h−1(∂tΔhv

k
i1)g

k
i1 ≤ 2āi1τ

3h−1(∂tΔhv
k
i1)

2 + 2āi1τh
−1(gki1)

2,

I3 = −2τh(gki1 − g̃k−1
i1

)(∂tΔhv
k
i1) ≤ 2τ2h(∂tΔhv

k
i1)

2 +
1

2
h(gki1 − g̃k−1

i1
)2,

I4 = −4āi1τh
−1(gki1 − g̃k−1

i1
)(Δhv

k
i1)

≤ 2āi1τ
2h−1(Δhv

k
i1)

2 + 2āi1h
−1(gki1 − g̃k−1

i1
)2,

I5 = −4āi1τh
−1(gki1 − g̃k−1

i1
)gki1 = −4āi1τh

−1(gki1)
2 + 4āi1τh

−1gki1 g̃
k−1
i1

≤ −2āi1τh
−1(gki1)

2 + 2āi1τh
−1(g̃k−1

i1
)2.

Thus, adding Im from m = 1 to 5, we obtain

Qk
1i1 ≤ −2āi1τ

2h−1∂t[(Δhv
k
i1)

2] + 2āi1τ
2h−1(Δvki1)

2 + ‖|gk‖|2I,1.(4.13)

From (4.13) and (4.12), it follows that

∂tE
k
1 ≤Ek

1 + ‖gk‖2 + ‖|gk‖|2I,1, 1 ≤ k ≤ J,

which leads to

(1 − τ)Ek
1 ≤E0

1 + τ

k−1∑
l=1

El
1 + τ

k∑
l=1

(
‖gl‖2 + ‖|gl‖|2I,1

)
, 1 ≤ k ≤ J.

Supposing that 0 < τ ≤ 1/3, we have

Ek
1 ≤ 3

2
E0

1 +
3τ

2

k−1∑
l=1

El
1 +

3τ

2

k∑
l=1

(
‖gl‖2 + ‖|gl‖|2I,1

)
, 1 ≤ k ≤ J.

Then Lemma 2.3 implies prior estimation (4.6), and the proof is complete.
Lemma 4.2 (L2-estimation). Let vkh = {vki |0 ≤ i ≤ N, 0 ≤ k ≤ J} be the solution

of the CEIDD algorithm (4.1)–(4.5). Then it holds that

Ek
2 ≤ 3

2
(J + 1) exp

(
3

2
(1 + T )kτ

)
E0

2(4.14)

+
3T

2
exp

(
3

2
(1 + T )kτ

)[
4τ

k∑
l=0

El
1 + τ

k∑
l=1

(‖gl‖2 + ‖|gl‖|2I,2)
]

for 0 < τ ≤ 1/3, 1 ≤ k ≤ J , where

Ek
2 = τ

k∑
l=0

‖vl‖2 + τ3h

p−1∑
α=1

k∑
l=0

(Δhv
l
iα)2 + 2τ2h−1

p−1∑
α=1

āiα(vkiα)2,
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‖|g1‖|2I,2 =

p−1∑
α=1

{
2āiατ

2h−1
[
(g1

iα)2 + 2(g̃0
iα)2

]
+ h(g1

iα − g̃0
iα)2 + 2āiαh

−1(g̃0
iα)2

}
,

‖|gk‖|2I,2 =

p−1∑
α=1

2āiατ
2h−1

[
(gkiα)2 + 2(gk−1

iα
)2 + 2(g̃k−1

iα
)2
]

+

p−1∑
α=1

[
h(gkiα − g̃k−1

iα
)2 + 2āiαh

−1(gk−1
iα

− g̃k−1
iα

)2
]
, k ≥ 2.

Proof. As in the proof of Lemma 4.1, we are going to write out this proof only for
two subdomains Ωh,ξ (ξ = 1, 2) decoupled by the one-point interface Γh,1 = {i1h} and
suppose that vkh satisfies (4.7)–(4.11) and (4.4)–(4.5). For the sake of succinctness, we
also use the notation

Gk ≡ ‖vk‖2 + τ2h(Δhv
k
i1)

2 + 2āi1τ
2h−1∂t(v

k
i1)

2;

then Gk = ∂tE
k
2 for 1 ≤ k ≤ J .

Multiplying (4.7)–(4.11), respectively, by 2hvki , 2hvki1−1, 2hvki1 , 2hvki1+1, and 2hvki ,
summing i, and adding the resulting equalities, we get

2
〈
vk, ∂tv

k
〉

= 2
〈
vk,Δhv

k
〉

+ 2
〈
vk, gk

〉
+ Qk

2i1 .

Owing to

2
〈
vk, ∂tv

k
〉

= ∂t(‖vk‖2) + τ‖∂tvk‖2

and

2〈vk, gk〉 ≤ ‖vk‖2 + ‖gk‖2,

the above equality becomes

∂t(‖vk‖2)≤‖vk‖2 + ‖gk‖2 + Qk
2i1 ,(4.15)

where the interface term Qk
2i1

reads

Qk
2i1 = 2h−1(ṽki1 − vki1)

(
h2Δhv

k
i1 + 2āi1v

k
i1

)
.

Recalling the expression of (ṽki1 − vki1) and the scheme (4.9), we obtain that

Qk
2i1 = 2h−1(ṽki1 − vki1)

(
h2Δhv

k
i1 + 2āi1τ∂tv

k
i1 + 2āi1v

k−1
i1

)
= 2h−1(ṽki1 − vki1)

(
h2Δhv

k
i1 + 2āi1τΔhv

k
i1 + 2āi1v

k−1
i1

+ 2āi1τg
k
i1

)
= −2τ2h−1(2āi1τ + h2)(∂tΔhv

k
i1)Δhv

k
i1 − 4āi1τ

2h−1(∂tΔhv
k
i1)v

k−1
i1

(4.16)

− 4āi1τ
3h−1(∂tΔhv

k
i1)g

k
i1 − 2τh−1(2āi1τ + h2)(gki1 − g̃k−1

i1
)Δhv

k
i1

− 4āi1τh
−1(gki1 − g̃k−1

i1
)vk−1

i1
− 4āi1τ

2h−1(gki1 − g̃k−1
i1

)gki1 .

For a complete analysis of the term −4āi1τ
2h−1(∂tΔhv

k
i1

)vk−1
i1

of (4.16), two cases of
k will be discussed: one is k ≥ 2, the other k = 1.
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(a) If k ≥ 2, by using (4.9) and Lemma 2.1, we derive that

− 2τ(∂tΔhv
k
i1)v

k−1
i1

= −2(Δhv
k
i1 − Δhv

k−1
i1

)vk−1
i1

= −2(∂tv
k
i1 − ∂tv

k−1
i1

)vk−1
i1

+ 2(gki1 − gk−1
i1

)vk−1
i1

= −∂t(v
k
i1)

2 + τ(∂tv
k
i1)

2 + ∂t(v
k−1
i1

)2 + τ(∂tv
k−1
i1

)2 + 2(gki1 − gk−1
i1

)vk−1
i1

= −τ∂t
[
∂t(v

k
i1)

2
]
+ τ(Δhv

k
i1 + gki1)

2 + τ(Δhv
k−1
i1

+ gk−1
i1

)2 + 2(gki1 − gk−1
i1

)vk−1
i1

.

Then interface term (4.16) follows

Qk
2i1 = I6 + I7 + I8 + I9 + I10 + I11,

in which Im (m = 6, 7, . . . , 11) are treated in detail as follows:

I6 = −2τ2h−1(2āi1τ + h2)(∂tΔhv
k
i1)Δhv

k
i1 − 2āi1τ

2h−1∂t
[
∂t(v

k
i1)

2
]

+ 2āi1τ
2h−1(Δhv

k
i1)

2 + 2āi1τ
2h−1(Δhv

k−1
i1

)2

= −τ2h∂t(Δhv
k
i1)

2 − 2āi1τ
2h−1∂t

[
∂t(v

k
i1)

2
]
+ 4āi1τ

2h−1(Δhv
k−1
i1

)2

− τ3h(∂tΔhv
k
i1)

2 − 2āi1τ
4h−1(∂tΔhv

k
i1)

2,

I7 = −4āi1τ
3h−1(∂tΔhv

k
i1)g

k
i1≤2āi1τ

4h−1(∂tΔhv
k
i1)

2 + 2āi1τ
2h−1(gki1)

2,

I8 = −2τh(gki1 − g̃k−1
i1

)Δhv
k
i1≤τ2h(Δhv

k
i1)

2 + h(gki1 − g̃k−1
i1

)2,

I9 = 4āi1τ
2h−1

[
gki1Δhv

k
i1 + gk−1

i1
Δhv

k−1
i1

− (gki1 − g̃k−1
i1

)Δhv
k
i1

]
= 4āi1τ

2h−1
(
g̃k−1
i1

Δhv
k
i1 + gk−1

i1
Δhv

k−1
i1

)
≤ 2āi1τ

2h−1
[
(Δhv

k
i1)

2 + (Δhv
k−1
i1

)2
]
+ 2āi1τ

2h−1
[
(gk−1

i1
)2 + (g̃k−1

i1
)2
]
,

I10 = 4āi1τh
−1(gki1 − gk−1

i1
)vk−1

i1
− 4āi1τh

−1(gki1 − g̃k−1
i1

)vk−1
i1

≤ 2āi1τ
2h−1(vk−1

i1
)2 + 2āi1h

−1(gk−1
i1

− g̃k−1
i1

)2,

I11 = 2āi1τ
2h−1

[
(gki1)

2 + (gk−1
i1

)2
]
− 4āi1τ

2h−1(gki1 − g̃k−1
i1

)gki1

≤ 2āi1τ
2h−1

[
(gk−1

i1
)2 + (g̃k−1

i1
)2
]
.

Therefore,

Qk
2i1≤−τ2h∂t(Δhv

k
i1)

2 − 2āi1τ
2h−1∂t

[
∂t(v

k
i1)

2
]

(4.17)

+ τ2h(Δhv
k
i1)

2 + 2āi1τ
2h−1(vk−1

i1
)2

+ 2āi1τ
2h−1(Δhv

k
i1)

2 + 6āi1τ
2h−1(Δhv

k−1
i1

)2 + ‖|gk‖|2I,2, k ≥ 2.

Substituting (4.17) into (4.15) and using Lemma 4.1, we obtain

∂tG
k ≤ ‖vk‖2 + τ2h(Δhv

k
i1)

2 + 2āi1τ
2h−1(vk−1

i1
)2

+Ek
1 + 3Ek−1

1 + ‖gk‖2 + ‖|gk‖|2I,2, k ≥ 2,

which implies

Gn −G1 ≤ τ

n∑
l=2

‖vl‖2 + τ3h

n∑
l=2

(Δhv
l
i1)

2 + 2āi1τ
3h−1

n−1∑
l=1

(vli1)
2(4.18)

+ τ

n∑
l=2

(El
1 + 3El−1

1 ) + τ

n∑
l=2

(‖gl‖2 + ‖|gl‖|2I,2), k ≥ 2.
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(b) If k = 1, by using (4.9) and Lemma 2.1, we have

−2τ(∂tΔhv
1
i1)v

0
i1 = −2(Δhv

1
i1 − Δhv

0
i1)v

0
i1

= −2(∂tv
1
i1)v

0
i1 + 2g1

i1v
0
i1 + 2(Δhv

0
i1)v

0
i1

≤ −∂t(v
1
i1)

2 + τ(Δhv
1
i1 + g1

i1)
2 + 2g1

i1v
0
i1 + τ(Δhv

0
i1)

2 + τ−1(v0
i1)

2.

Then, by taking k = 1 in (4.16), we can arrive at

Q1
2i1≤I12 + I13 + I14 + I15 + I16 + I17,

where,

I12 = −2τ2h−1(2āi1τ + h2)(∂tΔhv
1
i1)Δhv

1
i1 − 2āi1τh

−1∂t
[
(v1

i1)
2
]

+ 2āi1τ
2h−1(Δhv

1
i1)

2 + 2āi1τ
2h−1(Δhv

0
i1)

2

= −τ2h∂t(Δhv
1
i1)

2 − 2āi1τh
−1∂t

[
(v1

i1)
2
]
+ 4āi1τ

2h−1(Δhv
0
i1)

2

− τ3h(∂tΔhv
1
i1)

2 − 2āi1τ
4h−1(∂tΔhv

1
i1)

2,

I13 = −4āi1τ
3h−1(∂tΔhv

1
i1)g

1
i1≤2āi1τ

4h−1(∂tΔhv
1
i1)

2 + 2āi1τ
2h−1(g1

i1)
2,

I14 = −2τh(g1
i1 − g̃0

i1)Δhv
1
i1≤τ2h(Δhv

1
i1)

2 + h(g1
i1 − g̃0

i1)
2,

I15 = 4āi1τ
2h−1

[
g1
i1Δhv

1
i1 − (g1

i1 − g̃0
i1)Δhv

1
i1

]
= 4āi1τ

2h−1g̃0
i1Δhv

1
i1≤2āi1τ

2h−1(Δhv
1
i1)

2 + 2āi1τ
2h−1(g̃0

i1)
2,

I16 = 4āi1τh
−1g1

i1v
0
i1 − 4āi1τh

−1(g1
i1 − g̃0

i1)v
0
i1 + 2āi1h

−1(v0
i1)

2

≤ 2āi1τ
2h−1(v0

i1)
2 + 2āi1h

−1(v0
i1)

2 + 2āi1h
−1(g̃0

i1)
2,

I17 = 2āi1τ
2h−1(g1

i1)
2 − 4āi1τ

2h−1(g1
i1 − g̃0

i1)g
1
i1≤2āi1τ

2h−1(g̃0
i1)

2.

Therefore,

Q1
2i1 ≤−τ2h∂t(Δhv

1
i1)

2 − 2āi1τh
−1∂t(v

1
i1)

2(4.19)

+ τ2h(Δhv
1
i1)

2 + 2āi1τ
2h−1(v0

i1)
2 + 2āi1h

−1(v0
i1)

2

+ 2āi1τ
2h−1(Δhv

1
i1)

2 + 4āi1τ
2h−1(Δhv

0
i1)

2 + ‖|g1‖|2I,2.

Inserting (4.19) into (4.15) and multiplying the resulting inequality by τ , we obtain

G1 ≤ τ‖v1‖2 + τ3h(Δhv
1
i1)

2 + 2āi1τ
3h−1(v0

i1)
2(4.20)

+‖v0‖2 + τ2h(Δhv
0
i1)

2 + 2āi1τh
−1(v0

i1)
2

+τ(E1
1 + 2E0

1) + τ(‖g1‖2 + ‖|g1‖|2I,2).

Now we combine the result of (a) with (b) to continue this proof. Adding (4.20)
to (4.18), we get

∂tE
n
2 = Gn ≤ En

2 + τ−1E0
2 + τ

n−1∑
l=0

El
2 + 4τ

n∑
l=0

El
1 + τ

n∑
l=1

(‖gl‖2 + ‖|gl‖|2I,2)

for 1 ≤ n ≤ J . Furthermore, summing n from 1 to k, we have

(1 − τ)Ek
2 ≤ τ(1 + T )

k−1∑
l=0

El
2 + (k + 1)E0

2 + 4τT

k∑
l=0

El
1 + τT

k∑
l=1

‖gl‖2
∗,
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where ‖gk‖2
∗ = ‖gk‖2 + ‖|gk‖|2I,2. Supposing that 0 < τ ≤ 1/3; it follows

Ek
2 ≤ 3(1 + T )τ

2

k−1∑
l=0

El
2 +

3(k + 1)

2
E0

2 + 6τT

k∑
l=0

El
1 +

3Tτ

2

k∑
l=1

‖gl‖2
∗.

This implies (4.14), due to Lemma 2.3, and this proof is complete.
Although not explicitly stated, the above proofs are true of the CEH scheme with

p = N/2. In the analogous proofs, the schemes (4.2)–(4.3) could be rewritten as

∂tu
k
i = Δhv

k
i + gki (at interface points),

∂tu
k
i = Δhv

k
i + gki + ai− 1

2
wk

i−1 + ai+ 1
2
wk

i+1 (at interior points),

where wk
i = (ṽki − vki )/h2 is defined at interface points and wk

0 = wk
N = 0. Corre-

spondingly, the interface terms Qk
1i1

, Qk
2i1

would be replaced with
∑N/2−1

α=1 Qk
1iα

and∑N/2−1
α=1 Qk

2iα
, but the other parts of the proofs remain the same.

Obviously, Lemmas 4.1 and 4.2 imply the following stability theorem.
Theorem 4.3 (stability). Under the reasonable assumption (1.4), the 1-D CEIDD

algorithm (3.2)–(3.5) is unconditionally stable with respect to the H1 seminorm and
the L2 norm.

Before we end this section, let us briefly discuss the convergence of the CEIDD
method. Let eki = u(ih, kτ) − uk

i be the error of solution uk
i computed by the 1-D

CEIDD algorithm (3.2)–(3.5), and let ẽkiα = u(iαh, kτ)− ũk
iα

be the error of predictor

value ũk
iα

at interface boundaries Γh. And the local truncation errors of the backward

and forward Euler schemes are denoted by rki , r̃k−1
i .

It is easy to verify that the error equations of the 1-D CEIDD algorithm (3.2)–
(3.5) is the same as (4.1)–(4.5) by assuming φi ≡ 0 and replacing the variables
vki , ṽ

k
i , g

k
i , g̃k−1

i with eki , ẽ
k
i , r

k
i , r̃k−1

i , respectively. Thus, (4.6) of Lemma 4.1 takes the
form

Ek
1 (e) ≤ 3τ

2
e

3
2kτ

k∑
l=1

(
‖rl‖2 + ‖|rl‖|2I,1

)
, 1 ≤ k ≤ J,

and L2 estimation (4.14) of Lemma 4.2 holds in the form

Ek
2 (e) ≤ 3T

2
exp

(
3

2
(1 + T )kτ

)[
4τ

k∑
l=1

El
1(e) + τ

k∑
l=1

(‖rl‖2 + ‖|rl‖|2I,2)
]
.

Throughout the paper, any subscripted c, which is fixed in value, will denote a
generic positive constant that is dependent on the exact solution u(x, t) and coef-
ficients a(x) but independent of time step τ , spacing h, and the number of subdo-
mains p. By the standard truncation error analysis, we get |rki | ≤ c1(τ + h2) and
|r̃ki | ≤ c1(τ + h2). If a(x) is bounded by c2, it holds that

‖rk‖2 + ‖|rk‖|2I,1 ≤ 2c21(1 + 5c2)
(
1 + (p− 1)h−1

)
(τ + h2)2

and

|ek|a,1 ≤
√
Ek

1 (e) ≤ c3
√

1 + (p− 1)h−1(τ + h2), 1 ≤ k ≤ J,(4.21)



1596 HAN-SHENG SHI AND HONG-LIN LIAO

where c3 =
√

3Te
3
2T c21(1 + 5c2). Similarly,

‖rk‖2 + ‖|rk‖|2I,2 ≤ 2c21(2 + 9c2)
(
1 + (p− 1)h−1

)
(τ + h2)2

and √√√√τ

k∑
l=1

‖el‖2 ≤
√
Ek

2 (e) ≤ c4
√

1 + (p− 1)h−1(τ + h2), 1 ≤ k ≤ J,(4.22)

where c4 =
√

3T 2 exp
(

3
2 (1 + T )T

)
(2c21 + 9c21c2 + 2c23). Thus, we obtain the following

theorem from (4.21) and (4.22).
Theorem 4.4 (convergence). If the solution of problem (1.1)–(1.3) is sufficiently

smooth, the numerical solution of the CEIDD algorithm (3.2)–(3.5) converges to the
exact solution of (1.1)–(1.3) with an order of O(

√
1 + (p− 1)h−1(τ+h2)) with respect

to the H1 seminorm and the L2 norm when spacing h is sufficiently small and time
step size τ = O(p−1/2h1/2+ε) for ε > 0.

We note that, for the coarsely granular algorithm in the case of 2 ≤ p � N , the
accuracy of the CEIDD algorithm is O(h−1/2(τ + h2)) as τ = O(h1/2+ε). Compared
with sequential implicit Euler method (p = 1), there is a loss of h−1/2. However, for
the CEH scheme with p = h−1/2 (see section 3), the accuracy decreases to O(h−1(τ +
h2)) with τ = O(h1+ε), in which a loss of h−1 is seen. As for the cause, we return to the
upper bounds of Ek

1 (e) and Ek
2 (e) and observe that the loss of accuracy can be ascribed

to the interface-related terms 2āiαh
−1(rkiα − r̃k−1

iα
)2 of ‖|rk‖|I,1 and 2āiαh

−1(rk−1
iα

−
r̃k−1
iα

)2 of ‖|rk‖|I,2. To make this clearer, we refer to the terms I4 in the proof of
Lemma 4.1 and I10 in Lemma 4.2. Therefore, it stands to reason that the accumulated
truncation errors at interface nodes, introduced by the explicit prediction and implicit
correction steps, affect the global accuracy of our CEIDD algorithm.

On the other hand, noticing that I16(e) = 2āi1h
−1(e0

i1
)2 (since e0

i1
= 0) in the

analogous proof of Lemma 4.2 for L2 convergence, we can get

‖|r1‖|2I,2 =

p−1∑
α=1

[
2āiατ

2h−1
(
(r1

iα)2 + (r̃0
iα)2

)
+ h(r1

iα − r̃0
iα)2

]
.

Compared with the earlier definition, this formulation removes the main error term.
(Actually, the arguments would be true of the 2-D parallel algorithms described in
the next two sections but are omitted there.) Thus, an improved accuracy of the
CEIDD algorithm would be obtained by using our prior estimations (4.6) and (4.14)
if it holds that |rkiα − r̃k−1

iα
| ≤ c1τh

2 and |rk−1
iα

− r̃k−1
iα

| ≤ c1τh
2; see Example 1 for a

2-D instance. Specifically, we can get

|ek|a,1 ≤ c5
√

1 + (p− 1)τh−1(τ + h2), 1 ≤ k ≤ J,

and √√√√τ

k∑
l=1

‖el‖2 ≤ c6
√

1 + (p− 1)τ2h−1(τ + h2), 1 ≤ k ≤ J.

Thus, the convergence rate reaches O(τ + h2) even for the CEH method.
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5. Zigzag interfaces and CEIDD-ZI algorithms for 2-D problems. In
the first half of this paper, we proved that the parallel CEIDD procedure is free from
stability-related time step restriction and maintains the efficiency in computation
and communication of the EIDD methods. For solving 2-D problems (1.1)–(1.3) on
Ω = (0, 1)2, we are in a different situation, where the interior interfaces are no longer
any nodes but some directional lines such as grid lines. As the implicit correction
technique (always, the fully implicit scheme) is applied at points along those straight-
line interfaces, an elliptic solver should be employed to compute the solutions [11],
and then an extra parallel time would be suffered. Moreover, for large-scale parallel
simulations, domain partitioning flexibility is always of the essence, and some crossover
interfaces would be necessary. When those straight-line boundaries cross into each
other inside the computational domain, however, the situation becomes worse because
the globalized transfers of data for computing interface solutions suffer from sustained
parallel-time overload.

It seems that the 2-D generalization of the CEIDD algorithm would not inherit
the virtues of the 1-D CEIDD method; nevertheless, an alternative approach will do
in which the straight-line boundaries are tailored to the special lines of zigzag shape.
In this and the following sections, we show that CEIDD-ZI (CEIDD based on zigzag-
shaped interfaces) algorithms maintain the virtues of the CEIDD method and improve
the flexibility in domain partitioning as well as localize the communication of data.

Under the subdomain-width condition (1.4), we assume that 2 ≤ p1 ≤ N/2 and
2 ≤ p2 ≤ N/2. The zigzag-line interfaces, Γh = Γ1

h ∪ Γ2
h, consist of (p1 − 1) interior

boundaries Γ1
h =

⋃p1−1
α=1 Γ1

h,α in the first spatial direction with

Γ1
h,α = {(iαh, jh)| iα = mα + mod(j, 2), 3 ≤ mα + 2 ≤ mα+1 ≤ N − 3},(5.1)

and (p2 − 1) interior boundaries Γ2
h =

⋃p2−1
β=1 Γ2

h,β in the second with

Γ2
h,β = {(ih, jβh)| jβ = nβ + mod(i, 2), 3 ≤ nβ + 2 ≤ nβ+1 ≤ N − 3}.(5.2)

Then, by those interior interfaces Γh, the discrete domain Ωh is decomposed into
p = p1×p2 subdomains Ωξη (ξ = 1, 2, . . . , p1, η = 1, 2, . . . , p2). Two examples on
the two strategies of domain partitioning are depicted graphically in Figures 5.1–5.2.
Denoting that γ1

ξη = ∂Ωξη ∩ ∂Ωξ+1,η, the common boundary of Ωξη and Ωξ+1,η, and

γ2
ξη = ∂Ωξη ∩ ∂Ωξ,η+1, it holds that Γ1

h,α =
⋃p2

η=1 γ
1
αη and Γ2

h,β =
⋃p1

ξ=1 γ
2
ξβ .

We have p = p1×p2 processors denoted as Pξη. Similar to the 1-D case, we assign
Ωξη and γ1

ξη ∪ γ2
ξη to processor Pξη. Suppose that uk

ij is the numerical approximation
of the exact solution u(ih, jh, kτ) on Ωτ

h; the 2-D CEIDD-ZI method for computing
the solution uk

h = {uk
ij |0 ≤ i, j ≤ N} from uk−1

h is described below compactly:

ũk
ij − uk−1

ij

τ
= Δhu

k−1
ij + fk−1

ij on Γh,(5.3) {
∂tu

k
ij = Δhu

k
ij + fk

ij on Ωξη

uk
ij = ũk

ij on Γh

(
ξ = 1, 2, . . . , p1

η = 1, 2, . . . , p2

)
,(5.4)

∂tu
k
ij = Δhu

k
ij + fk

ij on Γh,(5.5)

u0
ij = u0(ih, jh) on Ωh,(5.6)

uk
ij = ub(ih, jh, kτ) on ∂Ωh.(5.7)

Based on the two strategies of domain decomposition, we distinguish the CEIDD-
ZI method on p1×1 subdomains from that on p1×p2 subdomains (p2 > 1) and denote
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Fig. 5.1. Strategy 1: The zigzag-line in-
terface Γh (dashed lines) divides Ωh into 2×1
subdomains for p1 = 2 and p2 = 1.
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Fig. 5.2. Strategy 2: The zigzag-line in-
terfaces Γh (dashed lines) divide Ωh into 2×2
subdomains for p1 = p2 = 2.

the former as CEIDD-ZI1 and the later as CEIDD-ZI2; see Figures 5.1–5.2 for the
relevant instances.

As for the CEIDD-ZI1 method, Γh = Γ1
h. We compute interface predictor values

ũk
h(Γ1

h) by the explicit scheme (5.3); then we get the subdomain solutions uk
h(Ωξη)

by applying an elliptic solver such as SOR and PCG to implicit scheme (5.4). Once
the subdomain solutions are available, the interface solutions uk

h(Γ1
h) are obtained

explicitly by the implicit scheme (5.5) for 1 ≤ j ≤ N − 1 and 1 ≤ α ≤ p1 − 1:

(
1 + 2rā12

iα,j

)
uk
iα,j = uk−1

iα,j + r
(
a1
iα− 1

2 ,j
uk
iα−1,j + a1

iα+ 1
2 ,j

uk
iα+1,j

)
+ r

(
a2
iα,j− 1

2
uk
iα,j−1 + a2

iα,j+ 1
2
uk
iα,j+1

)
+ τfk

iα,j .

Being similar to the 1-D case, the CEIDD-ZI1 method maintains the efficiency in
computation and communication of the 2-D EIDD algorithms.

As for the CEIDD-ZI2 method, we assume that the crossover interfaces Γ1
h,α, Γ2

h,β

satisfy the intersectant conditions

mod(nβ , 2) = mod(mα, 2), 1 ≤ α ≤ p1 − 1, 1 ≤ β ≤ p2 − 1,(5.8)

so any two intersecting zigzag-line interfaces have two common points: (mαh, nβh)
and (mαh + h, nβh + h) if mα is even, or (mαh, nβh + h) and (mαh + h, nβh) if
mα is odd. Figure 5.2 shows the former case for α = β = 1. If the intersectant
conditions (5.8) are true, the implicit Euler scheme (5.5) applied at the intersecting
interfaces Γh computes interface solutions explicitly and the data communication is
localized. Thus, the CEIDD-ZI2 method also maintains the efficiency in computation
and communication of the 2-D EIDD algorithms.

On the contrary, if the intersectant conditions (5.8) do not hold, any two inter-
secting boundaries have no common grid points; see Figure 5.3 for a simple case. The
fully implicit corrector scheme (5.5) introduces some points, such as the “◦” points in
Figure 5.3, where the interface solutions should be updated by an elliptic solver on one
processor. So, compared with the above case shown in Figure 5.2, more operations of
data transferring will be needed for each time level. Then an extra parallel time for
data transfers and interface correction is added to the 2-D EIDD algorithms. Thus
we arrive at the following conclusion.
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Fig. 5.3. An elliptic solver is necessary to compute interface solutions on the intersecting
zigzag-line interfaces which do not satisfy the intersectant conditions (5.8).

Proposition 5.1. Under the intersectant conditions (5.8), the implicit correction
step of the CEIDD-ZI algorithm on general p1 × p2 subdomains adds zero communi-
cation and negligible computation cost to the 2-D EIDD algorithms.

The localization of data communication is important for the two parallel CEIDD-
ZI procedures; however, we will prefer CEIDD-ZI2 to CEIDD-ZI1 for large-scale par-
allel simulations on distributed memory computers because the former has a better
efficiency in communication. Given parallel machine number, namely, fixed p, the to-
tal data communication cost Tcomm per time step is an increasing function of the total
“length” of the interior boundaries. To carry out a quantitative analysis, we assume
that two data transferring operations (one occurs in step 1 to compute subdomain
solutions, and the other occurs in step 2 to obtain interface corrector and predictor
values) are carried out by p − 1 processors simultaneously with almost equal load.
Suppose that p = p1×p2 and p1 ≥ p2 > 1; the total communication time at each time
step satisfies

Tcomm,1 = 2λ
(p− 1)N

p− 1
+ μ

for the CEIDD-ZI1 method, and

Tcomm,2 = 2λ
(p1 − 1)N + (p2 − 1)N

p− 1
+ μ

for the CEIDD-ZI2 method, where λ is some system-dependent data transferring
parameter and μ is the communication startup overload. For an efficiency comparison
in communication, we define a ratio ρ = ρ(p2),

ρ(p2) =
Tcomm,1 − Tcomm,2

Tcomm,1
=

2λN

(2λN + μ)(p− 1)

(
p− p

p2
− p2 + 1

)
.(5.9)

Obviously, ρ(1) = 0 and ρ(p2) is an increasing function for 1 < p2 ≤ √
p so that we

obtain the following results.
Proposition 5.2. For given p = p1 × p2 processors, the communication cost

at each time level of the CEIDD-ZI2 algorithm is less than that of the CEIDD-ZI1
procedure, and for 1 < p2 ≤ √

p, the larger the value of p2, the less the cost.
Similar to the 1-D CEIDD method, if the subdomain solutions are obtained ex-

plicitly, the parallel CEIDD-ZI procedures also degenerate to a 2-D CEH scheme. As
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Fig. 5.4. CEH scheme on 4×4 subdomains.

the special version of the CEIDD-ZI algorithms, the scheme would always be con-
structed on N

2 × N
2 subdomains; see Figure 5.4 for an instance. The unconditional

stability of the CEH scheme will be verified in the next section. On the other hand,
the CEH method always can be described as the following point-related schemes:

ũk
ij = uk−1

ij + τΔhu
k−1
ij + τfk−1

ij , (i + j) ∈ odd,(5.10)

(1 + 2ā12
ij r)u

k
ij = uk−1

ij + r(a1
i− 1

2 ,j
ũk
i−1,j + a1

i+ 1
2 ,j

ũk
i+1,j)(5.11)

+ r(a2
i,j− 1

2
ũk
i,j−1 + a2

i,j+ 1
2
ũk
i,j+1) + τfk

ij , (i + j) ∈ even,

(1 + 2ā12
ij r)u

k
ij = uk−1

ij + r(a1
i− 1

2 ,j
uk
i−1,j + a1

i+ 1
2 ,j

uk
i+1,j)(5.12)

+ (a2
i,j− 1

2
uk
i,j−1 + a2

i,j+ 1
2
uk
i,j+1) + τfk

ij , (i + j) ∈ odd,

where 1 ≤ i, j ≤ N − 1.

6. Stability and convergence of CEIDD-ZI algorithms. In this section,
H1 and L2 prior estimations for difference solutions of the CEIDD-ZI methods are
derived by analogy with the 1-D case in section 4.

Lemma 6.1 (prior estimation). Let vkh = {vkij |0 ≤ i, j ≤ N, 0 ≤ k ≤ J} satisfy
the CEIDD-ZI1 algorithm on p1×1 subdomains decoupled by the zigzag-line interfaces
Γ1
h:

ṽkij − vk−1
ij

τ
= Δhv

k−1
ij + g̃k−1

ij on Γ1
h, 1 ≤ k ≤ J,(6.1) {

∂tv
k
ij = Δhv

k
ij + gkij on Ωξ,1

vkij = ṽkij on Γ1
h

(ξ = 1, 2, . . . , p1), 1 ≤ k ≤ J,(6.2)

∂tv
k
ij = Δhv

k
ij + gkij on Γ1

h, 0 ≤ k ≤ J,(6.3)

v0
ij = φij on Ωh, 1 ≤ k ≤ J,(6.4)

vkij = 0 on ∂Ωh, 0 ≤ k ≤ J.(6.5)

Then the inequalities

Ek
1 ≤ 3

2
e

3
2kτ

[
E0

1 + τ

k∑
l=1

(
‖gl‖2 + ‖|gl‖|2I,1

) ]
,(6.6)
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Ek
2 ≤ 3

2
(J + 1) exp

(
3

2
(1 + T )kτ

)
E0

2(6.7)

+
3T

2
exp

(
3

2
(1 + T )kτ

)[
4τ

k∑
l=0

El
1 + τ

k∑
l=1

(‖gl‖2 + |||gl|||2I,2)
]

hold for 0 < τ ≤ 1/3, 1 ≤ k ≤ J , where Ek
1 , Ek

2 , |||gk|||I,1, and |||gk|||I,2 are defined
by (A.1)–(A.4), respectively, in the case of p2 = 1.

Proof. (Estimation on Ek
1 .) For the derivation of the H1 estimation, as was done

for Lemma 4.1, this proof is written out only for two subdomains, Ωξ,1 (ξ = 1, 2), with
a zigzag interface Γ1

h,1 defined by (5.1) for 1 ≤ m1 ≤ N − 3. For completeness, two
cases of m1 are discussed: one is 2 ≤ m1 ≤ N − 3, the other is m1 = 1. Denoting
wk

i1,j
= (ṽki1j − vki1j)/h

2, we derive that

h2wk
i1j = (ṽki1j − vki1j) = −τ2(∂tΔhv

k
i1j) − τ(gki1j − g̃k−1

i1j
), 1 ≤ j ≤ N − 1,

from the interface schemes (6.1) and (6.3). For convenience, the notation wk
i1,0

and wk
i1,N

is also used with complementary definitions wk
i1,0

= wk
i1,N

= 0. For
j = 1, 2, . . . , N − 1, we denote j ∈ odd to indicate integer j is odd and j ∈ even
to indicate j is even.

(a) If 2 ≤ m1 ≤ N − 3, the schemes (6.2)–(6.3) would read

∂tv
k
ij = Δhv

k
ij + gkij , 0 < i < m1 − 1, 0 < j < N,(6.8)

∂tv
k
m1−1,j = Δhv

k
m1−1,j + gkm1−1,j , j ∈ odd,(6.9)

∂tv
k
m1−1,j = Δhv

k
m1−1,j + gkm1−1,j + a1

m1− 1
2 ,j

wk
m1,j , j ∈ even,(6.10)

∂tv
k
m1j = Δhv

k
m1j + gkm1j + a1

(m1+1)− 1
2 ,j

wk
m1+1,j(6.11)

+ a2
m1,j− 1

2
wk

m1,j−1 + a2
m1,j+

1
2
wk

m1,j+1, j ∈ odd,

∂tv
k
m1j = Δhv

k
m1j + gkm1j , j ∈ even,(6.12)

∂tv
k
m1+1,j = Δhv

k
m1+1,j + gkm1+1,j , j ∈ odd,(6.13)

∂tv
k
m1+1,j = Δhv

k
m1+1,j + gkm1+1,j + a1

m1+
1
2 ,j

wk
m1j(6.14)

+ a2
m1+1,j− 1

2
wk

m1+1,j−1 + a2
m1+1,j+ 1

2
wk

m1+1,j+1, j ∈ even,

∂tv
k
m1+2,j = Δhv

k
m1+2,j + gkm1+2,j + a1

(m1+1)+ 1
2 ,j

wk
m1+1,j , j ∈ odd,(6.15)

∂tv
k
m1+2,j = Δhv

k
m1+2,j + gkm1+2,j , j ∈ even,(6.16)

∂tv
k
ij = Δhv

k
ij + gkij , m1 + 2 < i < N, 0 < j < N.(6.17)

From (6.8)–(6.17), it is easy to obtain the following equality with regard to the
inner product 〈·, ·〉:

2〈∂tvk, ∂tvk〉 = 2〈∂tvk,Δhv
k〉 + 2〈∂tvk, gk〉 +

N−1∑
j=1

Qk
1i1j ,(6.18)

with
∑N−1

j=1 Qk
1i1j

= S1 + S2, where

S1 = 2h2
∑

j∈even

wk
m1,j

(
a1
m1− 1

2 ,j
∂tv

k
m1−1,j + a1

m1+
1
2 ,j

∂tv
k
m1+1,j

)
+ 2h2

∑
j∈odd

wk
m1+1,j

(
a1
(m1+1)− 1

2 ,j
∂tv

k
m1,j + a1

(m1+1)+ 1
2 ,j

∂tv
k
m1+2,j

)
,
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S2 = 2h2
∑
j∈odd

(
a2
m1,j− 1

2
wk

m1,j−1 + a2
m1,j+

1
2
wk

m1,j+1

)
∂tv

k
m1j

+ 2h2
∑

j∈even

(
a2
m1+1,j− 1

2
wk

m1+1,j−1 + a2
m1+1,j+ 1

2
wk

m1+1,j+1

)
∂tv

k
m1+1,j .

Recalling that vki1,0 = vki1,N = 0 and wk
i1,0

= wk
i1,N

= 0, we transform S2 into

S2 = 2h2
∑

j∈even

wk
m1,j

(
a2
m1,j− 1

2
∂tv

k
m1,j−1 + a2

m1,j+
1
2
∂tv

k
m1,j+1

)
+ 2h2

∑
j∈odd

wk
m1+1,j

(
a2
m1+1,j− 1

2
∂tv

k
m1+1,j−1 + a2

m1+1,j+ 1
2
∂tv

k
m1+1,j+1

)
.

Due to the definitions of Γ1
h,1, Δhv

k
ij , and ā12

i1,j
, it holds that

N−1∑
j=1

Qk
1i1j = 2h2

N−1∑
j=1

wk
i1,j

(
a1
i1− 1

2 ,j
∂tv

k
i1−1,j + a1

i1+
1
2 ,j

∂tv
k
i1+1,j

)

+ 2h2
N−1∑
j=1

wk
i1,j

(
a2
i1,j− 1

2
∂tv

k
i1,j−1 + a2

i1,j+
1
2
∂tv

k
i1,j+1

)

or, in a simpler form,

N−1∑
j=1

Qk
1i1j = 2

N−1∑
j=1

(ṽki1j − vki1j)
[
h2∂t(Δhv

k
i1j) + 2ā12

i1j∂tv
k
i1j

]
.

We observe that the interface term
∑N

j=1 Q
k
1i1j

is quite similar to Qk
1i1

defined in the
proof of Lemma 4.1 by overlooking the summation for j. Therefore, we would deal
with the term

∑N
j=1 Q

k
1i1j

in the same way and obtain

N−1∑
j=1

Qk
1i1j ≤ −2τ2

N−1∑
j=1

ā12
i1j∂t[(Δhv

k
i1j)

2] + 2τ2
N−1∑
j=1

ā12
i1j(Δhv

k
i1j)

2 + |||gk|||2I,1.(6.19)

Now inserting (6.19) into (6.18), we have

∂tE
k
1 ≤Ek

1 + ‖gk‖2 + |||gk|||2I,1, 1 ≤ k ≤ J,

which implies (6.6) for 2 ≤ m1 ≤ N − 3 owing to Lemma 2.3.

(b) If m1 = 1, the schemes (6.8)–(6.10) are not needed and could be cleared

away; however, the interface term
∑N

j=1 Q
k
1i1j

will have its own form because the

term a1
1
2 ,j

∂tv
k
0,j of S1 is a zero-valued term. Thus we can treat the interface term in

the same way, and then (6.6) is also true of m1 = 1.

(Estimation on Ek
2 .) Similarly, for the derivation of the L2 estimation, we could

get the following equality:

2〈vk, ∂tvk〉 = 2〈vk,Δhv
k〉 + 2〈vk, gk〉 +

N−1∑
j=1

Qk
2i1j ,
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where the interface term reads

N−1∑
j=1

Qk
2i1j = 2

N−1∑
j=1

(ṽki1j − vki1j)
(
h2Δhv

k
i1,j + 2ā12

i1jv
k
i1j

)
,

which is similar to Qk
2i1

defined in Lemma 4.2. Thus, we could obtain that

N−1∑
j=1

Q1
2i1j ≤−τ2h2

N−1∑
j=1

∂t(Δhv
1
i1j)

2 − 2τ

N−1∑
j=1

ā12
i1j∂t(v

1
i1j)

2

+ τ2h2
N−1∑
j=1

(Δhv
1
i1j)

2 + 2τ2
N−1∑
j=1

ā12
i1j(v

0
i1)

2 + 2

N−1∑
j=1

ā12
i1j(v

0
i1j)

2

+ 2τ2
N−1∑
j=1

ā12
i1j(Δhv

1
i1j)

2 + 4τ2
N−1∑
j=1

ā12
i1j(Δhv

0
i1j)

2 + |||g1|||2I,2

and, for k ≥ 2,

N−1∑
j=1

Qk
2i1j ≤−τ2h2

N−1∑
j=1

∂t(Δhv
k
i1j)

2 − 2τ2
N−1∑
j=1

ā12
i1j∂t

[
∂t(v

k
i1j)

2
]

+ τ2h2
N−1∑
j=1

(Δhv
k
i1j)

2 + 2τ2
N−1∑
j=1

ā12
i1j(v

k−1
i1j

)2

+ 2τ2
N−1∑
j=1

ā12
i1j(Δhv

k
i1j)

2 + 6τ2
N−1∑
j=1

ā12
i1j(Δhv

k−1
i1j

)2 + |||gk|||2I,2.

To complete the proof, one should present the similar arguments for m1 described
above and follow the proof of Lemma 4.2.

Lemma 6.2 (prior estimation). Let vkh = {vkij |0 ≤ i, j ≤ N, 0 ≤ k ≤ J} satisfy the
CEIDD-ZI2 algorithm on p1 × p2 subdomains decoupled by the zigzag-line interfaces
Γh = Γ1

h ∪ Γ2
h, viz.,

ṽkij − vk−1
ij

τ
= Δhv

k−1
ij + g̃k−1

ij on Γh, 1 ≤ k ≤ J,(6.20) {
∂tv

k
ij = Δhv

k
ij + gkij on Ωξ,η

vkij = ṽkij on Γh

(
ξ = 1, 2, . . . , p1

η = 1, 2, . . . , p2

)
, 1 ≤ k ≤ J,(6.21)

∂tv
k
ij = Δhv

k
ij + gkij on Γh, 0 ≤ k ≤ J,(6.22)

v0
ij = φij on Ωh, 1 ≤ k ≤ J,(6.23)

vkij = 0 on ∂Ωh, 0 ≤ k ≤ J.(6.24)

Then the inequalities

Ek
1 ≤ 3

2
e

3
2kτ

[
E0

1 + τ

k∑
l=1

(
‖gl‖2 + |||gl|||2I,1

) ]
,(6.25)

Ek
2 ≤ 3

2
(J + 1) exp

(
3

2
(1 + T )kτ

)
E0

2(6.26)

+
3T

2
exp

(
3

2
(1 + T )kτ

)[
4τ

k∑
l=0

El
1 + τ

k∑
l=1

(‖gl‖2 + |||gl|||2I,2)
]
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hold for 0 < τ ≤ 1/3, 1 ≤ k ≤ J , where Ek
1 , Ek

2 , |||gk|||I,1, and |||gk|||I,2 are defined
by (A.1)–(A.4), respectively.

Proof. As far as the general case of p1 × p2 subdomains, we can discuss the 2× 2
subdomains case shown in Figure 5.2. Without any essential difficulty, the schemes
(6.21)–(6.22) can read as some similar point-related schemes such as (6.8)–(6.17);
however, the lengthy descriptions are messier so they are omitted here. For the H1

estimation, we get the interface term in the form

N−1∑
j=1

Qk
1i1j +

N−1∑
i=1
i�=i1

Qk
1ij1 = 2

N−1∑
j=1

(ṽki1j − vki1j)
[
h2∂t(Δhv

k
i1j) + 2ā12

i1j∂tv
k
i1j

]

+ 2
N−1∑
i=1
i�=i1

(ṽkij1 − vkij1)
[
h2∂t(Δhv

k
ij1) + 2ā12

ij1∂tv
k
ij1

]
.

Similarly, for the L2 estimation, the interface term reads

N−1∑
j=1

Qk
2i1j +

N−1∑
i=1
i�=i1

Qk
2ij1 = 2

N−1∑
j=1

(ṽki1j − vki1j)
(
h2Δhv

k
i1j + 2ā12

i1jv
k
i1j

)

+ 2
N−1∑
i=1
i�=i1

(ṽkij1 − vkij1)
(
h2Δhv

k
ij1 + 2ā12

ij1v
k
ij1

)
.

To complete the proof, one could follow the proof of Lemma 6.1.
We note that Lemma 6.2 is true of the CEH scheme with p1 = p2 = N/2. The tiny

difference is that the scheme (6.21), applied at the interior points of each subdomain,
always reads as

∂tv
k
ij = Δhv

k
ij + gkij + a1

i− 1
2 ,j

wk
i−1,j + a1

i+ 1
2 ,j

wk
i+1,j + a2

i,j− 1
2
wk

i,j−1 + a2
i,j+ 1

2
wk

i,j+1,

in which the four adjoining points of (ih, jh) belong to Γh ∪ ∂Ωh, and the mesh
function wk

ij = (ṽkij−vkij)/h
2 is defined at interface points together with wk

h(∂Ωh) ≡ 0.
Correspondingly, in the proof of Lemma 6.2, the interface terms will be replaced by

N/2−1∑
α=1

N−1∑
j=1

Qk
1iαj +

N/2−1∑
β=1

N−1∑
i=1
i�=iα

Qk
1ijβ

and

N/2−1∑
α=1

N−1∑
j=1

Qk
2iαj +

N/2−1∑
β=1

N−1∑
i=1
i�=iα

Qk
2ijβ

,

but Qk
1ij and Qk

2ij have their own forms.
Analogous to the analysis for the 1-D CEIDD algorithm in section 4, it is easy to

obtain the results on stability and convergence from Lemmas 6.1 and 6.2.
Theorem 6.3 (stability). Under the reasonable assumption (1.4), the CEIDD-ZI

algorithm (5.3)–(5.7) on p1 × p2 subdomains is unconditionally stable with respect to
the H1 seminorm and the L2 norm.

Theorem 6.4 (convergence). If the solution of problem (1.1)–(1.3) is sufficiently
smooth, spacing h is sufficiently small, and time step size τ = O

(
(p1 + p2)

−1/2h1/2+ε
)

for ε > 0, the numerical solution of the CEIDD-ZI algorithm (5.3)–(5.7) converges to
the exact solution of (1.1)–(1.3) with an order of O(

√
1 + (p1 + p2 − 2)h−1(τ + h2))

in the H1 seminorm and the L2 norm in the sense that

|ek|a,1≤c7
√

1 + (p1 + p2 − 2)h−1(τ + h2), 1 ≤ k ≤ J,
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and √√√√τ

k∑
l=1

‖el‖2 ≤ c8
√

1 + (p1 + p2 − 2)h−1(τ + h2), 1 ≤ k ≤ J.

Again, for the coarsely granular parallel algorithm in the case of 2 < p � N2, the
accuracy of the above CEIDD-ZI algorithms is O(h−1/2(τ +h2)) with τ = O(h1/2+ε),
just about the accuracy of the 1-D CEIDD method. However, for the CEH scheme
with p1 = p2 = N/2, the accuracy decreases to O(h−1(τ + h2)) with time step
size τ = O(h1+ε). From the formulations of |||gk|||I,1 and |||gk|||I,2 defined in the
appendix, we could conclude that the accumulated truncation errors on the zigzag-
line interior boundaries affect the global accuracy of our CEIDD-ZI algorithms.

On the other hand, if the truncation errors on Γh satisfy |rkij − r̃k−1
ij | ≤ c1τh

2

and |rk−1
ij − r̃k−1

ij | ≤ c1τh
2, an improved accuracy of CEIDD-ZI algorithms would be

obtained by our prior estimations (6.25) and (6.26), and the convergence rate reaches
O(τ + h2) even for the CEH scheme (cf. Example 1).

In Theorem 6.4, we notice that, for given p = p1×p2 processors, the error bounds
arrive at the minimum value with p1 = p2. It means that solutions of different CEIDD-
ZI algorithms have some tiny differences in numerical precision although they have
the same rate of convergence. Therefore, in point of numerical precision, we may
also prefer the CEIDD-ZI2 method to the CEIDD-ZI1 method for large-scale parallel
computations, as the following remark states.

Remark 6.5. For given p = p1 × p2 processors, the numerical solutions of the
CEIDD-ZI2 algorithm may be more precise than those of the CEIDD-ZI1 procedure,
and for 1 < p2 ≤ √

p, the larger the value of p2, the better the precision may be.

7. Numerical experiments. In this section, we present some experimental
results of the CEIDD-ZI procedures for four 2-D model problems. With the different
choices of the initial and boundary conditions (1.2)–(1.3), the first three examples are
heat problems,

ut = Δu + f(x, y, t), (x, y) ∈ (0, 1)2, t ∈ (0, T ],(7.1)

where three different outer-forced terms f are chosen so that we have the following.
Example 1. u(x, y, t) ≡ u1(x, y, t) = 100tx3(1 − x)2cos(2πy).
Example 2. u(x, y, t) ≡ u2(x, y, t) = e−2tsin(x + y).
Example 3. u(x, y, t) ≡ u3(x, y, t) = te2tcos(x + y).
The fourth example is a convection-diffusion problem,

ut = Δu + 30ux − 20uy + f(x, y, t), (x, y) ∈ (0, 1)2, t ∈ (0, T ],(7.2)

where f is chosen so that we have the following.
Example 4. u(x, y, t) ≡ u4(x, y, t) = te2tcos(x + y).
For the numerical approximations of each model problem, five different scenarios

were considered:
(i) the backward Euler scheme (listed as “BEuler” in the tables) inside the entire

nonpartitioned domain; the CEIDD-ZI procedure on
(ii) 2 × 1 subdomains with 1 zigzag-line interface (5.1) for m1 = h−1/2;
(iii) 4 × 1 subdomains with 3 zigzag-line interfaces (5.1) for mα = αh−1/4 (α =

1, 2, 3);
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Table 7.1

Stability: u(x, y, t) = u1(x, y, t). The table lists the time-averaged L2 error of the solution at
T = 1 with spatial step h = 1/64.

τ 1/400 1/200 1/100 1/50 1/25
BEuler 8.01e-04 8.03e-04 8.06e-04 8.12e-04 8.25e-04

2 × 1 subdomains 8.01e-04 8.02e-04 8.05e-04 8.12e-04 7.94e-04
4 × 1 subdomains 8.01e-04 8.02e-04 8.05e-04 8.20e-04 7.21e-04
2 × 2 subdomains 8.01e-04 8.02e-04 8.05e-04 8.25e-04 6.97e-04

CEH 8.01e-04 8.01e-04 8.10e-04 5.71e-04 2.95e-04

Table 7.2

Stability: u(x, y, t) = u2(x, y, t). The table lists the time-averaged L2 error of the solution at
T = 1 with spatial step h = 1/64.

τ 1/400 1/200 1/100 1/50 1/25
BEuler 7.87e-05 1.56e-04 3.11e-04 6.17e-04 1.22e-03

2 × 1 subdomains 9.30e-05 5.22e-04 2.50e-03 1.17e-02 5.37e-02
4 × 1 subdomains 3.05e-04 1.40e-03 6.26e-03 2.91e-02 1.22e-01
2 × 2 subdomains 2.40e-04 1.24e-03 5.16e-03 2.42e-02 9.83e-02

CEH 3.25e-03 1.45e-02 6.78e-02 2.18e-01 3.42e-01

Table 7.3

Stability: u(x, y, t) = u3(x, y, t). The table lists the time-averaged L2 error of the solution at
T = 1 with spatial step h = 1/64.

τ 1/400 1/200 1/100 1/50 1/25
BEuler 6.33e-04 1.27e-03 2.54e-03 5.10e-03 1.03e-02

2 × 1 subdomains 7.36e-04 3.99e-03 1.78e-02 7.06e-02 2.44e-01
4 × 1 subdomains 2.39e-03 1.07e-02 4.42e-02 1.66e-01 5.01e-01
2 × 2 subdomains 1.84e-03 8.48e-03 3.53e-02 1.33e-01 3.92e-01

CEH 2.47e-02 9.60e-02 3.44e-01 7.92e-01 1.14e+00

(iv) 2× 2 subdomains with 2 intersectant zigzag-line interfaces (5.1) and (5.2) for
m1 = n1 = h−1/2; and

(v) the CEH algorithm on N
2 × N

2 subdomains.
We consider the backward Euler scheme on the entire nonpartitioned domain as the
benchmark for our comparisons since it is the most stable method, and we consider
the CEH scheme as a negative example since the scheme has the worst accuracy
among our parallel CEIDD-ZI algorithms. In these runs, stability and convergence
are carefully examined in the sense of the time-averaged L2 error, such as the form
in Theorem 6.4,

Eh =

√√√√τ

J∑
k=1

‖u(·, kτ) − uk
h‖2 .(7.3)

In Tables 7.1–7.4, the discrete solutions are obtained by using the doubling tem-
poral steps with the minimal size τ = 1/400. The errors of the coarsely granular
CEIDD-ZI algorithms remain relatively small; even τ is large relative to the spacing
h, although they are relatively large to those of the fully implicit Euler scheme. Ex-
perimentally, the data in Tables 7.1–7.3 support the stability results (Theorem 6.3) of
the CEIDD-ZI algorithms on mesh ratio r and subdomain partition; and the data in
Table 7.4 suggest that our parallel procedures may be stable for convection-diffusion
problems.
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Table 7.4

Stability: u(x, y, t) = u4(x, y, t). The table lists the time-averaged L2 error of the solution at
T = 1 with spatial step h = 1/64.

τ 1/400 1/200 1/100 1/50 1/25
BEuler 2.25e-04 4.40e-04 8.70e-04 1.74e-03 3.49e-03

2 × 1 subdomains 2.37e-04 1.31e-03 5.96e-03 2.48e-02 9.52e-02
4 × 1 subdomains 7.88e-04 3.59e-03 1.51e-02 6.04e-02 2.15e-01
2 × 2 subdomains 5.37e-04 2.54e-03 1.09e-02 4.38e-02 1.58e-01

CEH 1.08e-01 3.65e+00 2.62e+00 5.24e-01 1.07e+00

Table 7.5

Convergence in h: u(x, y, t) = u1(x, y, t). The table lists the time-averaged L2 error of the
solution at T = 0.5 for fixed r = 8 with τ = 8h2, and variable r = h−1 with τ = h.

τ h BEuler 2 × 1 subdomains 4 × 1 subdomains 2 × 2 subdomains CEH
1/32 1/16 4.49e-03 4.43e-03 4.28e-03 4.30e-03 3.82e-03
1/128 1/32 1.08e-03 1.07e-03 1.07e-03 1.07e-03 1.07e-03
1/512 1/64 2.66e-04 2.66e-04 2.66e-04 2.66e-04 2.65e-04
1/2048 1/128 6.63e-05 6.63e-05 6.63e-05 6.63e-05 6.63e-05

Rate 2.03e+00 2.02e+00 2.01e+00 2.01e+00 1.96e+00

1/16 1/16 4.71e-03 3.99e-03 3.38e-03 3.33e-03 2.61e-03
1/32 1/32 1.12e-03 1.04e-03 9.40e-04 9.15e-04 5.75e-04
1/64 1/64 2.72e-04 2.69e-04 2.58e-04 2.55e-04 1.34e-04
1/128 1/128 6.71e-05 6.70e-05 6.68e-05 6.69e-05 3.25e-05

Rate 2.04e+00 1.96e+00 1.88e+00 1.88e+00 2.11e+00

Table 7.6

Convergence in h: u(x, y, t) = u2(x, y, t). The table lists the time-averaged L2 error of the
solution at T = 0.5 for fixed mesh ratio r = 8 with time step size τ = 8h2, and variable mesh ratio
r = h−1 with time step size τ = h.

τ h BEuler 2 × 1 subdomains 4 × 1 subdomains 2 × 2 subdomains CEH
1/32 1/16 8.80e-04 5.44e-03 1.41e-02 1.06e-02 2.97e-02
1/128 1/32 2.24e-04 5.36e-04 1.52e-03 1.19e-03 7.72e-03
1/512 1/64 5.64e-05 4.19e-05 1.57e-04 1.22e-04 1.79e-03
1/2048 1/128 1.41e-05 4.60e-06 1.26e-05 9.01e-06 4.37e-04

Rate 1.99e+00 3.43e+00 3.37e+00 3.39e+00 2.04e+00

1/16 1/16 1.72e-03 2.12e-02 4.31e-02 3.35e-02 6.38e-02
1/32 1/32 8.75e-04 1.29e-02 2.88e-02 2.29e-02 6.54e-02
1/64 1/64 4.42e-04 6.50e-03 1.59e-02 1.32e-02 6.59e-02
1/128 1/128 2.22e-04 3.02e-03 7.56e-03 6.39e-03 6.61e-02

Rate 9.84e-01 9.42e-01 8.39e-01 7.96e-01 −1.65e-02

In Tables 7.5–7.8, the solution u is approximated on the halving grids with the
coarsest 16×16 grids. Setting time step size τ = O(h2) or τ = O(h), the experimental
rate (listed as “Rate” in the tables) of convergence, in h, is computed by observing
that Eh ≈ c9h

q and doing a least squares fit to determine q.

We observe that the solution error of Example 1 presented in Table 7.5 behaves
in the manner of the backward Euler scheme as the grid is refined. The improve-
ment accuracy in h is the result of the improved truncation errors on interfaces and
subdomains owing to u2,tt(x, y, t) ≡ 0, as mentioned in the previous section.

In other cases, the errors of coarsely granular CEIDD-ZI algorithms are large
compared to those of the backward Euler scheme for relatively coarse time-spatial
meshes; however, as seen in Tables 7.6–7.8, they compare favorably with the error of
the backward Euler scheme as the mesh is further refined. For those test problems,
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Table 7.7

Convergence in h: u(x, y, t) = u3(x, y, t). The table lists the time-averaged L2 error of the
solution at T = 0.5 for fixed r = 8 with τ = 8h2, and variable r = h−1 with τ = h.

τ h BEuler 2 × 1 subdomains 4 × 1 subdomains 2 × 2 subdomains CEH
1/32 1/16 2.03e-03 9.44e-03 2.43e-02 1.76e-02 4.92e-02
1/128 1/32 5.01e-04 1.10e-03 3.14e-03 2.37e-03 1.50e-02
1/512 1/64 1.25e-04 9.47e-05 3.42e-04 2.59e-04 3.82e-03
1/2048 1/128 3.12e-05 1.18e-05 2.79e-05 1.99e-05 9.62e-04

Rate 2.01e+00 3.25e+00 3.25e+00 3.25e+00 1.90e+00

1/16 1/16 4.11e-03 3.17e-02 6.51e-02 4.86e-02 9.90e-02
1/32 1/32 2.03e-03 2.08e-02 4.57e-02 3.51e-02 9.97e-02
1/64 1/64 1.00e-03 1.16e-02 2.76e-02 2.20e-02 9.95e-02
1/128 1/128 5.00e-04 5.83e-03 1.43e-02 1.17e-02 9.92e-02

Rate 1.01e+00 8.17e-01 7.30e-01 6.82e-01 −7.32e-04

Table 7.8

Convergence in h: u(x, y, t) = u4(x, y, t). The table lists the time-averaged L2 error of the
solution at T = 0.5 for fixed r = 8 with τ = 8h2, and variable r = h−1 with τ = h.

τ h BEuler 2 × 1 subdomains 4 × 1 subdomains 2 × 2 subdomains CEH
1/32 1/16 7.43e-04 3.24e-03 8.59e-03 5.47e-03 2.12e-02
1/128 1/32 1.80e-04 3.67e-04 1.07e-03 7.20e-04 2.66e-02
1/512 1/64 4.47e-05 3.16e-05 1.15e-04 7.68e-05 2.27e-02
1/2048 1/128 1.12e-05 4.76e-06 9.12e-06 6.17e-06 8.56e-04

Rate 2.02e+00 3.18e+00 3.29e+00 3.26e+00 1.41e+00

1/16 1/16 1.48e-03 1.34e-02 3.41e-02 2.19e-02 7.60e-02
1/32 1/32 7.08e-04 7.39e-03 1.80e-02 1.26e-02 8.31e-02
1/64 1/64 3.48e-04 3.91e-03 9.88e-03 7.09e-03 8.63e-02
1/128 1/128 1.73e-04 2.00e-03 4.91e-03 3.59e-03 8.78e-02

Rate 1.03e+00 9.17e-01 9.26e-01 8.65e-01 −6.78e-02

a better rate of convergence than that predicted by Theorem 6.4 is observed; never-
theless, it is mysterious to us.

As far as the numerical precision of solutions, in those experiments, we notice
that the 2×1-subdomain approach is always better than the 4-subdomain approaches
(4 × 1 subdomains and 2 × 2 subdomains), and the 2 × 2-subdomain is better than
the 4 × 1-subdomain. The former can be explained by Theorem 6.4, and the latter
supports Remark 6.5 experimentally.

8. Concluding remarks. The EIDD methods are globally noniterative, non-
overlapping domain decomposition methods, which are computationally and communication-
ally efficient for each time step; however, they always suffer from either stability- or
consistency-related temporal step size restrictions. For 1-D and 2-D heat equations,
we developed a class of two-level CEIDD algorithms by adding an implicit correc-
tion technique and special zigzag-shaped interfaces to EIDD methods. The proposed
parallel CEIDD-ZI algorithms, including their degenerate cases, the CEH schemes,
are unconditionally stable (Theorems 4.3 and 6.3) without discarding the advantages
of EIDD methods, including good parallelism, the localization of communication, the
flexibility of domain partitioning, and the total quantity of computation (Propositions
3.1 and 5.1).

Compared with the SEIDD methods proposed in [11], the CEIDD-ZI methods
not only are free from the parallel-time overload of recomputing interface solutions
at correction step (Propositions 3.1 and 5.1), but they also increase the flexibility
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in domain partitioning by using the noncrossover and crossover interfaces (see, e.g.,
Figures 5.1 and 5.2). More importantly for parallel simulations on given processors,
the flexibility of domain decomposition has another advantage, that is, it reduces
the cost of data communication without degrading the order of convergence and the
numerical precision of solutions (Proposition 5.2 and Remark 6.5). Compared with
the sequential backward Euler method, the coarsely granular CEIDD-ZI methods
have an accuracy loss of h−1/2 in our analysis; however, they exhibit better accuracy
for the model problems in our numerical experiments than that predicted by The-
orems 4.4 and 6.4. The point to note is that the algorithms perform well and are
promising parallel procedures for solving parabolic problems on coarse-grain parallel
machines.

Moreover, the parallel CEIDD-ZI procedures also can be extended to 3-D prob-
lems. Given that 2 ≤ pm ≤ N/2 (m = 1, 2, 3), we construct three zigzag-plane interior
boundaries,

Γ1
h,α = {(iαh, jh, lh)| iα = mα + mod(j + l, 2), 3 ≤ mα + 2 ≤ mα+1 ≤ N − 3},

Γ2
h,β = {(ih, jβh, lh)| jβ = nβ + mod(i + l, 2), 3 ≤ nβ + 2 ≤ nβ+1 ≤ N − 3},

Γ3
h,γ = {(ih, jh, lγh)| lγ = qγ + mod(i + j, 2), 3 ≤ qγ + 2 ≤ qγ+1 ≤ N − 3},

where 1 ≤ α ≤ p1 − 1, 1 ≤ β ≤ p2 − 1, and 1 ≤ γ ≤ p3 − 1. Further, we assume that
the three zigzag-plane interfaces satisfy the following intersectant conditions:

mod(mα, 2) = mod(nβ , 2) = mod(qγ , 2).

Denoting that Γm
h =

⋃pm−1
ν=1 Γm

h,ν and Γh =
⋃3

m=1 Γm
h , the domain Ωh is decoupled

into p =
∏3

m=1 pm subdomains by the zigzag-plane interior interfaces Γh. Then the
3-D generalizations of our parallel CEIDD-ZI algorithms and their theoretical results
are straightforward for 3-D heat equations. In what follows, we can focus on the
2-D problem for further research since the higher-dimensional case can always be
considered in a similar way.

Generally, the CEIDD algorithm given in section 1 allows many choices for the
shape of interface at step 0, the explicit predictor at step 1, and the subdomain solver
at step 2. Different purposes determine different choices at the three steps, and the
different choices make different CEIDD algorithms.

To minimize the parallel time cost on interfaces, the zigzag-shaped interfaces are
adopted and the corresponding CEIDD-ZI algorithms are developed in this paper.
Moreover, to reduce computation cost on each subdomain, some notable operator-
splitting techniques based on fractional-step methods [10] could be employed. With
this factorization, the resulting factorized CEIDD-ZI procedure becomes completely
noniterative, both globally and on each subdomain.

Besides those zigzag-shaped interfaces, a more direct choice is some straight-line
interfaces. Provided with possible choices at steps 1 and 2, whether the resulting
CEIDD-SI (CEIDD based on straight-line interfaces) procedures are unconditionally
stable or not is an interesting problem and still open to us, although some of those
algorithms exhibit excellent stability experimentally [11].

It is likely that generalizations can be made to the cases of linear and nonlinear
parabolic problems, and with the different space steps on different subdomains for
some special purposes. We will consider those generalizations in the future.
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Appendix. Some notation for 2-D CEIDD-ZI algorithms. For the 2-D
parallel CEIDD-ZI algorithms described in section 5, we introduce the H1 seminorm
energy

Ek
1 = |vk|2a,1 + 2τ2

p1−1∑
α=1

N−1∑
j=1

ā12
iαj(Δhv

k
iαj)

2 + 2τ2

p2−1∑
β=1

∑∗

i
ā12
ijβ

(Δhv
k
ijβ

)2(A.1)

and the L2 norm energy

Ek
2 = τ

k∑
l=0

‖vl‖2 +

p1−1∑
α=1

N−1∑
j=1

[
τ3h2

k∑
l=0

(Δhv
l
iαj)

2 + 2τ2ā12
iαj(v

k
iαj)

2

]
(A.2)

+

p2−1∑
β=1

∑∗

i

[
τ3h2

k∑
l=0

(Δhv
l
ijβ

)2 + 2τ2ā12
ijβ

(vkijβ )2

]
,

where the summation
∑∗

i is defined by

∑∗

i
=

N−1∑
i=1
i�=iα

for 1 ≤ α ≤ p1 − 1. As for the interior interfaces, we define |||gk|||I,1 as

|||gk|||2I,1 =

p1−1∑
α=1

N−1∑
j=1

Gk
1iαj +

p2−1∑
β=1

∑∗

i
Gk

1ijβ
,(A.3)

where

Gk
1ij =

1

2
(h2 + 4ā12

ij )(gkij − g̃k−1
ij )2 + 2ā12

ij τ(g̃k−1
ij )2.

Similarly, we define |||gk|||I,2 as

|||gk|||2I,2 =

p1−1∑
α=1

N−1∑
j=1

Gk
2iαj +

p2−1∑
β=1

∑∗

i
Gk

2ijβ
,(A.4)

where

G1
2ij = 2ā12

ij τ
2
[
(g1

ij)
2 + 2(g̃0

ij)
2
]
+ h2(g1

ij − g̃0
ij)

2 + 2ā12
ij (g̃0

ij)
2

and, for k ≥ 2,

Gk
2ij = 2ā12

ij τ
2
[
(gkij)

2 + 2(gk−1
ij )2 + 2(g̃k−1

ij )2
]

+h2(gkij − g̃k−1
ij )2 + 2ā12

ij (gk−1
ij − g̃k−1

ij )2.
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Abstract. We propose a domain decomposition method for advection-diffusion-reaction equa-
tions based on Nitsche’s transmission conditions. The advection-dominated case is stabilized using
a continuous interior penalty approach based on the jumps in the gradient over element bound-
aries. We prove the convergence of the finite element solutions of the discrete problem to the exact
solution and propose a parallelizable iterative method. The convergence of the resulting domain
decomposition method is proved, and this result holds true uniformly with respect to the diffusion
parameter. The numerical scheme that we propose here can thus be applied straightforwardly to
diffusion-dominated, advection-dominated, and hyperbolic problems. Some numerical examples are
presented in different flow regimes showing the influence of the stabilization parameter on the perfor-
mance of the iterative method, and we compare our method with some other domain decomposition
techniques for advection-diffusion equations.

Key words. advection-diffusion problem, interior penalty, finite element approximation, domain
decomposition, iterative methods, discontinuous coefficients
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1. Introduction. The solution of large computational problems calls for efficient
linear solvers. Domain decomposition has proved to be an attractive way to allow for
parallel solving of large problems. A formulation for domain decomposition using a
generalization of Nitsche’s method for weak boundary conditions has been considered,
for instance, by Becker, Hansbo, and Stenberg [2, 24] and by Heinrich and Pietsch
[16] for the Poisson problem. This formulation was then generalized to the case of
advection-diffusion problems by Toselli [26] using SUPG-type stabilization and more
recently by Burman [5]. In this last case, continuous interior penalty stabilization
was used to make the method stable in all flow regimes. The interior penalty finite
element method for continuous approximation spaces was introduced by Douglas and
Dupont [12] and analyzed by Burman and Hansbo in [7] and by Burman in [5].

In this paper we will give a detailed analysis of the domain decomposition method
using Nitsche’s method. In particular we consider a fully parallel iterative split-
ting method for advection-diffusion-reaction problems, and we prove its convergence.
The present result also automatically carries over to discontinuous Galerkin interior
penalty formulations of advection-diffusion problems. Overlapping domain decom-
position methods for discontinuous Galerkin methods was considered by Lasser and
Toselli [19] and substructuring iterative methods for domain decomposition using
SUPG-type stabilized continuous approximation was considered by Rapin and Lube
[23]. For an overview of results on domain decomposition for nonsymmetric problems,
see Quarteroni and Valli [22] or Toselli and Widlund [27] and the references therein.
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The advantages of the method proposed in this paper are to allow for continuous and
discontinuous approximation with uniform stability properties with respect to the
Péclet number. The discontinuous formulation naturally leads to an iterative method
and allows for conservation locally in each subdomain. The continuous approxima-
tion, on the other hand, is better suited to handle different diffusive regimes since
the interior penalty stabilization parameter is independent of the diffusion parame-
ter. Numerical tests show that the proposed method is robust with respect to varying
coefficients. As a model problem we propose the advection-diffusion-reaction equation{

β · ∇u + σu−∇ · ε∇u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded open connected subset of R
d with a Lipschitz boundary ∂Ω,

d = 2 or 3 is the space dimension, β ∈ [W 1,∞(Ω)]d is a velocity field, ε ∈ L∞(Ω),
ε > 0, is a diffusion coefficient, and σ > 0 is the reaction coefficient, f ∈ L2(Ω). The
analysis extends to the case ε = 0 in the obvious way if the boundary conditions of the
continuous problem are modified and β is such that the problem remains well-posed.
We assume that the following coercivity condition holds:

σ − 1

2
∇ · β ≥ σ0 > 0.(1.2)

We define the associated parameter σ1 by

σ1 := ess supx∈Ω

|σ −∇ · β|2
σ0

.

Consider a decomposition of the domain Ω into the disjoint subdomains Ωi,
i = 1, . . . , N , with boundaries ∂Ωi and with corresponding shape regular disjoint
triangulations Th,i, such that Th = ∪N

i=1Th,i = ∪N
i=1Ω̄i = Ω̄. Note that we do not

suppose that neighboring meshes are conforming over the intersubdomain boundary.
The set of interior faces of each triangulation Th,i will be denoted by Fi. On each
triangulation we define a finite element space Vh,k,i associated with the subdomain
Ωi,

Vh,k,i := {vh : vh ∈ H1(Ωi); vh|K ∈ Pk(K) ∀K ∈ Th,i},

where Pk(K) denotes the space of polynomials of degree ≤ k on K and we let

Vh =
∑N

i=1 Vh,k,i. For every function vh ∈ Vh we introduce the restriction to sub-
domain Ωi, vh,i = vh|Ωi . To each subdomain boundary we associate the outward-
oriented normal ni. We will always assume that the solution is sufficiently smooth,
i.e., u ∈ H1(Ω) ∩ (∪N

i=1H
2(Ωi)), and we will assume (weak) continuity of fluxes be-

tween subdomains. Typically the diffusion parameter ε may be discontinuous over
some subdomain interface, provided the interface is smooth. Let hK denote the di-
ameter of an element K, and �K the radius of the largest inscribed ball in K. We
henceforth assume that for all meshes Th,i there holds

cT ≤ max
K∈Th,i

hK

�K
(1.3)

with the same positive parameter cT . We introduce a mesh parameter function
h̃(x)|K = hK and let h = maxK∈Th,i

hK . Moreover we shall assume that there exists
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a constant ρ > 1 such that for all elements K in Th,i, i = 1, . . . , N , we have

max
K′∈N (K)

hK′ ≤ ρ min
K′∈N (K)

hK′ ,(1.4)

where N (K) is the set of elements K ′ such that K̄ ∩ K̄ ′ 	= ∅. Property (1.4) is a
local quasi-uniformity property of the mesh. The jump [x]|E of a quantity x over a
face E will be defined by [x(ξ)]|E = limδ→0(x(ξ − nEδ) − x(ξ + nEδ)), where ξ ∈ E
and nE denotes a normal vector to the face E for interior faces where the normal is
fixed but arbitrary, while for faces on a subdomain boundary E ∈ ∂Ωi the normal
is outward oriented with respect to the subdomain Ωi and denoted ni. Subscripts
will be omitted when there is no ambiguity. For faces such that E ∩ ∂Ω 	= ∅ we
set [x(ξ)]|E ≡ limδ→0 x(ξ − nEδ). By {x(ξ)}|E we denote the average value of x
over face E, {x(ξ)}|E = limδ→0

1
2 (x(ξ − nEδ) + x(ξ + nEδ)). We will also use the

weighted average {x(ξ)}w|E = limδ→0(w
−x(ξ−nEδ)+w+x(ξ+nEδ)), where w− and

w+ are two positive weights such that w− + w+ = 1, and for faces on the bound-
ary ∂Ω we define {x(ξ)}|E = {x(ξ)}w|E = limδ→0 2x(ξ − nEδ). Furthermore we will
use the notation (x, y)X =

∫
X
x · y dx, 〈x, y〉∂X =

∫
∂X

x · y ds with the element-
wise counterparts (x, y)X,h =

∑
K∈X

∫
K
x · y dx and 〈x, y〉∂X,h =

∑
E∈∂X

∫
E
x · y ds.

Let ‖x‖X = (x, x)
1
2

X denote the L2-norm over X with the elementwise counterpart

‖x‖X,h = (x, x)
1
2

X,h. The norm of the space Hi(X) will be denoted ‖x‖i,X with
i = 0, 1, 2, . . . . The notations ‖x‖X and ‖x‖0,X are equivalent. The latter will be
used only where it is more appropriate. For other functional spaces the notation will
be made completely explicit. We will use c and C to denote generic positive constants
independent of hK but not necessarily of the local mesh geometry.

2. A domain decomposition method based on interior penalties. In this
section we will show how domain decomposition using Nitsche’s method leads to
a continuous/discontinuous Galerkin-type penalty method in a natural way. The
approximation is chosen to be continuous on each subdomain. We consider problem
(1.1) on Ω and by taking Vh as trial and test space we propose the finite element
method: find uh ∈ Vh such that

A(uh, vh) + J(uh, vh) + B(uh, vh) = (f, vh) ∀vh ∈ Vh,(2.1)

where

A(uh, vh) :=

N∑
i=1

(
((σ −∇ · β)uh, vh)Ωi + (ε∇uh,∇vh)Ωi − (uh, β · ∇vh)Ωi

)
,

J(uh, vh) :=

N∑
i=1

∑
E∈Fi

〈
γ̃1,i(hE)‖β · n‖L∞(E)[∇uh · n], [∇vh · n]

〉
E
,

B(uh, vh) :=

N∑
i=1

(〈
β · n+

i uh, [vh]
〉
∂Ωi

− 1

2
〈{ε∇uh · ni}w, [vh]〉∂Ωi

− 1

2
〈{ε∇vh · ni}w, [uh]〉∂Ωi

+

〈
γbc{ε}w

h̃
[uh], [vh]

〉
∂Ωi

)
,
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and β ·n±
i := 1

2 (|β ·ni| ±β ·ni). The discretization of the advection term corresponds
to the standard upwind flux after integration by parts. Note that the bilinear form
A corresponds to a standard Galerkin formulation in each subdomain, supplemented
with boundary terms on the inner and outer boundaries that appear naturally in the
formulation to assure coercivity or consistency. We observe that terms associated with
nonhomogeneous boundary data do not appear since we consider u = 0 on ∂Ω. The
interior penalty stabilization term has been decomposed into one term controlling the
jumps in the gradient over interior faces of each subdomain Ωi, that is, J(uh, vh), and
the terms controlling the jump of the solution over interior boundaries of neighboring
subdomains, the upwind flux term and the penalty term 〈(γbc{ε}w/h̃)[uh], [vh]〉∂Ωi .
The stabilization parameter γ̃1,i(hE) = γip,ih

2
E depends only on the mesh geometry

of the subdomain triangulation Th,i.
Remark 2.1. If the triangulation of each subdomain consists of a single triangle,

then the formulation (2.1) is equivalent to a standard interior penalty discontinuous
Galerkin method for (1.1). This follows immediately by noting that the interior
penalty term on the gradient jumps vanishes since there are no interior faces in the
subdomains.

Remark 2.2. Recalling the framework for discontinuous Galerkin methods based
on interior penalties by Arnold et al. [1], we observe that the definition of the coupling
term B(uh, vh) can be made more general by introducing a parameter s that allows
us to switch between a symmetric and a nonsymmetric version. Precisely, we consider

B(uh, vh) :=

N∑
i=1

(〈
β · n+

i uh, [vh]
〉
∂Ωi

− 1

2
〈{ε∇uh · ni}w, [vh]〉∂Ωi

− s

2
〈{ε∇vh · ni}w, [uh]〉∂Ωi

+

〈
γbc{ε}w

h̃
[uh], [vh]

〉
∂Ωi

)
,

where the symmetric and the nonsymmetric cases are obtained by s = 1 and s =
−1, respectively. In this work we mainly consider s = 1, but for comparison the
nonsymmetric case will be addressed in section 4.

2.1. A priori error estimate. In this section we will prove that the finite
element solution obtained from formulation (2.1) converges to the exact solution of
(1.1). The a priori error estimate is proved using the techniques from [2] for the
Nitsche matching conditions combined with the technique of [5] for the interior penalty
stabilization. The main idea behind the stabilization based on the jump in the gradient
between adjacent elements is to introduce a least squares control over the part of the
convective derivative that is not in the finite element space. A key result is the
following lemma. For a proof of the underlying approximation result between discrete
spaces we refer to [18], and for a proof in the context of interior penalty stabilization
we refer to [6]. First we define the Oswald quasi-interpolant π∗

h (see [17]).
Definition 2.3. For each node xi, let ni be the number of elements containing

xi as a node. We define a quasi-interpolant π∗
h of degree k by

π∗
hv(xi) :=

1

ni

∑
{K : xi∈K}

v|K(xi) ∀v ∈ {v : v|K ∈ Pk(K)}.

Theorem 2.4 (stability). Let βh ∈ [Vh,1,i]
d be the Lagrange interpolant of β and

let uh ∈ Vh,k,i. Then there exists a constant γip,i ≥ c0 > 0, depending only on the
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local mesh geometry, such that

‖h̃ 1
2 (βh · ∇uh − π∗

h(βh · ∇uh))‖2
Ωi

≤ Ji(uh, uh)

with

Ji(uh, uh) =
∑
E∈Fi

∫
E

γip,ih
2
E‖βh · n‖L∞(E)[∇uh]2 ds.(2.2)

Remark 2.5. Clearly then ‖h̃ 1
2 (βh · ∇uh − π∗

h(βh · ∇uh))‖2
Ωi

≤ J(uh, uh) since
‖βh · n‖L∞(E) ≤ ‖β · n‖L∞(E).

We define a triple norm on each subdomain as

|||wh|||2i = ‖σ
1
2
0 wh‖2

Ωi
+ ‖ε 1

2∇wh‖2
Ωi

+ Ji(wh, wh)(2.3)

and the global triple norm, taking into account also the interface interaction terms,
as

|||wh|||2 =

N∑
i=1

(
|||wh|||2i + ‖δ(ε, β)[wh]‖2

∂Ωi

)
,(2.4)

where δ(ε, β) = γbc{ε}w

h̃
+ 1

2 |β · n|. In what follows, we will also make use of the

quantity δ+(ε, β) = γbc{ε}w

h̃
+ 1

2β · n+. The explicit dependence of δ and δ+ from
ε and β will be omitted later on when there is no ambiguity of notation. For the
continuity of the bilinear form we will also use the modified norm

|]wh[|2 =

N∑
i=1

(
‖σ

1
2
1 wh‖2

Ωi
+ ‖β‖L∞(Ω)‖h̃− 1

2wh‖2
Ωi

+ ‖ε 1
2∇wh‖2

Ωi
(2.5)

+ ‖(β · n)+
1
2wh‖2

∂Ωi\∂Ω + Ji(wh, wh)
)

+ ‖(h̃ε) 1
2∇wh · n‖2

∂Ωi
+ ‖δ(ε, β)wh‖2

∂Ωi
.

To prove convergence of the discrete solutions of formulation (2.1) to the exact solution
of (1.1) we will first prove three preliminary lemmas giving Galerkin orthogonality, co-
ercivity, and approximability. Existence of discrete solutions follows by the coercivity
and convergence and is proved in Theorem 2.12.

We first recall a trace inequality and the standard inverse inequality that we will
use repeatedly:

‖v‖2
0,∂K ≤ C

(
h−1
K ‖v‖2

K + hK ‖v‖2
1,K

)
∀v ∈ H1(K),(2.6)

‖∇v‖K ≤ Cinvh
−1
K ‖v‖K .(2.7)

For a proof of (2.6) we refer to [25, p. 26], and for a proof of (2.7) we refer to [9].
Lemma 2.6 (Galerkin orthogonality). Let u ∈ ∪N

i=1H
2(Ωi) be the exact solution

of (1.1) and uh the solution to (2.1). Then there holds

A(u− uh, vh) + B(u− uh, vh) + J(u− uh, vh) = 0 ∀vh ∈ Vh.

Proof. By assumption we have that [−ε∇u · n + β · nu] = [u] = 0 in the sense
of traces, and since u ∈ ∪N

i=1H
2(Ωi) there holds J(u, vh) = 0. Therefore using the
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equality [ab] = [a]{b}+{a}[b] and the fact that {ε∇u·n}w−β ·n+u = {ε∇u·n−β ·nu}
we have

A(u, vh) + B(u, vh) + J(u, vh)(2.8)

= A(u, vh) − 1

2

N∑
i=1

〈{ε∇u · n}w, [vh]〉∂Ωi
+

N∑
i=1

〈
β · n+u, [vh]

〉
∂Ωi

= A(u, vh) − 1

2

N∑
i=1

〈{ε∇u · n− β · nu}, [vh]〉∂Ωi

= A(u, vh) − 1

2

N∑
i=1

∫
∂Ωi\∂Ω

[(ε∇u · n− β · nu)vh] ds− 〈ε∇u · n− β · nu, vh〉∂Ω .

By an integration by parts in each subdomain we obtain

A(u, vh) =

N∑
i=1

{(ε∇u,∇vh)Ωi
− (u, β · ∇v) + ((σ −∇ · β)u, v)Ωi}

=

N∑
i=1

(−εΔu + β · ∇u + σu, vh)Ωi +

N∑
i=1

〈ε∇u · n− β · nu, vh〉∂Ωi

=

N∑
i=1

(f, vh)Ωi
+

1

2

N∑
i=1

∫
∂Ωi\∂Ω

[(ε∇u · n− β · nu)vh] ds + 〈ε∇u · n− β · nu, vh〉∂Ω .

It then follows from (2.8) that

A(u, vh) + B(u, vh) + J(u, vh) = (f, vh);

combining this equality with (2.1) completes the proof.
Lemma 2.7 (coercivity). For the formulation (2.1) there holds

c|||zh||| ≤ A(zh, zh) + B(zh, zh) + J(zh, zh) ∀zh ∈ Vh.

Proof. We essentially only need to show that the weakly imposed boundary and
interface conditions do not destroy coercivity. We have

A(zh, zh) + B(zh, zh) =

N∑
i=1

(∫
Ωi

(σ −∇ · β) z2
h dx + ‖ε 1

2∇zh‖2
Ωi

− (zh, β · ∇zh)Ωi

(2.9)

+
〈
β · n+zh, [zh]

〉
∂Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈
γbcε

h̃
[zh], [zh]

〉
∂Ωi

)
.

Consider the third term on the right-hand side of (2.9). Integration by parts yields

(2.10)

N∑
i=1

(β · ∇zh, zh)Ωi
= −1

2
(∇ · β zh, zh)Ω +

N∑
i=1

1

2
〈β · n zh, zh〉∂Ωi

= −1

2
(∇ · β zh, zh)Ω +

N∑
i=1

1

4

〈
β · n, [z2

h]
〉
∂Ωi\∂Ω

+
1

2
〈β · n zh, zh〉∂Ω .
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Applying (2.10) to the third term of (2.9) and using the equality a(a − b) = 1
2 (a2 −

b2 + (a− b)2) we get

N∑
i=1

(
−(zh, β · ∇zh)Ωi

+
〈
β · n+zh, [zh]

〉
∂Ωi

)
(2.11)

=

N∑
i=1

(
1

2
(∇ · β zh, zh)Ωi

− 1

4

〈
β · n, [z2

h]
〉
∂Ωi\∂Ω

+
1

2
〈|β · n| zh, zh〉∂Ω +

1

2

〈
β · n+, [z2

h]
〉
∂Ωi\∂Ω

+
1

2

〈
β · n+[zh], [zh]

〉
∂Ωi\∂Ω

)
.

By observing that
∑N

i=1
1
2

〈
β · n+, [z2

h]
〉
∂Ωi\∂Ω

=
∑N

i=1
1
4

〈
β · n, [z2

h]
〉
∂Ωi\∂Ω

we con-
clude that

(2.12)

N∑
i=1

(
−(zh, β · ∇zh)Ωi +

〈
β · n+zh, [zh]

〉
∂Ωi

)

=

N∑
i=1

(
1

2
(∇ · β zh, zh)Ωi

+
1

2
〈|β · n| zh, zh〉∂Ω +

1

2

〈
β · n+[zh], [zh]

〉
∂Ωi\∂Ω

)
.

We now consider the second, fifth, and sixth terms of (2.9). The nonsymmetric
boundary integral is split using a Cauchy–Schwarz inequality followed by Young’s
inequality and controlled by the symmetric terms in the following fashion:

(2.13)
N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈
γbc{ε}w

h̃
[zh], [zh]

〉
∂Ωi

)

≥
N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

− 2α‖(h̃ε) 1
2∇zh · n‖2

∂Ωi
+

〈(
γbc −

1

4α

)
{ε}w
h̃

[zh], [zh]

〉
∂Ωi

)
.

As a consequence of the trace inequality (2.6) and inverse estimates we have

‖(h̃ε) 1
2∇zh · n‖2

∂Ωi
≤ Ct‖ε

1
2∇zh‖2

Ωi
,(2.14)

and by choosing α = (4Ct)
−1 and γbc = 2Ct we conclude that

(2.15)

N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈
γbc{ε}w

h̃
[zh], [zh]

〉
∂Ωi

)

≥ 1

2

N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

+

〈
γbc{ε}w

h̃
[zh], [zh]

〉
∂Ωi

)
.

Combining the results of (2.9), (2.12), (2.15) and applying once again (2.14) and
recalling the condition (1.2), the lemma follows, with a constant c = 1

2 .
Remark 2.8. The constant Ct depends only on the mesh regularity and can be

given an explicit expression in the case of piecewise linear elements (see [2]); for high
order elements it can be computed by solving a small local eigenvalue problem (see
[15]).
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We will now proceed and prove approximability properties of the triple norm.
The L2-projection of u onto Vh will be denoted πhu and the nodal interpolation will
be denoted ihu. To avoid globally quasi-uniform meshes we need a stability estimate
for the L2-projection in weighted norms. This problem was considered in [13] and
more recently in [3]. In [3] the following weighted stability estimate was proven:

‖φ∗πhu‖Ω ≤ C‖φ∗u‖Ω,(2.16)

where φ∗ is a piecewise linear weighting function satisfying

|∇φ∗|K | ≤ ηh−1
K max

x∈K
φ∗(2.17)

for all K. Stability holds for η sufficiently small. We will use this stability result to
prove the following

Lemma 2.9. If the polynomial order of the finite element space is k and u ∈
Hk+1(Ω), then there holds, for ρ sufficiently small,∑

K∈Th,i

(h−1
K ‖(πhu− u)‖2

K + hK‖∇(πhu− u)‖2
K) ≤ C

∑
K∈Th,i

h2k+1
K ‖u‖2

k+1,K .(2.18)

Proof. First note that by adding and subtracting the nodal interpolant ihu in the
H1 contribution of (2.18) and applying a local inverse inequality we have∑

K∈Ti,h

hK‖∇(πhu− u)‖2
K(2.19)

≤ C
∑

K∈Ti,h

(C2
invh

−1
K ‖(πhu− ihu)‖2

K + hK‖∇(ihu− u)‖2
K).

Hence it is sufficient to consider the L2-part:
∑

K∈Ti,h
h
− 1

2

K ‖(πhu− u)‖2
K .

Take φ∗ = π∗
hh

− 1
2

K . We must prove that this function satisfies (2.17) and that η
can be made as small as needed by diminishing ρ. By the definition of the Oswald
interpolant and the local quasi-regularity (1.4) one readily verifies that for all K ∈ Th,i

max
x∈K

|∇φ∗| ≤ h−1
K

∣∣∣∣ max
K′∈N (K)

h
− 1

2

K′ − min
K′∈N (K)

h
− 1

2

K′

∣∣∣∣ ≤ h−1
K (ρ

1
2 − 1) min

K′∈N (K)
(h

− 1
2

K′ ).

Hence, using the inequality minK′∈N (K)(h
− 1

2

K′ ) ≤ minx∈K φ∗ we have |∇φ∗|K | ≤
(ρ

1
2 − 1)h−1

K minx∈K φ∗ on K, and therefore η(ρ) = (ρ
1
2 − 1) can be made arbitrarily

small by choosing ρ small. Applying now the weighted stability estimate we have∑
K∈Th

h−1
K ‖(πhu− u)‖2

K ≤ ρ
1
2 ‖φ∗(πhu− u)‖2

Ω

≤ 2ρ
1
2 (‖φ∗(πhu− ihu)‖2

Ω + ‖φ∗(ihu− u)‖2
Ω)

≤ C(ρ)‖φ∗(ihu− u)‖2
Ω ≤ C(ρ)

∑
K

h2k+1
K ‖u‖2

k+1,Ω.

Lemma 2.10 (approximability). Assume that the family of meshes Th,i is locally
quasi uniform with ρ such that Lemma 2.9 holds. Let u ∈ ∪N

i=1H
s(Ωi) with s ≥ k+1 ≥

2 and let πhu denote the standard L2-projection of u onto Vh; then we have that

|||πhu− u||| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
0 H(2, u)),
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where C is independent of σ, ε, β, and h but depends on the mesh geometry and

H(α, u) =

⎛
⎝ N∑

i=1

∑
K∈Th,i

h2k+α
K ‖u‖2

k+1,K

⎞
⎠

1
2

.

Proof. It follows from the stability of the L2-projection and standard interpolation

results that ‖σ
1
2
0 (πhu− u)‖Ωi

≤ σ
1
2
0 (

∑
K∈Th,i

h
2(k+1)
K ‖u‖2

k+1,K)
1
2 . We then write ξh =

πhu − ihu, where ih denotes the nodal interpolant, and note that ξh = πh(u − ihu).
By the H1-stability of the L2-projection on locally quasi-uniform meshes [4, 11] we
may write

‖∇ξh‖Ωi ≤ ‖∇(u− ihu)‖Ωi ≤ C

⎛
⎝ ∑

K∈Th,i

h2k
K ‖u‖2

k+1,K

⎞
⎠

1
2

.(2.20)

It immediately follows by means of the triangular inequality that

‖ε 1
2∇(u− πhu)‖2

Ωi
≤ Cε

∑
K∈Th,i

h2k
K ‖u‖2

k+1,K ,

and by an application of the inverse inequality and Lemma 2.9 we have∑
K∈Th,i

h3
K‖∇ξh‖2

1,Ω ≤ C
∑

K∈Th,i

hK‖∇ξh‖2
Ω ≤

∑
K∈Th,i

h2k+1
K ‖u‖2

k+1,K .(2.21)

Using the trace inequality (2.6) together with (2.20) and (2.21), it follows that

‖(εh̃)
1
2∇(πhu− u) · n‖2

∂Ωi
≤ C

∑
K∈Th,i

(
ε‖∇(πhu− u)‖2

K + εh2
K‖∇(πhu− u)‖2

1,K

)
≤ Cε

∑
K∈Th,i

h2k
K ‖u‖2

k+1,Ωi
.

Using once again (2.6), (2.20), and (2.21) we get in a similar fashion

J1(u− πhu, u− πhu)

≤ C
N∑
i=1

γip,i‖β‖L∞(Ωi)

∑
K∈Th,i

(
‖h̃ 1

2∇(u− πhu)‖2
K + ‖h̃ 3

2∇(u− πhu)‖2
1,K

)

≤
N∑
i=1

‖β‖L∞(Ωi)

∑
K∈Th,i

h2k+1
K ‖u‖2

k+1,Ωi
.

Finally we note that for the boundary term we have, using (2.6) and (2.20),

〈πhu− u, πhu− u〉∂Ωi
≤

∑
K:∂K∩∂Ωi 	=∅

h−1
K ‖πhu− u‖2

K + hK‖∇(πhu− u)‖2
K

≤
∑

K∈Th,i

h2k+1
K ‖u‖2

k+1,Ωi
,

which concludes the proof.
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As an immediate consequence of the above result and Lemma 2.9 we have the
following.

Corollary 2.11. Under the same assumptions as in Lemma 2.10 we have that

|]πhu− u[| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
1 H(2, u)),

where C is independent of σ, ε, β, and h but depends on the mesh geometry.
Theorem 2.12 (convergence). Let u ∈ ∪N

i=1H
s(Ωi) with s ≥ k + 1 ≥ 2 be the

solution of (1.1) and let uh ∈ Vh be the solution of (2.1). Then the following a priori
error estimate holds:

|||u− uh||| ≤ C

(
ε

1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) +

(
σ

1
2
1 +

|β|W 1,∞(Ω)

σ0

)
H(2, u)

)
.

Proof. We decompose the error into two parts: η = u− πhu and ξh = πhu− uh.
It follows that u− uh = η + ξh. By Lemma 2.10 we know that

|||η||| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
0 H(2, u)),

and it is therefore sufficient to study ξh = πhu− uh. Using Lemma 2.7 we have

c|||ξh|||2 ≤ A(ξh, ξh) + B(ξh, ξh) + J(ξh, ξh),

and by Galerkin orthogonality

c|||ξh|||2 ≤ A(η, ξh) + B(η, ξh) + J(η, ξh).

After an integration by parts in the convective term and an application of the Cauchy–
Schwarz inequality in all other terms we have

c|||ξh|||2 ≤ |]η[| |||ξh||| + |(η, β · ∇ξh)|.

Using now the orthogonality of the L2-projection and Lemma 2.4 we may write

c|||ξh|||2 ≤ |]η[| |||ξh||| + |(η, βh · ∇ξh − π∗βh · ∇ξh)| + |(η, (β − βh) · ∇ξh)

≤ |]η[| |||ξh||| + ‖β‖L∞(Ω)‖h̃− 1
2 η‖J(ξh, ξh)

1
2 + |β|W 1,∞(Ω)‖η‖ ‖h̃∇ξh‖

≤ |]η[| |||ξh||| + Ci

|β|W 1,∞(Ω)

σ0
‖η‖ |||ξh|||.

The theorem now follows by the approximation Lemma 2.10 and Corollary 2.11.
Remark 2.13. The a priori error analysis carried out in this section holds true for

any admissible choice of the weights w+, w− (such that w+, w− > 0 and w++w− = 1)
that appear in the definition of {·}w as also proved in [16] and [24]. In the following
section we propose a definition of these weights according to the specific characteristics
of the problem at hand.

2.2. Optimal choice of the averaging weights. To make the notation sim-
pler, let us assume that only two subdomains Ωi are considered with corresponding
diffusivities εi, i = 1, 2. In this case, let ∂Ω1 \∂Ω be the interface between the subdo-
mains and let n1 be the outer normal with respect to Ω1. Then we define the weighted
average on the interface as {x(ξ)}w = limδ→0(w1x(ξ − n1δ) + w2x(ξ + n1δ)).

The regularity assumptions on the solution u can be expected to hold only as
long as εi ≥ ε0 > 0 in all the subdomains and the intersubdomain boundaries are
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β .n 1

β .n 1

Ω1 Ω2

>0

<0

Fig. 2.1. The model situation.

smooth enough. In case εi vanishes in a subdomain, the weights wi may be chosen
so as to guarantee that the matching conditions automatically recover the physically
correct behavior, relaxing the continuity of u but keeping the continuity of the fluxes.
It turns out that balancing the diffusive fluxes yields a numerical scheme with the
right asymptotic behavior if the diffusion coefficient vanishes in some subdomain. Let
us exemplify this on a model case. We consider a domain Ω split into two neighboring
subdomains Ω1 and Ω2 with a diffusion coefficient ε that is a regular function in each
subdomain, but discontinuous across the interface ∂Ω1 ∩ ∂Ω2. We choose the weights
w1 and w2 such that

wi(ξ) := lim
δ→0

ε(ξ + δni)

ε(ξ + δni) + ε(ξ − δni)
∀ξ ∈ ∂Ω1 ∩ ∂Ω2, i = 1, 2,(2.22)

where ni is the outward unit normal with respect to Ωi. We observe that such weights
always satisfy w1(ξ) + w2(ξ) = 1 for all ξ ∈ ∂Ω1 ∩ ∂Ω2. Moreover, in the case of
smooth diffusivity across the interface, our choice coincides with the classical one,
w1 = w2 = 1

2 . Furthermore, let us define ω(ξ) := w1(ξ)ε1(ξ) = w2(ξ)ε2(ξ). Our
choice of the weights implies that {εi∇uh ·ni}w = 2ω{∇uh ·ni}, which shows that our
method turns out to consider the arithmetic average of the gradients instead of the
arithmetic average of the diffusion fluxes in order to construct the consistency term.
Using these weights the coupling term between Ω1 and Ω2 becomes

B(uh, vh) =

2∑
i=1

(〈
β · n+uh, [vh]

〉
∂Ωi\∂Ω

− 〈ω{∇uh · n}, [vh]〉∂Ωi\∂Ω

−〈ω{∇vh · n}, [uh]〉∂Ωi\∂Ω +

〈
γbc2ω

h̃
[uh], [vh]

〉
∂Ωi\∂Ω

)
.

Consider the case when ε1 goes to zero; then only the upwind flux term remains.
One may readily verify that the coupling term B(uh, vh) corresponds to the weak
formulation of the conditions

−ε2∇u2,h · n1 + β · n1u2,h = β · n1u1,h on ∂Ω1 \ ∂Ω, where β · n1 > 0,

u1,h = u2,h and − ε2∇u2,h · n1 = 0 on ∂Ω1 \ ∂Ω, where β · n1 < 0,

which were proposed for the hybrid elliptic-hyperbolic coupling in Gastaldi and Quar-
teroni [14] (see also [10]). By the symmetry of the weights the same holds in the case
ε2 = 0. The convergence analysis of the iterative method and numerical experience
also indicates that this choice of w1 and w2 is the only viable one for the iterative
algorithm.

3. An iterative splitting method. To introduce and analyze the iterative
method we will restrict the discussion to the case of two subdomains Ωi, i = 1, 2,
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with interface ∂Ωi \ ∂Ω 	= ∅. Nevertheless, the generalization to the multidomain
case is straightforward and will be addressed later on. We denote with uh,i ∈ Vh,k,i

the restriction on Ωi of the global numerical solution. For the sake of simplicity, we
also identify with uh,i the function on Ω that is obtained by extending uh,i to zero
outside Ωi. If we consider the formulation (2.1) and decouple the subdomains by using
some approximation uk

h,j of uh,j with j 	= i as boundary data from the neighboring

subdomain with respect to Ωi, we obtain the iterative scheme. Given uk
h,1, u

k
h,2, for

k = 1, 2, . . . , find uk+1
h,1 ∈ Vh,1 such that

(3.1)

A(uk+1
h,1 , vh,1)+ B̃(uk+1

h,1 , uk
h,2, vh,1)+J(uk+1

h,1 , vh,1)+S(uk+1
h,1 , uk

h,1, vh,1) = (f, vh,1)

and uk+1
h,2 ∈ Vh,2 such that

(3.2)

A(uk+1
h,2 , vh,2)+B̃(uk+1

h,2 , uk
h,1, vh,2)+J(uk+1

h,2 , vh,2)+S(uk+1
h,2 , uk

h,2, vh,2) = (f, vh,2),

where

S(uk+1
h,i , uk

h,i, vh,i) =
∑

E∈Gh

〈
γit

h̃
(uk+1

h,i − uk
h,i), vh,i

〉
E

are the terms that stabilize the iterations and the trace mesh is defined by

Gh = {E 	= ∅ : E = ∂Ki ∩ ∂Kj ; ∀Ki ∈ Th,i; ∀Kj ∈ Th,j ; i 	= j},

and we recall that h̃(x)|E = hE for all E ∈ Gh.
The stabilization term S(uk+1

h,i , uk
h,i, vh,i) corresponds to iteration relaxation and

is mandatory to get good convergence properties. If S is omitted, we cannot prove
convergence of the triple norm. In fact explicit control of the error in the jump over
the interface is lost, and numerical experience shows very poor convergence as well
for S = 0. Moreover, we note that the stabilization term is consistent in the sense
that S(uh,i, uh,i, vh,i) = 0. Finally, we have denoted with B̃(uh,i, uh,j , vh,i), i, j = 1, 2,
j 	= i, the interface/boundary penalty bilinear form after the iterative splitting, which
is defined as follows:

B̃(uh,i, uh,j , vh,i) = 〈β · n+
i uh,i, vh,i〉∂Ωi\∂Ω + 〈β · n−

i uh,j , vh,i〉∂Ωi\∂Ω

− 〈wiεi∇uh,i · ni + wjεj∇uh,j · ni, vh,i〉∂Ωi\∂Ω − 〈εiwi∇vh,i · ni, uh,i − uh,j〉∂Ωi\∂Ω

+

〈
2
γbc{ε}w

h̃
(uh,i − uh,j), vh,i

〉
∂Ωi\∂Ω

+

〈
γbcε

h̃
uh,i, vh,i

〉
∂Ωi∩∂Ω

+ 〈β · n+uh,i, vh,i〉∂Ωi∩∂Ω − 〈εi∇uh,i · n, vh,i〉∂Ωi∩∂Ω − 〈εi∇vh,i · n, uh,i〉∂Ωi∩∂Ω.

Since the data on Ωj are taken at the earlier iteration for both domains the two
problems are decoupled and can be solved in parallel.

The present setting can easily be generalized to the case of several subdomains.
Let Ω̄ = ∪N

i=1Ω̄i be the partition in N subdomains and let Γij = ∂Ωi ∩ ∂Ωj be the
corresponding interfaces. Then, since the definition of A and J are already general
with respect to N , problems (3.1) and (3.2) do not need to be modified in the multido-
main case, provided that the definition of B̃(uh,i, uh,j , vh,i) is adapted by replacing

〈·, ·〉∂Ωi\∂Ω with
∑N

i,j=1 〈·, ·〉Γij
. Thanks to the generality of the construction of Gh
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the term S(uh,i, uh,i, vh,i) remains unchanged. Moreover, in the multidomain case,
the system of equations (3.1)–(3.2) should be complemented with one equation for
each new subdomain. Although the formal generalization to the multidomain case is
straightforward, we do not consider it here in order to reduce the notational complex-
ity in the analysis of the iterative method.

Lemma 3.1. The subproblems (3.1) and (3.2) are well-posed in Vh,i with respect
to the norm ||| · |||i.

Proof. The proof is an immediate consequence of Lemma 2.7 restricted to one
subdomain.

We define the splitting error as ekh = uh − uk
h, where uh is the solution to the

finite element formulation of (2.1) and uk
h is the solution after k iterations of (3.1)

and (3.2). We will now state and prove the main result of this section.
Theorem 3.2. The iterative method defined by problems (3.1) and (3.2) con-

verges when the relaxation parameter γit is chosen big enough. More precisely, there
exists a positive constant c (that is, the coercivity constant of Theorem 2.7) such that

c
∞∑
k=1

∣∣∣∣∣∣ekh∣∣∣∣∣∣2 ≤
∑
i=1,2

(
c

2

∥∥∥ε 1
2
i ∇e0

h,i

∥∥∥2

Ωi

+
∥∥∥(δ+)

1
2 e0

h,i

∥∥∥2

∂Ωi\∂Ω
+

∥∥∥∥
(
γit

h̃

) 1
2

e0
h,i

∥∥∥∥2

∂Ωi\∂Ω

)(3.3)

Proof. By subtracting the decoupled formulation given by (3.1) and (3.2) from
the formulation (2.1) we have

A(ek+1
h,1 , vh,1) + B̃(ek+1

h,1 , ekh,2, vh,1) + J(ek+1
h,1 , vh,1) + S(ek+1

h,1 , ekh,1, vh,1) = 0(3.4)

and

A(ek+1
h,2 , vh,2) + B̃(ek+1

h,2 , ekh,1, vh,2) + J(ek+1
h , vh,2) + S(ek+1

h,2 , ekh,2, vh,2) = 0.(3.5)

We now choose vh,i = ek+1
h,i to obtain

A(ek+1
h , ek+1

h ) + B̃(ek+1
h,1 , ekh,2, e

k+1
h,1 ) + B̃(ek+1

h,2 , ekh,1, e
k+1
h,2 ) + J(ek+1

h , ek+1
h )

+
∑
i=1,2

S(ek+1
h,i , ekh,i, e

k+1
h,i ) = 0.

Proceeding now by adding and subtracting B(ek+1
h , ek+1

h ) we may write

(3.6) A(ek+1
h , ek+1

h ) + B(ek+1
h , ek+1

h ) + J(ek+1
h , ek+1

h ) +
∑
i=1,2

S(ek+1
h,i , ekh,i, e

k+1
h,i )

= B(ek+1
h , ek+1

h ) − B̃(ek+1
h,1 , ekh,2, e

k+1
h,1 ) − B̃(ek+1

h,2 , ekh,1, e
k+1
h,2 ).

The first three terms on the left-hand side will be controlled by the coercivity
Lemma 2.7, while the term that stabilizes the iterations can be rewritten as follows:

(3.7)
∑
i=1,2

S(ek+1
h,i , ekh,i, e

k+1
h,i ) =

∑
i=1,2

∑
E∈Gh

〈
γit

h̃
(ek+1

h,i − ekh,i), e
k+1
h,i

〉
E

=
1

2

∑
i=1,2

[∥∥∥∥
(
γit

h̃

) 1
2

ek+1
h,i

∥∥∥∥2

∂Ωi\∂Ω

−
∥∥∥∥
(
γit

h̃

) 1
2

ekh,i

∥∥∥∥2

∂Ωi\∂Ω

+

∥∥∥∥
(
γit

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥2

∂Ωi\∂Ω

]
.
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It remains to bound the interface residual of the right-hand side:

R(ekh,1, e
k+1
h,1 , ekh,2, e

k+1
h,2 ) = B(ek+1

h , ek+1
h )−B̃(ek+1

h,1 , ekh,2, e
k+1
h,1 )−B̃(ek+1

h,2 , ekh,1, e
k+1
h,2 ).

The residual R is different from zero only on the interface of the subdomains and
consists of three parts:

(A) the advective interface flux term from the advection term;
(B) the symmetric interface flux term from the Laplacian;
(C) the interface penalization term.

We now rearrange the terms for the three above-mentioned cases.
(A) The advective interface fluxes:

∑
i,j=1,2
i 	=j

[
〈β · n+

i e
k+1
h,i , ek+1

h,i − ek+1
h,j 〉∂Ωi\∂Ω − 〈β · n+

i e
k+1
h,i , ek+1

h,i 〉∂Ωi\∂Ω

− 〈β · n+
i e

k
h,i,−ek+1

h,j 〉∂Ωi\∂Ω

]
=

∑
i,j=1,2
i 	=j

[
〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,j − ek+1
h,i 〉∂Ωi\∂Ω+〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,i 〉∂Ωi\∂Ω

]
.

We observe that

〈β · n+
i (ekh,i − ek+1

h,i ), ek+1
h,j − ek+1

h,i 〉∂Ωi\∂Ω

≤ 1

4μi
‖(β · n+

i )
1
2 (ekh,i − ek+1

h,i )‖2
∂Ωi\∂Ω + μi‖(β · n+

i )
1
2 [ek+1

h ]‖2
∂Ωi\∂Ω

and

〈β · n+
i (ekh,i − ek+1

h,i ), ek+1
h,i 〉∂Ωi\∂Ω

=
1

2
‖(β·n+

i )
1
2 ekh,i‖2

∂Ωi\∂Ω−
1

2
‖(β·n+

i )
1
2 ek+1

h,i ‖2
∂Ωi\∂Ω−

1

2
‖(β·n+

i )
1
2 (ek+1

h,i −ekh,i)‖2
∂Ωi\∂Ω.

By combining these results we obtain

(3.8)∑
i,j=1,2
i 	=j

[
〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,j − ek+1
h,i 〉∂Ωi\∂Ω+〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,i 〉∂Ωi\∂Ω

]

≤
∑
i=1,2

[
μi‖|β · ni|

1
2 [ek+1

h ]‖2
∂Ωi\∂Ω +

1 − 2μi

4μi
‖|β · ni|

1
2 (ekh,i − ek+1

h,i )‖2
∂Ωi\∂Ω

+
1

2
‖(β · n+

i )
1
2 ekh,i‖2

∂Ωi\∂Ω − 1

2
‖(β · n+

i )
1
2 ek+1

h,i ‖2
∂Ωi\∂Ω

]
.

(B) The boundary part of the Laplacian operator may then be written as

− 1

2

∑
i,j=1,2
i 	=j

[
2〈{ε∇ek+1

h · ni}w, ek+1
h,i − ek+1

h,j 〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni + ω∇ekh,j · ni, e

k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ek+1

h,i · ni, e
k+1
h,i − ekh,j〉∂Ωi\∂Ω

−〈ω∇ekh,i · ni + ω∇ek+1
h,j · ni,−ek+1

h,j 〉∂Ωi\∂Ω − 〈ω∇ek+1
h,j · ni, e

k
h,i − ek+1

h,j 〉∂Ωi\∂Ω

]
,
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which can be rewritten as follows:

−1

2

∑
i,j=1,2
i 	=j

[
〈ω∇ek+1

h,j · ni, e
k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ekh,j · ni, e

k
h,i〉∂Ωi\∂Ω

− 〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ekh,i · ni, e

k
h,j〉∂Ωi\∂Ω

+ 〈ω∇(ekh,i − ek+1
h,i ) · ni, e

k+1
h,j − ekh,j〉∂Ωi\∂Ω

+ 〈ω∇(ek+1
h,j − ekh,j) · ni, e

k+1
h,i − ekh,i〉∂Ωi\∂Ω

]
,

where we recall that w1ε1 = w2ε2 = ω. For this choice of the averaging weights the
first four terms vanish, precisely:

∑
i,j=1,2
i 	=j

[
〈ω∇ek+1

h,j · ni, e
k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ekh,j · ni, e

k
h,i〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ekh,i · ni, e

k
h,j〉∂Ωi\∂Ω

]
= 0.

By means of the Cauchy–Schwarz and Young inequalities, we have for the fifth term

〈ω∇(ekh,i−ek+1
h,i )·ni, e

k+1
h,j −ekh,j〉∂Ωi\∂Ω =

∑
E∈Gh

〈ω 1
2∇(ekh,i−ek+1

h,i )·ni, ω
1
2 (ek+1

h,j −ekh,j)〉E

≤
∑

E∈Gh

2
[
h

1
2

E‖ω
1
2∇(ekh,i − ek+1

h,i ) · ni‖E · h− 1
2

E ‖ω 1
2 (ek+1

h,j − ekh,j)‖E
]

≤
∑

E∈Gh

[
αihE‖ω

1
2∇(ekh,i − ek+1

h,i ) · ni‖2
E + (αihE)−1‖ω 1

2 (ek+1
h,j − ekh,j)‖2

E

]
.

Then, by virtue of trace and inverse inequalities (see Remark 2.8), there exists a
positive constant Ct such that

∑
E∈Gh

hE‖ω
1
2∇(ekh,i − ek+1

h,i ) · ni‖2
E ≤ Ct‖wi‖L∞(∂Ωi\∂Ω)‖ε

1
2
i ∇(ekh,i − ek+1

h,i )‖2
Ωi

≤ Ct‖wi‖L∞(∂Ωi\∂Ω)

[
‖ε

1
2
i ∇ekh,i‖2

Ωi
+ ‖ε

1
2
i ∇ek+1

h,i ‖2
Ωi

]
.

We proceed analogously for the term 〈ω∇(ek+1
h,j − ekh,j) · ni, e

k+1
h,i − ekh,i〉∂Ωi\∂Ω.

Summing up all the contributions we obtain that

(3.9) − 1

2

∑
i,j=1,2
i 	=j

[
2〈ω∇(ekh,i − ek+1

h,i ) · ni, e
k+1
h,j − ekh,j〉∂Ωi\∂Ω

+ 〈ω∇ek+1
h,j · ni, e

k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ekh,j · ni, e

k
h,i〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ekh,i · ni, e

k
h,j〉∂Ωi\∂Ω

]
≤

∑
i=1,2

[
αiCt‖wi‖L∞(∂Ωi\∂Ω)

(
‖ε

1
2
i ∇ek+1

h,i ‖2
Ωi

+ ‖ε
1
2
i ∇ekh,i‖2

Ωi

)

+
‖wiεi‖L∞(∂Ωi\∂Ω)

αi
‖(h̃)−

1
2 (ek+1

h,i − ekh,i)‖∂Ωi\∂Ω

]
.
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(C) For the interface penalization term we get

∑
i,j=1,2
i 	=j

[〈(
γbc{ε}w

h̃

)
(ek+1

h,i − ek+1
h,j ), ek+1

h,i − ek+1
h,j

〉
∂Ωi\∂Ω

−
〈(

γbcω

h̃

)
(ek+1

h,i − ekh,j), e
k+1
h,i

〉
∂Ωi\∂Ω

−
〈(

γbcω

h̃

)
(ek+1

h,j − ekh,i), e
k+1
h,j

〉
∂Ωi\∂Ω

]
.

By means of algebraic manipulations we obtain〈(
γbcω

h̃

)
(ek+1

h,i − ekh,j), e
k+1
h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,i), e
k+1
h,j

〉
∂Ωi\∂Ω

=

〈(
γbcω

h̃

)
(ek+1

h,i − ekh,i), e
k+1
h,j − ek+1

h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,i − ekh,i), e
k+1
h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,i − ek+1

h,j

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,j

〉
∂Ωi\∂Ω

+

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

[ek+1
h ]

∥∥∥∥2

∂Ωi\∂Ω

.

By virtue of the particular choice of the weights that gives 2ω = {ε}w and by
means of standard inequalities we observe that〈(

γbcω

h̃

)
(ek+1

h,i − ekh,i), e
k+1
h,j − ek+1

h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,j − ek+1

h,j

〉
∂Ωi\∂Ω

≤ 1

4μi

[∥∥∥∥
(
γbcω

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbcω

h̃

) 1
2

(ek+1
h,j − ekh,j)

∥∥∥∥2

∂Ωi\∂Ω

]

μi

[∥∥∥∥
(
γbcω

h̃

) 1
2

[ek+1
h ]

∥∥∥∥2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbcω

h̃

) 1
2

[ek+1
h ]

∥∥∥∥2

∂Ωi\∂Ω

]

=
1

4μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥2

∂Ωi\∂Ω

+ μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

[ek+1
h ]

∥∥∥∥2

∂Ωi\∂Ω

and that ∑
j=1,2

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,j

〉
∂Ωi\∂Ω

=
1

2

∑
j=1,2

[∥∥∥∥
(
γbcω

h̃

) 1
2

ek+1
h,j

∥∥∥∥2

∂Ωi\∂Ω

−
∥∥∥∥
(
γbcω

h̃

) 1
2

ekh,j

∥∥∥∥2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbcω

h̃

) 1
2

(ek+1
h,j − ekh,i)

∥∥∥∥2

∂Ωi\∂Ω

]

=
1

2

[∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ek+1
h,i

∥∥∥∥2

∂Ωi\∂Ω

−
∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ekh,i

∥∥∥∥2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥2

∂Ωi\∂Ω

]
.
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Summing up all the terms of the residual (C) we have

∑
i=1,2

[〈(
γbc{ε}w

h̃

)
(ek+1

h,i − ek+1
h,j ), ek+1

h,i − ek+1
h,j

〉
∂Ωi\∂Ω

(3.10)

−
〈(

γbc{ε}w
h̃

)
(ek+1

h,i − ekh,j), e
k+1
h,i

〉
∂Ωi\∂Ω

−
〈(

γbc{ε}w
h̃

)
(ek+1

h,j − ekh,i), e
k+1
h,j

〉
∂Ωi\∂Ω

]

≤
∑
i=1,2

[
1 − 2μi

4μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥2

∂Ωi\∂Ω

+ μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

[ek+1
h ]

∥∥∥∥2

∂Ωi\∂Ω

+
1

2

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ekh,i

∥∥∥∥2

∂Ωi\∂Ω

− 1

2

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ek+1
h,i

∥∥∥∥2

∂Ωi\∂Ω

]
.

By putting together (3.8), (3.9), (3.10) we obtain the following inequality:

(3.11) R(ekh,1, e
k+1
h,1 , ekh,2, e

k+1
h,2 )

≤
∑
i=1,2

[
αiCt‖wi‖L∞(∂Ωi\∂Ω)

(
‖ε

1
2
i ∇ek+1

h,i ‖2
Ωi

+ ‖ε
1
2
i ∇ekh,i‖2

Ωi

)
+ μi‖δ

1
2 [ek+1

h ]‖2
∂Ωi\∂Ω

+
1 − 2μi

4μi
‖δ 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω +
‖wiεi‖L∞(∂Ωi\∂Ω)

αi
‖h̃− 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω

+
1

2
‖(δ+)

1
2 ekh,i‖2

∂Ωi\∂Ω − 1

2
‖(δ+)

1
2 ek+1

h,i ‖2
∂Ωi\∂Ω

]
.

It should be noted that the right-hand side of (3.11) consists of terms that are either
telescoping or of one of the following forms:

• terms containing ∇ek+1
h,i ;

• terms containing a part [ek+1
h ];

• terms containing a part ek+1
h,i − ekh,i.

The first and second contributions will be controlled by the triple norm, and the
last type of contributions will be controlled by the relaxation terms of (3.7). More
precisely, by replacing (3.11) and (3.7) in (3.6) we obtain

∑
i=1,2

[
c‖σ

1
2
0 e

k+1
h,i ‖2

Ωi
+ cJ(ek+1

h,i , ek+1
h,i )(3.12)

+

(
γit
2

−
‖wiεi‖L∞(∂Ωi\∂Ω)

αi

)
‖h̃− 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω

− 1 − 2μi

4μi
‖δ 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω

+ (c− αiCt‖wi‖L∞(∂Ωi\∂Ω))‖ε
1
2
i ∇ek+1

h,i ‖2
Ωi

− αiCt‖wi‖L∞(∂Ωi\∂Ω)‖ε
1
2
i ∇ekh,i‖2

Ωi

+ c‖δ 1
2 [ek+1

h ]‖2
∂Ωi∩∂Ω + (c− μi)‖δ

1
2 [ek+1

h ]‖2
∂Ωi\∂Ω

+
1

2
‖(δ+)

1
2 ek+1

h,i ‖2
∂Ωi\∂Ω − 1

2
‖(δ+)

1
2 ekh,i‖2

∂Ωi\∂Ω

+
1

2

∥∥∥(γit
h̃

) 1
2

ek+1
h,i

∥∥∥2

∂Ωi\∂Ω
− 1

2

∥∥∥(γit
h̃

) 1
2

ekh,i

∥∥∥2

∂Ωi\∂Ω

]
≤ 0.
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Then we choose the coefficients of Young’s inequality, αi and μi, as follows:

αi <
c

2Ct‖wi‖L∞(∂Ωi\∂Ω)
, e.g., αi =

c

4Ct‖wi‖L∞(∂Ωi\∂Ω)
; μi < c, e.g., μi =

c

2
;

and as a consequence of that, the relaxation parameter γit becomes

(3.13) γit ≥
8Ct‖wi‖L∞(∂Ωi\∂Ω)‖wiεi‖L∞(∂Ωi\∂Ω)

c

+
max[1 − c, 0]

2c

(
γbc‖{ε}w‖L∞(∂Ωi\∂Ω) + ‖β · nh̃‖L∞(∂Ωi\∂Ω)

)
, i = 1, 2.

This allows us to rewrite (3.12) as follows:

c

2

∣∣∣∣∣∣ek+1
h

∣∣∣∣∣∣2+ ∑
i=1,2

[
c

4

∥∥∥ε 1
2
i ∇ek+1

h,i

∥∥∥2

Ωi

− c

4

∥∥∥ε 1
2
i ∇ekh,i

∥∥∥2

Ωi

+
1

2

∥∥∥(δ+)
1
2 ek+1

h,i

∥∥∥2

∂Ωi\∂Ω
− 1

2

∥∥∥(δ+)
1
2 ekh,i

∥∥∥2

∂Ωi\∂Ω

+
1

2

∥∥∥(γit
h̃

) 1
2

ek+1
h,i

∥∥∥2

∂Ωi\∂Ω
− 1

2

∥∥∥(γit
h̃

) 1
2

ekh,i

∥∥∥2

∂Ωi\∂Ω

]
≤ 0.

Finally, summing up from k = 0 to k = M − 1, we obtain

c

M−1∑
k=0

∣∣∣∣∣∣ek+1
h

∣∣∣∣∣∣2 +
∑
i=1,2

(∥∥∥(δ+)
1
2 eMh,i

∥∥∥2

∂Ωi\∂Ω
+
∥∥∥(γit

h̃

) 1
2

eMh,i

∥∥∥2

∂Ωi\∂Ω

)

≤
∑
i=1,2

( c

2

∥∥∥ε 1
2
i ∇e0

h,i

∥∥∥2

Ωi

+
∥∥∥(δ+)

1
2 e0

h,i

∥∥∥2

∂Ωi\∂Ω
+
∥∥∥(γit

h̃

) 1
2

e0
h,i

∥∥∥2

∂Ωi\∂Ω

)
,

which implies (3.3).
Remark 3.3. The general statement (3.13) implies the following choices of γit.
When εi > 0 for i = 1, 2 we have c = 1

2 and γbc ≥ 2Ct in order to ensure coercivity.
Then we insert γbc = 2Ct into (3.13) and obtain

γit ≥ 2Ct

(
1 + 8‖wi‖L∞(∂Ωi\∂Ω)

)
‖wiεi‖L∞(∂Ωi\∂Ω) + ‖β · nh̃‖L∞(∂Ωi\∂Ω), i = 1, 2.

For sufficiently small h̃ this expression can be summarized as γit � γbc‖ε‖L∞(Ω).
When ε1 = 0 and ε2 > 0 (or vice versa) we have w1 > 0 and w2 = 0. As a result of
that the formula above becomes

γit ≥
1

2
‖β · nh̃‖L∞(∂Ωi\∂Ω), i.e.,

γit
h

≥ 1

2
‖β · n‖L∞(∂Ωi\∂Ω).

When ε1 = ε2 = 0 the coercivity constant becomes c = 1. As a result of that (3.13)
requires γit ≥ 0.

4. Numerical results. All the numerical experiments presented in this section
were obtained using the FreeFem++ library (http://www.freefem.org/ff++/index.htm).

4.1. Approximation and convergence properties of the iterative split-
ting method. In this section we analyze the convergence of the iterative splitting
method with respect to the mesh size h = maxi=1,2 maxK∈Th,i

hK , the number of
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Table 4.1

Convergence study with respect to h for conforming meshes.

Two subdomains, h = 0.1.

P1 FEM P2 FEM

ε = 1 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 2.44 10−2 5.82 10−1 3.37 10−4 5.05 10−2

h 5.59 10−3 2.65 10−1 4.62E-005 1.26 10−2

Order 2.19 1.17 2.95 2.07

ε = 10−3 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 1.65 10−2 5.97 10−1 8.88 10−4 6.04 10−2

h 3.64 10−3 2.73 10−1 1.02 10−4 1.47 10−2

Order 2.24 1.16 3.21 2.10

ε = 0 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 1.69 10−2 6.13 10−1 9.95 10−4 6.32 10−2

h 3.80 10−3 2.82 10−1 1.23 10−4 1.57 10−2

Order 2.22 1.16 3.10 2.07

Four subdomains h = 0.08.

P1 FEM P2 FEM

ε = 1 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 1.50 10−2 4.48 10−1 1.76 10−4 3.25 10−2

h 3.38 10−3 2.06 10−1 1.65 10−5 7.68 10−3

Order 2.15 1.12 3.42 2.08

subdomains N , and the value of the penalty parameters γit, γbc, and γip,i, i = 1, 2,
for different values of the diffusion parameters εi and of the transport field β. To this
aim, we consider problem (1.1), where σ = 1 is fixed and f is chosen so that the exact
solution is

u(x, y) = exp(xy) sin(πx) sin(πy),(4.1)

on a domain Ω = ]0, 1[× ]0, 1[ that has been split into N = n2 subdomains such that
Ω̄ = ∪N

i=1Ω̄i = ∪n
i1,i2=1[(i1 − 1)/n, i1/n]× [(i2 − 1)/n, i2/n], obtaining a checkerboard

partition of size H = 1/n. The simplest case of two subregions Ω̄1 = [0, 1
2 ] × [0, 1]

and Ω̄2 = [ 12 , 1] × [0, 1] is also addressed. For each subdomain, we introduce N
quasi-uniform meshes Th,i that can be either conforming or nonconforming on their
interfaces, but for the tests presented here we consider conforming discretizations.
For the comparison of different cases we choose u0

h,i = 0 for i = 1, . . . , N and consider
a convergence test on the triple norm of the incremental error, namely, the iterations
are stopped if |||uk+1

h − uk
h|||/|||uk+1

h ||| ≤ tol.
First of all, we aim to verify with numerical experiments the infinitesimal order

with respect to h provided by Theorem 2.12. Table 4.1 shows that the optimal order
of convergence is preserved for both linear and quadratic conforming elements. From
now on, we will denote for simplicity ‖ · ‖1,Ω ≡ (

∑N
i=1 ‖ · ‖1,Ωi)

1
2 .

Second, we aim to investigate the influence on the convergence rate of the itera-
tive method of the parameters γbc and γit that appear in (3.1), (3.2). We study the
number of iterations that the method needs to satisfy a tolerance tol = 10−6 on the
relative incremental error for several combinations of γbc and γit. Table 4.2 suggests
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Table 4.2

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 and on
a quasi-uniform mesh of size h = 0.1 and a partition in two subdomains. Several combinations of
the parameters γbc and γit in the case of the symmetric (right) and skewsymmetric coupling term
(left) are addressed. In this case ε = 1 and β = [1, 1].

γit/γbc 2 100 2 101 2 102 2 10−2 2 10−1 2 100 2 101 2 102

2 10−3 100 802 >1000 36 25 107 809 >1000

2 10−2 101 803 >1000 34 25 107 810 >1000

2 10−1 109 809 >1000 25 23 116 816 >1000

2 100 188 873 >1000 107 116 195 880 >1000

2 101 874 >1000 >1000 809 815 880 >1000 >1000

2 102 >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000
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Fig. 4.1. Convergence history of the iterative method for ε = 1.0 (right) and ε = 10−3 (left)
for the numerical tests on the coarse grids of Table 4.3.

that an effective choice is to consider the small values of γbc, provided that the discrete
problems (3.1), (3.2) remain well-posed according to Lemma 2.7. Recalling Remark
2.2, we analyze separately the symmetric and the nonsymmetric versions of the cou-
pling term B(uh, vh). In the symmetric case, Lemma 2.7 requires that γbc = 2Ct.
In this case, Table 4.2 shows that the theoretical estimate obtained in Remark 3.3 is
too restrictive for diffusion-dominated problems. Indeed, much smaller values of the
estimated ones ensure better convergence properties. On the contrary, the numerical
experiments presented in Table 4.5 suggest that the estimate of Remark 3.3 is effective
for advection dominated problems. For the nonsymmetric case the limitations on γbc
necessary for obtaining positivity of the discrete bilinear form change completely, in
agreement with the analysis of interior penalty discontinuous Galerkin methods; see
[1]. Indeed, only the restriction γbc > 0 is necessary. In this setting, the convergence
properties of the iterative algorithm are much improved. Conversely, the approxima-
tion properties of the scheme are compromised since the discrete problem (2.1) is not
adjoint consistent, and thus it does not enjoy optimal approximation properties in
the L2-norm (see [1] for a complete discussion). For the relaxation parameter γit we
observe that in this case the choice γit � γbc � 2 10−1 is effective.

The key point of this section is the characterization of the dependence of the
convergence properties from the maximal mesh element size h and the number of
subdomains N for different values of ε and β. More precisely, we analyze the diffusion
dominated regimen (ε = 1), the transition regimen (ε = 10−3), and the hyperbolic
regimen (ε = 0). Indeed, Figure 4.1 and Table 4.3 show that the behavior of the
method differs form one regimen to another. First of all, although Theorem 3.2 does
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Table 4.3

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 for several
configurations of the partition in subdomains and several values of ε. γbc = 2, γit = γbc‖ε‖L∞(Ω),
and β = [1, 1] are fixed.

H, N 1/2, 4 1/3, 9 1/4, 16

h 0.13 0.06 0.12 0.06 0.12 0.07

ε = 1 237 445 309 579 388 723

Order h −0.85 −0.91 −1.08

Order H – −0.65 −0.77

ε = 10−3 12 14 14 17 16 20

Order h −0.21 −0.28 −0.39

Order H – −0.48 −0.56

ε = 0 4 4 6 6 8 8

Order h 0 0 0

Order H – −1 −1

Table 4.4

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 for
different combinations of β and ε and for the case of 16 subdomains and h = 0.12. γbc = 2,
γit = γbc‖ε‖L∞(Ω) are fixed.

ε = 1 ε = 10−3 ε = 0

β = [1, 1] 388 16 8

β = [1, 0] 389 16 5

β = [0, 1] 389 16 5

not characterize the convergence behavior of the iterative method (3.1)–(3.2), Figure
4.1 puts into evidence that the incremental error is reduced according to the law
Ck, where k is the iteration index and the constant 0 < C < 1 is the convergence
rate. Following this assumption, the number of iterations needed to satisfy a suitable
tolerance on the incremental error is directly proportional to the convergence rate.
As a consequence of that, Table 4.3 shows that in the diffusion-dominated regimen
the convergence rate is inversely proportional to h and H. Following the heuristic
motivations that are presented in [22] and [27], the inverse dependence on H can
be explained observing that an iterative method that only exchanges information
between neighboring subregions necessarily requires a number of steps to converge that
is at least equal to the diameter of the dual graph corresponding to the subdomain
partition, which is equivalent to O(H−1) when the diameter of Ω is unitary. The
dual graph is constructed by introducing a vertex for each subregion and an edge
between two subregions that share an interface. The inverse dependence on h is a
consequence of (3.13) (see also Remark 3.3) which states that the relaxation term
must be proportional to ‖ε‖L∞(Ω)/h. Accordingly, by refining the mesh by a factor
two, the number of iterations is doubled. Always in agreement with Remark 3.3
and with the fact that the relaxation term is allowed to vanish together with ε, the
convergence rate of the method is less sensitive with respect to h for the transition
case and completely insensitive with respect to the mesh size in the hyperbolic case.
Indeed, when ε = 0 the number of iterations is only inversely dependent on H, and it is
exactly equivalent to the number of steps that are needed to propagate the information
along the diagonal of the checkerboard mesh defined by the subdomains, since the
transport field is oriented along the diagonal. Furthermore, Table 4.4 suggests that



DOMAIN DECOMPOSITION BASED ON INTERIOR PENALTIES 1633

these results do not deteriorate if the orientation of the transport field β is modified.
Indeed, this is an advantage of the method proposed here with respect to the family of
nonoverlapping domain decomposition methods arising from transmission conditions
of Robin type, whose convergence may turn out to be slow when the transport field is
tangential to the interface [21]. This benefit is due to the use of the upwind flux for the
advection term. As a consequence of that, the corresponding transmission conditions
are not symmetric with respect to β, in contrast to what happens for the family
of methods inspired by transmission conditions of Robin type. Finally, we observe
that in the hyperbolic case a multiplicative (Gauss–Seidel) iterative scheme is more
preforming than the additive (Jacobi) method. For instance, since the subdomains in
the checkerboard partition have been numbered by rows, when the transport field β is
oriented in the vertical direction the multiplicative algorithm converges in 2 iterations,
irrespectively of h and H.

4.2. Comparison of iterative methods. In order to assess the performance
of the iterative method based on Nitsche’s transmission conditions (denoted with a in
Table 4.5 and defined by problems (3.1) and (3.2)) we compare it with the nonover-
lapping Schwarz method proposed in [20] (denoted with b) and with the overlapping
Schwarz method (denoted with c). For this comparison, we consider the test case
proposed in the previous section where the domain Ω has been split into two sub-
domains, Ω1 = [0, 1

2 ] × [0, 1] and Ω2 = [ 12 , 1] × [0, 1]. In the case of the overlapping
Schwarz method we also introduce two overlapping domains, Ω∗

1 = [0, 1
2 + 1

2δ]× [0, 1],
Ω∗

2 = [ 12 − 1
2δ, 1] × [0, 1], and corresponding discretizations T ∗

h,i, i = 1, 2. Let V ∗
h,i be

the finite element spaces defined on these meshes. Then, given u0
h,i, for k = 1, 2, . . .

we look for uk
h,i ∈ V ∗

h,i, i = 1, 2, such that

A(uk+1
h,1 , vh,1) + J(uk+1

h,1 , vh,1) = (f1, vh,1) ∀vh,1 ∈ V ∗
h,1, ûk+1

h,1 = uk
h,2 on ∂Ω∗

1 ∩ Ω∗
2,

A(uk+1
h,2 , vh,2) + J(uk+1

h,2 , vh,2) = (f2, vh,2) ∀vh,2 ∈ V ∗
h,2, ûk+1

h,2 = uk
h,1 on ∂Ω∗

2 ∩ Ω∗
1,

uk+1
h,i =

1

2
ûk+1
h,i +

1

2
uk
h,i i = 1, 2.

Recalling that the convergence of the overlapping Schwarz method can be accel-
erated by increasing the thickness of the overlapping region, that is, δ, we consider
three cases, δ = h̄, δ = 2h̄, and δ = 4h̄, where h̄ is the characteristic size of the
quasi-uniform discretizations of Ω∗

1 and Ω∗
2. The comparison with these cases will

give a measure of the convergence performance of our method.
In Table 4.5, we compare the convergence and the approximation properties of

these methods for the diffusion-dominated, the transition, and the hyperbolic regi-
mens. The analysis of this table immediately shows that the method that we propose
here is effective for the advection dominated and the hyperbolic regimens. In this
case Nitsche’s method a provides in general the best performances both for the con-
vergence and the approximation properties for a fixed tolerance on the incremental
error tol = 10−6 and a given quasi-uniform mesh with h = 0.05.

In the diffusion-dominated case, the convergence of method a in the symmetric
case is partially slowed down by the relaxation term. We have already observed that
the choice γit = γbc‖ε‖L∞(Ω), motivated by the theoretical estimate derived in Remark
3.3, is not optimal. Indeed, the number of iterations needed to fulfill a tolerance of
10−6 on the incremental error is reduced from 354 to 190 if the parameter γit is
divided by a factor of 100. In any case, this correction does not make method a
with s = 1 (see Remark 2.2) competitive with method b in the diffusion-dominated
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Table 4.5

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 and the
approximation error on a given quasi-uniform mesh characterized by h = 0.05 and a partition in 2
subdomains. Several instances of the iterative algorithms a, b, and c are considered. The instance of
algorithm a with symmetric coupling terms is denoted with s = 1, while the nonsymmetric version
is denoted with s = −1.

Diffusion dominated regimen ε = 1, β = [1, 1].

Method N. iter. ‖u− uh‖0,Ω ‖u− uh‖1,Ω

a, s = 1, γbc = 2, γit = γbc‖ε‖L∞(Ω) 354 1.38 10−3 1.32 10−1

a, s = 1, γbc = 2, γit = 10−2γbc‖ε‖L∞(Ω) 190 1.38 10−3 1.32 10−1

a, s = −1, γbc = 2 10−1, γit = 2 10−1 43 1.93 10−3 1.25 10−1

a-hybrid 108 1.37 10−3 1.32 10−1

b 96 1.37 10−3 1.32 10−1

c, δ = h̄ 210 3.25 10−3 1.27 10−1

c, δ = 2h̄ 115 2.35 10−3 1.28 10−1

c, δ = 4h̄ 65 2.02 10−3 1.36 10−1

Transition regimen ε = 10−3, β = [1, 1], γbc = 2, and γit = γbc‖ε‖L∞(Ω).

Method N. iter. ‖u− uh‖0,Ω ‖u− uh‖1,Ω

a, s = 1 12 8.76 10−4 1.33 10−1

a, s = −1 13 8.75 10−4 1.33 10−1

b 17 1.03 10−3 1.47 10−1

c, δ = h̄ 46 1.00 10−3 1.37 10−1

c, δ = 2h̄ 56 1.27 10−3 1.41 10−1

c, δ = 4h̄ 42 1.21 10−3 1.51 10−1

Hyperbolic regimen ε = 0, β = [1, 1], γbc = 2, and γit = 0.

Method N. iter. ‖u− uh‖0,Ω ‖u− uh‖1,Ω

a, s = ±1 2 9.48 10−4 1.40 10−1

b 57 2.44 10−3 2.96 10−1

c, δ = h̄ 52 1.10 10−3 1.45 10−1

c, δ = 2h̄ 59 1.48 10−3 1.52 10−1

c, δ = 4h̄ 45 1.39 10−3 1.63 10−1

case. Conversely, we observe that the convergence properties of the nonsymmetric
version of method a is very satisfactory, while the approximation error in the L2-
norm reflects the suboptimality of this method. By comparing the properties of the
symmetric and the nonsymmetric versions of method a, we observe that it may be
possible to blend the benefits of the two methods by setting up a hybrid strategy
(see Table 4.5, method a-hybrid). This consists in applying method a with s = −1,
γbc = γit = 2 10−1 until the tolerance equal to 10−6 is satisfied on the relative
incremental error. As reported in Table 4.5, this procedure requires 43 iterations.
Then, starting from the discrete solution computed in this way, we apply method
a with s = 1, γbc = 2, γit = 2 10−1 in order to improve the approximation error.
This method requires 65 additional iterations to converge, and it reduces the L2

approximation error of the nonsymmetric case from 1.93 10−3 to 1.37 10−3, which
is equivalent to the error of the symmetric case. Since it is accurate and converges
rapidly, the hybrid method outperforms both the symmetric and the nonsymmetric
versions of method a. In the diffusive case, the hybrid method turns out to be almost
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equivalent to method b. These considerations promote further studies of the hybrid
method and suggest investigating in detail whether the nonsymmetric formulation
might be applied as a preconditioner for the symmetric case. Finally, a heuristic
comparison with the overlapping Schwarz methods c suggests that method b behaves
as an additive overlapping Schwarz algorithm with a relatively generous overlap of
magnitude δ = 2h̄ ≡ 6% of the diameter of Ω. On the other hand, the symmetric
Nitsche’s method a is almost equivalent to the overlapping method with small overlap
δ = h̄ ≡ 3%.

From the point of view of computational cost we observe that the scheme (3.1)–
(3.2) requires more effort for the construction of the finite element matrix correspond-
ing to the coupling terms B(uh, vh) than the family of Robin–Robin methods. Indeed,
for the Robin–Robin methods the coupling matrix is easily constructed since it cor-
responds to a mass matrix on the degrees of freedom at the interface. Moreover in
our case the bandwidth of the coupling matrix is increased because of the presence
of first order derivatives in the coupling terms. This drawback is balanced by the
fact that basic Robin–Robin iterative splitting methods preserve the optimal approx-
imation properties of Lagrangian finite elements only if a superpenalty technique is
applied; see [8]. This technique, however, compromises the convergence properties of
the iterative algorithm.

4.3. Approximation of problems with discontinuous coefficients. In this
section, we apply the numerical scheme (3.1)–(3.2) for the approximation of advection
diffusion problems with discontinuous coefficients. To this purpose, the domain Ω has
been split into two subdomains, Ω1 = [0, 1

2 ] × [0, 1] and Ω2 = [ 12 , 1] × [0, 1] with
ε(x) = 1.0 for x ∈ Ω1 and ε(x) = 2 10−2 for x ∈ Ω2. In the case σ = 0 and f = 0,
the exact solution on each subregion Ω1,Ω2 can be easily expressed as an exponential
function with respect to the x coordinate independently from the y coordinate. The
global solution u(x, y) is provided by choosing the value at the interface x = 1

2 in
order to ensure the following matching conditions:

lim
x→ 1

2
−
u(x, y) = lim

x→ 1
2
+
u(x, y) and lim

x→ 1
2
−
−ε(x)∂xu(x, y) = lim

x→ 1
2
+
−ε(x)∂xu(x, y).

More precisely, we set u(0, y) = 1, u(1, y) = 0, and by consequence of the matching
conditions, we obtain

u

(
1

2
, y

)
=

[
u(0, y) exp( β

2ε1
)

1 − exp( β
2ε1

)
+

u(1, y)

1 − exp( β
2ε2

)

][
exp( β

2ε1
)

1 − exp( β
2ε1

)
+

1

1 − exp( β
2ε2

)

]−1

.

As a result of that, the exact solution in each subdomain can be expressed as

u1(x, y) =
u( 1

2 , y) − exp( β
2ε1

)u(0, y) + [u(0, y) − u( 1
2 , y)] exp(βxε1 )

1 − exp( β
2ε1

)
,

u2(x, y) =
u(1, y) − exp( β

2ε2
)u( 1

2 , y) + [u( 1
2 , y) − u(1, y)] exp(

β(x− 1
2 )

ε2
)

1 − exp( β
2ε2

)
.

The resulting function is represented in Figure 4.2. We aim to compare on the test
problem defined above the accuracy of the scheme (3.1)–(3.2) with linear elements,

precisely Vh =
∑2

i=1 Vh,1,i (denoted by A) with the classical lagrangian linear elements
over the whole domain Ω (denoted by B). We point out that in both cases the
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Fig. 4.2. The nodal interpolant on a very refined mesh of the exact solution u of the test problem
at hand (left). The numerical approximation uh obtained with method A (middle) and method B
(right) in the case of the discretization characterized by h1 = 0.1.

Table 4.6

The quantitative comparison of the accuracy of methods A and B. The L2-norm, ‖uh −u‖0,Ω,
the H1-norm, ‖uh − u‖1,Ω, and the maximum norm, ‖uh − u‖L∞(Ω), are displayed.

‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖L∞(Ω)

h Method A Method B Method A Method B Method A Method B

0.1 1.81 10−2 2.78 10−2 2.07 1.78 2.13 10−1 1.71 10−1

0.05 6.98 10−3 8.95 10−3 1.31 1.06 1.07 10−1 6.32 10−2

0.026 2.56 10−3 2.66 10−3 7.49 10−1 5.82 10−1 1.40 10−1 2.34 10−2

continuous interior penalty stabilization method with γip,i = 2 10−2 has been applied
to cure the instability of finite elements in the case of advection-dominated problems.
We compare the two schemes on a family of quasi-uniform triangulations on Ω1 and
Ω2 that are conforming at the interface of the subdomains and are characterized
by a decreasing maximal element size h1 = 0.1, h2 = 0.05, and h3 = 0.026. The
quantitative analysis of the accuracy is based on the following indicators: the L2-
norm of the error, ‖uh − u‖0,Ω; the H1-norm, ‖uh − u‖1,Ω, which is well defined
since u ∈ H1(Ω); and the maximum norm, ‖uh − u‖L∞(Ω). The quantitative data
are reported in Table 4.6, while a visual comparison is given in Figure 4.2. The
analysis of the results suggests that the scheme (3.1)–(3.2) performs well for the
approximation of problems with discontinuous coefficients when the mesh size is not
small enough to fully resolve the boundary layers arising in the neighborhood of
the region of discontinuity. The benefit of the scheme presented here with respect
to the application of classical Lagrangian elements over Ω emerges if we consider
the L2-norm. For the mesh size h1 method A provides numerical solutions that
are smoother than method B (see Figure 4.2), where spurious oscillations appear in
the neighborhood of the boundary layer that arise because of the discontinuity of ε.
However, we observe that the L∞ error of method B is smaller than in the case of
method A, since for this method L∞ errors arise when the very steep boundary layer
across the discontinuity of ε is approximated with a jump. Finally, the analysis of the
H1-norm of the errors suggests that method B seems to be more prone to approximate
the gradients of the solution in the boundary layer, although this benefit is effective
when the computational mesh becomes fine enough to reasonably approximate the
boundary layer.

5. Concluding remarks. In conclusion, the discretization scheme and the as-
sociated iterative method that we have proposed here turn out to be appealing for
advection-dominated problems and in the case of discontinuous coefficients. Indeed,
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in these cases the method is competitive from the point of view of both computational
effort and accuracy. A key role for the good properties when treating such problems
is played by the average weights and the upwind treatment of the advection term in
the interior penalty strategy applied for the coupling of the subdomains.

Acknowledgment. The authors are grateful for the referee’s detailed and con-
structive criticisms and for the timely management of the manuscript.
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Abstract. We consider the synthesis of a recent subgrid stabilization method with defect
correction methods. The combination is particularly efficient and combines the best algorithmic
features of each. We prove convergence of the method for a fixed number of corrections as the mesh
size goes to zero and derive parameter scalings from the analysis. We also present some numerical
tests which both verify the theoretical predictions and illustrate the method’s promise.
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1. Introduction. This report studies the synthesis of defect correction methods
and subgrid stabilization. Our proposed method adds an eddy viscosity stabilization
on only the last few resolved scales on arbitrary, unstructured meshes. Computa-
tional considerations for total algorithmic efficiency suggest combining the stabiliza-
tion method with defect correction when solving underresolved, equilibrium flow prob-
lems. In this work, we study precisely this combination in that context. We analyze
convergence of the combination for the (nonlinear) Navier–Stokes equations. This
analysis gives mathematical guidance on the selection of the method’s algorithmic
parameters. In our accompanying tests, we observe that the subgrid stabilized defect
correction method has greater accuracy than the artificial viscosity method without
the oscillations reported in the usual (centered) Galerkin finite element method or the
unmodified defect correction finite element method.

Let Ω ⊂ R
d (d = 2 or 3) denote a bounded, regular flow domain. We consider

the approximate solution of the Navier–Stokes equations for internal flow on Ω: find
u : Ω → R

d, p : Ω → R satisfying

−νΔu + (u · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,∫
Ω
p dx = 0.

(1.1)

In (1.1), the coefficient ν is the kinematic viscosity of the fluid, and f ∈ L2(Ω)d is the
body force driving the flow.

Let (·, ·), ‖ · ‖ denote the usual L2 inner product and norm, respectively. Define
X := H1

0 (Ω) := {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω}, Q := L2
0(Ω) =

{q ∈ L2(Ω) :
∫
Ω
q dx = 0}, and define b∗(u, v, w) := 1

2 (u · ∇v, w)− 1
2 (u · ∇w, v) for all

∗Received by the editors February 7, 2005; accepted for publication (in revised form) January 11,
2006; published electronically August 16, 2006.

http://www.siam.org/journals/sinum/44-4/62394.html
†Department of Mathematics, Middle East Technical University, Ankara 06531, Turkey (songul@

math.metu.edu.tr). This author was partially supported by NSF grant 0207627.
‡Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 (wjl@pitt.edu,

riviere@math.pitt.edu). The second author was partially supported by NSF grant DMS 0207627 and
DMS 0508260. The third author was partially supported by NSF grant DMS 0506039.

1639



1640 SONGUL KAYA, WILLIAM LAYTON, AND BÉATRICE RIVIÈRE

u, v, w ∈ X. Integrating by parts gives the following standard variational formulation
of (1.1): find u ∈ X, p ∈ Q satisfying

ν(∇u,∇v) + b∗(u, u, v) − (p,∇ · v) = (f, v) ∀v ∈ X,
(∇ · u, q) = 0 ∀q ∈ Q.

(1.2)

For the finite element discretization, we choose the conforming velocity-pressure finite
element spaces, Xh ⊂ X and Qh ⊂ Q, satisfying the discrete inf-sup condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖‖∇vh‖
≥ β > 0,(1.3)

where β is independent of h.
The stabilization we consider requires a coarser finite element velocity space,

XH ⊂ X, corresponding to the large scales of the fluid velocity. Since finite element
spaces are constructed based upon triangulations of the domain Ω, typically (although
not necessarily for our analysis) XH ⊂ Xh ⊂ X. We then define the following space:

LH = ∇XH ⊂ L = L2(Ω)d×d.(1.4)

The stabilized finite element method we consider herein is: find uh ∈ Xh, ph ∈ Qh,
and gH ∈ LH satisfying

(ν + α)(∇uh,∇vh) + b∗(uh, uh, vh)
−α(gH ,∇vh) − (ph,∇ · vh) = (f, vh) ∀vh ∈ Xh,

(∇ · uh, qh) = 0 ∀qh ∈ Qh,
(gH −∇uh, lH) = 0 ∀lH ∈ LH ,

(1.5)

where α is the user-selected stabilization parameter and typically, α = O(h). It is
easy to verify that the last equality in (1.5) implies that gH is the L2 projection of
∇uh, denoted by ∇uh.

In a typical implementation of (1.5), the variables gH , lH in LH are defined on
macroelements, i.e., elements of the coarse mesh. Thus, solving (1.5) involves coupling
of microvariables (functions in Xh, Qh) across macroelements. Thus, although these
terms are cheap to evaluate in a residual calculation, the bandwidth of the linearized
system arising from (1.5) increases substantially, and the solution of the linear system
containing these terms is not attractive. This issue is discussed briefly in Layton
[31] and at some length in John, Kaya, and Layton [27] and Anitescu, Layton, and
Pahlevani [2] for the evolutionary problem.

For this reason, we consider a further defect correction discretization of (1.2)
herein. This combination greatly increases efficiency by shifting the macro-micro cou-
pling to a residual calculation. The method consists of an initialization step followed
by k-correction steps, where k is the local polynomial degree of Xh.

Initialization step. Solve for (u1
h, p

1
h) ∈ (Xh, Qh) such that

(ν + α)(∇u1
h,∇vh) + b∗(u1

h, u
1
h, vh) − (p1

h,∇ · vh) = (f, vh) ∀vh ∈ Xh,
(∇ · u1

h, qh) = 0 ∀qh ∈ Qh.
(1.6)

k-correction steps. Given (uj
h, p

j
h) ∈ (Xh, Qh) for j = 1, 2 . . . , k, solve for (uj+1

h ,
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pj+1
h ) ∈ (Xh, Qh) satisfying

(ν + α)(∇(uj+1
h − uj

h),∇vh) + b∗(uj+1
h , uj+1

h , vh) − b∗(uj
h, u

j
h, vh) − (pj+1

h − pjh,∇ · vh)

= (f, vh) − [(ν + α)(∇uj
h,∇vh) + b∗(uj

h, u
j
h, vh) − (pjh,∇ · vh) − α(gjH ,∇vh)] ∀vh ∈ Xh,

(∇ · uj+1
h , qh) = 0 ∀qh ∈ Qh,(1.7)

(gjH −∇uj
h, lH) = 0 ∀lH ∈ LH .

Remark 1.1. It is typical that while defect correction methods are algorithmically
simple to implement, they are cumbersome to write (as above) and can resist analysis.
There are also several equivalent formulations of (1.7) and several algorithmic options
within the defect correction idea. We stress that this is not an iteration: only k steps
are performed, where k is the local polynomial degree of Xh. Thus, an asymptotic
analysis as j → ∞ is irrelevant; we analyze herein the method as h → 0 for fixed j.
The algorithmic efficiency of the defect correction method (1.6), (1.7) can be seen by
rewriting (1.7) as follows: find (uj+1

h , pj+1
h ) ∈ (Xh, Qh) satisfying

(ν + α)(∇uj+1
h ,∇vh) + b∗(uj+1

h , uj+1
h , vh)

−(pj+1
h ,∇ · vh) = (f, vh) + α(gjH ,∇vh) ∀vh ∈ Xh,

(∇ · uj+1
h , qh) = 0 ∀qh ∈ Qh,

(gjH −∇uj
h, lH) = 0 ∀lH ∈ LH .

(1.8)

Since uj
h is known in (1.8), gjH is explicitly calculable by computing the L2 projection

operator of ∇uj
h into LH . Because the natural choice for LH is LH = ∇XH , LH is

typically a space of discontinuous piecewise polynomials of degree k − 1 on a coarse
mesh. Therefore, this projection calculation uncouples into one well-conditioned small
linear system per coarse mesh element. Given gjH , the solution uj+1

h then only involves
solving an artificial viscosity discretization of the Navier–Stokes equations. If α =
O(h), this is known to lead to linearized systems which can be solved efficiently.

An alternative formulation of a defect correction method is to begin with nonlin-
ear, stabilized artificial viscosity approximation (1.6) for (u1

h, p
1
h) and then correct by

solving the linearized problem instead of the nonlinear one. This has the advantage
that only one linear solution is needed per correction step. This variation reads: given
(uj

h, p
j
h), find (uj+1

h , pj+1
h ) satisfying

(ν + α)(∇(uj+1
h − uj

h),∇vh) + b∗(uj
h, u

j+1
h − uj

h, vh) + b∗(uj+1
h − uj

h, u
j
h, vh)

−(pj+1
h − pjh,∇ · vh) = (f, vh) − [(ν + α)(∇uj

h,∇vh) + b∗(uj
h, u

j
h, vh)

−(pjh,∇ · vh) − α(gjH ,∇vh)] ∀vh ∈ Xh,

(∇ · uj+1
h , qh) = 0 ∀qh ∈ Qh,(1.9)

(gjH −∇uj
h, lH) = 0 ∀lH ∈ LH .

The correction (1.9) is in the familiar residual-update form. It can be simplified
to read: find (uj+1

h , pj+1
h ) satisfying

(ν + α)(∇uj+1
h ,∇vh) + b∗(uj

h, u
j+1
h , vh) + b∗(uj+1

h , uj
h, vh)

−(pj+1
h ,∇ · vh) = (f, vh) + b∗(uj

h, u
j
h, vh) + α(gjH ,∇vh) ∀vh ∈ Xh,

(∇ · uj+1
h , qh) = 0 ∀qh ∈ Qh,(1.10)

(gjH −∇uj
h, lH) = 0 ∀lH ∈ LH .
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1.1. Literature review for the defect correction method. The idea of
defect correction is simple and universal. In its initial form, it was considered an
algorithmically efficient way to perform Richardson’s extrapolation, e.g., Stetter [38].
Since most practical problems do not have enough regularity, the practical importance
was not recognized until the work of Hemker [21, 20] and Hemker and Koren [23, 22].
One current view of the defect correction method is that it allows for a solution that is
nearly nonsingular for ill-conditioned problems through stabilization and correction;
for a sample of recent works, see, e.g., Altase and Burrage [1], Axelsson and Nikolova
[4], Juncu [28], Graziadei, Mattheij, and Boonkkamp [16], Heinrichs [19, 18], Desideri
and Hemker [6], Nefedov and Mattheij [34], Shaw and Crumpton [37]. For example,
when applied to viscoelastic fluid flow (Lee [32]), the defect correction method proved
to be the key algorithmic idea for computing with a Weissenberg number beyond
which other algorithms failed.

Much analytical insight into defect correction methods was obtained early for
periodic constant coefficient problems by local model analysis. The first complete
convergence theory for defect correction methods for convection dominated problems
in one dimension was performed in Ervin and Layton [8] in which uniform epsilon
convergence was proven away from layers. This result was extended to higher dimen-
sions, higher order methods, and unstructured meshes in Axelsson and Layton [3].
Recently, global uniform in epsilon convergence on Shishkin meshes has been proven
in one dimension (Frohner, Linss, and Roos [11], Frohner and Roos [12], Hemker,
Shishkin, and Shishkina [24]).

It was noticed early by Hemker [21] that the defect correction method overcorrects
near layers and should be modified. Various proposals have been advanced, e.g.,
Hemker [21, 20], Hemker and Koren [22, 23], Ervin and Layton [7]. The one considered
herein is to correct the large scales only and leave a small amount of stabilization in
the small scales. This is a discretization idea of Layton [31] which is related to ideas
of Maday and Tadmor [33], Guermond [17], and Hughes, Mazzei, and Jansen [25].
For current work on this discretization for flow problems, see, e.g., Kaya and Rivière
[29], John and Kaya [26], and John, Kaya, and Layton [27].

Because of the attractive form of the defect correction method, it is particularly
efficient when used in conjunction with adaptivity. The first theoretical study and
computational testing of defect correction plus adaptivity was in Ervin, Layton, and
Maubach [9, 10] and Cawood et al. [5]. Interesting recent work in this direction has
been done by Nikolova [35] and Axelsson and Nikolova [4]. In particular, [10] considers
the problems of stationary turbulence with the Smagorinsky model. It was noted there
that the estimators decompose into residuals associated with the base discretization’s
numerical error, the defect correction method’s update error, and the turbulence
model’s modelling error—an interesting feature of both the defect correction method
and adaptive solution of various turbulence models.

2. Mathematical preliminaries. The error analysis we shall perform for the
method (1.6), (1.7) will be for nonsingular solutions of the Navier–Stokes equations
(1.1), (1.2). We thus collect a few useful facts about nonsingular solutions.

Definition 2.1. Let V and Vh denote, respectively, the divergence free subspaces
of X and Xh:

V : = {v ∈ X : (q,∇ · v) = 0 ∀q ∈ Q},
Vh : = {vh ∈ Xh : (qh,∇ · vh) = 0 ∀q ∈ Qh}.
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Although typically Vh � V , it is known that under the discrete inf-sup condition
(1.3), functions in V are well approximated by ones in Vh (Girault and Raviart [14]).

Lemma 2.2. Let the discrete inf-sup condition (1.3) hold. Then for any v ∈ V

inf
vh∈Vh

‖∇(v − vh)‖ ≤ C

(
1 +

1

β

)
inf

vh∈Xh

‖∇(v − vh)‖.(2.1)

Proof. We refer to [14, p. 60, (1.12)] for the proof of this lemma.
We shall define by M as a finite constant with

M = sup
u,v,w∈X

|b∗(u, v, w)|
‖∇u‖‖∇v‖‖∇w‖ .

Definition 2.3. u is a nonsingular solution of (1.1) if there is a μ(u, ν) > 0
such that

inf
v∈V

sup
w∈V

ν(∇v,∇w) + b∗(u, v, w) + b∗(v, u, w)

‖∇v‖‖∇w‖ ≥ μ(u, ν) > 0.(2.2)

Definition 2.4. u is an isolated solution of (1.1) if there is a δ > 0 such that
there exists no other solution u′ of (1.1) with ‖∇(u− u′)‖ < δ.

The following basic facts are known concerning the equilibrium Navier–Stokes
equations (1.1).

Proposition 2.5. (a) Given f ∈ H−1(Ω)d, there exists at least one (u, p) ∈
(X,Q) satisfying (1.1).

(b) For ‖f‖ small enough, that solution is unique and nonsingular.
(c) There is an open dense subset D ⊂ H−1(Ω)d such that for all f ∈ D, all

solutions of (1.1) are nonsingular and the number of solutions for each f ∈ D is finite
and odd.

(d) A nonsingular solution is isolated.
(e) Let u be a nonsingular solution of (1.1) with data f , and ũ another solution

with data f̃ . If ‖∇(u− ũ)‖ ≤ μ(u, ν)/(2M), then

‖∇(u− ũ)‖ ≤ 2

μ(u, ν)
‖f − f̃‖−1.

Proof. (a), (b), (c) are well known in the Navier–Stokes equations literature; see,
e.g., [14, Theorems 2.4, p. 115, and 2.5, p. 118] for (a), [14, Theorem 1.3, p. 108] for
(b), and Temam [39] for (c). Nonsingularity of the (unique) solution under the small
data condition is proven in Remark 2.3, p. 119 of [14]. Part (d) is a standard result
about nonsingular solutions of nonlinear problems; see, e.g., the remark on page 116
of [14]. Part (e) was proven in [30] and follows from nonsingularity and the mean
value theorem. Indeed, subtraction and the usual type arguments imply that

μ(u, ν)‖∇(u− ũ)‖ ≤ ‖f − f̃‖−1 + 2M‖∇(u− ũ)‖2,

from which (e) follows.
Since the set of invertible operators is open and b∗(·, ·, ·) is continuous in X, it is

known that the point of linearization in various terms of (2.2) can be shifted slightly
without changing the essential conclusions.

Lemma 2.6. Let u be a nonsingular solution of (1.1). Then there is a δ > 0 such
that for any α < δ, u′ and u′′ ∈ V with ‖∇(u− u′)‖ < δ, ‖∇(u− u′′)‖ < δ satisfying

inf
v∈V

sup
w∈V

(ν + α)(∇v,∇w) + b∗(u′, v, w) + b∗(v, u′′, w)

‖∇v‖‖∇w‖ ≥ 1

2
μ(u, ν).
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Proof. This is a standard result for C1 operators in nonlinear analysis (Schwartz
[36]). It is used in error analysis in [14, Lemma 3.3, p. 130].

It will be important to note that if (1.3) holds, the infimum and supremum in
Lemma 2.6 can also be taken over Vh.

Lemma 2.7. Let u be a nonsingular solution of (1.1). Then there is a δ > 0
such that for any α < δ, u′ and u′′ ∈ V or Vh with ‖∇(u−u′)‖ < δ, ‖∇(u−u′′)‖ < δ
satisfying

inf
vh∈Vh

sup
wh∈Vh

(ν + α)(∇vh,∇wh) + b∗(u′, vh, wh) + b∗(vh, u
′′, wh)

‖∇vh‖‖∇wh‖
≥ 1

2
μ(u, ν).

Proof. For the proof, see Girault and Raviart [14, Lemma 3.3, p. 130] and
especially [14, Remark 3.1, p. 130] that follows. The analysis in Remark 3.1 is a
continuity argument and applies with u′′ �= u′ (both close enough to u).

3. Error analysis. The basic principle of the defect correction method in this
context is that each step attempts to increase the rate of convergence by one power
of h up to the order of the basic method. To begin, note that (u1

h, p
1
h) is just the

usual artificial viscosity approximation to (u, p). Since the error analysis for this step
is standard (and a special case of the general step in which (u0

h, p
0
h) = (0, 0)), we

present the result only. The error analysis uses basic tools from [14, 15] and requires
a few basic assumptions on (Xh, Qh) that assume that (1.3) holds and that (Xh, Qh)
become dense in (X,Q) as h → 0. Specifically, we assume the following proposition.

Proposition 3.1. Let (1.3) hold. For any α ≥ 0 and f ∈ H−1(Ω)d, the algorithm
(1.6), (1.7) is well defined: there exist approximate solutions (uj

h, p
j
h) for j = 1, 2, . . . .

Proof. Existence of (u1
h, p

1
h) follows from the fact that (Xh, Qh) is finite dimen-

sional, the fixed point theory, and the following a priori bounds:

(α + ν)‖∇u1
h‖ ≤ ‖f‖−1,(3.1)

‖p1
h‖ ≤ β−1(2 + M(α + ν)−2)‖f‖−1.(3.2)

The first result (3.1) is obtained by setting vh = u1
h in (1.1). The second (3.2) follows

from (1.3), exactly as for the usual Galerkin approximation.
Given (uj

h, p
j
h) ∈ (Xh, Qh), the same argument can be used only in the formulation

(1.8) to prove existence of (uj+1
h , pj+1

h ), provided only that ‖gjH‖ is bounded. To see

this, note that in the second equation of (1.8), gjH is the L2 projection into LH of

∇uj
h. Thus, ‖gjH‖ ≤ ‖∇uj

h‖ < ∞, which is the required bound.
A similar result is true for the defect correction using the linearization (1.6), (1.9),

provided that h is small enough.
Proposition 3.2. Let (1.3) hold. Consider the algorithm (1.6), (1.9) (or equiva-

lently, (1.6), (1.10)). Assume that u is a nonsingular solution of (1.1). Fix a function
f ∈ H−1(Ω). Let α ≥ 0 tend to zero as h tends to zero. Then, there is h0 > 0 such
that for h ≤ h0, (u2

h, p
2
h) exists and is unique. More generally, if uj

h is close enough

to u in X, then (uj+1
h , pj+1

h ) exists and is unique.
Proof. This is a linearization argument. First we note that since (u1

h, p
1
h) is the

artificial viscosity approximation to a nonsingular solution, standard error analysis of
branches of nonsingular solutions, e.g., [14, 15], shows that limu1

h = u as h tends to 0
(see Proposition 3.3 for more detail). Now consider the correction step (1.10). It can
be rewritten as: find u2

h ∈ Vh satisfying

(ν + α)(∇u2
h,∇vh) + b∗(u1

h, u
2
h, vh) + b∗(u2

h, u
1
h, vh) = (G, vh) ∀vh ∈ Vh,
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where G = G(u1
h, p

1
h, g

1
H , . . . ) is known in terms of problem data and the solution of

the first step (u1
h, p

1
h). Since u1

h → u and u is a nonsingular solution, Lemma 2.7
implies that this linear problem has a unique solution. Thus, u2

h exists.
The remainder of the proof is an induction argument which follows similarly: once

u2
h exists uniquely and the linearization (1.10) at u1

h is invertible, it will follow that
u2
h converges to u as h tends to 0 (with appropriate error estimates). This implies

that u3
h exists uniquely and the argument is repeated.

Remark 3.1. This argument fails if (1.10) is an iteration since the constants
involved depend on j, but it is correct since it is a correction only performed a fixed
number of times. Concerning the error in u1

h, we have the following proposition.
Proposition 3.3. Assume the spaces (Xh, Qh) satisfy (1.3). Suppose u is a

nonsingular solution of the (1.1). Suppose α tends to 0 as h tends to 0. Then, there
is h0 > 0 such that for h ≤ h0 the error in (u1

h, p
1
h) satisfies

‖∇(u− u1
h)‖ ≤ C(β)

[
2

μ(u, ν)

(
α + ν +

2M

ν
‖f‖−1

)
+ 1

]
inf

vh∈Xh

‖∇(u− vh)‖

+
2

μ(u, ν)

[
inf

λh∈Qh

‖p− λh‖ + α‖∇u‖
]
,

‖p− p1
h‖ ≤

(
1 +

1

β

)
inf

λh∈Qh

‖p− λh‖ +
1

β

(
ν + α +

2M

ν
‖f‖−1

)
‖∇(u− u1

h)‖ +
α

β
‖∇u‖.

Proof. The proof that u1
h → u is standard, since u1

h is just the usual artificial
viscosity approximation, following, e.g., [14, 15]. We shall thus give the proof of only
the error bound since it gives the ideas of the proof of the general case in a simpler
context. The true solution (u, p) satisfies for any vh ∈ Vh, λh ∈ Qh

(ν + α)(∇u,∇vh) + b∗(u, u, vh) − (p− λh,∇ · vh) = (f, vh) + α(∇u,∇vh).(3.3)

Let ũ ∈ Vh be an approximation to u and write e1 = u−u1
h = η−φh, where φh = u1

h−ũ
and η = u− ũ. Subtracting from (3.3), equation (1.6) for (u1

h, p
1
h) gives

(ν + α)(∇e1,∇vh) + b∗(u, u, vh) − b∗(u1
h, u

1
h, vh) = (p− λh,∇ · vh) + α(∇u,∇vh).

(3.4)

The nonlinear term can be rewritten as

b∗(u, u, vh) − b∗(u1
h, u

1
h, vh) = b∗(e1, u, vh) + b∗(u1

h, e
1, vh)

= b∗(η, u, vh) − b∗(φh, u, vh) + b∗(u1
h, η, vh) − b∗(u1

h, φh, vh).

Using this decomposition of b∗(·, ·, ·) and splitting e1 = η − φh gives

(3.5)

(ν + α)(∇φh,∇vh) + b∗(φh, u, vh) + b∗(u1
h, φh, vh)

= (ν + α)(∇η,∇vh) + b∗(η, u, vh)

+ b∗(u1
h, η, vh) − (p− λh,∇ · vh) − α(∇u,∇vh) ∀(vh, λh) ∈ (Vh, Qh).

Applying standard bounds to the right-hand side of (3.5) gives

1

‖∇vh‖
[(ν + α)(∇φh,∇vh) + b∗(φh, u, vh) + b∗(u1

h, φh, vh)]

≤ (ν + α)‖∇η‖ + M(‖∇u‖ + ‖∇u1
h‖)‖∇η‖ + ‖p− λh‖ + α‖∇u‖.
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Taking the supremum over vh ∈ Vh, using Lemma 2.7 and a priori bounds on ‖∇u‖
and ‖∇u1

h‖ yield

1

2
μ(u, ν)‖∇φh‖ ≤

[
α + ν + M‖f‖−1

(
1

ν
+

1

ν + α

)]
‖∇η‖ + ‖p− λh‖ + α‖∇u‖.

By using the triangle inequality, taking the infimum over vh ∈ V h, λh ∈ Qh, and
using Lemma 2.2, one obtains the required result.

For the pressure estimate (just as for the Stokes problem) we begin with the error
equation for vh ∈ Xh (rather than Vh):

(p− p1
h,∇ · vh) = (ν + α)(∇e1,∇vh) + b∗(e1, u, vh) − b∗(u1

h, e
1, vh) − α(∇u,∇vh).

Write p− p1
h = p− λh − (p1

h − λh), where λh ∈ Qh approximates p well. Then

(p1
h − λh,∇ · vh) = (p− λh,∇ · vh) − (ν + α)(∇e1,∇vh)

−b∗(e1, u, vh) + b∗(u1
h, e

1, vh) + α(∇u,∇vh)

≤ [‖p− λh‖ + (ν + α)‖∇e1‖ + M(‖∇u‖ + ‖∇u1
h‖)‖∇e1‖

+α‖∇u‖]‖∇vh‖.

Dividing by ‖∇vh‖, taking the supremum over vh ∈ Xh, using the inf-sup condition
(1.3), and the triangle inequality, we have

‖p− p1
h‖ ≤

(
1 +

1

β

)
‖p− λh‖ +

1

β
(ν + α)‖∇e1‖

+
M

β
(‖∇u‖ + ‖∇u1

h‖)‖∇e1‖ +
α

β
‖∇u‖.

Finally, using a priori bounds (3.1), ν‖∇u‖ ≤ ‖f‖−1 gives the required result.
Concerning the error in the method we consider the variant (1.6), (1.9) in which

one linearized problem is solved per correction step. Intuitively, one would expect that
the defect correction method (1.6), (1.7) would be more robust and more accurate. On
the other hand, complete error analysis of the defect correction method with nonlinear
correction (1.6), (1.7) is an open problem in the case of large data and nonsingular
solutions.

Proposition 3.4. Consider (1.6), (1.9). Let u be a nonsingular solution of the
(1.1) and suppose (1.3) holds. Then, there is a δ > 0 such that if ‖∇(u − uj

h)‖ < δ,
for j = 1, 2 . . . ,

1

2
μ(u, ν)‖∇(u− uj+1

h )‖ ≤ C(β)

(
ν + α +

1

2
μ(u, ν) + 2M(δ + ‖∇u‖)

)
inf

vh∈Xh

‖∇(u− vh)‖

+
√

2 inf
λh∈Qh

‖p− λh‖ + α‖∇u−∇u‖

+M‖∇(u− uj
h)‖2 + α‖∇(u− uj

h)‖,
β‖p− pj+1

h ‖ ≤ C inf
λh∈Qh

‖p− λh‖ + [ν + α + 2M‖∇u‖]‖∇(u− uj+1
h )‖

+M‖∇(u− uj
h)‖2 + α‖∇(u− uj

h)‖ + α‖∇u−∇u‖.
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Proof. The variational formulation of (1.1) can be rewritten as follows: for any
vh ∈ Vh and λh ∈ Qh,

(ν + α)(∇u,∇vh) + b∗(uj
h, u, vh) + b∗(u, uj

h, vh) − (p− λh,∇ · vh)

= (f, vh) + [b∗(uj
h, u, vh) + b∗(u, uj

h, vh) − b∗(u, u, vh)]

+α(∇u,∇vh) + α(∇u−∇u,∇vh).(3.6)

The square bracketed term on the right-hand side of (3.6) becomes

b∗(uj
h, u, vh) + b∗(u, uj

h, vh) − b∗(u, u, vh) = −b∗(u− uj
h, u− uj

h, vh) + b∗(uj
h, u

j
h, vh).

(3.7)

Let ej+1 = u − uj+1
h , ej = u − uj

h and note that gH = ∇uj
h (by (1.10)). With

this notation subtract (1.10) from (3.6) and use (3.7) for the nonlinear terms on the
right-hand side. This gives

(ν + α)(∇ej+1,∇vh) + b∗(uj
h, e

j+1, vh) + b∗(ej+1, uj
h, vh)

= (p− λh,∇ · vh) − b∗(ej , ej , vh) + α(∇ej ,∇vh)

+α(∇u−∇u,∇vh) ∀(vh, λh) ∈ (Vh, Qh).

The remainder of the proof follows that of Proposition 3.3: we first split ej+1 = η−φh,
η = u − ũ, and φh = uj+1

h − ũ, where ũ ∈ Vh approximates u well. By using this
decomposition, nonlinear terms can be written as

b∗(uj
h, e

j+1, vh) + b∗(ej+1, uj
h, vh)

= b(uj
h, η, vh) − b(uj

h, φh, vh) + b(η, uj
h, vh) − b(φh, u

j
h, v

h).

Then, the use of splitting error and Lemma 2.7 give that for δ small enough (i.e.,
for uj

h close enough to u) the linear problem for ej+1 satisfies the inf-sup stability
condition. Thus, the following inequality for φh holds:

1

2
μ(u, ν)‖∇φh‖ ≤ (ν + α + 2M‖∇uj

h‖)‖∇η‖

+
√

2‖p− λh‖ + M‖∇ej‖2 + α‖∇ej‖ + α‖∇u−∇u‖.

Since uj
h is close enough to u ∈ X, we have ‖∇uj

h‖ ≤ δ + 2‖∇u‖. The triangle
inequality then implies that

1

2
μ(u, ν)‖∇ej+1‖ ≤

(
ν + α +

1

2
μ(u, ν) + 2M(δ + ‖∇u‖)

)
‖∇η‖

+
√

2‖p− λh‖ + M‖∇ej‖2 + α‖∇ej‖ + α‖∇u−∇u‖.

The pressure bound also follows from the case j = 1.
The error estimate Proposition 3.4 has four terms. The first term ‖∇(u − vh)‖

is the error in the best approximation to (u, p) ∈ (Xh, Qh). The second term ‖∇ej‖2

is the linearization error. Since this is quadratic, it is typically a higher order term.
The third, α‖∇ej‖, shows that each step of the defect correction method improves
the error in the previous step by one power of h (recall that typically α = O(h)). The
last term α‖∇u−∇u‖ arises from the error of the stabilized discretization.

As a result of Proposition 3.4, we can give the following corollaries.
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Corollary 3.5. In addition to the assumptions of Proposition 3.4, suppose
h ≤ H → 0 as h → 0 and α → 0 as h → 0. Suppose also Xh, Qh, LH become dense
in X,Q, and L, respectively, as h → 0. Then, there is an h0 > 0 such that for h ≤ h0

and j = 1, 2, . . . k, uj
h → u as h → 0.

Corollary 3.6. Suppose Xh, Qh, LH consist of piecewise polynomials of degree
k, k− 1, and k− 1, respectively. Suppose also that u ∈ Hk+1(Ω)∩X, p ∈ Hk(Ω)∩Q.
Then,

‖∇(u− u1
h)‖ ≤ C(u, p)[hk + α],

and in general,

‖∇(u− uj
h)‖ ≤ C(u, p, j)[hk + αHk + αj ].

This follows by inserting the approximation theoretical orders of convergence into
the right-hand side of Proposition 3.4 and keeping only dominant terms. For example,

‖∇(u− u2
h)‖ ≤ C(u, p)[hk + (hk + α)2 + α(hk + α) + αHk]

≤ C(u, p)[hk + αHk + α2].

The error estimate in the corollary explains the typical algorithmic choices:

j ≥ k : correction step,

α = α0h : regularization parameter,

H ≤ Ch1− 1
k : length scale of large structures.

4. Numerical studies. In this section, we consider some numerical experiments
for the implementation of defect correction algorithms proposed with (1.6), (1.10). In
particular, we present two numerical examples: one is a known analytical solution;
and the other is the driven cavity problem.

All computations are carried out in the domain Ω = [0, 1] × [0, 1]. We divide
our domain into triangles. We use Taylor–Hood elements, i.e., continuous piecewise
quadratic functions for the velocity space Xh and continuous piecewise linear functions
for the pressure space Qh. It is well known that this conforming pair of finite element
spaces satisfies the inf-sup condition (1.3). The coarse space LH is chosen to be
∇XH , where XH is the space of continuous piecewise quadratics on the coarse mesh.
For every grid, the first artificial viscosity system (1.6) is solved with α = h. Then,
k (the polynomial degree of the velocity approximation) defect correction steps are
performed. Hence, two correction steps are required for the Taylor–Hood element. All
the nonlinear systems are solved by using the Newton method with stopping criterion
10−6. Corollary 3.6 suggests that the algorithmic choices for h and H should be
h ∼ H2 or, equivalently, H ∼ h1/2 in order to obtain optimal error rates.

As a first numerical illustration, we study a numerical convergence to confirm the
error estimate given in Proposition 3.4. The prescribed solution is given by

u = −4y3x2, v = 2xy4, p = 2x + 3y − 2.

Dirichlet boundary conditions are chosen, and the right-hand side f is such that
(u, v, p) is the solution of (1.1). In this example, our numerical results are performed
for ν = 1. For the Taylor–Hood finite element spaces, the theory predicts a conver-
gence rate of O(h2) in the energy norm, O(h3) in the L2 norm for the velocity, and
O(h2) for the pressure.
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Table 1

Convergence rates by using the Galerkin finite element method.

h L2 error Rate H1
0 error Rate L2 pressure Rate

h=1/2 0.0093 0.2894 0.2934
h=1/4 0.0011 3.07 0.0710 2.02 0.0786 1.90
h=1/8 1.3181e-004 3.06 0.0177 2.00 0.0200 1.97
h=1/16 1.6321e-005 3.01 0.0044 2.00 0.0051 1.97

Table 2

Convergence rates by using the artificial viscosity method.

h L2 error Rate H1
0 error Rate L2 pressure Rate

h=1/4 0.0061 0.0844 0.4671
h=1/8 0.0032 0.93 0.0306 1.46 0.2146 1.12
h=1/16 0.0016 1.00 0.0137 1.15 0.1023 1.06

Table 3

Convergence rates of the subgrid stabilized defect correction method.

H h L2 error Rate H1
0 error Rate L2 pressure Rate

1/2 1/4 0.0012 0.0701 0.0824
1/4 1/8 1.4146e-004 3.08 0.0174 2.01 0.0224 1.87
1/8 1/16 1.7565e-005 3.01 0.0043 2.01 0.0059 1.92
1/16 1/32 2.1926e-006 3.00 0.0011 1.96 0.0015 1.97

Note that, since we try to verify the theory in this simplest setting, the first
numerical test problem does not require either a subgrid eddy viscosity method or
defect correction method for an accurate solution. However, the method (1.6), (1.10)
is fully comparable to the standard finite approach in this laminar case. In Table 1, the
error in the usual Galerkin discretization of the Navier–Stokes equations is presented.
In particular, we give L2 and H1

0 errors and the corresponding convergence rates. As
theory predicts, the optimal convergence rates are obtained. In Table 2, we present
convergence rates by using the artificial viscosity (AV) method where we perform only
initialization step (1.6) to solve Navier–Stokes equations. Since we choose α = h, it
is expected and observed that the convergence rates for this method are suboptimal.
In Table 3, the experimental rates of convergence for the subgrid stabilized defect
correction method are presented. The scalings between coarse and fine mesh are
chosen such that H ≤ h1/2 is satisfied. These numerical results demonstrate that the
rates of convergence are optimal, as the theory predicts. Hence, the stabilization used
in the method (1.6), (1.10) does not degrade rates of convergence in laminar flows.

Our second example is the benchmark problem of the underresolved driven cavity
at high Reynolds numbers. This problem is chosen because there is benchmark data
available for comparison. Even though the zero boundary condition assumed in the
theory is not valid here, the convergence theory can be extended to nonzero boundary
conditions smooth enough to be the trace of an H1 function. In this benchmark
problem, flow is driven by the tangential velocity field applied to the top boundary in
the absence of other body forces. On the segment {(x, 1) : 0 < x < 1}, the velocity
is equal to u = (1, 0). On the rest of the boundary, zero Dirichlet conditions are
imposed.



1650 SONGUL KAYA, WILLIAM LAYTON, AND BÉATRICE RIVIÈRE
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Fig. 1. Vertical midlines for ν = 10−2 for H = 1/4, h = 1/8.
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Fig. 2. Horizontal midlines for ν = 10−2 for H = 1/4, h = 1/8.

The drawbacks of usual, centered Galerkin methods for convection dominated
problems are well known and well documented. Also, the drawbacks of the unmodified
defect correction method, although less well known, are very well documented since
the 1982 work of Hemker [21, 20]. Thus, the focus of our experiments on the driven
cavity problem is to (i) show that the subgrid stabilized defect correction method gives
high quality, coarse mesh solutions (comparable to the benchmark, fine mesh results
of Ghia, Ghia, and Shin [13]), (ii) illustrate that stabilization of the finest resolved
scales is effective in suppressing the oscillations on the scales typical of the unstabilized
defect correction method, and (iii) illustrate the very substantial improvement in the
results produced by the relatively inexpensive correction steps.

We compute an approximate solution for ν = 10−2, ν = 25 × 10−4, and ν =
3125 × 10−7 for the driven cavity flow with regularization parameter α0 = 0.1. In
particular, we draw the x component of velocity along the vertical centerline and
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Fig. 3. Vertical midlines for ν = 25 × 10−4 for H = 1/8, h = 1/16.
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Fig. 4. Horizontal midlines for ν = 25 × 10−4 for H = 1/8, h = 1/16.

y component of velocity along the horizontal centerlines. We compare our results
to those obtained by Ghia, Ghia, and Shin [13]. The present numerical simulations
are considered on a very coarse mesh (h = 1/8, h = 1/16, h = 1/32) and they are
compared to the very fine mesh (h = 1/129) of [13]. Ghia’s algorithm is based on
the time dependent streamfunction using the coupled implicit and multigrid methods.
Their results are used as benchmark data as basis for comparison.

In Figures 1–6, we compare the results obtained by the AV method, the subgrid
stabilized defect correction method (1.6), (1.10), and the results of [13]. In the case
ν = 10−2, there is very little difference between the vertical midlines for all three
methods (Figure 1). For the horizontal midlines, the subgrid stabilized defect correc-
tion method is closer to Ghia, Ghia, and Shin’s results than the artificial viscosity
(see Figure 2).



1652 SONGUL KAYA, WILLIAM LAYTON, AND BÉATRICE RIVIÈRE
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Fig. 5. Vertical midlines for ν = 3125 × 10−7 for H = 1/16, h = 1/32.
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Fig. 6. Horizontal midlines for ν = 3125 × 10−7 for H = 1/16, h = 1/32.

In the cases of ν = 25 × 10−4 and ν = 3125 × 10−7, namely for higher Reynolds
number, Figures 3, 4, 5, and 6 clearly show that the subgrid stabilized defect correction
method performs much better than the artificial viscosity method, and is comparable
to the results obtained by Ghia, Ghia, and Shin on a more refined mesh.

5. Conclusion. The natural combination of defect correction with multiscale
stabilization retains the best features of both methods and overcomes many of their
deficits. The combination is accurate and efficient, and a convergence theory of the
combination is developed. This latter theory shows that the good accuracy and sta-
bility properties are no accident—they are general features of the method.

This combination has strong promise, but many open questions remain including
the correct extension of the method to time dependent problems, further numerical
analysis (other norms, error functionals, . . . ), and more extensive testing.
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Abstract. We prove that a certain finite difference scheme converges to the weak solution of
the Cauchy problem on a finite interval with periodic boundary conditions for the Camassa–Holm
equation ut − uxxt + 3uux − 2uxuxx − uuxxx = 0 with initial data u|t=0 = u0 ∈ H1([0, 1]). Here
it is assumed that u0 − u′′

0 ≥ 0, and in this case the solution is unique, globally defined, and energy
preserving.
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1. Introduction. In the past decade, the Camassa–Holm equation [3]

ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0(1.1)

has received considerable attention. With κ positive it models (see [4, 16, 12]) prop-
agation of unidirectional gravitational waves in a shallow water approximation, with
u representing the fluid velocity. The Camassa–Holm equation possesses many in-
triguing properties: It is, for instance, completely integrable and experiences wave
breaking in finite time for a large class of initial data. Most attention has been given
to the case with κ = 0 on the full line, that is,

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0,(1.2)

which has so-called peakon solutions, i.e., solutions of the form u(x, t) = ce−|x−ct| for
real constants c. Local and global well-posedness results as well as results concerning
breakdown are proved in [9, 14, 17, 20].

In this paper we study the Camassa–Holm equation (1.1) on a finite interval
with periodic boundary conditions. It is known that certain initial data give global
solutions, while other classes of initial data experience wave breaking in the sense
that ux becomes unbounded while the solution itself remains bounded. It suffices
to treat the case κ = 0, since solutions with nonzero κ are obtained from solutions
with zero κ by the transformation v(x, t) = u(x + κt, t) − κ. More precisely, the
fundamental existence theorem, due to Constantin and Escher [10], reads as follows:
If u0 ∈ H3([0, 1]) and m0 := u0 − u′′

0 ∈ H1([0, 1]) is nonnegative, then (1.2) has
a unique global solution u ∈ C([0, T ), H3([0, 1])) ∩ C1([0, T ), H2([0, 1])) for any T
positive. However, if m0 ∈ H1([0, 1]), with u0 not identically zero but

∫
m0 dx = 0,

then the maximal time interval of existence is finite. Furthermore, if u0 ∈ H1([0, 1])
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and m0 = u0−u′′
0 is a positive Radon measure on [0, 1], then (1.2) has a unique global

weak solution. Additional results in the periodic case can be found in [7, 10, 8, 11, 18].
Numerical results can be found in [4], where Camassa, Holm, and Hyman study
(1.2) using a pseudospectral method. Numerical schemes based on multipeakons are
examined in [2, 6, 5, 15].

In this paper, we prove convergence of a particular finite difference scheme for
the equation, thereby giving a constructive approach to the actual determination of
the solution. We work in the case where one has global solutions, that is, when
m0 ≥ 0. The scheme is semidiscrete: Time is not discretized, and we have to solve
a system of ordinary differential equations. We reformulate (1.1) to give meaning
in C([0, T ];H1[0, 1]) to solutions such as peakons, and we prove that our scheme
converges in C([0, T ];H1[0, 1]).

More precisely, we prove the following: Assume that vn is a sequence of continu-
ous, periodic, and piecewise linear functions on intervals [(i− 1)/n, i/n], i = 1, . . . , n,
that converges to the initial data v in H1([0, 1]) as n → ∞. Let un = un(x, t) be the
solution of the following system of equations:

mn
t = −D−(mnun) −mnDun,

mn = un −D−D+u
n,

(1.3)

with initial condition un|t=0 = vn. Here D± denotes forward and backward difference
operators relative to the lattice with spacing 1/n, and D = (D++D−)/2. Extrapolate
un from its lattice values at points i/n to obtain a continuous, periodic, and piecewise
linear function also denoted un. Assume that vn −D−D+v

n ≥ 0. Then un converges
in C([0, T ];H1([0, 1])) as n → ∞ to the solution u of the Camassa–Holm equation
with initial condition u|t=0 = v. The result includes the case when the initial data
v ∈ H1 is such that v − vxx is a positive Radon measure; see Corollary 2.5. For the
actual computations we discretize (1.3) using the forward Euler method. We prove
convergence of that method; see Theorem 3.1.

The numerical scheme (1.3) is tested on various initial data. In addition, we
study experimentally the convergence of other numerical schemes for the Camassa–
Holm equation. The numerical results are surprisingly sensitive in the explicit form of
the scheme, and, among the various schemes we have implemented, only the scheme
(1.3) converges to the unique solution.

2. Convergence of the numerical scheme. We consider periodic boundary
conditions and solve the equation on the interval [0, 1]. We are looking for solutions
that belong to H1([0, 1]), which is the natural space for the equation. Introduce the
partition of [0, 1] in points separated by a distance h = 1/n denoted xi = hi for
i = 0, . . . , n− 1. For any (u0, . . . , un−1) in R

n, we can define a continuous, periodic,
piecewise linear function u by

u(xi) = ui,(2.1)

in other words, the periodic polygon that passes through the points (xi, ui) for
i = 0, . . . , n − 1. It defines a bijection between R

n and the set of continuous, pe-
riodic, piecewise linear functions with possible break points at xi, and we will use this
bijection throughout this paper.

Given u = (u0, . . . , un−1), the quantity D±u given by

(D±u)i =
±1

h
(ui±1 − ui)
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gives the right and left derivatives, respectively, of u at xi. In these expressions, u−1

and un are derived from the periodicity conditions: u−1 = un−1 and un = u0. The
average Du between the left and right derivatives is given by

(Du)i =
1

2

(
(D+u)i + (D−u)i

)
=

1

2h
(ui+1 − ui−1).

The Camassa–Holm equation preserves the H1-norm. In order to see that, we
rewrite (1.2) in its Hamiltonian form (see [3]):

mt = −(mu)x −mux,(2.2)

with

m = u− uxx.(2.3)

Assuming that u is smooth enough so that integration by parts can be carried out,
we get

d

dt
‖u‖2

H1 = 2

∫ 1

0

(ut − uxxt)u dx = 2

∫ 1

0

umt dx

= −2

∫ 1

0

u(mu)x dx− 2

∫ 1

0

umux dx

= 2

∫ 1

0

uxmudx− 2

∫ 1

0

umux dx = 0,

and the H1-norm of u is preserved.
From (2.3) and (2.2), we derive a finite difference approximation scheme for the

Camassa–Holm equation and prove that it converges to the right solution. This is our
main result.

Theorem 2.1. Let vn be a sequence of continuous, periodic, and piecewise lin-
ear functions on [0, 1] that converges to v in H1([0, 1]) as n → ∞ and such that
vn −D−D+v

n ≥ 0. Then, for any given T > 0, the sequence un = un(x, t) of contin-
uous, periodic, and piecewise linear functions determined by the system of ordinary
differential equations

mn
t = −D−(mnun) −mnDun,

mn = un −D−D+u
n,

(2.4)

with initial condition un|t=0 = vn, converges in C([0, T ];H1([0, 1])) as n → ∞ to the
solution u of the Camassa–Holm equation (1.2) with initial condition u|t=0 = v.

If we interpret the functions as vectors in (2.4) (cf. (2.1)), the multiplications are
term-by-term multiplications of vectors. We also have to rewrite (1.2) in order to
make it well defined in the sense of distributions for functions that at least belong to
C([0, T ];H1([0, 1])); more precisely,

ut − uxxt = −3

2
(u2)x − 1

2
(u2

x)x +
1

2
(u2)xxx.(2.5)

A function u in L∞([0, T ];H1) is said to be a solution of the periodic Camassa–Holm
equation if it is periodic and satisfies (2.5) in the sense of distributions. In [11], a
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different definition of weak solutions for the Camassa–Holm equation is presented.
After proving our main theorem at the end of this section, we also prove that these
two definitions are equivalent.

In order to solve (2.4), we need to compute un from mn. It is simpler first to
consider sequences that are defined in R

Z, the set of all sequences, and then discuss
the periodic case. Let L denote the linear operator from R

Z to R
Z given, for all

u ∈ R
Z, by

Lu = u−D−D+u.

We want to find an expression for L−1. Introduce the Kronecker delta by δi = 1 if
i = 0, and zero otherwise. It is enough to find a solution g of

Lg = δ

which decays sufficiently fast at infinity because L−1m is then given, for any bounded
m ∈ R

Z, by the discrete convolution product of g and m:

L−1mi =
∑
j∈Z

gi−jmj .

For i nonzero the function g satisfies

gi − n2(gi+1 − 2gi + gi−1) = 0.(2.6)

The general solution of (2.6) for all i ∈ Z is given by

gi = Aeκ1i + Beκ2i,

where A, B are constants, κ1 = lnx1, κ2 = lnx2, and x1 and x2 are the solutions of

−n2x2 + (1 + 2n2)x− n2 = 0.

Here x1 and x2 are real and positive, and x1x2 = 1 implies that κ2 = −κ1. We set
κ = κ1 = −κ2. After some calculations, we get

κ = ln

(
1 + 2n2 +

√
1 + 4n2

2n2

)
.(2.7)

We take g of the form

gi = c e−κ|i|

so that g satisfies (2.6) for all i 	= 0 and decays at infinity. The constant c is determined
by the condition that (Lg)0 = 1, which yields

c =
1

1 + 2n2(1 − e−κ)
.

We periodize g in the following manner:

gpi ≡
∑
k∈Z

gi+kn = c
e−κi + eκ(i−n)

1 − e−κn
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for i ∈ {0, . . . , n−1}. The inverse of L on the set of periodic sequences is then given by

ui = L−1mi =

n−1∑
j=0

gpi−jmi =
c

1 − e−κn

n−1∑
j=0

(e−κ(i−j) + eκ(i−j−n))mj .(2.8)

Hence,

L

(
n−1∑
j=0

gpi−jmj

)
i

= L

(∑
l∈Z

gi−lml

)
i

= mi.

For sufficiently smooth initial data (u0 ∈ H3 and m0 ∈ H1) which satisfies
m0 ≥ 0, Constantin and Escher [9] proved that there exists a unique global solution of
the Camassa–Holm equation belonging to C(R+;H3)∩C1(R+;H2). The proof of this
result relies heavily on the fact that if m is nonnegative at t = 0, then m remains non-
negative for all t > 0. An important feature of our scheme is that it preserves this prop-
erty. (For simplicity we have here dropped the superscript n appearing on u and m.)

Lemma 2.2. Assume that mi(0) ≥ 0 for all i = 0, . . . , n−1. For any solution u(t)
of the system (2.4), we have that mi(t) ≥ 0 for all t ≥ 0 and for all i = 0, . . . , n− 1.

Proof. Let us assume that there exist t > 0 and i ∈ {0, . . . , n− 1} such that

mi(t) < 0.(2.9)

We consider the time interval F in which m remains positive:

F = {t ≥ 0 | mi(t̃) ≥ 0 for all t̃ ≤ t and i ∈ {0, . . . , n− 1}}.

Because of assumption (2.9), F is bounded and we define

T = supF.

By definition of T , for any integer j > 0, there exists a t̃j and an ij such that
T < t̃j < T + 1

j and mij (t̃j) < 0. The function mij (t) is a continuously differentiable

function of t. Hence, mij (T ) ≥ 0 and there exists a tj such that

mij (tj) = 0,

with T ≤ tj < T + 1
j .

Since ij can only take a finite number of values (ij ∈ {0, . . . , n− 1}), there exists
a p ∈ {0, . . . , n − 1} and a subsequence jk such that ijk = p. The function mp(t)
belongs to C1 and, since tjk → T , we have

mp(T ) = 0.(2.10)

We denote by G the set of indices for which (2.10) holds:

G = {k ∈ {0, . . . , n− 1} | mk(T ) = 0}.

G is nonempty because it contains p. If G = {0, . . . , n − 1}, then mk(T ) = 0 for all
k and m must be the zero solution, because we know from Picard’s theorem that the
solution of (2.4) is unique.
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If G 	= {0, . . . , n− 1}, then there exists an l ∈ {0, . . . , n− 1} such that

ml−1(T ) > 0, ml(T ) = 0,
dml

dt
(T ) ≤ 0.(2.11)

The last condition, dml

dt (T ) ≤ 0, comes from the definition of T that would be con-

tradicted if we had dml

dt (T ) > 0. Note that we also use the periodicity of m, which in
particular means that if l = 0, then ml−1(T ) = m−1(T ) = mn−1(T ).

In (2.4), for i = l and t = T , the terms involving ml(T ) cancel and

dml

dt
(T ) =

ml−1(T )ul−1(T )

h
.

The fact that all the mi(T ) are positive, with one of them, ml−1(T ), strictly positive,
implies that ui is strictly positive for all indices i; see (2.8). Since, in addition,
ml−1(T ) > 0, we get

dml

dt
(T ) > 0,

which contradicts the last inequality in (2.11), and therefore our primary assumption
(2.9) does not hold. The lemma is proved.

We want to establish a uniform bound on the H1-norm of the sequence un. Recall
that un is a continuous piecewise linear function (with respect to the space variable),
and its L2-norm can be computed exactly. We find

‖un‖2
L2 =

1

n

n−1∑
i=0

1

3
((un

i+1)
2 + un

i u
n
i+1 + (un

i )2).(2.12)

The derivative un
x of un is piecewise constant, and therefore we have

‖un
x‖

2
L2 =

1

n

n−1∑
i=0

(D+u
n)2i .(2.13)

We define a renormalized norm ‖ · ‖l2 and the corresponding scalar product on R
n by

‖un‖l2 =

√√√√ 1

n

n−1∑
i=0

(un
i )2, 〈un, vn〉l2 =

1

n

n−1∑
i=0

un
i v

n
i .

The following inequalities hold:

1

2
‖un‖l2 ≤ ‖un‖L2 ≤ ‖un‖l2 ,(2.14)

which make the two norms ‖ · ‖l2 and ‖ · ‖L2 uniformly equivalent independently of n.
In (2.14), un either denotes an element of R

n or the corresponding continuous piece-
wise linear function as defined previously. By using the Cauchy–Schwarz inequality
and the periodicity of un, it is not hard to prove that

‖un‖L2 ≤ ‖un‖l2 .
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For the other equality, it suffices to see that (2.12) can be rewritten as

‖un‖2
L2 =

1

3n

n−1∑
i=0

[(
un
i+1 +

1

2
un
i

)2

+
3

4
(un

i )2

]
,

which implies

1

2
‖un‖l2 ≤ ‖un‖L2 .

We are now in a position to establish a uniform bound on the H1-norm of un. Let
En(t) denote

En(t) =
(
‖un(t)‖2

l2 + ‖D+u
n(t)‖2

l2

) 1
2

,(2.15)

which provides an approximation of the H1-norm of un(t). We have, from (2.14) and
(2.13),

1

2
‖un(t)‖H1 ≤ En(t) ≤ ‖un(t)‖H1 .(2.16)

The derivative of En(t)2 reads

dEn(t)2

dt
=

2

n

n−1∑
i=0

[
un
i u

n
i,t + D+u

n
i D+u

n
i,t

]

=
2

n

n−1∑
i=0

(un
i −D−D+u

n
i )tu

n
i (summation by parts)

= − 2

n

n−1∑
i=0

[D−(mnun)iu
n
i + mn

i Dun
i u

n
i ] by (2.4)

=
2

n

n−1∑
i=0

[mn
i u

n
i (D+u

n
i −Dun

i )] .

Since

D+u
n
i −Dun

i =
1

2

[
D+u

n
i −D+u

n
i−1

]
=

1

2n
D−D+u

n
i ,

we get

dEn(t)2

dt
=

1

n

n−1∑
i=0

[
mn

i u
n
i

1

n
D−D+u

n
i

]
=

1

n2

n−1∑
i=0

[mn
i u

n
i (−mn

i + un
i )] ,(2.17)

and, because un
i is positive (see (2.8)),

dE2
n(t)

dt
≤ 1

n2

n−1∑
i=0

mn
i (un

i )2.(2.18)

A summation by parts gives us that

1

n

n−1∑
i=0

mn
i u

n
i = En(t)2.
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Since L∞ is continuously embedded in H1, there exists a constant O(1), independent
of n, such that

max
i

un
i ≤ O(1) ‖un‖H1 ≤ O(1)En(t).

Hence, (2.18) implies

E′
n(t) ≤ O(1)

n
En(t)2

and, after integration,

1

En(t)
≥ 1

En(0)
− O(1)

n
t.

Since un(0) = vn tends to v in H1, ‖un(0)‖H1 and therefore En(0) are bounded. It
implies that En(0)−1 is bounded from below by a strictly positive constant and, for
any given T > 0, there exists N ≥ 0 and constant C ′ > 0 such that for all n ≥ N and
all t ∈ [0, T ], we have En(0)−1 −O(1)t/n ≥ 1/C ′. Hence,

‖un‖H1 ≤ 2En(t) ≤ 2C ′(2.19)

and, by (2.16), the H1-norm of un(t) is uniformly bounded in [0, T ]. This result also
guarantees the existence of solutions to (2.4) in [0, T ] (at least, for n big enough) be-
cause, on [0, T ], we have that maxi |un

i (t)| = ‖un( · , t)‖L∞ ≤ O(1) ‖un(t)‖H1 remains
bounded.

To prove that we can extract a converging subsequence of un, we need some
estimates on the derivative of un.

Lemma 2.3. We have the following properties:
(i) un

x is uniformly bounded in L∞([0, 1]).
(ii) un

x has a uniformly bounded total variation.
(iii) un

t is uniformly bounded in L2([0, 1]).
Proof. (i) From (2.8), we get

D+u
n
i =

c

1 − e−κn

n−1∑
j=0

[
mn

j e
−κ(i−j)

(
e−κ − 1

h

)
+ mn

j e
κ(i−j−n)

(
eκ − 1

h

)]
,

where κ is given by (2.7).
One easily gets the following expansion for κ as h tends to 0:

κ = h + o(h2),

which implies that for all i ∈ {0, . . . , n− 1},

|D+u
n
i | ≤ (1 + O (h))

c

1 − e−κn

n−1∑
j=0

( ∣∣mn
j

∣∣ e−κ(i−j) +
∣∣mn

j

∣∣ eκ(i−j−n)
)

≤ (1 + O (h))
c

1 − e−κn

n−1∑
j=0

(
mn

j e
−κ(i−j) + mn

j e
κ(i−j−n)

)
≤ (1 + O (h))un

i ,(2.20)
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where we have used the positivity of mn and relation (2.8). Hence, since ‖un‖L∞ is
uniformly bounded, we get a uniform bound on ‖un

x‖L∞ .
(ii) For each t the total variation of un

x( · , t) is given by

TV(un
x) = sup

φ∈C1,‖φ‖L∞≤1

∫ 1

0

un
x(x)φx(x) dx.

On the interval (xi, xi+1), the function un
x is constant and equal to D+u

n
i . Therefore,

∫ 1

0

un
x(x)φx(x) dx =

n−1∑
i=0

D+u
n
i

∫ xi+1

xi

φx(x) dx =

n−1∑
i=0

D+u
n
i (φ(xi+1) − φ(xi))

=

n−1∑
i=0

1

n
D+u

n
i D+φ(xi) = −

n−1∑
i=0

1

n
(D−D+u

n
i )φ(xi)

and

TV(un
x) ≤ 1

n

n−1∑
i=0

|D−D+u
n
i | .

Since mn
i and un

i are positive for all i,

|D−D+u
n
i | = |mn

i − un
i | ≤ mn

i + un
i ≤ 2un

i −D−D+u
n
i .

When summing over i on the right-hand side of the last inequality, we see that the
term D−D+u

n
i disappears, and we get

TV(un
x) ≤ 2 max

i
un
i ≤ O(1) ‖un‖H1 ≤ O(1)

for all t.
(iii) In order to make the ideas clearer, we first sketch the proof directly on (2.2).

Assuming that m is positive and u is in H1, we see how, from (2.2), ut can be defined
as an element of L2([0, 1]). This will be useful when we afterwards derive a uniform
bound for un

t in L2([0, 1]).
For all smooth v, we have∫ 1

0

ut v dx =

∫ 1

0

(L−1mt) v dx,

where L denotes the operator Lu = u− uxx, which is a self-adjoint homeomorphism
from H2 to L2. If we let w = L−1v, the continuity of L−1 implies

‖w‖H2 ≤ O(1) ‖v‖L2(2.21)

for some constant O(1) independent of v.
We find∫ 1

0

ut v dx =

∫ 1

0

(
L−1mt

)
v dx =

∫ 1

0

mt L−1v dx (L−1 is self-adjoint)

= −
∫ 1

0

((mu)x + mux)w dx =

∫ 1

0

(muwx −muxw) dx.
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The integrals here must be understood as distributions. Even so, some terms (like
mux) are not well defined as distributions. However, we get the same results rigorously
by considering the equation written as a distribution (2.5). We have∣∣∣∣

∫ 1

0

ut v dx

∣∣∣∣ ≤
∫ 1

0

(|muwx| + |muxw|) dx

≤ (‖u‖L∞ ‖wx‖L∞ + ‖ux‖L∞ ‖w‖L∞)

∫ 1

0

|m| dx.

Recall that ‖u‖L∞ and ‖ux‖L∞ are uniformly bounded. Furthermore, m positive

implies
∫ 1

0
|m| =

∫ 1

0
m =

∫ 1

0
u ≤ ‖u‖L∞ , and therefore m is also uniformly bounded.

From (2.21) and the fact that H1 is continuously embedded in L∞, we get

‖wx‖L∞ ≤ O(1) ‖wx‖H1 ≤ O(1) ‖w‖H2 ≤ O(1) ‖v‖L2 ,

and similarly

‖w‖L∞ ≤ O(1) ‖v‖L2 .

Finally, ∣∣∣∣
∫ 1

0

ut v dx

∣∣∣∣ ≤ O(1) ‖v‖L2 ,

which implies, by Riesz’s representation theorem, that ut is in L2 and

‖ut‖L2 ≤ O(1).

We now turn to the analogous derivations in the discrete case. Consider the sequence
un. The aim is to derive a uniform bound for un

t in L2. We take a continuous piecewise
linear function vn,

〈un
t , v

n〉l2 =
〈
L−1mn

t , v
n
〉
l2

=
〈
mn

t , L
−1vn

〉
l2
,(2.22)

because L and therefore L−1 are self-adjoint.
Let wn denote

wn = L−1vn.

We have

〈vn, wn〉l2 = 〈Lwn, wn〉l2 =
1

n

n−1∑
i=0

(wn
i −D−D+w

n
i )wn

i =
1

n

n−1∑
i=0

[
(wn

i )2 + (D+w
n
i )2
]
.

Then, after using (2.16) and Cauchy–Schwarz, we get

‖wn‖2
H1 ≤ 4 ‖vn‖l2 ‖wn‖l2 .

By (2.14), (2.16) we find

‖wn‖2
H1 ≤ O(1) ‖vn‖l2 ‖wn‖H1
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and

‖wn‖H1 ≤ O(1) ‖vn‖l2 ,(2.23)

where O(1) is a constant independent of n. Since H1 is continuously embedded in
L∞, we get

max
i

|wn
i | ≤ O(1) ‖vn‖l2 .(2.24)

Let us define yn as follows:

yni = (D+w
n)i−1.

We want to find a bound on yn. From (2.14) and (2.23), we get

‖yn‖l2 ≤ ‖wn‖H1 ≤ O(1) ‖vn‖l2 .(2.25)

We also have, using the definition of yn and wn,

D+y
n = D−D+w

n = wn − vn,

which gives

‖D+y
n‖l2 ≤ O(1) ‖vn‖l2(2.26)

because, by (2.23),

‖wn‖l2 ≤ O(1) ‖vn‖l2 .

Equations (2.25), (2.26), and (2.16) give us a uniform bound on the H1-norm of
yn:

‖yn‖H1 ≤ O(1) ‖vn‖l2 .

Since H1 is continuously embedded in L∞, we get

max
i

|D+w
n
i | = max

i
|yni | = ‖yn‖L∞ ≤ O(1) ‖vn‖l2 .(2.27)

Going back to (2.22), we have

〈un
t , v

n〉l2 = 〈mn
t , w

n〉l2 = 〈−D−(mnun) −mnDun, wn〉l2
= 〈mnun, D+w

n〉l2 − 〈mnDun, wn〉l2 .

Hence,

|〈un
t , v

n〉l2 | ≤
1

n

(
max

i
|un

i |max
i

|D+w
n
i | + max

i
|D+u

n
i |max

i
|wn

i |
) n−1∑

i=0

|mn
i | .

The functions un
i and D+u

n
i are uniformly bounded with respect to n and

1

n

n−1∑
i=0

|mn
i | =

1

n

n−1∑
i=0

mn
i (mn is positive)

=
1

n

n−1∑
i=0

un
i

(
cancellation of

∑n−1
i=0 D−D+u

n
i

)
≤ O(1) (un

i is bounded).
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Finally, using the bounds we have derived on wn (see (2.24)) and D+w
n (see (2.27)),

we get

|〈un
t , v

n〉l2 | ≤ O(1) ‖vn‖l2 .

Taking vn = un
t yields

‖un
t ‖l2 ≤ O(1),

which, since the l2- and L2-norms are uniformly equivalent, gives us a uniform bound
on ‖un

t ‖L2 .
To prove the existence of a converging subsequence of un in C([0, T ], H1) we recall

the following compactness theorem given by Simon [21, Corollary 4].
Theorem 2.4 (Simon [21]). Let X,B, Y be three continuously embedded Ba-

nach spaces

X ⊂ B ⊂ Y,

with the first inclusion, X ⊂ B, compact. We consider a set F of functions mapping
[0, T ] into X. If F is bounded in L∞([0, T ], X) and ∂F

∂t = {∂f
∂t | f ∈ F} is bounded

in Lr([0, T ], Y ), where r > 1, then F is relatively compact in C([0, T ], B).
We now turn to the proof of our main theorem.
Proof of Theorem 2.1. (i) First we establish that there exists a subsequence of

un that converges in C([0, T ], H1) to an element u ∈ H1. To apply Theorem 2.4, we
have to determine the Banach spaces with the required properties. In our case, we
take X as the set of functions of H1 which have derivatives of bounded variation:

X =
{
v ∈ H1 | vx ∈ BV

}
.

X endowed with the norm

‖v‖X = ‖v‖H1 + ‖vx‖BV = ‖v‖H1 + ‖vx‖L∞ + TV(vx)

is a Banach space. Let us prove that the injection X ⊂ H1 is compact. We consider
a sequence vn which is bounded in X. Since ‖vn‖L∞ is bounded (H1 ⊂ L∞ contin-
uously), there exists a point x0 such that vn(x0) is bounded and we can extract a
subsequence (that we still denote vn) such that vn(x0) converges to some l ∈ R. By
Helly’s theorem, we can also extract a subsequence such that

vn,x → w a.e.(2.28)

for some w ∈ L∞. By Lebesgue’s dominated convergence theorem, it implies that
vn,x → w in L2. We set

v(x) = l +

∫ x

x0

w(s) ds.

We have that vx = w a.e. We also have

vn(x) = vn(x0) +

∫ x

x0

vn,x(s) ds,

which together with (2.28) implies that vn converges to v in L∞. Therefore vn con-
verges to v in H1 and X is compactly embedded in H1.
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The estimates we have derived previously give us that un and un
t are uniformly

bounded in L∞([0, T ], X) and L∞([0, T ], L2), respectively. Since X ⊂ H1 ⊂ L2 with
the first inclusion compact, Simon’s theorem gives us the existence of a subsequence
of un that converges in C([0, T ], H1) to some u ∈ H1.

(ii) Next we show that the limit we get is a solution of the Camassa–Holm equation
(1.2).

Let us now take ϕ in C∞([0, 1]× [0, T ]) and multiply, for each i, the first equation
in (2.4) by hϕ(xi, t). We denote by ϕn the continuous piecewise linear function given
by ϕn(xi, t) = ϕ(xi, t). We sum over i and get, after one summation by parts,

n−1∑
i=0

h
(
un
i,t − (D−D+u

n
i )t
)
ϕn
i =

n−1∑
i=0

h(un
i )2D+ϕi︸ ︷︷ ︸
A

−
n−1∑
i=0

hun
i D−D+u

n
i D+ϕ

n
i︸ ︷︷ ︸

B

−
n−1∑
i=0

hun
i Dun

i ϕ
n
i︸ ︷︷ ︸

C

+

n−1∑
i=0

hD−D+u
n
i Dun

i ϕ
n
i︸ ︷︷ ︸

D

.(2.29)

We are now going to prove that each term in this equality converges to the corre-
sponding terms in (2.5).

Term A. We want to prove that

〈
(un)2D+ϕ

n
〉
→
∫ 1

0

u2ϕx dx,(2.30)

where we have introduced the notation

〈u〉 = h

n−1∑
i=0

ui

to denote the average of a quantity u. We have∣∣∣∣
∫ 1

0

u2ϕx dx−
〈
(un)2D+ϕ

n
〉∣∣∣∣ ≤

∣∣∣∣
∫ 1

0

(u2 − (un)2)ϕx dx

∣∣∣∣
+

∣∣∣∣
∫ 1

0

(un)2(ϕx −D+ϕ
n) dx

∣∣∣∣
+

∣∣∣∣
∫ 1

0

(un)2D+ϕ
n dx−

〈
(un)2D+ϕ

n
〉∣∣∣∣ .

The first term tends to zero because un → u in L2 for all t ∈ [0, T ]. The second tends
to zero by Lebesgue’s dominated convergence theorem. It remains to prove that the
last term tends to zero.

The integral of a product between two continuous piecewise linear function, v
and w, and a piecewise constant function z can be computed explicitly. We skip the
details of the calculation and directly give the result:∫ 1

0

zvw dx =
1

3
〈zS+vS+w〉 +

1

6
〈zS+vw〉 +

1

6
〈zvS+w〉 +

1

3
〈zvw〉 .(2.31)
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Here S+ and S− denote shift operators

(S±u)i = ui±1.

After using (2.31) with v = w = un and z = D+ϕ
n, we get∫ 1

0

(un)2D+ϕ
n −

〈
(un)2D+ϕ

n
〉

=
1

3
〈(S+u

n − un)D+ϕ
nun〉

+
1

3

〈
(un)2D+(S−ϕ

n − ϕn)
〉
.

We use the uniform equivalence of the l2- and L2-norms to get the following estimate:

〈(S+u
n − un)D+ϕ

nun〉 ≤ ‖S+u
n − un‖l2 ‖D+ϕ

nun‖l2 (Cauchy–Schwarz)

≤ O(1) ‖un( · + h) − un( · )‖L2 .(2.32)

Since un ∈ H1, we have (see, for example, [1])

‖un( · + h) − un( · )‖L2 ≤ h ‖un
x‖L2 ≤ O(1)h

because ‖un
x‖L∞ is uniformly bounded. Hence |〈(S+u

n − un)D+ϕ
nun〉| tends to zero.

The quantity
〈
(un)2D+(S−ϕ

n − ϕn)
〉

tends to zero because ϕ is C∞ and un uniformly
bounded. We have proved (2.30).

Term B. We want to prove

〈unD−D+u
nD+ϕ

n〉 → 1

2

∫ 1

0

u2ϕxxx dx−
∫ 1

0

u2
xϕx.(2.33)

We rewrite unD−D+u
n in such a way that the discrete double derivative D−D+ does

not appear in a product (so that we can later sum by parts). We have

unD−D+u
n =

1

2
(D−D+((un)2) −D+u

nD+u
n −D−u

nD−u
n).

We can prove in the same way as we did for term A that〈
D−D+((un)2)D+ϕ

n
〉

=
〈
(un)2D−D+D+ϕ

n
〉

(summation by parts)

→
∫ 1

0

u2ϕxxx dx.

The quantity (un
x)2ϕn

x is a piecewise constant function. Therefore,∫ 1

0

(un
x)2ϕn

x dx = 〈D+u
nD+u

nD+ϕ
n〉 .

Since un
x → in L2 for all t ∈ [0, T ] and

∫ 1

0

u2
xϕx dx− 〈D+u

nD+u
nD+ϕ

n〉 =

∫ 1

0

(u2
x − (un

x)2)ϕx dx +

∫ 1

0

(un
x)2(ϕx − ϕn

x) dx,

we have

〈D+u
nD+u

nD+ϕ
n〉 →

∫ 1

0

u2
xϕx dx.



FINITE DIFFERENCE SCHEMES FOR CAMASSA–HOLM EQUATION 1669

In the same way, we get

〈D−u
n
i D−u

n
i D+ϕ

n〉 →
∫ 1

0

u2
xϕx

and (2.33) is proved.
Term C. We want to prove

〈unDunϕn〉 →
∫ 1

0

uuxϕdx.(2.34)

We have∫ 1

0

uuxϕdx− 〈unD+u
nϕn〉 =

∫ 1

0

(u− un)uxϕdx +

∫ 1

0

un(ux − un
x)ϕdx

+

∫ 1

0

unun
x(ϕ− ϕn) dx +

∫ 1

0

unun
xϕ

n dx

− 〈unD+u
nϕn〉 .

The first two terms converge to zero because un → u in H1 for all t ∈ [0, T ]. The
third term converges to zero by Lebesgue’s dominated convergence theorem. We use
(2.31) to evaluate the last integral:∫ 1

0

unun
xϕ

n dx =
1

3
〈D+u

nS+u
nS+ϕ

n〉 +
1

6
〈D+u

nS+u
nϕn〉

+
1

6
〈D+u

nunS+ϕ
n〉 +

1

3
〈D+u

nunϕn〉 .

Using the same type of arguments as those we have just used for term A, we can show
that ∫ 1

0

unun
xϕ

n dx → 〈D+u
nunϕn〉 .

Thus, in order to prove (2.34), it remains to prove that

〈D+u
nunϕn〉 − 〈Dununϕn〉 → 0.(2.35)

Since D = 1
2 (D+ + D−), we have

〈D+u
nunϕn〉 − 〈Dununϕn〉 =

1

2
〈(D+u

n −D−u
n)unϕn〉

and

|〈(D+u
n −D−u

n)unϕn〉| ≤ C

n−1∑
i=0

h
∣∣D+u

n
i −D+u

n
i−1

∣∣
≤ O(1)

∫ 1

0

|un
x(x) − un

x(x− h)| dx

≤ O(1)h TV(un
x).

Since TV(un
x) is uniformly bounded, (2.35) holds and we have proved (2.34).
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Term D. We want to prove that

〈D−D+u
nDunϕn〉 → −1

2

∫ 1

0

u2
xϕx dx.(2.36)

We have

1

2

∫ 1

0

u2
xϕx dx+ 〈D−D+u

nDunϕn〉(2.37)

=
1

2

∫ 1

0

(u2
x − (un

x)2)ϕx dx +
1

2

∫ 1

0

(un
x)2(ϕx −D−ϕ

n) dx(2.38)

− 1

2
〈D+(D+u

nD+u
n)ϕn〉 + 〈D−D+u

nDunϕn〉 .(2.39)

The two first terms on the right-hand side tend to zero. After using the identity

D+(D+u
nD+u

n) = D+D+u
nD+u

n + D+D+u
nD+S+u

n,

we can rewrite the two last terms in (2.37) as

−1

2
〈D+(D+u

nD+u
n)ϕn〉 + 〈D−D+u

nDunϕn〉

= −1

2
〈D−D+S+u

nD+u
nϕn〉 − 1

2
〈D−D+S+u

nD+S+u
nϕn〉

+
1

2
〈D−D+u

nD+S−u
nϕn〉 +

1

2
〈D−D+u

nD+u
nϕn〉

=
1

2
〈D−D+u

nD−u
n(ϕn − S−ϕ

n)〉 +
1

2
〈D−D+u

nD+u
n(ϕn − S−ϕ

n)〉 ,

which tends to zero because, as we have seen before, due to the positivity of m,
〈|D−D+u

n
i D+u

n
i |〉 is uniformly bounded. We have proved (2.36).

Up to now we have not really considered the time variable. We integrate (2.29)
with respect to time and integrate by parts the left-hand side:

∫ T

0

n−1∑
i=0

h
(
un
i,t −D−D+u

n
i,t

)
ϕ(xi, t) dt = −

∫ T

0

n−1∑
i=0

h (un
i −D−D+u

n
i )ϕt(xi, t) dt

+

[
n−1∑
i=0

h (un
i −D−D+u

n
i )ϕ(xi, t)

]t=T

t=0

;

after summing by parts, the limit of this expression is (we use Lebesgue’s dominated
convergence theorem with respect to x and t)

−
∫ T

0

∫ 1

0

u(ϕt − ϕtxx) dxdt +

[∫ 1

0

u(ϕ− ϕxx) dx

]t=T

t=0

.

It is not hard to see that the right-hand side of (2.29) is uniformly bounded by a
constant, and we can integrate over time and use the Lebesgue dominated convergence
theorem to conclude that u is indeed a solution of (2.5) in the sense of distribution.

The analysis in [11] shows that the weak solution of the Camassa–Holm equation
with initial conditions satisfying m(x, 0) ≥ 0 is unique. This implies that in our
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algorithm not only a subsequence but the whole sequence un converges to the solution.
However, in [11], a solution of the Camassa–Holm equation is defined as an element
u of H1 satisfying

ut + uux +

[∫ ∞

−∞
p(x− y)[u2(y, t) +

1

2
u2
x(y, t)] dy

]
x

= 0,(2.40)

where p is the solution of

Ap ≡ (I − ∂2
x)p = δ.

We want to prove that weak solutions of (2.40) and (2.5) are the same. Peri-
odic distributions belong to the class of tempered distribution S ′ (see, for example,
[13]). The operator A defines a homeomorphism on the Schwartz class S (or class of
rapidly decreasing function): The Fourier transform is a homeomorphism on S, and
A restricted to S can be written as

A = F−1(1 + ξ2)F ,(2.41)

where ξ denotes the frequency variable. It is clear from (2.41) that the inverse of A
in S is

A−1 = F−1 1

1 + ξ2
F .

Hence A is a homeomorphism on S.
We can now define the inverse A−1 of A in S ′. Given T in S ′, A−1T is given by〈

A−1T, φ
〉

=
〈
T,A−1φ

〉
, φ ∈ S.

It is easy to check that A−1 indeed satisfies

A−1A = AA−1 = Id,

and that A−1 is continuous on S ′. The operator A is therefore a homeomorphism on
S ′.

Let u be a solution of (2.40). Then we have

ut + ∂x

(
u2

2

)
+ ∂xA−1

[
u2 +

1

2
u2
x

]
= 0.(2.42)

The operators ∂x and A−1 commute because ∂x and A commute. We apply A on
both sides of (2.42) and get

ut − uxxt + A∂x

(
1

2
u2

)
+ ∂x

[
u2 +

1

2
u2
x

]
= 0,(2.43)

which is exactly (2.5). Since A is a bijection, (2.43) also implies (2.42), and we have
proved that the weak solutions of (2.5) are the same as the weak solutions given by
(2.40).

In Theorem 2.1, some restrictions on the initial data v are implicitly imposed
by the condition vn −D−D+v

n ≥ 0. We are going to prove that if v ∈ H1([0, 1]) is
periodic with v−vxx ∈ M+, where M+ denotes the space of positive Radon measures,
then there exists a sequence of piecewise linear, continuous, periodic functions vn that
converges to v in H1 and satisfies vn −D−D+v

n ≥ 0 for all n.
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We can then apply Theorem 2.1 and get the existence result contained in the
following corollary, which coincides with results obtained in [11] by a different method.

Corollary 2.5. If u0 ∈ H1 is such that u0 − u0,xx ∈ M+, then the Camassa–
Holm equation has a global solution in C(R+, H

1). The solution is obtained as a limit
of the numerical scheme defined by (2.4).

To apply Theorem 2.1, we need to prove that, given u ∈ H1([0, 1]) such that
u−uxx ∈ M+, there exists a sequence un of piecewise linear, continuous, and periodic
functions such that

un → u in H1,

un −D−D+u
n ≥ 0.

Let {ψn
i } be a partition of unity associated with the covering ∪n−1

i=0 (xi−1, xi+1). For
all i ∈ {0, . . . , n− 1}, the functions ψn

i are nonnegative with supp ψn
i ⊂ (xi−1, xi+1),

and
∑n−1

i=0 ψn
i = 1. Define

vni =
1

h
〈u− uxx, ψ

n
i 〉

and

un
i −D−D+u

n
i = vni .(2.44)

Recall that the operator un − D−D+u
n is invertible (see (2.8)), so that un is well

defined by (2.44). Since u − uxx belongs to M+ and ψn
i ≥ 0, we have vni = un

i −
D−D+u

n
i ≥ 0, and it only remains to prove that un converges to u in H1. Since

the application L : H1 → H−1 given by Lu = u − uxx is an homeomorphism, it is
equivalent to prove that

un − un
xx → u− uxx in H−1.

The homeomorphism L is also an isometry, so that

‖Lu‖H−1 = ‖u‖H1 .

We can find a bound on ‖un‖H1 . Let En be defined, as before, by

En =

(
h

n−1∑
i=0

[
(un

i )2 + (D+u
n)2i
]) 1

2

.

Inequality (2.16) still holds. We have

E2
n = h

n−1∑
i=0

(un
i −D−D+u

n
i )un

i

= h

n−1∑
i=0

vni u
n
i

≤ ‖un‖L∞

n−1∑
i=0

hvni

≤ ‖un‖L∞

〈
u− uxx,

n−1∑
i=0

ψn
i

〉

≤ ‖un‖L∞ ‖u− uxx‖M+

(
since

∑n−1
i=0 ψn

i = 1
)
.
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Hence, since L∞ is continuously embedded in H1, there exists a constant C (inde-
pendent of n) such that

E2
n ≤ C ‖un‖H1 ‖u− uxx‖M+ .

We use (2.16) to get the bound on ‖un‖H1 we were looking for:

‖un‖H1 ≤ 4C ‖u− uxx‖M+ .

To prove that un−un
xx → u−uxx in H−1, since ‖un − un

xx‖H−1 = ‖un‖H1 is uniformly
bounded, we just need to prove that

〈un − un
xx, ϕ〉 → 〈u− uxx, ϕ〉

for all ϕ belonging to a dense subset of H1 (for example, C∞).
The function un is continuous and piecewise linear. Its second derivative un

xx is
therefore a sum of Dirac functions,

un
xx =

n−1∑
i=0

hD−D+u
n
i δxi ,

and, for any ϕ in C∞, we have

〈un − un
xx, ϕ〉 =

∫ 1

0

un(x)ϕ(x) dx− h

n−1∑
i=0

D−D+u
n
i ϕ(xi)

=

∫ 1

0

un(x)(ϕ(x) − ϕn(x)) dx +

∫ 1

0

un(x)ϕn(x) dx(2.45)

− h
n−1∑
i=0

un
i ϕ

n
i + h

n−1∑
i=0

viϕ
n
i ,

where ϕn denotes the piecewise linear, continuous function that coincides with ϕ on
xi, i = 0, . . . , n− 1.

The first integral in (2.45) tends to zero by the Lebesgue dominated convergence
theorem. We use (2.31) to compute the second integral:∫ 1

0

un(x)ϕn(x) dx =
2

3
〈unϕn〉 +

1

6
〈S+u

nϕn〉 +
1

6

〈
unS+ϕn

〉
.

One can prove that this term tends to 〈unϕn〉 (see the proof of the convergence of
term A in the proof of Theorem 2.1). The last sum equals

n−1∑
i=0

hvni ϕ(xi) =

〈
u− uxx,

n−1∑
i=0

ϕn
i ψ

n
i (x)

〉
.

For all x ∈ [0, 1], there exists a k such that x ∈ [xk, xk+1]. Then∣∣∣∣∣ϕ(x) −
n−1∑
i=0

ϕn
i ψ

n
i (x)

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
i=0

(ϕ(x) − ϕ(xi))ψ
n
i (x)

∣∣∣∣∣
≤ |ϕ(x) − ϕ(xk)| + |ϕ(x) − ϕ(xk+1)|
≤ 2 sup

|z−y|≤h

|ϕ(y) − ϕ(z)|
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and therefore, by the uniform continuity of ϕ,

n−1∑
i=0

ϕ(xi)ψ
n
i (x) → ϕ(x) in L∞.

Thus,

n−1∑
i=0

hvni ϕ(xi) =

〈
u− uxx,

n−1∑
i=0

ϕ(xi)ψ
n
i

〉
→ 〈u− uxx, ϕ〉

and, from (2.45), we get

〈un − un
xx, ϕ〉 → 〈u− uxx, ϕ〉 .

As already explained, this implies that

un → u in H1.

3. Numerical results. The numerical scheme (2.4) is semidiscrete: The time
derivative has not been discretized, and hence we work with a system of ordinary
differential equations. However, for numerical computations we integrate in time by
using an explicit Euler method. Given a positive time T and l ∈ N, we consider the
time step Δt = T/l. We compute mn,l

j , the approximate value of mn at time tj = jΔt,
by taking

mn,l
j+1 = mn,l

j + Δt
(
−D−(mn,l

j un,l
j ) −mn,l

j Dun,l
j

)
,(3.1)

where

mn,l
j = un,l

j −D−D+u
n,l
j .(3.2)

Here mn,l
j = (mn,l

0,j , . . . ,m
n,l
n−1,j) and un,l

j = (un,l
0,j , . . . , u

n,l
n−1,j). Given mn,l

j , one can

still recompute un,l
j using (2.8), that is,

un,l
i,j = L−1mn,l

i,j =
c

1 − e−κn

n−1∑
k=0

(e−κ(i−k) + eκ(i−k−n))mn,l
k,j .(3.3)

Lemma 2.2 does not apply in this setting, and the proof of convergence for the fully
discrete scheme proceeds differently. Writing (2.4) as

mn
t = f(mn),

where f : R
n → R

n, we observe (cf. (2.4) and (2.8)) that each component of f(x) is
a polynomial in the components x0, . . . , xn−1 of x. Hence, f is continuously differen-
tiable. From (2.19) and (2.4), we obtain that when n is large enough, there exists a
constant C which is independent of n such that

|mn
i (t)| ≤ 5n2 max

i
|un

i (t)| ≤ Cn2

for all t ∈ [0, T ]. Hence, mn(t) is bounded in [0, T ] and therefore the Euler method
converges (see, for example, [19]), that is,

lim
l→∞

max
j=1,...,l

∥∥∥mn,l
j −mn(tj)

∥∥∥ = 0.(3.4)
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All norms are equivalent in finite-dimensional vector spaces, and therefore (3.4) holds
for any norm in R

n. We denote by mn,l(t) the piecewise linear function in C([0, T ],Rn)

satisfying mn,l(tj) = mn,l
j . It is given by

mn,l(t) =
1

Δt
(tj+1 − t)mn,l

j +
1

Δt
(t− tj)m

n,l
j+1

for t ∈ [tj , tj+1]. Let us prove that

lim
l→∞

∥∥mn,l −mn
∥∥
C([0,T ],Rn)

= 0.(3.5)

We have, for t ∈ [tj , tj+1],

(3.6)

mn,l(t) −mn(t) =
1

Δt
(tj+1 − t)(mn,l

j −mn(tj)) +
1

Δt
(t− tj)(m

n,l
j+1 −mn(tj+1))

+
1

Δt
(tj+1 − t)(mn(tj) −mn(t)) +

1

Δt
(t− tj)(m

n(tj+1) −mn(t)).

Let ε > 0. Since mn ∈ C([0, T ],Rn), mn is uniformly continuous, and there exists
δ > 0 such that ‖mn(t1) −mn(t2)‖ < ε/2 for all t1, t2 ∈ [0, T ] with |t2 − t1| < δ. We
can choose l large enough so that Δt = T/l < δ. Then, for t ∈ [tj , tj+1], we have
t− tj < δ and tj+1 − t < δ, and∥∥∥∥ 1

Δt
(tj+1 − t)(mn(tj) −mn(t)) +

1

Δt
(t− tj)(m

n(tj+1) −mn(tj+1))

∥∥∥∥
<

1

Δt
(tj+1 − t)

ε

2
+

1

Δt
(t− tj)

ε

2
(3.7)

<
ε

2
.

By (3.4), we can choose l large enough so that maxj=1,...,l ‖mn,l
j − mn(tj)‖ < ε/2.

Hence, ∥∥∥∥ 1

Δt
(tj+1 − t)(mn,l

j −mn(tj)) +
1

Δt
(t− tj)(m

n,l
j+1 −mn(tj+1))

∥∥∥∥ <
ε

2
.(3.8)

Comparing (3.6), (3.7), and (3.8), we obtain∥∥mn,l(t) −mn(t)
∥∥ < ε

for l large enough and any t ∈ [0, T ]. Hence, (3.5) is proved. The mapping L−1 : R
n →

R
n, L−1mn = un, is continuous, and therefore we have liml→∞

∥∥un,l − un
∥∥
C([0,T ],Rn)

=

0. Finally, after using the identification of R
n with the set of continuous, periodic,

piecewise linear functions, we get that

lim
l→∞

un,l = un,

and, from Theorem 2.1,

lim
n→∞

lim
l→∞

un,l = u

in C([0, T ], H1). We summarize the result in the following theorem.
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Theorem 3.1. Let Δt = T/l, and define the function un,l
i,j by (3.1)–(3.3). Define

the corresponding interpolating function un,l in C([0, T ], H1) by

un,l(x, t) =
n

Δt

(
(tj+1 − t)

[
(xi+1 − x)un,l

i,j + (x− xi)u
n,l
i+1,j

]
+ (t− tj)

[
(xi+1 − x)un,l

i,j+1 + (x− xi)u
n,l
i+1,j+1

])
for x ∈ [xi, xi+1] and t ∈ [tj , tj+1]. Then

lim
n→∞

lim
l→∞

un,l = u(3.9)

in C([0, T ], H1), where u is the solution of the Camassa–Holm equation (1.2).
To compute the discrete spatial derivative, we need at each step to compute u

from m. The function u is given by a discrete convolution product,

ui = h

n−1∑
j=0

gpi−jmj .

It is advantageous to apply the fast Fourier transform (FFT); see [13]. In the frequency
space, a convolution product becomes a multiplication which is cheap to evaluate.
Going back and forth to the frequency space is not very expensive due to the efficiency
of the FFT. We use a formula of the form (see [13] for more details):

u = F−1
N (FN [g] · FN [m]),

where FN denotes the FFT.
We have tested algorithm (3.1) with single and double peakons. In the single

peakon case, the initial condition is given by

u(x, 0) = c
cosh(d− a

2 )

sinh a
2

,(3.10)

which is the periodized version of u(x, 0) = ce−|x|. The period is denoted by a, and
d = min (x, a− x) is the distance from x to the boundary of the interval [0, a]. The
peakons travel at a speed equal to their height, that is,

u(x, t) = ce−|x−ct|.

If u satisfies the initial condition u(x, 0) = e−|x|, then m = 2δ at t = 0 and we
take

mi(0) =

{
2
h if i = 0,
0 otherwise

(3.11)

as the initial discrete condition. The function mi gives a discrete approximation of
2δ. Figure 1 shows the result of the computation for different refinements. Figure 2
indicates that the computed solution converges to the exact solution.

The sharp increase of the error ‖u(t) − un(t)‖H1 at time t = 0 can be predicted
by looking at (2.17), which gives a first-order approximation of the time derivative of

‖u(t)‖2
H1 :

dEn(t)2

dt
= −

n−1∑
i=0

ui(hmi)
2 + O (h) .
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0 5 10 15 20 25 30 35

0

0.5

1

1.5

2 initial condition

Fig. 1. Periodic single peakon. The initial condition is given by u(x, 0) = 2e−|x| and period
a = 40. The computed solutions are shown at time t = 6 for (from left to right) n = 210, n =
212, n = 214 together with the exact solution (at the far right).
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1
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1.4

n=210

n=212

n=214

Fig. 2. Plot of ‖u(t) − un(t)‖H1 / ‖u(t)‖H1 in the one peakon case of Figure 1.

Hence,

d ‖u‖2
H1

dt
≈ dEn(t)2

dt
≈ −4 at t = 0.

At the beginning of the computation, we can therefore expect a sharp decrease of
the H1-norm. To get convergence in H1, it is therefore necessary that the solution

becomes smooth enough so that
d‖u‖2

H1

dt → 0. In any case, we cannot hope for high
accuracy and convergence rate in this case. Figures 3 and 4 show the same plots in
the two-peakon case.
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0 5 10 15 20 25 30 35 40
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0.6

0.8

1 initial condition

Fig. 3. Two peakon case. The initial condition is the periodized version of 2e−|x−2| + e−|x−5|.
The computed solutions are shown at time t = 12 for (from left to right) n = 210, n = 212, n = 214

together with the exact solution (at the far right).
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n=210

n=212

n=214

Fig. 4. Plot of ‖u(t) − un(t)‖H1 / ‖u(t)‖H1 in the two peakon case of Figure 3.

We have tested our algorithm with smooth initial conditions. In this case, the H1-
norm remains constant in a much more accurate manner. The convergence is probably
much better than for nonsmooth solutions, but we have no analytical solution with
which to compare.

Other time integration methods (second-order Runge–Kutta method, variable-
order Adams–Bashforth–Moulton) have also been tried and the results do not differ
significantly from those given by (3.1). It follows that the Camassa–Holm equation
is not very sensitive to the way time is discretized. But the situation is completely



FINITE DIFFERENCE SCHEMES FOR CAMASSA–HOLM EQUATION 1679

different when we consider different space discretizations. The schemes

mt = −D−(mu)i −miD+ui,(3.12)

mt = −D(mu)i −miDui,(3.13)

mt = −D+(mu)i −miD−ui(3.14)

are all at first glance good candidates for solving the Camassa–Holm equation. They
preserve the H1-norm, are finite difference approximations of (2.2), and finally look
very similar to (2.4). But, tested on a single peakon, (3.12) produces a peakon that
grows, (3.13) produces oscillations, and (3.14) behaves in a completely unexpected
manner (at the first time step, m becomes a negative Dirac function and starts trav-
eling backward!).

Let us have a closer look at the scheme (3.12). We compute
dE2

n

dt :

1

2

dE2
n

dt
=

n−1∑
i=0

mn
i,tu

n
i =

n−1∑
i=0

(
−D−(mnun)iui −mn

i D+uiui

)
= 0.

Thus, En is exactly preserved. Lemma 2.2 still holds since the same proof applies to
(3.12). It allows us to derive the bounds of Lemma 2.3 and, after applying Simon’s
theorem, we get the existence of a converging subsequence. The problem is that,
in general, this subsequence does not converge to the solution of the Camassa–Holm
equation. In order to see that, we compare how our original algorithm (3.12) and
algorithm (3.13) handle a peakon solution u = ce−|x−ct|. The only terms that differ
are mnDun and mnD+u

n. We have proved earlier that for any smooth function ϕ,

n−1∑
i=0

mn
i Dun

i ϕ(xi) →
1

2

∫ 1

0

(u2 − u2
x)ϕ(x) dx

as n → ∞. In the peakon case, u2 = u2
x and this term tends to zero. Roughly speaking,

we can say that mn converges to a Dirac function (see (3.11)), but at the same time it
is multiplied by Dun, which is the average of the left and right derivatives and which
tends to zero at the top of the peak. Eventually the whole product mnDun tends to
zero. We follow the same heuristic approach with the term mnD+u

n in (3.13). This
time, mn is multiplied by the right derivative D+u

n of un, which tends, at the top
of the peak, to −c. Hence, −mnD+u

n tends to cδ and not zero, as it would if (3.13)
converged to the correct solution. This example shows how sensitive the numerical
approximation is, regarding the explicit form of the finite difference scheme, for the
Camassa–Holm equation.

Acknowledgments. H. H. acknowledges helpful discussions with Nils Henrik
Risebro and Kenneth H. Karlsen on discretizations of the Camassa–Holm equation.
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Abstract. In this paper we consider postprocessing of the finite element method for semilinear
parabolic problems. The postprocessing amounts to solving a linear elliptic problem on a finer grid
(or higher-order space) once the time integration on the coarser mesh is completed. The convergence
rate is increased at almost no additional computational cost. This procedure was introduced and
analyzed in Garćıa-Archilla and Titi [SIAM J. Numer. Anal., 37 (2000), pp. 470–499]. We extend the
analysis to the fully discrete case and prove error estimates for both space and time discretization.
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quotients.
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1. Introduction. In this paper we shall consider postprocessing of the finite
element method for the semilinear parabolic problem

ut − Δu = F (u) in Ω for t ∈ (0, T ],(1.1)

u = 0 on ∂Ω for t ∈ (0, T ], withu(0) = v,

where Ω is a bounded domain in Rd, d = 1, 2, 3, with a sufficiently smooth boundary
∂Ω, ut = ∂u/∂t, Δ is the Laplacian, and F : R → R is a smooth function.

Let H = L2(Ω). We define the unbounded operator A = −Δ on H with domain
of definition D(A) = H2 ∩H1

0 , where, for integer m ≥ 1, Hm = Hm(Ω) denotes the
standard Sobolev space Wm

2 (Ω), and H1
0 = H1

0 (Ω) = {v ∈ H1 : v|∂Ω = 0}. Then
A is a closed, densely defined, and self-adjoint positive definite operator in H with
compact inverse. The initial-boundary value problem (1.1) may then be formulated
as the following initial value problem:

ut + Au = F (u) for 0 < t ≤ T, withu(0) = v,(1.2)

in the Hilbert space H, where F : H → H is a nonlinear operator, and v ∈ H.
Recently, a postprocessing technique was introduced to increase the efficiency of

the Galerkin method of spectral type; see Canuto et al. [5], de Frutos, Garćıa-Archilla,
and Novo [7], and de Frutos and Novo [8], [10]. Postprocessed methods yield greater
accuracy than standard Galerkin schemes at nearly the same computational cost.
In Garćıa-Archilla and Titi [14], the postprocessing technique was extended to the
h-version of the finite element method for dissipative partial differential equations.
There, the authors prove that the postprocessed method has a higher rate of con-
vergence than the standard finite element method when higher-order finite elements,
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rather than linear finite elements, are used. Error estimates in L2 and H1 norms in
the spatially semidiscrete case are obtained. More recently, in de Frutos and Novo
[9], the authors show that the postprocessing technique can also be applied to linear
finite elements and the convergence rate can be improved in the H1 norm, but not in
the L2 norm. The analysis is restricted to the spatially semidiscrete case.

The purpose of the present paper is to derive the error estimates in the fully
discrete case for the postprocessed finite element method applied to (1.2). To do this,
we introduce the time-stepping method to compute the discrete solution of (1.2) and
define a difference quotient approximation to the time derivative. We then define
the postprocessing step in the fully discrete case and show the error estimates for
the postprocessing method by using the error estimates for time derivatives. For
simplicity we consider error estimates only in the L2 norm. Our technique of proof
is related to, but different from, the one employed by Garćıa-Archilla and Titi [14].
Our technique is applicable to both semidiscrete and fully discrete cases. However, we
should point out that Garćıa-Archilla and Titi [14] also treat a nonlinear convection
term. It is not quite clear how it is possible to generalize our method to deal with a
nonlinear convection term.

The paper is organized as follows. In section 2, we introduce some basic notation
and lemmas. In section 3 we consider error estimates for the postprocessed finite
element method in the semidiscrete case. In section 4, we consider error estimates
in the fully discrete case. In section 5, we consider the starting approximation of
time derivatives. Finally, in section 6, we consider higher-order time-stepping in the
context of the linear homogeneous problem.

By C0 we denote positive constant independent of the functions and parameters
concerned, but not necessarily the same at different occurrences.

2. Preliminaries. Let T denote a partition of Ω into disjoint triangles τ such
that no vertex of any triangle lies on the interior of a side of another triangle and such
that the union of the triangles determines a polygonal domain Ωh ⊂ Ω with boundary
vertices on ∂Ω. Let h denote the maximal length of the sides of the triangulation Th.
We assume that the triangulations are quasi-uniform in the sense that the triangles
of Th are of essentially the same size.

Let r be any nonnegative integer. We denote by ‖ · ‖r the norm in Hr. Let
{Sh} = {Sh,r} ⊂ H1

0 be a family of finite element spaces with accuracy of order
r ≥ 2, i.e., Sh consists of continuous functions on the closure Ω̄ of Ω which are
polynomials of degree at most r − 1 in each triangle of Th and which vanish outside
Ωh, such that, for small h,

inf
χ∈Sh

{‖v − χ‖ + h‖∇(v − χ)‖} ≤ Chs‖v‖s for 1 ≤ s ≤ r,

when v ∈ Hs ∩H1
0 .

The semidiscrete problem of (1.2) is to find the approximate solution uh(t) =
uh(·, t) ∈ Sh for each t, such that

uh,t + Ahuh = PhF (uh), with uh(0) = vh,(2.1)

where vh ∈ Sh, Ph : L2 → Sh is the L2 projection onto Sh, and Ah : Sh → Sh is the
discrete analogue of A, defined by

(Ahψ, χ) = A(ψ, χ) ∀ ψ, χ ∈ Sh.(2.2)
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Here A(·, ·) = (∇·,∇·) is the bilinear form on H1
0 obtained from A.

Error estimates for finite element methods for semilinear parabolic problems with
various conditions on the nonlinearity have been considered in many papers; see, e.g.,
Akrivis, Crouzeix, and Makridakis [1], [2], Crouzeix, Thomée, and Wahlbin [6], Elliott
and Larsson [11], [12], Helfrich [16], Johnson et al. [17], Thomée [27], Thomée and
Wahlbin [28], and Wheeler [29]. The long time behavior of finite element solutions
was studied by Elliott and Stuart [13], Larsson [18], [19], and Larsson and Sanz-Serna
[20], [21].

Let us now describe the idea of the postprocessed finite element method proposed
by Garćıa-Archilla and Titi [14]. Suppose that we want to obtain high-order approx-
imation, for instance, O(hr+2). Then we can use, in every time step, either a family
of high-order finite element spaces S̃h := Sh,r+2 with accuracy of order r + 2, or a

family of finite element space S̃h := Sh̃,r with accuracy of order r, but with finer

partition Th̃ of the domain Ω, such that hr+2 = h̃r. In [14], another technique, called
the postprocessed finite element method, is presented, which improves the convergence
rate without using a high-order finite element space S̃h in every time step. Suppose
that we are interested in the solution of (1.2) at a given time T . At time T , rewriting
(1.2), we have

Au(T ) = −ut(T ) + F (u(T )).(2.3)

Thus, u(T ) can be seen as the solution of an elliptic problem whose right-hand side
is not known but can be approximated. Garćıa-Archilla and Titi first compute uh(T )
by (2.1) in the finite element space Sh, then replace ut(T ) by uh,t(T ) and solve (or, in
practice, approximate) the following linear elliptic problem: find ũ(T ) ∈ D(A), such
that

Aũ(T ) = −uh,t(T ) + F (uh(T )),(2.4)

which is the postprocessing step.
They obtained the following error estimate, with �h = 1 + log(T/h2):

‖ũ(T ) − u(T )‖ ≤ C(u)�hh
r+2 for r ≥ 4,(2.5)

where C(u) is some constant depending on u. A similar result holds for r ≥ 3 with
order O(hr+1), but without the factor �h.

The proof is based on superconvergence for elliptic finite element methods in
norms of negative order, which is the reason for the restriction r ≥ 3.

We note that the bound (2.5) is an improvement over the error estimates for
the standard Galerkin method, which is O(hr). In practice ũ cannot be computed
exactly, since in general it does not belong to a finite element space. However, one
can approximate the solution ũ of (2.4) by some ũh belonging to a finite element
space S̃h of approximation order r + 2 as described above. More precisely, we pose
the following semidiscrete problem corresponding to (2.4): find ũh ∈ S̃h, such that

Ãhũh(T ) = P̃h

(
− uh,t(T ) + F (uh(T ))

)
,(2.6)

where P̃h : L2 → S̃h is the L2 projection onto S̃h and Ãh is the discrete analogue of
A with respect to S̃h. The standard error estimate reads (see, e.g., Brenner and Scott
[4])

‖ũh(T ) − ũ(T )‖ ≤ C(u)hr+2.(2.7)
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Combining (2.5) and (2.7), we have

‖ũh(T ) − u(T )‖ ≤ ‖ũh(T ) − ũ(T )‖ + ‖ũ(T ) − u(T )‖ ≤ C(u)�hh
r+2 for r ≥ 4.

Let us now introduce norms of negative order. Consider the stationary problem

Au = f.(2.8)

The variational form of this problem is to find u ∈ H1
0 = H1

0 (Ω), such that

A(u, ϕ) = (f, ϕ) ∀ ϕ ∈ H1
0 .

The standard Galerkin finite element problem is to find uh ∈ Sh, such that

A(uh, χ) = (f, χ) ∀ χ ∈ Sh.(2.9)

Let G : L2 → H1
0 be the exact solution operator of (2.8) and define the approx-

imate solution operator Gh : L2 → Sh by Ghf = uh so that uh = Ghf ∈ Sh is the
solution of (2.9). We recall that Gh is the self-adjoint, positive semidefinite on L2

and positive definite on Sh. We note that G : L2 → H1
0 ∩H2 is the inverse operator

of A : H1
0 ∩ H2 → L2, i.e., G = A−1, and similarly Gh = A−1

h on Sh, where Ah

is the discrete Laplacian of A defined by (2.2). Moreover, we will use the following
properties (see, Thomée [27, Chapter 2]):

GhPh = Gh and Gh = RhG,(2.10)

where Rh : H1
0 → Sh is the elliptic projection, or Ritz projection, defined by

A(Rhu, χ) = A(u, χ) ∀ χ ∈ Sh.(2.11)

The negative order norm is defined by

|v|−s = ‖Gs/2v‖ = (Gsv, v)1/2 for s ≥ 0.

We have (see Thomée [27, Chapter 6])

‖(Gh −G)f‖ ≤ Chr‖f‖r−2 for f ∈ Hr−2, r ≥ 2,(2.12)

and

|(Gh −G)f |−2 ≤ Chr+2‖f‖r−2 for f ∈ Hr−2, r ≥ 4.(2.13)

We will use (2.12) and (2.13) in section 6 for the homogeneous parabolic problem by
using a higher-order time-stepping method.

Remark 2.1. The estimate (2.13) and its like require higher elliptic regularity
of the A operator. To see this, let us mention some related results here; see Schatz,
Sloan, and Wahlbin [22]. We denote by ‖ · ‖r the standard Sobolev norm in Hr for
r > 0.

Case 1. A Dirichlet problem in a plane polygonal domain. Consider the problem

−Δu = f in Ω, u = 0 on ∂Ω,

where Ω is a plane polygonal domain. It is well known how the solution behaves near
the corners of the domain (see Grisvard [15]), and using suitable mesh refinements if
necessary (see Babuška [3]) we shall assume that

min
χ∈Sh

‖u− χ‖1 ≤ Chr−1‖u‖r, r ≥ 2.
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A standard duality argument gives

‖uh − u‖−(r−2) ≤ Ch2r−2, r ≥ 2.

Case 2. A Dirichlet problem in smooth plane domain. Consider the problem

Au = f in Ω, u = g on ∂Ω,

where Ω is a smooth domain and A is an elliptic operator. As in Scott [25], assume
that the boundary interpolation nodes satisfy some special conditions; if A is properly
elliptic, then we can show

‖uh − u‖−s ≤ Chr+s
(
‖u‖r + ‖g‖r+s

)
, s ≥ 0.

Case 3. A homogeneous Dirichlet problem in smooth domain in Rd. Consider
the problem

Au = f in Ω, u = 0 on ∂Ω,

where Ω is a smooth domain and A is an elliptic operator. For our finite element
spaces we take isoparametric elements which approximate the boundary to order hr.
For u smooth enough it was proved in Schatz and Wahlbin [24], with �h = ln 1/h,
that

‖uh − u‖W 1
∞

≤ C�hh
r−1.

By the duality argument, we then get

‖uh − u‖−(r−2) ≤ C�2hh
2r−2.

Case 4. A homogeneous Neumann problem in smooth domain in Rd. Consider
the problem

Au = f in Ω,
∂u

∂n
= g on ∂Ω,

where Ω is a smooth domain and A is an elliptic operator. Let ∂Ω be smooth and let
the finite elements at ∂Ω be curved, exactly fitting ∂Ω. It was proved in Scott [26]
that, with �h = ln 1/h,

‖uh − u‖W 1
∞

≤ C�hh
r−1.

By the duality argument, we then get

‖uh − u‖−(r−2) ≤ C�2hh
2r−2.

We also introduce a discrete negative order seminorm on L2 by

|v|−s,h = ‖Gs/2
h v‖ = (Gs

hv, v)
1/2 for s ≥ 0;

it corresponds to the discrete semi-inner product (v, w)−s,h = (Gs
hv, w) ∀ v, w ∈ L2.

Since Gh is positive definite on Sh, |v|−s,h and (v, w)−s,h define a norm and an inner
product there. We also find that the discrete negative-order seminorm is equivalent
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to the corresponding continuous norm, modulo a small error. More precisely, we have
the following bounds; see, e.g., Thomée [27, Lemma 6.3].

Lemma 2.1. We have, for 0 ≤ s ≤ r,

|v|−s,h ≤ C0(|v|−s + hs‖v‖) and |v|−s ≤ C0(|v|−s,h + hs‖v‖).

We also need Gronwall’s lemma.
Lemma 2.2. If a, b are nonnegative constants and

0 ≤ u(t) ≤ a + b

∫ t

0

u(s) ds for 0 ≤ t ≤ T,

then we have

u(t) ≤ aebt for 0 ≤ t ≤ T.

For the nonlinear operator F , we have the following bounds; see Garćıa-Archilla
and Titi [14, Lemma 3].

Lemma 2.3. Let u ∈ Hr(Ω) ∩H1
0 (Ω), r ≥ 4, and χ ∈ H1

0 (Ω) ∩ L∞(Ω). Assume
that F is a smooth function. Further assume that d ≤ 3 and ‖u−χ‖L∞ ≤ K for some
positive number K. Then there is a constant C = C(‖u‖r,K) such that

‖F (u) − F (χ)‖ ≤ C‖u− χ‖(2.14)

and

|F (u) − F (χ)|−2 ≤ C
(
|u− χ|−2 + ‖u− χ‖2

)
.(2.15)

Remark 2.2. In our application of Lemma 2.3, we will choose u to be the solution
of (1.2) and χ to be the corresponding finite element approximation solution uh.
It is obvious that uh and u satisfy the assumptions of Lemma 2.3. For instance,
‖uh − u‖∞ ≤ K can be achieved by using the inverse inequality, provided we know
that the L2 error estimate for uh − u is O(hr); see Thomée [27, Chapter 14].

3. Semidiscrete approximation. In this section we will consider the error
estimates for the postprocessed finite element method for the semilinear parabolic
problem (1.2) in the semidiscrete case. The main theorem in this section is the
following.

Theorem 3.1. Let r ≥ 4 and let Sh and S̃h be the finite element spaces of orders
r and r + 2, respectively, as described in section 2. Let ũh and u be the solutions
of (2.6) and (1.2), respectively. Assume that F satisfies ‖F (u)‖r ≤ C0 in addition
to the assumptions in Lemma 2.3. Let uh be the solution of (2.1). Assume that
vh = Rhv, v ∈ H1

0 , and

sup
s∈[0,T ]

‖uh(s) − u(s)‖L∞ ≤ K

and

sup
s∈[0,T ]

(
‖u(s)‖r + ‖ut(s)‖r + ‖utt(s)‖r

)
≤ M(3.1)

for some positive numbers K,M, T . Then there is a constant C = C(K,M, T ) such
that, with �h = 1 + log(T/h2),

‖ũh(T ) − u(T )‖ ≤ C�hh
r+2.(3.2)
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To prove Theorem 3.1, it suffices to show the bounds of |uh−u|−l and |uh,t−ut|−l

for l = 0, 2. We first split

uh − u = (uh − ûh) + (ûh − u) = η + e,(3.3)

where ûh satisfies

ûh,t + Ahûh = PhF (u), ûh(0) = vh.(3.4)

Since u satisfies

ut + Au = F (u), u(0) = v,(3.5)

the desired bounds of e = ûh − u and et follow from the error estimates for the linear
parabolic problem because the right-hand side of (3.4) is independent of ûh. In other
words we only need to consider the nonlinear term F when we show the bounds of
η = uh − ûh and ηt. Note that η satisfies

ηt + Ahη = Ph(F (uh) − F (u)), η(0) = 0.(3.6)

By Duhamel’s principle, we have

η(t) =

∫ t

0

Eh(t− s)Ph

(
F (uh(s)) − F (u(s))

)
ds.(3.7)

Our main task is to consider the bounds for |η|−l, |ηt|−l, l = 0, 2.
We remark that since η(0) = 0, we don’t need to consider the term Eh(T )η(0) in

(3.7). This observation is very useful in the fully discrete case.
Our first lemma in this section is the error estimate for the solution of (1.2).
Lemma 3.2. Let uh and u be the solutions of (2.1) and (1.2), respectively.

Assume that F satisfies the assumptions in Lemma 2.3. Further assume that vh = Rhv
and

sup
0≤s≤T

‖uh(s) − u(s)‖L∞ ≤ K(3.8)

and

sup
0≤s≤T

(
‖u(s)‖r + ‖ut(s)‖r

)
≤ M1(3.9)

for some positive numbers K,M1, T . Then there is a constant C = C(K,M1, T ) such
that

sup
0≤t≤T

‖uh(t) − u(t)‖ ≤ Chr for r ≥ 2(3.10)

and

sup
0≤t≤T

|uh(t) − u(t)|−2 ≤ Chr+2 for r ≥ 4.(3.11)

The proof of Lemma 3.2 is similar to the proof of Lemma 3.3, so we omit it here.
Our next lemma is the error estimates for the time derivative of the solution of

(1.2).
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Lemma 3.3. Let uh and u be the solutions of (2.1) and (1.2), respectively.
Assume that F satisfies the assumptions in Lemma 2.3. Further assume that vh =
Rhv, v ∈ H1

0 , and

sup
0≤s≤T

‖uh(s) − u(s)‖L∞ ≤ K(3.12)

and

sup
0≤s≤T

(
‖u(s)‖r + ‖ut(s)‖r + ‖utt(s)‖r

)
≤ M2(3.13)

for some positive numbers K,M2, T . Then there is a constant C = C(K,M2, T ) such
that, with �h = 1 + log(T/h2),

sup
0≤t≤T

‖uh,t(t) − ut(t)‖ ≤ C�hh
r, r ≥ 2,(3.14)

and

sup
0≤t≤T

|uh,t(t) − ut(t)|−2 ≤ C�hh
r+2, r ≥ 4.(3.15)

Proof. We write

uh,t − ut = (uh,t − ûh,t) + (ûh,t − ut) = ηt + et.

Following the proofs of Theorems 1.3 and 6.2 in Thomée [27] for the error estimate
|e|−l, l = 0, 2, we can show the following error estimates for |et|−l, l = 0, 2:

‖et(t)‖ ≤ ‖ûh,t(0) − ut(0)‖ + C0h
r
(
‖ut(0)‖r +

∫ t

0

‖utt‖r ds
)

and

|et(t)|−2 ≤ |ûh,t(0) − ut(0)|−2 + C0h
r+2

(
‖ut(0)‖r +

∫ t

0

‖utt‖r ds
)
.

We observe that, by (3.4), and by noting that ûh(0) = Rhu(0),

ûh,t(0) = −Ahûh(0) + PhF (u(0)) = −AhRhu(0) + PhF (u(0))

= Ph

(
Au(0) + F (u(0))

)
= Phut(0).

We therefore have, by the error bounds for the L2 projection,

‖ûh,t(0) − ut(0)‖ = ‖(Ph − I)ut(0)‖ ≤ C0h
r‖ut(0)‖r

and

|ûh,t(0) − ut(0)|−2 ≤ C0h
r+2‖ut(0)‖r.

Thus, we get

‖et(t)‖ ≤ C0h
r
(
‖ut(0)‖r +

∫ t

0

‖utt‖r ds
)
≤ C(M2, T )hr(3.16)
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and, similarly,

|et(t)|−2 ≤ C(M2, T )hr+2.(3.17)

We now turn to |ηt|−l, l = 0, 2. Using the fact ‖AhEh(t)‖ ≤ C0(t + h2)−1 (see
Schatz, Thomée, and Wahlbin [23]), we have

∫ t

0

‖AhEh(t− s)‖ ds ≤ C0(1 + log(T/h2)) ≤ C0�h.(3.18)

By (3.7), we have

ηt(t) = Ph(F (uh(t)) − F (u(t)))(3.19)

−
∫ t

0

AhEh(t− s)Ph

(
F (uh(s)) − F (u(s))

)
ds.

Thus, by (3.10), (3.18), and Lemma 2.3,

‖ηt(t)‖ ≤ ‖Ph(F (uh(t)) − F (u(t)))‖(3.20)

+

∫ t

0

∥∥AhEh(t− s)Ph

(
F (uh(s)) − F (u(s))

)∥∥ ds
≤ C(K,M2, T )(1 + �h) sup

0≤s≤T
‖uh(s) − u(s)‖ ≤ C(K,M2, T )�hh

r.

For |ηt(t)|−2, we have, by (3.19),

|ηt(t)|−2 ≤ |Ph(F (uh(t)) − F (u(t)))|−2

+

∫ t

0

∣∣AhEh(t− s)Ph

(
F (uh(t)) − F (u(t))

)∣∣
−2

ds.

Here, by Lemmas 2.1 and 2.3 and by (3.10), (3.11),

|Ph(F (uh) − F (u))|−2 ≤ C0

(
h2‖Ph(F (uh) − F (u))‖ + ‖GhPh(F (uh) − F (u))‖

)
≤ C(‖u‖r,K)

(
h2‖uh − u‖ + ‖uh − u‖2 + |uh − u|−2

)
≤ C(K,M2, T )hr+2.

Thus, by (3.18),

|ηt(t)|−2 ≤ C(K,M2, T )�hh
r+2.

Together these estimates complete the proof.

Proof of Theorem 3.1. Combining (2.3) and (2.4), we have, with G̃h = Ã−1
h ,

ũh(T ) − u(T ) = G̃hP̃h(−uh,t + F (uh)) −G(−ut + F (u))

= (G̃hP̃h −G)
(
− uh,t + F (uh) + ut − F (u)

)
− (G̃hP̃h −G)(ut − F (u))

+ G(−uh,t + F (uh) + ut − F (u)).
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Thus, by Lemmas 2.3, 3.2, and 3.3, we get, noting that ‖(G̃hP̃h−G)f‖ ≤ Chs‖f‖s−2

for 0 ≤ s ≤ r + 2,

‖ũh(T ) − u(T )‖ ≤ C0h
2
(
‖uh,t − ut‖ + ‖F (uh) − F (u)‖

)
+ C0h

r+2
(
‖ut‖r + ‖F (u)‖r

)
+ |uh,t − ut|−2 + |F (uh) − F (u)|−2

≤ C(K,M, T )�hh
r+2.

The proof is complete.
Remark 3.1. We remark that the “closeness assumption” of Theorem 3.1, i.e.,

sups∈[0,T ] ‖uh(s) − u(s)‖L∞ ≤ K, as well as similar assumptions in Lemmas 3.2 and
3.3 (inequalities (3.8), (3.12), respectively), require some restrictions on the semilin-
earity. For example, as stated in Thomée [27, Chapter 14, pp. 224], F ′(u) needs to
grow “mildly” in order to obtain the “closeness assumption,” without using inverse in-
equalities. For d = 3, the semilinearity assumption reads |F ′(u)| ≤ C(1+ |u|p), p ≤ 2,
while for d = 2, p can be chosen arbitrarily.

Otherwise, we may need the inverse inequalities. However, as indicated in Thomée
[27, Chapter 14, pp. 224] such properties are valid for r > d/2 for quasi-uniform
partitions in the d-dimensional case. Similar observations are also needed for the
fully discrete case.

4. Completely discrete approximation. In this section we will consider the
postprocessed finite element method for (1.2) in the fully discrete case.

We use the similar technique developed in section 3 to derive the error estimates
in the fully discrete case. Let tn = nk, k being the time step. We will use the notation
uj = u(tj) and uj

t = ut(tj) below. We define the following backward Euler method,
with ∂̄Un = (Un − Un−1)/k:

∂̄Un + AhU
n = PhF (Un), n ≥ 1, with U0 = vh.(4.1)

It is natural to approximate uh,t(T ), T = tn, in (2.4) by ∂̄Un for fixed n. The
postprocessing step in the fully discrete case is to find ũ(T ) ∈ D(A), such that

Aũ(T ) = −∂̄Un + F (Un).(4.2)

The semidiscrete problem of (4.2) is to find ũh(T ) ∈ S̃h, such that

Ãhũh(T ) = P̃h(−∂̄Un + F (Un)).(4.3)

Let Ûn be the solution of

∂̄Ûn + AhÛ
n = PhF (un), n ≥ 1, with Û0 = vh.(4.4)

We have the following theorem.
Theorem 4.1. Let r ≥ 4 and let Sh and S̃h be the finite element spaces of orders

r and r + 2, respectively, as described in section 2. Let ũh and u be the solutions of
(4.3) and (1.2), respectively. Assume that F satisfies ‖F (un)‖r ≤ C0 in addition to
the assumptions in Lemma 2.3. Let T = tn be a fixed time. Let Un be the solution of
(4.1). Assume that vh = Rhv, v ∈ H1

0 , and

sup
0≤tn≤T

‖Un − u(tn)‖L∞ ≤ K



POSTPROCESSING FOR PARABOLIC PROBLEMS 1691

and

sup
0≤s≤T

(
‖u(s)‖r + ‖ut(s)‖r + ‖utt(s)‖ + |utt(s)|−2 + ‖Autt(s)‖

)
≤ M(4.5)

for some positive numbers K,M, T . Then there is a constant C = C(K,M, T ) such
that, with �k = 1 + log(T/k), k being the time step,

‖ũh(T ) − u(T )‖ ≤ C0

(
‖∂̄Û1 − ut(t1)‖ + |∂̄Û1 − ut(t1)|−2

)
+ C�k(h

r+2 + k).

We now state a lemma for the error estimate of the approximation Un of u(tn)
in the L2 norm.

Lemma 4.2. Let Un and u be the solutions of (4.1) and (1.2), respectively.
Assume that F satisfies the assumptions in Lemma 2.3. Further assume that vh =
Rhv, and

sup
0≤tn≤T

‖Un − u(tn)‖L∞ ≤ K(4.6)

and

sup
0≤s≤T

(
‖u(s)‖r + ‖ut(s)‖r + ‖utt(s)‖ + |utt(s)|−2

)
≤ M3(4.7)

for some positive numbers K,M3, T . Then there is a constant C = C(K,M3, T ) such
that

sup
0≤tn≤T

‖Un − u(tn)‖ ≤ C(hr + k), r ≥ 2,(4.8)

and

sup
0≤tn≤T

|Un − u(tn)|−2 ≤ C(hr+2 + k), r ≥ 4.(4.9)

Proof. We split

Un − u(tn) = (Un − Ûn) − (Ûn − u(tn)) = ηn + en,

where Ûn is defined by (4.4).
For en = Ûn−u(tn), we have, by the standard error estimates for linear parabolic

problems (see, e.g., Thomée [27, Theorem 1.5]),

‖en‖ ≤ C0‖Rhv − v‖ + C0h
r
(
‖v‖r +

∫ tn

0

‖ut‖r ds
)

+ C0k

∫ tn

0

‖utt(s)‖ ds(4.10)

≤ C(M3, T )(hr + k).

For ηn = Un − Ûn, noting that, by (4.4) and (4.1),{
∂̄ηn + Ahη

n = Ph(F (Un) − F (un)) for n ≥ 1,

η0 = 0,
(4.11)

we have, by Lemma 2.3, with r(λ) = 1/(1 + λ),

‖ηn‖ ≤ k

n∑
j=1

‖r(kAh)n−j+1‖ ‖Ph(F (U j) − F (uj))‖

≤ C0k

n∑
j=1

‖F (U j) − F (uj)‖ ≤ C(K,M3)
(
k

n∑
j=1

‖ηj‖ + k

n∑
j=1

‖ej‖
)
.
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Further, by the discrete Gronwall lemma and (4.10), we have

‖ηn‖ ≤ C(K,M3, T )(hr + k),

which shows (4.8).
Now we turn to (4.9). Following the proof of (4.10), we can show that

|en|−2 ≤ C0|Rhv − v|−2 + C0h
r+2

(
‖v‖r +

∫ t

0

‖ut‖r ds
)

(4.12)

+ C0k

∫ tn

0

|utt(s)|−2 ds

≤ C(M3, T )(hr+2 + k).

To estimate |ηn|−2, we first note that, by Lemma 2.1,

|ηn|−2 ≤ C0(h
2‖ηn‖ + ‖Ghη

n‖).(4.13)

Here, by (4.11), Ghη
n satisfies{

∂̄(Ghη
n) + Ah(Ghη

n) = GhPh(F (Un) − F (un)) for n ≥ 1,

η0 = 0,
(4.14)

which implies

Ghη
n = k

n∑
j=1

r(kAh)n−j+1GhPh(F (U j) − F (uj)).

Note that, by Lemmas 2.1 and 2.3,

‖GhPh(F (U j) − F (uj))‖ = |F (U j) − F (uj)|−2,h

≤ C(‖u‖r,K)
(
h2‖U j − uj‖ + ‖U j − uj‖2 + |U j − uj |−2

)
.

Hence, by the stability of r(λ),

‖Ghη
n‖ ≤ C(K,M3)

(
k

n∑
j=1

|ηj |−2 + h2k

n∑
j=1

‖U j − uj‖

+ k

n∑
j=1

(‖U j − uj‖2 + |ej |−2)

)
.

Combining this with (4.13) and using the discrete Gronwall lemma, we get, by (4.8)
and (4.12),

|ηn|−2 ≤ C(K,M3, T )(hr+2 + k).(4.15)

Together these estimates complete the proof.
We also need the following lemma for the error estimate of the approximation

∂̄Un of ut(tn).
Lemma 4.3. Let Un and u be the solutions of (4.1) and (1.2), respectively.

Assume that F satisfies the assumptions in Lemma 2.3. Further assume that vh =
Rhv, v ∈ H1

0 , and

sup
0≤tn≤T

‖Un − u(tn)‖L∞ ≤ K(4.16)
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and

sup
0≤s≤T

(
‖u(s)‖r + ‖ut(s)‖r + ‖utt(s)‖r + ‖utt(s)‖ + ‖Autt(s)‖

)
≤ M4(4.17)

for some positive numbers K,M4, T . Then there is a constant C = C(K,M4, T ) such
that, with �k = 1 + log(T/k), k being the time step,

sup
k≤tn≤T

‖∂̄Un − ut(tn)‖ ≤ C0‖∂̄Û1 − ut(t1)‖ + C�k(h
r + k)(4.18)

and

sup
k≤tn≤T

|∂̄Un − ut(tn)|−2 ≤ C0|∂̄Û1 − ut(t1)|−2 + C�k(h
r+2 + k).(4.19)

Proof. We use the same notation as in Lemma 4.2 and write

∂̄Un − ut(tn) = (∂̄Un − ∂̄Ûn) + (∂̄Ûn − ut(tn))

= ∂̄ηn +
(
∂̄Ûn − ut(tn)

)
.

We first show

‖∂̄Ûn − ut(tn)‖ ≤ C0‖∂̄Û1 − ut(t1)‖ + C0h
r
(
‖ut(0)‖r +

∫ tn

0

‖utt‖r ds
)

(4.20)

+ C0k

∫ tn

0

‖Autt(s)‖ ds

≤ C0‖∂̄Û1 − ut(t1)‖ + C(M4, T )(hr + k).

To show (4.20), we write

∂̄Ûn − ut(tn) = (∂̄Ûn −Rhut(tn)) + (Rhut(tn) − ut(tn)) = θn + ρn.

In the standard way ρn is bounded as desired, and it remains to consider θn ∈ Sh.
We have

∂̄θn + Ahθ
n = Phω

n for n ≥ 2,

where

ωn = (Rh − I)∂̄ut(tn) + A(∂̄un − un
t ) = σn + τn.

By the stability estimate (see, e.g., Thomée [27, Theorem 10.2]),

‖θn‖ ≤ C0‖θ1‖ + C0k

n∑
j=2

‖σj‖ + C0k

n∑
j=2

‖τ j‖ for n ≥ 2.(4.21)

We have

k‖σn‖ ≤ C0h
r

∫ tn

tn−1

‖utt‖r ds

and

k‖τn‖ ≤ C0k‖A(∂̄un − un
t )‖ ≤ C0k

∫ tn

tn−1

‖Autt(s)‖ ds.
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Together with ‖θ1‖ ≤ ‖∂̄U1 − u1
t‖ + ‖ρ1‖, with the obvious bounds for ‖ρ1‖, this

completes the proof of (4.20).
For ‖∂̄ηn‖, we have, by (4.11),

∂̄ηn = Ph(F (Un) − F (un)) − k

n∑
j=1

Ahr(kAh)n−j+1Ph(F (Un) − F (un)).(4.22)

Using the smoothing property

k

n∑
j=1

‖Ahr(kAh)n−j+1‖ ≤ C0�k,(4.23)

which follows from

k

n∑
j=1

‖Ahr(kAh)n−j+1‖ ≤ C0k

n∑
j=1

t−1
n−j+1 = C0

(
1 + k

n−1∑
j=1

t−1
n−j+1

)

≤ C0

(
1 +

∫ tn

t1

1

s
ds
)
≤ C0(1 + log(tn/k)) ≤ C0�k,

we have, by Lemma 2.3 and (4.8),

‖∂̄ηn‖ ≤ C(K,M4)
(
‖Un − un‖ + �k max

1≤j≤n
‖U j − uj‖

)
≤ C(K,M4, T )�k(h

r + k).(4.24)

Together these estimates complete the proof of (4.18).
Now we turn to estimate (4.19). Following the proof of (4.20), we can show

|∂̄Ûn − ut(tn)|−2 ≤ C0|∂̄Û1 − ut(t1)|−2 + C0h
r+2

(
‖ut(0)‖r +

∫ tn

0

‖utt‖r ds
)

(4.25)

+ C0k

∫ tn

0

‖utt(s)‖ ds,

≤ C0|∂̄Û1 − ut(t1)|−2 + C(M4, T )(hr+2 + k).

For |∂̄ηn|−2, we have, using (4.22), and by Lemmas 2.1 and 2.3,

|∂̄ηn|−2 ≤ C(K,M4, T )�k max
1≤j≤n

(
h2‖U j − uj‖ + ‖U j − uj‖2 + |U j − uj |−2

)
.

Thus, by (4.8) and (4.9),

|∂̄ηn|−2 ≤ C(K,M4, T )�k(h
r+2 + k).(4.26)

Together these estimates complete the proof.
Proof of Theorem 4.1. Combining (2.3) and (4.3), we have, with G̃h = Ã−1

h ,

ũh(T ) − u(T ) = G̃hP̃h(−∂̄Un + F (Un)) −G(−ut(tn) + F (un))

= (G̃hP̃h −G)
(
− ∂̄Un + F (Un) + ut(tn) − F (un)

)
− (G̃hP̃h −G)

(
ut(tn) − F (un)

)
+ G

(
− ∂̄Un + F (Un) + ut(tn) − F (un)

)
.
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Thus, noting that ‖(G̃hP̃h −G)f‖ ≤ Chs‖f‖s−2 for 0 ≤ s ≤ r + 2, we get

‖ũh(T ) − u(T )‖ ≤ C0h
2
(
‖∂̄Un − ut(tn)‖ + ‖F (Un) − F (un)‖

)
+ C0h

r+2‖ut(tn) − F (un)‖r
+ |∂̄Un − ut(tn)|−2 + |F (Un) − F (un)|−2.

Combining this with Lemmas 2.3, 4.2, and 4.3, we complete the proof.
Remark 4.1. The algorithm works also for the Crank–Nicolson method. We can

easily extend the proof of the backward Euler method to the Crank–Nicolson method.
The algorithm works also for the backward Euler method with variable time step

if F is independent of solution u. It is not clear how to get the postprocessing error
estimates if F depends on u. We will study this in future work.

5. Error estimate for the starting approximation. In this section we will
consider the error estimate for the starting approximation of the time derivative |∂̄Û1−
ut(t1)|−s, s = 0, 2, which appears in Theorem 4.1, where u and Û1 satisfy

ut + Au = F (u), with u(0) = v,(5.1)

and

∂̄Û1 + AhÛ
1 = PhF (u1), with Û0 = vh = Rhv,(5.2)

respectively.
The semidiscrete problem of (5.1) is to find ûh ∈ Sh such that

ûh,t + Ahûh = PhF (u), with ûh(0) = Rhv.(5.3)

We observe that we use F (u1) in (5.2); thus |∂̄Û1 − ut(t1)|−s, s = 0, 2, can be
bounded by the standard technique for nonhomogeneous linear parabolic problems.
We have the following theorem.

Theorem 5.1. Let Û1 and u be the solutions of (5.2) and (5.1), respectively.
Assume that F is continuously differentiable and

‖Aut(0)‖ + ‖ut(0)‖r + max
0≤τ≤k

(
‖F ′(u(τ))ut(τ)‖ + ‖utt(τ)‖r

)
≤ M0

for some positive number M0. Then there is a constant C = C(M0) such that

‖∂̄Û1 − ut(t1)‖ ≤ C(hr + k)(5.4)

and

|∂̄Û1 − ut(t1)|−2 ≤ C(hr+2 + k).(5.5)

Proof. We first show (5.4). We write

∂̄Û1 − ut(t1) =
(
∂̄Û1 − ûh,t(t1)

)
+
(
ûh,t(t1) − ut(t1)

)
.

By (3.16), we have

‖ûh,t(t1) − ut(t1)‖ ≤ C0h
r
(
‖ut(0)‖r +

∫ t1

0

‖utt(s)‖r ds
)
.(5.6)
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For ∂̄Û1 − ûh,t(t1), we have, by (5.2) and (5.3),

∂̄Û1 − ûh,t(t1) = Ah(Û1 − û1
h).

Here, by Taylor’s formula, with r(λ) = 1/(1 + λ), Eh(t) = e−tAh ,

Û1 − û1
h =

(
r(kAh) − Eh(t1)

)
Rhv + kr(kAh)PhF (u1)

−
∫ t1

0

Eh(t1 − s)PhF (u(s)) ds

=
(
r(kAh) − Eh(t1)

)
Rhv + kb0(kAh)PhF (u(0)) + kR(F ),

where

b0(λ) = r(λ) −
∫ 1

0

e−(1−s)λ ds

and

R(F ) = r(kAh)

∫ k

0

PhF
′(u(τ))ut(τ) dτ

−
∫ 1

0

e−(1−s)kAh

∫ ks

0

PhF
′(u(τ))ut(τ) dτ ds.

Thus, we have

∂̄Û1 − ûh,t(t1) =
(
r(kAh) − Eh(t1)

)
AhRhv

+ kAhb0(kAh)PhF (u(0)) + kAhR(F ).

Noting that AhRh = PhA and λb0(λ) = −
(
r(λ) − e−λ

)
, we get

∂̄Û1 − ûh,t(t1) =
(
r(kAh) − Eh(t1)

)
Ph

(
Av − F (u(0))

)
+ kAhR(F )(5.7)

=
(
r(kAh) − Eh(t1)

)
Phut(0) + kAhR(F )

= I + II.

For I, we have, by the error estimate for homogeneous parabolic problems,

‖I‖ ≤
∥∥(r(kAh) − Eh(t1)

)
(Ph −Rh)ut(0)

∥∥ +
∥∥(r(kAh) − Eh(t1)

)
Rhut(0)

∥∥
≤ ‖(Ph −Rh)ut(0)‖ + C0k‖AhRhut(0)‖
≤ C0h

r‖ut(0)‖r + C0k‖Aut(0)‖.

For II, we write

II = kAhr(kAh)

∫ k

0

PhF
′(u(τ))ut(τ) dτ

− kAh

∫ 1

0

e−(1−s)kAh

∫ ks

0

PhF
′(u(τ))ut(τ) dτ ds

= II1 + II2.
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We have, noting that |λr(λ)| ≤ 1, ‖Ph‖ ≤ 1,

‖II1‖ ≤ ‖kAhr(kAh)‖
∫ k

0

‖PhF
′(u(τ))ut(τ)‖ dτ

≤ k max
0≤τ≤k

‖F ′(u(τ))ut(τ)‖,

and, by exchanging the integral order and noting that
∫ 1

ε
λe−(1−s)λ ds ≤ 1 for 0 ≤

ε ≤ 1,

‖II2‖ =
∥∥∥kAh

∫ k

0

PhF
′(u(τ))ut(τ)

∫ 1

τ/k

e−(1−s)kAh dsdτ
∥∥∥

≤ k max
0≤τ≤k

‖F ′(u(τ))ut(τ)‖
∥∥∥kAh

∫ 1

τ/k

e−(1−s)kAh ds
∥∥∥

≤ k max
0≤τ≤k

‖F ′(u(τ))ut(τ)‖.

Together these estimates show

‖∂̄Û1 − ûh,t(t)‖ ≤ C0

(
hr‖ut(0)‖r + k‖Aut(0)‖ + k max

0≤τ≤k
‖F ′(u(τ))ut(τ)‖

)
.(5.8)

Combining this with (5.6) shows (5.4).
We now turn to (5.5). We again write

∂̄Û1 − ut(t1) =
(
∂̄Û1 − ûh,t(t1)

)
+
(
ûh,t(t1) − ut(t1)

)
.

The desired bound for |ûh,t(t1) − ut(t1)|−2 follows from (3.17).

For ∂̄Û1 − ûh,t(t1), we have, by Lemma 2.1,

|∂̄Û1 − ûh,t(t1)|−2 ≤ C0

(
h2‖∂̄Û1 − ûh,t(t1)‖ + |∂̄Û1 − ûh,t(t1)|−2,h

)
.

Thus, by (5.7),

|∂̄Û1 − ûh,t(t1)|−2,h ≤ |I|−2,h + |II|−2,h.

For |I|−2,h, we have, by the error estimate for homogeneous parabolic problems [30],

|I|−2,h = |(r(kAh) − Eh(t1))Phut(0)|−2,h ≤ C0

(
hr+2‖ut(0)‖r + k‖Aut(0)‖

)
.

For |II|−2,h, we have, noting that |r(λ)| ≤ 1,
∫ 1

ε
e−(1−s)λ ds ≤ 1 for 0 ≤ ε ≤ 1,

|II|−2,h ≤
∫ k

0

‖kr(kAh)‖ ‖PhF
′(u(τ))ut(τ)‖ dτ

+
∥∥∥k ∫ k

0

PhF
′(u(τ))ut(τ)

∫ 1

τ/k

e−(1−s)kAh ds dτ
∥∥∥

≤ k2 max
0≤τ≤k

‖F ′(u(τ))ut(τ)‖.

Hence we get

|∂̄Û1 − ûh,t(t1)|−2,h ≤ C0

(
hr+2‖ut(0)‖r + k‖Aut(0)‖ + k2 max

0≤τ≤k
‖F ′(u(τ))ut(τ)‖

)
.

Combining this with (5.8) shows (5.5).
Together these estimates complete the proof of the theorem.
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6. High-order time-stepping. The postprocessing requires very accurate time-
stepping in order to match the high-order spatial approximation. It would be natural
then to use a time-stepping method of higher order than the backward Euler method
of section 4. However, we have not been able to analyze such methods except in
the case of linear homogeneous problems, where we can apply the analysis of time
derivative approximation from [30].

In this section we consider the linear homogeneous parabolic problem

ut + Au = 0 for t > 0, with u(0) = v.(6.1)

We define the time-stepping method

Un = r(kAh)Un−1, U0 = vh,(6.2)

where r(λ) is a rational function and accurate of order p ≥ 1, i.e.,

r(λ) − e−λ = O(λp+1), λ → 0.

For example, if r(λ) = 1/(1+λ), then we have (1+kAh)Un = Un−1, which is the
backward Euler method. If r(λ) = (1 − λ

2 )/(1 + λ
2 ), then we have (1 + 1

2kAh)Un =
(1 − 1

2kAh)Un−1, which is the Crank–Nicolson method.
Further we define the quotient QkU

n to approximate the time derivative uh,t(tn),
with positive integers m1,m2 and real numbers cν ,

QkU
n = k−1

m2∑
ν=−m1

cνU
n+ν for n ≥ m1.(6.3)

We assume that the operator Qk satisfies, for any smooth function u,

Qku
n − ut(tn) = O(kp), k → 0.(6.4)

The postprocessing step in the fully discrete case is to find ũ(T ) ∈ Sh, T = tn,
such that

Aũ(T ) = −QkU
n.(6.5)

The finite element solution of the elliptic problem (6.5) with respect to S̃h is to
find ũh(T ) ∈ S̃h, such that

Ãhũh(T ) = P̃h(−QkU
n).(6.6)

Our main theorem in this section is the following.
Theorem 6.1. Let r ≥ 4 and let Sh and S̃h be the finite element spaces of orders

r and r + 2, respectively, as described in section 2. Let ũh and u be the solutions of
(6.6) and (6.1), respectively. Let T = tn be a fixed time. Then we have, if vh = Rhv,

‖ũh(T ) − u(T )‖ ≤ C0

(
hr+2|v|r+2 + kp|v|2(p+1) + hr+2‖ut(T )‖r

)
for r ≥ 4.

Recalling the proof of Theorem 4.1, we note that Theorem 6.1 follows once we
have proved appropriate estimates of ‖QkU

n − ut(tn)‖ and |QkU
n − ut(tn)|−2, which

are given in the following two lemmas.
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Lemma 6.2. Let Un and u be the solutions of (6.2) and (6.1), respectively.
Assume that |r(λ)| < 1 for λ > 0. Then we have, if vh = Rhv,

‖QkU
n − ut(tn)‖ ≤ C0(h

r|v|r+2 + kp|v|2(p+1)).

Lemma 6.2 was proved in [30].
Lemma 6.3. Let Un and u be the solutions of (6.2) and (6.1), respectively.

Assume that |r(λ)| < 1 for λ > 0. Then we have, if vh = Rhv,

|QkU
n − ut(tn)|−2 ≤ C0

(
hr+2|v|r+2 + kp|v|2(p+1)

)
.

Proof. By Thomée [27, Theorem 6.4], we have∣∣uh,t(t) − ut(t)
∣∣
−2

≤ Chr+2|v|r+2.

Therefore it suffices to show∣∣QkU
n − uh,t(tn)

∣∣
−2

≤ C
(
hr+2|v|r+2 + kp|v|2(p+1)

)
,(6.7)

which we will prove now.
We first estimate

∣∣QkU
n − uh,t(tn)

∣∣
−2,h

. Noting that, with vh = Rhv = GhAv,

QkU
n − uh,t(tn) = k−1

( m2∑
ν=−m1

cνU
n+ν − (−Ah)e−nkAh

)
GhAv

= k−1gn(kAh)GhAv,

where gn(λ) =
∑m2

ν=−m1
r(λ)n+ν − (−λ)e−nλ, we need to show∥∥Gh

(
k−1gn(kAh)GhAv

)∥∥ ≤ C0

(
hr+2|v|r+2 + kp|v|2(p+1)

)
.

To do this we set

vk =
∑

kλl≤1

(v, ϕl)ϕl,

where ϕl and λl are the eigenfunctions and eigenvalues of the operator A. Then
vk ∈ Ḣs for each s ≥ 0. Further, by the definition of the norm in Ḣs, we easily find

‖A(v − vk)‖ ≤ kp|v|2p+2,(6.8)

|vk|2(p+1) ≤ |v|2(p+1),(6.9)

and

|vk|r+2l+2 ≤ k−l|v|r+2 for 0 ≤ l ≤ p− 1.(6.10)

Applying now the identity

v =

p−1∑
j=0

Gj
h(G−Gh)Aj+1v + Gp

hA
pv for v ∈ Ḣ2p, where G0

h = I,(6.11)
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to v = Avk, we get

Ghgn(kAh)GhAvk =

p−1∑
l=0

gn(kAh)Gl+1
h

(
Gh(G−Gh)Al+2vk

)
+ Ghgn(kAh)Gp+1

h Ap+1vk.

It is easy to show that (see, e.g., [30, Lemma 3.9])

‖gn(kAh)Gl+1
h ‖ ≤ C0k

l+1 for 0 ≤ l ≤ p, n ≥ 0.(6.12)

Thus, by (6.9) and noting the boundedness of Gh,

‖Ghgn(kAh)Gp+1
h Ap+1vk‖ ≤ ‖gn(kAh)Gp+1

h Ap+1vk‖
≤ C0k

p+1‖Ap+1vk‖ ≤ C0k
p+1|vk|2(p+1) ≤ C0k

p+1|v|2(p+1).

Further, by (6.10), (6.12), and using (2.13), we have, with 0 ≤ l ≤ p− 1,∥∥gn(kAh)Gl+1
h

(
Gh(G−Gh)Al+2vk

)∥∥ ≤ C0k
l+1‖Gh(G−Gh)Al+2vk‖

≤ C0k
l+1h2‖(G−Gh)(Al+2vk)‖ + C0k

l+1hr+2|Al+2vk|r−2

≤ C0k
l+1hr+2‖Al+2vk‖r−2 ≤ C0k

l+1hr+2|vk|r+2l+2 ≤ C0kh
r+2|v|r+2.

Together these estimates imply

‖Ghgn(kAh)GhAvk‖ ≤ C0k(hr+2|v|r+2 + kp|v|2(p+1)).

Since obviously, by (6.8), the boundedness of Gh, and stability, we get

‖Ghgn(kAh)GhA(v − vk)‖ ≤ ‖gn(kAh)GhA(v − vk)‖
≤ C0k‖A(v − vk)‖ ≤ C0k

p+1|v|2(p+1),

we conclude that

‖Gh(QkU
n − uh,t(tn))‖ = k−1‖Ghgn(kAh)GhAv‖

≤ C0(h
r+2|v|r+2 + kp|v|2(p+1)).

By [30, Theorem 3.8], we have

‖QkU
n − uh,t(tn)‖ ≤ C0(h

r|v|r+2 + kp|v|2p).

Thus

|QkU
n − uh,t(tn)|−2 ≤ ‖(G−Gh)(QkU

n − uh,t(tn))‖
+ ‖Gh(QkU

n − uh,t(tn))‖
≤ C0(h

r+2|v|r+2 + kp|v|2(p+1)).

Together these estimates complete the proof.
After the preparations above we now come to the proof of Theorem 6.1.
Proof of Theorem 6.1. Combining (6.6) and (6.1), we get, with G̃h = Ã−1

h ,

ũh(T ) − u(T ) = G̃hP̃h(−QkU
n) −G(−ut)

= (G̃hP̃h −G)(−QkU
n + ut(tn))

− (G̃hP̃h −G)ut(tn) + G(QkU
n − ut).
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Thus, by Lemmas 6.2 and 6.3, and noting that ‖(G̃hP̃h − G)f‖ ≤ Chs‖f‖s−2 for
0 ≤ s ≤ r + 2, we have

‖ũh(T ) − u(T )‖ ≤ C0h
2‖QkU

n − ut(tn)‖
+ C0h

r+2‖ut(tn)‖r + |(QkU
n − ut(tn))|−2

≤ C0

(
hr+2|v|r+2 + kp|v|2(p+1) + hr+2‖ut(tn)‖r

)
.

Together these estimates complete the proof.
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SYMMETRIZABLE SYSTEMS OF CONSERVATION LAWS∗
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Abstract. In this paper we study the error estimates to sufficiently smooth solutions of
symmetrizable systems of conservation laws for the Runge–Kutta discontinuous Galerkin (RKDG)
method. Time discretization is the second-order explicit TVD (total variation diminishing) Runge–
Kutta method, and the P

k (piecewise polynomial) finite element is used. When k = 1 (piecewise
linear finite element), the error estimate is obtained under the usual CFL condition τ ≤ βh for
nonlinear systems in one dimension and for linear systems in multiple space dimensions. Here, h
is the maximum element length, τ is the time step, and β is a positive constant independent of h
and τ . Error estimates for P

k finite elements with k > 1 are obtained under a more restrictive CFL
condition.
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1. Introduction. In this paper, we continue our work in [24] and present the er-
ror estimates of the Runge–Kutta discontinuous Galerkin (RKDG) method for smooth
solutions of symmetrizable systems of conservation laws,

u,t + f (i)
,xi

(u) = 0, (x, t) ∈ Ω × (0, T ],(1.1a)

u(x, 0) = u0, x ∈ Ω,(1.1b)

in the spatial domain Ω ∈ R
d and the time interval [0, T ]. Here, u(x, t) : R

d × R
+ →

R
m is the dependent solution variable, f(u) = (f (1)(u), . . . ,f (d)(u)) : R

m → R
m×d is

the vector-valued flux function, and the implied summation on the index i is used in

(1.1a), i.e., f
(i)
,xi =

∑d
i=1 ∂f (i)/∂xi. We do not pay attention to boundary conditions

in this paper; hence the solution is considered to be either periodic or compactly
supported. For simplicity of presentation, we will give detailed analysis only for
the one-dimensional case where d = 1 and Ω = I = (0, 1); herein we drop the
index i in (1.1). We will, however, point out similarities and differences when the
analysis is generalized to multiple space dimensions. We assume, in addition, that each
component of the flux function f(u) is smooth enough in u; for our purpose C3(Rm)
will suffice. The analysis in this paper is for smooth solutions of (1.1). Discontinuous
solutions with shocks are not considered.
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The RKDG method was introduced and developed by Cockburn and coworkers
[4, 5, 3, 2, 6] for solving nonlinear hyperbolic conservation laws; the method uses
discontinuous Galerkin (DG) discretization in space and combines it with an explicit
total variation diminishing (TVD) Runge–Kutta time-marching algorithm [21]. This
method has a good stability property, is flexible for h-p adaptivity, and has a high
parallel efficiency. In recent years there has been a lot of activity in the design,
analysis, and application of RKDG methods. For more details, we refer to the review
article [8].

Although error estimates for linear equations and for the method of lines (con-
tinuous in time) version of the RKDG method have been available for a long time
(e.g., [15, 14, 7]), error estimates for the fully discrete RKDG method for nonlinear
conservation laws with smooth solutions have become available only recently. In [24]
we obtained error estimates for scalar conservation laws with piecewise kth-degree
polynomial DG spatial discretization coupled with second-order TVD Runge–Kutta
time discretization. The analysis assumed the usual CFL condition τ ≤ βh for the
piecewise linear k = 1 case, where h is the maximum element length, τ is the time
step, and β is a suitable positive constant independent of h and τ . For the higher-
order k > 1 case, the proof had to assume a much stronger CFL condition τ ≤ βh4/3

for an arbitrary positive constant β. In this paper, we extend these error estimates
to symmetrizable systems (see Theorem 2.1).

In the symmetrization theory [20] for the first-order conservation laws, one seeks
a mapping u(v) : R

m → R
m applied to (1.1a) so that when transformed,

u,vv,t + f,vv,x = 0,(1.2)

the matrix u,v is symmetric positive definite (SPD) and the matrix f,v = f,uu,v is also
symmetric, where f,v = {f(u(v))},v. We further assume that each component of u,v

is Lipschitz continuous with respect to the variable v. As is well known, a conservation
law system (1.1a) is symmetrizable if and only if it has a convex entropy function
[10]. Well-known systems such as the Euler equations of compressible gas dynamics
are symmetrizable. If f,u is already symmetric, the system (1.1a) is symmetric. It
is rather straightforward to generalize the error estimates in [24] from the scalar case
to symmetric systems. However, there are not that many physical systems that are
symmetric. On the other hand, as we will see later in this paper, it is significantly more
difficult to generalize the error estimates in [24] from the scalar case to symmetrizable
systems.

The line of analysis in this paper follows that of [24]. The main techniques are
Taylor expansions and energy analysis. In generalizing the analysis from the scalar
case to systems, we need to pay attention to the suitable norm in the analysis, to a
careful classification of the necessary properties for the numerical fluxes, to the com-
plication related to the fact that derivatives (Jacobians) and second derivatives of the
flux functions are matrices and supermatrices, and to a suitable generalization of the
a priori assumption about the numerical solution. We will present a series of lemmas,
which mostly correspond to those in [24]. If the proofs have only minor differences, we
will comment on such differences and will not repeat the details. We will concentrate
our analysis on the piecewise k = 1 case for the DG method, since higher-order cases
can be analyzed with the stronger CFL condition τ ≤ βh4/3, following the same lines
as those in [24], once the k = 1 case is proved.

An outline of this paper is as follows. In section 2 we present, for (1.1), the
RKDG method and the corresponding convergence theorem with the second-order
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TVD Runge–Kutta time discretization, where we introduce a definition of the gen-
eralized E-flux property for symmetrizable systems of conservation laws. In section
3 we present a proposition for an important matrix which measures the amount of
numerical viscosity on each element interface, and perform some elementary analysis
to the error equations. We prove the convergence theorem in section 4. Section 5 is an
appendix, in which we give the technical details of the estimates omitted in previous
sections.

2. RKDG method and the convergence theorem. In this section we will
follow [6] and define the RKDG method for the problem (1.1) in one space dimen-
sion, presenting the corresponding convergence theorem without proof. The multi-
dimensional scheme can be similarly defined, and the analysis can be carried out in
a similar fashion for linear as well as nonlinear symmetrizable systems with a few
modifications; see Remark 4.2.

2.1. RKDG method. For each partition of the interval I = (0, 1), {xj+ 1
2
}Nj=0,

we set Ij = (xj− 1
2
, xj+ 1

2
) and hj = xj+ 1

2
− xj− 1

2
for j = 1, . . . , N ; we denote the

quantity max1≤j≤N hj by h. For a given time step τ ≡ τn (which could actually
change from step to step, but is taken as a constant with respect to the time level n for
simplicity), the solution of the scheme is denoted by un

h(x) = uh(x, tn) = uh(x, nτ),
which belongs to the finite element space

Vh = {v ∈ [L1(0, 1)]m : v|Ij ∈ [Pk(Ij)]
m, j = 1, . . . , N },(2.1)

where P
k(Ij) denotes the space of polynomials in Ij of degree at most k. Note that

each component of a vector-valued function in Vh is allowed to have discontinuities
across element interfaces.

In what follows, we will consider the standard L2-projection of a vector-valued
function p ∈ [L2(0, 1)]m into the finite element space Vh, denoted by Php, which is
defined as the unique vector-valued function in Vh such that∫ 1

0

zT
h (x)(Php(x) − p(x)) dx = 0 ∀zh ∈ Vh,(2.2)

where zT denotes the transpose of the vector z.
As usual, at each element interface we will denote, for a vector-valued function

z, two limiting values from different directions by z±
j+1/2 = z(xj+1/2 ±0), and denote

the average and jump by z̄ = (z+ + z−)/2 and [z] = z+ − z−, respectively. We also
define, for any vector-valued functions p and z, the following functional corresponding
to the DG spatial discretization:

Hj(p,z) =

∫
Ij

zT
,xf(p) dx− (z−

j+ 1
2

)T ĥ(p)j+ 1
2

+ (z+
j− 1

2

)T ĥ(p)j− 1
2
,(2.3)

where ĥ(p) ≡ ĥ(p−,p+) is a given (locally) Lipschitz continuous numerical flux func-

tion consistent with the flux function f(p), that is, ĥ(p,p) = f(p). In this paper, we

will also assume that ĥ(p) is a generalized E-flux function, to be defined in the next
subsection 2.2.

The approximate solution in Vh from time nτ to (n + 1)τ given by the RKDG
method with second-order TVD time discretization can now be defined as follows:
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find successively wn
h ≡ wn

h(x) ∈ Vh and un+1
h ≡ un+1

h (x) ∈ Vh such that, for any
zh ≡ zh(x) ∈ [Pk(Ij)]

m and 1 ≤ j ≤ N ,∫
Ij

zT
h wn

h dx =

∫
Ij

zT
h un

h dx + τHj(u
n
h,zh),(2.4a) ∫

Ij

zT
h un+1

h dx =
1

2

∫
Ij

zT
h un

h dx +
1

2

∫
Ij

zT
h wn

h dx +
τ

2
Hj(w

n
h ,zh),(2.4b)

with the initial value u0
h = Phu0(x). This is an explicit time marching method when

a local orthogonal basis is chosen for polynomials on Ij or when a small local mass
matrix on Ij is inverted. Numerical results and details of this scheme can be found
in [9] and [8].

2.2. Generalized E-flux. In this subsection we will introduce an important
assumption on the numerical fluxes used in the scheme (2.4). The symmetrizable
theory implies that the Jacobian f,u is similar to a symmetric matrix, since

u−1/2
,v f,uu1/2

,v = u−1/2
,v f,vu−1/2

,v(2.5)

and the matrix on the right-hand side is symmetric. It give us a motivation to preserve
more properties of the numerical flux from the scalar and symmetric system cases to
the symmetrizable system case.

We assume in this paper that the numerical flux function ĥ(p) is locally Lipschitz
continuous and, for ri = p−, p̄, and p+, satisfies

(p+ − p−)Tv,u(si){f(ri) − ĥ(p)} ≥ 0, i = 1, 2, 3,(2.6)

for some reference vectors si, i = 1, 2, 3, which are inside the m-dimensional cube,
with p+ and p− being the endpoints of the longest diagonal line. These reference
vectors may depend on the numerical fluxes ĥ and on p±.

The inequality (2.6), for a symmetric system of conservation laws (in which case
v,u ≡ I), has been considered in [13] as an E-flux (see [17] for the definition of E-fluxes
for scalar conservation laws). Therefore, we refer to a numerical flux satisfying (2.6)
as a generalized E-flux. It is easy to verify that the property (2.6) holds for many
numerical flux functions constructed from approximate Riemann solvers: for example,
the Roe linearization flux function [19], with or without Harten’s entropy fix [11], and
the global (local) Lax–Friedrichs flux, where si may be chosen as the so-called Roe
average [19] of p+ and p−.

2.3. The convergence theorem. We now present the main convergence theo-
rem of the RKDG scheme (2.4). The proof will be given in the next two sections.

Theorem 2.1. For the symmetrizable system of conservation laws (1.1), assume
that the solution u and the flux function f(u) are sufficiently smooth with bounded
derivatives. Let uh be the numerical approximate solution of the RKDG scheme (2.4)
with the second-order TVD Runge–Kutta time discretization, where the numerical flux
ĥ(·, ·) is assumed to be a generalized E-flux; namely, (2.6) is satisfied. For regular
triangulations of I = (0, 1), if the finite element space Vh is of piecewise polynomials
of degree k ≥ 1, then for small enough h there holds the following estimate:

max
nτ≤T

||u(tn) − un
h||L2(0,1) ≤ C(hk+1/2 + τ2),(2.7)
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where the positive constant C is independent of h, τ , and the approximate solution
uh. This estimate holds for k ≥ 2 under the restrictive time step condition τ ≤ βh4/3

with any given positive constant β; meanwhile, it holds for k = 1 under the usual CFL
condition τ ≤ βh with a suitable positive CFL number β which is independent of τ
and h.

We remark that the power hk+1/2 is optimal for general triangulations [18] for
the scalar case but is suboptimal for the one-dimensional case with scalar equations.
The proof of the optimal order hk+1 for the scalar case requires special upwind fluxes
[24], which can be done for the system case (1.1) as well in some special situations.
See Remark 4.3 in section 4.

For the generalization of these results to multiple space dimensions, see Remark
4.2 in section 4.

In what follows, we would like to assume as in [24] that each component of the
flux function f(·) itself, and its derivatives up to third order, are bounded in the
domain R

m. This assumption is nonessential if we consider only smooth solutions of
(1.1) to a finite time T . We could achieve the desired boundedness by redefining the
flux function f(u) outside the range of the solution u; cf. [24].

We denote the inverse mapping of u(v) by v(u). The symmetrizable theory
provides that the Jacobians u,v(v) and v,u(u) are both SPD and Lipschitz continuous.
Similarly as above, we assume that these properties hold uniformly in the domain R

m

and that the spectrum of the Jacobians is bounded.
We would also like to denote, by C, C�, M , or ε, a generic positive constant

independent of n, h, and τ . Herein, M and ε are used to denote constants which
are independent of the solution of (1.1). C� is used to emphasize the nonlinearity of
f(u); i.e., C� = 0 for a linear flux function f(u) = Cu. These constants may have a
different value in each occurrence.

3. Error equations, energy equality, and a few estimates. We follow the
idea in [24] to obtain the error estimate to sufficiently smooth solutions for the RKDG
scheme (2.4). In this section we will present some elementary development similar to
that in [24], and we omit the detailed proof if it is similar to that in [24].

3.1. Error equations and energy equality. We denote the error at each stage
of the considered RKDG scheme by en

u = u(x, tn) − un
h and en

w = w(x, tn) − wn
h ,

respectively, where w(x, t) is a vector-valued function in parallel to an Euler forward
time marching, namely

w(x, t) = u(x, t) + τu,t(x, t).(3.1)

As is customary in finite element error analysis, we define ξp = Php − ph and ηp =
Php − p, where Ph is the local L2-projection. Then the error is decomposed by
en

p = ξn
p − ηn

p , where p = u or w. The estimates for ηp will be discussed easily in
subsection 3.2, while the estimates to ξp contain the main difficulty in the analysis.

To perform this analysis, we need the error equations of the RKDG scheme (2.4).
These can be obtained by algebraic manipulations similar to those in [23, 24] (cf.
Lemma 4.1 in [24]). The error equations are given by∫

Ij

zT
h ξn

w dx =

∫
Ij

zT
h ξn

u dx + Kn
j (zh),(3.2a) ∫

Ij

zT
h ξn+1

u dx =

∫
Ij

zT
h ξn

u dx +
1

2
Kn

j (zh) +
1

2
Ln
j (zh),(3.2b)
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for any zh(x) ∈ [Pk(Ij)]
m and 1 ≤ j ≤ N , where

Kn
j (zh) =

∫
Ij

zT
h (ηn

w − ηn
u) dx + τHj(u(tn),zh) − τHj(u

n
h,zh),

(3.2c)

Ln
j (zh) =

∫
Ij

zT
h (2ηn+1

u − ηn
w − ηn

u + 2ζn) dx + τHj(w(tn),zh) − τHj(w
n
h ,zh).

(3.2d)

Here ζn is the truncation error in time, with the size O(τ3). Below we will use the
short notation Kn(zh) =

∑
1≤j≤N Kn

j (zh) and Ln(zh) =
∑

1≤j≤N Ln
j (zh).

We will use energy estimates to analyze the error of the RKDG scheme (2.4).
To this end, we define a norm which depends on the time level n, given by ||p||n =

||v1/2
,u (un

c )p||, for any vector-valued function p, where un
c is the piecewise constant

vector-valued function that is equal to the vector u(xj , t
n) in each element Ij . The

symmetrizable theory guarantees that the || · ||n norm is equivalent to the usual L2-
norm || · ||.

We first take the test function zh = v,u(un
c )ξn

u in (3.2a) and zh = v,u(wn
c )ξn

w in
(3.2b), respectively, which belongs to the finite element space Vh. By adding the two
equalities together, we obtain the energy equation

||ξn+1
u ||2n − ||ξn

u||2n = ||ξn+1
u − ξn

w||2n + Kn(v,u(un
c )ξn

u) + Ln(v,u(wn
c )ξn

w) + En,(3.3a)

where

En =

∫
I

(ξn
w)T (v,u(un

c ) − v,u(wn
c ))(2ξn+1

u − ξn
u − ξn

w) dx(3.3b)

and wn
c is defined in the same way as un

c ; i.e., it is the piecewise constant vector-
valued function which is equal to the vector w(xj , t

n) in each element Ij . In order to
obtain the error estimate, we shall analyze carefully each term on the right-hand side
of this important energy equation (3.3) in the next section.

3.2. Properties of the finite element spaces. In this subsection we present
some interpolation approximation and inverse inequalities of the finite element space
Vh, which consists of piecewise polynomials of degree at most k. The usual notation
for norms and seminorms in Sobolev spaces will be used below.

The local L2-projection is enough to prove Theorem 2.1 for general numerical flux
functions with the suboptimal error bound Chk+1/2. By the standard scaling theory,
it is easy to show (cf. [1]) that if u and u,t ∈ L∞([0, T ]; [Hk+1(I)]m), then

||ηn
p || + h||ηn

p ||∞ + h
1
2 ||ηn

p ||Γh ≤ Chk+1 (p = u,w, ∀n : nτ ≤ T ),(3.4a)

where Γh is the set of boundary interfaces of all elements and || · ||Γh is the usual L2-
norm on Γh. Noticing the definition (3.1) of w and the linearity of the L2-projection
Ph, we can conclude that if u,t ∈ L∞([0, T ]; [Hk+1(I)]m), then

||ηn+1
u − ηn

u|| + ||ηn
w − ηn

u|| ≤ Chk+1τ ∀n : nτ < T.(3.4b)

In these inequalities the positive constant C depends solely on u,w, and/or u,t and
is independent of n, h, and τ .
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In the following analysis we will also use some inverse inequalities of the finite
element space Vh. For any vector-valued function zh ∈ Vh, there is a positive constant
C independent of zh and h such that

(i) ||(zh),x|| ≤ Ch−1||zh||, (ii) ||zh||Γh ≤ Ch− 1
2 ||zh||, (iii) ||zh||∞ ≤ Ch− 1

2 ||zh||.

For more details of these inverse inequalities, we refer to [1].

3.3. An important matrix related to the numerical flux. In this subsec-
tion we will introduce an important matrix A(ĥ; p) associated with a generalized

E-flux function ĥ(p) satisfying (2.6), which measures the numerical viscosity of the
flux on each element interface. It is a generalization of a similar quantity in [24] for
the scalar case, although we make a minor modification because the definition of the
generalized E-flux (2.6) is weaker than that of an E-flux, as we require the inequality
(2.6) to hold only for the end points p± and the midpoint p̄, rather than for all points
between p± for an E-flux. See also [11].

In the next proposition we will use the following notation. If there exists an
invertible matrix T such that A = T

−1
BT, where B = diag(λ1, . . . , λm) is a diagonal

matrix, then we denote its absolute value matrix by |A| = T
−1diag(|λ1|, . . . , |λm|)T.

We also denote J(p) = v,u(p)f,u(p) = v,u(p)f,v(v(p))v,u(p), which is a symmetric
matrix in the symmetrizable theory.

Proposition 3.1. Assume that the generalized E-flux property (2.6) holds for

the numerical flux ĥ(p) ≡ ĥ(p−,p+), which is consistent with the flux f(p). Define
the matrix on each element interface

A(ĥ; p) ≡ A(ĥ; p−,p+) :=

⎧⎨
⎩

1

6
A1 +

2

3
A2 +

1

6
A3, if [p] �= 0,∣∣J(p̄)

∣∣, if [p] = 0,
(3.5a)

where

Ai =
v,u(si){f(ri) − ĥ(p)}[p]T

[p]T [p]
, i = 1, 2, 3,(3.5b)

and ri and si, i = 1, 2, 3, are the vectors defined in subsection 2.2. Then for any
vector p ∈ R

m, the spectrum of A(ĥ; p) is bounded and [p]TA(ĥ; p)[p] ≥ 0; moreover,

1

3
[p]T

∣∣J(p̄)
∣∣[p] ≤ [p]TA(ĥ; p)[p] + C�||[p]||3,(3.6)

where the positive constant C� is determined solely by the nonlinearity of the flux
f(p), and ||[p]|| is the length of the vector [p].

Proof. The boundedness of spectrum is implied by the Lipschitz continuity of
the numerical flux ĥ(·, ·). The positive property [p]TA(ĥ; p)[p] ≥ 0 is evident, since
[p]TAi[p] ≥ 0 by the generalized E-flux property (2.6).

If [p] = 0, the conclusion (3.6) is trivial. Otherwise, we start our proof from the
equality

[p]TA2[p] = [p]Tv,u(s2){f(r2) − ĥ(p)}
= [p]Tv,u(p̄){f(r2) − f(rj)} + [p]T {v,u(s2) − v,u(p̄)}{f(r2) − f(rj)}

+ [p]T {v,u(s2) − v,u(sj)}(f(rj) − ĥ(p)) + [p]Tv,u(sj)(f(rj) − ĥ(p))
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and proceed to estimate each term on the right-hand side separately. In this equality
r2 = p̄, and rj will be taken as j = 1 and 3, namely p+ and p−.

It is easy to see that the absolute values of the middle two terms are bounded by
O(||[p]||3), since f , ĥ, and v,u are all Lipschitz continuous, and that the last term is
nonnegative by the generalized E-flux property (2.6).

We estimate the first term by simple Taylor expansions up to second order. We
remark that the expansions are performed along the line with endpoints p±, i.e., for
the single-variable function f̃(s) = f(sp+ + (1− s)p−), where s ∈ [0, 1]. It is obvious
that f(p+) = f̃(1), f(p̄) = f̃( 1

2 ), and f(p−) = f̃(0). Together with [p]TAi[p] ≥ 0
for i = 1, 3, the Taylor expansions at the point p̄ finally give that

[p]TA(ĥ; p)[p] ≥ ±1

3
[p]Tv,u(p̄)f,v(v(p̄))v,u(p̄)[p] − C�||[p]||3.

Due to the Lipschitz property of f and ĥ, each component of A(h; p̄ − 1
2r, p̄ + 1

2r)
is Lipschitz continuous with respect to the variable p, on the m-dimensional sphere
with diameter ||[p]||. Therefore we have

1

3

∣∣rT
J(p̄)r

∣∣ ≤ rTA(ĥ; p)r + C�||[p]||3 ∀r : ||r|| =
1

2
||[p]||.

Thus it is easy to conclude the inequality (3.6). This completes the proof of this
proposition.

Remark 3.1. The inequality (3.6) also holds for other numerical flux functions
which may violate the generalized E-flux property (2.6) slightly, e.g., the Harten–
Hyman flux function [12] and the local Lax–Friedrichs flux function with an entropy
fix (cf. [16]). For these fluxes, the deviation to (2.6) is of the order O(||[p]||4∞), which
does not affect the proof of inequality (3.6).

In what follows we will adopt some convenient notations about the matrix A(ĥ; p).
If there is no confusion, we will, for any vector-valued function p, denote

A(p) =
∑

1≤j≤N

[p]Tj+ 1
2
A(ĥ; p)j+ 1

2
[p]j+ 1

2
.

We will also denote by 	(p) the maximum of the spectral radius of A(ĥ; p) over all
element interfaces. As a result of Proposition 3.1, we have that each spectrum of
|J(p)| is bounded by 3	(p) + C�||[p]||. Also, we have that each spectrum is “almost
positive”; i.e., if the spectrum is less than zero, then its absolute value must be
bounded by C�||[p]||.

3.4. General estimates for the operators L and K. In this subsection we
present a few general inequalities with regard to the operators L and K for any test
function. They will be used in the next section to estimate the error resulting from the
second-order Runge–Kutta time discretization. We remark that all estimates given
in this subsection hold for the finite element space Vh with any degree k.

By subtracting the error equation (3.2a) from (3.2b), for any 1 ≤ j ≤ N we have
that ∫

Ij

zT
h v,u(un

c )(ξn+1
u − ξn

w) dx =
1

2
(Ln

j −Kn
j )(v,u(un

c )zh) ∀zh ∈ [Pk(Ij)]
m,(3.7)

and consequently ||ξn+1
u − ξn

w||2n = 1
2 (Ln − Kn)(v,u(un

c )(ξn+1
u − ξn

w)). It is therefore
natural to start the analysis with an estimate of the difference between Ln and Kn for
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an arbitrary test function. The main ingredient in the analysis is to obtain a sharp
bound for the errors occurring on the element interfaces.

For the following two lemmas, there are only minor modifications from the scalar
case [24] to the system case in the analysis, so we will present here only the estimates
without proof. The main modification is that the Taylor expansions are changed
from single variable to multiple variables, where the derivative f ′(u) and its max-
imum magnitude are replaced by the Jacobian f,u(u) and its maximum spectral
radius, respectively. The definition (3.5) on each element interface also yields a few
differences, resulting from a new choice of the reference vector for system case, i.e.,
1
6f(u−

h ) + 2
3f(ūh) + 1

6f(u+
h ), instead of f(ūh) in [24] for the scalar case.

Lemma 3.1. Assume that the interpolation property (3.4) and Proposition 3.1
hold. Given any small positive constant ε, we have for any zh ∈ Vh that

(Ln −Kn)(v,u(un
c )zh)

≤ ε||zh||2n + Mετ
2h−1	(un

h)A(un
h) + Mετ

2h−1	(wn
h)A(wn

h)

+ (C�τ
2h−2||en

u||2∞ + Cτ2)||ξn
u||2n + (C�τ

2h−2||en
w||2∞ + Cτ2)||ξn

w||2n
+C(Ξ(n)h2k+2τ + τ6) − τ

∑
1≤j≤N

∫
Ij

zT
h v,u(un

c )f,u(un
c )(ξn

w − ξn
u),x dx,

where Ξ(n) = 1 +C�h
−1||en

u||2∞ +C�h
−1||en

w||2∞, the positive constants C and C� are
independent of n, h, τ and the approximate solutions, and Mε = O(ε−1) depends on ε
solely.

Similarly, we can get the following lemma to estimate K(·) by using Taylor ex-
pansions of f(u) up to second- and third-order derivatives, respectively.

Lemma 3.2. Under the assumption of Lemma 3.1, we have, for any zh ∈ Vh and
any small positive constant ε, the following estimates:

Kn(v,u(un
c )zh) ≤ ε||zh||2n + Mετ

2h−1	(uh)A(un
h) + (C�h

−2||en
u||2∞τ2 + Cτ2)||ξn

u||2n

+ (C + C�||en
u||2∞)h2k+1τ − τ

∑
1≤j≤N

∫
Ij

zT
h v,u(un

c )f,u(un
c )(ξn

u),x dx,

Kn(v,u(un
c )zh) ≤ ε||zh||2n + Cτ2h−2||ξn

u||2n + Ch2kτ2,

where the positive constants C and C� are independent of n, h, τ and the approximate
solutions and where Mε = O(ε−1) depends solely on ε.

From the error equation (3.2a) we get the identity ||ξn
w−ξn

u||2n = Kn(v,u(un
c )(ξn

w−
ξn

u)). Thus we can take the test function zh = ξn
w − ξn

u in the second inequality of
Lemma 3.2 and choose the positive constant ε small enough to obtain the following
corollary.

Corollary 3.1. Under the assumption of Lemma 3.1, we have that

||ξn
w|| ≤ C(||ξn

u|| + hkτ) ∀n : nτ < T(3.8)

if the general time-step condition τ = O(h) is satisfied, where the positive constant C
is independent of n, h, τ and the approximate solutions.

4. Proof of the convergence theorem. In this section we are going to prove
only the error estimate (2.7) of the RKDG method with finite element space of piece-
wise linear polynomials (k = 1). The generalization to high order (k > 1) with a
more restrictive CFL condition is straightforward, along the same line as [24]. To this
end, we will analyze each term on the right-hand side of the energy equation (3.3a)
separately.
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4.1. Estimates to each term on the right-hand side of the energy equa-
tion. We will estimate the first three terms in the next two lemmas. First, we look
at the last term En. By Young’s inequality, it is easy to get that

En ≤ ε||ξn+1
u ||2nτ + C(||ξn

u||2n + ||ξn
w||2n)τ,(4.1)

where ε is a suitably small positive constant, since each component of v,u(un
c ) −

v,u(wn
c ) is of order O(τ) from the definition (3.1) of w(x, t).

Lemma 4.1. Let Vh be the space of piecewise linear polynomials (k = 1). If the
interpolation approximation property (3.4) and the time-step condition τ = O(h) are
satisfied, then we have the following estimate:

||ξn+1
u − ξn

w||2n ≤C(Ξ(n)h3τ + τ6) + δ1(n)A(un
h)τ + δ2(n)A(wn

h)τ

+

{
C�τ

2

h2
(||en

u||2∞ + ||en
w||2∞) +

C�τ
4

h4
||en

u||2∞ + Cτ2

}
||ξn

u||2n,(4.2)

where the positive constants C and C� are independent of n, h, τ and the numerical
solutions and where Ξ(n) has been defined in Lemma 3.1. Here

δ1(n) =
M1τ

h
	(un

h) +
M2τ

3

h3
	(un

h)λ2(un) and δ2(n) =
M3τ

h
	(wn

h),(4.3)

where λ(un) is the maximum spectral radius of f,u(un) on all element interfaces and
where Mi, i = 1, 2, 3, are positive constants independent of the other parameters in
(4.3).

Proof. We follow the analysis framework in [24] and sketch the two main steps in
the proof.

First, we successively take two test functions both in (3.7) and in Lemma 3.1:
the first one is zh = ξn+1

u − ξn
w, and the second is zh = −τf,u(un

c )(ξn
w − ξn

u),x. This
is feasible since Vh is the discontinuous finite element space. By combining the two
resulting inequalities and letting each parameter ε be small enough, we can obtain
the following estimate:

||ξn+1
u − ξn

w||2n ≤C(Ξ(n)h2k+2τ + τ6) + Mτ2h−1	(wn
h)A(wn

h) + Mτ2h−1	(un
h)A(un

h)

+ (C�τ
2h−2||en

u||2∞ + Cτ2)||ξn
u||2n + (C�τ

2h−2||en
w||2∞ + Cτ2)||ξn

w||2n

+ Mτ2
∑

1≤j≤N

∫
Ij

(ξn
w − ξn

u)T,xv
1/2
,u (un

c )S2(un
c )v1/2

,u (un
c )(ξn

w − ξn
u),x dx,

under the general time-step condition τ = O(h), where S(un
c ) = v

1/2
,u (un

c )f,v(v(un
c ))

v
1/2
,u (un

c ), the positive constants C and C� are independent of n, h, τ and the ap-
proximate solutions, and M > 0 is determined solely by the fixed constant ε. We
remark that S(un

c ) is symmetric and has the same eigenvalues as f,u(un
c ) due to

the equality (2.5); therefore the last term in the estimate above is bounded by
Mτ2λ2(un)||(ξn

w − ξn
u),x||2n.

Next, we need to obtain a sharp estimate to ||(ξn
w − ξn

u),x||2n to complete the
proof. To this end, we will use the discontinuity property of the finite element space,
especially for the piecewise linear polynomials. Because ξn

u ∈ Vh under consideration
is a piecewise linear vector-valued function, its derivative (ξn

u),x is a constant vector
on each element Ij . Hence, for any vector-valued function ph (even a function not
belonging to Vh) there holds∫

Ij

(ph − p̃h)Tv,u(un
c )f,u(un

c )(ξn
u),x dx = 0 (1 ≤ j ≤ N, ∀n : nτ < T ),(4.4)
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where p̃h = h−1
j

∫
Ij

ph dx is the average of ph on each element Ij ; i.e.,
∫
Ij

(p−ph) dx =

0. This property plays an important role in the proof. Unfortunately it holds only
for piecewise linear polynomials and not for higher-order piecewise polynomials. This
is why we would need stronger time step restriction for the proof of the higher-order
k > 1 cases.

It is also worthwhile to note, for any ph ∈ Vh, that ph−p̃h and (ph),x = (ph−p̃h),x
both belong to the finite element space Vh. This property holds for the DG method
with any degree k, but not for the standard conforming finite element methods.

We take ph = ξn
w − ξn

u and get ||(ξn
w − ξn

u),x||n ≤ Ch−1||ph− p̃h||n by the inverse
inequality (i). After a simple manipulation, we can get from the error equation (3.2a)
that

||ph − p̃h||2n = (ξn
w − ξn

u,v,u(un
c )(ph − p̃h)) = Kn(v,u(un

c )(ph − p̃h)).

By taking the test function zh = ph − p̃h in the first inequality of Lemma 3.2, we
observe that the last integral term becomes 0, owing to the identity (4.4). By choosing
ε small enough, we obtain the estimate ||ph − p̃h||2n ≤ M, where

M = Mτ2h−1	(un
h)A(un

h) + (C�h
−2||en

u||2∞τ2 + Cτ2)||ξn
u||2n + (C + C�||en

u||2∞)h3τ.

As a result of this inequality, we have ||(ξn
w −ξn

u),x||2n ≤ Ch−2M. This sharp estimate
completes the proof of this lemma.

Lemma 4.2. Let Vh be the space of piecewise linear polynomials (k = 1). If
the interpolation approximation property (3.4) is satisfied, then we have the following
estimates:

Kn(ξn
u) ≤Φ(en

u)||ξn
u||2nτ − 1

2
A(un

h)τ + (C + C�||en
u||2∞)h3τ,(4.5a)

Ln(ξn
w) ≤Φ(en

w)||ξn
w||2nτ − 1

2
A(wn

h)τ + (C + C�||en
w||2∞)h3τ + Cτ5,(4.5b)

where the positive constants C and C� are independent of n, h, τ and the numerical
solutions and where Φ(en

p) = C + C�h
−1||en

p||2∞ for p = u or w.
Proof. We will prove only (4.5a) here, since the proof to (4.5b) is similar.
Noticing the periodic or zero (compactly supported) boundary conditions, after

some elementary calculations we have an equivalent form of Kn(ξn
u). It reads

Kn(v,u(un
c )ξn

u) ≡
N∑
j=1

Kn
j (ξn

u) := Π1 + Π2 + Π3 + Π4 + Π5

=
∑

1≤j≤N

∫
Ij

(ξn
u)Tv,u(un

c )(ηn
w − ηn

u) dx

+ τ
∑

1≤j≤N

∫
Ij

(ξn
u)T,xv,u(un

c )
(
f(un) − f(un

h)
)
dx

+ τ
∑

1≤j≤N

{[
ξn

u

]T
v,u(un

b )
(
f(un) − fRef

)}
j+ 1

2

+ τ
∑

1≤j≤N

{[
ξn

u

]T
v,u(un

b )
(
fRef − ĥ(un

h)
)}

j+ 1
2

+ τ
∑

1≤j≤N

{(
(ξn,+

u )TE
n,+
b − (ξn,−

u )TE
n,−
b

)(
f(un) − ĥ(un

h)
)}

j+ 1
2

,
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where fRef = 1
6f(u−,n

h ) + 2
3f(ūn

h) + 1
6f(u+,n

h ) is the reference vector defined on each
element interface. As we have mentioned before, this is different from the original
reference f(ūn

h) for the scalar case [24]. We will see in the appendix the usage of this
reference vector. Here E

n,±
b = v,u(un

b±1/2)−v,u(un
b ), where the subscript b is used to

emphasize the evaluation on the element interface, namely, un
b = un

j+1/2. It follows

from the smoothness assumption of v,u and u that each component of E
n,±
b is of the

order O(h).
Below we will follow [24] and separately analyze each term of the above equality.
By the interpolation approximation property (3.4) of the finite element space Vh

and Young’s inequality, it is easy to estimate Π1 and Π5 in the form

Π1 + Π5 ≤ Ch4τ + C||ξn
u||2nτ,(4.6a)

where the inverse property (iii), the Lipschitz property of ĥ, and the fact that E
n,±
b

is of the order O(h) are also used.
We would like to use Taylor expansions up to third order and estimate Π2 and

Π3 together. In this step, we have to overcome the difficulties resulting from the
symmetrizable assumption of the system (1.1). We present only the result here and
postpone the technical analysis to the appendix. The final estimate reads

Π2 + Π3 ≤ Φ(en
u)||ξn

u||2nτ + {C + C�||en
u||2∞}h3τ.(4.6b)

We can estimate the last term Π4 by virtue of the matrix A(ĥ; un
h) (see Proposi-

tion 3.1) and the following two properties: one is [en
u] = −[un

h] from the continuity of

un, and consequently [ξn
u] = [ηn

u] − [un
h]; the other is the definition of A(ĥ; un

h) and

the identities f(rn
i ) − ĥ(un

h) = v,u(sn
i )−1Ai[u

n
h], i = 1, 2, 3, where rn

i is un,−
h , ūn

h,

and un,+
h , respectively. We would also like to mention that v,u(sn

i ) − v,u(un
b ) is of

the order O(||en
u||∞) by the smoothness of the mapping v(u) and the exact solution

u. After separating Π4 into six parts as in [24], finally we obtain

Π4 ≤ −1

2
A(un

h)τ + C�h
−1||en

u||2∞||ξn
u||2n + Ch3τ,(4.6c)

by Young’s inequality, the properties of the finite element space Vh, and the bound-
edness of v,u,u,v, and A(ĥ; un

h).
Now we can get the estimate (4.5a) by summing up all of the estimates (4.6) and

complete the proof of this lemma.

4.2. Proof of the convergence theorem. In this subsection we will prove the
convergence Theorem 2.1 for the k = 1 case using the estimates obtained in subsection
4.1. In addition, we would need to use the a priori technique below.

To deal with the nonlinearity of the flux function f(u), we assume a priori that
for h small enough there holds

||un − un
h|| ≤ h.(4.7)

This is obviously satisfied for n = 0 by u0
h = Phu0(x) and the interpolation approxi-

mation property (3.4a). We shall later verify the correctness of (4.7) and prove that
it still holds true for n + 1 if it holds true for a given n. For a linear flux function
f = Cu, where C is a constant matrix, this a priori assumption is unnecessary.
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It follows that ||wn−wn
h || ≤ Ch from the a priori assumption (4.7) and Corollary

3.1. Then the inverse inequality (iii), together with the approximation property (3.4a)
of Vh, implies that

||en
p||∞ ≤ Ch1/2, p = u,w.(4.8)

By combining all the results in subsection 4.1, together with Corollary 3.1 and
(4.8), we can get from the energy equation (3.3) that for h small enough there holds

||ξn+1
u ||2n − ||ξn

u||2n +
1

2
A(un

h)τ +
1

2
A(wn

h)τ

≤ ε||ξn+1
u ||2nτ + C(||ξn

u||2nτ + h3τ + τ5) + δ1(n)A(un
h)τ + δ2(n)A(wn

h)τ,(4.9)

under a suitable CFL condition τ ≤ βh, where the CFL number β will be deter-
mined later. Here, ε is an arbitrary positive constant, and C is a positive constant
independent of n, h, τ and the approximate solutions.

The number β can be determined by, for example, δ1(n) ≤ 1/4 and δ2(n) ≤ 1/4.
We would like to mention again that those positive constants that emerged in (4.3),
namely M1,M2, and M3, are independent of h and τ . Hence there exists a maximum
positive constant r0 also independent h and τ such that

M1r0 ≤ 1

8
, M2r

3
0 ≤ 1

8
, and M3r0 ≤ 1

4
.

In the numerical simulation, we often determine each time step τn by τn ≤ β nh,
where

β n = r0 min{ 	(un
h)−1, 	(wn

h)−1, (	(un
h)λ2(un))−1/3 }.(4.10)

However, in this paper we assume for convenience that the time step is constant
τ ; hence we write the CFL condition as τ ≤ βh instead of τn ≤ β nh, where β =
min∀n:nτ≤T β n.

Under the above CFL condition τ ≤ βh, the summation of the inequality (4.9)
over n, when ε is suitably small, yields that

||ξn+1
u ||2 +

∑
0≤m≤n

A(um
h )τ +

∑
0≤m≤n

A(wm
h )τ ≤ C

⎛
⎝ ∑

0≤m≤n

||ξm
u ||2τ + h3 + τ4

⎞
⎠ ,

where we use the equivalence of ||·||n and ||·|| and the fact that v,u(un+1
c )−v,u(un

c ) is
of order O(τ). Thus by Gronwall’s inequality we can get the following error estimate:

||ξn+1
u || ≤ C(h3/2 + τ2) ∀n : nτ ≤ T,(4.11)

where the positive constant C is independent of n, h, τ and the numerical solutions.
Then we can easily get the estimate (2.7) for k = 1 by the triangle inequality and the
interpolation approximation property (3.4a).

Finally let us verify the a priori assumption (4.7) before we complete the proof
of Theorem 2.1 for k = 1. If assumption (4.7) is satisfied for a certain n, then it
follows from (4.11) and the interpolation approximation property (3.4a) that it is also
true for n + 1. Thus the given a priori assumption (4.7) is reasonable, and all of the
estimates above hold for all n : nτ ≤ T .
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Remark 4.1. It is worth noting that the condition (4.10) is the usual CFL con-
dition for systems of conservation laws. By Proposition 3.1 we know that for any
numerical flux function ĥ the spectral radius of A(ĥ; un

h) is bounded by a constant

times the maximum of the Lipschitz constant of ĥ. For example, for the linear flux
f = Cu the CFL number β determined by (4.10) depends solely on the spectral radius
of C. This also explains why the CFL constant β is lower bounded away from zero
during a mesh refinement.

Remark 4.2. We have carried out the error estimate and proof for the linear finite
element k = 1 only in the one dimensional case with generalized E-flux functions. The
estimate (2.7) also holds for the linear flux function f = Cu in multiple dimensions,
when the a priori assumption (4.7) is unnecessary.

For a higher-order finite element space k > 1 in d-dimensional space, the above
analysis framework still works for symmetrizable nonlinear systems if we assume d <
2k− 1 to ensure an a priori assumption stronger than (4.7), e.g., ||un −un

h|| ≤ h1+ d
2 .

In this case we use Taylor expansion only up to second order. Though Lemma 4.1
holds only for piecewise linear polynomials, we can similarly prove the estimate (2.7)
under a more restrictive time-space condition, for example, τ = O(h4/3). We remark
that this stronger condition is necessary, since the method is linearly unstable under
the usual CFL condition τ ≤ βh for k ≥ 2. For more details, see [24].

Remark 4.3. For certain special numerical flux functions, we can upgrade the
error estimate in Theorem 2.1 to be optimal, i.e., O(hk+1 + τ2).

These numerical flux functions include those constructed by the flux-vector split-
ting method, for example, the upwind numerical flux for a linear flux and the Steger–
Warming flux [22] for Euler equations. Their common property is that the vector-
valued physical flux function is homogeneous of degree 1; i.e., f(u) = fu(u)u.

To obtain the optimal error estimate in this case, we would need to use a standard
trick in the DG analysis as we have done in [24], which consists of two main ingredients.
The first one is the Gauss–Radau projection instead of the local L2-projection, and
the other is the upwind setting of the reference vector on each element interface. All
the analysis is carried out in projecting to each eigenvector direction. In this case we
can strengthen the a priori assumption and consequently use only Taylor expansion
up to second order. We omit the details of the proof, as they are similar to those in
[24] for the scalar case.

5. Appendix. In this appendix we complete the convergence proof and give a
detailed analysis of the inequality (4.6b), namely,

Π2 ≡ Π2(ξu) = τ
∑

1≤j≤N

∫
Ij

(ξu)T,xv,u(uc)
(
f(u) − f(uh)

)
dx,

Π3 ≡ Π3(ξu) = τ
∑

1≤j≤N

{[
ξu

]T
v,u(ub)

(
f(u) − fRef

)}
j+ 1

2

,

where we suppress the subscripts n for clarity and fRef = 1
6f(u−

h )+ 2
3f(ūh)+ 1

6f(u+
h )

is the reference vector (see Proposition 3.1). Since eu = ξu − ηu, we have Πi =
Πi(ηu) + Πi(eu) for i = 2, 3. It is easy to estimate Πi(ηu), but more technical to
estimate Πi(eu).

We can estimate Πi(ηu), i = 2, 3, by the interpolation approximation property
and the property of the local L2-projection. The detailed analysis is very similar to
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those in [24], and thus omitted. Finally, this result reads

Π2(ηu) + Π3(ηu) ≤ C(||ξ||2nτ + h3τ).(5.1)

In what follows we will give the detailed analysis of Πi(eu). For clarity we will
suppress the subscripts u and use implied summation on the indices ι, κ, and σ. We
would like to use the following Taylor expansions up to third order:

f(u) − f(uh) = f,u(u)e − 1

2
eTf,u,u(u)e +

1

6
{f(u�)},uιuκuσeιeκeσ

= m1 + m2 + m3,

f(u) − f(r	) = f,u(ub)e
	 − 1

2
(e	)Tf,u,u(ub)e

	 +
1

6
{f(u	

b)},uιuκuσe	
ιe

	
κe	

σ

= n	
1 + n	

2 + n	
3

for x inside each element and x on each element interface, respectively. Here u� and u	
b

are some mean vectors in expansions; r	 points to u−
h , ūh, and u+

h ; and consequently
e	 points to e−

h , ēh, and e+, for � = 1, 2, 3, respectively.

Corresponding to the above expansions, we have the equality Πi(eu) =
∑3

α=1πiα(e)
for i = 2 and 3, where

π3α(e) =
1

6
π1

3α(e) +
2

3
π2

3α(e) +
1

6
π3

3α(e),(5.2a)

and for α, � = 1, 2, 3,

π2α(e) = τ
∑

1≤j≤N

∫
Ij

eT
,xv,u(uc)mα dx, π	

3α(e) = τ
∑

1≤j≤N

{
[e]Tv,u(ub)n

	
α

}
j+ 1

2

.

(5.2b)

In what follows we analyze carefully the terms above in three groups, i.e., π2α(e) +
π3α(e), where the symmetrizable property of the system (1.1) plays an important
role.

As we have mentioned before, J(u) = v,u(u)f,u(u) is a symmetric matrix by the
symmetrizable theory. A simple integration by parts reveals that

π21(e) + π31(e) = τ
∑

1≤j≤N

{∫
Ij

eT
,xE

c(u)f,u(u)e dx− 1

2

∫
Ij

eT∂xJ(u)e dx

}
,

where E
c = v,u(uc) − v,u(u) with each component of order O(h). The inverse in-

equality (i) together with the approximation property (3.4a) shows that ||e,x|| ≤
Ch−1(||e|| + h2). Then it is easy to see from the formula above that

π21(e) + π31(e) ≤ C||e||2nτ + h4τ.(5.3)

The estimate of the second group, i.e., π22(e)+π32(e), is one of the most difficult
steps in generalizing the error analysis from the scalar equation to symmetrizable
systems when the finite element space Vh is made up of piecewise linear polynomials.
However, this inconvenience can be obviated for high-order piecewise polynomials,
because the Taylor expansion would need to be carried out only to the second order
if the a priori assumption is strengthened. See Remark 4.2.
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Let g = (g1, g2, . . . , gm)T = v,u(u)e and denote G(u) = u,v(v(u))f,u,u(u)u,v

(v(u)). Here G is a supermatrix with the component G
i3
i1,i2

= {u,v(v(u))f i3
,u,u(u)u,v

(v(u))}i1,i2 at the (i1, i2, i3)th position. Then it is easy to see that π22(e) + π32(e) =
R + Q + S, where

R = −τ

2

N∑
j=1

∫
Ij

gT
,xg

T
G(u)g dx,

Q = −τ

2

N∑
j=1

[g]Tj+ 1
2

(
1

6
(g−)TG(ub)g

− +
2

3
ḡT

G(ub)ḡ +
1

6
(g+)TG(ub)g

+

)
j+ 1

2

,

S = −τ

2

N∑
j=1

∫
Ij

eT
,xE

cgT
G(u)g dx +

τ

2

N∑
j=1

∫
Ij

eT∂x{v,u(u)}gT
G(u)g dx.

Below we will separately analyze the above terms and will use the implied summation
for the indices i1, i2, i3, and j (or b, since b = j + 1/2) for clarity.

To this end, we would first like to point out that the component {G(u)}i3i1i2 is
invariant for all rotations of the indices i1, i2, and i3, which we also refer to as the
symmetric property of the supermatrix G. It is obvious that G

i3
i1,i2

= G
i3
i2,i1

, so we

need only prove G
i3
i1,i2

= G
i2
i1,i3

to verify this important property. We start with the
definition of G and consequently the identity

{G(u)}i3i1i2 =
∂2fi3

∂vi1∂vi2
+

∑
κ,γ,σ,�

∂fκ
∂uγ

∂uγ

∂vi3

∂uσ

∂vi1

∂u�

∂vi2

∂2vκ
∂uσ∂u�

,(5.4)

where we have used the symmetric property of u,v. We have mentioned before that
in the symmetrizable theory J = v,uf,u = v,uf,vv,u is a symmetric matrix. Clearly,
a vector-valued function c(u) : R

m → R
m can be found so that c,u = v,uf,u, namely

cγ,σ = cσ,γ =
∂cσ
∂uγ

=
∑
κ

∂vσ
∂uκ

∂fκ
∂uγ

=
∑
κ

∂vκ
∂uσ

∂fκ
∂uγ

.

Its derivative with respect to u� is given by

∂2cσ
∂uγ∂u�

=
∂cσ,γ
∂u�

=
∑
κ

∂2vκ
∂uσ∂u�

∂fκ
∂uγ

+
∑
κ

∂vκ
∂uσ

∂2fκ
∂uγ∂u�

,

which implies that
∑

κ
∂2vκ

∂uσ∂u�

∂fκ
∂uγ

is invariant under the exchange of indices γ and �.

As a result, the second term on the right-hand side of identity (5.4) is invariant under
the exchange of indices i2 and i3. Since f,v,v is symmetric in the symmetrizable
theory, we can assert from (5.4) that G

i3
i1,i2

= G
i2
i1,i3

. This verifies the symmetric
property of the supermatrix G.

By the symmetric property of G, an integration by parts yields that

R =
τ

6
{G(ub)}i3i1i2 [gi1gi2gi3 ]b +

τ

6

∫
I

∂x{G(u)}i3i1i2gi1gi2gi3 dx.

In order to estimate R and Q together, we would like to use the following equality:

{G(ub)}i3i1i2 [gi1gi2gi3 ]b = {G(ub)}i3i1i2
(
[gi1 ]g

+
i2
g+
i3

+ g−i1 [gi2 ]g
+
i3

+ g−i1g
−
i2

[gi3 ]
)
b

= {G(ub)}i3i1i2
(
g+
i1
g+
i2

+
1

2
g−i1g

+
i2

+
1

2
g−i2g

+
i1

+ g−i1g
−
i2

)
b

[gni3 ]b,
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thanks to the symmetric property of G. Then a direct manipulation shows

R + Q =
τ

6

∫
I

∂x{G(u)}i3i1i2gi1gi2gi3 dx ≤ C||e||∞||e||2.(5.5)

This is the reason that the reference vector fRef is taken as 1
6f(u−

h )+ 2
3f(ūh)+ 1

6f(u+
h )

in this paper. It avoids the estimate to the term corresponding to the second-order
derivatives.

Since each component of E
c is of order O(h), it is easy to estimate the last term

S in the second group. The estimate to the last group π23(e) + π33(e) is easy to get

in a similar way, where we use the inequality ||e||Γh ≤ Ch− 1
2 (||e|| + h2) implied by

the inverse inequality (iii) and the approximation property (3.4a). Thus we give the
final estimate together in the form

S + π23(e) + π33(e) ≤ C�(h
−1 + 1)||e||2∞(||e||2 + h4)τ.(5.6)

By collecting the above estimates and preprocessing the result using the simple
inequality ||e||∞ ≤ 1

2 (h−1||e||2∞ + h), we can easily get the inequality (4.6b) since
h < 1. We have therefore completed the proof of the convergence theorem.
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THE L2 NORM ERROR ESTIMATES FOR THE DIV
LEAST-SQUARES METHOD∗
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Abstract. This paper studies L2 norm error estimates for the div least-squares method for
which the associated homogeneous least-squares functional is equivalent to the H(div) × H1 norm
for the respective dual and primal variables. Least-squares of this type for the second-order elliptic
equations, elasticity, and the Stokes equations are an active area of research, and error estimates in
the H(div) × H1 norm were previously established. In this paper, we establish optimal L2 norm
error estimates for the primal variable under the minimum regularity requirement through a refined
duality argument.

Key words. least-squares method, error estimate, elliptic equations, elasticity, Stokes, incom-
pressible Newtonian flow
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1. Introduction. There is substantial interest in the use of least-squares princi-
ples for the approximate solution of partial differential equations with applications in
both solid and fluid mechanics. One advantage of the least-squares approach is that
the finite element spaces for the individual unknowns may be chosen independently,
and thus based on simplicity, availability, and optimality, or may be chosen from the
physics of the underlying problem. Moreover, the linear systems of algebraic equa-
tions resulting from well-posed least-squares discretizations are always self-adjoint and
positive definite.

Many least-squares methods for scalar elliptic equations, elasticity, and the Stokes
equations have been proposed and analyzed. The numerical properties depend on the
form of the first-order system and the choice of the least-squares norm. Loosely
speaking, there are three types of least-squares methods: the inverse approach, the
div approach, and the div-curl approach. The inverse approach employs an inverse
norm that is further replaced with either the weighted mesh-dependent norm (see [2])
or the discrete H−1 norm (see [4]) for computational feasibility. The div approach
uses the L2 norm, and the corresponding homogeneous least-squares functional is
equivalent to the H(div)×H1 norm. The homogeneous least-squares functional from
the div-curl approach is equivalent to the H(div) ∩H(curl) norm for some variables.

The purpose of this paper is to study the L2 norm error estimates for the div
least-squares method. For the scalar elliptic equations, the div approach based on
the flux-pressure formulation has been studied extensively (see, e.g., [3, 6, 9, 10, 12,
13, 14, 15, 16, 17, 18]). The pressure and the flux are referred to as the primal
and dual variables, respectively. For elasticity and the Stokes equations, we recently
proposed and analyzed the div least-squares approach in [7, 8] based on the stress-
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displacement and the stress-velocity formulations, respectively. The displacement and
the velocity are referred to as the primal variables, and the stress as the dual variable.
It was proved that the homogeneous least-squares functional is equivalent to the
H(div) × H1 norm. This immediately leads to the error estimate in such a norm.
This estimate also yields an optimal L2 norm error estimate for the dual variable
when using appropriate approximation spaces. In this paper, we establish optimal
error estimates for the primal variable in the L2 norm under the minimum regularity
requirement. As usual, this estimate is obtained through a duality argument (or the
so-called Aubin–Nitche trick for the standard Galerkin finite element method). The
key step of the duality argument presented in this paper is to express the L2 norm
error of the primal variable in terms of the bilinear form (see Lemma 5.1). While this
is straightforward for the Galerkin method, it is less obvious for the div least-squares
method applied to the elasticity and Stokes equations.

Previously, L2 norm error estimates for the div least-squares method applied to
the scalar elliptic problems were studied by several researchers. The optimal L2 norm
error estimate under the minimum regularity assumption was proved for the Poisson
equation in [14] (see also [3]). By using extra regularity and special finite element
spaces for the flux, an L2 estimate was obtained in [20] for a divergence form of scalar
elliptic problems.

The paper is organized as follows. Section 2 introduces the second-order scalar
elliptic partial differential equations, elasticity, and the Stokes equations. The div
least-squares formulation and a finite element approximation are described in sec-
tions 3 and 4, respectively. In Section 5, we establish optimal L2 error estimates
through the duality argument.

1.1. Notation. We use the standard notation and definitions for the Sobolev
spaces Hs(Ω)d and Hs(∂Ω)d for s ≥ 0. The standard associated inner products are
denoted by (·, ·)s,Ω and (·, ·)s,∂Ω, and the respective norms are denoted by ‖·‖s,Ω and
‖ · ‖s,∂Ω. (We suppress the superscript d when the dimension is clear by context. We
also omit the subscript Ω from the inner product and norm designation when there
is no confusion.) For s = 0, Hs(Ω)d coincides with L2(Ω)d. In this case, the inner
product and norm will be denoted by ‖ · ‖ and (·, ·), respectively. Set

H1
D(Ω) := {q ∈ H1(Ω) : q = 0 on ΓD}.

When Γ = ∂Ω, denote H1
D(Ω) by H1

0 (Ω). Finally, set

H(div; Ω) = {v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω)},

which is a Hilbert space under the norm

‖v‖H(div; Ω) =
(
‖v‖2 + ‖∇ · v‖2

) 1
2 ,

and define its subspace

HN (div; Ω) = {v ∈ H(div; Ω) : n · v = 0 on ΓN}.

2. Mathematical equations. Let Ω be a bounded, open, connected subset of
�d (d = 2 or 3) with a Lipschitz continuous boundary ∂Ω. Denote by n = (n1, . . . , nd)
the outward unit vector normal to the boundary. We partition the boundary of the
domain Ω into two open subsets ΓD and ΓN such that ∂Ω = Γ̄D∪Γ̄N and ΓD∩ΓN = ∅.
For simplicity, we assume that ΓD is not empty (i.e., mes (ΓD) 
= 0). Otherwise,
solutions of partial differential equations considered in this paper are unique up to an
additive constant.
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2.1. Second-order elliptic problems. Consider the second-order elliptic bound-
ary value problem

(2.1) −∇ · (A∇u) + Xu = f in Ω

with boundary conditions

(2.2) u = 0 on ΓD and n ·A∇u = 0 on ΓN ,

where the symbols ∇· and ∇ stand for the divergence and gradient operators, respec-
tively; A is a given d×d tensor function; X is an at most first-order linear differential
operator; and f is a given scalar function. Assume that A is uniformly symmetric
positive definite; then there exist positive constants 0 < Λ0 ≤ Λ1 such that

Λ0ξ
T ξ ≤ ξTAξ ≤ Λ1ξ

T ξ

for all ξ ∈ �d and almost all x ∈ Ω. Here and hereafter, we assume homogeneous
boundary conditions for simplicity. The corresponding variational form of system
(2.1) is to find u ∈ H1

D(Ω) such that

(2.3) a(u, v) = (f, v) ∀ v ∈ H1
D(Ω),

where the bilinear form is defined by

a(u, v) = (A∇u, ∇v) + (Xu, v).

The dual problem of (2.3) is to find z ∈ H1
D(Ω) such that

(2.4) a(v, z) = (f, v) ∀ v ∈ H1
D(Ω).

For simplicity, assume that both problems (2.3) and (2.4) satisfy the full H2 regularity
estimates

(2.5) ‖u‖2 ≤ C ‖f‖ and ‖z‖2 ≤ C ‖f‖.

(See section 5.3 for problems with low regularity.) Here and hereafter, we use C with
or without subscripts to denote a generic positive constant, that is, a constant that is
independent of the mesh size h and the parameter λ introduced in subsequent sections
but that may depend on the domain Ω.

2.2. Elasticity and Stokes equations. For a vector field v = (v1, . . . , vd),
define its gradient as a d× d tensor,

∇v =

⎛
⎜⎜⎜⎜⎜⎝

∂v1

∂x1
· · · ∂v1

∂xd
...

. . .
...

∂vd
∂x1

· · · ∂vd
∂xd

⎞
⎟⎟⎟⎟⎟⎠ =

(
∂vi
∂xj

)
d×d

.

Denote the symmetric part of ∇v by

ε(v) =
1

2

(
∇v + (∇v)t

)
=

(
εij(v)

)
d×d

with εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.
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For the displacement and the velocity fields v, the symmetric part of the gradients
ε(v) is referred to as the strain tensor and the strain rate tensor, respectively. For a
tensor function τ = (τij)d×d, let τ i = (τi1, . . . , τid) denote its ith-row for i = 1, . . . , d
and define its divergence, normal, and trace by

∇ · τ = (∇ · τ 1, . . . ,∇ · τ d), n · τ = (n · τ 1, . . . ,n · τ d), and tr τ =

d∑
i=1

τii,

respectively. For tensors τ = (τij)d×d and γ = (γij)d×d, define

τ : γ ≡
d∑

i,j=1

τijγij .

If τ is symmetric and γ skew-symmetric, it is then easy to check that

(2.6) τ : γ = 0.

Elasticity and Stokes equations may be cast in the following pressure-perturbed
form of the generalized Stokes equations

(2.7)

⎧⎨
⎩

−∇ · (2μ ε(u) − p δ) = f in Ω,

∇ · u +
1

λ
p = g in Ω

with boundary conditions

(2.8) u = 0 on ΓD and n · (2μ ε(u) − p δ) = 0 on ΓN ,

where u represents the displacement and velocity vector field for solids and fluids,
respectively; p represents the pressure; δ = (δij)d×d denotes the identity tensor; f is a
given vector function; g is a given scalar function; and μ and λ are material constants
such that μ ∈ [μ1, μ2] with 0 < μ1 < μ2 and λ ∈ (0,∞]. The λ and μ are the so-called
Lamé and viscosity constants for solids and fluids, respectively. Materials are said to
be incompressible when λ is infinite.

Equation (2.7) with λ = ∞ gives the Stokes equations

(2.9)

{
−2μ∇ · (ε(u)) + ∇ p = f in Ω,

∇ · u = g in Ω

with boundary conditions (2.8). When ΓN = ∅, p is unique up to an additive constant
provided that the compatibility condition

∫
Ω
g dx = 0 holds. For λ < ∞ and g = 0,

eliminating p in (2.7) and (2.8) yields the elastic equations

(2.10) −2μ∇ · (ε(u)) − λ∇∇ · u = f in Ω

with boundary conditions

u = 0 on ΓD and n · (2μ ε(u) + λ (∇ · u) δ) = 0 on ΓN .

Again, we assume that both (2.9) and (2.10) satisfy the full H2 regularity estimates:

(2.11) ‖u‖2 + ‖p‖1 ≤ C (‖f‖ + ‖g‖1) and ‖u‖2 + λ ‖∇ · u‖1 ≤ C ‖f‖,

respectively, where C is a positive constant independent of u, p, and λ.
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3. Least-squares formulations. Least-squares formulations for the scalar el-
liptic problems, elasticity, and Stokes equations have been extensively studied. They
differ in such choices as the first-order system and the least-squares norm. In this
paper, we study only the div least-squares method, which applies the simple L2 norm
to the natural first-order system arising from physical laws in both solid and fluid
mechanics.

or the velocity for the

3.1. First-order systems. Introducing the flux (vector) variable

σ = −A∇u,

the scalar elliptic problems in (2.1) may be rewritten as the following first-order partial
differential system

(3.1)

{
A−1σ + ∇u = 0 in Ω,

∇ · σ + Xu = f in Ω

with boundary conditions

(3.2) u = 0 on ΓD and n · σ = 0 on ΓN .

For the generalized Stokes equations, define the compliance tensor of fourth order,
Aλ, by

Aλ τ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2μ

(
τ − λ

dλ + 2μ
(tr τ ) δ

)
for λ ∈ (0, ∞),

1

2μ

(
τ − 1

d
(tr τ ) δ

)
for λ = ∞.

Note that

A∞ τ = lim
λ→∞

Aλ τ .

Without loss of generality, we take μ = 1/2. Denote by σ the stress tensor and by u
the displacement for linear elasticity or the velocity for the Stokes equations. Consider
the following first-order system of partial differential equations studied in [8, 7]:

(3.3)

{
Aλ σ − ε(u) = 0 in Ω,

∇ · σ = −f in Ω

with boundary conditions

(3.4) u = 0 on ΓD and n · σ = 0 on ΓN .

Variables σ and u for the scalar elliptic problems in (3.1) are vector and scalar
functions, respectively, while variables σ and u for the generalized Stokes equations
in (3.3) are the respective tensor and vector functions. First-order system (3.3) may
be considered the vector form of (3.1), even though they differ substantially in terms
of analysis.
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3.2. Least-squares variational problems. Define least-squares functionals as
the sum of the L2 norm of the residuals of the first-order systems in (3.1) and (3.3).
Then least-squares variational problems are to minimize the least-squares functionals
in appropriate solution spaces. To this end, let us first introduce solution spaces.
Define the spaces

Xλ ≡
{

HN (div; Ω)d for λ ∈ (0, ∞),

{τ ∈ HN (div; Ω)d |
∫
Ω

tr τ dx = 0} for λ = ∞,

and let

Σ =

{
HN (div; Ω) for (3.1),

Xλ for (3.3),
U =

{
H1

D(Ω) for (3.1),

H1
D(Ω)d for (3.3).

Now, for f ∈ L2(Ω) and f ∈ L2(Ω)d, define the least-squares functional

(3.5) G(σ, u; f) =

{
‖A1/2(A−1σ + ∇u)‖2 + ‖∇ · σ + Xu− f‖2 for (3.1),

‖Aλ σ − ε(u)‖2 + ‖∇ · σ + f‖2 for (3.3)

for all (σ, u) ∈ Σ × U . Here and hereafter, we use boldface letters (σ, u) to denote
variables for both problems when there is no danger of confusion. Let

|||(τ , v)||| =
(
‖v‖2

1 + ‖τ‖2
H(div; Ω)

) 1
2

.

The following theorem was proved in [6] for the scalar elliptic problems in (3.1) and
in [8, 7] for the generalized Stokes equations in (3.3).

Theorem 3.1. The homogeneous functional G(τ , v ; 0) is equivalent to |||(τ , v)|||2;
i.e., there exists a positive constant C1 such that

(3.6)
1

C1
|||(τ , v)|||2 ≤ G(τ , v ; 0) ≤ C1 |||(τ , v)|||2

hold for all (τ , v) ∈ Σ × U . Moreover, the constant C1 is independent of λ for the
generalized Stokes problems.

The variational problem corresponding to the L2 norm least-squares functional is
to minimize functional (3.5) over Σ × U , that is, to find (σ, u) ∈ Σ × U such that

(3.7) G(σ, u ; f) = inf
(τ ,v)∈Σ×U

G(τ , v ; f).

Let us define a bilinear form b(·; ·) on (Σ × U) × (Σ × U) by

b(σ,u; τ ,v) =

{
(σ + A∇u, A−1τ + ∇v) + (∇ · σ + Xu, ∇ · τ + Xv) for (3.1),

(Aλσ − ε(u), Aλτ − ε(v)) + (∇ · σ, ∇ · τ ) for (3.3)

for all (σ, u; τ , v) ∈ (Σ × U) × (Σ × U), and define a linear form F (·) on Σ × U by

F (τ ,v) =

{
(f, ∇ · τ + Xv) for (3.1),

(−f , ∇ · τ ) for (3.3)

for all (τ , v) ∈ Σ×U . Then (3.7) can be written in equivalent form as follows: Find
(σ, u) ∈ Σ × U such that

(3.8) b(σ, u; τ , v) = F (τ , v) ∀ (τ , v) ∈ Σ × U.
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4. Least-squares finite element approximations. Theorem 3.1 guarantees
that conforming finite element spaces of Σ×U for the dual and primal variables may
be chosen independently. But it does not imply that any choice leads to an optimal
approximation in terms of both the regularity and the approximation property. It
is important to note that the basic error estimations of least-squares methods in the
energy norm for the dual and primal variables cannot be obtained separately (see
(4.6)) and that the smoothness of the dual variable is one order less than the primal
variable in our applications. Because of these constraints, the only finite element
spaces having optimal approximations in the above sense are the continuous piecewise
polynomials for the primal variable and the Raviart–Thomas elements for the dual
variable. Moreover, the system of algebraic equations resulting from these elements
can be solved efficiently by fast multigrid methods (see, e.g., [1]). For the above
reasons, only these elements are analyzed in this paper. However, it is clear that our
subsequent analysis does apply to any other conforming finite element spaces [5, 11]
with no essential modification.

For simplicity of presentation, we consider only triangular and tetrahedral ele-
ments for the respective two and three dimensions. Assuming that the domain Ω is
polygonal, let Th be a regular triangulation of Ω (see [11]) with triangular/tetrahedral
elements of size O(h). Let Pk(K) be the space of polynomials of degree k on triangle
K and denote the local Raviart–Thomas space of order k on K:

RTk(K) = Pk(K)d + xPk(K)

with x = (x1, . . . , xd). The standard H(div; Ω) conforming Raviart–Thomas space
of index k [19] and the standard (conforming) continuous piecewise polynomials of
degree k + 1 are defined, respectively, by

Σk
h = {τ ∈ Σ : τ |K ∈ RTk(K)m ∀ K ∈ Th},

V k+1
h = {v ∈ U : v|K ∈ Pk+1(K)m ∀ K ∈ Th}

where m = 1 for the scalar elliptic problems and m = d for the generalized Stokes
equations. It is well known (see [11]) that V k+1

h has the following approximation
property: Let k ≥ 0 be an integer and let l ∈ [0, k + 1],

(4.1) inf
v∈V k+1

h

‖u − v‖1 ≤ C hl ‖u‖l+1

for u ∈ H l+1(Ω)m ∩ U . It is also well known (see [19]) that Σk
h has the following

approximation property: Let k ≥ 0 be an integer and let l ∈ [1, k + 1],

(4.2) inf
τ∈Σk

h

‖σ − τ‖H(div; Ω) ≤ C hl (‖σ‖l + ‖∇ · σ‖l)

for σ ∈ H l(Ω)m×m ∩ Σ with ∇ · σ ∈ H l(Ω)m. Since the smoothness of σ and ∇ · σ
is one order less than u, we choose k to be the smallest integer greater than or equal
to l − 1.

The finite element discretization of our least-squares variational problem is the
following: Find (σh, uh) ∈ Σk

h × V k+1
h such that

(4.3) G(σh, uh; f) = min
(τ ,v)∈Σk

h×V k+1
h

G(τ , v; f).
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Equivalently, to find (σh, uh) ∈ Σk
h × V k+1

h such that

(4.4) b(σh, uh; τ , v) = F (τ , v) ∀ (τ , v) ∈ Σk
h × V k+1

h .

Note that we have the orthogonal property

(4.5) b(σ − σh, u − uh; τ , v) = 0 ∀ (τ , v) ∈ Σk
h × V k+1

h .

By Theorem 3.1 and the fact that Σk
h × V k+1

h is a subspace of Σ × U , (4.3) has a
unique solution. The following error estimations in the energy norm follow directly
from Theorem 3.1, the orthogonal property in (4.5), the Cauchy–Schwarz inequality,
and the approximation properties in (4.1) and (4.2) (see also [6, 7, 8]).

Theorem 4.1. Assume that the solution (σ, u) of (3.7) is in H l(Ω)m×m ×
H l+1(Ω)m and that the divergence of the stress ∇ ·σ is in H l(Ω)m (m = 1 or d). Let
k be the smallest integer greater than or equal to l−1. Then with (σh, uh) ∈ Σk

h×V k+1
h

denoting the solution to (4.3), the following error estimate holds:

|||(σ − σh, u − uh)||| ≤ C

(
inf

τ∈Σk
h

‖σ − τ‖H(div; Ω) + inf
v∈V k+1

h

‖u − v‖1

)
(4.6)

≤ C hl (‖σ‖l + ‖∇ · σ‖l + ‖u‖l+1) .(4.7)

5. The L2 norm error estimates. This section presents the main results of
this paper on the optimal L2 norm estimates of u − uh. As usual, these estimates
are established through the duality argument. The key step of this argument is to
express ‖u − uh‖2 in terms of the bilinear form (see Lemma 5.1). While this is
straightforward for the Galerkin finite element method, it is nontrivial for the div
least-squares method.

Lemma 5.1. Let (σ, u) and (σh, uh) be the solutions of (3.7) and (4.3), respec-
tively. Assume that the regularity estimates in (2.5) and (2.11) hold. Then there exists
(γ, w) such that

(5.1) ‖u − uh‖2 = b(σ − σh, u − uh; γ, w)

and that

(5.2) ‖γ‖1 + ‖∇ · γ‖1 + ‖w‖2 ≤ C ‖u − uh‖.

For the Galerkin method, (γ, w) in Lemma 5.1 is simply the solution of the
corresponding dual problem. As developed later in this section, for the least-squares
method, (γ, w) is chosen to be the solution of another auxiliary problem whose right-
hand side involves the solution of the corresponding dual problem. This lemma will be
proved separately for the scalar elliptic problems and the generalized Stokes equations
in the respective sections 5.1 and 5.2. With Lemma 5.1, the optimal L2 norm error
estimates may be proved easily.

Theorem 5.1. Under the assumptions of Theorem 4.1 and Lemma 5.1, the
following error estimate holds:

‖u − uh‖ ≤ C h |||(σ − σh, u − uh)|||(5.3)

≤ C hl+1 (‖σ‖l + ‖∇ · σ‖l + ‖u‖l+1) .(5.4)
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Proof. It follows from Lemma 5.1, the orthogonality property in (4.5), the
Cauchy–Schwarz inequality, and the approximation properties in (4.1) and (4.2) with
l = 1 that for any (γh, wh) ∈ Σk

h × V k+1
h ,

‖u − uh‖2 = b(σ − σh, u − uh; γ, w) = b(σ − σh, u − uh; γ − γh, w − wh)

≤ C |||(σ − σh, u − uh)||| inf
(γh,wh)∈Σk

h×V k+1
h

|||(γ − γh, w − wh)|||

≤ C h |||(σ − σh, u − uh)||| (‖γ‖1 + ‖∇ · γ‖1 + ‖w‖2)

≤ C h |||(σ − σh, u − uh)||| · ‖u − uh‖.

Dividing ‖u − uh‖ on both sides of the above inequality gives (5.3) which, combined
with Theorem 4.1, implies (5.4). This completes the proof of the theorem.

5.1. The scalar elliptic problems.
Proof of Lemma 5.1. Let z ∈ H1

D(Ω) be the solution of (2.4) with f = u − uh.
The regularity estimate in (2.5) for the dual problem implies

(5.5) ‖z‖2 ≤ C ‖u− uh‖.

By taking v = u− uh in (2.4), adding and subtracting (σ − σh,∇v), and integrating
by parts, we have

‖u− uh‖2 = a(u− uh, z) = (A∇(u− uh), ∇z) + (X(u− uh), z)

= ((σ − σh) + A∇(u− uh), ∇z) + (∇ · (σ − σh) + X(u− uh), z).

Now, to show the validity of Lemma 5.1, it suffices to find (γ, w) ∈ HN (div; Ω) ×
H1

D(Ω) such that

(5.6)

{
A−1 γ + ∇w = ∇ z in Ω,

∇ · γ + Xw = z in Ω

and that

(5.7) ‖w‖2 + ‖γ‖1 + ‖∇ · γ‖1 ≤ C ‖u− uh‖.

To do so, let w ∈ H1
D(Ω) be the solution of the scalar elliptic problems in (2.1) and

(2.2) with the right-hand side f = z−∇ · (A∇z). The regularity estimate in (2.5) for
the dual problem and the triangle inequality implies

(5.8) ‖w‖2 ≤ C ‖z −∇ · (A∇z)‖ ≤ C ‖z‖2 ≤ C ‖u− uh‖.

Let γ = A∇(z − w). It is then easy to check that (γ, w) satisfies (5.6). Now, (5.7)
follows from (5.5), (5.8), and the facts that

‖γ‖1 = ‖A∇(z − w)‖1 ≤ C (‖z‖2 + ‖w‖2)

and that

‖∇ · γ‖1 = ‖z −Xw‖1 ≤ C (‖z‖1 + ‖w‖2) .

This completes the proof of Lemma 5.1 for the scalar elliptic problems.
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5.2. The generalized Stokes equations. The regularity estimate of the gen-
eralized Stokes equation in (2.7) is a consequence (2.11).

Lemma 5.2. For f ∈ L2(Ω)d and g ∈ H1(Ω), solution (u, p) ∈
(
H1

D(Ω)d ∩H2(Ω)d
)
×

H1(Ω) of the generalized Stokes equations in (2.7) and (2.8) satisfies the a priori es-
timate

(5.9) ‖u‖2 + ‖p‖1 ≤ C (‖f‖ + ‖g‖1) ,

where the positive constant C is independent of λ.
Proof. When λ = ∞, let (û, p̂) be the solution of (2.9) and (2.8); then (5.9) is

simply the first inequality in (2.11), that is,

(5.10) ‖û‖2 + ‖p̂‖1 ≤ C (‖f‖ + ‖g‖1) .

When λ 
= ∞, let (u, p) be the solution of (2.7) and (2.8), and set (u∗, p∗) = (u −
û, p − p̂). It is easy to check that (u∗, p∗) satisfies (2.7) with f = 0, g = − 1

λ p̂ and
boundary conditions (2.8), that is,

(5.11)

⎧⎨
⎩

−∇ · (ε(u∗) − p∗ δ) = 0 in Ω,

∇ · u∗ +
1

λ
p∗ = − 1

λ
p̂ in Ω

with u∗ = 0 on ΓD and n · (ε(u∗)− p∗ δ) = 0 on ΓN . Substituting p∗ = −λ∇ ·u∗ − p̂
into the first equation of (5.11) gives

−∇ · ε(u∗) − λ∇∇ · u∗ = −∇p̂

with u∗ = 0 on ΓD and n ·(ε(u∗)+λ (∇·u∗) δ) = 0 on ΓN . By the regularity estimate
in (2.11) for the elastic equations, (5.10), and the triangle inequality, we have that

‖u∗‖2 + λ ‖∇ · u∗‖1 ≤ C ‖∇p̂‖ ≤ C (‖f‖ + ‖g‖1)

and that

‖p∗‖1 = ‖λ∇ · u∗ + p̂‖1 ≤ ‖λ∇ · u∗‖1 + ‖p̂‖1 ≤ C (‖f‖ + ‖g‖1) .

Now, (5.9) is an immediate consequence of the fact that (u, p) = (u∗ + û, p∗ + p̂), the
triangle inequality, and (5.10). This completes the proof of the lemma.

With the H2 regularity estimate for the generalized Stokes equations, we are now
ready to prove Lemma 5.1 for both the elastic and Stokes equations by the duality
argument.

Proof of Lemma 5.1. Let eh = u − uh and Eh = σ − σh. It is easy to see that

(5.12) eh = 0 on ΓD and n · Eh = 0 on ΓN .

Consider the following dual problem: Let (z, r) ∈ H1
0 (Ω) × L2(Ω) be the solution of

the perturbed Stokes equation in (2.7) and (2.8) with the right-hand sides f = u−uh

and g = 0, that is,

(5.13)

⎧⎨
⎩

−∇ · (ε(z) − r δ) = eh in Ω,

∇ · z +
1

λ
r = 0 in Ω
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with boundary conditions

(5.14) z = 0 on ΓD and n · (ε(z) − r δ) = 0 on ΓN .

It follows from Lemma 5.2 that

(5.15) ‖z‖2 + ‖r‖1 ≤ C ‖u − uh‖.

To establish Lemma 5.1, we first use the above dual problem to derive the follow-
ing equality:

(5.16) ‖eh‖2 = (AλEh − ε(eh), r δ −∇ z) + (∇ · Eh, −z).

To this end, using the first equation in (5.13), integration by parts, boundary condi-
tions (5.12) and (5.14), and (2.6), we have

‖eh‖2 = (eh, −∇ · (ε(z) − r δ))

= (∇ eh, ε(z) − r δ) +

∫
∂Ω

eh · (n · (ε(z) − r δ))

= (ε(eh), ε(z) − rδ) = (ε(eh), ∇ z − rδ)

= (AλEh − ε(eh), rδ −∇ z) + (AλEh, ∇ z) − (tr(AλEh), r).(5.17)

By the definition of Aλ, integration by parts, boundary conditions (5.12) and (5.14),
and the second equation in (5.13), we have

(AλEh, ∇ z) =

(
Eh − λ

dλ + 1
(trEh) δ, ∇ z

)
= (Eh, ∇ z) − λ

dλ + 1
((trEh) δ, ∇ z)

= −(∇ · Eh, z) +

∫
∂Ω

(n · Eh) · z − λ

dλ + 1
(trEh, ∇ · z)

= (∇ · Eh, −z) +
1

d λ + 1
(trEh, r),

which, together with the fact that

tr (Aλ Eh) =
1

d λ + 1
trEh,

implies

(5.18) (AλEh, ∇ z) = (∇ · Eh, −z) + (tr(Aλ Eh), r).

Now, (5.16) follows from (5.17) and (5.18).
Next, we want to find (γ, w) such that

(5.19)

{
Aλ γ − ε(w) = r δ −∇ z in Ω,

∇ · γ = −z in Ω

and that

(5.20) ‖w‖2 + ‖γ‖1 + ‖∇ · γ‖1 ≤ C ‖eh‖.
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To do so, let (w, s) be the solution of the perturbed Stokes equation in (2.7) and (2.8)
with the right-hand sides

f = −� z + z and g = −d λ + 2

λ
r,

that is,

(5.21)

⎧⎨
⎩

−∇ · (ε(w) − s δ) = −� z + z in Ω,

∇ · w +
1

λ
s = −d λ + 2

λ
r in Ω

with boundary conditions

w = 0 on ΓD and n · (ε(w) − s δ) = 0 on ΓN .

It then follows from Lemma 5.2 and (5.15) that

‖w‖2 + ‖s‖1 ≤ C

(
‖ −� z + z‖ +

∥∥∥∥d λ + 2

λ
r

∥∥∥∥
1

)

≤ C (‖z‖2 + ‖r‖1) ≤ C ‖eh‖.(5.22)

Now, let

(5.23) γ = −∇ z + ε(w) − s δ.

Then applying the divergence operator to (5.23) and using the first equation in (5.21)
yield the second equation in (5.19). Applying the trace operator to (5.23) and using
the second equations in both (5.13) and (5.21), we have

trγ = −d λ + 1

λ
(s + r).

Hence,

s = − λ

dλ + 1
trγ − r,

which, combined with (5.23), implies the first equation in (5.19). Therefore, (γ, w)
satisfies (5.19). To prove that (γ, w) also satisfies (5.20), it follows from (5.23), the
triangle inequality, and (5.22) that

‖γ‖1 ≤ ‖∇ z‖1 + ‖ε(w)‖1 + d ‖s‖1 ≤ C (‖z‖2 + ‖w‖2 + ‖s‖1) ≤ C ‖eh‖

and from the second equation of (5.19) and (5.22) that

‖∇ · γ‖1 = ‖z‖1 ≤ C ‖eh‖,

which, combined with (5.22), implies (5.20).

Finally, combining (5.16) and (5.19) yields (5.1) with (γ, w) satisfying (5.2). This
completes the proof of Lemma 5.1 for both the elasticity and Stokes equations.
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5.3. Extension to problems with low regularity. Extensions of our results
in this paper to problems with low regularity can be carried out in a similar fashion.
To this end, we assume the following H1+α regularity estimates with α ∈ [1/2, 1):

(5.24) ‖u‖1+α ≤ C ‖f‖1−α and ‖z‖1+α ≤ C ‖f‖1−α

for problems (2.3) and (2.4), respectively, and

(5.25) ‖u‖1+α+‖p‖α ≤ C (‖f‖1−α + ‖g‖α) and ‖u‖1+α+λ ‖∇·u‖α ≤ C ‖f‖1−α

for problems (2.9) and (2.10), respectively. The assumption on α ≥ 1/2 is needed
in order to define the Raviart–Thomas elements. For any σ ∈ Hα(Ω)m×m ∩ Σ with
∇ · σ ∈ Hα(Ω)m, we assume the following approximation property for Σk

h: There
exists 0 < β ≤ α such that

(5.26) inf
τ∈Σk

h

‖σ − τ‖H(div; Ω) ≤ C hβ (‖σ‖α + ‖∇ · σ‖α) .

Theorem 5.2. Assume that the solution (σ, u) of (3.7) is in Hα(Ω)m×m ×
Hα+1(Ω)m and that the divergence of the stress ∇·σ is in Hα(Ω)m ( m = 1 or d) with
α ∈ [1/2, 1). Suppose that approximation property (5.26) holds; then with (σh, uh) ∈
Σ0

h × V 1
h denoting the solution to (4.3), the following error estimate holds:

(5.27) |||(σ − σh, u − uh)||| ≤ C hβ (‖σ‖α + ‖∇ · σ‖α) + C hα ‖u‖1+α.

Proof. The proof of (5.27) is standard and identical to that of (4.7).
Theorem 5.3. Assume that the regularity estimates in (5.24) and (5.25) hold.

Under the assumptions of Theorem 5.2, we have the following L2 norm error esti-
mates:

‖u − uh‖ ≤ C hβ |||(σ − σh, u − uh)|||(5.28)

≤ C h2 β (‖σ‖α + ‖∇ · σ‖α + ‖u‖1+α) .(5.29)

Proof. In a similar fashion, one can first establish the H1+α regularity for the
generalized Stokes equations in (2.7) and (2.8) and then prove that there exists (γ, w)
such that

‖u − uh‖2 = b(σ − σh, u − uh; γ, w)

and that

‖γ‖α + ‖∇ · γ‖α + ‖w‖α+1 ≤ C ‖u − uh‖.

Now, error bound (5.28) easily follows in a way similar to that of (5.3), and (5.29) is
then a direct consequence of (5.28) and (5.27).
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this concept, monotonicity for ARK schemes under certain stepsize restrictions can be ensured. Some
ARK methods from the literature are analyzed. As expected, monotonicity for each Runge–Kutte
(RK) method does not ensure monotonicity for the ARK scheme. Some numerical examples show
the applicability of these results.
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1. Introduction. We consider initial value problems for ordinary differential
equations (ODEs) of the form

d

dt
u(t) = f (u(t)) + f̃ (u(t)) , t ≥ t0,(1.1)

u(t0) = u0 .

We assume that t0 ∈ R, u0 ∈ R
m, and f and f̃ are continuous functions from R

m to
R

m with different stiffness properties such that for each t0 ∈ R and u0 ∈ R
m problem

(1.1) has a unique solution u : [t0,∞) → R
m. Such systems often arise from space

discretization of time-dependent partial differential equations (PDEs) by the method
of lines [2, 3, 4, 7, 17, 19, 20, 22, 27]. We assume too that ‖ · ‖ : R

m → R is a convex
function (e.g., a norm, an entropy function, etc.), such that for any t0 ∈ R and any
solution u(t) to (1.1) we have

‖u(t)‖ ≤ ‖u(t0)‖ for all t ≥ t0 .(1.2)

In order to obtain property (1.2) for the solution of (1.1), some conditions must be
imposed on the functions f and f̃ . In the rest of the paper we assume that (f, f̃‖ · ‖)
satisfy ∥∥∥∥ y +

1

ρ
f(y)

∥∥∥∥ ≤ ‖ y ‖ for all y ∈ R
m ,(1.3)

∥∥∥∥ y +
1

ρ̃
f̃(y)

∥∥∥∥ ≤ ‖ y ‖ for all y ∈ R
m(1.4)
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for some fixed ρ, ρ̃ > 0, and we denote this class of problems by F(ρ, ρ̃). Recall that
(1.3)–(1.4) imply that these inequalities also hold for any τ with 0 ≤ τ ≤ 1/ρ [18,
Theorem 5.1]. Under these assumptions it is straightforward to prove that (1.3)–(1.4)
imply that for u(t), the solution of (1.1), we have

D+‖u(t)‖ ≤ 0 ,

where D+ denotes the right-hand derivative, and hence (1.2) holds. For details see
[13].

Given the initial value problem (1.1) a common class of one step methods for
solving it numerically is that of the additive Runge–Kutta (ARK) methods. An s-
stage ARK method is defined by two s×s real matrices A and Ã, and two real vectors
b, b̃ ∈ R

s. From un, the numerical approximation of the solution u(t) at t = tn, we
obtain un+1, the numerical approximation of the solution at tn+1 = tn + h, by

un+1 = un + h

s∑
i=1

bif(Ui) + h

s∑
i=1

b̃if̃(Ui) ,(1.5)

where the internal stages Ui are given as

Ui = un + h

s∑
j=1

aijf(Uj) + h

s∑
j=1

ãij f̃(Uj) .(1.6)

The Runge–Kutta (RK) methods (A, b) and (Ã, b̃) are chosen with the aim of
integrating system (1.1) with low computational cost. For example, if f represents
the nonstiff part of the system and f̃ the stiff part, an explicit method can be used for
f and an implicit one for f̃ . ARK methods combining implicit and explicit schemes
are known in the literature as IMplicit–EXplicit (IMEX) RK methods [2, 19, 17]. We
remark that the problems we have in mind have a stiff behavior and therefore, the
use of an explicit method for the whole problem is not possible.

Denoting the coefficients of the ARK method by

A =

(
A 0
bt 0

)
, Ã =

(
Ã 0

b̃t 0

)
,

we can write (1.5)–(1.6) in compact form as

U = e⊗ un + h(A ⊗ I)F (U) + h(Ã ⊗ I)F̃ (U) ,(1.7)

where e = (1, . . . , 1)t ∈ R
s+1, U = (U t

1, . . . , U
t
s , u

t
n+1)

t ∈ R
(s+1)m, F (U) = (f(U1)

t, . . . ,

f(Us)
t, 0)t ∈ R

(s+1)m, and similarly F̃ (U). The symbol ⊗ denotes the Kronecker
product (see, e.g., [16, section 12.1])

A⊗B =

⎛
⎜⎝ a11B · · · a1mB

...
...

am1B · · · ammB

⎞
⎟⎠ .

Some properties of the Kronecker product, namely (A⊗B) (C ⊗D) = (AB ⊗ C D),
(A ⊗ B)−1 = A−1 ⊗ B−1, where the matrices involved have the proper dimensions
and properties, will be used later on.



STRONG STABILITY FOR ARKS 1737

The internal stage Ui approximates u(tn + cih), where ci =
∑s

j=1 aij . Further-
more, for many methods it holds that ci ≥ 0, i = 1, . . . , s, and thus tn + cih ≥ tn.
Therefore, if we solve numerically an ODE (1.1) with (f, f̃ , ‖ · ‖) ∈ F(ρ, ρ̃) with an
ARK method, a natural requirement for the internal stages and the numerical solution
is

‖Ui‖ ≤ ‖un‖ , i = 1, . . . , s ,(1.8)

‖un+1‖ ≤ ‖un‖(1.9)

for all n ≥ 0, probably under a stepsize restriction h ≤ ΔtMAX . Following the
nomenclature for RK methods, we will say that an ARK scheme that satisfies (1.8)–
(1.9) is strongly stable.

Monotonicity properties (1.8)–(1.9) for RK methods have been studied by several
authors [5, 23, 24, 25, 10, 9, 21, 26]; see [12] for a review. The aim of this paper is to
study these properties for ARK methods. As we will see in this paper, it is not true
that two strongly stable RK methods give rise to a strongly stable ARK method. This
fact is not surprising because in general the fact that a property holds for methods
(A, b) and (Ã, b̃) separately does not imply that it holds for the ARK method. This
situation is well known for the order of consistency of an ARK scheme, where, together
with the order conditions for each method, some extra coupling conditions are required
(see, e.g., [17, 20]). Similarly, where stability issues for ARK methods have been
studied by some authors [4, 17], it has been found that extra conditions must be
considered.

As far as we know, strong stability has not been studied for ARK schemes. The
closest research is found in [20], where, in the context of hyperbolic systems with
relaxation, IMEX methods are used to solve problems of the form

d

dt
u(t) = f(u(t)) +

1

ε
f̃(u(t)),

where ε is the stiffness parameter. For this problem, monotonicity in the stiff limit,
i.e., when ε → 0, is studied. For this purpose, in [20] the concept of the asymptotic
preserving (AP) method is used. In this case, under certain conditions for the implicit
scheme, monotonicity can be recovered under the only stability restriction introduced
by the explicit part of the IMEX scheme. However, the results obtained in [20] do
not cover the case of moderate values of ε.

For RK methods the radius of absolute monotonicity gives stepsize restrictions
for monotonicity [18, 5]. In this paper we extend this concept for ARK methods and
give sufficient conditions for monotonicity.

The rest of the paper is organized as follows. Section 2 is devoted to the extension
of the radius of absolute monotonicity for ARK methods and the study of some of its
properties. Stepsize restrictions for monotonicity are given in terms of this radius in
section 3. This section ends with subsections 3.1 and 3.2, where the previous results
are related to the Shu–Osher forms and perturbed RK schemes. With the new concept
defined, the monotonicity properties of some methods from the literature are analyzed
in section 4. Some numerical experiments are shown in section 5. The paper ends
with some conclusions and open questions for future work in section 6.

2. Absolute monotonicity for additive RK methods. In the context of
contractive and monotone RK methods, the concept of radius of absolute monotonicity
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plays an important role [18, 5]. We review the definitions of absolute monotonicity
and radius of absolute monotonicity as follows.

Definition 2.1 (see [18, Definition 2.4]). An s-stage RK method with coefficients
A is said to be absolutely monotonic (a.m.) at a given point ξ ≤ 0 if the matrix I−ξA
is nonsingular and

(I − ξA)−1
A ≥ 0 ,(2.1)

(I − ξA)−1e ≥ 0 ,(2.2)

where e = (1, 1, . . . , 1)t ∈ R
s+1, and the vector inequalities are understood component-

wise. Further, the method is said to be a.m. on a given set Ω ⊂ R if it is a.m. at
each ξ ∈ Ω. The radius of absolute monotonicity R(A) is defined by

R(A) = sup{ r | r ≥ 0 and A is a.m. on [−r, 0] } .(2.3)

If there is no r > 0 such that A is a.m. on [−r, 0], we set R(A) = 0.
Our first aim is to extend this concept for ARK methods (A, Ã) and analyze some

of its properties. For a better understanding of that extension, we briefly show how
conditions (2.1)–(2.2) in Definition 2.1 arise in [18].

In [18] the scalar linear problems u′ = λu and u′ = λ(t)u, and the vectorial
linear problem u′ = L(t)u(t), with L(t) an m×m matrix, are considered. In compact
form, with U = (U t

1, . . . , U
t
s , u

t
n+1)

t ∈ R
(s+1)m (cf. (1.7)), an RK method A for these

problems gives, respectively, U = φ(hλ)un, with

φ(z) = (Is+1 − zA)
−1

e;

U = K (diag (hλ1, . . . , hλs, 0))un, with

K(Z) = (Is+1 − AZ)
−1

e

and Z a diagonal matrix; and U = K (diag (hL1, . . . , hLs, 0))⊗ un, with Li = L(tn +
cih),

K(Z) =
(
I(s+1)·m − (A ⊗ Im)Z

)−1
(e⊗ Im) ,

and Z a block diagonal matrix. The concepts of absolute monotonicity at a given
point ξ ∈ R for φ, K, and K are given in [18, p. 487]. Roughly speaking they mean
the nonnegativity of all coefficients of the Taylor expansion about z = ξ, Z = ξIs+1, or
Z = ξI(s+1)·m, respectively. In particular, for Z = ξI(s+1)·m + W, with W sufficiently
close to zero, we obtain

K(Z) =
[
I(s+1)·m − (A(ξ) ⊗ Im)W

]−1
(e(ξ) ⊗ Im) ,

where A(ξ) = (Is+1 − ξA)−1
A and e(ξ) = (Is+1 − ξA)−1e. Thus with A(ξ) ≥ 0 and

e(ξ) ≥ 0 (see (2.1)–(2.2)), we obtain the absolute monotonicity of K at ξI(s+1)·m.

Similarly, if we consider now the additive problems u′ = −(λ + λ̃)u and u′ =
−(λ(t) + λ̃(t))u, and the vectorial linear problem u′ = −(L(t) + L̃(t))u(t), with L̃(t)
an m×m matrix, an ARK method (A , Ã) gives, respectively,

U = φ(hλ, hλ̃)un,

with

φ(z, z̃) =
(
Is+1 − zA − z̃Ã

)−1

e;
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U = K
(
diag (hλ1, . . . , hλs, 0),diag (hλ̃1, . . . , hλ̃s, 0)

)
un, with

K(Z, Z̃) =
(
Is+1 − AZ − ÃZ̃

)−1

e

and Z, Z̃ diagonal matrices; and

U = K

(
diag (hL1, . . . , hLs, 0),diag (hL̃1, . . . , hL̃s, 0)

)
⊗ un,

with

K(Z, Z̃) =
(
I(s+1)·m − (A ⊗ Im)Z − (Ã ⊗ Im)Z̃

)−1

(e⊗ Im)

and Z, Z̃ block diagonal matrices. For Z = ξI(s+1)·m + W, Z̃ = ξ̃I(s+1)·m + W̃, with

W, W̃ sufficiently close to zero, we obtain

K(Z, Z̃) =
[
I(s+1)·m − (A(ξ, ξ̃) ⊗ Im)W − (Ã(ξ, ξ̃) ⊗ Im)W̃

]−1 (
e(ξ, ξ̃) ⊗ Im

)
,

where now A(ξ, ξ̃), Ã(ξ, ξ̃), and e(ξ, ξ̃) are defined, respectively, by (2.4), (2.5), and
(2.6) below. Thus with A(ξ, ξ̃) ≥ 0, Ã(ξ, ξ̃) ≥ 0 and e(ξ, ξ̃) ≥ 0, we obtain that
all the coefficients in the Taylor expansion of K(Z, Z̃) at (ξI(s+1)·m, ξ̃I(s+1)·m) are
nonnegative. This analysis lead us to the extension of Definition 2.1 as follows.

Definition 2.2. An s-stage ARK method (A, Ã) is said to be a.m. at a given
point (ξ, ξ̃) with ξ, ξ̃ ≤ 0 if the matrix I − ξA − ξ̃Ã is invertible and

A(ξ, ξ̃) = (I − ξA − ξ̃Ã)−1
A ≥ 0 ,(2.4)

Ã(ξ, ξ̃) = (I − ξA − ξ̃Ã)−1
Ã ≥ 0 ,(2.5)

e(ξ, ξ̃) = (I − ξA − ξ̃Ã)−1e ≥ 0 .(2.6)

Further, the additive method is said to be a.m. on a given set Ω ∈ R
2 if it is absolutely

monotonic at each (ξ, ξ̃) ∈ Ω.
Observe that for RK we worked in R, but for ARK methods we have to work in

R
2. For this reason we define the region of absolute monotonicity as follows.

Definition 2.3. The region of absolute monotonicity, denoted by R(A, Ã), is
defined by

R(A, Ã) = { (r, r̃) | r ≥ 0 , r̃ ≥ 0, and (A, Ã) is a.m. on [−r, 0] × [−r̃, 0] } .

Finally, for RK methods the radius of absolute monotonicity is given by the
supremum (2.3), which is a part of the frontier of the set

{ r | r ≥ 0 and A is a.m. on [−r, 0] } .

For ARK schemes we consider a part of the frontier of the region of a.m. R(A, Ã).
Definition 2.4. The curve of absolute monotonicity, denoted by ∂R(A, Ã), is

the frontier of the set R(A, Ã) excluding the coordinate axis (see Figure 2.1).
If there is no r > 0, r̃ > 0 such that (A, Ã) is a.m. on [−r, 0] × [−r̃, 0], we set

∂R(A, Ã) = (0, 0).
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Fig. 2.1. Curve of absolute monotonicity.

Later on we will prove the absolute monotonicity of the ARK method at a given
point (r, r̃) considering the absolute monotonicity of the ARK method on the semi-
open line connecting the origin and the point (r, r̃). We give the following definition.

Definition 2.5. For r, r̃ ≥ 0 we will say that ∂R(A, Ã) ≥ (r, r̃) if (A, Ã) is a.m.
at L(r, r̃), where

L(r, r̃) =

{
(ξ, ξ̃)

∣∣∣ ξ ∈ (−r, 0] , ξ̃ =
r̃

r

}
.(2.7)

Once the basic definitions are given, we go deeper into the concept of radius of
absolute monotonicity. In [18, Lemma 4.4] it is proved that under certain conditions,
for the absolute monotonicity of an RK method A on a given interval [−r, 0], it is
sufficient to consider the absolute monotonicity at the left endpoint −r. Our next
goal is to prove that a similar result is also true for ARK methods (A, Ã). We begin
with some technical lemmas.

Lemma 2.6. Consider an order m matrix C such that C ≥ 0. Assume too that
the matrix I + C is nonsingular and C (I + C)−1 ≥ 0. Then I − ξC is nonsingular
for all ξ ∈ [−2, 0].

Proof. As C (I + C)−1 ≥ 0 and C ≥ 0, then (I + C)−1 = I − C (I + C)−1 is an
M -matrix, and hence [16, section 15.2] for the spectral radius of C (I +C)−1 we have
spectral radius

(
C (I + C)−1

)
< 1. Therefore

∣∣λI − C (I + C)−1
∣∣ 
= 0 for all λ with

|λ| ≥ 1. For ξ 
= −1 we have that

∣∣I − (ξ + 1)C (I + C)−1
∣∣ = (ξ + r)m

∣∣∣∣ 1

ξ + 1
I − C (I + C)−1

∣∣∣∣ ,
obtaining that

∣∣I − (ξ + 1)C (I + C)−1
∣∣ 
= 0 for all ξ with |ξ + 1| ≤ 1. Finally, from

|I − ξ C| = |I − (ξ + 1)C (I + C)−1| · |I + C|

we obtain that I − ξ C is nonsingular for all ξ ∈ [−2, 0].
Observe that we have proved that under certain assumptions, the regularity of

I − ξ C for ξ = −1 implies the regularity of this matrix for ξ in the interval [−1, 0]
(see (2.7)).

For the next result we need the concept of an a.m. function for functions f : R
2 →

R, and matrices whose elements are functions.
Definition 2.7. A function ψ(z, z̃) = P (z, z̃)/Q(z, z̃), where P and Q are

polynomials, is said to be a.m. at a given point (ξ, ξ̃) ∈ R
2 if Q(ξ, ξ̃) 
= 0 and
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(dj+kψ/dz̃jdzk)(ξ, ξ̃) ≥ 0, k = 0, 1, . . . , j = 0, 1, . . . . For matrices whose elements
are functions, we will say that they are a.m. at a given point (ξ, ξ̃) if each element is
a.m. at (ξ, ξ̃).

Observe that Definition 2.7 is an extension of the concept of an a.m. function
given in [18, Definition 2.1].

As the name indicates, the concept of absolute monotonicity given in Defini-
tion 2.2 for an ARK method is closely related to the concept of absolute monotonicity
for a function given in Definition 2.7.

Lemma 2.8. Consider the functions A(ξ, ξ̃), Ã(ξ, ξ̃), and e(ξ, ξ̃), defined by (2.4),
(2.5), and (2.6), respectively. Then the ARK method (A, Ã) is a.m. at (ξ0, ξ̃0) if and
only if the functions A(ξ, ξ̃), Ã(ξ, ξ̃), and e(ξ, ξ̃) are a.m. at (ξ0, ξ̃0).

Proof. Recall that from Definition 2.2, the ARK method (A, Ã) is absolutely
monotonic at (ξ0, ξ̃0) if and only if A(ξ0, ξ̃0) ≥ 0, Ã(ξ0, ξ̃0) ≥ 0, and e(ξ0, ξ̃0) ≥ 0. The
if part is trivial. For the only if part we simply have to observe that

dA(ξ, ξ̃)

dξ
= A(ξ, ξ̃)2 ,

dA(ξ, ξ̃)

dξ̃
= Ã(ξ, ξ̃) A(ξ, ξ̃) ,

dÃ(ξ, ξ̃)

dξ
= A(ξ, ξ̃) Ã(ξ, ξ̃) ,

and hence from A(ξ0, ξ̃0) ≥ 0 and Ã(ξ0, ξ̃0) ≥ 0, after a recursion process, we obtain
the absolute monotonicity of A(ξ, ξ̃), Ã(ξ, ξ̃) at (ξ0, ξ̃0). We proceed in a similar way
for e(ξ, ξ̃).

We go deeper into the concept of absolute monotonicity for a function in a given
point. In the following lemma, A denotes the closure of the set A. See (2.7) for the
definition of L(r, r̃).

Lemma 2.9. Let ψ(z, z̃) = P (z, z̃)/Q(z, z̃) be a rational function, where P and
Q are polynomials. Suppose that ψ is a.m. at a given point (−r,−r̃). Assume too
Q(z, z̃) 
= 0 on an open neighborhood N containing L(r, r̃). Then ψ is a.m. on L(r, r̃).

Proof. The proof follows along the lines of Lemma 3.1 in [18]. The Taylor expan-
sion of ψ at (−r,−r̃) gives

ψ(z, z̃) = ψ(−r,−r̃) +
∂ψ

∂z
(−r,−r̃)(z + r) +

∂ψ

∂z̃
(−r,−r̃)(z̃ + r̃) + · · · ,

with ψ(−r,−r̃) ≥ 0, ∂ψ
∂z (−r,−r̃) ≥ 0, ∂ψ

∂z̃ (−r,−r̃) ≥ 0, . . . which is valid in N . To see
this, we simply have to use the ideas in the proof of [18, Lemma 3.1]. In particular
the Taylor expansion is valid for (z, z̃) ∈ L(r, r̃). Term by term differentiation shows
that ψ is absolutely monotonic at L(r, r̃).

Lemma 2.10. Let ψ(z, z̃) = P (z, z̃)/Q(z, z̃) be a rational function, where P and
Q are polynomials. Suppose that ψ is a.m. on L(r, r̃). Then ψ is a.m. on L(r, r̃).

Proof. The proof follows along the lines of Lemma 3.6 in [18]. We have to prove
that ψ is a.m. at (r, r̃). If (r, r̃) is not a pole of ψ, then the absolute monotonicity
follows from a limit argument. If (r, r̃) is a pole of ψ, then on a neighborhood of
(r, r̃) on L(r, r̃) we have ψ(z, z̃) < 0 or D(z,r̃/r z)ψ(z, z̃) < 0, where Dvf denotes the
derivative of f in the direction v. In both cases we get a contradiction with the
absolute monotonicity of ψ.
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For ARK methods, we are in a position to prove a result similar to Lemma 4.4 in
[18].

Proposition 2.11. Consider an ARK method (A, Ã) and real positive numbers
r, r̃. Then ∂R(A, Ã) ≥ (r, r̃) if and only if (A, Ã) is a.m. at (ξ, ξ̃) = (−r,−r̃) and
A ≥ 0, Ã ≥ 0.

Proof. 1. We begin by assuming that ∂R(A, Ã) ≥ (r, r̃). Then (A, Ã) is a.m.
at (ξ, ξ̃) ∈ L(r, r̃). By Lemma 2.8 the functions A(ξ, ξ̃), Ã(ξ, ξ̃), and e(ξ, ξ̃) are a.m.
at (ξ, ξ̃) ∈ L(r, r̃). We can now apply componentwise Lemma 2.10 to get that they
are also a.m. at (ξ, ξ̃) with ξ ∈ [−r, 0] and ξ̃ = r

r̃ ξ and in particular at (−r,−r̃).

Application of Lemma 2.8 once more gives the absolute monotonicity of (A, Ã) at
(r, r̃). In particular the method is a.m. at (ξ, ξ̃) = (0, 0), and hence A ≥ 0 and Ã ≥ 0.

2. We assume now that (A, Ã) is a.m. at (ξ, ξ̃) = (−r,−r̃) and A ≥ 0, Ã ≥ 0.
Using Lemma 2.6 for C = rA + r̃Ã, we get that I − ξA − ξ̃Ã is nonsingular for all
(ξ, ξ̃) with ξ ∈ [−r, 0] and ξ̃ = r̃

r ξ, and therefore the functions A(ξ, ξ̃), Ã(ξ, ξ̃), and

e(ξ, ξ̃) are well defined for (ξ, ξ̃) = (ξ, r̃
r ξ) with ξ ∈ [−r, 0]. Hence, by Lemma 2.9 we

get that the method is a.m. at (ξ, ξ̃) with ξ ∈ [−r, 0] and ξ̃ = r̃
r ξ, i.e., ∂R(A, Ã) ≥

(r, r̃).
The relevance of Proposition 2.11 is that to prove the absolute monotonicity of

an ARK method in the segment that connects the origin and the point (−r,−r̃), it
is enough to check the absolute monotonicity of the method (A, Ã) at (−r,−r̃), and
the nonnegativity of A and Ã. Hence, to prove the absolute monotonicity of an ARK
scheme in a region, it is enough to check the absolute monotonicity of the method at
the curve of absolute monotonicity and the nonnegativity of the coefficient matrices.

We finish the section with a lemma that will justify the validity of the results for
any convex function ‖ · ‖.

Lemma 2.12. Assume that the ARK method (A, Ã) is a.m. at (−r,−r̃) with
r, r̃ ≥ 0. Then

0 ≤ e(−r,−r̃) ≤ e ,(2.8)

0 ≤ rA(−r,−r̃) ≤ E ,(2.9)

0 ≤ r̃ Ã(−r,−r̃) ≤ E ,(2.10)

e(−r,−r̃) + rA(−r,−r̃) e + r̃ Ã(−r,−r̃) e = e ,(2.11)

where E denotes the matrix whose elements are equal to 1 and e(ξ, ξ̃), A(ξ, ξ̃) and
Ã(ξ, ξ̃) are given by (2.4)–(2.6). Hence, for x, y, z ∈ R

s+1, componentwise, the
expression

e(−r,−r̃)x + rA(−r,−r̃) y + r̃ Ã(−r,−r̃) z

is a convex combination of xi, yi, and zi.
Proof. The lower bounds in (2.8)–(2.10) come from the absolute monotonicity at

(−r,−r̃). To prove the upper bounds, we proceed as follows. As the method is a.m.
at (−r,−r̃), we have

(I + rA + r̃Ã)−1(rA + r̃Ã) e ≥ 0(2.12)

and as

(I + rA + r̃Ã)−1(rA + r̃Ã) = I − (I + rA + r̃Ã)−1 ,
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we can write (2.12) as (
I − (I + rA + r̃Ã)−1

)
e ≥ 0 ,

which gives the upper bound in (2.8). Furthermore, from

(I + rA + r̃Ã)−1e ≥ 0 ,

as

(I + rA + r̃Ã)−1 = I − (I + rA + r̃Ã)−1(rA + r̃Ã) ,

we obtain

(I + rA + r̃Ã)−1(rA + r̃Ã) e ≤ e .(2.13)

The upper bounds in (2.9)–(2.10) come from inequality (2.13) and the fact that

(I + rA + r̃Ã)−1rA ≥ 0 , (I + rA + r̃Ã)−1r̃Ã ≥ 0 .

Finally, (2.11) is straightforward.

3. Monotonicity for ARK methods. Once we have defined and studied the
concept of absolute monotonicity for an ARK method (A, Ã), we are in a position to
prove the main result that ensures monotonicity for the ARK method under certain
stepsize restrictions.

Theorem 3.1. Assume that the ARK method (A, Ã) is a.m. at (−r,−r̃). Then
for

h ≤ r
1

ρ
, h ≤ r̃

1

ρ̃
(3.1)

it holds that

‖Ui‖ ≤ ‖un‖ , i = 1, . . . , s , ‖un+1‖ ≤ ‖un‖ .

Proof. The proof is similar to the one in [13]. The ARK method can be written
as

U = e⊗ un + h(A ⊗ I)F (U) + h(Ã ⊗ I)F̃ (U) .(3.2)

Observe that the conditions on the problems imply, for h satisfying (3.1), that∥∥∥∥Ui +
h

r
F (Ui)

∥∥∥∥ ≤ ‖Ui ‖ ,
∥∥∥∥ Ui +

h

r̃
F̃ (Ui)

∥∥∥∥ ≤ ‖Ui ‖ .(3.3)

In formula (3.2) we add to both sides ((rA + r̃Ã) ⊗ I)U , obtaining

(I + ((rA + r̃Ã) ⊗ I))U = e⊗ un + (A ⊗ I)(rU + hF (U)) + (Ã ⊗ I)(r̃U + hF̃ (U)) ,

or equivalently

U = e(−r,−r̃) ⊗ un + (rA(−r,−r̃) ⊗ I)

(
U +

h

r
F (U)

)

+
(
r̃ Ã(−r,−r̃) ⊗ I

)(
U +

h

r̃
F̃ (U)

)
,(3.4)
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where e(ξ, ξ̃), A(ξ, ξ̃), and Ã(ξ, ξ̃) are given by (2.4)–(2.6). If we take norms, the
conditions on e(−r,−r̃), A(−r,−r̃), and Ã(−r,−r̃) imply

[‖U‖] ≤ e(−r,−r̃) ⊗ ‖un‖ + (rA(−r,−r̃) ⊗ I)

[∥∥∥∥U +
h

r
F (U)

∥∥∥∥
]

+
(
r̃ Ã(−r,−r̃) ⊗ I

)[∥∥∥∥U +
h

r̃
F̃ (U)

∥∥∥∥
]
,(3.5)

where [‖U‖] = (‖U1‖, . . . , ‖Us‖, ‖un+1‖)t ∈ R
s+1. Conditions (3.3) imply now

[‖U‖] ≤ e(−r,−r̃) ⊗ ‖un‖ +
(
(rA(−r,−r̃) + r̃Ã(−r,−r̃)) ⊗ I

)
[‖U‖] ,

and hence

((I + rA + r̃Ã)−1 ⊗ I) [‖U‖] ≤ ((I + rA + r̃Ã)−1e) ⊗ ‖un‖ ,(3.6)

where we have used that (I−rA(−r,−r̃)− r̃Ã(−r,−r̃)) = (I+rA+ r̃Ã)−1. We simply
have to multiply (3.6) by I + rA + r̃Ã ≥ 0 to get

[‖U‖] ≤ e⊗ ‖un‖ .

Remark 1.

(a) By Lemma 2.12, the derivation of inequality (3.5) from (3.4) is valid not only
for norms ‖ · ‖ but also for any convex function ψ : R

m → R.
(b) We have obtained a conditional monotonicity result. We are not interested

in unconditional monotonicity because for RK methods it is known that ex-
plicit RK methods cannot be unconditionally monotone, and for implicit RK
methods, unconditional monotonicity implies that the order of the method
is at most one (see [18] or [12]). Hence IMEX methods cannot be uncondi-
tionally monotone. For unconditional monotone implicit ARK methods, the
same order restriction holds, i.e., p ≤ 1, because to obtain an order p RK
method, each RK method must have order p.

(c) If the method A is a.m. at −r, then the RK scheme is monotone under step-
size restriction h ≤ r/ρ. Similarly, if the method Ã is a.m. at −r, then the
RK scheme is monotone under stepsize restriction h ≤ r̃/ρ̃. However, in or-
der to obtain monotonicity for the ARK method (A, Ã) we require absolute
monotonicity at (−r,−r̃). Depending on the shape of R(A, Ã), sharper step-
size restrictions may occur to maintain monotonicity of the ARK method. In
order to have a good monotone ARK scheme, not only must the RK methods
A and Ã have a large radius of absolute monotonicity, but the methods also
must be properly coupled.

(d) If the exact solution, the internal stages, and the numerical solution are in a
subset B ⊂ R

m, then in Theorem 3.1 conditions (1.3)–(1.4) can be relaxed to∥∥∥∥ y +
1

ρ
f(y)

∥∥∥∥ ≤ ‖ y ‖ ,
∥∥∥∥ y +

1

ρ̃
f̃(y)

∥∥∥∥ ≤ ‖ y ‖ for all y ∈ B.

Theorem 3.1 gives us monotonicity under the stepsize restriction

h ≤ r
1

ρ
, h ≤ r̃

1

ρ̃
,



STRONG STABILITY FOR ARKS 1745

with (r, r̃) such that the ARK method is a.m. at it. Hence, we should have ARK
schemes (A, Ã) such that ∂R(A, Ã) 
= (0, 0) because only in this case do we have a
positive stepsize restriction for monotonicity. For RK methods, in [18] it is proved
that R(A) > 0 if and only if A ≥ 0 and

Inc (A2) ≤ Inc A ,

where Inc F is the incidence matrix of F = (fij), defined as Inc F = (gij), with
gij = 1 if fij 
= 0 and gij = 0 if fij = 0.

Our next goal is to give algebraic criteria for ∂R(A, Ã) 
= (0, 0). We begin by
proving the following lemmas.

Lemma 3.2. Consider matrices A = (aij), B = (bij), C = (cij), and D = (dij)
such that A ≥ 0, B ≥ 0, C ≥ 0, D ≥ 0. Assume that Inc B ≤ Inc C and
Inc (AC) ≤ Inc D. Then

Inc (AB) ≤ Inc D .

Proof. If (AB)ij 
= 0, then ailblj 
= 0 for some l, and hence ail 
= 0 and blj 
= 0.
From blj 
= 0 and Inc B ≤ Inc C, we get that clj 
= 0. Now from ail 
= 0 and
clj 
= 0 we obtain that (AC)ij 
= 0. Finally, from Inc (AC) ≤ Inc D we obtain that
dij 
= 0.

Lemma 3.3. If A ≥ 0, Ã ≥ 0, and

Inc (A2) ≤ IncA ,(3.7)

Inc (Ã A) ≤ IncA ,(3.8)

then for any ki, pi, i = 1, . . . , n, and for any n it holds that

Inc
(
(A)k1(Ã)p1 · · · (A)kn(Ã)pn A

)
≤ Inc A .(3.9)

Proof. Lemma 3.2 with A = Ã and D = C = A gives that Inc B ≤ Inc A,
together with (3.8), implies

Inc (ÃB) ≤ Inc A .(3.10)

Beginning with (3.8), we can successively use (3.10) for B = Ã A to get Inc (Ã2
A) ≤

Inc A, for B = Ã
2

A to get Inc (Ã3
A) ≤ Inc A, and in this way obtain

Inc (Ãk
A) ≤ Inc A .(3.11)

Similarly, Lemma 3.2 with A = A and D = C = A gives that Inc B ≤ Inc A and
(3.7) imply

Inc (AB) ≤ Inc A .(3.12)

As (3.11) holds true, we can use (3.12) for B = Ã
k

A to get Inc (A Ã
k

A) ≤ Inc A, for
B = A Ã

k
A to get Inc (A2

Ã
k

A) ≤ Inc A, and in this way obtain

Inc (Ap
Ã

k
A) ≤ Inc A .

Repeating this process, we arrive at (3.9).
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The following result gives algebraic criteria for obtaining ∂R(A, Ã) 
= (0, 0).

Proposition 3.4. We have ∂R(A, Ã) 
= (0, 0) if and only if A ≥ 0, Ã ≥ 0, and

Inc (A2) ≤ IncA ,(3.13)

Inc (Ã A) ≤ IncA ,(3.14)

Inc (Ã2) ≤ Inc Ã ,(3.15)

Inc (A Ã) ≤ Inc Ã .(3.16)

Proof. The proof is similar to the one in [13]. For real ξ, ξ̃ close to zero, the
matrix (I − ξA − ξ̃Ã) is nonsingular, and hence

(I − ξA − ξ̃Ã)−1
A = A + (ξA + ξ̃Ã)A +

(
ξ2

A
2 + ξξ̃

(
AÃ + ÃA

)
+ ξ̃2

Ã
2
)

A + · · · ,

(3.17)

(I − ξA − ξ̃Ã)−1
Ã = Ã + (ξA + ξ̃Ã)Ã +

(
ξ2

A
2 + ξξ̃

(
AÃ + ÃA

)
+ ξ̃2

Ã
2
)

Ã + · · · .

(3.18)

From (3.17) and (3.18) we see that A ≥ 0, Ã ≥ 0, and (3.13)–(3.16) are necessary
conditions for (2.4) and (2.5) to hold on a left neighborhood of ξ = 0, ξ̃ = 0. To see
that they are also sufficient we use them and Lemma 3.3 to state that for any ki, pi,
i = 1, . . . , n, and for any n, it holds that

Inc
(
(A)k1(Ã)p1 · · · (A)kn(Ã)pn A

)
≤ Inc A,

Inc
(
(A)k1(Ã)p1 · · · (A)kn(Ã)pn Ã

)
≤ Inc Ã.

Hence, as A ≥ 0 and Ã ≥ 0, in (3.17) and (3.18) we get (2.4) and (2.5), respectively.
Observe that inequality (2.6) always holds for r, r̃ close to zero.

This criteria are extremely useful for checking if we have ∂R(A, Ã) 
= (0, 0) for a
given ARK method. Observe that conditions A ≥ 0 and (3.13) imply that R(A) > 0.
Similarly, conditions Ã ≥ 0 and (3.16) imply that R(Ã) > 0. However, some extra
coupling conditions, namely (3.14) and (3.15), are needed to get ∂R(A, Ã) 
= (0, 0).

Example 1.

(a) The IMEX SSP2(3,3,2) stiffly accurate method [20] is

0 0 0 0
1
2

1
2 0 0

1 1
2

1
2 0

A
1
3

1
3

1
3

1
4

1
4 0 0

1
4 0 1

4 0

1 1
3

1
3

1
3

Ã
1
3

1
3

1
3

(3.19)

(SSP stands for strong stability preserving). It can be computed that R(A) =
2 and R(Ã) = 12

5 . However, ∂R(A, Ã) = (0, 0). In this case condition

Inc (A Ã) ≤ Inc (Ã) fails for the element (1, 2). We can change the implicit
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method in (3.19) to

1
5

1
5 0 0

3
10

1
10

1
5 0

1 1
3

1
3

1
3

Ã
1
3

1
3

1
3

It can be computed that R(Ã) = 5
9 (

√
70 − 4). Now conditions (3.13)–(3.16)

in Proposition 3.4 hold, and hence ∂R(A, Ã) 
= (0, 0).
(b) The L-stable IMEX SSP3(3,3,2) method [20] is

0 0 0 0

1 1 0 0
1
2

1
4

1
4 0

A
1
6

1
6

2
3

γ γ 0 0

1 − γ 1 − 2γ γ 0
1
2

1
2 − γ 0 γ

Ã
1
6

1
6

2
3

with γ = 1− 1√
2
. It can be computed that R(A) = 1 and R(Ã) = 30−24

√
2

215
√

2−304
.

However, ∂R(A, Ã) = (0, 0). Now condition Inc (A Ã) ≤ Inc (Ã) fails for the
element (3, 2).

3.1. Monotonicity for ARK methods in the Shu–Osher representation.
Monotonicity issues for RK schemes written in the Shu–Osher form have been widely
studied during the past years (see, e.g., [9, 26, 6, 13] and the references therein).
If we have an RK method written in the Shu–Osher representation, the derivation
of monotonicity is conceptually much easier. However, as the Shu–Osher form of
an RK scheme is not unique, a previous problem, namely, the optimal Shu–Osher
representation of an RK method, arises. This and some other related problems were
studied in [13, 6]. In this section we briefly extend these topics for ARK methods.

We consider the following extension of the Shu–Osher form:

U = α⊗ un + ((Λ + Λ̃) ⊗ I)U + h (Γ ⊗ I)F (U) + h (Γ̃ ⊗ I)F̃ (U) ,(3.20)

where α ∈ R
s+1, and Λ, Λ̃, Γ, and Γ̃ are (s+1)×(s+1) matrices such that (Λ+Λ̃) e+

α = e, the matrix I−Λ−Λ̃ is invertible, and the last column in Λ, Λ̃, Γ, and Γ̃ is zero.
Scheme (3.20) is an ARK method with A = (I −Λ− Λ̃)−1Γ and Ã = (I −Λ− Λ̃)−1Γ̃,
and therefore we will refer to it as a representation of the ARK method.

A monotonicity result for ARK schemes in the form of (3.20) can be given. We
state the following proposition, whose proof is omitted because it is similar to that in
[13, Proposition 3.9].

Proposition 3.5. Consider a method in the form of (3.20) such that

(I − (Λ + Λ̃)) e ≥ 0 , Γ ≥ 0 , Γ̃ ≥ 0 , Λ − cΓ ≥ 0 , Λ̃ − c̃ Γ̃ ≥ 0 ,

for some c, c̃ ≥ 0. Then for h ≤ min{c/ρ, c̃/ρ̃} it holds that

‖Ui‖ ≤ ‖un‖ , i = 1, . . . , s , ‖un+1‖ ≤ ‖un‖ .
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As in Theorem 3.1, Proposition 3.5 ensures monotonicity for ARK schemes. Ap-
parently there is no relationship between the conditions imposed in both of them.
However, there is a close link between them.

Proposition 3.6. Consider an ARK method (A, Ã).
1. Assume that the ARK method can be written as A = (I − (Λ + Λ̃))−1Γ,

Ã = (I − (Λ + Λ̃))−1Γ̃, where

(I − (Λ + Λ̃)) e ≥ 0 , Γ ≥ 0 , Γ̃ ≥ 0 , Λ − cΓ ≥ 0 , Λ̃ − c̃ Γ̃ ≥ 0 ,

and I − (Λ + Λ̃ − cΓ − c̃ Γ̃) is invertible for some coefficients c, c̃ ≥ 0. Then
the method is absolutely monotonic at (−c,−c̃).

2. If the method is absolutely monotonic at (−c,−c̃), then for

Λ = c (I + cA + c̃ Ã)−1
A ,

Λ̃ = c (I + cA + c̃ Ã)−1
Ã ,

Γ = A − (Λ + Λ̃)A ,

Γ̃ = Ã − (Λ + Λ̃)Ã ,

we can write A = (I − (Λ + Λ̃))−1Γ, Ã = (I − (Λ + Λ̃))−1Γ̃, with

(I − (Λ + Λ̃)) e ≥ 0 , Γ ≥ 0 , Γ̃ ≥ 0 , Λ − cΓ = 0 , Λ̃ − c̃ Γ̃ = 0 .

Proof. The proofs of parts 1 and 2 are similar to the ones in [13, Proposi-
tions 3.11 and 3.12], respectively. An auxiliary lemma, similar to Lemma 3.10 in [13], is
required.

3.2. Monotonicity for perturbed RK methods. Over the past few years
[23, 24, 10, 21, 26] (see [9, 25] for a review) a great effort has been made to develop
high order methods satisfying (1.8)–(1.9) when the forward Euler discretization of
(1.1) satisfies (1.9), i.e.,

‖un + hf(un)‖ ≤ ‖un‖ for h ≤ ΔtFE .(3.21)

These are SSP methods (or total variation diminishing (TVD) methods). The class
of ODEs considered in this context arises from a method of lines approximation of
hyperbolic conservation laws. A simple numerical example given in [9] shows that
the use of non-SSP methods for the time discretization of these ODEs produces an
undesirable overshot. As the forward Euler method has the drawback of a low order
of accuracy, higher order SSP methods are of great interest. The idea in [24, 23] is
to derive conditions (1.8)–(1.9) from condition (1.9) for the forward Euler method by
means of convex combinations.

In [23], the Shu and Osher representations are used to write explicit RK methods
A. As pointed out in [13], the Shu and Osher representations with positive coefficients
correspond to R(A) > 0, whereas the case with negative coefficients corresponds to
RK methods with R(A) = 0. In this case, together with the original problem y′ = f(y)
with f(y) such that ∥∥∥∥ y − 1

ρ
f(y)

∥∥∥∥ ≤ ‖ y ‖ ,

an auxiliary problem

y′ = −f̃(y)
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such that ∥∥∥∥ y − 1

ρ
f̃(y)

∥∥∥∥ ≤ ‖ y ‖

is also considered. The Shu and Osher representations with negative coefficients are
interpreted in [13] as perturbations of an RK method. Given an RK method A, the
perturbed RK method (A, Ã) is

U (p) = e⊗ u(p)
n + h(A ⊗ I)F (U (p)) + h(Ã ⊗ I)

(
F (U (p)) − F̃ (U (p))

)
or

U (p) = e⊗ u(p)
n + h

(
(A + Ã) ⊗ I

)
F (U (p)) + h(Ã ⊗ I)

(
−F̃ (U (p))

)
.

Recall that these equations correspond to the “additive” RK method (A + Ã,A).
Observe too that both functions f and −f̃ have the same stiffness properties, i.e.,
ρ = ρ̃.

Monotonicity issues for perturbed RK methods were studied in [13]. The tool
used was the radius of absolute monotonicity for a perturbed RK method (A, Ã) [13,
Definition 3.1]. It turns out that Definition 3.1 in [13] corresponds to the concept of
absolute monotonicity of the additive ARK method (A+ Ã,A) at (ξ, ξ) defined in this
paper. We consider only values of the form (ξ, ξ) because we are dealing with f and
−f̃ such that ρ = ρ̃.

A monotonicity result for a perturbed RK method was proved in [13, Theo-
rem 3.5]. Interpreting the perturbed RK method as an “additive” RK, monotonicity
under the stepsize restriction given in Theorem 3.5 in [13] can also be obtained by
applying Theorem 3.1 of this paper.

Finally, algebraic criteria for nonnull stepsize restrictions, i.e., for the existence
of r > 0 such that (A + Ã, Ã) is a.m. at (r, r), were also given in [13, Proposition 3.6].
More precisely, it was proved that this situation holds if and only if

Ã ≥ 0 , A + Ã ≥ 0 ,(3.22)

Inc ((A + 2Ã)(A + Ã)) ≤ Inc (A + Ã) ,(3.23)

Inc ((A + 2Ã)Ã) ≤ Inc (Ã) .(3.24)

If we apply the algebraic criteria given in Proposition 3.4 for the “additive” RK
method (A + Ã, Ã), we obtain ∂R(A + Ã, Ã) 
= (0, 0) if and only if (3.22) and

Inc ((A + Ã)2) ≤ Inc (A + Ã) ,(3.25)

Inc (Ã (A + Ã)) ≤ Inc (A + Ã) ,(3.26)

Inc (Ã2) ≤ Inc (Ã) ,(3.27)

Inc ((A + Ã) Ã) ≤ Inc (Ã) .(3.28)

It is straightforward to prove that (3.25)–(3.26) imply (3.23), and (3.27)–(3.28) imply
(3.24).

Consequently, the study done in [13] fits completely within the one done in this
paper.
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4. Examples. The next step is to analyze the regions of a.m. R(A, Ã) for some
ARK methods (A, Ã) from the literature with R(A) > 0, R(Ã) > 0. The study is
summarized in the following table. The coefficients for the different methods can be
seen in the appendix.

Method R(A) R(Ã) R(A, Ã)

ARS(1,1,1) 1 ∞
{
(r, r̃)

∣∣ 0 ≤ r ≤ 1 , 0 ≤ r̃
}

SP(1,1,1) 1 ∞
{
(r, r̃)

∣∣ 0 ≤ r ≤ 1 , 0 ≤ r̃
}

Störmer–Verlet 2 2
{
(r, r̃)

∣∣ 0 ≤ r ≤ 2 , 0 ≤ r̃ ≤ 2
}

Peaceman–Rachford 2 2
{
(r, r̃)

∣∣ 0 ≤ r ≤ 2 , 0 ≤ r̃ ≤ 2
}

IMEX trapezoidal (7.1) 1 2
{
(r, r̃)

∣∣ 0 ≤ r ≤ 1 , 0 ≤ r̃ ≤ 2(1 − r)
}

IMEX trapezoidal (7.2) 1 1
{
(r, r̃)

∣∣ 0 ≤ r ≤ 1 , 0 ≤ r̃ ≤ 1 − r
}

IMEX (7.3) 2 2
7

(6 +
√

57)
{

(r, r̃)
∣∣ 0 ≤ r ≤ 2 , 0 ≤ r̃ ≤ 6+

√
57

7
(2 − r)

}

CRJ 2
3

4
5

{
(r, r̃)

∣∣ 0 ≤ r ≤ 2
3
, 0 ≤ r̃ ≤ 2

5
(2 − 3r)

}

IMEX θ-method (θ = 1/2) 1 2
{
(r, r̃)

∣∣ 0 ≤ r ≤ 1 , 0 ≤ r̃ ≤ 2(1 − r)
}

ASIRK-2A 1 4
3

{
(r, r̃)

∣∣ 0 ≤ r ≤ 1 , 0 ≤ r̃ ≤ 4
3
(1 − r)

}

SSP2(2,2,2) 1 1 +
√

2
{

(r, r̃)
∣∣ 0 ≤ r ≤ 1 , 0 ≤ r̃ ≤

√
2 (1 − r)

}

Observe that for some ARK methods (A, Ã), namely Ascher–Ruuth–Spiteri scheme
ARS(1,1,1), the splitting scheme SP(1,1,1), Störmer–Verlet, and Peaceman–Rachford,
the two RK methods are perfectly coupled in the sense that the region of absolute
monotonicity is the greatest one, i.e., it is the cartesian product of the regions of
absolute monotonicity of both methods.

For some other methods, namely IMEX trapezoidal (7.1) and (7.2), IMEX (7.3),
Caflisch–Russo–Jin (CRJ), IMEX θ-method with θ = 1/2, and additive semi-implicit
Runge–Kutta (ASIRK-2A), the region of absolute monotonicity for the ARK methods
is the triangle with vertices the points (0, 0), (0, R(A)), and (R(Ã), 0).

However, for some other methods, the region of absolute monotonicity is smaller
than this triangle. For example for the method SSP2(2,2,2) we have found that
R(A) =

√
2 and R(Ã) = 1 +

√
2, but the region of absolute monotonicity is not the

triangle with vertices (0, 0), (0, 1), and (1 +
√

2, 0) but the one with vertices (0, 0),
(0, 1), and (

√
2, 0).

Besides the cartesian product of both regions, and triangles, some other shapes
are possible for the region of absolute monotonicity.

Example 2. We consider the modified IMEX SSP2(3,3,2) method from Example 1
with R(A) = 2 and R(Ã) = 5

9 (
√

70 − 4). It can be computed that

R(A, Ã) =
{
(r, r̃)

∣∣ 0 ≤ r ≤ 2 , 0 ≤ r̃ ≤ φ(r)
}
,

where

φ(r) =

⎧⎪⎨
⎪⎩

1
4 (−28 + 9r) + 1

4

√
1264 − 984r + 201r2 if 0 ≤ r ≤ 1

64 (119 −
√

721) ,

5
36 (−16 + r) + 5

√
7

36

√
160 − 128r + 31r2 if 1

64 (119 −
√

721) ≤ r ≤ 2 .
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5. Numerical experiments.

5.1. Experiment 1. We have considered the following PDE of hyperbolic type
[18]: ⎧⎨

⎩
∂
∂t

V (ξ, t) = ∂
∂ξ

[a(ξ, t)V (ξ, t)] ,

V (0, t) = 0 , V (ξ, 0) = v0(ξ) (0 ≤ ξ ≤ 1, t ≥ 0),
(5.1)

where a(ξ, t) = − cos(20ξ + 80t), v0(ξ) = ξ2
(
e(ξ/200) − 3

)
. As v0(ξ) is continuously

differentiable on [0, 1] and v0(0) = v′0(0) = 0, it can be proved that this problem has
a unique classical solution V with∫ 1

0

|V (ξ, t)| dξ ≤
∫ 1

0

|v0(ξ)| dξ for all t ≥ 0 .

We discretize the spatial derivative in (5.1) with backward differences, obtaining the
ODE

u(t)′ = L(t)u(t),(5.2)

where L(t) satisfies ∥∥∥∥u +
1

ρ
L(t)u

∥∥∥∥ ≤ ‖u ‖

for ρ = (Δξ)−1, with ‖ · ‖ defined as

‖x ‖ = Δξ
n∑

i=1

|xi | .

Hence the solution of (5.2) is monotone.
For the numerical solution of (5.2) we have considered the RK methods A and Ã

in the IMEX trapezoidal scheme (7.1), for which R(A) = 1 and R(Ã) = 2. For an RK
method A, the stepsize restriction for monotonicity is given by

h ≤ 1

ρ
R(A) .

Hence, for Δξ = 1/50 the explicit method A is monotone under stepsize restriction
h ≤ 1× 1/50, whereas the implicit method Ã is monotone for h ≤ 2× 1/50. However,
in our numerical computations we have found that for this initial value problem these
bounds are not sharp. For example, for h = 1

20 both methods are monotone. In
Figure 5.1 we show the values of ‖un ‖ with the explicit and implicit RK methods for
t ∈ [0, 2] with that stepsize.

In order to test monotonicity for the IMEX method, we have considered the
artificial problem

U(t)′ = L(t)U(t) + L(t)U(t)(5.3)

with L(t) the same matrix as in (5.2). When the IMEX method is applied to (5.3),
the stepsize restrictions for monotonicity for each method do not ensure monotonicity
for the IMEX scheme. Figure 5.2 shows the numerical results for ‖un ‖ for t ∈ [0, 2]
for the IMEX method with h = 1

20 . Observe that, although with this stepsize we
obtain monotonicity for each method (see Figure 5.1), monotonicity fails for the IMEX
scheme. Monotonicity is obtained under a more severe stepsize restriction.
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Fig. 5.1. Left: explicit RK method. Right: implicit RK method.
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Fig. 5.2. IMEX method.

5.2. Experiment 2. We consider the Broadwell model [3], a hyperbolic system
with relaxation. We will show how the above results can be used to obtain mono-
tonicity for the entropy function. The problem is

∂tf + ∂xf =
1

ε

(
h2 − fg

)
,

∂th = −1

ε

(
h2 − fg

)
,(5.4)

∂tg − ∂xg =
1

ε

(
h2 − fg

)
,

where ε is a small parameter. We assume periodic boundary conditions. For the
continuous problem there exists a function that is monotonically decreasing, namely

H(t) =

∫
Ĥ(x, t) dx ,(5.5)

where

Ĥ(x, t) = f(x, t) log f(x, t) + 2h(x, t) log h(x, t) + g(x, t) log g(x, t) .

We introduce spatial grid points xj+ 1
2
, j = . . . ,−1, 0, 1, . . . with uniform mesh spacing

Δx = xj+ 1
2
− xj− 1

2
for all j. Spatial discretization of (5.4) with the upwind scheme
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gives

d

dt
fj +

fj − fj−1

Δx
=

1

ε

(
h2
j − fjgj

)
,

d

dt
hj = −1

ε

(
h2
j − fjgj

)
,(5.6)

d

dt
gj −

gj+1 − gj
Δx

=
1

ε

(
h2
j − fjgj

)
.

This problem is an additive ODE in the form of (1.1) with the additive terms

F1 =

⎛
⎜⎜⎜⎝

−fj − fj−1

Δx

0

gj+1 − gj
Δx

⎞
⎟⎟⎟⎠ , F2 =

1

ε

(
h2
j − fjgj

)⎛⎜⎝
1

−1

1

⎞
⎟⎠ .(5.7)

The discrete function for (5.5) is defined by

HΔx[fj(t), hj(t), gj(t)] = Δx
∑
j

(
fj(t) log fj(t) + 2hj(t) log hj(t) + gj(t) log gj(t)

)
,

which is also a decreasing function. Hence, if fn
j , h

n
j , and gnj denote the numeri-

cal approximations of fj(t), hj(t), and gj(t) at time tn, respectively, we should have
Hn+1 ≤ Hn , where now

Hn = HΔx[fn
j , h

n
j , g

n
j ] = Δx

∑
j

(
fn
j log fn

j + 2hn
j log hn

j + gnj log gnj
)
.

In order to apply the results from section 3, we have to compute the parameters ρ
and ρ̃ for the functions F1 and F2 in (5.7). Whereas the computation of the method
parameter is not a difficult task, the sharp computation of problem parameters may
be a hard task. In this case, for the function F1 we have to find the values ρ > 0 such
that

HΔx

[
fj −

1

ρ

fj − fj−1

Δx
, hj , gj +

1

ρ

gj+1 − gj
Δx

]
≤ HΔx[fj , hj , gj ] .

It is straightforward to obtain that these inequalities hold for ρ = 1/Δx. For the
function F2 in (5.7), a value ρ̃ > 0 such that

H
Δx

[
fj +

1

ρ̃ ε
(h2

j −fjgj), hj −
1

ρ̃ ε
(h2

j −fjgj), gj +
1

ρ̃ ε
(h2

j −fjgj)

]
≤ HΔx[fj , hj , gj ]

(5.8)

for all f, h, g such that 0 ≤ Δx (f + 2h + g) ≤ K0 (see Remark 1(d)) was found in
[14], where K0 is given by

K0 = Δx
∑
j

(
f0
j + 2h0

j + g0
j

)
.

This value was ρ̃ = K0/(εΔx). Observe that in order to compute the discrete en-
tropy function, the numerical solution should be positive. Hence, some extra stepsize
restrictions may appear due to numerical positivity preservation.
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Fig. 5.3. Entropy function for (5.6) (ε = 0.1, Δx = 0.01, and h = 0.0002).

According to Theorem 3.1, for (r, r̃) in the region of absolute monotonicity, we
obtain monotonicity for the entropy function under the stepsize restrictions h ≤ rΔx ,
h ≤ r̃ εΔx/K0 . If we consider the CRJ scheme, we have to compute the intersection
of the line connecting (0, 4

5
εΔx
K0

) and (2
3Δx, 0) with the bisectrix. In this way we

obtain the stepsize restriction

h ≤ 4Δx ε

5K0 + 6 ε
.(5.9)

We have integrated this problem with the CRJ scheme for ε = 0.1, Δx = 0.01, and
h = 0.0002. With these parameters, stepsize restriction (5.9) is satisfied. We have
checked that under this stepsize restriction, the numerical solution is positive. In
Figure 5.3 we show the discrete entropy function. As expected, it is a decreasing
function.

However, from our numerical experiments we have observed that the stepsize
restriction (5.9) is not optimal. As pointed out above, the parameter ρ̃ has been
obtained, imposing (5.8) for all f , h, and g such that 0 ≤ Δx (f + 2h + g) ≤ K0.
However, for this problem, h2 − f g = ϑ(ε), and this property has not been taken into
account. A detailed study, out of the scope of this paper, should be done in order
to find better problem parameters. In this context, the concept of the AP method
introduced in [19] is an important reference.

6. Conclusions and future work. In this paper we have studied monotonicity
issues for ARK methods (A, Ã). A new definition of absolute monotonicity for ARK
methods has been given and some of its properties have been investigated. It has been
proved that for ∂R(A, Ã) 
= 0, it is possible to obtain monotonicity under nontrivial
stepsize restrictions. As expected, monotonicity for each RK method does not ensure
monotonicity for the ARK method. However, some classical methods in the PDE
context, such as the Peaceman–Rachford method, are perfectly coupled and there are
no extra stepsize restrictions on the use of the two RK methods as an ARK method.

With regard to the new concept R(A, Ã) at least two questions remain open for
future work. The first one is how to construct (A, Ã) such that R(A, Ã) is as great
as possible. The second one is how to extend this concept for additive RK methods
constructed with k RK methods.
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7. Appendix. In this section we give the coefficients of some methods from the
literature.

1. The IMEX ARS(1,1,1) method [2] (or the ASIRK-1A method in [27]) is

0 0 0

1 1 0

A 1 0

0 0 0

1 0 1

Ã 0 1

2. The Störmer–Verlet method (or Lobatto IIIA–IIIB pair) [11] is

0 0 0

1 1
2

1
2

A
1
2

1
2

1
2

1
2 0

1
2

1
2 0

Ã
1
2

1
2

3. The SP(1,1,1) L-stable method [19] is

0 0

A 1

1 1

Ã 1

4. The Peaceman–Rachford ARK method [15] is

0 0 0 0
1
2

1
2 0 0

1 1
2 0 1

2

A
1
2 0 1

2

0 0 0 0
1
2 0 1

2 0

1 0 1 0

Ã 0 1 0

5. There are different ways of combining the implicit and explicit trapezoidal
rules. One way is by the IMEX method [15, p. 391]

0 0 0

1 1 0

A
1
2

1
2

0 0 0

1 1
2

1
2

Ã
1
2

1
2

(7.1)

Another way is by the IMEX method [15, p. 392]

0 0 0 0

1 1 0 0

1 1
2

1
2 0

A
1
2

1
2 0

0 0 0 0

1 1 0 0

1 1
2 0 1

2

Ã
1
2 0 1

2

(7.2)

6. In [20] different SSPk(s, σ, p) IMEX methods are constructed. In the notation,
SSPk(s, σ, p), s, and σ are the numbers of stages of the explicit and implicit
method, respectively, and k is the order of the SSP method (the explicit one).
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The L-stable IMEX SSP2(2,2,2) method is

0 0 0

1 1 0

A
1
2

1
2

γ γ 0

1 − γ 1 − 2γ γ

Ã
1
2

1
2

with γ = 1 − 1√
2
.

7. In [1] the following ARK scheme is considered:

0 0 0 0
1
2 0 1

2 0

1 0 1 0

A 0 1 0

α
2

α
2 0 0

1
2 α 1−2α

2 0

1 + α
2 α 1 − 2α α

2

Ã α 1 − 2α α

(7.3)

We have studied it for α = 1
6

(
9 −

√
57
)
.

8. The second order IMEX method in [3] is

0 0 0 0

α̂ α̂ 0 0

η (α̂ + β̂) η α̂ η β̂ 0

A η α̂ η β̂ 0

0 0 0 0

γ + β γ β 0

η μ (γ + β) η γ η β μ

Ã η γ η β μ

with

β =
2μ− 1

2(μ− 1)
, γ = −2μ2 − 2μ + 1

2μ(μ− 1)
, η = −2μ(μ− 1),

α̂ = 1
2μ, β̂ = −1

2(μ− 1)
.

With μ = 1/3, we obtain α ≥ 0, β > 0, and μ > 0. We will refer to it as the
CRJ IMEX method.

9. The IMEX θ-method [15, p. 383] is

0 0 0

1 1 0

A 1 0

0 0 0

1 1 − θ θ

Ã 1 − θ θ

Observe that for θ = 1, we obtain the ARS(1,1,1) method above.
10. IMEX methods of the form

0 0 0 0 0

a1 a1 0 0 0

b21 b21 0 0 0

c21 + a2 c21 0 a2 0

A w1 0 w2 0

0 0 0 0 0

a1 0 a1 0 0

b21 0 b21 0 0

c21 + a2 0 c21 0 a2

Ã 0 w1 0 w2
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are considered in [27]. Order 2 is obtained, e.g., for

w1 = 1
2 , w2 = 1

2 , b21 = 1 ,

a1 = 1
4 , a2 = 1

3 , c21 = 5
12 .

We will refer to this method as ASIRK-2A.

REFERENCES
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STABILITY ANALYSIS OF LARGE TIME-STEPPING METHODS
FOR EPITAXIAL GROWTH MODELS∗
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Abstract. Numerical methods for solving the continuum model of the dynamics of the molecular
beam epitaxy (MBE) require very large time simulation, and therefore large time steps become
necessary. The main purpose of this work is to construct and analyze highly stable time discretizations
which allow much larger time steps than those of a standard implicit-explicit approach. To this end,
an extra term, which is consistent with the order of the time discretization, is added to stabilize the
numerical schemes. Then the stability properties of the resulting schemes are established rigorously.
Numerical experiments are carried out to support the theoretical claims. The proposed methods
are also applied to simulate the MBE models with large solution times. The power laws for the
coarsening process are obtained and are compared with previously published results.

Key words. molecular beam epitaxy, epitaxial growth, spectral method, stability, implicit-
explicit method, large time-stepping
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1. Introduction. Recently there has been significant research interest in the dy-
namics of molecular beam epitaxy (MBE) growth. The MBE technique is among the
most refined methods for the growth of thin solid films, and it is of great importance
for applied studies; see, e.g., [1, 16, 22]. The evolution of the surface morphology
during epitaxial growth results in a delicate relation between the molecular flux and
the relaxation of the surface profile through surface diffusion of adatoms. It occurs
on time and length scales that may span several orders of magnitude. Different kinds
of models have been used to describe such phenomena; these typically include atom-
istic models, continuum models, and hybrid models. The atomistic models are usually
implemented in the form of molecular dynamics or kinetic Monte Carlo simulations
[4, 9, 17]. The continuum models are based on partial differential equations and are
appropriate mainly for investigating the temporal evolution of the MBE instability
at large time and length scales [11, 24]. The hybrid models can be considered as a
compromise between atomistic models and continuum models; see, e.g., [3, 8].

We are interested in the continuum models for the evolution of the MBE growth.
Let h(x, t) be the epitaxy surface height with x ∈ R

2 and t ≥ 0. Under typical
conditions for MBE growth, the height evolution equation can be written under mass
conservation form (see, e.g., [14]):

ht = −∇ · J(∇h),(1.1)
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where J is the surface current which can be decomposed into a sum of two currents,

J = JSD + JNE,(1.2)

where JSD is the equilibrium surface current describing the surface diffusion and JNE

is the nonequilibrium diffusion current taking into account the Ehrlich–Schwoebel
effect [6, 18]. The surface diffusion current has the form

JSD = δ∇(Δh),(1.3)

where δ is the surface diffusion constant. By using effective free energy formulation,
the nonequilibrium diffusion current under consideration can be written in the form

JNE(M) = −∂U(M)

∂M
,(1.4)

where M = (M1,M2) := ∇h is the slope vector and U(M) is the potential depending
only on the slope vector. Evidently, the term JNE helps the system (1.1) to evolve
toward the states in which the slope M attains the minimum of U(M) because JNE

vanishes at the minima of U(M). The minima of this potential is the preferred value
of the slope. Consequently, the corresponding system is the so-called epitaxial growth
model with slope selection.

The continuum model (1.1) has been extensively applied to modeling interfacial
coarsening dynamics in epitaxial growth with slope selection; see, e.g., [12, 14, 24].
In (1.1), the fourth-order term models surface diffusion, and the nonlinear second-
order term models the well-known Ehrlich–Schowoebel effect [6, 18], which gives rise
to instabilities in the evolution of the surface morphology. The instability then leads
to the formation of mounds and pyramids on the growing surface. These pyramid-
like structures have been reported in many experiments and numerical simulations;
see, e.g., [14, 20, 23]. It is found that the lateral width λ and the height w of these
pyramids grow in time as power laws with the same component. Thus, the ratio w/λ,
corresponding to the pyramid slope, approaches a constant at large times. Therefore,
there is a slope selection in a typical MBE growth. The corresponding coarsening
exponents were found from experiments to depend on the symmetry of the surface.
Two typical values of the coarsening exponent have been found, namely 1/4 (see,
e.g., [14, 20]) and 1/3 (see, e.g., [14, 23]). Some mathematical justification of such
predictions was given in [10]. We also point out that the continuum model (1.1)–
(1.4) has been derived by Ortiz, Repetto, and Si [15] by using a series expansion of
the deposition flux in powers of the surface gradient. They also provided an explicit
construction for the pyramid-like coarsening, which allows one to predict characteristic
power laws for the pyramid size growth. However, it is difficult to provide growing
details, especially for complex thin-film systems.

Numerical simulations with the continuum models are appropriate for investigat-
ing the surface growth instability at large times. The direct numerical simulation for
(1.1)–(1.4) with different nonequilibrium diffusion currents was performed by Siegert
[19], who obtained a power law close to 1/4. Moldovan and Golubovic [14] carried out
very comprehensive numerical simulations by using a kinetic scaling theory and ob-
tained a 1/3 power law. It should be pointed out that the simulations reported in [14]
were not completely based on a continuum model. Instead, they solved a so-called
type-A dynamics equation directly on a hexagonal grid. More recently, the well-
posedness of the initial-boundary-value problem of (1.1) is studied by Li and Liu [12]
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using the perturbation analysis and Galerkin spectral approximations. In [13], they
used variational techniques to obtain some asymptotic results for a no-slope-selection
model. Moreover, several scaling laws have been derived in [13].

The main purpose of this study is to provide efficient numerical schemes for
solving (1.1), with particular emphasis on the use of large time steps. To obtain
meaningful results for power laws, the integration times in simulations have to be
very large (say, in the order of 104). As a result, it is reasonable to employ larger time
steps and a small number of grid points in computations, provided that stability and
accuracy can be preserved. It is observed that most of the existing continuum model
simulations have used an explicit integration method in time and finite difference type
approximation in space. To maintain the stability and to achieve high approximation
accuracy, the number of spatial grid points must be large and the time step has to
be small. Even with rapidly increasing computational resources, explicit schemes are
still limited to simulating early surface evolution and therefore small length scale [12].

The main objectives of this work are threefold: First, we introduce an accu-
rate and efficient semi-implicit Fourier pseudospectral method for solving the time-
dependent nonlinear diffusion equations (1.1). To approximate the time derivatives, a
backward differentiation is employed. More precisely, the fourth-order term is treated
implicitly to reduce the associated stability constraints, while the nonlinear second-
order terms are treated explicitly in order to avoid solving the nonlinear equations at
each time step. Secondly, a stabilization second-order term is added to the discretized
system, which increases the time step dramatically. In real applications, the surface
diffusion constant δ may be very small after dimensional scaling. Consequently, direct
use of the standard semi-implicit method still suffers from severe stability restriction
on the time step. In order to overcome this difficulty, we introduce a stabilization
term with constant coefficient A, which allows us to increase the time step signifi-
cantly. Note that a similar technique has been used by Zhu et al. in the simulation
of the Cahn–Hilliard equation [26]. Our main contribution is to show rigorously that
the resulting numerical scheme is stable if an appropriate constant A is chosen. Jus-
tification of this stabilization technique is provided by considering several numerical
tests. Finally, we perform some numerical simulations for the interfacial coarsening
dynamics using our proposed schemes. Our numerical results yield a 1/3 power law
for the isotropic symmetry surface and 1/4 for the square symmetry surface.

It is worthwhile to mention some recent papers by Feng and Prohl on the numer-
ical analysis for Cahn–Hilliard and Allen–Cahn equations; see, e.g., [7]. They also
studied stability issues—the continuous dependence of solutions on the initial data.
This is different from our stability concept, which seems more related to the decay
of energy. They mainly proved that the stability constant increases to infinity alge-
braically as a small parameter (similar to our surface diffusion constant δ in (1.3))
goes to 0. This is a big step forward, since usually the blow-up of the constant is
exponential if one uses the Gronwall inequality—a standard method.

The organization of the paper is as follows. In section 2, we construct highly
stable semi-implicit Fourier spectral methods for solving (1.1), which is of first-order
accuracy in time. To improve the numerical stability, an O(Δt) term is added. De-
tailed stability analysis based on the energy method is provided to show that the
proposed methods allow a large time step, and therefore are useful for large time sim-
ulations. The second-order semi-implicit methods are investigated in section 3. It will
be demonstrated that the stability analysis for higher-order time-stepping methods
is much more difficult. Numerical experiments for model problems are presented in
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section 4. Section 5 reports some computational results for the coarsening dynamics
using the numerical schemes allowing large time steps. Some concluding remarks are
given in the final section.

2. Semi-implicit time discretization: First-order methods. To demon-
strate the main ideas in scheme designing and stability analysis, we will use two
model equations in this work. The first one is of the form

ht = −δΔ2h−∇ · [(1 − |∇h|2)∇h], (x, t) ∈ Ω × (0, T ].(2.1)

The second model equation is of the form

ht = −δΔ2h− ((1 − |hx|2)hx)x − ((1 − |hy|2)hy)y, (x, t) ∈ Ω × (0, T ].(2.2)

Hereafter, we use ht to denote ∂h
∂t ,∇h = (hx, hy). Both model problems are subject

to the periodic boundary conditions and suitable initial data, where Ω = (0, L)2 with
L > 0. The model (2.1) corresponds to the isotropic surface current, while (2.2)
represents the simplest square surface current.

For the MBE simulations, large computational domain is necessary in order to
minimize the effect of periodicity assumption and to collect enough statistical informa-
tion such as mean surface height and width of the pyramid-like structures. Moreover,
sufficiently long integration time is necessary in order to detect the epitaxy growth
behaviors and to reach the physical scaling regime. On the other hand, to carry out
numerical simulations with large time and large computational domain, highly sta-
ble and accurate numerical methods are required. To this end, it is natural to use
the Fourier spectral approach in space which has been found extremely efficient for
periodic problems. As for stability issue, the implicit treatment for the fourth-order
terms is employed, and more importantly, a special trick to handle the nonlinear
second-order terms is used. The goal is to significantly increase the allowed time
steps.

We first consider the MBE model with the isotropic symmetry current, namely,
(2.1). A classical first-order semi-implicit scheme is of the form

hn+1 − hn

Δt
+ δΔ2hn+1 = −∇ ·

[
(1 − |∇hn|2)∇hn

]
, n ≥ 0.(2.3)

It is expected that the implicit treatment for the fourth-order term in (2.3) allows one
to relax the time step restriction. However, numerical experiments demonstrate that
a larger time step cannot be used for the scheme (2.3) when δ is small; see, e.g., [12].
To improve this, an O(Δt) term is added into the scheme (2.3):

hn+1 − hn

Δt
+ δΔ2hn+1 −AΔhn+1 = −∇ ·

[
(1 − |∇hn|2 + A)∇hn

]
, n ≥ 0,(2.4)

where A is a positive constant to be determined later and hn ≡ hn(x) is an approxi-
mation of h(x, t) at t = tn. The initial data h0 is given by the initial condition. The
purpose for adding the extra terms is to improve the stability condition so that larger
time steps can be used. This will be justified theoretically in this section, and will be
demonstrated by our numerical results in section 4.

In order to study its stability property, we will use a discrete energy estimate. To
this end, we first state the following known result.
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Lemma 2.1 (energy identities [12]). If h(x, t) is a solution of (2.1), then the
following energy identities hold:

d

dt
‖h‖2 + 4E(h) + ‖∇h‖4

L4 = |Ω|,(2.5)

d

dt
E(h) + ‖ht‖2 = 0,(2.6)

where ‖ · ‖ is the standard L2-norm in Ω, Lp is the standard Lp-norm, and

E(h) =

∫
Ω

[
1

4
(|∇h|2 − 1)2 +

δ

2
|Δh|2

]
dx.(2.7)

We briefly sketch the proof of (2.5) and (2.6), which is useful in deriving its
discrete counterparts. It follows from (2.1) that

〈ht, ϕ〉 = −
〈
∇ · [(1 − |∇h|2)∇h + δ∇Δh], ϕ

〉
,

where 〈·, ·〉 denotes the standard inner product in the L2-space. It can be verified
directly that setting ϕ = h gives (2.5) and setting ϕ = ht yields (2.6).

Theorem 2.1. If the constant A in (2.4) is sufficiently large, then the following
energy inequality holds:

E(hn+1) ≤ E(hn),(2.8)

where E is defined by (2.7) and hn is computed by (2.4). Moreover, if the numerical
solution is convergent in L∞([0, T ];W 1,∞(Ω)) as Δt → 0, then the constant A can be
chosen to satisfy

A ≥ 3

2
|∇h|2 − 1

2
a.e. in Ω × (0, T ],(2.9)

where h(x, t) is a solution of (2.1).
Proof. For any L-periodic H2(Ω) function ϕ, it follows from (2.4) that

1

Δt

〈
hn+1 − hn, ϕ

〉
+ δ

〈
Δhn+1,Δϕ

〉
+ A

〈
∇(hn+1 − hn), ∇ϕ

〉
+ I(ϕ) = 0,(2.10)

where

I(ϕ) :=
〈
(|∇hn|2 − 1)∇hn, ∇ϕ

〉
.

Letting ϕ = δth
n := hn+1 − hn gives

1

Δt
‖δthn‖2 + δ

〈
Δhn+1,Δδth

n
〉

+ A 〈∇δth
n, ∇δth

n〉 + I(δth
n) = 0.(2.11)

Observe that

I(δth
n) =

〈
|∇hn|2 − 1,∇hn · ∇hn+1 − |∇hn|2

〉
=

〈
|∇hn|2 − 1,−1

2
|∇δth

n|2 +
1

2
|∇hn+1|2 − 1

2
|∇hn|2

〉
= −1

2

〈
|∇hn|2 − 1, |∇δth

n|2
〉

+
1

2

〈
(|∇hn|2 − 1)(|∇hn+1|2 − |∇hn|2), 1

〉
= −1

2

〈
|∇hn|2 − 1, |∇δth

n|2
〉

+
1

2

〈
|∇hn|2 · |∇hn+1|2, 1

〉
+

1

2

〈
−|∇hn|4 − |∇hn+1|2 + |∇hn|2, 1

〉
.
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Using the identity 2a2b2 = −(a2 − b2)2 + a4 + b4 to the second last term above with
a = |∇hn+1| and b = |∇hn|, we obtain

I(δth
n) = −1

2

〈
|∇hn|2 − 1, |∇δth

n|2
〉
− 1

4

〈
(|∇hn+1|2 − |∇hn|2)2, 1

〉
+

1

4

〈
|∇hn+1|4 + |∇hn|4, 1

〉
+

1

2

〈
−|∇hn|4 − |∇hn+1|2 + |∇hn|2, 1

〉
=

〈
−1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |∇δth

n|2
〉

+
1

4

〈
|∇hn+1|4 − |∇hn|4 − 2|∇hn+1|2 + 2|∇hn|2, 1

〉
=

〈
−1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |∇δth

n|2
〉

(2.12)

+
1

4

(
‖|∇hn+1|2 − 1‖2 − ‖|∇hn|2 − 1‖2

)
.

Combining (2.11) and (2.12) yields

1

Δt
‖δthn‖2 + δ

〈
Δhn+1,Δδth

n
〉

+
1

4

(
‖|∇hn+1|2 − 1‖2 − ‖|∇hn|2 − 1‖2

)
(2.13)

+

〈
A− 1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |δthn|2

〉
= 0.

Note that the last term in (2.13) can be made nonnegative provided that

A ≥ max
x∈Ω

{
1

2
(|∇hn|2 − 1) +

1

4
|∇hn+1 + ∇hn|2

}
.(2.14)

Observe that

δ
〈
Δhn+1, Δδth

n
〉

= δ
〈
Δhn+1,Δhn+1 − Δhn

〉
(2.15)

≥ δ

2
‖Δhn+1‖2 − δ

2
‖Δhn‖2.

Consequently, Theorem 2.1 follows from (2.13)–(2.15).
We now consider the MBE model with the square symmetric surface (2.2). An

energy equality similar to that for the model (2.1) can be established.
Lemma 2.2. If h(x, t) is a solution of (2.2), then the following energy equalities

hold:

d

dt
E2(h) + ‖ht‖2 = 0,(2.16)

d

dt
‖h‖2 + 4E2(h) + ‖hx‖4

L4 + ‖hy‖4
L4 = 2|Ω|,(2.17)

where

E2(h) =

∫
Ω

{
δ

2
|Δh|2 +

1

4

[
(h2

x − 1)2 + (h2
y − 1)2

]}
dx .(2.18)

Proof. Equation (2.2) is equivalent to

ht + δΔ2h = −∇ · J,(2.19)
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where J = (J1, J2) is given by

J1 =
(
1 − h2

x

)
hx , J2 = (1 − h2

y)hy .

Multiplying both sides of (2.19) with ht gives

‖ht‖2 + δ 〈Δh, (Δh)t〉 = 〈J, (∇h)t〉 .(2.20)

Observe

〈J, (∇h)t〉 =
〈
(1 − h2

x)hx, hxt

〉
+
〈
(1 − h2

y)hy, hyt

〉
= −1

4

d

dt

∫
Ω

[
(h2

x − 1)2 + (h2
y − 1)2

]
dx.

The above result and (2.20) yield (2.16). Similarly, the energy equality (2.17) can be
derived by multiplying (2.19) with h.

Similar to the scheme (2.4), a first-order scheme is constructed for the MBE model
(2.2):

hn+1 − hn

Δt
+ δΔ2hn+1 −AΔhn+1(2.21)

= −AΔhn −
[
(1 − (hn

x)2)hn
x

]
x
−
[
(1 − (hn

y )2)hn
y

]
y
.

Theorem 2.2. If A in (2.21) is chosen sufficiently large, then the following
energy inequality holds:

E2(h
n+1) ≤ E2(h

n),(2.22)

where E2 is defined by (2.18) and hn is computed by (2.21). Moreover, if the numerical
solution of (2.21) is convergent, then A can be chosen to satisfy

A ≥ max

{
3

2
h2
x − 1

2
,

3

2
h2
y −

1

2

}
a.e. in Ω × (0, T ],(2.23)

where h(x, t) is the solution of (2.2).
Proof. The proof follows in the same manner as that of Theorem 2.1. By direct

computations, we can obtain

1

Δt
‖δthn‖2 + E2(h

n+1) − E2(h
n)

+

∫ [
A− 1

2

(
(hn

x)2 − 1
)
− 1

4
(hn+1

x + hn
x)2

]
(hn+1

x − hn
x)2 dx

+

∫ [
A− 1

2

(
(hn

y )2 − 1
)
− 1

4
(hn+1

y + hn
y )2

]
(hn+1

y − hn
y )2 dx = 0.

It follows from the above result that (2.22) holds provided that

A ≥ max
x∈Ω

{
1

2

(
(hn

x)2 − 1
)
− 1

4

(
hn+1
x + hn

x

)2}
and

A ≥ max
x∈Ω

{
1

2

(
(hn

y )2 − 1
)
− 1

4

(
hn+1
y + hn

y

)2}
.

If the numerical solution is convergent, then the above conditions become inequality
(2.23).
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3. Semi-implicit time discretization: Higher-order methods.

3.1. Second-order scheme: BD2/EP2. By combining a second-order back-
ward differentiation (BD2) for the time derivative term and a second-order extrapola-
tion (EP2) for the explicit treatment of the nonlinear term, we arrive at a second-order
scheme (BD2/EP2) for (2.1):

(3.1)

3hn+1 − 4hn + hn−1

2Δt
+ δΔ2hn+1 −AΔhn+1

= −2AΔhn + AΔhn−1 −∇ · [(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1)] ∀n ≥ 1.

As usual, to start the iteration h0(x) is given by the initial condition, and h1(x) is
computed by the first-order scheme (2.4).

Theorem 3.1. If the constant A in (3.1) is sufficiently large, then the following
energy inequality holds:

Ẽn+1 ≤ Ẽn + O(Δt2),(3.2)

where Ẽn is defined by

Ẽn =
1

Δt
‖hn − hn−1‖2 +

1

4

∥∥|∇hn|2 − 1
∥∥2

+
δ

2
‖Δhn‖2

+
A

2
‖∇(hn − hn−1)‖2.(3.3)

In particular, we can obtain

E(hn) ≤ E(h1) + O(Δt),(3.4)

where E is defined by (2.7). Moreover, if the numerical solution of (3.1) is convergent
in L∞([0, T ];W 1,∞(Ω)) as Δt → 0, then the constant A can be chosen to satisfy

A ≥ 3|∇h|2 − 1 a.e. in Ω × (0, T ],(3.5)

where h(x, t) is a solution of (2.1).
Proof. For ease of notation, let δth

n = hn+1 −hn and δtth
n = hn+1 −2hn +hn−1.

Multiplying both sides of (3.1) by δth
n and integrating the resulting equation in Ω

give

In1 + In2 + In3 = In4 ,(3.6)

where

In1 :=
1

2Δt
〈3δthn − δth

n−1 , δth
n〉,

In2 := δ〈Δ2hn+1 , δth
n〉,

In3 := −A 〈Δδtth
n , δth

n〉 ,
In4 := −

〈
∇ · [(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1)] , δth

n
〉
.

We now estimate them term by term. The estimate for the first three terms is straight-
forward:

In1 ≥ 5

4Δt
‖δthn‖2 − 1

4Δt
‖δthn−1‖2 ≥ 1

Δt
‖δthn‖2 − 1

Δt
‖δthn−1‖2,(3.7)

In2 = δ
〈
Δhn+1 , Δhn+1 − Δhn

〉
≥ δ

2
‖Δhn+1‖2 − δ

2
‖Δhn‖2,(3.8)

In3 = A 〈δtt∇hn , δt∇hn〉 = A
〈
δt∇hn − δt∇hn−1 , δt∇hn

〉
(3.9)

=
A

2
‖δt∇hn‖2 − A

2
‖δt∇hn−1‖2 +

A

2
‖δtt∇hn‖2.
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To estimate In4 , we need the following two identities. On one hand, we have

(3.10)

∇(2hn − hn−1) · ∇(hn+1 − hn)

= ∇(2hn − hn−1) · ∇hn+1 −∇(2hn − hn−1) · ∇hn

= −1

2
|δtt∇hn|2 +

1

2
|∇(2hn − hn−1)|2 +

1

2
|∇hn+1|2 −∇(2hn − hn−1) · ∇hn,

and on the other hand,

(3.11)

∇(2hn − hn−1) · ∇(hn+1 − hn) = ∇hn · ∇(hn+1 − hn) + δt∇hn · δt∇hn−1

=
1

2
|∇hn+1|2 − 1

2
|∇hn|2 − 1

2
|δt∇hn|2 − 1

2
|δtt∇hn|2 +

1

2
|δt∇hn|2 +

1

2
|δt∇hn−1|2

=
1

2
|∇hn+1|2 − 1

2
|∇hn|2 − 1

2
|δtt∇hn|2 +

1

2
|δt∇hn−1|2.

Using (3.10) gives〈
−|∇(2hn − hn−1)|2∇(2hn − hn−1) , ∇(hn+1 − hn)

〉
(3.12)

=
1

2

〈
|∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+ Jn

4 ,

where

Jn
4 :=

〈
−|∇(2hn − hn−1)|2 , 1

2
|∇(2hn − hn−1)|2 +

1

2
|∇hn+1|2 −∇(2hn − hn−1) · ∇hn

〉
=

1

2

〈
1, −|∇(2hn − hn−1)|4

〉
+

1

2

〈
−|∇(2hn − hn−1)|2 , |∇hn+1|2

〉
+
〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉
= −3

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4
‖|∇(2hn − hn−1)|2 − |∇hn+1|2‖2

−1

4

〈
1, |∇hn+1|4

〉
+
〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉
.

Using the Schwartz inequality to the last term above gives〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉
≤ 1

2

〈
|∇(2hn − hn−1)|2 , |∇(2hn − hn−1)|2

〉
+

1

2

〈
|∇(2hn − hn−1)|2 , |∇hn|2

〉
≤ 1

2

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇hn|4

〉
=

3

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇hn|4

〉
.

Combining the above two results gives

(3.13)

Jn
4 ≤ 1

4
‖|∇(2hn − hn−1)|2 − |∇hn+1|2‖2 − 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉
=

1

4

〈
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
− 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉
.
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Using the definition of In4 , together with (3.11), (3.12), and (3.13), we have

In4 =
〈
(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1) , ∇(hn+1 − hn)

〉
=

1

2
‖∇hn+1‖2 − 1

2
‖∇hn‖2 − 1

2
‖δtt∇hn‖2 +

1

2
‖δt∇hn−1‖2

+
1

2

〈
|∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+ Jn

4

≤ −1

2

〈
1 − |∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+

1

2
‖∇hn+1‖2 − 1

2
‖∇hn‖2 +

1

2
‖δt∇hn−1‖2

+
1

4

〈
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
− 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉
=

〈
1

2
|∇(2hn − hn−1)|2 − 1

2
+

1

4
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
−1

4
‖|∇hn+1|2 − 1‖2 +

1

4
‖|∇hn|2 − 1‖2 +

1

2
‖δt∇hn−1‖2.

The above result, together with (3.6) and (3.7)–(3.9), yields

Ẽn+1 ≤ Ẽn +
1

2
‖δt∇hn−1‖2

+

〈
−A

2
+

1

2
|∇(2hn − hn−1)|2 − 1

2
+

1

4
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
.

The last term above can be made nonpositive provided that

A ≥ |∇(2hn − hn−1)|2 − 1 +
1

2
|∇(hn+1 + 2hn − hn−1)|2 a.e. in Ω.

Using the fact that

‖δt∇hn−1‖2 = Δt2‖∇(hn − hn−1)/Δt‖2 = O(Δt2),

we obtain (3.2). Summing (3.2) over n gives Ẽn ≤ Ẽ1 + O(Δt). In particular, by

using the definition of Ẽ and the energy E defined by (2.7), we have

E(hn) ≤ E(h1) + O(1)Δt,

where the O(1) term is given by

O(1) = ‖(h1 − h0)/Δt‖2 +
A

2
Δt‖∇(h1 − h0)/Δt‖2

+

n−1∑
i=1

Δt‖∇(hi − hi−1)/Δt‖2.

This completes the proof of this theorem.
Remark 3.1. By comparing (2.9) and (3.5), we notice that the constant A used

for the second-order scheme is two times larger than that for the first-order scheme.
Similarly, a second-order scheme of the BD2/EP2-type can be constructed for the

square symmetry current model (2.2):

3hn+1 − 4hn + hn−1

2Δt
+ δΔ2hn+1 −AΔhn+1(3.14)

= −2AΔhn + AΔhn−1 −
[(

1 − (2hn
x − hn−1

x )2
)
(2hn

x − hn−1
x )

]
x

−
[(

1 − (2hn
y − hn−1

y )2
)
(2hn

y − hn−1
y )

]
y
.
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Then an analysis similar to that of Theorem 3.1 can be carried out to obtain a stability
result. The details will be omitted here.

3.2. Third-order scheme: BD3/EP3. A third-order scheme for solving the
MBE model of general form (1.1) can be constructed in a similar manner as used in
the last subsection. Specifically, we can obtain the BD3/EP3 scheme in the following
form:

11hn+1 − 18hn + 9hn−1 − 2hn−2

6Δt
+ δΔ2hn+1 −AΔhn+1

= −AΔ(3hn − 3hn−1 + hn−2) −∇ · J(∇(3hn − 3hn−1 + hn−2)) ∀n ≥ 2,

(3.15)

where, in order to start the iteration, h1, h2 are calculated via a first- and second-order
scheme, respectively.

The stability analysis of the scheme (3.15) requires some very detailed energy
estimates and will not be presented here. The numerical results obtained in the next
two sections indicate that the third-order time discretization of type (3.15) is also
stable as long as the constant A is sufficiently large.

4. Numerical experiments: Stability and accuracy tests. A complete nu-
merical algorithm also requires a discretization strategy in space. Since the Fourier
spectral method is one of the most suitable spatial approximation methods for peri-
odic problems [2, 5, 21, 25], it will be employed to handle the spatial discretization.
To demonstrate the principal ideas, we consider the full discretization for the MBE
model with the isotropic current using the first-order time-stepping method, namely,
we will consider only the full discretization for (2.4). It is to find an approximate
solution hn

K(x) in form of a truncated Fourier expansion:

hn
K(x) =

K∑
k1,k2=−K

ĥn
k exp(−ikx),

where k = (k1, k2) and K is a positive integer. The above expansion is required to
satisfy the following weak formulation:

1

Δt

〈
hn+1
K − hn

K , ϕ
〉

+ δ
〈
Δhn+1

K ,Δϕ
〉

+ A
〈
∇hn+1

K ,∇ϕ
〉

(4.1)

=
〈
(1 − |∇hn

K |2 + A)∇hn
K ,∇ϕ

〉
∀ϕ ∈ SK ,

where

SK = span{exp(−ikx), −K ≤ k1, k2 ≤ K}.

For the full discretization problem (4.1), an energy inequality similar to that of The-
orem 2.1 can be derived (its proof will be omitted here).

Theorem 4.1. Consider the numerical scheme (4.1). If

A ≥ max
x∈Ω

{
1

2
(|∇hn

K |2 − 1) +
1

4
|∇hn+1

K + ∇hn
K |2

}
,(4.2)

then the solution of (4.1) satisfies

E(hn+1
K ) ≤ E(hn

K) ∀n ≥ 0,(4.3)
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where the energy E is defined by (2.7). Moreover, if the numerical solution of (4.1) is
convergent in L∞([0, T ];W 1,∞(Ω)) as K → ∞ and Δt → 0, then the constant A can
be chosen to satisfy

A ≥ 3

2
|∇h|2 − 1

2
a.e. in Ω × (0, T ],(4.4)

where h(x, t) is a solution of (2.1).
By applying the Fourier transformation to (2.4), we obtain a set of ordinary

differential equations for each mode k in the Fourier space,

ĥn+1
k − ĥn

k

Δt
+ δ|k|4ĥn+1

k + A|k|2ĥn+1
k = −ik

{
(1 − |∇hn

K |2 + A)∇hn
K

}
k
,(4.5)

where |k| =
√
k2
1 + k2

2 is the magnitude of k and {f}k represents the kth-mode
Fourier coefficient of the function f . The Fourier coefficients of the nonlinear term
(1−|∇hn

K |2+A)∇hn
K are calculated by performing the discrete fast Fourier transform

(FFT). It is readily seen that for a given level n the evaluation of all {(1− |∇hn
K |2 +

A)∇hn
K}k requires 8N one-dimensional FFT with vector length N = 2K. This is also

the total cost to compute ĥn+1
k from (4.5). In practical calculation, we work on the

spectral space. At the final time level, an additional FFT is needed to recover the
physical nodal values hn+1

K (x) from ĥn+1
k ,−K ≤ k1, k2 ≤ K.

The purpose of this section is to verify the stability of the proposed numerical
schemes in terms of the choice of the constant A. More serious applications will be
reported in the next section.

Example 4.1. Consider an isotropic symmetry current model (2.1):⎧⎨
⎩

ht = −δΔ2h−∇ · [(1 − |∇h|2)∇h], [0, 2π]2 × (0, T ],
h(·, t) is 2π − periodic ∀t ∈ (0, T ],
h(x, 0) = h0(x) ∀x ∈ [0, 2π]2

(4.6)

with δ = 0.1, 0.01, 0.001 and

h0(x) = 0.1(sin 3x sin 2y + sin 5x sin 5y).(4.7)

This problem was used by Li and Liu [12] to study the most unstable modes. It
was proved that with the initial condition (4.7) the most unstable modes are those
with wave-vectors k such that |k| =

√
5. Numerically, they showed that after short

interaction of the unstable modes, the solution converges to a steady state which
consists mainly of one mode only.

Define Δtc as the largest possible time which allows stable numerical computation.
In other words, if the time step is greater than Δtc, then the numerical solution will
blow up. In Table 1, we list the values of Δtc for the schemes (2.4), (3.1), and (3.15)
with different choices of A. All these semidiscrete schemes are approximated by the
Fourier spectral methods in space. The Fourier mode number used in the calculations
is K = 128. Several observations are made from Table 1:

• If A = 0, i.e., if a conventional implicit-explicit approach is used, then the
numerical methods suffer from extremely small time steps, in particular when
higher-order schemes are used or δ � 1.

• The improvement on stability with the use of the constant A is significant.
When A is sufficiently large (in this case A ≥ 2), quite large time steps (in
this case Δt ≥ 1) can be used for first- and second-order time discretizations.
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Table 1

Example 4.1: stability comparison with different A and δ. Here BDr stands for rth-order back-
ward differentiation and EPr for rth-order extrapolation.

δ A BD1/EP1 BD2/EP2 BD3/EP3

A = 0 Δtc ≈ 1 Δtc < 0.3 Δtc < 0.1

0.1 A = 1 Δtc ≈ 1 Δtc ≈ 1 Δtc ≈ 0.5

A = 2 Δtc ≈ 1 Δtc ≈ 1 0.2 ≤ Δtc < 0.5

A = 0 Δtc < 0.1 Δtc < 0.01 Δtc < 0.002

0.01 A = 1 Δtc ≈ 1 Δtc ≈ 0.1 Δtc ≈ 0.002

A = 2 Δtc ≈ 1 Δtc ≈ 1 Δtc ≈ 0.05

A = 0 Δtc < 0.01 Δtc < 0.001 Δtc < 10−4

0.001 A = 1 Δtc ≈ 1 Δtc ≈ 0.005 0.0005 ≤ Δtc < 10−3

A = 2 Δtc ≈ 1 Δtc ≈ 1 Δtc ≈ 0.005

• The choice of A depends on the order of time discretization. For the third-
order methods, a quite small time step has to be used, which is impractical
for large time simulations.

We now turn to time accuracy comparison. Since the exact solution for problem
(4.6) is unknown, we use numerical results of BD3/EP3 with Δt = 0.0001 and K = 128
as the “exact” solution. The coefficient δ is set to be 0.01 and the numerical errors
are computed at t = 1. In this case, the “exact” solution obtained by using BD3/EP3
is plotted in Figure 1. Table 2 shows the L2-errors using several values of A and

Fig. 1. Isolines of the solution at t = 1 for δ = 0.01.
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Table 2

Example 4.1: accuracy with different choices of A. δ = 0.01.

A Δt BD1/EP1 BD2/EP2 BD3/EP3

Δt = 0.01 0.72E-03 unstable unstable

A = 0
Δt = 0.005 0.36E-03 0.24E-04 unstable
Δt = 0.0025 0.18E-03 0.61E-05 unstable
Δt = 0.00125 0.90E-04 0.16E-05 unstable

Δt = 0.01 0.22E-02 0.21E-03 unstable

A = 1
Δt = 0.005 0.11E-02 0.56E-04 unstable
Δt = 0.0025 0.51E-03 0.14E-04 unstable
Δt = 0.00125 0.25E-03 0.37E-05 0.43E-06

Δt = 0.01 0.43E-02 0.32E-03 0.22E-03

A = 2
Δt = 0.005 0.19E-02 0.87E-04 0.21E-04
Δt = 0.0025 0.88E-03 0.23E-04 0.30E-05
Δt = 0.00125 0.43E-03 0.58E-05 0.53E-06

four time steps. It is seen that once the methods are stable, the expected order of
convergence (in time) is obtained.

5. Numerical experiments: Coarsening dynamics. In this section, we pre-
sent the numerical results by simulating the MBE model (1.1) in cases of both isotropic
surface (2.1) and square surface (2.2). The simulations are carried out in the domain
Ω = (0, 1000)2, where double periodic boundary conditions are used in the spatial
directions. The initial condition is a random state by assigning a random number
varying from −0.001 to 0.001 to each grid point. The second-order schemes, i.e.,
(3.1) for the isotropic surface model and (3.14) for the square surface model, are used
in our simulations. The spatial discretization is based on a Fourier pseudospectral
approximation with K denoting the Fourier mode number. In order to investigate the
effect of the time and space resolution, different values of Δt and K have been tested.

5.1. Growth on the isotropic symmetry surfaces. First we carry out the
simulation of the growth process for the case of isotropic surfaces. In Figures 2
and 3, the isolines of the free energy Ffree(x, t) at t = 40,000 and 80,000 are plotted,
respectively, with (K,Δt) = (512, 1) and A = 1, where Ffree(x, t) is defined by

Ffree =
1

4
(|∇h|2 − 1)2 +

δ

2
|Δh|2.

The contourlines of Ffree are usually used to identify the edges of the pyramidal
structures since the free energy is concentrated on the edges. In these two figures the
temporal evolution of the morphology of the growing surface is well visualized. It is
seen that the edges of the pyramids (white areas) form a random network over the
surface and separate the facets of the pyramids. The pyramids grow in time via a
coarsening process, as is evident from Figures 2 and 3. Also shown is the randomness
of the orientation of the pyramid edges, resulting from the isotropic nature of the
surface symmetry. This result is in good agreement with the published results; see,
e.g., [14].

Figure 4 presents the power laws of the growth of the interface height h̃(t) and
width λ(t) of the pyramidal structures. Here h̃(t) is defined by

h̃(t) =

(
1

|Ω|

∫
Ω

h2(x, t)dx

) 1
2

.
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Fig. 2. The isotropic symmetry surfaces problem: the contour plot at t = 40,000, obtained by
using K = 512 and Δt = 1.

Fig. 3. Same as Figure 2, except at t = 80,000.
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Fig. 4. The isotropic symmetry surfaces problem: growth power law obtained by using K = 512
and Δt = 1 (log-to-log scale).

The width of the pyramid edges λ(t) measures the mean size of the network cell,
which can be calculated as in [14] from the height-height correlation function

Khh(r, t) =

∫
Ω

h(x + r, t)h(x, t)dx,

where r is a positive vector. In our calculations, we used a simpler form r = (r, r)T .
With r = (r, r)T , Khh(r, t) can be considered as a function of r for fixed t, and shows
an oscillatory character reflecting the presence of mound structures. For a given t,
the mean pyramid width λ(t) is defined as r0(t), which is the first zero crossing of
Khh(r, t),

r0(t) = inf{r > 0,Khh(r, t) = 0}.

We see from Figure 4 that both vertical height and lateral width of the pyramids grow
in time as power law ctn with exponents n close to 1

3 (slope of the lines), which is
again in good agreement with the existing experimental and numerical results [14, 23].

In order to check the temporal and spatial resolution, we display in Figure 5 the
result obtained by using (K,Δt) = (256, 0.5), i.e., halving the values of K and Δt. It
is observed from Figures 4 and 5 that there is no significant difference between the
results obtained by using the two sets of parameters.

To demonstrate the robustness of the proposed method, we plot in Figure 6 the
evolution of the mean height

h̄(t) =
1

|Ω|

∫
Ω

h(x, t)dx.

It is observed that h̄(t) remains practically zero in the entire time intervals. This
demonstrates the mass conservation which can be derived from (2.1). The energy
defined in (2.7), normalized by the domain size, is plotted in Figure 7. The decay of
the energy as observed in Figure 7 agrees with the theoretical result (2.6).
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Fig. 5. Same as Figure 4, except with K = 256 and Δt = 0.5.
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Fig. 6. Evolution of the mean height as a function of the time.

5.2. Growth on the square symmetry surfaces. Here we present simulation
results obtained by solving the MBE model (2.2). The time discretization used in the
simulation is the second-order scheme (3.14), and the space discretization is the same
as in the isotropic case but here with Fourier mode number K = 384 and time step
Δt = 0.2.
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Fig. 7. Evolution of the energy as a function of the time.

In Figures 8 and 9, we plot the contourlines of the free energy function F ′
free

corresponding to the square symmetry model,

F ′
free =

δ

2
|Δh|2 +

1

4

[
(h2

x − 1)2 + (h2
y − 1)2

]
.

As in the case of the isotropic surfaces, pyramid-like structures are growing in the
surface with sharp edges carrying most of the energy, identified by the network formed
by the white areas. However, in contrast to the isotropic case, the pyramid edges are
well oriented toward the four preferred directions reflecting the square symmetry. A
careful look at the two figures finds that the well-known dislocation feature is also
presented, as reported by many experiments and simulations. Moreover, it is observed
from Figure 10 that the power law obtained for the pyramid growth with the square
symmetry is close to 1

4 . This is in good agreement with the numerical predictions of
Siegert [19] and Moldovan and Golubovic [14].

6. Conclusions. In this work, we have developed and analyzed stable numeri-
cal methods for a class of nonlinear diffusion equations modeling epitaxial growth of
thin films. Here, stability means that the decay of energy is preserved. In particular,
we analyzed the stability properties of a class of semidiscretized (in time) schemes
which are designed for large-system and long-time simulations. It is demonstrated
that the classical semi-implicit method can be improved by simply adding some lin-
ear terms consistent with the truncation errors in time. The linear term consists of
mixed derivatives, and the resulting numerical schemes are still semi-implicit with
explicit treatment for the nonlinear terms. We also performed numerical simulations
using the proposed schemes in time coupled with a Fourier spectral method in space
for the molecular beam epitaxy model and determined power laws for the coarsening
process. The numerical results are in good agreement with the existing ones, e.g.,
Moldovan and Golubovic [14] who directly solved a so-called type-A dynamics equa-
tion on a hexagonal grid.
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Fig. 8. The square symmetry surface problem: the contour plot at t = 40,000, obtained by
using K = 384 and Δt = 0.2.

Fig. 9. Same as Figure 8, except at t = 80,000.
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Fig. 10. The square symmetry surface problem: growth power law obtained by using K = 384
and Δt = 0.2.

One of the future works in this direction is to carry out more rigorous analysis
for the large time-stepping techniques, including stability analysis for higher-order
schemes (say, third-order time-stepping) and error analysis for the proposed schemes.
Obtaining a satisfactory error bound for a numerical scheme for the MBE models
seems difficult: A direct error analysis shows that the error bounds are dependent
on the surface diffusion constant δ and the solution time interval, which leads to
unacceptable estimates for small δ and large T . A desired bound should have weak
dependence on δ and T , which seems very difficult. Other future works in this direction
include adaptive time integration, i.e., treating the fast dynamics changes and slow
changes separately. This is also important in improving the efficiency for the large-
time simulations.
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Abstract. The recently developed multiscale kernel of R. Opfer [Adv. Comput. Math., 25
(2006), pp. 357–380] is applied to approximate numerical derivatives. The proposed method is truly
mesh-free and can handle unstructured data with noise in any dimension. The method of Tikhonov
and the method of L-curve are employed for regularization; no information about the noise level is
required. An error analysis is provided in a general setting for all dimensions. Numerical comparisons
are given in two dimensions which show competitive results with recently published thin plate spline
methods.
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1. Introduction. Evaluating derivatives of a function using only information
from discrete function values is a typical ill-posed problem. Small measurement er-
rors, including rounding errors, will be greatly amplified during the numerical differ-
entiation process. The problem of numerical differentiation arises in many branches
of science and engineering. Some practical examples are the identification of disconti-
nuities in image reconstruction [10, 13], resolution enhancement of spectra [17], solv-
ing Abel integral equations [7, 12], determination of peaks in chemical spectroscopy
[24], determination of discontinuous points of the exact solutions [33], solving integral
equations [8], determination of source parameter and diffusion coefficient in parabolic
differential equations [6, 14], simulation of constrained mechanical systems of parti-
cles [19], singular convolution [25], and many other inverse problems in mathematical
physics. The previous literature on numerical differentiation featured plenty of nicely
calculated practical solutions, but most research papers on this topic are limited to
one dimension or highly structured grids [4, 14, 20, 26, 27, 30, 33]. Numerical meth-
ods for higher dimensions are very limited. In particular, many existing methods
are based on finite difference schemes [2], wavelet methods [5], and thin plate splines
approximation [34]. The goal of this paper is to supply a new, efficient, and practical
alternative for scientists and engineers who need to compute numerical differentiation
from real-life, large-scale, and noisy multivariate data.

Given some set of real-life data in any dimension, multivariate functions are re-
constructed from unstructured data by some specially designed multiscale kernels

Φ(x, ·) =
u∑

j=0

∑
k∈Zd

λj
σϕ(2jx− k)ϕ(2j · −k).

Since multiscale kernels are proven to be positive definite, for every set of data
points we can solve an interpolation problem and write the interpolant in the form
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of the kernel representation:

s =

n∑
i=1

βiΦ(xi, ·).(1.1)

The multiscale property, found in wavelet analysis, is considered a major breakthrough
in the development of kernel-based mesh-free methods. We can go one step further
and express (1.1) in its frame representation:

s =
u∑

j=1

∑
k∈Zd

λj
σc

j
kϕ(2j · −k),(1.2)

where cjk = cjk({xi}, βi) are called the frame coefficients. The interpolant obtained
will have a frame representation on structured grids instead of the unstructured data.
The solution process involves solving a sparse matrix system if the multiscale kernel
is compactly supported. Once we determine the multivariate function that interpo-
lates the noisy data, this newly developed method has potential applications in many
branches of science and engineering. The well-developed wavelet techniques (e.g., de-
noising, compression, shape detection, etc.) can be applied thereafter. In this paper,
we focus on a classical ill-posed numerical differentiation problem. The derivative of
(1.2) can be obtained by replacing ϕ by Dγϕ. An overview of multiscale kernels will
be given in section 2.

In section 3, the instability of numerical differentiation is regularized by the
Tikhonov regularization method that seeks a stable approximate interpolant. Error
estimates in section 3.1 show that the errors of numerical derivatives blow up when
the noise level is high or when the minimum separation distance of the data points
is small. This agrees with the ill-posed nature of numerical differentiation. On the
other hand, both errors in interpolation and in the derivatives can be minimized with
an optimal regularization parameter. In section 4, the L-curve method is employed
to numerically locate the optimal regularization parameter. Finally, two bivariate
examples are given in section 5 to conclude the paper.

2. Finding numerical derivatives. Consider a symmetric function of the form
Φ : Ω × Ω → R for some Ω ⊂ R

d and let NΦ be the reproducing kernel of a native
Hilbert space [29] of Φ. It is proven in the same article that the native space NΦ for a
given symmetric positive definite kernel Φ is unique if it exists, and it coincides with
the closure of the space of finite linear combination of functions Φ(x, ·), x ∈ Ω under
the inner product defined via

(Φ(x, ·), Φ(y, ·))NΦ = Φ(x, y) for all x, y ∈ Ω.

That is, for every fixed point x ∈ Ω and function Φ(x, ·) belongs to NΦ, every f ∈
NΦ can be recovered by an inner product of the form f(x) = 〈f,Φ(x, ·)〉, x ∈ Ω.
For a detailed treatise of reproducing kernel Hilbert spaces, see Aronszajn [3] or
Meschkowski [21].

To begin, we reconstruct multivariate functions from unstructured data by a
multiscale technique. The basic concepts of this technique were first investigated by
Opfer [23]. The implementation of a multiscale kernel (MSK) is out of the scope of
this paper and the developments of MSK are only sketched here. We refer the reader
to the original dissertation of Opfer for the details.
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A function ϕ : R
d → R is called refinable if there is a sequence {hk}k∈Zd of real

numbers such that

ϕ =
∑
k∈Zd

hkϕ(2 · −k).(2.1)

For every level-j ∈ Z we define the shift invariant space

Vj :=

{ ∑
k∈Zd

ckϕ(2j · −k) : ck ∈ R,
∑
k∈Zd

(ck)
2 < ∞

}
.(2.2)

By standard wavelet arguments it follows from (2.1) that the spaces {Vj}j∈Z form a
nested sequence, i.e., V0 ⊂ V1 ⊂ · · · ⊂ Vu. The main idea here involves several levels
of Vj in one reconstruction scheme.

Let ϕ : R
d → R be a function in L2(Rd) with decay ϕ(x) = O

(
(1+‖x‖)−(d+1)/2

)
.

Let u ≥ 0 be a fixed integer and σ > d/2 be a positive real number. Then the kernel
Φσ : R

d × R
d → R given by

Φσ(x, y) :=

u∑
j=0

λj
σ

( ∑
k∈Zd

ϕ(2jx− k)ϕ(2jy − k)

)
︸ ︷︷ ︸

Φσ,j

,(2.3)

where λσ := 2d−2σ, is a MSK.
Theorem 2.1 (see [23, Theorem 5.4]). Every MSK in the form of (2.3) is positive

semidefinite. Let Bρ(c) be a ball of radius ρ with center c ∈ R
d such that supp(ϕ) ⊂

Bρ(c). If the point set X ⊂ R
d satisfies

hX,min := min
i �=j

‖xi − xj‖2 > ρ 2−u+1,(2.4)

then the matrix AX :=
(
Φσ(xi, xk)

)
1≤i,k≤n

is positive definite.

In this paper, we are mainly interested in compactly supported refinable functions
ϕ that clearly satisfy the decay condition required in Theorem 2.1. The resulting MSK
are therefore positive definite.

We can find to any given data Y an interpolant of the form (1.1) by solving a
sparse symmetric linear collocation system for β ∈ R

n,

yj =

n∑
i=1

βiΦσ(xi, xj), 1 ≤ j ≤ n.(2.5)

Theorem 2.1 implies that (2.5) has a unique solution if the integer u = u(hX,min) is
large enough with respect to the density of the data points X. The MSK scheme
is based on the following idea: The kernel representation can be decomposed into a
frame representation due to the specially designed structure of Φσ. First, s ∈ NΦ is
decomposed into a sequence of functions sj ∈ Vj ,

(2.6)

s =

n∑
i=1

βiΦσ(xi, ·) =

n∑
i=1

βi

u∑
j=0

λj
σΦσ,j(xi, ·) =

u∑
j=0

λj
σ

n∑
i=1

βiΦσ,j(xi, ·)︸ ︷︷ ︸
sj

=

u∑
j=0

λj
σsj ,
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such that each sj ∈ Vj can be further decomposed into

sj =

n∑
i=1

βiΦσ,j(xi, ·) =
∑
k∈Zd

(
n∑

i=1

βiϕ(2jxi − k)

)
︸ ︷︷ ︸

cjk

ϕ(2j · −k) =
∑
k∈Zd

cjkϕ(2j · −k).

(2.7)

Combining (2.6) and (2.7) gives us the frame representation in the form of (1.2).
Functions in lower levels capture the smooth structure of f while the higher levels
contain the fine structure of f , including noise. Furthermore, the refinability of the
function ϕ allows the frame coefficients cjk for 0 ≤ j ≤ u− 1 to be computed via

cjk = λ−j
σ

∑
μ∈Zd

hμ−2kc
j+1
μ , k ∈ Z

d.

Computation of frame coefficients cjk requires a nearest neighbor search, e.g., kd-tree
[35, Chapter 14], to locate all x ∈ X inside the support of ϕ(2u · −k). Note that the
number of nonzero cjk is finite due to the fact that |X| is finite and ϕ is compactly
supported. The native space NΦ and each Vj in (2.2) can be equipped with a norm,
respectively,

‖s‖2
NΦ

=

u∑
j=0

λ−j
σ ‖sj‖2

Vj
and ‖sj‖2

Vj
=

∑
k∈Zd

(cjk)
2.

Let hX,Ω denote the fill distance of the data points X ⊂ Ω given by

hX,Ω := sup
y∈Ω

inf
xi∈Xh

‖y − xi‖2.

If ϕ satisfies certain smoothness and decay properties, then NΦ � W σ,2 are norm
equivalent and the interpolant obtained by MSK satisfies the standard native space
error bound:

Theorem 2.2 (see [23, Theorem 5.21]). Let the MSK Φσ be constructed with a
scaling function ϕ of an r-regular multiscale analysis of L2(Ωd) with r > d/2. Fix an
σ with d/2 < σ < r. Further we assume that X := {x1, . . . , xn} ⊂ Ω is a set of points
with fill distance hX,Ω, where Ω ⊂ R

d is a compact set with Lipschitz boundary which
satisfies an interior cone condition. Let f ∈ Hσ(Rd) and s be the interpolant. Let
1 ≤ q ≤ ∞ and γ = (γ1, . . . , γd) be a multi-index such that |γ| < �σ − d/2. Then,
there is a constant C > 0 independent of f and hX,Ω such that

‖s− f‖W |γ|,q(Ω) ≤ C1h
σ−|γ|−d

(
1/2−1/q

)
+

X,Ω ‖f‖NΦ
,

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0.

2.1. Noise data. Let us assume we have points X := {x1, . . . , xn} ⊂ Ω ⊂ R
d

and noisy data

Yη := {ỹ1, . . . , ỹn} ⊂ R,

where

ỹi = yi + δi = f(xi) + η(xi),
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and δi are random noise. The noise function η here is not necessarily classically
differentiable or even continuous. Assume that we obtain an interpolant in the frame
representation

sδ,X =

u∑
j=0

λj
σsδ,X,j =

u∑
j=0

∑
k∈Zd

λj
σc

j
kϕ(2j · −k),(2.8)

for some noisy data (X,Yη) by MSK with the following conditions satisfied.
Assumption 2.3. The MSK in (2.3) is constructed by
1. σ ≥ 2 and σ > d

2 ,

2. a r-regular ϕ smooth enough such that r >
(
2 + d

2

)
, i.e., ϕ ∈ Cr(Ω) with

compact support up to order r, and
3. for any given data points X, u = �1 + log2

ρ
hX,min

�, where hX,min is given in

(2.4) and ρ as in Theorem 2.1.
The reasons for the above assumptions will soon become clear when we look at the

error estimates in section 3.1. Throughout this paper, let γ with |γ| = γ1+· · ·+γd = 1
be a multi-index. Our interest is to approximate or reconstruct the derivatives of f
from the noisy data Yη via

(X, Yη) −→ Dγf.

From the frame representation (2.8), the numerical derivatives are given by

Dγsδ,X =

u∑
j=0

λj
σ D

γ sδ,X,j =

u∑
j=0

∑
k∈Zd

λj
σc

j
k D

γϕ(2j · −k).(2.9)

This numerical procedure is highly unstable. Since the input data Yη contains noise,
the resulting approximated derivatives Dγsδ,X will contain large errors and therefore

are not trustworthy. We select a subset of frame coefficients {rjk} ⊂ {cjk} to regularize
the numerical derivatives.

Any regularized interpolant g to sδ,X is in the form of

g =
u∑

j=0

∑
k∈Zd

λj
σr

j
k ϕ(2j · −k),(2.10)

where rjk ∈ {0, cjk}. For some threshold tσ(j) > 0 for 0 ≤ j ≤ u and a fixed regular-
ization parameter α, the regularized interpolant is defined to be

sα =

u∑
j=0

∑
k∈Zd

λj
σ r

j
k ϕ(2j · −k) such that rjk =

{
cjk if |cjk| > tσ(j)α,

0 otherwise.
(2.11)

For practical problems, the optimal regularization parameter α∗ is not attainable
unless η is known a priori. In the next section, we specify our choice of threshold
tσ(j) using the Tikhonov regularization method. After giving a concrete formula of
the threshold tσ(j), we make sure the errors in interpolation and in the gradient
of the regularized interpolant in (2.11) is both bounded and well behaved for some
suitable α.
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3. Regularization. The classical Tikhonov regularization method [31] is a com-
mon tool for finding a solution from an unstable system. Using some a priori choice
strategy for regularization parameters, Hofmann and Yamamoto [18] prove conver-
gence rates for the Tikhonov regularization method. Despite the differences with the
classical problem, we seek a regularized interpolant sα to sδ,X (considered to be fixed
here) by the Tikhonov regularization method. For any

g̃ =

u∑
j=0

∑
k∈Zd

λj
σ r̃

j
k ϕ(2j · −k) ∈ Vu,

we define the error measure by

E(g̃) = E(g̃; sδ,X) := ‖sδ,X‖2
NΦ

− ‖g‖2
NΦ

=

u∑
j=0

∑
k∈Zd

λ−j
σ

(
(cjk)

2 − (r̃jk)
2
)
,(3.1)

and the roughness measure by

R(g̃) :=

u∑
j=0

∑
k∈Zd

λj
σ|r̃

j
k| |ϕ(2j · −k)|W 2,2(Ω),(3.2)

such that |g̃|2W 2,2(Ω) ≤ R(g̃) for any g̃ ∈ Vu. The error measure depends on the
interpolant sδ,X but both are independent of α.

Given any regularization parameter α ≥ 0 (consider to be fixed here), the regu-
larized interpolant sα is defined to be the minimizer of E(·)+αR(·) over all functions
in the form of (2.10), i.e.,

E(sα) + αR(sα) = inf
{
E(g) + αR(g) for all g as in (2.10)

}
.(3.3)

Although the number of nonzero functions in the form of (2.10) is finite, we have the
following theorem to simplify our selection process.

Theorem 3.1. For any given α ≥ 0 the optimizer to (3.3) is given by (2.11) with

tσ(j) :=
(
2d−2σ+4 |ϕ|2W2,2

)j
< ∞ for all 0 ≤ j ≤ u < ∞.

Proof. First by changing variables, we obtain

|ϕ(2j · −k)|2W2,2(Ω) =

∥∥∥∥∥ ∑
|γ|=2

Dγϕ(2j · −k)

∥∥∥∥∥
2

L2(Ω)

= 2j(4−d) |ϕ|2W2,2(Ω).(3.4)

For any g in the form of (2.10), we have

E(g)+αR(g) =
u∑

j=0

∑
k∈Zd

((
λ−j
σ (cjk)

2 − (rjk)
2
)

+ αλj
σ |r

j
k| 2j(4−d) |ϕ|2W2,2(Ω)

)

=

(
u∑

j=0

∑
k∈Zd

λ−j
σ (cjk)

2

)
︸ ︷︷ ︸

= ‖sδ,X‖2
Φσ

−
(

u∑
j=0

∑
k∈Zd

λ−j
σ (rjk)

2 −αλj
σ |r

j
k| 2j(4−d) |ϕ|2W2,2(Ω)

)
.
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Since ‖sδ,X‖2
Φσ

is a fixed quantity, the minimizer of (3.3) corresponds to the following

condition on rjk:

λ−j
σ (rjk)

2 − αλj
σ |r

j
k| 2j(4−d) |ϕ|2W2,2(Ω) > 0.

After simplification, we obtain (rjk)
2 > tσ(j)|rjk|α.

Once α is determined, Theorem 3.1 allows us to select {rjk} from {cjk} and con-
struct the regularized interpolant and its derivatives.

3.1. Error estimate. In general, interpolation does not make sense on L2(Ω)
and there are many possibilities of projecting L2(Ω) to NΦ. Moreover, there are many
new results on interpolation in cases where f is not in the native space [22, 28]. For
our problem, we will define the necessary projection by interpolation.

Let Ω ⊂ R
d be a domain satisfying the conditions in Theorem 2.2. Suppose that

the MSK Φσ also satisfies Assumption 2.3 and f ∈ NΦ = Hσ(Ω). For any fixed center
X and noise function η ∈ L2(Ω) ∩ C(Ω), the noise level is defined as

δ := sup
x∈Ω

|η(x)|.

It is easy to verify that ‖η‖L2(Ω) ≤ V 1/2(Ω) δ, where V (Ω) is the volume of Ω ⊂ R
d.

The noisy input data for interpolation at the points X ⊂ Ω is given by Yη := (f+η)
∣∣
X

under the assumption that f and η are both well defined at all points x ∈ Ω.
We define a finite dimensional subspace VX ⊂ NΦ to be the span of Φσ(z, ·) and

V
(γ)
X to be the span of DγΦσ(z, ·), where differentiation acts upon the second variable

of Φσ for all z ∈ X. Furthermore, we define a projection map

PX : L2(Ω) ∩ C(Ω) → R
|X| such that PXf = {f(x) : x ∈ X}

that extracts discrete values from a function in L2(Ω)∩C(Ω) at X so that interpolation
is possible and makes sense, and an interpolation map

IX : R
|X| → VX such that IXPXf = IXf for all f ∈ NΦ,

which maps discrete function values at X to a function in VX by interpolation using
MSK. Last, we define a truncation map,

Tα : {1}N×Z
d → {0, 1}N×Z

d

for all α ≥ 0

that smoothes out functions by truncating some of their frame coefficients. Fur-

thermore, when no confusion arises, we treat Tα as a map from VX and V
(γ)
X onto

themselves in the sense that,

Tα

(
u∑

j=0

∑
k∈Zd

λj
σ c

j
k φ(2j · −k)

)
:=

u∑
j=0

∑
k∈Zd

λj
σ Tα(cjk)φ(2j · −k), φ = {ϕ, Dγϕ}.

The truncation map Tα, as in (2.11), is a nonlinear map whose actual form depends
on the parameter α and the data (X, Yη). It can also be interpreted as a countable

set {τ jk} ⊂ {0, 1}N×Z
d

such that Tα(cjk) = τ jk(α)cjk = rjk(α), where

τ jk = τ jk(α) =

{
1 if rjk = cjk,
0 otherwise.

(3.5)
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Since the number of nonzero cjk ∈ {0, 1}N×Z
d

is finite, there are infinitely many cjk = 0

and the corresponding τ jk = 1 because rjk = 0 = cjk for all α ≥ 0 by (3.5). Thus, there

are infinitely many τ jk = 1 (frame coefficients being kept) and only a finite number of

τ jk = 0 (frame coefficients being truncated) for the selected frame coefficients.
With the newly introduced notation, the unknown full interpolant can be ex-

pressed by s := IXPXf. Furthermore, we can write the regularized interpolant in
Theorem 3.1 as

sδ,X := IXPX(f − η) and sα = Tαsδ,X .

Moreover, (2.11) can be restated as

sα = Tαsδ,X =

u∑
j=0

∑
k∈Zd

λj
σ τ

j
kc

j
k ϕ(2j · −k).

Without any extra assumptions on the noise function η, the threshold tσ(j) and the
data points X, the truncation map has the following properties.

Proposition 3.2. Let |γ| = 1 and nzj(·) be a function with respect to j that

returns the number of zero elements in the level-j of a set in {0, 1}N×Z
d

. Denote the
L2(Ω)-induced norm for maps on VX by ‖ · ‖L2(Ω) and define

uα := sup
{
j
∣∣∣ τ jk �= 0 for some k ∈ Z

d, 0 ≤ j ≤ u
}
,(3.6)

to be the maximum nonzero frame level after truncation. Then the truncation map
Tα satisfies:

1. ‖Tα‖L2(Ω) = ‖T0 − Tα‖L2(Ω) = 1 for α > 0.

2. ‖DγTα‖L2(Ω) = ‖TαD
γ‖L2(Ω) = 2uα ‖Dγϕ‖L2(Ω) ‖ϕ‖−1

L2(Ω).

3. For any given data (X, Yη), the number of frame coefficients being truncated

by Tα, denoted by nzj(1 − τ jk(α)) < ∞, is a bounded nondecreasing simple

function in α and nzj(1 − τ jk(0)) = 0.
Proof. The perfect candidate to evaluate the above norms is the scaled function

in the frame. For each nested space Vj (0 ≤ j ≤ u), such function is given by

gj,k =
(
2jd/2 ‖ϕ‖−1

L2(Ω)

)
ϕ(2j · −k) ∈ Vj , 0 ≤ j ≤ u,

such that ‖gj,k‖L2(Ω) = 1 and ‖Dγgj,k‖L2(Ω) = 2j ‖Dγϕ‖L2(Ω) ‖ϕ‖−1
L2(Ω).

For Proposition 3.2.1 follows directly from the fact that Tα �= 0 for all α ≥ 0;
there exists some (j1, k1) and (j2, k2) such that τ j1k1

= 1 and τ j2k2
= 0 for 0 ≤ ji ≤ u

and ki ∈ Z
d corresponding to a frame coefficient that is kept and truncated by Tα,

respectively. Hence, we have

‖TαIXPXgj1,k1‖L2(Ω) = 1, and ‖(T0 − Tα)IXPXgj2,k2‖L2(Ω) = 1.

To prove Proposition 3.2.2, we first note that the differential operator acts on each
ϕ independently as in (2.9); thus, cjk and τ jk are independent of the truncation process.
Differentiation after truncation is the same as truncation after differentiation, namely
we have DγTαsj = TαD

γsj for all sj ∈ Vj . For numerical efficiency, the operation
DγTα is preferred for efficiency.



1788 LEEVAN LING

Since ‖Dγϕ‖L2(Ω) ‖ϕ‖−1
L2(Ω) is a fixed quantity once ϕ is fixed, without regular-

ization the noise in the level-j will be greatly amplified as expected,

‖DγIXPXgj,k‖L2(Ω) = ‖Dγgj,k‖L2(Ω) ≤ 2j ‖Dγϕ‖L2(Ω) ‖ϕ‖−1
L2(Ω).(3.7)

Let uα be the highest nonzero frame level appearing in the regularized interpolant as
in (3.6). Applying the regularization map Tα will “cut off” all levels higher than uα

exclusively and we arrive at the conclusion.
Last, Proposition 3.2.3 follows from the fact that the number of nonzero cjk is

finite and no regularization is applied when α = 0.
We now turn our focus to the error estimate for ‖f − sα‖. First of all,

‖f − sα‖L2(Ω) ≤ ‖f − IXPXf‖L2(Ω) + ‖IXPXf − sδ,X‖L2(Ω) + ‖sδ,X − Tαsδ,X‖L2(Ω)

= ‖f − IXPXf‖L2(Ω)︸ ︷︷ ︸
interp. error

+ ‖IXPXη‖L2(Ω)︸ ︷︷ ︸
noise

+ ‖(T0 − Tα)sδ,X‖L2(Ω)︸ ︷︷ ︸
reg. error

.

The last inequality uses the fact that

‖IXPXf − sδ,X‖ = ‖IXPXf − IXPX(f − η)‖ = ‖IXPXη‖.

By Theorem 2.2 with q = 2 and |γ| = 0, the first term (interpolation error) can
be bounded by

‖IXPXf − f‖L2(Ω) ≤ C1h
σ
X,Ω ‖f‖NΦ ,

and the second term (noise) is bounded by our assumption on η,

‖IXη‖L2(Ω) ≤ V 1/2(Ω) δ.

It is straightforward to verify that

‖sj‖2
L2(Ω) ≤ 2−jd ‖ϕ‖2

L2(Ω) ‖sj‖2
Vj

for all sj ∈ Vj .(3.8)

For the third term (regularization error), by Theorem 3.1 and (3.8) we have

‖(T0 − Tα)sδ,X‖2
L2(Ω) ≤

u∑
j=0

‖(T0 − Tα)sδ,X,j‖2
L2(Ω)(3.9)

≤ ‖ϕ‖2
L2(Ω)

u∑
j=0

∑
k∈Zd

2−jd
(
(1 − τ jk)cjk

)2
≤ ‖ϕ‖2

L2(Ω)

u∑
j=0

2−jdnzj(1 − τ jk) tσ(j)2α2

≤
u∑

j=0

2−2(σ−2)jnzj(1 − τ jk)|ϕ|2jW2,2
‖ϕ‖2(j+1)

L2(Ω) α
2

:=
(
C2(α)α

)2
.

An immediate fact from Proposition 3.2.3 is that C2(α) is a bounded positive nonde-
creasing simple function with C2(0) = 0.
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For the error in the gradient, we have

‖∇f −∇sα‖L2(Ω) ≤ ‖∇f −∇IXPXf‖L2(Ω) + ‖∇IXPXf −∇TαIXf‖L2(Ω)

+ ‖∇TαIXPXf −∇sα‖L2(Ω)

≤ ‖∇f −∇IXPXf‖L2(Ω)︸ ︷︷ ︸
interp. error

+ ‖∇(T0 − Tα)IXPXf‖L2(Ω)︸ ︷︷ ︸
reg. error

+ ‖∇TαIXPXPXη‖L2(Ω)︸ ︷︷ ︸
noise

.

Using Theorem 2.2 with q = 2 and |γ| = 1, the interpolation error in gradient is again
bounded by

‖∇IXPXf −∇f‖L2(Ω) ≤ C1h
σ−1
X,Ω ‖f‖NΦ .

Next, we need a stronger assumption than σ ≥ 2 such that NΦ ⊆ W 2,2(Ω) to make
use of an inequality in [1, Theorem 4.14]: For any 0 < ε0 there exists a constant
C3 = C3(ε0,Ω, d) > 0 such that for g ∈ W 2,2(Ω) and for all 0 < ε < ε0,

‖∇g‖L2(Ω) ≤ C3

(
ε |g|W 2,2(Ω) + ε−1‖g‖L2(Ω)

)
.(3.10)

By assumption, the unknown function f is “smoother” than the random noise η.
Hence, for all α ≥ 0 the following statement holds

‖∇(T0 − Tα)IXPXf‖L2(Ω) ≤ ‖∇(T0 − Tα)sδ,X‖L2(Ω).

Similar to (3.9), by (3.4) we have

|(T0 − Tα)sδ,X |W 2,2 ≤
u∑

j=0

|(T0 − Tα)sδ,X,j |W 2,2(3.11)

≤ |ϕ|2W 2,2

u∑
j=0

∑
k∈Zd

2j(2−d/2)
(
(1 − τ jk)cjk

)2
≤ |ϕ|2W 2,2

u∑
j=0

2j(2−d/2)nzj(1 − τ jk) tσ(j)α

≤
u∑

j=0

2(6−2σ+d/2)jnzj(1 − τ jk)|ϕ|2(j+1)
W 2,2 α

:= C4(α)α.

We choose ε = 1 < ε0 for some fixed ε0. Putting (3.9) and (3.11) into (3.10) yields

‖∇(T0 − Tα)IXf‖L2(Ω) ≤ C5(α)α.

Namely, C5(α) = C3(C2(α)+C4(α)) that is a bounded positive nondecreasing simple
function with C5(0) = 0.

All the terms considered so far are stable. Last, and most important, we consider
the error in gradient due to the presence of noise. By Proposition 3.2.2, if there exist
some (j, k) such that cjk �= 0 and τ jk = 1, we have

‖∇TαIXPXη‖L2(Ω) ≤ 2d/2 2uα ‖∇ϕ‖L2(Ω) ‖ϕ‖−1
L2(Ω) V

1/2(Ω) δ := C6(α) δ.(3.12)

Otherwise sδ,X = 0, we clearly have ‖∇TαIXPXη‖L2(Ω) = 0 and C6(α) = 0.
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The function C6(α) in (3.12) is a bounded positive nonincreasing simple function.
Since 2u ≥ 2 ρ

hX,min
is the requirement of a positive definite kernel, the gradient error

in (3.7) will blow up when one takes finer and finer data points if the noise level δ > 0
is fixed and no regularization is applied.

We summarize all results by the following theorem.
Theorem 3.3. For any given data (X, Yη), let sα be the regularized interpolant

obtained by a MSK satisfying Assumption 2.3 and regularized by Theorem 3.1. There
exist a constant C1, two bounded positive nondecreasing simple functions C↗

2 (α) ≥
C↗

5 (α) such that C↗
2 (0) = 0 = C↗

5 (0), and a bounded nonnegative nonincreasing

simple function C↘
6 (α) with C↘

6 (0) > 0 such that the errors in regularized interpolant
are bounded by

‖f − sα‖L2(Ω) ≤ C1h
σ
X,Ω ‖f‖NΦ

+ V 1/2(Ω) δ + C↗
2 (α)α,(3.13)

and

‖∇f −∇sα‖L2(Ω) ≤ C1h
σ−1
X,Ω ‖f‖NΦ

+ C↗
5 (α)α + C↘

6 (α) δ,(3.14)

for all α ≥ 0. Furthermore, if the noise level δ ≥ K(f, σ), there exists a nonzero
optimizer α∗ that minimizes the sum of the upper bounds in (3.13) and (3.14).

Proof. For any given data (X, Yη), the minimizer α∗ in the theorem is also a
minimizer to the function (

C↗
2 (α) + C↗

5 (α)
)
α + C↘

6 (α) δ.(3.15)

By the properties of C↗
2 (α) and C↗

5 (α), we know that the term
(
C↗

2 (α)+C↗
5 (α)

)
α is

a monotone increasing piecewise linear function. Its jump discontinuities are governed
by the term nzj(1 − τ jk(α)).

The terms C↘
6 (α)δ is a nonnegative nonincreasing simple function having jump

discontinuities at 0 =: αu+1 < αu ≤ · · · ≤ α0 < ∞, where αj is the infimum over α
such that jth level is completely truncated, i.e., for all 0 ≤ j ≤ u

αj := inf{α
∣∣ rjk(α) = τ jkc

j
k = 0 for all k ∈ Z

d}.

Define ΔkG(α) = G(αu−k) − G(αu−k+1) for all 0 ≤ k < u. If, for sufficiently large

δ, the accumulated drop due to term C↘
6 (α)δ is larger than the accumulated growth

due to the term
(
C↗

2 (α) + C↗
5 (α)

)
α, i.e.,

δ > K(f, σ) := min
0≤j<u

{
j∑

k=1

Δk
(C↗

2 (α) + C↗
5 (α))α

C↘
6 (α)

}
,(3.16)

then an optimizer α∗ > 0 exists.
To end this section, note that the constant term K(f, σ) in (3.16) decreases as σ

increases. If the unknown function f is sufficiently smooth with respect to the noise
level δ, our MSK scheme is able to regularize the interpolant. Consider δ < K(f, σ).
These cases correspond to small noise levels that are negligible to our regularization
technique. As shown in section 5 when δ= 0, while α∗ = 0 is the theoretical optimizer
to (3.15), we would numerically obtain an approximation αLC to α∗ such that 0 <
αLC < εmach (machine epsilon). In these cases, we set the approximation αLC =
εmach to filter out extremely small frame coefficients for efficiency.
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4. L-curve method. The theoretical existence of α∗ does not help us pinpoint
its whereabouts. Choosing an optimal α∗, or an approximation αLC , is a separate
topic that will be considered in this section.

The L-curve (LC) method was investigated by Hansen and O’Leary [16] to regu-
larize ill-posed systems under different values of the regularization parameter α. The
knowledge of the noise level δ is not necessary. Vogel [32] shows that the L-curve
regularization parameter selection method may fail to converge for a certain class
of problems. In our numerical experiments, however, we find that the LC method
provides a stable algorithm to find the regularization parameter α.

Our version of the LC method is derived from simplifying both measures in (3.1)
and (3.2) for the ease of computation. First, we order the frame coefficients cjk by
defining an ordered set,

{
(
ξ�, η�

)
}nz(cjk)

�=1 =

{(∥∥∥cjkϕ(2j − k)
∥∥∥2

L2(Ω)
, R

(
cjkϕ(2j − k)

))
: cjk �= 0

}
0≤j≤u, k∈Zd

such that η�/ξ� forms a monotone nondecreasing sequence where nz(·) returns the
number of nonzero elements in the set and R(·) is the roughness measure in (3.2).
Then we compute a finite set of points in R

2 by

L =

{(
‖sδ,X‖2

Φσ
−

p∑
�=0

ξ�,

p∑
�=0

η�

)
⊂ R

2, p = 0, 1, . . . ,nz(cjk)

}
,

which is known as the L-curve.
A suitable regularization parameter αLC is the one near the corner on a log-

log scale of the L-curve [15]. In numerical computation, finite difference schemes
are applied to (the log-values of) these discrete points in order to approximate the
curvature of the L-curve. The point with maximum curvature will be labeled as the
corner of the L-curve. For numerical efficiency, we impose an extra condition that

αLC ≥ εmach.

We show some results with the L-curve method in Figure 4.1. The L-curve is
shown in Figure 4.1(a) with a corner at αLC = 5.3761e-12. This value is chosen from
the curvature of the L-curve, see Figure 4.1(b).

The number of nonzero frame coefficients in the regularized interpolant sα is
1735 and 520 for α = εmach and α = αLC , respectively. Figure 4.2(a) for εmach and
Figure 4.2(b) for αLC show all |cjk| and label the selected rjk in boldface dots. All cjk
are ordered by levels, from level-0 on the left to level-u on the right. In both cases,
only the cjk in the lower few levels with large absolute values are chosen.

Table 4.1

MSK(3, 3) frame coefficients among all levels on a 41 × 41 uniform grids for section 5.1.

Level-j 0 1 2 3 4 5 6 7

|cjk| > 0 64 144 400 1296 4624 17424 26896 26896

|cjk| > εmach 56 121 361 1225 4489 17161 24025 24025

|rjk| > 0 by αLC 49 121 350 0 0 0 0 0

|rjk| > 0 by εmach 49 121 361 1204 0 0 0 0
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(a) L-curve in log-log scale. (b) Corner of L-curve.

Fig. 4.1. L-curve method applied to MSK(3, 3) in section 5.1 with δ = 1.018×10−3 on a 41×41
uniform grids.

At first glance, the computation of all nonzero cjk may look tremendous. In
fact, we are showing all 77744 nonzero frame coefficients in Figure 4.2 but some are
extremely small, e.g., 2.4e-42. If we are only interested in frame coefficients whose sizes
are larger than machine epsilon, we are looking at 71463 coefficients. The distribution
of the frame coefficients among all levels are in Table 4.1. After regularization, the
maximum evels appears in {rjk} are luα = 2 for α = αLC and uα = 3 for α = εmach;
readers may already see how this can be computed efficiently.

Our L-curve only makes use of the local property of each function cjkϕ(2j · −k).
Pretruncation does not affect the final outcome. One could pick an intermediate
value 0<υ<u and compute frame coefficients up to level-υ only. A safeguard of this
approach is that the maximum level appearing in the regularized interpolant should
be strictly less than υ. If this is not the case, one can compute the frame coefficients
for level-(υ+1) and reapply the LC method.

10
0

10
−40

10
−20

10
0

(a) 1735 frame coefficients for α = εmach.

10
0

10
−40

10
−20

10
0

(b) 520 frame coefficients for α = αLC .

Fig. 4.2. Selected frame coefficients {rjk} ⊂ {cjk} corresponds to Figure 4.1.
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5. Numerical comparison and demonstration. We demonstrate some bi-
variate examples in this section. All codes are written in MATLAB. Random noise is
generated by the built-in routine RAND with STATE reset to 0. Generated random
numbers are scaled to [−1, 1] and multiplied by the noise level δ. For the problem
in R

2, tested values for σ are 2 or 3, see Assumption 2.3. The MSK Φσ in (2.3)
is constructed with the univariate B-spline of order m defined on the knot sequence
[0, 1, . . . ,m], denoted by bm, see [9],

ϕ(x, y) = bm(x) bm(y) such that x, y ∈ R, m = {3, 4},

that fulfills all assumptions in the previous discussion. Values of σ and m are specified
by the notation MSK(m, σ) throughout the section.

5.1. Comparison with TPS-based method. The recent work of Wei, Hon,
and Wang [34] uses the thin plate spline (TPS) to compute numerical derivatives. The
presented TPS-based method requires triangular partitions of data points; the authors
claim that the method can become truly mesh-free with additional assumptions. Two
regularization parameters are studied in the same paper: α1 = δ2 obtained by a
priori rule and α2(δ) obtained by Morozov’s discrepancy principle. We denote them
by TPS-AP and TPS-DP, respectively, hereafter. TPS-DP is reported to be the more
effective and stable method between the two.

The clear advantages of MSK with L-curve are that it is already in a truly mesh-
free setting for any dimension and it does not require any a priori knowledge about
the noise level δ. Moreover, resultant linear systems of MSK in (2.5) are sparse. To
make the comparison as fair as possible, we compare the accuracies of all methods on
uniformly distributed grids among many given examples in their papers. Please be
reminded that there are still some differences between the problem settings here and
in [34].

Let Ω = [−2, 2]2. The noise levels are chosen to be the reported δ = 1.018e-3 and
δ = 1.020e-2. The unknown function to be approximated is given by

f(x, y) = sin(π x) sin(π y) exp(−x2 − y2), (x, y) ∈ R
2,

with ‖f‖L2(Ω) ≈ 0.387 and ‖∇f‖L2(Ω) ≈ 4.235. Since the number of evaluation points
is not reported in [34], we use the same root mean square (RMS) errors on a 100×100
uniformly distributed grids x′

i ∈ Ω to measure accuracy for interpolation,

ε(sα) =
1

100

(
1002∑
i=1

(sα(x′
i) − f(x′

i))
2

)1/2

,

and for gradient approximation,

ε(∇sα) =
1

100

(
1002∑
i=1

‖∇sα(x′
i) −∇f(x′

i)‖2
�2

)1/2

.

Table 5.1 shows the RMS errors for both tested noise levels on a 21 × 21 uniform
grids. The differences in error should not be overinterpreted as they are influenced
by the regularization parameter αLC and the noise function η. It is more important
to note that all choices of m and σ result in the same order of accuracy. Under this
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Table 5.1

Comparison to TPS-based methods on a 21 × 21 uniform grid with different noise levels.

δ = 1.018 × 10−3 δ = 1.020 × 10−2

Method ε(sα) ε(∇sα) αLC ε(sα) ε(∇sα) αLC

TPS-AP 0.0028 0.0195 – 0.0699 0.3736 –
TPS-DP 0.0019 0.0157 – 0.0100 0.0659 –
MSK(3,2) 0.0011 0.0072 1.5543e-11 0.0042 0.0310 4.4899e-11
MSK(3,3) 0.0010 0.0075 9.1833e-12 0.0040 0.0260 5.1559e-13
MSK(4,2) 0.0014 0.0071 1.0479e-10 0.0042 0.0300 8.4749e-11
MSK(4,3) 0.0009 0.0048 7.4298e-11 0.0039 0.0242 7.8693e-13

Table 5.2

MSK(3, 2) RMS errors and αLC on 1609 unstructured data point with different noise levels.

δ αLC nz(rjk) ε(sα) ε(∇sα)

0 α = 0 100921 8.5518e-5 1.5045e-3
0 2.2204e-16 6081 1.0032e-4 1.2479e-3

1e-5 2.2204e-16 6076 1.0066e-4 1.2511e-3
1e-4 2.2204e-16 6158 1.1065e-4 1.4226e-3
1e-3 2.1649e-13 1800 4.8194e-4 4.8393e-3
1e-2 2.2794e-11 1678 3.4443e-3 3.8510e-2
1e-1 3.0885e-10 1633 3.4145e-2 3.8377e-1

point density, MSK shows competitive results and seems to outperform TPS.
For 1609 unstructured data points, see Figure 5.1(a), with minimum separation

distance hX,min = 5.092e-2 and fill distance hX,Ω = 1.317e-1. We apply MSK(3,2) to
various noise levels. Results are listed in Table 5.2 and graphically demonstrated in
Figure 5.2. All regularization parameters are chosen by the LC method except the
first row of Table 5.2: α = 0 indicates the result of the full interpolant without regu-
larization. Our algorithm runs in the same way as if the data points were structured.
The number of selected frame coefficients is listed under the column of nz(rjk) in the
table.

Comparing the two noise-free results in Table 5.2, the interpolation error when
α = 0 is the smallest since the regularization error no longer exists. On the other
hand, due to the presence of rounding errors, the regularized interpolant gives better
approximation to the gradient than the unregularized full interpolant. In fact, this is
true up to δ = 1e-4. When δ ≥ 1e-3, we have αLC > εmach and our regularization
technique is functioning in these examples; see Theorem 3.3. Overall, the error profile
is extremely similar to the TPS-DP, see [34, Figure 5]. The monotonic trend shown
in αLC suggests that the proposed LC method is capable of balancing the increasing
noise with an increasing regularization parameter.

Our MSK scheme performs equally well when the noise function η is smooth.1

For completion, MSK(3,2) results in ε(sα) = 0.0025 and ε(∇sα) = 0.0046 on a 41×41
uniformly distributed grid. Whereas, TPS-DP results in ε(sα) = 0.0035 and ε(∇sα) =
0.0159.

5.2. Derivative of a landscape data. We demonstrate another example with
a set of landscape data [11]; see Figure 5.1(b). The data set, containing 1669 data
points, is processed by MSK(3,2) and MSK(3,3) in order to estimate its derivatives.

1η(x, y) = 0.005 sin
(

1
2
πx

)
sin

(
1
2
πy

)
, see [34, Table 1].
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(a) 1609 unstructured points.
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(b) Landscape data points.

Fig. 5.1. Data points distribution for examples in sections 5.1 and 5.2.

Unlike the previous example, data points are unevenly distributed and there is no
exact solution for this example. Hence, the full interpolant sδ,X will be used for
comparison. We only demonstrate the x-derivatives; results for the y-derivatives are
similar and are omitted here.

The full interpolant sδ,X and its x-derivative are shown in Figure 5.3. As we see
in section 3.1, the presence of noise does not introduce instability to the interpolation
problem. On the other hand, we observe serious oscillations in the derivatives of the
full interpolant; see Figure 5.3(b).

The MSK(3,2) regularized interpolants with αLC = 5.0626e-14 (566 nonzero frame
coefficients) are shown in Figure 5.4. The regularized interpolant in Figure 5.4 is very
similar to Figure 5.3 but with less local structures. The derivative of the regularized
interpolant in Figure 5.4(b) clearly reveal the local features of the landscape.

(a) RMS errors. (b) αLC .

Fig. 5.2. RMS and αLC errors as functions of the noise level δ.
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(a) Full interpolant sδ,X .
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(b) x-derivatives.

Fig. 5.3. Full interpolant for the landscape data and its x-derivatives.

The MSK(m,σ) method assumes the unknown function f lies in NΦ and LC
regularizes the interpolant accordingly. If σ is too large, the MSK Φσ is very smooth
and the MSK scheme will over-regularize the interpolant. Fortunately, nothing will
become unbounded. To see this, if we can write the unknown function f �∈ NΦ as
f = f1 + f2 where f1 ∈ W σ,2 and f2 ∈ L2(Ω) ∩ C(Ω), then our results in section 3.1
apply consequently. As an example, Figure 5.5 shows the regularized interpolant of
MSK(3,3). The regularization parameter is αLC = 3.8654e-12 resulting in 122 frame
coefficients. The resulting regularized interpolant in Figure 5.5 is much smoother than
that of MSK(3,2) in Figure 5.4. In fact, it seems too smooth for the landscape data.

For rough data from a function f �∈ NΦ, we shall treat αLC as an upper estimated
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(a) Regularized interpolant sα with 566 frame coefficients.
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(b) x-derivatives.

Fig. 5.4. MSK(3,2) regularized interpolant for the landscape data and its x-derivatives.

parameter. To capture more local features, we could use a regularization parameter
0 < α < αLC and obtain results similar to the one from MSK(3,2). The resulting
interpolant will contain more local features with any 0 < α < αLC , while the oscil-
lation in its derivatives are still relatively well behaved. However, we have no robust
routine for choosing an optimal regularization parameter in this case.

For unevenly distributed data points, the tolerance to roughness should be pro-
portional to the local density of data points, e.g., a threshold of the form tσ(j, k).
Regions with high data point density are expected to have more local features and
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(a) Regularized interpolant sα with 122 frame coefficients.
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(b) x-derivatives.

Fig. 5.5. MSK(3,3) regularized interpolant for the landscape data and its x-derivatives.

higher roughness should therefore be allowed. This allows smooth kernels to capture
more local features of the given data set in certain regions. An example of such a den-
sity measure is the number of data points in the support of each function ϕ(2j · −k);
the information is already available after computing the frame coefficients. We leave
this as an open question for future study.

6. Conclusion. We solve a classical ill-posed numerical differentiation problem
by a state-of-the-art matrix-free multiscale kernel based multivariate interpolation
method. The theoretical stability for this ill-posed problem is investigated. The
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Tikhonov regularization and the LC method are employed to obtain a regularized
interpolant. The advantages of the proposed method are (1) the ability to han-
dle problems in higher dimensions; (2) the flexibility to handle real-life, noisy, and
multiple-valued data; and (3) the efficiency due to the resultant sparse matrix sys-
tems. Numerical examples are given for a bivariate test problem that shows results
competitive with the TPS based method and a landscape data set that shows the
stability of our scheme even when the unknown function may not be smooth enough
for our assumptions.
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Abstract. We construct a class of Hamiltonian-preserving numerical schemes for the Liouville
equation of geometrical optics, with partial transmissions and reflections. This equation arises in
the high frequency limit of the linear wave equation, with a discontinuous index of refraction. In
our previous work [Hamiltonian-preserving schemes for the Liouville equation of geometrical optics
with discontinuous local wave speeds, J. Comput. Phys. 214 (2006), pp. 672–697], we introduced
the Hamiltonian-preserving schemes for the same equation when only complete transmissions or
reflections occur at the interfaces. These schemes are extended in this paper to the general case of
partial transmissions and reflections. The key idea is to build into the numerical flux the behavior
of waves at the interface, namely, partial transmissions and reflections that satisfy Snell’s law of
refraction with the correct transmission and reflection coefficients. This scheme allows a hyperbolic
stability condition, under which positivity, and stabilities in both l1 and l∞ norms, are established.
Numerical experiments are carried out to study the numerical accuracy.
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1. Introduction. In this paper, we construct and study a numerical scheme for
the Liouville equation in d-dimension:

ft + Hv · ∇xf −Hx · ∇vf = 0 , t > 0, x,v ∈ Rd,(1.1)

where the Hamiltonian H possesses the form

H(x,v) = c(x)|v| = c(x)
√

v2
1 + v2

2 + · · · + v2
d(1.2)

with c(x) being the local wave speed of the medium (1/c(x) is the index of refrac-
tion); f(t,x,v) is the density distribution of particles depending on position x, time
t, and the slowness vector v. We are concerned with the case when c(x) ∈ W 1,∞ with
isolated discontinuities due to different media. The discontinuity in c corresponds to
an interface, and as a consequence waves crossing this interface will undergo trans-
missions and reflections.

∗Received by the editors May 11, 2005; accepted for publication (in revised form) March 31, 2006;
published electronically September 29, 2006. This research was supported in part by NSF grant
DMS-0305080, NSFC under project 10228101, the Basic Research Projects of Tsinghua University
under Project JC2002010, and the Knowledge Innovation Project of the Chinese Academy of Sciences
K3502012D1 and K5502212F1.

http://www.siam.org/journals/sinum/44-5/63134.html
†Department of Mathematics, University of Wisconsin, Madison, WI 53706 and Department of

Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China (jin@math.wisc.edu). This
author’s research was also supported in part by the Institute for Mathematics and its Applications
(IMA) under a New Direction Visiting Professorship.

‡Institute of Computational Mathematics, Chinese Academy of Science, P. O. Box 2719, Beijing
100080, China (wenxin@amss.ac.cn).

1801



1802 SHI JIN AND XIN WEN

The bicharacteristics of this Liouville equation (1.1) satisfy the Hamiltonian sys-
tem

dx

dt
= c(x)

v

|v| ,
dv

dt
= −cx|v| .(1.3)

In classical mechanics the Hamiltonian (1.2) of a particle remains a constant along
the particle trajectory, even when it is being transmitted or reflected by the interface.

This Liouville equation arises in the phase space description of geometrical optics.
It is the high frequency limit of the wave equation

utt − c(x)2Δu = 0, t > 0, x ∈ Rd.(1.4)

In the past, numerous numerical methods have been proposed for the wave equation
(1.4) with discontinuous coefficients c; see [32] and references therein. However, our
interest is in the high frequency waves, for which many current numerical methods
such as the phase space based level set methods, are based on the Liouville equation
(1.1) with smooth c; see [18, 25, 34]. Semiclassical limits of wave equations with
transmissions and reflections at the interfaces were studied in [1, 33, 39]. A Liouville
equation based level set method for the wave front, but with only reflection, was
introduced in [9].

In our previous work [28] two classes of numerical schemes that are suitable for the
Liouville equation (1.1) with a discontinuous local wave speed c(x) were constructed.
The designing principle there was to build the behavior of waves at the interface—
either cross over with a changed velocity according to a constant Hamiltonian, or be
reflected with a negative velocity (or momentum)—into the numerical flux; see also
earlier works [36, 27]. These schemes were called Hamiltonian-preserving schemes.
By providing an interface condition, it connects the two domains of Liouville equa-
tion with smooth coefficients. This gives a physically relevant selection criterion for a
unique solution to the governing equation, which is linearly hyperbolic with singular
(discontinuous or measure-valued) coefficients. For a plane wave hitting a flat inter-
face, it selects the solution at the interface governed by Snell’s law of refraction when
the wave length is much shorter than the width of the interface while both lengths
go to zero. Nevertheless, this is not the only physically relevant possibility to choose
a solution across the interface. When the wave length is much longer than the width
of the interface, while both lengths go to zero, the waves can be partially transmit-
ted and reflected, and the transmission and reflection coefficients can be analytically
computed [33].

The goal of this paper is to construct the numerical scheme which is suitable
to deal with partial transmissions and reflections, with computable transmission and
reflection coefficients. As in [28], we still use the Hamiltonian-preserving principle to
determine the transmitted velocity across the interface. The new contribution of this
paper is to incorporate the transmission and reflection coefficients into the numerical
flux, in order to treat partial transmissions and reflections. This new, explicit scheme,
like those in [27, 28], allows a typical hyperbolic stability condition Δt = O(Δx,Δv),
under which we also establish the positivity, and l1 and l∞ stability theory for the
scheme.

In geometrical optics applications, one has to solve the Liouville equation like
(1.1) with measure-valued initial data

f(0,x,v) = ρ0(x)δ(v − u0(x)) ;(1.5)
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see, for example, [38, 14, 25]. The solution at later time remains measure-valued (with
finite or even infinite number of concentrations-corresponding to multivalued solutions
in the physical space). Computation of multivalued solutions in geometrical optics
and more generally in nonlinear PDEs has been a very active area of recent research;
see [3, 4, 6, 5, 10, 17, 12, 13, 15, 19, 20, 21, 18, 26, 34, 37, 41].

Direct numerical methods (DNM) for the Liouville equation with measure-valued
initial data (1.5), which approximate the initial delta function first, then evolve the
Liouville equation, could suffer from a poor numerical resolution due to the numerical
approximation of the initial data of delta function as well as numerical dissipation
[24]. The level set method proposed in [24, 25] decomposes the density distribution
f into the bounded level set functions obeying the same Liouville equation, which
greatly enhances the numerical resolution. One only involves numerically the delta
function at the output time when the moments—which has delta functions in their
integrands—need to be evaluated numerically.

However, the extension of this density distribution decomposing approach to the
case of partial transmission and reflection is not straightforward. In particular, as
the number of transmissions and reflections increase in time, so does the number of
needed level set functions satisfying (1.1). This difficulty was already pointed out in
[9]. In this paper, when dealing with the measure-valued initial data (1.5) we will
just use the DNM. This does not offer the same resolution as those in [28]. It remains
an open question on how to extend the decomposition idea of [24, 25] to the case of
partial transmissions and reflections.

This paper is organized as follows. In section 2, we present the behavior of waves
at an interface, which guides the designing of our scheme. We also give an interface
condition (2.5) which allows us to define the analytic solution to the Liouville equation
(1.1) with singular coefficients. We present the scheme in 1d in section 3 and study
its positivity and stability in both l∞ and l1 norms. We extend the scheme to the two
space dimension in section 4 in the simple case of an interface aligning with the grids.
Numerical examples are given in section 5 to verify the accuracy of the scheme. We
make some concluding remarks in section 6.

2. The behavior of waves at an interface.

2.1. Transmissions and reflections at the interface. In geometrical optics,
when a wave moves with its density distribution governed by the Liouville equation
(1.1), its Hamiltonian H = c|v| should be preserved across the interface

c+|v+| = c−|v−|,(2.1)

where the superscripts ± indicate the right and left limits of the quantity at the
interface. The wave can be partly reflected and partly transmitted. The condition
(2.1) can be used to determine the particle velocity on one side of the interface from
its value on the other side. When a plane wave hits a flat interface, this condition is
equivalent to Snell’s law of refraction [28]:

sin θi
c−

=
sin θt
c+

(2.2)

and the reflection law

θr = θi,(2.3)
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Fig. 2.1. Wave transmission and reflection at an interface.

where θi, θt, and θr stand for angles of incident and transmitted and reflected waves;
see Figure 2.1. The reflection coefficient is given by

αR =

(
c+ cos θi − c− cos θt
c+ cos θi + c− cos θt

)2

(2.4)

while the transmission coefficient is αT = 1 − αR; see, for example, [1, 33, 39].
We will discuss this behavior in more detail in 1D and 2D, respectively.
• The 1D case is simpler. Consider the case when, at an interface, the charac-

teristic on the left of the interface is given by ξ− > 0. Then with probability

αR =

(
c+ − c−

c+ + c−

)2

, the wave is reflected by the interface with a new velocity

−ξ−, and with probability αT = 1 − αR it will cross the interface with the

new velocity ξ+ =
c−

c+
ξ− determined by (2.1).

• The 2D case, when an incident wave hits a vertical interface (see Figure 2.1).
Let x = (x, y),v = (ξ, η). Assume that the incident wave has a velocity
(ξ−, η−) to the left side of the interface, with ξ− > 0. Since the interface
is vertical, (1.3) implies that η is not changed when the wave crosses the
interface. There are two possibilities:

1)
(

c−

c+

)2

(ξ−)2 +

[(
c−

c+

)2

− 1

]
(η−)2 > 0. In this case the wave can par-

tially transmit and partially be reflected. With probability αR =(
c+γ− − c−γ+

c+γ− + c−γ+

)2

the wave is reflected with a new velocity (−ξ−, η−),

where

γ+ = cos(θt) =
ξ+√

(ξ+)
2

+ (η−)
2
, γ− = cos(θi) =

ξ−√
(ξ−)

2
+ (η−)

2
.

With probability αT = 1 − αR it will be transmitted with the new
velocity (ξ+, η−), where

ξ+ =

√√√√(c−

c+

)2

(ξ−)2 +

[(
c−

c+

)2

− 1

]
(η−)2,



A SCHEME FOR TRANSMISSIONS AND REFLECTIONS 1805

is obtained using (2.1).

2) c− < c+ and
(

c−

c+

)2

(ξ−)2 +

[(
c−

c+

)2

− 1

]
(η−)2 < 0. In this case, it

is impossible for the wave to transmit, so the wave will be completely
reflected with velocity (−ξ−, η−).

If ξ− < 0, similar behavior can also be analyzed using the constant Hamiltonian
condition (2.1).

2.2. The interface condition for density distribution. The solution to the
Liouville equation (1.1), which is linearly hyperbolic, can be solved by the method
of characteristics. Namely, the density distribution f remains a constant along a
bicharacteristic. However, with partial transmissions and reflections, this is no longer
true, since f needs to be determined from two bicharacteristics, one accounting for the
transmission and the other for reflection. Therefore, we use the following condition
at the interface:

f(t,x+,v+) = αT f(t,x−,v−) + αRf(t,x+,−v+),(2.5)

where v− is defined from v+ through the constant Hamiltonian condition (2.1), αT

and αR are the transmission and reflection coefficients which add up to 1 and vary
with v+ except in the 1D case. This is the main idea of this paper, and will be used
in constructing the numerical flux across the interface in the next section. As will
be seen in the next section, our scheme incorporates the interface condition into the
numerical flux.

For hyperbolic systems with discontinuous coefficients, renormalized solution was
introduced by DiPerna and Lions [11], and further extended in [7, 8, 22, 23] for
uniqueness and stability. The renormalized solution idea cannot be applied here since
the coefficients can be measure-valued. Our approach here is to use the interface
condition (2.5) to connect two domains in which the Liouville equation has smooth
Hamiltonians. Concretely, we define the solution for (1.1) when the local wave speed
has discontinuities as follows.

Definition 2.1. The analytic solution for the Liouville equation (1.1) when the
local wave speed c has discontinuities is constructed by method of characteristics away
from the interface plus the interface condition (2.5).

Below we justify the well-posedness of the initial value problem, for the simple
case of a step function c with a vertical interface. The more general situation remains
to be worked out and will be deferred to a future work.

Consider the simple case that the local wave speed c(x),x ∈ Rd is piecewise
constant as follows:

c(x) =

{
c− x1 < 0

c+ x1 > 0,
(2.6)

where we assume c− < c+. We will also exclude some singular points, working in the
domain defined by

Ω =
{
(x,v)|x ∈ Rd,v ∈ Rd\{0}

}
\{(x,v)|x1 = v1 = 0}.(2.7)

We have the following theorem.
Theorem 2.1. Assume the initial data f(0,x,v) has a compact support in v.

With the solution defined in Definition 2.1, the initial value problem to

ft + Hv · ∇xf −Hx · ∇vf = 0 , t > 0, (x,v) ∈ Ω ,(2.8)
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with H given by (1.2), c given by (2.6), and Ω given by (2.7), is well-posed in l∞ and
l1 norms.

Proof. The proof is based on explicit construction of the analytical solution
f(T,x,v). The l∞ stability follows from the maximum principle, while the key for the
l1 stability is to prove that the Liouville theorem (volume preserving for a Hamiltonian
flow) holds at the interface for partial tranmissions and reflections.

To make the following description easier, we define a function extended from the
local wave speed (2.6)

c̃(x,v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c− x1 < 0

c+ x1 > 0
c− x1 = 0, v1 < 0

c+ x1 = 0, v1 > 0,

(2.9)

which is defined on the whole definition domain Ω. The values of c̃(x,v) on x1 = 0,
however, are not crucial as long as they are positive.

Split the domain Ω into two parts Ω = Ω1 ∪ Ω2 with

Ω1 =

{
(x,v) ∈ Ω

∣∣∣∣x1

(
x1 − c̃(x,v)

v1

|v|T
)

> 0 or

(
x1 − c̃(x,v)

v1

|v|T
)

= 0

}
,

Ω2 =

{
(x,v) ∈ Ω

∣∣∣∣x1

(
x1 − c̃(x,v)

v1

|v|T
)

< 0 or x1 = 0

}
,

where Ω1 consists of those points whose positions are not on the interface, and when
tracing back along the bicharacteristics, will not hit the interface within time T,
except possibly the end point. We further split domain Ω1,Ω2 as Ω1 = Ω−

1 ∪ Ω+
1 ,

Ω2 = Ω−
2 ∪ Ω+

2 with

Ω−
1 = {(x,v) ∈ Ω1|x1 < 0},

Ω+
1 = {(x,v) ∈ Ω1|x1 > 0},

Ω−
2 =

{
(x,v) ∈ Ω2

∣∣∣∣
(
x1 − c̃(x,v)

v1

|v|T
)

> 0

}
,

Ω+
2 =

{
(x,v) ∈ Ω2

∣∣∣∣
(
x1 − c̃(x,v)

v1

|v|T
)

< 0

}
.

For (x,v) ∈ Ω1, one has

f(T,x,v) = f

(
0,x − c−

v

|v|T ,v
)
, (x,v) ∈ Ω−

1 ,(2.10)

f(T,x,v) = f

(
0,x − c+

v

|v|T ,v
)
, (x,v) ∈ Ω+

1 .(2.11)

Define a subset of Ω−
2

Ω2,s =

{
(x,v) ∈ Ω−

2

∣∣∣∣
(
c−

c+

)2

|v|2 ≤ v2
2 + · · · + v2

d

}
.

For (x,v) ∈ Ω2, one has

f(T,x,v) = f(0,xR,vR), (x,v) ∈ Ω2,s,(2.12)

f(T,x,v) = αT (vT)f(0,xT,vT) + αR(vR)f(0,xR,vR), (x,v) ∈ Ω2\Ω2,s,

(2.13)
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where αT (v), αR(v) denote the transmission and reflection coefficients determined by
the incident wave slowness vector v, with condition αT (v)+αR(v) = 1. In geometrical
optics, the transmission coefficient also satisfies αT (vT) = αT (vR) for the slowness
vectors vT,vR appearing in (2.13), thus it holds that αT (vT) + αR(vR) = 1. This
contributes to the maximum principle of the solution for (1.1). The positions and
slowness vectors xT,vT,xR,vR can be explicitly expressed by x,v as follows

v2
T,1 =

[
ĉ |v|
ĉT

]2
− v2

2 − · · · − v2
d, vT,1v1 > 0,(2.14)

vT,i = vi, i = 2, . . . , d,(2.15)

xT,1 =
(ĉT )2vT,1

|v|ĉ

(
x1|v|
ĉ v1

− T

)
,(2.16)

xT,i = xi − vi
x1

v1
+

(ĉT )2vi
|v|ĉ

(
x1|v|
ĉ v1

− T

)
, i = 2, . . . , d,(2.17)

vR,1 = −v1, vR,i = vi, i = 2, . . . , d,(2.18)

xR,1 =
ĉ v1

|v|

(
T − x1|v|

ĉ v1

)
,(2.19)

xR,i = xi − vi
x1

v1
− ĉ vi

|v|

(
T − x1|v|

ĉ v1

)
, i = 2, . . . , d,(2.20)

where ĉ, ĉT are given by

ĉ = c−, ĉT = c+, for (x,v) ∈ Ω−
2 ,

ĉ = c+, ĉT = c−, for (x,v) ∈ Ω+
2 .

Since the solution f(T,x,v) can be explicitly expressed as (2.10), (2.11), (2.12),
and (2.13), we have proved the existence and uniqueness of the solution for the initial
value problem in Theorem 2.1. The l∞ stability follows easily from the maximum
principle and linearity of the Liouville equation.

In the following we prove the l1-stability of the solution for this initial value
problem. Define the l1-norm of the solution as

|f |1 =

∫
Ω

|f(t,x,v)|dxdv.

Due to the linearity of the Liouville equation, one only needs to prove that when the
initial value is bounded in l1-norm, then the solution remains bounded in l1-norm
at later time. Assume |f(0,x,v)|1 exists, we now investigate the relation between
|f(T,x,v)|1 and |f(0,x,v)|1.

Define the sets

Ω−
3 =

{
(x,v) ∈ Ω

∣∣∣∣ ∃(y,v) ∈ Ω−
1 s.t. x = y − c(y)

v

|v|T
}
,

Ω+
3 =

{
(x,v) ∈ Ω

∣∣∣∣ ∃(y,v) ∈ Ω+
1 s.t. x = y − c(y)

v

|v|T
}
,

Ω4,s =

{
(x,v) ∈ Ω

∣∣∣∣x1 < 0, x1 + c−
v1

|v|T ≥ 0,

(
c−

c+

)2

|v|2 ≤ v2
2 + · · · + v2

d

}
,

Ω4 = Ω\{Ω−
3 ∪ Ω+

3 ∪ Ω4,s}.
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One has

|f(T,x,v)|1 =

∫
Ω−

1

|f(T,x,v)|dxdv +

∫
Ω+

1

|f(T,x,v)|dxdv

+

∫
Ω2,s

|f(T,x,v)|dxdv +

∫
Ω2\Ω2,s

|f(T,x,v)|dxdv.(2.21)

For the first part in (2.21), since the map (x,v) → (x + c− v
|v|T ,v) is volume-

preserving, (2.10) gives∫
Ω−

1

|f(T,x,v)|dxdv =

∫
Ω−

1

∣∣∣∣f
(

0,x − c−
v

|v|T ,v
)∣∣∣∣dxdv(2.22)

=

∫
Ω−

3

|f(0,x,v)|dxdv.

In the same way, the second part in (2.21) holds∫
Ω+

1

|f(T,x,v)|dxdv =

∫
Ω+

3

|f(0,x,v)|dxdv.(2.23)

To calculate the last two parts in (2.21), we need to investigate the Jacobians
of the maps (xT,vT)→ (x,v) and (xR,vR)→ (x,v). From (2.14)–(2.20), these two
maps can be explicitly written out. The nonzero elements in the two Jacobian matri-
ces include

∂x1

∂xT,1
,
∂x1

∂vT,1
,
∂x1

∂vT,2
, . . . ,

∂x1

∂vT,d
,

∂xi

∂xT,1
,
∂xi

∂xT,i
,
∂xi

∂vT,1
,
∂xi

∂vT,2
, . . . ,

∂xi

∂vT,d
, i = 2, . . . , d,

∂v1

∂vT,i
, i = 1, 2, . . . , d,

∂vi
∂vT,i

, i = 2, . . . , d,

∂x1

∂xR,1
,
∂x1

∂vR,1
,
∂x1

∂vR,2
, . . . ,

∂x1

∂vR,d
,

∂xi

∂xR,1
,
∂xi

∂xR,i
,

∂xi

∂vR,1
,

∂xi

∂vR,2
, . . . ,

∂xi

∂vR,d
, i = 2, . . . , d,

∂vi
∂vR,i

, i = 1, 2, . . . , d,

from which only the diagonal elements influence the Jacobians. They are

∂x1

∂xT,1
=

(
ĉ

ĉT

)2
v1

vT,1
,

∂xi

∂xT,i
= 1, i = 2, . . . , d,

∂v1

∂vT,1
=

(
ĉT
ĉ

)2
vT,1

v1
,

∂vi
∂vT,i

= 1, i = 2, . . . , d,
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∂x1

∂xR,1
= −1,

∂xi

∂xR,i
= 1, i = 2, . . . , d,

∂v1

∂vR,1
= −1,

∂vi
∂vR,i

= 1, i = 2, . . . , d.

Thus it is verified that the two maps (xT,vT) → (x,v) and (xR,vR) → (x,v) are
volume-preserving.

For the third part in (2.21), from (2.12) one has∫
Ω2,s

|f(T,x,v)|dxdv =

∫
Ω2,s

|f(0,xR,vR)|dxdv =

∫
Ω4,s

|f(0,x,v)|dxdv.(2.24)

For the fourth part in (2.21), from (2.13) one has∫
Ω2\Ω2,s

|f(T,x,v)|dxdv =

∫
Ω2\Ω2,s

αT (vT) |f(0,xT,vT)|dxdv

+

∫
Ω2\Ω2,s

αR(vR) |f(0,xR,vR)|dxdv

=

∫
Ω4

αT (v) |f(0,x,v)|dxdv +

∫
Ω4

αR(v) |f(0,x,v)|dxdv

=

∫
Ω4

|f(0,x,v)|dxdv.(2.25)

Together with (2.21), (2.22), (2.23), (2.24), and (2.25), one gets

|f(T,x,v)|1 =

∫
Ω−

3

|f(0,x,v)|dxdv +

∫
Ω+

3

|f(0,x,v)|dxdv

+

∫
Ω4,s

|f(0,x,v)|dxdv +

∫
Ω4

|f(0,x,v)|dxdv

= |f(0,x,v)|1.

This is the l1-stability—in fact l1 preservation—of the solution for the initial value
problem in Theorem 2.1.

Remark 2.1. In [2], a classical-classical coupling model that connects two domains
of classical mechanics with constant potentials with a classical domain [a, b] in between
where the potential is variable was introduced, where the interface conditions at a and
b were given. When a = b, their interface conditions reduce to (2.5).

3. The scheme in 1D.

3.1. The numerical flux. We now describe our finite difference scheme for the
1D Liouville equation

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0 .(3.1)

We employ a uniform mesh with grid points at xi+ 1
2
, i = 0, . . . , N, in the x-

direction and ξj+ 1
2
, j = 0, . . . ,M in the ξ-direction. The cells are centered at (xi, ξj),

i = 1, . . . , N, j = 1, . . . ,M with xi = 1
2 (xi+ 1

2
+ xi− 1

2
) and ξj = 1

2 (ξj+ 1
2

+ ξj− 1
2
). The

uniform mesh size is denoted by Δx = xi+ 1
2
−xi− 1

2
,Δξ = ξj+ 1

2
−ξj− 1

2
. We also assume

a uniform time step Δt and the discrete time is given by 0 = t0 < t1 < · · · < tL = T .
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We introduce the mesh ratios λt
x = Δt

Δx , λ
t
ξ = Δt

Δξ , assumed to be fixed. The cell
average of f is defined by

fij =
1

ΔxΔξ

∫ x
i+ 1

2

x
i− 1

2

∫ ξ
j+ 1

2

ξ
j− 1

2

f(x, ξ, t)dξdx.

We assume the local wave speed is Lipschitz continuous except at its isolated
discontinuous points. Assume that the discontinuous points of the wave speed c are
located at the grid points. Let the left and right limits of c(x) at point xi+1/2 be c+

i+ 1
2

and c−
i+ 1

2

, respectively. Note that if c is continuous at xj+1/2, then c+
i+ 1

2

= c−
i+ 1

2

. We

approximate c by a piecewise linear function

c(x) ≈ c+j−1/2 +
c−j+1/2 − c+j−1/2

Δx
(x− xj−1/2) .

We also define the average wave speed as ci = 1
2 (c+

i− 1
2

+ c−
i+ 1

2

). We will adopt

the flux splitting technique used in [36, 27, 28]. The semidiscrete scheme (with time
continuous) reads

(fij)t +
cisign(ξj)

Δx
(f−

i+ 1
2 ,j

− f+
i− 1

2 ,j
) −

c−
i+ 1

2

− c+
i− 1

2

ΔxΔξ
|ξj |(fi,j+ 1

2
− fi,j− 1

2
) = 0,(3.2)

where the numerical fluxes fi,j+ 1
2

are defined using the upwind discretization. Since

the characteristics of the Liouville equation may be different on the two sides of the
interface, the corresponding numerical fluxes should also be different. The essential
part of our algorithm is to define the split numerical fluxes f−

i+ 1
2 ,j

, f+
i− 1

2 ,j
at each cell

interface. We will use (2.5) to define these fluxes.
Assume c is discontinuous at xi+ 1

2
. Consider the case ξj > 0. Using upwind

scheme, f−
i+ 1

2 ,j
= fij . However, by (2.5),

f+
i+ 1

2 ,j
= αT f(t, x−

i+ 1
2

, ξ−) + αRf(t, x+
i+ 1

2

,−ξ+)

while ξ− is obtained from ξ+ = ξj from (2.1). Since ξ− may not be a grid point, we
have to define it approximately. One can first locate the two cell centers that bound
this velocity, and then use a linear interpolation to evaluate the needed numerical flux
at ξ−. The case of ξj < 0 is treated similarly. The detailed algorithm to generate the
numerical flux is given below.

Algorithm I
• if ξj > 0

f−
i+ 1

2 ,j
= fij ,

ξ′ =
c+
i+ 1

2

c−
i+ 1

2

ξj

• if ξk ≤ ξ′ < ξk+1 for some k

αR =

(
c+
i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2

, αT = 1 − αR

f+
i+ 1

2 ,j
= αT

(
ξk+1 − ξ′

Δξ
fi,k +

ξ′ − ξk
Δξ

fi,k+1

)
+ αRfi+1,k′
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where ξk′ = −ξk
• end

• if ξj < 0
f+
i+ 1

2 ,j
= fi+1,j ,

ξ′ =
c−
i+ 1

2

c+
i+ 1

2

ξj

• if ξk ≤ ξ′ < ξk+1 for some k

αR =

(
c+
i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2

, αT = 1 − αR

f−
i+ 1

2 ,j
= αT

(
ξk+1 − ξ′

Δξ
fi+1,k +

ξ′ − ξk
Δξ

fi+1,k+1

)
+ αRfi,k′

where ξk′ = −ξk
• end

The above algorithm for evaluating numerical fluxes is of first order. One can
obtain a second order flux by incorporating the slope limiter, such as the van Leer or
minmod slope limiter [31], into the above algorithm. This can be achieved by replacing
fik with fik+ Δx

2 sik, and replacing fi+1,k with fi+1,k−Δx
2 si+1,k in the above algorithm

for all possible index k, where sik is the slope limiter in the x-direction.
After the spatial discretization is specified, one can use any time discretization

for the time derivative.

3.2. Positivity and l∞ contraction. Since the exact solution of the Liouville
equation is positive when the initial profile is, it is important that the numerical
solution inherits this property.

We only consider the scheme using the first order numerical flux, and the for-
ward Euler method in time. Without loss of generality, we consider the case ξj > 0
and c−

i+ 1
2

< c+
i− 1

2

for all i (the other cases can be treated similarly with the same

conclusion). The scheme reads

fn+1
ij − fn

ij

Δt
+ci

fij − (d1fi−1,k + d2fi−1,k+1 + αRfi,k′)

Δx
−
c−
i+ 1

2

− c+
i− 1

2

Δx
ξj
fij − fi,j−1

Δξ
= 0,

where d1, d2, α
R are nonnegative and d1 +d2 = αT = 1−αR. We omit the superscript

n of f . The above scheme can be rewritten as

fn+1
ij =

⎛
⎝1 − ciλ

t
x −

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣
Δx

|ξj |λt
ξ

⎞
⎠fij + ciλ

t
x

(
d1fi−1,k + d2fi−1,k+1 + αRfi,k′

)

+

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣
Δx

|ξj |λt
ξfi,j−1 .(3.3)

Now we investigate the positivity of scheme (3.3). This is to prove that if fn
ij ≥ 0

for all (i, j), then this is also true for fn+1. Clearly one just needs to show that all of
the coefficients before fn are nonnegative. A sufficient condition for this is clearly

1 − ciλ
t
x −

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣
Δx

|ξj |λt
ξ ≥ 0,
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or

Δtmax
i,j

⎡
⎢⎢⎣ ci

Δx
+

∣∣∣c−
i+ 1

2

−c+
i− 1

2

∣∣∣
Δx |ξj |
Δξ

⎤
⎥⎥⎦ ≤ 1.(3.4)

The quantity

∣∣c−
i+ 1

2

−c+
i− 1

2

∣∣
Δx now represents the wave speed gradient at its smooth

point, which has a finite upper bound since c ∈ W 1,∞. In addition, typically f has a
compact support, so in practical computation ξ is confined in a bounded set. Thus
our scheme allows a time step Δt = O(Δx,Δξ).

According to the study in [35], our second order scheme, which incorporates a
slope limiter into the first order scheme, is positive under the half CFL condition,
namely, the constant on the right-hand side of (3.4) is 1/2.

The above conclusion is drawn on the forward Euler time discretization. One can
draw the same conclusion for the second order TVD Runge–Kutta time discretization
[40].

The l∞-contracting property of this scheme:

‖fn‖∞ ≤ ‖f0‖∞
follows easily, because the coefficients in (3.3) are positive and the sum of them is 1.

3.3. The l1-stability of the scheme. In this section we prove the l1-stability
of the scheme (with the first order numerical flux and the forward Euler method
in time). For simplicity, we consider the case when the wave speed has only one
discontinuity at grid point xm+ 1

2
with c−

m+ 1
2

> c+
m+ 1

2

, and c′(x) > 0 at smooth

points. The other cases, namely, when c′(x) ≤ 0, or the wave speed having several
discontinuity points with increased or decreased jumps, can be discussed similarly.
Denote λc ≡ c+

m+ 1
2

/c−
m+ 1

2

< 1.

We consider the general case that ξ1 < 0, ξM > 0. For this case, as adopted in [25,
28], the computational domain should exclude a set Oξ =

{
(x, ξ) ∈ R

2 |ξ = 0
}
, which

causes singularity in the velocity field. For example, we can exclude the following
index set:

Do =

{
(i, j)

∣∣∣|ξj | < Δξ

2

}
,

from the computational domain.
Since c(x) has a discontinuity, we also define an index set

D4
l = {(i, j)|xi ≤ xm, ξj < λcξ1}.

As mentioned in [28], D4
l represents the area where waves come from outside of

the domain [x1, xN ] × [ξ1, ξM ]. In order to implement our scheme conveniently, this
index set is also excluded from the computational domain. Thus the computational
domain is chosen as

Ed = {(i, j)|i = 1, . . . , N, j = 1, . . . ,M} \
{
Do ∪D4

l

}
.(3.5)

As a result of excluding the index set Do from the computational domain, the
computational domain is split into two nonoverlapping parts:

Ed = {(i, j) ∈ Ed|ξj > 0} ∪ {(i, j) ∈ Ed|ξj < 0} ≡ E+
d ∪ E−

d .
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In [28] we analyzed the l1-stability of the scheme on E+
d and E−

d separately.
Here we will conduct the analysis on the full phase space Ed since transmission and
reflection waves coexist at the interface.

We define the l1-norm of a numerical solution uij in the set Ed to be

|f |1 =
1

Nd

∑
(i,j)∈Ed

|fij |(3.6)

with Nd being the number of elements in Ed.
Given the initial data f0

ij , (i, j) ∈ Ed. Denote the numerical solution at time T to

be fL
ij , (i, j) ∈ Ed. To prove the l1-stability, we need to show that |fL|1 ≤ C|f0|1.
Due to the linearity of the scheme, the equation for the error between the an-

alytical and the numerical solutions is the same as (3.3), so in this section, fij will
denote the error. We assume there is no error at the boundary, thus fn

ij = 0 at the

boundary. If the l1-norm of the error introduced at each time step in the incoming
boundary cells is ensured to be o(1) part of |fn|1, our following analysis still applies.

Now denote

Ai =
1

Δx

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣ .(3.7)

Since c(x) is Lipschitz continuous at its smooth part, there exists an Au > 0, such
that Ai < Au,∀i. Assume also that there is an Cm > 0 such that ci > Cm,∀i. The
finite difference scheme is given as follows:

• When ξj > 0
1) if i = m + 1,

fn+1
ij =

(
1 −Ai|ξj |λt

ξ − ciλ
t
x

)
fij + Ai|ξj |λt

ξfi,j+1 + ciλ
t
xfi−1,j ,(3.8)

2)

fn+1
m+1,j =

(
1 −Am+1|ξj |λt

ξ − cm+1λ
t
x

)
fm+1,j + Am+1|ξj |λt

ξfm+1,j+1

+ cm+1λ
t
x(dj1fm,k + dj2fm,k+1 + αRfm+1,k′).(3.9)

• When ξj < 0
3) if i = m,

fn+1
ij =

(
1 −Ai|ξj |λt

ξ − ciλ
t
x

)
fij + Ai|ξj |λt

ξfi,j+1 + ciλ
t
xfi+1,j ,(3.10)

4)

fn+1
mj =

(
1 −Am|ξj |λt

ξ − cmλt
x

)
fmj + Am|ξj |λt

ξfm,j+1

+ cmλt
x(dj1fm+1,k + dj2fm+1,k+1 + αRfm,k′),(3.11)

where 0 ≤ dj1, dj2 ≤ 1 and dj1 + dj2 = αT = 1− αR = 1. In (3.9) k is determined by

ξk ≤ λcξj < ξk+1 and ξk′ = −ξk. In (3.11) k is determined by ξk ≤ ξj
λc

< ξk+1 and
ξk′ = −ξk.

When summing up all absolute values of fn+1
ij in (3.8)–(3.11), one typically gets

the following inequality:

|fn+1|1 ≤ 1

Nd

∑
(i,j)∈Ed

αij |fn
ij |,(3.12)
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where the coefficients αij are positive. One can check that, under the CFL condition
(3.4), αij ≤ 1 + 2AuΔt except for possibly (i, j) ∈ D−

m+1

⋃
D+

m, where

D−
m+1 = {(i, j) ∈ E−

d |i = m + 1}, D+
m = {(i, j) ∈ E+

d |i = m}.

We next derive the bounds for M−,M+ defined as

M− = max
(m+1,j)∈D−

m+1

αm+1,j , M+ = max
(m,j)∈D+

m

αm,j .

Define the set

Sm+1
j =

{
j′
∣∣∣ξj′ < 0,

∣∣∣∣ξj′λc
− ξj

∣∣∣∣ < Δξ

}
for (m + 1, j) ∈ D−

m+1.

Let the number of elements in Sm+1
j be Nm+1

j . One can check that Nm+1
j ≤

2λc + 1 because every two elements j′1, j
′
2 ∈ Sm+1

j satisfy

∣∣∣∣ ξj′1λc
−

ξj′
2

λc

∣∣∣∣ ≥ Δξ
λc

.

On the other hand, one can easily check from (3.9) and (3.11), for (m + 1, j) ∈
D−

m+1, that

αm+1,j < 1−cm+1λ
t
x+cmλt

x (2λc + 1)αT+αRcm+1λ
t
x = 1+αT (cm+cm+1)λ

t
x+O(Δx),

so for sufficiently small Δx, M− can be bounded by

M− < 1 + 2αT (cm + cm+1)λ
t
x.

Similarly, one can prove for sufficiently small Δx, M+ is also bounded by

M+ < 1 + 2αT (cm + cm+1)λ
t
x.

Denote M ′ = 2αT (cm + cm+1)λ
t
x. From (3.12),

|fn+1|1 < (1 + 2AuΔt) |fn|1 +
M ′

Nd

∑
(m+1,j)∈D−

m+1

|fn
m+1,j |+

M ′

Nd

∑
(m,j)∈D+

m

|fn
m,j |.

(3.13)

Consecutively using (3.13) gives

|fL|1 < (1 + 2AuΔt)
L

⎧⎪⎨
⎪⎩|f0|1 +

M ′

Nd

L−1∑
n=0

⎡
⎢⎣ ∑

(m+1,j)∈D−
m+1

|fn
m+1,j |

⎤
⎥⎦

+
M ′

Nd

L−1∑
n=0

⎡
⎣ ∑

(m,j)∈D+
m

|fn
m,j |

⎤
⎦
⎫⎬
⎭ .(3.14)

Define

S1 =

L−1∑
n=0

⎡
⎢⎣ ∑

(m+1,j)∈D−
m+1

|fn
m+1,j |

⎤
⎥⎦ , S2 =

L−1∑
n=0

⎡
⎣ ∑

(m,j)∈D+
m

|fn
m,j |

⎤
⎦ .(3.15)
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These two terms can be proved in the same way as in [29] to get

S1, S2 < CTNd|f0|1,(3.16)

where

CT ≡ exp

(
2Au

Cm
(xN − x1)

)
1

Cmλt
x

.(3.17)

Combing (3.14) and (3.16),

|fL|1 < (1 + 2AuΔt)
L {|f0|1 + 2CTM

′|f0|1
}

= exp (2AuT ) [1 + 2CTM
′] |f0|1

≡ C|f0|1,

where C ≡ exp (2AuT ) [1 + 2CTM
′].

Thus we prove the following theorem.
Theorem 3.1. Let c(x) ∈ W 1,∞ have a discontinuity at one point, and be

bounded below from zero, c(x) > Cm > 0. Assume f0 has a finite l1-norm defined
(3.6) with a compact support in ξ. Then under the hyperbolic CFL condition (3.4),
the solution yielded by the scheme (3.8)–(3.11) is stable in l1-norm:

|fL|1 < C|f0|1.

4. The scheme in two space dimension. Consider the 2D Liouville equation

ft +
c(x, y)ξ√
ξ2 + η2

fx +
c(x, y)η√
ξ2 + η2

fy − cx
√
ξ2 + η2fξ − cy

√
ξ2 + η2fη = 0.(4.1)

We employ a uniform mesh with grid points at xi+ 1
2
, yj+ 1

2
, ξk+ 1

2
, ηl+ 1

2
in each

direction. The cells are centered at (xi, yj , ξk, ηl) with xi = 1
2 (xi+ 1

2
+ xi− 1

2
), yj =

1
2 (yj+ 1

2
+ yj− 1

2
), ξk = 1

2 (ξk+ 1
2

+ ξk− 1
2
), ηl = 1

2 (ηl+ 1
2

+ ηl− 1
2
). The mesh size is denoted

by Δx = xi+ 1
2
− xi− 1

2
,Δy = yj+ 1

2
− yj− 1

2
,Δξ = ξk+ 1

2
− ξk− 1

2
,Δη = ηl+ 1

2
− ηl− 1

2
. We

define the cell average of f as

fijkl =
1

ΔxΔyΔξΔη

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ ξ
k+ 1

2

ξ
k− 1

2

∫ η
l+ 1

2

η
l− 1

2

f(x, y, ξ, η, t)dηdξdydx.

Similar to the 1D case, we approximate c(x, y) by a piecewise bilinear function, and,
for convenience, we always provide two interface values of c at each cell interface.
When c is smooth at a cell interface, the two potential interface values are identical.
We also define the average wave speed in a cell by averaging the four wave speed
values at the cell interface:

cij =
1

4
(c+

i− 1
2 ,j

+ c−
i+ 1

2 ,j
+ c+

i,j− 1
2

+ c−
i,j+ 1

2

).

The 2D Liouville equation (4.1) can be semidiscretized as

(fijkl)t +
cijξk

Δx
√

ξ2
k + η2

l

(
f−
i+ 1

2 ,jkl
− f+

i− 1
2 ,jkl

)
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+
cijηl

Δy
√
ξ2
k + η2

l

(
f−
i,j+ 1

2 ,kl
− f+

i,j− 1
2 ,kl

)

−
c−
i+ 1

2 ,j
− c+

i− 1
2 ,j

ΔxΔξ

√
ξ2
k + η2

l

(
fij,k+ 1

2 ,l
− fij,k− 1

2 ,l

)

−
c−
i,j+ 1

2

− c+
i,j− 1

2

ΔyΔη

√
ξ2
k + η2

l

(
fijk,l+ 1

2
− fijk,l− 1

2

)
= 0,

where the interface values fij,k+ 1
2 ,l

, fijk,l+ 1
2

are provided by the upwind approxi-

mation, and the split interface values f−
i+ 1

2 ,jkl
, f+

i− 1
2 ,jkl

, f−
i,j+ 1

2 ,kl
, f+

i,j− 1
2 ,kl

should be

obtained using a similar but slightly different algorithm for the 1D case. For example,
to evaluate f±

i+ 1
2 ,jkl

we can extend Algorithm I as

Algorithm I in 2D

• if ξk > 0
f−
i+ 1

2 ,jkl
= fijkl, ξk1 = −ξk

• if

(
C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

(ξk)
2

+

⎡
⎣(C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

− 1

⎤
⎦ (ηl)

2
> 0

ξ− =

√√√√√
(

C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

(ξk)
2

+

⎡
⎣(C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

− 1

⎤
⎦ (ηl)

2

• if ξk′ ≤ ξ− < ξk′+1 for some k′

γ+ =
ξk√

(ξk)
2

+ (ηl)
2
, γ− =

ξ−√
(ξ′)

2
+ (ηl)

2

αR =

(
c+
i+ 1

2

γ− − c−
i+ 1

2

γ+

c+
i+ 1

2

γ− + c−
i+ 1

2

γ+

)2

, αT = 1 − αR

f+
i+ 1

2 ,jkl
= αT

(
ξk′+1 − ξ−

Δξ
fij,k′,l +

ξ− − ξk′

Δξ
fij,k′+1,l

)
+αRfi+1,j,k1,l

• end
• else

f+
i+ 1

2 ,jkl
= fi+1,j,k1,l

• end
• if ξk < 0

f+
i+ 1

2 ,jkl
= fi+1,jkl, ξk1

= −ξk

• if

(
C−

i+ 1
2
,j

C+

i+ 1
2
,j

)2

(ξk)
2

+

⎡
⎣(C−

i+ 1
2
,j

C+

i+ 1
2
,j

)2

− 1

⎤
⎦ (ηl)

2
> 0

ξ+ = −

√√√√√
(

C−
i+ 1

2
,j

C+

i+ 1
2
,j

)2

(ξk)
2

+

⎡
⎣(C−

i+ 1
2
,j

C+

i+ 1
2
,j

)2

− 1

⎤
⎦ (ηl)

2

• if ξk′ ≤ ξ+ < ξk′+1 for some k′

γ+ =
|ξ+|√

(ξ+)
2

+ (ηl)
2
, γ− =

|ξk|√
(ξk)

2
+ (ηl)

2
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αR =

(
c+
i+ 1

2

γ− − c−
i+ 1

2

γ+

c+
i+ 1

2

γ− + c−
i+ 1

2

γ+

)2

, αT = 1 − αR

f−
i+ 1

2 ,jkl
= αT

(
ξk′+1 − ξ+

Δξ
fi+1,j,k′,l +

ξ+ − ξk′

Δξ
fi+1,j,k′+1,l

)
+ αRfij,k1,l

• end
• else

f−
i+ 1

2 ,jkl
= fi,j,k1,l where ξk1 = −ξk

• end

The flux f±
i,j+ 1

2 ,kl
can be constructed similarly.

As introduced in section 2, the essential difference between the 1D and 2D flux
definitions is that in the 2D case, the phenomenon that a wave is completely reflected
at the interface does occur, while in 1D, the transmission and reflection waves always
coexist at the interface.

Since the wave speed c ∈ W 1,∞, this scheme, similar to the 1D scheme, is also
subject to a hyperbolic CFL condition under which the scheme is positive.

5. Numerical examples. In this section we present numerical examples to
demonstrate the validity of the proposed scheme and to study the numerical accuracy.
In the numerical computations the second order TVD Runge–Kutta time discretiza-
tion [40] is used. We use the second order scheme with the van Leer slope limiter in
constructing the numerical fluxes except for Example 5.2.

Example 5.1. A 1D problem with exact L∞-solution. Consider the 1D Liouville
equation

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0(5.1)

with a discontinuous wave speed given by

c(x) =

{
0.6 x < 0

0.2 x > 0.

The initial data is given by

f(x, ξ, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1 x < 0, ξ > 0,
√
x2 + 4ξ2 < 1,

1 x > 0, ξ < 0,
√
x2 + ξ2 < 1,

0 otherwise.

(5.2)

In this example the reflection and transmission coefficients αR, αT at the interface

are αR =
1

4
, αT =

3

4
. The exact solution for f at t = 1 is given by
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Fig. 5.1. Example 5.1, the nonzero part of the exact solution f(x, ξ, 1) depicted on the 400×400
mesh. The horizontal axis is the position, the vertical axis is the slowness.

f(x, ξ, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αT 0 < x < 0.2,
√

1 − (0.2 − x)2 < ξ < 1.5
√

1 − (3x− 0.6)2;

1 0 < x < 0.2, 0 < ξ <
√

1 − (0.2 − x)2;

1 0 < x < 0.8, −
√

1 − (x + 0.2)2 < ξ < 0;

1 − 0.4 < x < 0, 0 < ξ <
1

2

√
1 − (x− 0.6)2;

1 − 0.6 < x < 0, −1

3

√
1 −
(x

3
+ 0.2

)2

< ξ < 0;

αR − 0.6<x< 0, −1

2

√
1− (x+ 0.6)2 <ξ < − 1

3

√
1−

(x
3

+ 0.2
)2

;

0 otherwise,
(5.3)
as shown in Figure 5.1.

We are also interested in computing the moments of f , which include the density

ρ(x, t) =

∫
f(x, ξ, t)dξ

and the averaged slowness

u(x, t) =

∫
f(x, ξ, t)ξdξ

/
ρ(x, t).
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At t = 1, the exact density is

ρ(x, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1 − (x + 0.2)2 0.2 < x < 0.8;

1.5αT
√

1 − (3x− 0.6)2 + αR
√

1 − (0.2 − x)2

+
√

1 − (x + 0.2)2 0 < x < 0.2;

αT

3

√
1 −
(x

3
+ 0.2

)2

+
αR

2

√
1 − (x + 0.6)2 − 0.6 < x < −0.4;

αT

3

√
1 −
(x

3
+ 0.2

)2

+
αR

2

√
1 − (x + 0.6)2

+
1

2

√
1 − (x− 0.6)2 − 0.4 < x < 0,

0 otherwise.
(5.4)

The averaged slowness only has definition in [−0.6, 0.8] since the density is zero outside
this interval. The exact averaged slowness in [−0.6, 0.8] is

u(x, 1) =
1

2ρ(x, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[
1 − (x + 0.2)2

]
0.2 < x < 0.8;

2.25αT
[
1 − (3x− 0.6)2

]
+ αR

[
1 − (0.2 − x)2

]
−
[
1 − (x + 0.2)2

]
0 < x < 0.2;

−αT

9

[
1 −
(x

3
+ 0.2

)2
]
− αR

4

[
1 − (x + 0.6)2

]
− 0.6 < x < −0.4;

−αT

9

[
1 −
(x

3
+ 0.2

)2
]
− αR

4

[
1 − (x + 0.6)2

]

+
1

4

[
1 − (x− 0.6)2

]
− 0.4 < x < 0.

(5.5)

We choose the time step as Δt = 1
2Δξ. The computational domain is chosen

as [x, ξ] ∈ [−1.5, 1.5] × [−1.6, 1.6]. Table 5.1 compares the l1-error of the numerical
solutions for f , ρ on [−1.5, 1.5] and u on [−0.6, 0.8] computed with different meshes,
respectively.

The convergence rate of f in the l1-norm is shown to be about 0.74. This agrees
with the well-established theory [30, 42], that the l1-error by finite difference scheme
for a discontinuous solution of a linear hyperbolic equation is at most half order. The
convergence rate of ρ and u are shown to be about 0.74 and 0.98, respectively, since
the solutions also contain discontinuities away from the interface.

Figure 5.2 shows the numerical density ρ and averaged slowness u computed with
a 400× 400 cell along with the exact solutions in the physical space.

Example 5.2. Computing the physical observables of a 1D problem with measure-
valued solution. Consider the 1D Liouville equation (5.1), where the wave speed is a
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Table 5.1

l1 error of the numerical solutions with different meshes.

meshes 50 × 50 100 × 100 200× 200 400× 400

f 0.179090 0.104788 0.064989 0.038535

ρ 0.124361 0.079007 0.043248 0.025187

u 0.143083 0.063068 0.043079 0.019870

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5
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2.5

x

ρ

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

u

Fig. 5.2. Example 5.1, the density ρ and averaged slowness u at t = 1. Solid line: the exact
solution; “o”: the numerical solutions using the 400 × 400 mesh. Left: the density ρ; Right: the
averaged slowness u.

well-shaped function

c(x) =

{
0.6 − 0.4 < x < 0.4

1 else

and the initial data is a delta-function

f(x, ξ, 0) = δ(ξ − w(x))(5.6)

with

w(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5, x ≤ −1.6;

0.5 − 0.4

(1.6)2
(x + 1.6)2, −1.6 < x ≤ 0;

−0.5 +
0.4

(1.6)2
(x− 1.6)2, 0 < x < 1.6;

−0.5, x ≥ 1.6 .

(5.7)

Figure 5.2 plots w(x) in dashed lines.

In this example we are interested in the approximation of the density

ρ(x, t) =

∫
f(x, ξ, t)dξ ,



A SCHEME FOR TRANSMISSIONS AND REFLECTIONS 1821
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Fig. 5.3. Example 5.2, slowness. Dashed line: the initial slowness w(x); Solid line: the slowness
at t = 1. The horizontal axis is the position, the vertical axis is the slowness.

and the averaged slowness

u(x, t) =

∫
f(x, ξ, t)ξdξ∫
f(x, ξ, t)dξ

.

In the computation, we first approximate the delta function initial data (5.6) by
a discrete delta function [16]:

δβ(x) =

⎧⎪⎨
⎪⎩

1

β

(
1 −
∣∣∣∣xβ
∣∣∣∣
)
, | xβ | ≤ 1 ,

0, | xβ | > 1 .

(5.8)

If |ξj − w(xi)| < β, set f0
ij = 1

β

(
1 − | ξj−w(xi)

β |
)
, and f0

ij = 0 otherwise. The choice of
the discrete delta function support size β will be made more precise later. We then
use the Hamiltonian-preserving scheme to solve the Liouville equation (5.1). Then
the moments are recovered by

ρni =
∑
j

fn
ijΔξ, un

i =

⎛
⎝∑

j

fn
ijξjΔξ

⎞
⎠/ρni .

With partial transmissions and reflections, the exact multivalued slowness at t = 1
is depicted as the solid line in Figure 5.3.

In this example the reflection and transmission coefficients αR, αT at the wave

speed interface are αR =
1

16
, αT =

15

16
. At t = 1, the exact density and averaged
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slowness are given by

ρ(x, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, −1.6 < x < −1.4;

1 + αR, −1.4 < x < −0.4 − 1/3;

1 + αR + 0.6αT , −0.4 − 1/3 < x < −0.4;

1 + αR + αT /0.6, −0.4 < x < −0.2;

αT /0.3, −0.2 < x < 0.2;

1 + αR + αT /0.6, 0.2 < x < 0.4;

1 + αR + 0.6αT , 0.4 < x < 0.4 + 1/3;

1 + αR, 0.4 + 1/3 < x < 1.4;

1, 1.4 < x < 1.6;

(5.9)

and

u(x, 1) =
1

ρ(x, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5, −1.6 < x < −1.4;

0.5 − αRΥ(x + 0.2), −1.4 < x < −0.4 − 1
3
;

0.5 − αRΥ(x + 0.2) − 0.36αT Υ(0.6x− 1.16), −0.4 − 1
3
< x < −0.6;

Υ(x + 0.6) − αRΥ(x + 0.2) − 0.36αT Υ(0.6x− 1.16), −0.6 < x < −0.4;

αT

0.36
Υ( x

0.6
+ 13

15
) − Υ(x− 1) + αRΥ(x + 1.8), −0.4 < x < −0.2;

αT

0.36
Υ( x

0.6
+ 13

15
) − αT

0.36
Υ( x

0.6
− 13

15
), −0.2 < x < 0.2;

− αT

0.36
Υ( x

0.6
− 13

15
) + Υ(x + 1) − αRΥ(x− 1.8), 0.2 < x < 0.4;

−Υ(x− 0.6) + αRΥ(x− 0.2) + 0.36αT Υ(0.6x + 1.16), 0.4 < x < 0.6;

−0.5 + αRΥ(x− 0.2) + 0.36αT Υ(0.6x + 1.16), 0.6 < x < 0.4 + 1
3
;

−0.5 + αRΥ(x− 0.2), 0.4 + 1
3
< x < 1.4;

−0.5, 1.4 < x < 1.6;

(5.10)

with Υ(x) = 0.5 − 0.4
(1.6)2x

2.

The time step is chosen as Δt = 1
2Δξ. We will give, respectively, the numerical

results computed by the first order Hamiltonian-preserving method and the second
order method using the van Leer slope limiter. The choice of β in the first and second
order methods are different. In the first order method, we use a linear relation between
β and the mesh size Δξ: β = Δξ. In the second order method, this choice does not
guarantee the numerical convergence, rather, β must decay to zero slower than Δξ.

Our numerical experiments indicate that β ∼ (Δξ)
1
2 will be appropriate.

Table 5.2 presents the l1-error of ρ and u computed with several different meshes
on the domain [−1.6, 1.6] × [−1.2, 1.2] by using the first order method. It can be
observed that the l1-convergence order of the numerical solutions is about 1/2 order.
Tables 5.3 and 5.4 present the same errors computed by the second order method
with two sets of β’s. Clearly, the second order methods give more accurate solutions
than the first order method. In comparison between the results by the second order
methods with different choices of β, one sees that a smaller β gives more accurate
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numerical solutions, but might cause mild oscillations, than a larger one. We do not
have a rigorous analysis on the relation between β and Δξ to provide the optimal
results by a second order method.

Table 5.2

l1 error of the numerical moments with different meshes β = Δξ, first order method.

meshes 97 × 80 197 × 160 397× 320 797× 640

ρ 3.3051E-1 2.2438E-1 1.6185E-1 1.1425E-1

u 1.1481E-1 8.4303E-2 6.0016E-2 4.2667E-2

Table 5.3

l1 error of the numerical moments with different meshes β = 5Δξ, 7Δξ, 10Δξ, 14Δξ for the
four meshes, second order method.

meshes 97 × 80 197 × 160 397× 320 797× 640

ρ 1.8969E-1 9.2800E-2 5.5672E-2 3.3926E-2

u 6.1719E-2 3.1710E-2 1.9006E-2 1.1536E-2

Figure 5.4 shows the numerical solutions of ρ and u using the 797 × 640 mesh
by the first order method along with the exact solutions. The numerical solution
captures the correct dynamics and discontinuities, but the resolution is poor even on
such a fine mesh. In contrast, Figure 5.5 shows the computed densities ρ using the
797×640 mesh by the second order method with different β’s. The results have much
higher resolution across the discontinuities than the first order method. However,
the numerical density by using β = 14Δξ exhibits some small oscillations near the
discontinuities between, while the use of a larger β = 42Δξ creates no oscillations at
the expense of a slight accuracy or resolution loss.

These results show that although the second order method can give more accurate
solutions than the first order method, there is a support size parameter β that needs
to be properly chosen in order to compromise between convergence and accuracy of
the numerical solution. It is not clear how to choose β a priori. In the future we will
study the feasibility of introducing the decomposition technique proposed in [25] into
such a problem with measure-valued data, which could avoid such an inconvenience
as well as improve the numerical accuracy and resolution.

Example 5.3. Computing the physical observables of a 2D problem with a L∞

solution. Consider the 2D Liouville equation (4.1) with a discontinuous wave speed

c(x, y) =

{
2 y > 0

1 y < 0

and a smooth initial data

f(x, y, ξ, η, 0) =
1

πc3c4
exp

(
−
(

x

c1

)2

−
(
y + 0.1

c2

)2

−
(

ξ

c3

)2

−
(
η − 0.1

c4

)2
)
,

where c1 = 0.03, c3 = 0.05, c2 = c4 = 0.025.
In this example we aim at computing the density which is the zeroth moment of

the density distribution

ρ(x, y, t) =

∫ ∫
f(x, y, ξ, η, t)dξdη.(5.11)
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Table 5.4

l1 error of the numerical moments with different meshes β = 15Δξ, 21Δξ, 30Δξ, 42Δξ for
the four meshes, second order method.

meshes 97 × 80 197 × 160 397× 320 797× 640

ρ 4.3791E-1 2.0464E-1 9.0273E-2 3.7545E-2

u 1.3585E-1 6.0953E-2 2.9188E-2 1.2857E-2
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Fig. 5.4. Example 5.2, density ρ and averaged slowness u at t = 1. Solid line: the exact solution;
“x”: numerical solutions by first order method using the 797 × 640 mesh. Left: ρ; Right: u.
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Fig. 5.5. Example 5.2, density ρ at t = 1. Solid line: the exact solution; “x”: numerical
solutions by second order method using the 797 × 640 mesh. Left: β = 14Δξ; Right: β = 42Δξ.

The computational domain is chosen to be [x, y, ξ, η] ∈ [−0.12, 0.12]× [−0.2, 0.2]×
[−0.2, 0.2] × [−0.2, 0.2].

The reflection and transmission coefficients αR, αT at the interface are given by
(2.4). The “exact” solution of ρ is obtained by first solving for f(x, y, ξ, η, t) ana-
lytically, and then evaluating the integral (5.11) on a very fine mesh in the (ξ, η)
space.

The time step is chosen as Δt = 1
3Δx. Figures 5.6 and 5.8 show, respectively,

the numerical density ρ at t = 0.12, 0.15 using different meshes along with the exact
solution. Figures 5.7 and 5.9 show, respectively, the numerical density ρ on x = 0 at
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Fig. 5.6. Example 5.3, density ρ at t = 0.12. Upper left: the exact solution; Upper right:

13 × 20 × 142 mesh; Lower left: 25 × 40 × 262 mesh; Lower right: 49 × 80 × 502 mesh.
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Fig. 5.7. Example 5.3, density ρ along x = 0 at t = 0.12. Solid line: exact solution; “o”:
13 × 20 × 142 mesh; “*”: 25 × 40 × 262 mesh; “ �”: 49 × 80 × 502 mesh.

t = 0.12, 0.15 using different meshes along with the exact solution.
Table 5.5 presents the l1 errors of ρ computed with different meshes in phase

space at t = 0.12, 0.15. The convergence rate is slightly higher than first order, which
does not suffer from the accuracy degeneration of an usual finite difference method
for solving the discontinuous solution of a linear hyperbolic equation—which is at
most 1/2 order stated by the well-established theory [30, 42]. This is because the
only discontinuity in the solutions is at the interface, which has been taken care of
by the Hamiltonian-preserving mechanism, and no linear discontinuity travels to the
downstream direction like in the 1D case.

Table 5.5

l1 error of ρ using different meshes.

meshes 13 × 20 × 142 25 × 40 × 262 49 × 80 × 502

t = 0.12 1.241556E-3 5.252852E-4 1.722251E-4

t = 0.15 1.244387E-3 6.621391E-4 2.617174E-4
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Fig. 5.8. Example 5.3, density ρ at t = 0.15. Upper left: exact solution; Upper right: 13× 20×

142 mesh; Lower left: 25 × 40 × 262 mesh; Lower right: 49 × 80 × 502 mesh.
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Fig. 5.9. Example 5.3, density ρ along x = 0 at t = 0.15. Solid line: exact solution; “o”:
13 × 20 × 142 mesh; “*”: 25 × 40 × 262 mesh; “ �”: 49 × 80 × 502 mesh.

6. Conclusion. In this paper, we extended our previous work [28] to the Liou-
ville equation of geometrical optics with partial transmissions and reflections. Such
problems arise in geometrical optics through inhomogeneous media. While still uti-
lizing the constant Hamiltonian structure in constructing the numerical flux, we also
account for the transmission and reflection coefficients in the numerical flux. By doing
so, the numerical flux automatically absorbs the interface condition. This gives an
explicit scheme for the time dependent Liouville equation with discontinuous indices
of refraction that can capture correctly the partial transmissions and reflections across
the interface. This scheme is subject to a hyperbolic CFL condition, under which the
scheme is positive, and stable in both l1 and l∞ norms. Numerical experiments are
carried out to study the numerical accuracy.

We only extended a finite difference version of the Hamiltonian-preserving scheme
developed in [28]. The finite volume version of the method in [28] can also be extended
in a similar fashion, but will not be given here.

In the future we will consider analytical issues such as the well-posedness of the
problem in a more general context than that discussed in this paper, and the con-
vergence of the numerical scheme. We will also investigate its applications to more



A SCHEME FOR TRANSMISSIONS AND REFLECTIONS 1827

complex interfaces, and develop more effective methods for the measure-valued initial
value problem for the same equation.
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ments and suggestions.
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Abstract. In this paper a higher order characteristics time discretization scheme is analyzed for a
variable coefficient convection-(possibly degenerate)diffusion-reaction equation with mixed Dirichlet–
Robin boundary conditions. First, the proposed second order time discretization scheme is rigorously
introduced for exact and approximate characteristics. Next, under not very restrictive hypotheses on
the data, the l∞(L2) stability is proved and l∞(L2) error estimates of order O(Δt2) are obtained.
Lagrange–Galerkin schemes using different finite elements spaces will be analyzed in the second part
of this work [to appear in SIAM J. Numer. Anal.], where quadrature formulas are proposed for
practical implementation.
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1. Introduction. Linear convection-diffusion-reaction equations arise in the
mathematical modeling of many important problems from different fields of engi-
neering and applied sciences, such as thermodynamics, fluid mechanics, and finance
(see [18], for example). In many cases the diffusive term is smaller than the convective
one, giving rise to the so-called convection dominated problems (see [15]). Further-
more, in some convection dominated cases, the diffusive term becomes degenerate, as
in some financial models (see, for instance, [26]).

In the framework of numerical solutions of convection dominated problems, a
possible strategy is provided by the method of characteristics for time discretization
(see the review paper [15]). This approach is based on the discretization of the total
(or material) derivative, i.e., the time derivative along the characteristics lines of
the convective part of the equation. Many authors have mathematically analyzed
and applied the characteristics method to different problems. In [13] and [21], error
estimates for the combination of a first order characteristics scheme with both finite
differences and classical Lagrange finite elements have been given for time dependent
convection-diffusion problems. Its adaptation to steady state convection-diffusion
equations has been developed in [8] and its application to Navier–Stokes equations
proposed in [21] (see also [7]). The use of standard quadrature formulas to compute
the terms appearing in the formulation leads to conditional stability, as opposed to
the unconditionally stable exact integrated schemes. This aspect has been studied for
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first order schemes in [19] and [25]. More recently, the combination of the classical
first order scheme with discontinuous Galerkin methods has been analyzed in [4, 3, 5].

The present paper falls into the frame of higher order Lagrange–Galerkin methods.
Increasing the order of time and space approximations can be obtained by using higher
order schemes for the discretization of the material derivative and higher order finite
element spaces. In [14] multistep Galerkin methods for constant coefficient convection-
diffusion problems are studied and the need for analyzing the variable coefficient case
is pointed out. Also, in [11, 12] multistep methods for approximating the material
time derivative, combined with either mixed finite element or spectral methods, are
proposed to solve incompressible Navier–Stokes equations. Stability is proved and
optimal error estimates for the fully discretized problem obtained. More recently,
in [24], a second order Runge–Kutta method is proposed to approximate the material
time derivative when solving a constant coefficient convection-diffusion equation with
Dirichlet boundary conditions. Second order in time is maintained by the Crank–
Nicolson scheme and an adequate upwinding of the diffusive term.

The present paper extends [24] in four aspects: first, it deals with a (possibly
degenerate) variable coefficient diffusive term instead of the simpler Laplacian one.
Second, nonzero reaction functions are allowed. Third, a general mixed Dirichlet–
Robin boundary condition is considered. Fourth, non-divergence-free velocity fields
are handled. While the first two extensions are quite straightforward because we
still assume the solutions are smooth, dealing with boundary conditions other than
Dirichlet requires nonstandard Green’s formulas. Similarly, the fact that the velocity
field is not divergence-free makes it necessary to introduce some new terms in the weak
formulation. Moreover, although the analysis is given only for velocity fields null on
the boundary, the stated Green’s formulas allow us to write the weak formulation of
problems for which this assumption is not satisfied and, thereby, to write second order
schemes for their numerical solution. Actually, these schemes have been successfully
applied to some interesting applications in mathematical finance (see [10]).

In this wider setting, the mathematical formalism of continuum mechanics (see,
for instance, [16]) is used to express the results and notation related not only to
the approximate characteristics proposed in [24] but also to the exact ones. The
latter rather than the former can be used in some particularly interesting applications
(see [10]), so our analysis also includes, as a novelty, the case where the characteristic
lines are exactly computed. Moreover, by using Taylor expansions we rigorously justify
some approximations of the characteristics, velocity gradients and their determinants
and inverses. A technical proof of an l∞(L2) stability inequality is developed so that it
can be appropriately used to obtain l∞(L2) error estimates of order O(Δt2) between
the solutions of the time discretized problem and the continuous one. The fully
discretized Lagrange–Galerkin scheme with different finite element spaces is analyzed
in part two of this work (see [9]). Moreover, in [9] adequate quadrature formulas are
proposed for different triangular and quadrangular finite element spaces.

The present paper is organized as follows. In section 2 the strong formulation of
the convection-diffusion-reaction problem is posed and notation concerning functional
spaces is introduced. In section 3 the characteristics curves associated to the velocity
field are rigorously defined and useful results and notation related to them are stated.
It is worth mentioning that notation and results are inspired in those handled by
classical continuum mechanics textbooks (see, for instance, [16]). In section 4 the
variational formulation of the problem is posed. In section 5, first the second order
time discretization scheme is introduced for both exact and second order approximate
characteristics. Next, under suitable but not very restrictive hypotheses on data
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functions, the l∞(L2) stability result is proved for small enough time step. Finally,
assuming greater regularity on the data functions, l∞(L2) error estimates of order
O(Δt2) for the solution of the time discretized problem are derived.

2. Statement of the problem and functional spaces. Let Ω be a bounded
domain in R

d (d = 2, 3) with Lipschitz boundary, Γ, divided into two parts: Γ =
ΓD ∪ ΓR, with ΓD ∩ ΓR = ∅. Let T be a positive constant. We consider the following
initial boundary value problem.

(SP) strong problem. Find a function φ : Ω × (0, T ) −→ R such that

φ′(x, t) − div (A(x)∇φ(x, t)) + v(x, t) · ∇φ(x, t) + r(x)φ(x, t) = f(x, t)(2.1)

for (x, t) ∈ Ω × (0, T ), subject to boundary conditions

φ(x, t) = 0 on ΓD × (0, T ),(2.2)

α φ(x, t) + A(x)∇φ(x, t) · n(x) = g(x, t) on ΓR × (0, T )(2.3)

and initial condition

φ(x, 0) = φ0(x) in Ω.(2.4)

In the above equations, φ′ denotes the partial derivative with respect to t, A :
Ω −→ Sd denotes the diffusion matrix function, where Sd is the space of symmetric
d × d matrices, v : Ω × [0, T ] −→ R

d is the convection vector field, r : Ω −→ R is
the reaction function, f : Ω × [0, T ] −→ R and g : ΓR × [0, T ] −→ R are given scalar
functions, and n is the outward unit normal vector to Γ.

Let us introduce the Lebesgue spaces Lp(Ω) and the Sobolev spaces Wm,p(Ω)
for p = 1, 2, . . . ,∞ and m an integer. For the particular case p = 2, we consider
the Hilbert space L2(Ω) with the usual inner product 〈 , 〉, which induces the norm
‖ ‖0, and spaces Hm(Ω) = Wm,2(Ω) equipped with the usual norms ‖ ‖m (see [1] for
details). Moreover, we denote by H1

ΓD
(Ω) the closed subspace of H1(Ω) defined by

H1
ΓD

(Ω) := {ϕ ∈ H1(Ω), ϕ|ΓD
= 0}.

For a Banach space X and an integer m, spaces Cm ([0, T ], X) and Hm ((0, T ), X)
will be abbreviated as Cm(X) and Hm(X), respectively, and endowed with norms

‖ϕ‖Cm(X) := max
t∈[0,T ]

{
max

j=0,...,m
‖ϕ(j)(t)‖X

}
, ‖ϕ‖Hm(X) :=

(∫ T

0

m∑
j=0

∥∥∥ϕ(j)(t)
∥∥∥2

X
dt

) 1
2

.

In the above definitions, ϕ(j) denotes the jth derivative of ϕ with respect to time.
Next, we introduce the Banach space Zm = {ϕ ∈ Cj(Hm−j(Ω)); j = 0, . . . ,m}

for m ∈ Z+, equipped with the norm ‖ϕ‖Zm := max{‖ϕ‖Cj(Hm−j); 0 ≤ j ≤ m}.
Similar spaces are considered for the boundary sets ΓR and ΓD. For example, for ΓR

we use the notation ‖ · ‖m,ΓR
, ‖ · ‖Zm,ΓR

, etc.

3. Characteristic curves. In this section we define the characteristic lines as-
sociated with vector field v and recall some classical properties satisfied by them.

Thus, for given (x, t) ∈ Ω × [0, T ], the characteristic line through (x, t) is the
vector function Xe(x, t; ·) solving the initial value problem

∂Xe

∂τ
(x, t; τ) = v(Xe(x, t; τ), τ), Xe(x, t; t) = x.(3.1)
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It represents the trajectory described by a material point that is placed at position x
at time t and is driven by the velocity field v. If v ∈ C0(Ω × [0, T ]), it is Lipschitz
continuous with respect to the first variable and vanishes on Γ; then the characteristic
line solving (3.1) is well defined in the whole domain, [0, T ], and it is unique for each
initial condition (x, t). In this case, as a function on (x, t; τ), it is Lipschitz continuous
in Ω × [0, T ] × [0, T ]. Moreover (see [22]), if τ1, τ2, τ3 ∈ [0, T ] and x ∈ Ω, then

Xe(x, τ1; τ3) = Xe(Xe(x, τ1; τ2), τ2; τ3).(3.2)

Indeed, by replacing τ1 = τ3 we deduce that the mapping Xe(·, τ1; τ2) : Ω −→ Ω is
one-to-one, with inverse Xe(·, τ2; τ1).

Next, assuming they exist, we denote by Fe (respectively, by L) the gradient of
Xe (respectively, of v) with respect to the space variable x, i.e.,

(Fe)rs(x, t; τ) :=
∂(Xe)r
∂xs

(x, t; τ), Lrs(x, t) :=
∂vr
∂xs

(x, t).

Proposition 3.1. If v ∈ C0(Cn(Ω)) for n ≥ 1 an integer, then Xe ∈ C0(Ω ×
[0, T ] × [0, T ]) and it is Cn with respect to the x variable.

Proof. See, for instance, [2].
It will be useful to compute second order approximations of matrices Fe and F−1

e .
For this, we need the following equations (see [16]):

∂Fe

∂τ
(x, t; τ) = L(Xe(x, t; τ), τ)Fe(x, t; τ),(3.3)

∂2Fe

∂τ2
(x, t; τ) = ∇

(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ)Fe(x, t; τ).(3.4)

By using Gronwall’s lemma and (3.3) we can prove the following result.
Proposition 3.2. If v ∈ C0(C1(Ω)), then

‖Fe(x, t; τ)‖ ≤ e‖v‖C0(C1(Ω))|τ−t| ∀x ∈ Ω, t, τ ∈ [0, T ].(3.5)

Proposition 3.3. If v ∈ C0(C2(Ω)) ∩ C1(C1(Ω)), then Fe satisfies the Taylor
expansions

Fe(x, t; s) = I + (s− t) L(x, t)(3.6)

+

∫ t

s

(τ − s) ∇
(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ)Fe(x, t; τ) dτ,

and its inverse, F−1
e , satisfies the Liouville theorem

F−1
e (x, t; s) = I + (t− s) L(Xe(x, t; s), s)(3.7)

−
∫ t

s

(τ − t) ∇
(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ)Fe(Xe(x, t; s), s; τ) dτ.

Proof. Expression (3.6) derives from the Taylor expansion, (3.3) and (3.4). To
prove (3.7) we differentiate (3.2) for τ1 = τ3 = s and τ2 = t to obtain F−1

e (x, t; s) =
Fe(Xe(x, t; s), s; t). Then, we use (3.6) and Xe(Xe(x, t; s), s; τ) = Xe(x, t; τ).

Now, we develop analogous computations for det F−1
e . To do that, we first use

Liouville’s theorem (see [2]) and the chain rule, obtaining

∂

∂τ
det F−1

e (x, t; τ) = −det F−1
e (x, t; τ) div v(Xe(x, t; τ), τ).(3.8)
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Differentiating (3.8) again we get

∂2

∂τ2
det F−1

e (x, t; τ) = det F−1
e (x, t; τ)

(
(div v)2(Xe(x, t; τ), τ)(3.9)

div

(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ) −

(
L · LT

)
(Xe(x, t; τ), τ)

)
.

The following propositions can be easily proved.
Proposition 3.4. If v ∈ C0(C1(Ω)), then

det F−1
e (x, t; τ) ≤ e‖v‖C0(C1(Ω))|τ−t| ∀x ∈ Ω, t, τ ∈ [0, T ].(3.10)

Proposition 3.5. If v ∈ C0(C2(Ω)) ∩ C1(C1(Ω)), then det F−1
e satisfies

det F−1
e (x, t; s) = 1 − (s− t) div v(x, t) +

∫ t

s

(τ − s)
∂2

∂τ2

(
det F−1

e

)
(x, t; τ) dτ.

(3.11)

4. Variational formulation. We are going to develop some formal computa-
tions in order to give a variational formulation of problem (SP). From the definition
of the characteristic curves and by using the chain rule, it follows that

dφ

dτ
(Xe(x, t; τ), τ) = φ′(Xe(x, t; τ), τ) + v(Xe(x, t; τ), τ) · ∇φ(Xe(x, t; τ), τ).(4.1)

By writing equation (2.1) at point Xe(x, t; τ) and time τ , and using (4.1), we have

dφ

dt
(Xe(x, t; τ), τ) − div(A(Xe(x, t; τ))∇φ(Xe(x, t; τ), τ))(4.2)

+ r(Xe(x, t; τ))φ(Xe(x, t; τ), τ) = f(Xe(x, t; τ), τ).

Before giving a weak formulation of (4.2), we state two lemmas. The first one can
be considered as a Green’s formula.

Lemma 4.1. Let X : Ω −→ X(Ω), X ∈ C2(Ω), be an invertible vector valued
function. Let F = ∇X and assume that F−1 ∈ C1(Ω). Then∫

Ω

div w(X(x)) ψ(x) dx =

∫
Γ

F−T (x)n(x) · w(X(x)) ψ(x) dAx(4.3)

−
∫

Ω

F−1(x)w(X(x)) · ∇ψ(x) dx −
∫

Ω

div F−T (x) · w(X(x)) ψ(x) dx,

with w ∈ H1(X(Ω)) a vector valued function and ψ ∈ H1(Ω) a scalar function.
Proof. First, by the Gauss theorem, we have∫

Γ

F−T (x)n(x) · w(X(x)) ψ(x) dAx =

∫
Ω

div
(
F−1(w ◦X)ψ

)
(x) dx.(4.4)

Finally, identity (4.3) is obtained by developing the divergence term in (4.4) with

div
(
F−1(w ◦X)ψ

)
(x) = ψ(x) div

(
F−1(w ◦X)

)
(x) + ∇ψ(x) · F−1(x)w(X(x)),

div
(
F−1(w ◦X)

)
(x) = F−T (x) · ∇ (w ◦X) (x) + w(X(x)) · div F−T (x),

F−T (x) · ∇ (w ◦X) (x) = tr
(
∇ (w ◦X) (x)F−1(x)

)
= tr (∇w(X(x))) = div w(X(x)).



1834 A. BERMÚDEZ, M. R. NOGUEIRAS, AND C. VÁZQUEZ

Now, we can multiply (4.2) by a test function ψ ∈ H1
ΓD

(Ω), integrate in Ω, and
apply the usual Green’s formula and (4.3) with X(x) = Xe(x, t; τ), obtaining∫

Ω

dφ

dt
(Xe(x, t; τ), τ) ψ(x) dx(4.5)

+

∫
Ω

F−1
e (x, t; τ)A(Xe(x, t; τ))∇φ(Xe(x, t; τ)) · ∇ψ(x) dx

+

∫
Ω

div F−T
e (x, t; τ) · A(Xe(x, t; τ))∇φ(Xe(x, t; τ), τ) ψ(x) dx

+

∫
Ω

r(Xe(x, t; τ))φ(Xe(x, t; τ), τ) ψ(x) dx

+

∫
ΓR

F−T
e (x, t; τ)n(x) · A(Xe(x, t; τ))∇φ(Xe(x, t; τ)) ψ(x)dAx

=

∫
Ω

f(Xe(x, t; τ), τ) ψ(x) dx.

Remark 4.1. Notice that as long as the involved functions v, A, r, and f are de-
fined in a wider (time dependent) domain, equations (4.2) and (4.5) are valid without
assuming the velocity field vanishes on the boundary. This is the case, for instance,
with some interesting problems arising in mathematical finance. Actually, the above
formulation has been necessary for the numerical solution of Asian options pricing
problems (see [10]). However, the analysis in the present work covers only velocity
fields which are null at the boundary, and time independent spatial domains.

Lemma 4.2. Let X : Ω −→ Ω, X ∈ C2(Ω), be an invertible function satisfying
X(x) = x ∀x ∈ Γ. Let F = ∇X such that F−1 ∈ C1(Ω). Then, we have∫

Γ

F−T (x)n(x) · w(x) ψ(x) dAx =

∫
Γ

n(x) · w(x) ψ(x) det F−1(x) dAx(4.6)

for w ∈ H1(Ω) and ψ ∈ H1(Ω), where n is the outward unit normal vector to Γ.
Proof. First we apply the change of variable x = X−1(y) to get (see [16, p. 53])∫

Γ

F−T (x)n(x)·w(x) ψ(x) dAx =

∫
∂X(Ω)

m(y)·w(X−1(y)) ψ(X−1(y))det F−1(X−1(y)) dAy,

where ∂X(Ω) denotes the boundary of X(Ω) and m is the unit normal vector to
∂X(Ω). Thus, X(x) = x ∀x ∈ Γ implies (4.6).

Now, replacing in (4.5) formula (4.6) with X(x) = Xe(x, t; τ), and replacing the
Robin condition (2.3), we have∫

Ω

dφ

dt
(Xe(x, t; τ), τ) ψ(x) dx(4.7)

+

∫
Ω

F−1
e (x, t; τ)A(Xe(x, t; τ))∇φ(Xe(x, t; τ)) · ∇ψ(x) dx

+

∫
Ω

div F−T
e (x, t; τ) · A(Xe(x, t; τ))∇φ(Xe(x, t; τ), τ) ψ(x) dx

+

∫
Ω

r(Xe(x, t; τ))φ(Xe(x, t; τ), τ) ψ(x) dx +

∫
ΓR

α φ(x, τ) ψ(x) det F−1
e (x, t; τ) dAx

=

∫
Ω

f(Xe(x, t; τ), τ) ψ(x) dx +

∫
ΓR

g(x, τ) ψ(x) det F−1
e (x, t; τ) dAx.
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For these previous computations, we have assumed appropriate regularity on the
involved data (i.e., v ∈ C0(C2(Ω)) and A∇(·)φ(·, t) ∈ H1(Ω) for each t ∈ (0, T ))
and that the velocity field, v, vanishes on the boundary, so that the differentiable
mapping, x −→ Xe(x, t; τ), satisfies the result stated in Lemmas 4.1 and 4.2.

5. Time discretization. In this section we present a second order characteris-
tics scheme for time semidiscretization of (4.7). Keeping in mind more general appli-
cations, it extends the scheme proposed in [24] to the case where the diffusion matrix
depends on the space variable and can be degenerate, there are reaction and source
terms, and the velocity field is not divergence-free. Moreover, mixed Dirichlet–Robin
boundary conditions are allowed instead of merely Dirichlet ones.

In the first part, we develop some computations to motivate the scheme assuming
that the characteristic lines are exactly computed. This can be useful in some cases
(see, for instance, [10]). Then, after having studied results similar to those in section 3
concerning Euler and Runge–Kutta approximations of the characteristic lines, we
propose the scheme. Finally, stability and error estimates are rigorously stated.

5.1. Second order semidiscretized scheme with exact characteristic
lines. We propose a time semidiscretization of (4.7) for which we introduce the num-
ber of time steps, N , the time step Δt = T/N , and the mesh points tn = nΔt for n =
0, 1/2, 1, 3/2, . . . , N . Throughout this work, we use the notation ψn(x) := ψ(x, tn)
for a function ψ(x, t). Moreover, for n = 0, 1, 2, . . . , we define

Xn
e (x) := Xe(x, tn+1; tn), Fn

e (x) := Fe(x, tn+1; tn),

X
n+ 1

2
e (x) := Xe(x, tn+1; tn+ 1

2
), F

n+ 1
2

e (x) := Fe(x, tn+1; tn+ 1
2
).

(5.1)

We recall that Xe(x, tn+1; τ) is the unique solution of the Cauchy problem

dXe

dτ
(x, tn+1; τ) = v (Xe(x, tn+1; τ), τ) , Xe(x, tn+1; tn+1) = x.(5.2)

The scheme we study arises from fixing t = tn+1, n = 0, 1, . . . , N − 1, in (4.7) and
using a Crank–Nicolson method with respect to τ . Thus, from (5.1), we have

∫
Ω

φn+1(x) − φn(Xn
e (x))

Δt
ψ(x) dx +

1

2

∫
Ω

A(x)∇φn+1(x) · ∇ψ(x) dx

+
1

2

∫
Ω

(Fn
e )−1(x)A(Xn

e (x))∇φn(Xn
e (x)) · ∇ψ(x) dx

+
1

2

∫
Ω

div (Fn
e )−T (x) · A(Xn

e (x))∇φn(Xn
e (x)) ψ(x) dx

+
1

2

∫
Ω

r(x)φn+1(x) +
1

2

∫
Ω

r(Xn
e (x))φn(Xn

e (x)) ψ(x) dx

+
1

2

∫
ΓR

α
(
φn+1(x) + φn(x) det (Fn

e )−1(x)
)
ψ(x) dAx

=
1

2

∫
Ω

(
fn+1(x) + fn(Xn

e (x))
)
ψ(x) +

1

2

∫
ΓR

(
gn+1(x) + gn(x) det (Fn

e )−1(x)
)
ψ(x) dAx.

(5.3)

Remark 5.1. In section 5.4 we will prove that approximations involved in scheme

(5.3) are of order O(Δt2) at point (X
n+ 1

2
e (x), tn+ 1

2
).
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The error of the scheme (5.3) does not change if we replace both F−1
e and det F−1

e

by their O(Δt2) approximations below, avoiding the matrix inversion computations.
That is, by considering (x, t; s) = (x, tn+1; tn) we deduce from (3.7) and (3.11) that

(Fn
e )−1(x) = I(x) + Δt Ln(Xn

e (x)) + O(Δt2),

det (Fn
e )−1(x) = 1 + Δt div vn+1(x) + O(Δt2).

Moreover, we can also use that div(Fn
e )−T (x) = Δt ∇div vn(Xn

e (x))+O(Δt2). Thus,
scheme (5.3) is replaced by∫

Ω

φn+1 − φn(Xn
e )

Δt
ψ dx +

∫
Ω

A∇φn+1 + A(Xn
e )∇φn(Xn

e )

2
· ∇ψ dx(5.4)

+
Δt

2

∫
Ω

Ln(Xn
e )A(Xn

e )∇φn(Xn
e )·∇ψ dx+

Δt

2

∫
Ω

∇div vn(Xn
e )·A(Xn

e )∇φn(Xn
e ) ψ dx

+

∫
Ω

rφn+1 + r(Xn
e )φn(Xn

e )

2
ψ dx +

∫
ΓR

α
φn+1 + φn(1 + Δt div vn+1)

2
ψ dAx

=

∫
Ω

fn+1 + fn(Xn
e )

2
ψ dx +

∫
ΓR

gn+1 + gn(1 + Δt div vn+1)

2
ψ dAx.

5.2. Second order semidiscretized scheme with approximate charac-
teristic lines. In most cases the Cauchy problem (5.2) cannot be exactly solved.
Instead, following [24], we propose two explicit numerical schemes to approximate
Xn

e (x):

Xn
E(x) := x − Δt vn+1(x) (first order Euler scheme),

Xn
RK(x) := x − Δt vn+ 1

2

(
x − Δt

2
vn+1(x)

)
(second order Runge–Kutta scheme).

A similar notation to the one in section 3 is used for the Jacobian of Xn
E , namely,

Fn
E(x) := ∇Xn

E(x) = I(x) − Δt Ln+1(x).(5.5)

Now, we state three lemmas concerning properties of the characteristic line approx-
imations, similar to those satisfied by the exact characteristics. For this, we require
the time step to be bounded and the velocity to satisfy the following assumption.

Hypothesis 1. The velocity field v ∈ C0
(
W 1,∞(Ω)

)
and satisfies v = 0 on Γ.

Lemma 5.1. Under Hypothesis 1, if ‖v‖C0(W 1,∞(Ω))Δt < 1/2, we have Xn
E(Ω) =

Xn
RK(Ω) = Ω.

Proof. See Proposition 1 in [24].
Lemma 5.2. Under Hypothesis 1, if ‖v‖C0(W 1,∞(Ω))Δt < 1/2, then

(Fn
E)−1(x) = I + Δt Ln+1(x) + Δt2

(
Ln+1(x)

)2
+ O(Δt3).(5.6)

Proof. By applying norms to (5.5) we have that ‖I − Fn
E(x)‖ < 1 ∀x ∈ Ω. Thus,

Fn
E is invertible with (Fn

E)−1(x) =
∑∞

j=0 (I(x) − Fn
E(x))j , and (5.6) follows.

Corollary 5.3. Under the assumptions of Lemma 5.2, ∀x ∈ Ω, we have

det(Fn
E)−1(x) = 1 + Δt div vn+1(x) + O(Δt2),(5.7)

|det(Fn
E)−1(x)| ≤ 1 + Δt ‖v‖C0(W 1,∞(Ω)) + O(Δt2).(5.8)
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Proof. First, we have det(I + D) = 1 + tr D − 1
2

(
(tr D)2 − tr D2

)
+ det D for

every tensor D (see, for instance, [16]). Thus, the result directly follows by replacing,
in the previous formula, D = (Fn

e )−1(x) − I and using (5.6).
Lemma 5.4. Under Hypothesis 1, if ψ ∈ L2(Ω) and ‖v‖C0(W 1,∞(Ω))Δt < 1/2,

then there exists a positive constant c such that

‖ψ ◦Xn
i ‖

2
0 ≤ (1 + Δt c) ‖ψ‖2

0 for n = 0, . . . , N and i = E,RK.(5.9)

Proof. See Lemma 1 in [24].
Thus, in the case where the characteristic lines and their gradients are not explic-

itly known, we propose the following approximation of (5.3):∫
Ω

φn+1(x) − φn(Xn
RK(x))

Δt
ψ(x) dx +

1

2

∫
Ω

A(x)∇φn+1(x) · ∇ψ(x) dx(5.10)

+
1

2

∫
Ω

(Fn
E)−1(x)A(Xn

E(x))∇φn(Xn
E(x)) · ∇ψ(x) dx

+
1

2

∫
Ω

div (Fn
E)−T (x) · A(Xn

E(x))∇φn(Xn
E(x)) ψ(x) dx

+
1

2

∫
Ω

r(x)φn+1(x) +
1

2

∫
Ω

r(Xn
E(x))φn(Xn

E(x)) ψ(x) dx

+
1

2

∫
ΓR

α
(
φn+1(x) + φn(x) det (Fn

E)−1(x)
)
ψ(x) dAx

=
1

2

∫
Ω

(
fn+1(x) + fn(Xn

E(x))
)
ψ(x) dx

+
1

2

∫
ΓR

(
gn+1(x) + gn(x) det (Fn

E)−1(x)
)
ψ(x) dAx.

Notice that we have used the lowest order characteristics approximation formula pre-
serving second order time accuracy. The error of the semidiscretized scheme (5.10)
does not change if we replace both F−1

E and det F−1
E by their O(Δt2) approximations

given in (5.6) and (5.7), which avoid the inversion of matrix Fn
E .

Finally, we describe the semidiscretized scheme to be analyzed hereafter. Let us

introduce Ln+ 1
2

Δt φ ∈ (H1(Ω))′ and Fn+ 1
2

Δt ∈ (H1(Ω))′, defined by

〈
Ln+ 1

2

Δt φ, ψ
〉

:=

〈
φn+1 − φn ◦Xn

RK

Δt
, ψ

〉
+

〈
A∇φn+1 + (A∇φn) ◦Xn

E

2
,∇ψ

〉

+
Δt

2
〈(LnA∇φn) ◦Xn

E ,∇ψ〉 +
Δt

2
〈(∇div vn · A∇φn) ◦Xn

E , ψ〉

+

〈
rφn+1 + (rφn) ◦Xn

E

2
, ψ

〉
+ α

〈
φn+1 + φn(1 + Δt div vn+1)

2
, ψ

〉
ΓR

,(5.11)

〈
Fn+ 1

2

Δt , ψ
〉

:=

〈
fn+1 + fn ◦Xn

E

2
, ψ

〉
+

〈
gn+1 + gn(1 + Δt div vn+1)

2
, ψ

〉
ΓR

(5.12)

for φ ∈ C0(H1(Ω)) and ψ ∈ H1(Ω).

Remark 5.2. Regarding the definitions of Ln+ 1
2

Δt and Fn+ 1
2

Δt , only the values of
function φ at discrete time steps {tn}Nn=0 are required. Thus, the above definitions

can also be stated for a sequence of functions φ̂ = {φn}Nn=1 ∈
[
H1(Ω)

]N
.
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Then, the semidiscretized time scheme can be written as follows:⎧⎨
⎩Given φ0

Δt, find φ̂Δt = {φn
Δt}Nn=1 ∈

[
H1

ΓD
(Ω)

]N
such that〈

Ln+ 1
2

Δt φ̂Δt, ψ
〉

=
〈
Fn+ 1

2

Δt , ψ
〉

∀ψ ∈ H1
ΓD

(Ω) for n = 0, . . . , N − 1.
(5.13)

Remark 5.3. The stability and convergence properties we are going to study in
the sections that follow remain valid if we replace the approximations of characteristics
appearing in scheme (5.13) by higher order ones or by the exact value. In particular,
Xn

E can be replaced by Xn
RK or Xn

e , and Xn
RK can be replaced by Xn

e in (5.11) and
(5.12).

5.3. Stability of the semidiscretized scheme. In order to develop the sta-
bility analysis, some assumptions on the different terms of (2.1) are required.

Hypothesis 2. The velocity field v ∈ C0(W 2,∞(Ω)) and satisfies v = 0 on Γ.
Remark 5.4. Throughout this paper c1 denotes the maximum between the posi-

tive constant appearing in Lemma 5.4 and the norm of the velocity in C0(W 2,∞(Ω)).
Hypothesis 3. The diffusion matrix coefficients, Aij , belong to W 1,∞(Ω). More-

over, A is an m×m symmetric matrix satisfying

A =

(
Am1 Θ
Θ Θ

)
,(5.14)

with Am1
being a positive definite symmetric m1×m1 matrix (m1 ≥ 1), and where Θ

denotes an appropriate zero matrix. Moreover, there exists a strictly positive constant
δ which is a uniform lower bound for the eigenvalues of Am1 .

As a consequence of Hypothesis 3, there exists a unique positive definite symmet-
ric m1 ×m1 matrix function, Cm1 , such that Am1 = (Cm1)

2. Let us denote by C the
symmetric and positive semidefinite m×m matrix

C =

(
Cm1 Θ
Θ Θ

)
.(5.15)

Notice that A = C2 and Cij ∈ W 1,∞(Ω). At this point, let us introduce the constant

c2 := maxi,j

{
‖Cij‖2

W 1,∞(Ω)

}
. Next, let us denote by B the m×m matrix

B =

(
Im1 Θ
Θ Θ

)
,(5.16)

where Im1 is the m1 ×m1 identity matrix. Clearly, under Hypothesis 3 we have

δ ‖Bw‖2
0 ≤ 〈Aw,w〉 = ‖Cw‖2

0 ≤ c2 ‖Bw‖2
0 ∀w ∈ R

m.(5.17)

Hypothesis 4. The velocity field satisfies (I−B)L(x, t)B = 0 ∀(x, t) ∈ Ω× [0, T ].
Remark 5.5. Hypothesis 4 is equivalent to having a velocity field v whose m−m1

last components depend only on the last m−m1 variables.
Remark 5.6. Under Hypotheses 3 and 4, for every m×m matrix E and vectors

w1,w2 ∈ R
m it is easy to verify that 〈EAw1,w2〉 = 〈EAw1,Bw2〉.

Hypothesis 5. The reaction function, r ∈ W 1,∞(Ω), satisfies 0 < γ ≤ r(x) in Ω,
where γ is a constant.

Under the previous hypothesis, let c3 := ‖
√
r‖2

W 1,∞(Ω).

Hypothesis 6. The source function f ∈ C0(L2(Ω)).
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Hypothesis 7. In Robin boundary condition (2.3), g ∈ C0(L2(ΓR)) and α > 0.
It is convenient now to note that Hypothesis 3 also covers the nondegenerate case.

This hypothesis is a common assumption in ultraparabolic equations (see, for instance,
[23]), which represent a wide class of degenerate diffusion equations arising in many
applications (see, for instance, [6]). Furthermore, as stated in [17], ultraparabolic
problems either present C∞ solutions or can be reduced to nondegenerate problems
posed in a lower spatial dimension. This is an important point, as the stability and
error estimates will be obtained under regularity assumptions on the solution.

Corresponding to the semidiscretized scheme, we have to deal with sequences of

functions ψ̂ = {ψn}Nn=0. Thus, we consider spaces l∞((0, T ), L2(Ω)), l2((0, T ), L2(Ω))
(abbreviated to l∞(L2(Ω)) and l2(L2(Ω)), respectively) equipped with the norms

∥∥∥ψ̂∥∥∥
l∞(L2(Ω))

:=
N

max
n=0

‖ψn‖0 ,
∥∥∥ψ̂∥∥∥

l2(L2(Ω))
:=

√√√√Δt

N∑
n=0

‖ψn‖2
0.

Similar definitions are considered for functional spaces l∞(L2(ΓR)) and l2(L2(ΓR))
associated to the Robin boundary condition. Moreover, let us introduce the notation

Dn
Δtψ̂ :=

ψn+1 − ψn

Δt
.(5.18)

For the sequence ‖ψ̂‖0 := {‖ψn‖0}, let us define

Dn
Δt

(
‖ψ̂‖0

)
:=

‖ψn+1‖0 − ‖ψn‖0

Δt
,(5.19)

and for D̂Δtψ :=
{
Dn

Δtψ̂
}N−1

n=0
we define

∥∥∥D̂Δtψ
∥∥∥
l2(L2(ΓR))

=

√√√√Δt

N−1∑
n=0

∥∥∥∥ψn+1 − ψn

Δt

∥∥∥∥2

0,ΓR

.(5.20)

Before establishing some technical lemmas, let us recall the Young inequality

ab ≤ 1

2

(
ca2 +

1

c
b2
)

(5.21)

for a, b ∈ R and c > 0, which will be extensively used in what follows.
Lemma 5.5. Let us assume Hypotheses 2, 3, 4, and 5. Let us suppose c1Δt < 1/2.

If φ̂Δt = {φn
Δt}Nn=1 denotes the solution of (5.13) and α > 0, δ > 0 are the constants

appearing, respectively, in Hypothesis 3 and (2.3), then〈
Ln+ 1

2

Δt φ̂Δt, φ
n+1
Δt

〉
(5.22)

≥ Dn
Δt

(
1

2

∥∥∥φ̂Δt

∥∥∥2

0
+

Δt

4

∥∥∥C∇φ̂Δt

∥∥∥2

0
+

Δt

4

∥∥∥√r φ̂Δt

∥∥∥2

0
+

α Δt

4
‖φ̂Δt‖2

0,ΓR

)
+

1

2Δt

∥∥φn+1
Δt − φn

Δt ◦Xn
RK

∥∥2

0
+

1

4

∥∥C∇φn+1
Δt + (C∇φn

Δt) ◦Xn
E

∥∥2

0

+
1

4

∥∥√rφn+1
Δt + (

√
rφn

Δt) ◦Xn
E

∥∥2

0
+

α

4

∥∥φn+1 + φn(1 + Δt div vn+1)
∥∥2

0,ΓR

− c

2

(
‖φn

Δt‖
2
0 +

∥∥φn+1
Δt

∥∥2

0

)
− cΔtδ

(
‖B∇φn

Δt‖
2
0 +

∥∥B∇φn+1
Δt

∥∥2

0

)
− cΔt

(∥∥√rφn
Δt

∥∥2

0
+

∥∥√rφn+1
Δt

∥∥2

0
+ α‖φn

Δt‖2
0,ΓR

)
,
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where C∇φ̂Δt := {C∇φn
Δt}, B∇φ̂Δt := {B∇φn

Δt}, and with the constant c given by
c = max

{
1, c1, c2, (2c1c2 + c1c

2
2)/δ, c1c3/γ

}
.

Proof. First, we decompose
〈
Ln+ 1

2

Δt φ̂Δt, φ
n+1
Δt

〉
= I1 + I2 + I3 + I4 + I5 + I6, with

I1 =

〈
φn+1

Δt − φn
Δt ◦Xn

RK

Δt
, φn+1

Δt

〉
,

I2 =
1

2

〈
A∇φn+1

Δt + (A∇φn
Δt) ◦Xn

E ,∇φn+1
Δt

〉
,

I3 =
Δt

2

〈
(LnA∇φn

Δt) ◦Xn
E ,∇φn+1

Δt

〉
,

I4 =
Δt

2

〈
(∇ div vn · A∇φn

Δt) ◦Xn
E , φ

n+1
Δt

〉
,

I5 =
1

2

〈
rφn+1

Δt + (rφn
Δt) ◦Xn

E , φ
n+1
Δt

〉
,

I6 = α

〈
φn+1 + φn(1 + Δt div vn+1)

2
, φn+1

Δt

〉
ΓR

.

For I1 we can use Lemma 2 in [24] to obtain

I1 ≥ Dn
Δt

(
1

2
̂‖φΔt‖2

0

)
+

1

2Δt

∥∥φn+1
Δt − φn

Δt ◦Xn
RK

∥∥2

0
− c1

2
‖φn

Δt‖
2
0 .(5.23)

For I2 the following lower bound can be stated:

I2 ≥ Dn
Δt

(
Δt

4

∥∥∥C∇φ̂Δt

∥∥∥2

0

)
+

1

4

∥∥C∇φn+1
Δt + (C∇φn

Δt) ◦Xn
E

∥∥2

0
(5.24)

− 3c1c2Δt

4

(
‖B∇φn

Δt‖
2
0 +

∥∥B∇φn+1
Δt

∥∥2

0

)
.

To prove (5.24) we first use the definition of Dn
Δt, Lemma 5.4, and (5.21) to get

Dn
Δt

(
Δt

4

∥∥∥C∇φ̂Δt

∥∥∥2

0

)
+

1

4

∥∥C∇φn+1
Δt + (C∇φn

Δt) ◦Xn
E

∥∥2

0
− c1c2Δt

4
‖B∇φn

Δt‖
2
0

≤ 1

4

(∥∥C∇φn+1
Δt

∥∥2

0
− ‖(C∇φn

Δt) ◦Xn
E‖

2
0 +

∥∥C∇φn+1
Δt + (C ∇ φn

Δt) ◦Xn
E

∥∥2

0

)
=

1

2

〈
C∇φn+1

Δt + (C∇φn) ◦Xn
E ,C∇φn+1

Δt

〉
.

Next, we introduce the function Y n
E (x, ·) : [tn, tn+1] −→ Ω, defined by Y n

E (x, s) :=
x−(tn+1−s)vn+1(x), which satisfies Y n

E (x, tn) = Xn
E(x) and Y n

E (x, tn+1) = x. More-

over, since Am1 is symmetric and positive definite, Cm1
=

√
Am1

is a differentiable
function (∇C is the appropriate completion by zeros of ∇Cm1). Then, by Barrow’s
rule and the chain rule, the following identity holds:

C(x) = C(Xn
E(x)) + Dn(x) for a.e. x ∈ Ω,(5.25)

where we have denoted by Dn the m×m symmetric matrix defined by

Dn
ij(x) :=

∫ tn+1

tn

∇Cij(Y
n
E (x, s)) · vn+1(x) ds for a.e. x ∈ Ω,(5.26)
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which verifies
∣∣Dn

ij(x)
∣∣ ≤ c1

√
c2Δt. So, from the previous notation, we have

1

2

〈
C∇φn+1

Δt + (C∇φn
Δt) ◦Xn

E ,C∇φn+1
Δt

〉
= I2 +

1

2

〈
Dn(C∇φn

Δt) ◦Xn
E ,∇φn+1

Δt

〉
≤ I2 +

1

2

√
1 + c1Δt

√
c2 ‖B∇φn

Δt‖0 Δtc1
√
c2

∥∥B∇φn+1
Δt

∥∥
0

≤ I2 +
c1c2Δt

2

(
‖B∇φn

Δt‖
2
0 +

∥∥B∇φn+1
Δt

∥∥2

0

)
,

where we have used the Cauchy–Schwarz inequality, Hypotheses 2 and 3, Lemma 5.4,
inequality (5.21), and the fact that c1Δt < 1. Finally, result (5.24) follows.

Next, by first using Remark 5.6 and then the Cauchy–Schwarz inequality, Hy-
potheses 2 and 3, Lemma 5.4, inequality (5.21), and c1Δt < 1, we obtain

|I3| =
Δt

2

∣∣〈(LnA∇φn
Δt) ◦Xn

E ,B∇φn+1
Δt

〉∣∣ ≤ Δt c1c2
2

(
‖B∇φn

Δt‖
2
0 +

∥∥B∇φn+1
Δt

∥∥2

0

)
.

Then when both I3 ≥ 0 and I3 < 0, we have

I3 ≥ −c1c2 Δt

2

(
‖B∇φn

Δt‖
2
0 +

∥∥B∇φn+1
Δt

∥∥2

0

)
.(5.27)

Similarly, for I4 we obtain the estimate

I4 ≥ −c1c
2
2 Δt

2
‖B∇φn

Δt‖
2
0 −

1

4

∥∥φn+1
Δt

∥∥2

0
.(5.28)

For the reaction term, we can obtain

I5 ≥ Dn
Δt

(
Δt

4

∥∥∥√r φ̂Δt

∥∥∥2

0

)
+

1

4

∥∥√rφn+1
Δt + (

√
rφn

Δt) ◦Xn
E

∥∥2

0
(5.29)

− max{c1, c1c3/γ}
Δt

2

(∥∥√rφn
Δt

∥∥2

0
+

∥∥√rφn+1
Δt

∥∥2

0

)
.

The proof of (5.29) is analogous to the one of (5.24), but using Hypothesis 5 instead
of Hypotheses 2 and 3.

For boundary integral term I6, we first use some properties of the inner product
in the space L2(ΓR) and the inequality (1 + c1Δt)2 ≤ 1 + 3c1Δt to get the estimate

‖ψ(1 + Δt div vn+1)‖2
0,ΓR

≤ (1 + c1Δt)2‖ψ‖2
0,ΓR

≤ (1 + 3c1Δt) ‖ψ‖2
0,ΓR

for ψ ∈ L2(ΓR). Thus, we obtain

I6 ≥ Dn
Δt

(
αΔt

4

∥∥∥φ̂Δt

∥∥∥2

0,ΓR

)
+

α

4

∥∥φn+1
Δt + φn

Δt(1 + Δt div vn+1)
∥∥2

0,ΓR
(5.30)

− 3

4
c1αΔt ‖φn

Δt‖
2
0,ΓR

.

Then, by summing up (5.23), (5.24), (5.27), (5.28), (5.29), and (5.30), inequality
(5.22) follows.

Now, we study the stability of a scheme with a more general right-hand side, i.e.,⎧⎨
⎩Given φ0

Δt, find φ̂Δt = {φn
Δt}Nn=1 ∈

[
H1

ΓD
(Ω)

]N
such that〈

Ln+ 1
2

Δt φ̂Δt, ψ
〉

=
〈
Hn+ 1

2

Δt , ψ
〉

∀ψ ∈ H1
D(Ω) for n = 0, . . . , N − 1,

(5.31)
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with
〈
Hn+ 1

2

Δt , ψ
〉

=
〈
Fn+1, ψ

〉
+

〈
Gn+1, ψ

〉
ΓR

.

Let us denote F̂ = {Fn}Nn=0 ∈
[
L2(Ω)

]N+1
and Ĝ = {Gn}Nn=0 ∈

[
L2(ΓR)

]N+1
.

Notice that constant α > 0 related to Robin boundary condition (2.3) appears explic-
itly in the following lemmas; however, they remain valid for any positive constant.

Lemma 5.6. Let us assume Hypothesis 2, Fn+1 ∈ L2(Ω), and Gn+1 ∈ L2(ΓR).
If c1Δt < 1, then〈

Fn+1, ψ
〉

+
〈
Gn+1, ψ

〉
ΓR

≤ 1

2

(
‖Fn+1‖2

0 + ‖ψ‖2
0

)
+

〈
Hn+1, ψ − ϕ

〉
ΓR

(5.32)

+
21

α
‖Hn+1‖2

0,ΓR
+

αc1Δt

2
‖ϕ‖2

0,ΓR
+

α

16
‖ψ + ϕ(1 + Δt div vn+1)‖2

0,ΓR
,

with Hn+1 := Gn+1/(2 + Δt div vn+1) ∀ϕ,ψ ∈ H1(Ω) and α > 0.
Proof. Let us introduce the notation I1 =

〈
Fn+1, ψ

〉
and I2 =

〈
Gn+1, ψ

〉
ΓR

. For
I1 we only need to apply the Cauchy–Schwarz inequality. For I2 let us note first that
function Hn+1 is well defined under hypothesis c1Δt < 1. Then I2 is decomposed
into three terms, namely, I2 = I1

2 + I2
2 + I3

2 , where

I1
2 =

〈
Hn+1, ψ

〉
ΓR

−
〈
Hn+1, ϕ

〉
ΓR

,

I2
2 =

〈
Hn+1, ϕ

〉
ΓR

−
〈
Hn+1(1 + Δt div vn+1), ϕ(1 + Δt div vn+1)

〉
ΓR

,

I3
2 =

〈
Hn+1(1 + Δt div vn+1), ϕ(1 + Δt div vn+1)

〉
ΓR

+
〈
Hn+1(1 + Δt div vn+1), ψ

〉
ΓR

.

In order to estimate I2
2 it is easy to show that

I2
2 ≤ 3c1Δt ‖ϕ‖0,ΓR

‖Hn+1‖0,ΓR
≤ c1Δt

2

(
α‖ϕ‖2

0,ΓR
+

9

α
‖Hn+1‖2

0,ΓR

)

≤ c1αΔt

2
‖ϕ‖2

0,ΓR
+

9

2α
‖Hn+1‖2

0,ΓR
,

where we have used (5.21) with a = ‖ϕ‖0,ΓR
, b = 3‖Hn+1‖0,ΓR

, and c = α.
For I3

2 , (5.21) and estimate (1 + c1Δt)2 ≤ 4 lead to

I3
2 =

〈
Hn+1(1 + Δt div vn+1), ψ + ϕ(1 + Δt div vn+1)

〉
ΓR

≤ 16

α
‖Hn+1‖2

0,ΓR
+

α

16
‖ψ + ϕ(1 + Δt div vn+1)‖2

0,ΓR
.

Finally, by jointly considering the above inequalities we get (5.32).
The following lemma involves functions defined on ΓR and velocity field v.

Lemma 5.7. Let us assume Hypothesis 2. Let {Gn}Nn=0 ∈
[
L2(ΓR)

]N+1
and

{Hn}Nn=0 be as in Lemma 5.6. If c1Δt < 1, then {Hn}Nn=0 ∈
[
L2(ΓR)

]N+1
and

‖Hn‖0,ΓR
≤ ‖Gn‖0,ΓR

.(5.33)

Moreover, for any sequence {ψn}Nn=0 ∈
[
L2(ΓR)

]N+1
and any m ∈ {0, . . . , N−1},

the following inequality holds:∣∣∣∣∣
m−1∑
n=0

〈
Hn+1, ψn+1 − ψn

〉
ΓR

∣∣∣∣∣ ≤ α

16
‖ψm‖2

0,ΓR
+

4

α
‖Gm‖2

0,ΓR
+

α

16

∥∥ψ0
∥∥2

0,ΓR
(5.34)

+
4

α

∥∥G1
∥∥2

0,ΓR
+ 3αΔt

m−1∑
n=1

‖ψn‖2
0,ΓR

+
Δt

α

m−1∑
n=1

∥∥∥∥Gn+1 −Gn

Δt

∥∥∥∥2

0,ΓR

+
c1Δt

α

m∑
n=1

‖Gn‖2
0,ΓR
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for any α > 0 related to condition (2.3).

Proof. First, since c1Δt < 1, then 1/3 ≤ (2 + Δt div vn)−1 ≤ 1. So, |Hn(x)| ≤
|Gn(x)| for a.e. x ∈ ΓR, Hn ∈ L2(ΓR), and (5.33) holds. For (5.34), we use the
identity

m−1∑
n=0

〈
Hn+1, ψn+1 − ψn

〉
ΓR

= 〈Hm, ψm〉ΓR
−

〈
H1, ψ0

〉
ΓR

− Δt

m−1∑
n=1

〈
Hn+1 −Hn

Δt
, ψn

〉
ΓR

.

(5.35)

The third term in (5.35) can be bounded as follows:

Δt

∣∣∣∣∣
m−1∑
n=1

〈
Hn+1 −Hn

Δt
, ψn

〉
ΓR

∣∣∣∣∣ ≤ Δt

α

m−1∑
n=1

∥∥∥∥Gn+1 −Gn

Δt

∥∥∥∥2

0,ΓR

(5.36)

+
c1Δt

α

m−1∑
n=0

‖Gn‖2
0,ΓR

+ 3αΔt

m−1∑
n=1

‖ψn‖2
0,ΓR

,

where we have used the equality

Hn+1 −Hn

Δt
=

2(Gn+1 −Gn)

Δt (2 + Δt div vn+1)(2 + Δt div vn)

+
div vn Gn+1 − div vn+1 Gn

(2 + Δt div vn+1)(2 + Δt div vn)
,

together with (5.21), the stated bound for the term (2 + Δt div vn)−1, and Hypoth-
esis 2. The first two terms in (5.35) can be bounded by using (5.21) and (5.33),
obtaining∣∣∣〈Hi, ψj

〉
ΓR

∣∣∣ ≤ 4

α
‖Gi‖2

0,ΓR
+

α

16
‖ψj‖2

0,ΓR
for (i, j) = (1, 0) and (m,m).(5.37)

Finally, by jointly considering (5.35), (5.36), and (5.37) we get (5.34).

Theorem 5.8. Let us assume Hypotheses 2, 3, 4, and 5. Let F̂ ∈
[
L2(Ω)

]N+1
,

Ĝ ∈
[
L2(ΓR)

]N+1
, and φ̂Δt = {φn

Δt}Nn=1 be the solution of (5.31) subject to initial
value φ0

Δt ∈ H1(Ω). Let α > 0 be the constant appearing in (2.3). Then there exist
two positive constants c and d = d(c1, c2, δ, c3, γ), such that if Δt < d, then

1√
2

∥∥∥φ̂Δt

∥∥∥
l∞(L2(Ω))

+

√
δ Δt

4

∥∥∥B∇φ̂Δt

∥∥∥
l∞(L2(Ω))

+

√
Δt

4

∥∥∥√r φ̂Δt

∥∥∥
l∞(L2(Ω))

(5.38)

+

√
αΔt

16

∥∥∥φ̂Δt

∥∥∥
l∞(L2(ΓR))

≤ c

(
1

2

∥∥φ0
Δt

∥∥
0

+

√
δ Δt

4

∥∥B∇φ0
Δt

∥∥
0

+

√
Δt

4

∥∥√rφ0
Δt

∥∥
0

+

√
αΔt

16

∥∥φ0
Δt

∥∥
0,ΓR

+
∥∥∥F̂∥∥∥

l2(L2(Ω))
+

∥∥∥Ĝ∥∥∥
l2(L2(ΓR))

+ Δt
∥∥∥D̂ΔtG

∥∥∥
l2(L2(ΓR))

)
,

where B∇φ̂Δt := {B∇φn
Δt}, F̂ = {Fn}Nn=0, and Ĝ = {Gn}Nn=0.

Proof. Sequence φ̂Δt = {φn
Δt}Nn=1 satisfies

〈
Ln+ 1

2

Δt φ̂Δt, φ
n+1
Δt

〉
=

〈
Hn+ 1

2

Δt , φn+1
Δt

〉
.
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So, we first use Lemma 5.5 to obtain a lower bound left-hand side of this expression:〈
Ln+ 1

2

Δt φ̂Δt, φ
n+1
Δt

〉
≥ Dn

Δt

(
1

2

∥∥∥φ̂Δt

∥∥∥2

0
+

Δt

4

∥∥∥C∇φ̂Δt

∥∥∥2

0
+

Δt

4

∥∥∥√r φ̂Δt

∥∥∥2

0
+

αΔt

4

∥∥∥φ̂Δt

∥∥∥2

0,ΓR

)
+

α

4
‖φn+1

Δt + φn
Δt(1 + Δt div vn+1)‖2

0,ΓR
− c

(
‖φn

Δt‖
2
0 +

∥∥φn+1
Δt

∥∥2

0

)
− cΔt

(
δ
(
‖B∇φn

Δt‖
2
0 +

∥∥B∇φn+1
Δt

∥∥2

0

)
+

∥∥√rφn
Δt

∥∥2

0
+

∥∥√rφn+1
Δt

∥∥2

0
+ α ‖φn

Δt‖
2
0,ΓR

)
.

Second, we use Lemma 5.6 for ψ = φn+1
Δt and ϕ = φn

Δt to obtain the upper bound〈
Hn+ 1

2

Δt , φn+1
Δt

〉
≤ 1

2

(∥∥Fn+1
∥∥2

0
+

∥∥φn+1
∥∥2

0

)
+

〈
Hn+1, φn+1 − φn

〉
ΓR

+
21

α

∥∥Hn+1
∥∥2

0,ΓR
+

αc1Δt

2
‖φn‖2

0,ΓR
+

α

16

∥∥φn+1 + φn(1 + Δt div vn+1)
∥∥2

0,ΓR
.

Next, by jointly considering both estimates, regrouping, and simplifying terms we get

Dn
Δt

(
1

2

∥∥∥φ̂Δt

∥∥∥2

0
+

Δt

4

∥∥∥C∇φ̂Δt

∥∥∥2

0
+

Δt

4

∥∥∥√r φ̂Δt

∥∥∥2

0
+

αΔt

4

∥∥∥φ̂Δt

∥∥∥2

0,ΓR

)
(5.39)

≤ 1

2

∥∥Fn+1
∥∥2

0
+

21

α

∥∥Hn+1
∥∥2

0,ΓR
+

〈
Hn+1, φn+1

Δt − φn
Δt

〉
ΓR

+ c
(
‖φn

Δt‖
2
0 +

∥∥φn+1
Δt

∥∥2

0

)
+ cΔt

(
δ
(
‖B∇φn

Δt‖
2
0 +

∥∥B∇φn+1
Δt

∥∥2

0

)
+

∥∥√rφn
Δt

∥∥2

0
+

∥∥√rφn+1
Δt

∥∥2

0
+ 2α ‖φn

Δt‖
2
0,ΓR

)
,

with c = max
{
1, c1, c2, (2c1c2 + c1c

2
2)/δ, c1c3/γ

}
. Now, for fixed integer m ≥ 1, let us

sum (5.39) multiplied by Δt from n = 0 to n = m− 1. We obtain

1

2
‖φm

Δt‖
2
0 +

Δt

4
‖C∇φm

Δt‖
2
0 +

Δt

4

∥∥√rφm
Δt

∥∥2

0
+

αΔt

4
‖φm

Δt‖
2
0,ΓR

− 1

2

∥∥φ0
Δt

∥∥2

0
− Δt

4

∥∥C∇φ0
Δt

∥∥2

0
− Δt

4

∥∥√rφ0
Δt

∥∥2

0
− αΔt

4

∥∥φ0
Δt

∥∥2

0,ΓR

≤ Δt

2

m∑
n=1

‖Fn‖2
0 +

21Δt

α

m∑
n=1

‖Hn‖2
0,ΓR

+ Δt

m−1∑
n=0

〈
Hn+1, φn+1

Δt − φn
Δt

〉
ΓR

+ 2cΔt

m∑
n=0

‖φn
Δt‖

2
0 + 2cΔt2

(
m∑

n=0

δ ‖B∇φn
Δt‖

2
0 +

m∑
n=0

∥∥√rφn
Δt

∥∥2

0
+

m−1∑
n=0

α ‖φn
Δt‖

2
0,ΓR

)
.

Now, by using (5.17) and Lemma 5.7, for ψn = φn we get

1

2
‖φm

Δt‖
2
0 +

δΔt

4
‖B∇φm

Δt‖
2
0 +

Δt

4

∥∥√rφm
Δt

∥∥2

0
+

3αΔt

16
‖φm

Δt‖
2
0,ΓR

≤ 1

2

∥∥φ0
Δt

∥∥2

0
+

c2Δt

4

∥∥B∇φ0
Δt

∥∥2

0
+

Δt

4

∥∥√rφ0
Δt

∥∥2

0
+

5αΔt

16

∥∥φ0
Δt

∥∥2

0,ΓR

+
Δt

2

m∑
n=1

‖Fn‖2
0 +

25Δt

α

m∑
n=1

‖Gn‖2
0,ΓR

+
c1Δt2

α

m∑
n=1

‖Gn‖2
0,ΓR

+
Δt2

α

m−1∑
n=1

∥∥∥∥Gn+1 −Gn

Δt

∥∥∥∥2

0,ΓR

+ 2cΔt

m∑
n=0

‖φn
Δt‖

2
0 + 2cΔt2

(
m∑

n=0

δ ‖B∇φn
Δt‖

2
0 +

m∑
n=0

∥∥√rφn
Δt

∥∥2

0
+

5

2

m−1∑
n=1

α ‖φn
Δt‖

2
0,ΓR

)
.
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Let us introduce, for n = 0, . . . , N , the notation

θn :=
1

2
‖φn

Δt‖
2
0 +

δΔt

4
‖B∇φn

Δt‖
2
0 +

Δt

4

∥∥√r φn
Δt

∥∥2

0
, θn :=

αΔt

16
‖φn

Δt‖
2
0,ΓR

.

With the above notation we have

(1 − 8cΔt)θm + θm ≤ 8cΔt

m−1∑
n=0

θn + 80cΔt

m−1∑
n=0

θn

+ c̃

(
θ0 + θ0 +

∥∥∥F̂∥∥∥2

l2(L2(Ω))
+

∥∥∥Ĝ∥∥∥2

l2(L2(ΓR))
+ Δt

∥∥∥D̂ΔtG
∥∥∥2

l2(L2(ΓR))

)
,

with c = max
{
1, c1, c2, (2c1c2 + c21c

2
2)/δ, c1c3/γ

}
and c̃ a positive constant. For Δt

small enough, we can apply the discrete Gronwall inequality (see, for instance, [22])
and take the maximum in q ∈ {1, . . . , N}. Thus, estimate (5.38) follows.

Corollary 5.9 (stability). Let us assume Hypotheses 2 to 7. Let φ̂Δt =
{φn

Δt}Nn=1 be the solution of (5.13) subject to initial value φ0
Δt. Then there exist

two positive constants, c and d = d(c1, c2, δ, c3, γ), such that, for Δt < d, we have

1√
2

∥∥∥φ̂Δt

∥∥∥
l∞(L2(Ω))

+

√
δ Δt

4

∥∥∥B∇φ̂Δt

∥∥∥
l∞(L2(Ω))

+

√
Δt

4

∥∥∥√r φ̂Δt

∥∥∥
l∞(L2(Ω))

(5.40)

+

√
α Δt

16

∥∥∥φ̂Δt

∥∥∥
l∞(L2(ΓR))

≤ c

(
1

2

∥∥φ0
Δt

∥∥
0

+

√
δ Δt

4

∥∥B∇φ0
Δt

∥∥
0

+

√
Δt

4

∥∥√rφ0
Δt

∥∥
0

+

√
α Δt

16

∥∥φ0
Δt

∥∥
0,ΓR

+
∥∥∥f̂ ∥∥∥

l2(L2(Ω))
+ ‖ĝ‖l2(L2(ΓR)) + Δt

∥∥∥D̂Δtg
∥∥∥
l2(L2(ΓR))

)
,

where B∇φ̂Δt := {B∇φn
Δt}.

Proof. The result follows directly by replacing Fn+1 with fn+1 + fn ◦ Xn
E and

Gn+1 with gn+1 + gn(1 + Δt div vn+1) in (5.38).

5.4. Error estimate for the semidiscretized scheme. The aim of the present

section is to estimate the difference between the discrete solution of (5.13), φ̂Δt, and

φ̂ = {φn}, the exact solution of the continuous problem. According to (4.7) for
t = tn+1 and τ = tn+ 1

2
, the latter solves the problem〈
Ln+ 1

2 φ̂, ψ
〉

=
〈
Fn+ 1

2 , ψ
〉

∀ψ ∈ H1
ΓD

(Ω),(5.41)

where Ln+ 1
2 φ̂ ∈ (H1(Ω))′ and Fn+ 1

2 ∈ (H1(Ω))′ are defined by

〈
Ln+ 1

2 φ̂, ψ
〉

:=

〈(
dφ

dt

)n+ 1
2

◦Xn+ 1
2

e , ψ

〉
+

〈(
F

n+ 1
2

e

)−1 (
A∇φn+ 1

2

)
◦Xn+ 1

2
e , ∇ ψ

〉

+

〈
div

(
F

n+ 1
2

e

)−T

·
(
A∇φn+ 1

2

)
◦Xn+ 1

2
e , ψ

〉

+
〈(

rφn+ 1
2

)
◦Xn+ 1

2
e , ψ

〉
+ α

〈
det

(
F

n+ 1
2

e

)−1

φn+ 1
2 , ψ

〉
ΓR

,

〈
Fn+ 1

2 , ψ
〉

:=
〈
fn+ 1

2 ◦Xn+ 1
2

e , ψ
〉

+

〈
det

(
F

n+ 1
2

e

)−1

gn+ 1
2 , ψ

〉
ΓR

∀ψ ∈ H1(Ω).
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The error estimate to be stated in Theorem 5.21 is proved by means of Theo-
rem 5.8 and the forthcoming Lemmas 5.19 and 5.20. Before doing this, we give some
results with sketched proofs (see [20] for further details). Moreover, in what follows,
c̃1 denotes a generic positive constant related to the norm of the velocity field v and
not necessarily the same at each occurrence.

Lemma 5.10. Let us assume that v ∈ C2(L∞(Ω))∩C1(W 1,∞(Ω))∩C0(W 2,∞(Ω))
and vanishes on the boundary, Δt‖v‖C0(W 1,∞(Ω)) < 1/2, and ϕ ∈ Z3. Let us define

the function ξn+ 1
2 by

ξn+ 1
2 (x) :=

dϕ

dt

n+ 1
2 (

X
n+ 1

2
e (x)

)
− ϕn+1(x) − ϕn(Xn

RK(x))

Δt
∀x ∈ Ω.

Then ξn+ 1
2 ∈ L2(Ω) and ‖ξn+ 1

2 ‖0 ≤ c̃1Δt2‖ϕ‖Z3 , n = 0, . . . , N − 1.

Proof. Let us first write ξn+ 1
2 (x) = ξ

n+ 1
2

1 (x) + ξ
n+ 1

2
2 (x) with

ξ
n+ 1

2
1 (x) :=

dϕ

dt

n+ 1
2 (

X
n+ 1

2
e (x)

)
− ϕn+1(x) − ϕn(Xn

e (x))

Δt
∀x ∈ Ω,

ξ
n+ 1

2
2 (x) :=

ϕn(Xn
e (x)) − ϕn(Xn

RK(x))

Δt
∀x ∈ Ω.

The result follows by applying Taylor expansions to the above functions, noting that
|Xn

e (x) −Xn
RK(x)| ≤ c̃1Δt3.

Lemma 5.11. Let us assume that v ∈ C1(L∞(Ω)) ∩ C0(W 1,∞(Ω)) and vanishes

on the boundary. Let ϕ ∈ Z2 be a given function and ξn+ 1
2 : Ω −→ R

m be defined by

ξn+ 1
2 (x) := ϕ(X

n+ 1
2

e (x), tn+ 1
2
) − ϕ(x, tn+1) + ϕ(Xn

e (x), tn)

2
.

Then ξn+ 1
2 ∈ L2(Ω) and we have

ξn+ 1
2 (x) = −1

2

∫ tn+1

t
n+ 1

2

(tn+1 − s)
d2ϕ

dt2
(Xe(x, tn+1; s), s) ds

− 1

2

∫ tn

t
n+ 1

2

(tn − s)
d2ϕ

dt2
(Xe(x, tn+1; s), s) ds, a.e. x ∈ Ω, n = 0, . . . , N − 1.

Proof. For the function G(τ) := ϕ(Xe(x, tn+1; τ), τ), τ ∈ (0, T ), we have

G(τ) = G(tn+ 1
2
) + (τ − tn+ 1

2
)G′(tn+ 1

2
) +

∫ τ

t
n+ 1

2

(τ − s)G′′(s)ds.

Thus, the result follows by taking successively τ = tn and τ = tn+1 and adding both
expressions.

Lemma 5.12. Let us assume that v ∈ C1(W 1,∞(Ω))∩C0(W 2,∞(Ω)) and vanishes
on the boundary. Let w : Ω × [0, T ] −→ R

m, w ∈ Z2, be a given function, and let

ϑn+ 1
2 : Ω −→ R

m be defined by

ϑn+ 1
2 (x) := F−1

e (x, tn+1; tn+ 1
2
)w(X

n+ 1
2

e (x), tn+ 1
2
)

− w(x, tn+1) + (Fn
e )−1(x)w(Xn

e (x), tn)

2
.
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Then ϑn+ 1
2 ∈ L2(Ω) and ‖ϑn+ 1

2 ‖0 ≤ c̃1Δt2‖w‖Z2 , n = 0, . . . , N − 1. Moreover, if

v ∈ C1(W 2,∞(Ω)) ∩ C0(W 3,∞(Ω)) and w ∈ Ci(H3−i(Ω)), i = 0, 1, 2, then ϑn+ 1
2 ∈

H1(Ω) and ‖div ϑn+ 1
2 ‖0 ≤ c̃1 Δt2 ‖div w‖Z2 , n = 0, . . . , N − 1.

Proof. The proof follows from applying the Taylor expansion to the auxiliary
vector function G(τ) := F−1

e (x, tn+1; τ)w(Xe(x, tn+1; τ), τ).
Lemma 5.13. Let us assume that v ∈ C1(W 2,∞(Ω))∩C0(W 3,∞(Ω)) and vanishes

on the boundary. Let w : Ω × [0, T ] −→ R
m, w ∈ Z2, be a given function, and let

ξn+ 1
2 : Ω −→ R

m be defined by

ξn+ 1
2 (x) := div F−T

e (x, tn+1; tn+ 1
2
) · w(X

n+ 1
2

e (x), tn+ 1
2
) − div (Fn

e )−T(x)w(Xn
e (x), tn)

2
.

Then ξn+ 1
2 ∈ L2(Ω) and ‖ξn+ 1

2 ‖0 ≤ c̃1Δt2‖w‖Z2 , n = 0, . . . , N − 1.
Proof. The proof follows from applying the Taylor formula to the auxiliary scalar

function G(τ) := div F−T
e (x, tn+1; τ) · w(Xe(x, tn+1; τ), τ).

Lemma 5.14. Assume that v ∈ C1(L∞(Ω)) ∩ C0(W 1,∞(Ω)) vanishes on the
boundary and Δt‖v‖C0(W 1,∞(Ω)) < 1. Let ϕ ∈ H1(Ω) and let ξn be defined by

ξn(x) := ϕ(Xn
e (x)) − ϕ(Xn

E(x)) for a.e. x ∈ Ω, n = 0, . . . , N − 1.

Then ξn ∈ L2(Ω) and

ξn(x) = ∇ ϕ(Xn
E(x) + θ y) · y for a.e. x ∈ Ω,(5.42)

with θ ∈ (0, 1), and

y =

∫ tn+1

tn

(s− tn)
dv

dt
(Xe(x, tn+1; s), s) ds.(5.43)

Moreover, if v ∈ C1(W 1,∞(Ω))∩C0(W 2,∞(Ω)) and ϕ ∈ H2(Ω), then ξn+ 1
2 ∈ H1(Ω).

Proof. We use the following first order Taylor expansion of function ϕ ∈ H1(Ω):

ϕ(Xn
e (x), tn) = ϕ(Xn

E(x), tn) + ∇ ϕ (Xn
E(x) + θ(Xn

e (x) −Xn
E(x))) · (Xn

e (x) −Xn
E(x))

for some number θ ∈ (0, 1). Next, by applying again a Taylor expansion to function
Xe(x, tn+1; τ) it follows that

Xn
e (x) −Xn

E(x) =

∫ tn

tn+1

(tn − s)
dv

dt
(Xe(x, tn+1; s), s) ds.

By jointly considering both Taylor expansions, (5.42) and (5.43) follow, and the reg-
ularity of ξn is a consequence of the regularity of ϕ and v.

Corollary 5.15. Let us assume that v ∈ C1(L∞(Ω)) ∩ C0(W 1,∞(Ω)) and
vanishes on the boundary, and Δt‖v‖C0(W 1,∞(Ω)) < 1. Let ϕ : Ω × [0, T ] −→ R,

ϕ ∈ Z2, be a given function. Let ξn+ 1
2 be the function defined by

ξn+ 1
2 (x) := ϕ(X

n+ 1
2

e (x), tn+ 1
2
) − ϕ(x, tn+1) + ϕ(Xn

E(x), tn)

2
∀x ∈ Ω.

Then ξn+ 1
2 ∈ L2(Ω) and ‖ξn+ 1

2 ‖0 ≤ c̃1 Δt2 ‖ϕ‖Z2 , n = 0, . . . , N − 1, where c̃1 is
independent of Δt.

Proof. The proof directly follows from applying Lemmas 5.11 and 5.14.
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Lemma 5.16. Let us assume that v ∈ C1(W 1,∞(Ω))∩C0(W 2,∞(Ω)) and vanishes
on the boundary. Let Ψn be defined by

Ψn(x) := (Fn
e )−1(Xn

e (x)) − (I + Δt Ln)(Xn
e (x)) ∀x ∈ Ω.

Then Ψn ∈ L2(Ω) for n = 0, . . . , N − 1 and

Ψn(x) = −
∫ tn+1

tn

(τ − tn+1) ∇ dv

dt
(Xe(x, tn+1; τ), τ)Fe(X

n
e (x), tn; τ) dτ for a.e. x ∈ Ω.

(5.44)

Moreover, if v ∈ C1(W 2,∞(Ω)) ∩ C0(W 3,∞(Ω)), then Ψn ∈ H1(Ω).
Proof. The result directly follows from replacing t = tn+1 and s = tn in (3.7).
Lemma 5.17. Let us assume that v ∈ C1(W 2,∞(Ω))∩C0(W 3,∞(Ω)) and vanishes

on the boundary. Let ϑn be defined by

ϑn(x) := div (Fn
e )−T(Xn

e (x)) − Δt∇div vn(Xn
e (x)) ∀x ∈ Ω.

Then ϑn ∈ L2(Ω) for n = 0, . . . , N − 1 and

ϑn(x) = −
∫ tn+1

tn

(τ − tn+1) div

(
(Fe)

T

(
∇ dv

dt

)T
)

(Xe(x, tn+1; τ) dτ for a.e. x ∈ Ω.

Proof. The assumed regularity for v allows us to apply Lemma 5.16 and to define
Ψn ∈ H1(Ω) by (5.44). The result directly follows from applying the div operator to
Ψn and by taking into account that div

(
I + Δt (Ln)T

)
(y) = Δt∇div vn(y).

Whereas the previous lemmas concern the approximation of functions defined on
the whole domain Ω, the one below gives a second order approximation of a function
defined on the boundary ΓR.

Lemma 5.18. Let v ∈ C0(W 2,∞(Ω))∩C1(W 1,∞(Ω)) and vanish on the boundary.

Let ϕ : ΓR × [0, T ] −→ R, ϕ ∈ C2(L2(ΓR)), and let ξn+ 1
2 be a function defined on the

boundary ΓR by

ξn+ 1
2 (x) := det

(
F

n+ 1
2

e

)−1

(x) ϕ(x, tn+ 1
2
) −

ϕ(x, tn+1) +
(
1 + Δt div vn+1(x)

)
ϕ(x, tn)

2

for a.e. x ∈ ΓR. Then ξn+ 1
2 ∈ L2(ΓR) and ‖ξn+ 1

2 ‖0,ΓR
≤ c̃1Δt2 ‖ϕ‖C2(L2(ΓR)),

n = 0, . . . , N − 1, where c̃1 is independent of Δt.

Proof. Let us first write ξn+ 1
2 (x) = ξ

n+ 1
2

1 (x) − ξn2 (x) with

ξ
n+ 1

2
1 (x) := det

(
F

n+ 1
2

e

)−1

(x)ϕ(x, tn+ 1
2
) − ϕ(x, tn+1) + det (Fn

e )
−1

(x)ϕ(x, tn)

2
,

ξn2 (x) :=
det (Fn

e )
−1

(x)ϕ(x, tn) −
(
1 + Δt div vn+1(x)

)
ϕ(x, tn)

2
.

The proof is achieved by means of Taylor expansions, expressions (3.8) and (3.9) for
t = tn+1, and Proposition 3.5 for t = tn+1 and s = tn.

Lemma 5.19. Assume Hypotheses 3, 4, and 5 hold, and that the coefficients of
the problem satisfy v ∈ C0(W 3,∞(Ω)) ∩ C1(W 2,∞(Ω)) ∩ C2(L∞(Ω)), v|Γ = 0, A ∈
W 3,∞(Ω), r ∈ W 2,∞(Ω), and that Δt‖v‖C0(W 1,∞) < 1/2. Let the solution of (5.41)
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satisfy φ ∈ Z3, ∇φ ∈ Z3, φ|ΓR
∈ C2(L2(ΓR)). Then, for each n = 0, 1, . . . , N − 1,

there exist two functions ξ
n+ 1

2

L1
: Ω −→ R and ξ

n+ 1
2

L2
: ΓR −→ R, such that〈(

Ln+ 1
2 − Ln+ 1

2

Δt

)
φ̂, ψ

〉
=

〈
ξ
n+ 1

2

L1
, ψ

〉
+

〈
ξ
n+ 1

2

L2
, ψ

〉
ΓR

(5.45)

∀ψ ∈ H1
ΓD

(Ω). Moreover, ξ
n+ 1

2

L1
∈ L2(Ω) and ξ

n+ 1
2

L2
∈ L2(ΓR) and the following

estimates hold: ∥∥∥ξn+ 1
2

L1

∥∥∥
0
≤ c̃1Δt2 (‖φ‖Z3 + ‖A∇φ‖Z3 + ‖rφ‖Z2) ,∥∥∥ξn+ 1

2

L2

∥∥∥
0,ΓR

≤ c̃1Δt2
(
‖A∇φ · n‖Z2,ΓR

+ α ‖φ‖C2(L2(ΓR))

)
,

where c̃1 denotes a constant independent of Δt and α > 0 appears in (2.3).
Proof. The left-hand side of (5.45) is equal to I1 + I2 + I3 + I4 + I5, with

I1 =

〈(
dφ

dt

)n+ 1
2

◦Xn+ 1
2

e , ψ

〉
−

〈
φn+1 − φn ◦Xn

RK

Δt
, ψ

〉
,

I2 =

〈(
F

n+ 1
2

e

)−1 (
A ∇ φn+ 1

2

)
◦Xn+ 1

2
e ,∇ψ

〉

−
〈

A∇φn+1 + ((I + Δt Ln)A∇φn) ◦Xn
E

2
,∇ψ

〉
,

I3 =

〈
div

(
F

n+ 1
2

e

)−T

·
(
A∇φn+ 1

2

)
◦Xn+ 1

2
e , ψ

〉
−

〈
Δt (∇div vn · A∇φn) ◦Xn

E

2
, ψ

〉
,

I4 =
〈
(rφn+ 1

2 ) ◦Xn+ 1
2

e , ψ
〉
−

〈
rφn+1 + (rφn) ◦Xn

E

2
, ψ

〉
,

I5 = α

〈
det

(
F

n+ 1
2

e

)−1

φn+ 1
2 , ψ

〉
ΓR

− α

〈
φn+1 + φn(1 + Δt div vn+1)

2
, ψ

〉
ΓR

.

The bound for I1 directly follows from Lemma 5.10 for ϕ = φ, so we can define a

function ξ
n+ 1

2

I1
∈ L2(Ω) such that

I1 =
〈
ξ
n+ 1

2

I1
, ψ

〉
with ‖ξn+ 1

2

I1
‖0 ≤ c̃1Δt2‖φ‖Z3 .(5.46)

Term I2 is written as I2 = I1
2 + I2

2 + I3
2 , where

I1
2 =

〈(
F

n+ 1
2

e

)−1 (
A ∇ φn+ 1

2

)
◦Xn+ 1

2
e − A∇φn+1 + (Fn

e )
−1

(A∇φn) ◦Xn
e

2
,∇ ψ

〉
,

I2
2 =

〈
(Fn

e )−1 (A∇φn) ◦Xn
e − ((I + Δt Ln)A∇φn) ◦Xn

e

2
,∇ψ

〉
,

I3
2 =

〈
((I + Δt Ln)A∇φn) ◦Xn

e − ((I + Δt Ln)A∇φn) ◦Xn
E

2
,∇ψ

〉
.

In order to estimate I1
2 we apply Lemma 5.12 to w = A ∇ φ ∈ Ci(H3−i(Ω)) for

i = 0, 1, 2, so a vector valued function ϑ
n+ 1

2

I1
2

∈ H1(Ω) can be defined and Green’s

formula can be applied. Thus, we have

I1
2 =

〈
ϑ
n+ 1

2

I1
2

,∇ ψ
〉

=
〈
ϑ
n+ 1

2

I1
2

· n, ψ
〉

ΓR

−
〈
div ϑ

n+ 1
2

I1
2

, ψ
〉
,
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where the involved functions are bounded as follows:

∥∥∥ϑn+ 1
2

I1
2

· n
∥∥∥

0,ΓR

≤ c̃1Δt2‖A∇φ · n‖Z2,ΓR
,

∥∥∥div ϑ
n+ 1

2

I1
2

∥∥∥
0
≤ c̃1Δt2 ‖div A ∇ φ‖Z2 .

(5.47)

For I2
2 we apply Lemma 5.16 for v ∈ C1(W 2,∞(Ω))∩C0(W 3,∞(Ω)), finding a matrix

valued function Ψn
I2
2
∈ H1(Ω) satisfying

I2
2 =

〈
Ψn

I2
2
(A∇φ) ◦Xn

e ,∇ ψ
〉

=
〈
Ψn

I2
2
(A∇φ) ◦Xn

e · n, ψ
〉

ΓR

−
〈
div

(
Ψn

I2
2
(A∇φ) ◦Xn

e

)
, ψ

〉
,

where the Green formula has been used for the last equality and with functions on the
left-hand side of the inner products bounded as in (5.47). For I3

2 we apply Lemma 5.14
componentwise to ϕn(x) = [(I + Δt Ln(x))A(x)∇φ(x)]i ∈ H2(Ω), and we find a
function ϑn

I3
2

∈ H1(Ω), to which we can apply Green’s formula obtaining bounds

analogous to (5.47). Summing up, we can write I2 as

I2 =
〈
ξ
n+ 1

2

IA
2

, ψ
〉

+
〈
ξ
n+ 1

2

IB
2

, ψ
〉

ΓR

,(5.48)

where ‖ξn+ 1
2

IA
2

‖0 ≤ c̃1Δt2 ‖A ∇ φ‖Z3 and ‖ξn+ 1
2

IB
2

‖0,ΓR
≤ c̃1Δt2 ‖A∇φ · n‖Z2,ΓR

.

Similar computations with I3, by using Lemmas 5.13, 5.17, and 5.14, lead to

I3 =
〈
ξ
n+ 1

2

I3
, ψ

〉
, with

∥∥∥ξn+ 1
2

I3

∥∥∥
0
≤ c̃1Δt2 ‖A∇φ‖Z2 .(5.49)

For ξ = rφ ∈ Z2 we can apply Corollary 5.15 to I4, obtaining

I4 =
〈
ξ
n+ 1

2

I4
, ψ

〉
, with

∥∥∥ξn+ 1
2

I4

∥∥∥
0
≤ c̃1Δt2 ‖rφ‖Z2 .(5.50)

The estimate for I5 follows from Lemma 5.18 for ξ = αφ|ΓR
∈ C2(L2(ΓR)):

I5 =
〈
ξ
n+ 1

2

I5
, ψ

〉
ΓR

, with
∥∥∥ξn+ 1

2

I5

∥∥∥
0,ΓR

≤ c̃1Δt2‖φ‖C2(L2(ΓR)).(5.51)

Finally, partial results (5.46), (5.48), (5.49), (5.50), and (5.51) imply (5.45).
Lemma 5.20. Assume that v ∈ C0(W 2,∞(Ω)) ∩ C1(W 1,∞(Ω)) vanishes on the

boundary and Δt‖v‖C0(W 1,∞) < 1/2. Let f ∈ Z2 and g ∈ C2(L2(ΓR)). Then, for

each n = 0, 1, . . . , N − 1, there exist ξ
n+ 1

2

f : Ω −→ R and ξ
n+ 1

2
g : ΓR −→ R, satisfying〈

Fn+ 1
2 −Fn+ 1

2

Δt , ψ
〉

=
〈
ξ
n+ 1

2

f , ψ
〉

+
〈
ξ
n+ 1

2
g , ψ

〉
ΓR

∀ψ ∈ H1(Ω).(5.52)

Moreover, ξf ∈ L2(Ω), ξg ∈ L2(ΓR), and the following estimates hold:∥∥∥ξn+ 1
2

f

∥∥∥
0
≤ c̃1Δt2 ‖f‖Z2 ,

∥∥∥ξn+ 1
2

g (x)
∥∥∥

0,ΓR

≤ c̃1Δt2 ‖g‖C2(L2(ΓR)) ,

with constant c̃1 independent of Δt.
Proof. The proof follows from Corollary 5.15 and Lemma 5.18.
Lemmas in this section hold under Hypotheses 3, 4, 5 and the following one.
Hypothesis 8. Functions appearing in problem (2.1)–(2.4) satisfy
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• A ∈ W 3,∞(Ω), r ∈ W 2,∞(Ω);
• v ∈ C0(W 3,∞(Ω)) ∩ C1(W 2,∞(Ω)) ∩ C2(L∞(Ω)) and v|Γ = 0;
• f ∈ Z2, g ∈ Z3(ΓR), and α > 0.

Remark 5.7. Although in Lemma 5.15 only g ∈ C2(L2(ΓR)) was required, more
smoothness will be necessary in the following theorem.

Theorem 5.21 (error estimate). Assume Hypotheses 3, 4, 5, and 8. Let φ ∈ Z3

be the solution of (5.41), ∇φ ∈ Z3, φ|ΓR
∈ Z3(ΓR). Let φΔt = {φn

Δt} be the solution

of (5.13) subject to initial value φ0
Δt = φ0 and B∇φ̂Δt = {B∇φn

Δt}. Then there exist
two positive constants c and d = d(c1, c2, δ, c3, γ) such that if Δt < d, we have√

1

2

∥∥∥φ̂− φ̂Δt

∥∥∥
l∞(L2(Ω))

+

√
Δt δ

4

∥∥∥B∇φ̂− B∇φ̂Δt

∥∥∥
l∞(L2(Ω))

(5.53)

+

√
Δt

4

∥∥∥√r φ̂−
√
r φ̂Δt

∥∥∥
l∞(L2(Ω))

+

√
Δt α

16

∥∥∥φ̂− φ̂Δt

∥∥∥
l∞(L2(ΓR))

≤ c Δt2
(
‖φ‖Z3 + ‖A∇φ‖Z3 + ‖rφ‖Z2 + ‖φ‖Z2,ΓR

+ ‖f‖Z2 + ‖g‖Z2,ΓR

)
+ c Δt3

(
‖φ‖Z3,ΓR

+ ‖g‖Z3,ΓR

)
.

Proof. Let us denote by eΔt the difference between the continuous and the discrete
solutions, i.e., eΔt = {enΔt}, with enΔt = φn − φn

Δt. From (5.41) and (5.13) we have〈
Ln+ 1

2

Δt êΔt, ψ
〉

=
〈(

Ln+ 1
2

Δt − Ln+ 1
2

)
φ̂, ψ

〉
+

〈
Fn+ 1

2 −Fn+ 1
2

Δt , ψ
〉
,

and, as a consequence of Lemmas 5.19 and 5.20, we are led to the following scheme:〈
Ln+ 1

2

Δt êΔt, ψ
〉

=
〈
ξ
n+ 1

2

L1
− ξ

n+ 1
2

f , ψ
〉

+
〈
ξ
n+ 1

2

L2
− ξ

n+ 1
2

g , ψ
〉

ΓR

∀ψ ∈ H1
ΓD

(Ω).(5.54)

Next, we apply Theorem 5.8 to (5.54), noting that e0
Δt = 0. Thus, we obtain

1√
2
‖êΔt‖l∞(L2(Ω)) +

√
δ Δt

4
‖B∇êΔt‖l∞(L2(Ω)) +

√
Δt

4

∥∥√rêΔt

∥∥
l∞(L2(Ω))

(5.55)

+

√
α Δt

16
‖êΔt‖l∞(L2(ΓR)) ≤ c Δt

(∥∥∥D̂ΔtξL2

∥∥∥
l2(L2(ΓR))

+
∥∥∥D̂Δtξg

∥∥∥
l2(L2(ΓR))

)

+ c

(∥∥∥ξ̂L1

∥∥∥
l2(L2(Ω))

+
∥∥∥ξ̂f∥∥∥

l2(L2(Ω))
+

∥∥∥ξ̂L2

∥∥∥
l2(L2(ΓR))

+
∥∥∥ξ̂g∥∥∥

l2(L2(ΓR))

)
.

Thus, error estimate (5.53) follows from the upper bounds for ξL1
, ξf , ξL2

, and ξg given
in Lemmas 5.19 and 5.20 and replacing the Robin boundary condition (5.41).

6. Conclusions. We have performed the numerical analysis of second order
characteristic semidiscretized schemes for solving linear convection-diffusion-reaction
equations, extending the work in [24]. More precisely, we allow for degenerate diffusion
coefficients, reaction terms, non-divergence-free velocity fields, and general Dirichlet–
Robin boundary conditions. The method has been introduced by using the formalism
of continuum mechanics, and weak formulations by means of an appropriate Green’s
formula are obtained. Although our analysis considers only velocity fields which are
null at the boundary and use approximate characteristic lines, we could also deal
with more general situations. Second order error estimates have been obtained when
smooth enough data and solutions are available.
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This paper is completed in [9], where the fully discretized Lagrange–Galerkin
scheme is theoretically studied. Moreover, the effect of different proposed quadrature
formulas and some numerical examples illustrating the predicted behavior are shown.
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PART II: FULLY DISCRETIZED SCHEME AND
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Abstract. In this paper a higher order Lagrange–Galerkin discretization method is analyzed
when applied to a variable coefficient convection-(possibly degenerated) diffusion-reaction equa-
tion with mixed Dirichlet–Robin boundary conditions. In a previous paper [A. Bermúdez, M. R.
Nogueiras, and C. Vázquez, SIAM J. Numer. Anal., to appear], the proposed second order time
discretization scheme has been rigorously introduced for exact and approximated characteristics.
Moreover, the l∞(L2) stability property and l∞(L2) error estimates of order O(Δt2) have been
obtained. As a continuation of that work, consistency error estimates of order O(Δt2 + hk) are
obtained for the fully discretized Lagrange–Galerkin scheme. Moreover, adequate quadrature for-
mulas are proposed for the practical implementation of the method with particular finite element
spaces. Finally, some numerical tests illustrate the theoretical results and the performance of the
combination of second order Lagrange–Galerkin schemes with quadrature formulas.

Key words. convection-diffusion equation, Lagrange–Galerkin methods, stability, error esti-
mates, second order schemes, quadrature formulas
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1. Introduction. In the framework of numerical solution of convection domi-
nated problems (including the degenerate diffusion case arising, for example,in finance
[20]) a possible upwinding strategy is provided by the method of characteristics for
time discretization (see [11]). This approach is based on the discretization of the
total (or material) time derivative. Many authors have mathematically analyzed and
applied the characteristics method to different problems [9, 15, 5, 4, 13, 19, 2, 1, 3].

The increase in the order of time and space approximations can be obtained
by using higher order schemes for the discretization of the material derivative and
higher order finite element spaces. In [10] multistep Galerkin methods for constant
coefficients convection-diffusion problems are studied and the need for analyzing the
variable coefficient case is pointed out. In [7, 8] multistep methods to approximate
the material time derivative, combined with either mixed finite elements or spec-
tral methods for spatial discretization, are analyzed to solve incompressible Navier–
Stokes equations. More recently, in [18], a second order Runge–Kutta method is pro-
posed to approximate the material time derivative when solving a constant coefficient
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convection-diffusion equation with Dirichlet boundary conditions. Second order in
time is achieved by the Crank–Nicholson scheme and an adequate upwinding of the
diffusive term.

Our contribution, in both [6] and the present paper, is to extend [18] in sev-
eral aspects: first, we deal with a (possibly degenerate) variable coefficient diffusive
term instead of the more classical Laplacian one. Second, nonzero reaction func-
tions are allowed. Third, a general mixed Dirichlet–Robin boundary condition is
considered. Fourth, nondivergence-free velocity fields are handled. Fifth, a complete
analysis of the influence of quadrature formulas for different finite element spaces is
developed.

In [6] the mathematical formalism of continuum mechanics (see [12]) and Taylor
expansions are used to express the results and notations related not only to the approx-
imate characteristics proposed in [18] but also to the exact ones, and an appropriate
variational formulation of the problem is obtained. Then, second order characteristics
time discretization schemes are introduced. Moreover, the l∞(L2) stability property
is stated and l∞(L2) error estimates of order O(Δt2) are obtained.

As a logical continuation of [6], the fully discretized Lagrange–Galerkin scheme
with a wide class of finite element spaces is analyzed in the present paper, where the
results in [18] are again extended to a more general partial differential equation (PDE)
problem. Moreover, adequate quadrature formulas are proposed for the practical im-
plementation with Lagrange finite elements on triangular and quadrangular meshes.
Notice that in [18], for piecewise linear Lagrange finite elements, just low order formu-
las on each element obtained by dividing each mesh triangle were performed. In the
present paper, the stability of some of the proposed quadrature formulas is rigorously
studied by using Fourier analysis. In this aspect, previous studies about the influence
of quadratures in the case of the classical first order Lagrange–Galerkin method ap-
plied to transport [13] and convection-diffusion [19] equations are here extended to
the second order Lagrange–Galerkin one. Furthermore, some numerical tests illus-
trate both the theoretical results and the performance of the combination of higher
order Lagrange–Galerkin schemes with quadrature formulas.

The present paper is organized as follows. In section 2 the strong formulation
of the convection-diffusion-reaction problem is established. In section 3 we introduce
the hypotheses on the finite element spaces to be considered for spatial discretization,
pose the corresponding fully discretized schemes, and state their stability proper-
ties. In section 4, the main result concerning error estimates of the fully discretized
schemes is proved. In section 5, stability is analyzed for adequate quadrature formulas
combined with particular finite element spaces. Finally, in section 6, several numeri-
cal test examples are introduced to illustrate the above theoretical results about the
combination of quadrature formulas with second order Lagrange–Galerkin schemes;
comparison with first order ones are also included.

2. Statement of the problem, weak formulation, and some hypothesis.
Let Ω be a bounded domain in R

d (d = 2, 3) with Lipschitz boundary, Γ, divided
into two parts: Γ = ΓD ∪ ΓR, with ΓD ∩ ΓR = ∅. Let T be a positive constant. We
consider the following initial boundary value problem:

(SP) strong problem: Find a function φ : Ω × (0, T ) −→ R such that

φ′(x, t) − div (A(x)∇φ(x, t)) + v(x, t) · ∇φ(x, t) + r(x)φ(x, t) = f(x, t)(2.1)

for (x, t) ∈ Ω × (0, T ), subject to boundary conditions
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φ(x, t) = 0 on ΓD × (0, T ),(2.2)

α φ(x, t) + A(x)∇φ(x, t) · n(x) = g(x, t) on ΓR × (0, T ),(2.3)

and initial condition

φ(x, 0) = φ0(x) in Ω.(2.4)

In the above equations, φ′ denotes the partial derivative with respect to t, A : Ω −→
Sd denotes the diffusion matrix function where Sd is the space of symmetric d × d
matrices, v : Ω × [0, T ] −→ R

d is the velocity vector field, r : Ω −→ R is the reaction
function, f : Ω× [0, T ] −→ R and g : ΓR× [0, T ] −→ R are given scalar functions, and
n is the outward unit normal vector to Γ.

Throughout this paper, we use the notation ψi = ψ(ti) for a time-dependent
function and i = 0, 1

2 , 1, . . . . In [6] the following weak formulation of the above
problem has been obtained:

(WP) weak problem: Find a function φ : Ω × (0, T ) −→ R such that〈
Ln+ 1

2 φ̂, ψ
〉

=
〈
Fn+ 1

2 , ψ
〉
∀ψ ∈ H1

ΓD
(Ω),(2.5)

where Ln+ 1
2 φ̂ ∈ (H1(Ω))′ and Fn+ 1

2 ∈ (H1(Ω))′ are defined by

〈
Ln+ 1

2 φ̂, ψ
〉

:=

〈(
dφ

dt

)n+ 1
2

◦Xn+ 1
2

e , ψ

〉
+

〈(
F

n+ 1
2

e

)−1 (
A∇φn+ 1

2

)
◦Xn+ 1

2
e , ∇ ψ

〉

+

〈
div

(
F

n+ 1
2

e

)−T

·
(
A∇φn+ 1

2

)
◦Xn+ 1

2
e , ψ

〉

+
〈(

rφn+ 1
2

)
◦Xn+ 1

2
e , ψ

〉
+ α

〈
det

(
F

n+ 1
2

e

)−1

φn+ 1
2 , ψ

〉
ΓR

,

〈
Fn+ 1

2 , ψ
〉

:=
〈
fn+ 1

2 ◦Xn+ 1
2

e , ψ
〉

+

〈
det

(
F

n+ 1
2

e

)−1

gn+ 1
2 , ψ

〉
ΓR

∀ψ ∈ H1(Ω),

where Xe(x, t; ·) denotes the characteristic line (associated to v) through (x, t) and Fe

denotes the gradient of Xe with respect to x.
We will adopt the usual notation for the functional spaces involved, which has

been recalled in section 1 of [6]. Let us only recall that, for a nonnegative integer m,
Zm =

{
ϕ ∈ Cj(Hm−j(Ω)); j = 0, . . . ,m

}
is a Banach space when equipped with the

norm ‖ϕ‖Zm := max
{
‖ϕ‖Cj(Hm−j); 0 ≤ j ≤ m

}
.

In [6] a second order characteristics semidiscretized scheme has been proposed
and analyzed, obtaining stability and consistency error results under the following
hypothesis on the data of the problem:

Hypothesis 1. The velocity field v ∈ C0
(
W 2,∞(Ω)

)
satisfies v = 0 on Γ.

Remark 2.1. Throughout this paper c1 denotes the maximum between the
positive constant appearing in Lemma 5.4 in [6] and the norm of the velocity in
C0(W 2,∞(Ω)).

Hypothesis 2. The diffusion matrix coefficients, Aij , belong to W 1,∞(Ω). More-
over, A is a m×m symmetric matrix satisfying

A =

(
Am1 Θ

Θ Θ

)
,(2.6)
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with Am1
being a positive definite symmetric m1×m1 matrix (m1 ≥ 1), and where Θ

denotes an appropriate zero matrix. Moreover, there exists a strictly positive constant
δ, which is a uniform lower bound for the eigenvalues of Am1 .

As a consequence of Hypothesis 2, there exists a unique positive definite symmet-
ric m1 ×m1 matrix function, Cm1 , such that Am1 = (Cm1)

2
. Let us denote by C the

symmetric and positive semidefinite m×m matrix

C =

(
Cm1 Θ

Θ Θ

)
.(2.7)

Notice that A = C2 and Cij ∈ W 1,∞(Ω). Then, let us introduce the constant

c2 := maxi,j

{
‖Cij‖2

W 1,∞(Ω)

}
. Next, let us denote by B the m×m matrix

B =

(
Im1

Θ

Θ Θ

)
,(2.8)

where Im1 is the m1 ×m1 identity matrix. Clearly, under Hypothesis 2 we have

δ ‖Bw‖2
0 ≤ 〈Aw,w〉 = ‖Cw‖2

0 ≤ c2 ‖Bw‖2
0 ∀w ∈ R

m.(2.9)

Hypothesis 3. The velocity field satisfies (I − B)L(x, t)B = 0 for all (x, t) ∈
Ω × [0, T ], where L denotes the gradient of v with respect to x.

Remark 2.2. Under Hypotheses 2 and 3, for every m×m matrix E and vectors
w1,w2 ∈ R

m it is easy to verify that 〈EAw1,w2〉 = 〈EAw1,Bw2〉.
Hypothesis 4. The reaction function, r ∈ W 1,∞(Ω), satisfies 0 < γ ≤ r(x) in Ω,

where γ is a constant.
Under the previous hypothesis, let c3 := ‖

√
r‖2

W 1,∞(Ω).

Hypothesis 5. Functions appearing in problem (2.1)–(2.4) satisfy
• A ∈ W3,∞(Ω), r ∈ W 2,∞(Ω),
• v ∈ C0(W3,∞(Ω)) ∩ C1(W2,∞(Ω)) ∩ C2(L∞(Ω)) and v|Γ = 0,
• f ∈ Z2, g ∈ Z3(ΓR), and α > 0.

In the next section we introduce spatial finite elements discretizations of the time
semidiscretized scheme proposed in [6]. In other words, we propose and analyze
different Lagrange–Galerkin schemes.

3. Space discretization: Finite element method. We propose a spatial
discretization by using finite element spaces V k

h , where h denotes the mesh parameter
and the positive integer k is the “approximation degree” in the following sense:

Hypothesis 6. There exists an interpolation operator πh : C0(Ω) −→ V k
h satisfying

‖πhψ − ψ‖s ≤ K hk+1−s ‖ψ‖k+1 ∀ψ ∈ C0(Ω) ∩Hk+1(Ω), s = 1, 2,(3.1)

for a positive constant K independent of h.
The fully discrete scheme reads⎧⎪⎨

⎪⎩
Given φ0

h ∈ V k
h , find φ̂h := {φn

h}Nn=1 ∈
[
V k
h

]N
such that〈

Ln+ 1
2

Δt φ̂h, ψh

〉
=

〈
Fn+ 1

2

Δt , ψh

〉
∀ψh ∈ V k

h , for n = 0, . . . , N − 1.

(3.2)
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The involved operators are defined as follows:〈
Ln+ 1

2

Δt φ, ψ
〉

:=

〈
φn+1 − φn ◦Xn

RK

Δt
, ψ

〉
+

〈
A∇φn+1 + (A∇φn) ◦Xn

E

2
,∇ψ

〉

+
Δt

2
〈(LnA∇φn) ◦Xn

E ,∇ψ〉 +
Δt

2
〈(∇div vn · A∇φn) ◦Xn

E , ψ〉

+

〈
rφn+1 + (rφn) ◦Xn

E

2
, ψ

〉

+ α

〈
φn+1 + φn(1 + Δt div vn+1)

2
, ψ

〉
ΓR

,(3.3)

〈
Fn+ 1

2

Δt , ψ
〉

:=

〈
fn+1 + fn ◦Xn

E

2
, ψ

〉
+

〈
gn+1 + gn(1 + Δt div vn+1)

2
, ψ

〉
ΓR

,

(3.4)

for φ ∈ C0(H1(Ω)) and ψ ∈ H1(Ω). Functions Xn
E and Xn

RK are, respectively, the
Euler and Runge–Kutta approximations of the characteristics lines, Xn

e , (see [6]).
The following stability result for the fully discretized scheme can be analogously

obtained to the one stated in [6] for the semidiscretized scheme.
Theorem 3.1 (stability). Let us assume Hypotheses 1, 2, 3, and 4 and let

f ∈ C0(L2(Ω)), g ∈ C0(L2(ΓR)) and α > 0. Moreover, let φ̂h = {φn
h}Nn=1 be the solu-

tion of (3.2) subject to initial value φ0
h and B∇φ̂h := {B∇φn

h}
N
n=1. Then, there exist

two positive constants, c and d, d = d(c1, c2, c3, δ, γ), such that for Δt < d we have

1√
2

∥∥∥φ̂h

∥∥∥
l∞(L2(Ω))

+

√
δ Δt

4

∥∥∥B∇φ̂h

∥∥∥
l∞(L2(Ω))

+

√
Δt

4

∥∥∥√rφ̂h

∥∥∥
l∞(L2(Ω))

+

√
α Δt

8

∥∥∥φ̂h

∥∥∥
l∞(L2(ΓR))

≤ c

(
1

2

∥∥φ0
h

∥∥
0

+

√
δ Δt

4

∥∥B∇φ0
h

∥∥
0

+

√
Δt

4

∥∥√rφ0
h

∥∥
0

+

√
α Δt

8

∥∥φ0
h

∥∥
0,ΓR

+ ‖f‖l2(L2(Ω)) + ‖g‖l2(L2(ΓR)) + Δt
∥∥∥D̂Δtg

∥∥∥
l2(L2(ΓR))

)
.

4. Error estimates for the fully discretized scheme. In order to study
consistency errors of the fully discretized scheme (3.2) let us introduce the notations

êh := φ̂h − π̂hφ and η̂h := φ̂− π̂hφ, and state the following lemma.
Lemma 4.1. Under Hypotheses 1, 2, 3, 4, and 6, if φ ∈ C0(C0(Ω))∩C0(Hk+1(Ω))

∩H1(Hk(Ω)) and c1Δt < 1/2, the following inequality holds:〈
Ln+ 1

2

Δt η̂h, e
n+1
h

〉
(4.1)

≤ 1

8

∥∥C ∇ en+1
h + (C ∇ enh) ◦Xn

E

∥∥2

0
+ Dn

Δt

(
Δt

2
〈C ∇ η̂h,C ∇ êh〉

)

+
1

8

∥∥√ren+1
h + (

√
renh) ◦Xn

E

∥∥2

0
+ Dn

Δt

(
Δt

2

〈√
rη̂h,

√
renh

〉)

+
α

8

∥∥en+1
h + enh(1 + Δt div vn+1)

∥∥2

0,ΓR
+ Dn

Δt

(
α Δt

2
〈η̂h, êh〉ΓR

)
+ c

∥∥en+1
h

∥∥2

0

+ cΔt
(
δ
(
‖B ∇ enh‖

2
0 +

∥∥B ∇ en+1
h

∥∥2

0

)
+

∥∥√renh
∥∥2

0
+

∥∥√ren+1
h

∥∥2

0
+ α ‖enh‖

2
0,ΓR

)
+ c̃K2h2k

(
1

Δt
‖φ′‖2

L2((tn,tn+1),Hk(Ω)) +
1

Δt
‖φ‖2

L2((tn,tn+1),Hk+1(Ω)) + Δt ‖φn‖2
k+1

)
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with c = max {1, (c1c2 + 1)/4δ, c1c3/4, c1}, c̃ a positive constant, and δ > 0 and α > 0
being the constants appearing, respectively, in Hypothesis 2 and (2.3).

Proof. First, the left-hand side in (4.1) is decomposed as a sum of the terms

I1 =

〈
ηn+1
h − ηnh ◦Xn

RK

Δt
, en+1

h

〉
,

I2 =

〈
A ∇ ηn+1

h + (A ∇ ηnh) ◦Xn
E

2
, ∇ en+1

h

〉
,

I3 =
Δt

2

〈
(LnA ∇ ηnh) ◦Xn

E , ∇ en+1
h

〉
,

I4 =
Δt

2

〈
(∇ div vn · A ∇ ηnh) ◦Xn

E , e
n+1
h

〉
,

I5 =

〈
rηn+1

h + (rηnh) ◦Xn
E

2
, en+1

h

〉
,

I6 = α

〈
ηn+1
h + ηnh(1 + Δt div vn+1)

2
, en+1

h

〉
ΓR

.

(4.2)

In order to work with I1 we introduce the function Y n
RK(y, ·) : [tn, tn+1] −→ Ω,

defined by Y n
RK(y, s) := y−v

(
y − vn+1(y) tn+1−s

2 , tn+1+s
2

)
(tn+1−s). First, applying

the chain rule in order to compute its partial derivative with respect to s and its
gradient, for c1Δt < 1 it is easy to obtain the following bounds:∣∣∣∣∂Y n

RK

∂s
(y, s)

∣∣∣∣ ≤ c1 +
Δt

2
c1 +

Δt

2
c21 ≤ 1 + 2c1 ∀(y, s) ∈ Ω × [tn, tn+1],(4.3) ∣∣∣det (∇Y n

RK)
−1

(y, s)
∣∣∣ ≤ 1 + c1Δt ∀(y, s) ∈ Ω × [tn, tn+1],(4.4)

where Lemma 5.2 in [6] and Corollary 5.3 in [6] have been used. Moreover, noting
that Y n

RK(y, tn+1) = y and Y n
RK(y, tn) = Xn

RK(y), and by using Barrow’s rule we
have

ηn+1
h (y) − ηnh (Xn

RK(y))

Δt
=

1

Δt

∫ tn+1

tn

dηh
ds

((Y n
RK(y, s), s))(4.5)

=
1

Δt

∫ tn+1

tn

η′h(Y n
RK(y, s), s) ds +

1

Δt

∫ tn+1

tn

∇ ηh(Y n
RK(y, s), s) · ∂Y

n
RK

∂s
(y, s) ds,

where the chain rule has been used for the last equality. Next, by applying Holder’s
inequality we get

1

Δt

∫ tn+1

tn

η′h(Y n
RK(y, s), s) ds ≤ 1√

Δt

(∫ tn+1

tn

(η′h(Y n
RK(y, s), s))

2
ds

) 1
2

,

and then∫
Ω

(
1

Δt

∫ tn+1

tn

η′h(Y n
RK(y, s), s) ds

)2

dy ≤ 1

Δt

∫ tn+1

tn

∫
Ω

η′h(Y n
RK(y, s), s)2 dy ds

=
1

Δt

∫ tn+1

tn

∫
Ω

η′h(z, s)2 det (∇Y n
RK)

−1
(z, s) dz ds ≤ (1 + c1Δt)

Δt
‖η′h‖

2
L2((tn,tn+1),L2(Ω)) ,
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where the change of variable z = Y n
RK(y, s) and estimate (4.4) have been used. Anal-

ogously, for the last term of (4.5) we get

∫
Ω

(
1

Δt

∫ tn+1

tn

∇ ηh(Y n
RK(y, s), s) · ∂Y

n
RK

∂s
(y, s) ds

)2

dy

≤ (1 + c1Δt) (1 + 2c1)
2

Δt
‖∇ ηh‖2

L2((tn,tn+1),L2(Ω)) ,

where we have also considered estimate (4.3). Finally, by applying Young’s inequality
to term I1 and using the above results and Hypothesis 6 for s = 0 and r = k we
obtain

I1 ≤ (1 + c1Δt) (1 + 2c1)
2
K2 h2k

2Δt

(
‖φ′‖2

L2((tn,tn+1),Hk(Ω)) + ‖φ‖2
L2((tn,tn+1),Hk+1(Ω))

)
+

1

2
‖en+1

h ‖2
0.

(4.6)

Next, we decompose term I2 into I2 = I1
2 + I2

2 + I3
2 , with

I1
2 =

1

2

〈
C ∇ ηn+1

h , C ∇ en+1
h

〉
− 1

2
〈C ∇ ηnh , C ∇ enh〉 ,

I2
2 =

1

2
〈C ∇ ηnh , C ∇ enh〉 −

1

2
〈(C ∇ ηnh) ◦Xn

E , (C ∇ enh) ◦Xn
E〉 ,

I3
2 =

1

2

〈
(C ∇ ηnh) ◦Xn

E , (C ◦Xn
E)(∇ en+1

h + ∇ enh ◦Xn
E)

〉
.

Notice that I1
2 explicitly appears in (4.1). For I2

2 we apply first the change of variable
y = Xn

E(x) in the integral, Lemma 5.1 in [6], and Hypotheses 2 and 6 obtaining

I2
2 =

1

2

∫
Ω

(C ∇ ηnh) (x) · (C ∇ enh) (x) dx − 1

2

∫
Ω

(C ∇ ηnh · C ∇ enh) ◦Xn
E(x) dx

=
1

2

∫
Ω

(
1 − det((Fn

E)−1(x))
)
(C ∇ ηnh) (x) · (C ∇ enh) (x) dx

≤ c1c2Δt

4

(
K2h2k ‖φn‖2

k+1 + ‖B ∇ enh‖
2
0

)
.

Now, we replace in I3
2 equality C(Xn

E(x)) = C(x) − Dn(x), where

Dn
ij(x) :=

∫ tn+1

tn

∇Cij(Y
n
E (x, s)) · vn+1(x) ds a.e. x ∈ Ω,

with
∣∣Dn

ij(x)
∣∣ ≤ c1

√
c2Δt, and the function Y n

E (x, ·) : [tn, tn+1] −→ Ω is defined by

Y n
E (x, s) := x − (tn+1 − s)vn+1(x). Thus, we get

I3
2 =

1

2

〈
(C ∇ ηnh) ◦Xn

E , C ∇ en+1
h − D ∇ en+1

h + (C ∇ enh) ◦Xn
E

〉
,

and then

I3
2 ≤ ‖(C ∇ ηnh) ◦Xn

E‖
2
0 +

1

8

∥∥C ∇ en+1
h + (C ∇ enh) ◦Xn

E

∥∥2

0
+

1

8

∥∥D ∇ en+1
h

∥∥2

0
.
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Moreover, we have

‖(C ∇ ηnh) ◦Xn
E‖

2
0 ≤ (1 + c1Δt)c2K

2h2k ‖φn‖2
k+1 ,(4.7) ∥∥D ∇ en+1

h

∥∥2

0
≤ c21c2Δt2

∥∥B ∇ en+1
h

∥∥2

0
,(4.8)

where, Lemma 5.4 in [6] and Hypotheses 2 and 6 with r = k + 1 and s = 1 have been
required. Now, by jointly considering estimates for I2

2 and I3
2 , and the lower bound δ

of Hypothesis 2 we can state

I2 ≤ I1
2 +

(
c1c2Δt

4
+ (1 + c1Δt)c2

)
K2h2k ‖φn‖2

k+1

+
(2c1 + c21Δt)c2Δt

8δ
δ
(
‖B ∇ enh‖

2
0 +

∥∥B ∇ en+1
h

∥∥2

0

)
+

1

8

∥∥C ∇ en+1
h + (C ∇ enh) ◦Xn

E

∥∥2

0
.

(4.9)

Similar reasoning, i.e., Lemma 5.4 in [6] and Hypotheses 1, 2, and 6 lead to

‖(LnA ∇ηnh) ◦Xn
E‖

2
0 ≤ (1 + c1Δt)c21c

2
2K

2h2k ‖φn‖2
k+1 ,

‖(∇ div vn · A ∇ηnh) ◦Xn
E‖

2
0 ≤ (1 + c1Δt)c21c

2
2K

2h2k ‖φn‖2
k+1 .

(4.10)

Using these inequalities, I3 and I4 can be bounded as follows:

I3 ≤ (1 + c1Δt)c21c
2
2Δt K2 h2k

4
‖φn‖2

k+1 +
Δt

4δ
δ
∥∥B ∇ en+1

h

∥∥2

0
,(4.11)

I4 ≤ (1 + c1Δt)c21c
2
2Δt2 K2 h2k

4
‖φn‖2

k+1 +
1

4

∥∥en+1
h

∥∥2

0
,(4.12)

where, in order to estimate I3, we have used Remark 2.2 and Hypothesis 2.
Next, term I5 can be decomposed like term I2, namely, I5 = I1

5 + I2
5 + I3

5 , where

I1
5 =

1

2

〈√
rηn+1

h ,
√
ren+1

h

〉
− 1

2

〈√
rηnh ,

√
renh

〉
I2
5 =

1

2

〈√
rηnh ,

√
renh

〉
− 1

2

〈
(
√
rηnh) ◦Xn

E , (
√
renh) ◦Xn

E

〉
,

I3
5 =

1

2

〈
(
√
rηnh) ◦Xn

E ,
√
r ◦Xn

E

(
en+1
h + enh ◦Xn

E

)〉
.

(4.13)

Moreover, by using again the definition of Y n
E , we can rewrite I3

5 as

1

2

〈
(
√
rηnh) ◦Xn

E ,
√
ren+1

h −
(∫ tn+1

tn

∇
√
r(Y n

E (x, s)) · vn+1(x) ds

)
en+1
h

+
(√

renh
)
◦Xn

E

〉
.

Thus, the same kind of computations used for I2 lead to the following estimate:

I5 ≤ I1
5 +

(
c1c3Δt

4
+ (1 + c1Δt)c3

)
K2h2k ‖φn‖2

k

+
(2c1 + c21Δt)c3Δt

8

(∥∥√renh
∥∥2

0
+

∥∥√ren+1
h

∥∥2

0

)
+

1

8

∥∥√ren+1
h + (

√
renh) ◦Xn

E

∥∥2

0
.

(4.14)
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Finally, the boundary integral term I6 is decomposed as a sum of the three terms

I1
6 =

α

2

〈
ηn+1
h , en+1

h

〉
ΓR

− α

2
〈ηnh , enh〉ΓR

,

I2
6 =

α

2
〈ηnh , enh〉ΓR

− α

2

〈
ηnh(1 + Δt div vn+1), enh(1 + Δt div vn+1)

〉
ΓR

,

I3
6 =

α

2

〈
ηnh(1 + Δt div vn+1), en+1

h + enh(1 + Δt div vn+1)
〉
ΓR

.

Term I1
6 appears explicitly in (4.1). For I2

6 and I3
6 we use Hypothesis 1 and that

c1Δt < 1 to establish the bounds
∣∣1 − (1 + Δt div vn+1)2(x)

∣∣ ≤ c1Δt(2 + c1Δt) and
(1 + Δt div vn+1)2(x) ≤ 1 + 2c1Δt + c21Δt2, for all x ∈ Ω. Thus, we have

I2
6 ≤ αc1Δt(2 + c1Δt)

4

(
‖ηnh‖

2
0,ΓR

+ ‖enh‖
2
0,ΓR

)
,

I3
6 ≤ α(1 + 2c1Δt + c21Δt2)

2
‖ηnh‖

2
0,ΓR

+
α

8

∥∥en+1
h + enh(1 + Δt div vn+1)

∥∥2

0,ΓR
.

Next, by using the continuity of the trace mapping, there is cΩ > 0 such that
‖ηnh‖

2
0,ΓR

≤ cΩ ‖ηnh‖
2
1. We deduce, by also using Hypothesis 6, that

(4.15)

I6 ≤ I1
6 + α

(
c1Δt(2 + c1Δt)

4
+

(1 + 2c1Δt + c21Δt2)

2

)
cΩK

2 h2k ‖φn‖2
k+1

+
α

8

∥∥en+1
h + enh(1 + Δt div vn+1)

∥∥2

0,ΓR
+

αc1Δt(2 + c1Δt)

4
‖enh‖

2
0,ΓR

.

Finally, by jointly considering (4.6), (4.9), (4.11), (4.12), (4.14), and (4.15), and
taking into account that c1Δt < 1, result (4.1) follows.

Theorem 4.2 (error estimate). Let us assume Hypotheses 2, 3, 4, 5, and 6. Let
φ ∈ Z3 ∩ C0(Hk+1(Ω)) ∩ H1(Hk(Ω)) be the solution of (2.5), with ∇ φ ∈ Z3 and

φ|ΓR
∈ Z3(ΓR), and φ̂h be the solution of (3.2) subject to the initial value φ0

h = πhφ
0.

Let B ∇ (φ̂− φ̂h) := {B ∇ (φn − φn
h)}Nn=1. Then, there exist two positive constants,

c and d, independent of h and Δt, such that, if Δt < d we have

√
1

2

∥∥∥φ̂− φ̂h

∥∥∥
l∞(L2(Ω))

+

√
Δt δ

8

∥∥∥B ∇ φ̂− B ∇ φ̂h

∥∥∥
l∞(L2(Ω))

+

√
Δt

8

∥∥∥√rφ̂−
√
rφ̂h

∥∥∥
l∞(L2(Ω))

+

√
Δt α

16

∥∥∥φ̂− φ̂h

∥∥∥
l∞(L2(ΓR))

≤ chk
(
‖φ‖H1(Hk(Ω)) + ‖φ‖C0(Hk+1(Ω))

)
+ cΔt2 (‖φ‖Z3 + ‖A ∇ φ‖Z3 + ‖rφ‖Z2 + ‖φ‖Z2,ΓR

+ ‖f‖Z2 + ‖g‖Z2,ΓR

)
+ cΔt

5
2

(
‖φ‖Z3,ΓR

+ ‖g‖Z3,ΓR

)
.

(4.16)
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Proof. First, recall that êh = η̂h− φ̂+ φ̂h. By also using the definitions of schemes
(3.2) and (2.5) the following identity holds:

(4.17)〈
Ln+ 1

2

Δt êh, e
n+1
h

〉
=

〈
Ln+ 1

2

Δt

(
η̂h − φ̂ + φ̂h

)
, en+1

h

〉
=

〈
Ln+ 1

2

Δt η̂h, e
n+1
h

〉
−

〈
Ln+ 1

2

Δt φ̂, en+1
h

〉
+

〈
Fn+ 1

2

Δt , en+1
h

〉
=

〈
Ln+ 1

2

Δt η̂h, e
n+1
h

〉
+

〈(
Ln+ 1

2 − Ln+ 1
2

Δt

)
φ̂, en+1

h

〉
+

〈
Fn+ 1

2

Δt −Fn+ 1
2 , en+1

h

〉
.

A lower bound for (4.17) is given by Lemma 5.5 in [6], namely,

(4.18)〈
Ln+ 1

2

Δt êh, e
n+1
h

〉
≥ Dn

Δt

(
1

2
‖êh‖2

0 +
Δt

4
‖C ∇ êh‖2

0 +
Δt

4

∥∥√rêh
∥∥2

0
+

αΔt

4
‖êh‖2

0,ΓR

)

+
1

2Δt

∥∥en+1
h − enh ◦Xn

RK

∥∥2

0
+

1

4

∥∥C ∇ en+1
h + (C ∇ enh) ◦Xn

E

∥∥2

0

+
1

4

∥∥√ren+1
h + (

√
renh) ◦Xn

E

∥∥2

0
+

α

4

∥∥φn+1 + φn(1 + Δt div vn+1)
∥∥2

0,ΓR

− c

2

(
‖enh‖

2
0 +

∥∥en+1
h

∥∥2

0

)
− cαΔt ‖enh‖

2
0,ΓR

− cΔt
(∥∥√renh

∥∥2

0
+

∥∥√ren+1
h

∥∥2

0

)
− cδΔt

(
‖B ∇ enh‖

2
0 +

∥∥B ∇ en+1
h

∥∥2

0

)
,

with c = max
{
1, c1, c2, (2c1c2 + c1c

2
2)/δ, c1c3/γ

}
. Now, by using Lemmas 5.19 and

5.20 in [6] we have

(4.19)〈(
Ln+ 1

2 − Ln+ 1
2

Δt

)
φ̂, en+1

h

〉
+

〈
Fn+ 1

2

Δt −Fn+ 1
2 , en+1

h

〉
=

〈
ξ
n+ 1

2

L1
− ξ

n+ 1
2

f , en+1
h

〉
+

〈
ξ
n+ 1

2

L2
− ξ

n+ 1
2

g , en+1
h

〉
ΓR

≤
(∥∥∥ξn+ 1

2

L1

∥∥∥2

0
+

∥∥∥ξn+ 1
2

f

∥∥∥2

0

)
+

〈
Hn+ 1

2 , en+1
h − enh

〉

+
21

α

(∥∥∥ξn+ 1
2

L2

∥∥∥2

0,ΓR

+
∥∥∥ξn+ 1

2
g

∥∥∥2

0,ΓR

)

+
∥∥en+1

h

∥∥2

0
+ αc1 Δt ‖enh‖

2
0,ΓR

+
α

8

∥∥en+1
h + enh(1 + Δt div vn+1)

∥∥2

0,ΓR
,

with Hn+ 1
2 (x) := (ξ

n+ 1
2

L2
(x)−ξ

n+ 1
2

g (x))/
(
2 + Δt div vn+1(x)

)
a.e. x ∈ Ω. Lemma 5.6

in [6] has been applied to the last inequality for the choices ψ = en+1
h and ϕ = enh,

first for Fn+1 = ξ
n+ 1

2

L1
, Gn+1 = ξ

n+ 1
2

L2
and then for Fn+1 = −ξ

n+ 1
2

f , Gn+1 = −ξ
n+ 1

2
g .
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By jointly considering the lower bound of (4.17) given in (4.18), the upper bound
given in (4.19) and Lemma 4.1 we deduce

(4.20)

Dn
Δt

(
1

2
‖êh‖2

0 +
Δt

4
‖C ∇ êh‖2

0 +
Δt

4

∥∥√rêh
∥∥2

0
+

αΔt

4
‖êh‖2

0,ΓR

)
≤ c̃K2h2k

×
(

1

Δt
‖φ′‖2

L2((tn,tn+1),Hk(Ω)) +
1

Δt
‖φ‖2

L2((tn,tn+1),Hk+1(Ω)) + Δt ‖φn‖2
k+1

)

+ c̃

(∥∥∥ξn+ 1
2

L1

∥∥∥2

0
+

∥∥∥ξn+ 1
2

f

∥∥∥2

0
+

∥∥∥ξn+ 1
2

L2

∥∥∥2

0,ΓR

+
∥∥∥ξn+ 1

2
g

∥∥∥2

0,ΓR

)

+
〈
Hn+ 1

2 , en+1
h − enh

〉
ΓR

+
Δt

2
Dn

Δt

(
〈C ∇ η̂h,C ∇ êh〉 +

〈√
rη̂h,

√
rêh

〉
+ α 〈η̂h, êh〉ΓR

)
+ c

(
‖enh‖

2
0 +

∥∥en+1
h

∥∥2

0

)
+ cΔt

(∥∥√renh
∥∥2

0
+

∥∥√ren+1
h

∥∥2

0

)
+ cΔt

(
δ
(
‖B ∇ enh‖

2
0 +

∥∥B ∇ en+1
h

∥∥2

0

)
+ α ‖enh‖

2
0,ΓR

)
,

where we omit some positive terms on the left-hand side. In (4.20), c̃ is a positive
constant and c = max

{
2, (3c1c2 + c1c

2
2 + 1)/δ, c1c3(1/γ + 1/4), c1, c2

}
. Now, for fixed

integer q ≥ 1, we multiply (4.20) by Δt and sum it from n = 0 to n = q − 1. We get

(4.21)

1

2
‖eqh‖

2

0
+

Δt

4
‖C ∇ eqh‖

2

0
+

Δt

4

∥∥√reqh
∥∥2

0
+

αΔt

4
‖eqh‖

2

0,ΓR

≤ 1

2

∥∥e0
h

∥∥2

0
+

Δt

4

∥∥C ∇ e0
h

∥∥2

0
+

Δt

4

∥∥√re0
h

∥∥2

0
+

αΔt

4

∥∥e0
h

∥∥2

0,ΓR

+ c̃K2h2k

×
(

q−1∑
n=0

‖φ′‖2
L2((tn,tn+1),Hk(Ω)) +

q−1∑
n=0

‖φ‖2
L2((tn,tn+1),Hk+1(Ω)) +

q−1∑
n=0

Δt2 ‖φn‖2
k+1

)

+ c̃

q−1∑
n=0

Δt

(∥∥∥ξn+ 1
2

L1

∥∥∥2

0
+

∥∥∥ξn+ 1
2

f

∥∥∥2

0
+

∥∥∥ξn+ 1
2

L2

∥∥∥2

0,ΓR

+
∥∥∥ξn+ 1

2
g

∥∥∥2

0,ΓR

)

+

q−1∑
n=0

Δt
〈
Hn+ 1

2 , en+1
h − enh

〉
ΓR

+
Δt

2

(
〈C ∇ ηqh,C ∇ eqh〉 −

〈
C ∇ η0

h,C ∇ e0
h

〉)

+
Δt

2

(〈√
rηqh,

√
reqh

〉
−

〈√
rη0

h,
√
re0

h

〉)
+

αΔt

2

(
〈ηqh, e

q
h〉ΓR

−
〈
η0
h, e

0
h

〉
ΓR

)

+ 2cΔt

q∑
n=0

‖enh‖
2
0 + 2cΔt2

(
q∑

n=0

‖B ∇ enh‖
2
0 +

q∑
n=0

∥∥√renh
∥∥2

0
+

q−1∑
n=0

‖enh‖
2
0,ΓR

)
.
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Moreover, some terms on the right-hand side of (4.21) can also be bounded. We
have

q−1∑
n=0

‖φ′‖2
L2((tn,tn+1),Hk(Ω)) +

q−1∑
n=0

‖φ‖2
L2((tn,tn+1),Hk+1(Ω)) +

q−1∑
n=0

Δt2 ‖φn‖2
k+1(4.22)

≤ ‖φ′‖2
L2(Hk(Ω)) + ‖φ‖2

L2(Hk+1(Ω)) + Δt T ‖φ‖2
C0(Hk+1(Ω))

≤ ‖φ′‖2
L2(Hk(Ω)) + (1 + Δt)T ‖φ‖2

C0(Hk+1(Ω)),

where T is the measure of the time interval.
Second, by using Lemmas 5.19 and 5.20 in [6] and the fact that A ∇ φ ·n = g−αφ

on the boundary ΓR we get

q−1∑
n=0

Δt

(∥∥∥ξn+ 1
2

L1

∥∥∥2

0
+

∥∥∥ξn+ 1
2

f

∥∥∥2

0
+

∥∥∥ξn+ 1
2

L2

∥∥∥2

0,ΓR

+
∥∥∥ξn+ 1

2
g

∥∥∥2

0,ΓR

)

≤ Δt4 c̃1 T (‖φ‖Z3 + ‖A ∇ φ‖Z3 + ‖rφ‖Z2 + ‖αφ‖Z2,ΓR
+ ‖f‖Z2 + ‖g‖Z2,ΓR

)
.

Third, by applying Lemma 5.7 in [6], we obtain the estimate∣∣∣∣∣
q−1∑
n=0

Δt
〈
Hn+ 1

2 , en+1
h − enh

〉
ΓR

∣∣∣∣∣ ≤ αΔt

8
‖eqh‖

2

0,ΓR
+

αΔt

8

∥∥e0
h

∥∥2

0,ΓR
+ 6αΔt2

q−1∑
n=0

‖enh‖
2
0,ΓR

+
4 + c1Δt

α
Δt

(
q∑

n=0

∥∥∥ξn+ 1
2

L2

∥∥∥2

0,ΓR

+

q∑
n=0

∥∥∥ξn+ 1
2

g

∥∥∥2

0,ΓR

)

+
Δt2

α

⎛
⎜⎝q−1∑

n=0

∥∥∥∥∥∥
ξ
n+ 1

2

L2
− ξ

n− 1
2

L2

Δt

∥∥∥∥∥∥
2

0,ΓR

+

q−1∑
n=0

∥∥∥∥∥h
n+ 1

2
g − h

n− 1
2

g

Δt

∥∥∥∥∥
2

0,ΓR

⎞
⎟⎠ .

Thus, by using again the bounds given in Lemmas 5.19 and 5.20 in [6] we get∣∣∣∣∣
q−1∑
n=0

〈
Hn+ 1

2 , en+1
h − enh

〉
ΓR

∣∣∣∣∣ ≤ αΔt

8
‖eqh‖

2

0,ΓR
+

αΔt

8

∥∥e0
h

∥∥2

0,ΓR
+ 6αΔt2

q−1∑
n=0

‖enh‖
2
0,ΓR

+
5

α
Δt4 T c̃1 (‖φ‖Z3 + ‖A ∇ φ‖Z3 + ‖rφ‖Z2 + ‖α φ‖Z2,ΓR

+ ‖f‖Z2 + ‖g‖Z2,ΓR

)
+

Δt5 T

α

(
‖α φ‖Z3,ΓR

+ ‖g‖Z3,ΓR

)
.

Fourth, analogous computations to those developed in Lemma 4.1 give

Δt

2

〈
C ∇ ηjh,C ∇ ejh

〉
≤ K2 c2 h2k Δt

2

∥∥φj
∥∥2

k+1
+

Δt

8

∥∥∥C ∇ ejh

∥∥∥2

0
,

Δt

2

〈√
rηjh,

√
rejh

〉
≤ K2 c3 h2k Δt

2

∥∥φj
∥∥2

k+1
+

Δt

8

∥∥∥√rejh

∥∥∥2

0
,

αΔt

2

〈
ηjh, e

j
h

〉
ΓR

≤ αK2 cΩ h2k Δt
∥∥φj

∥∥2

k+1
+

α Δt

16

∥∥∥ejh∥∥∥2

0,ΓR

for j = 0, q.
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Next, for n = 0, . . . , N , let us introduce the notation

θn :=
1

2
‖enh‖

2
0 +

δΔt

8
‖B ∇ enh‖

2
0 +

Δt

8

∥∥√r enh
∥∥2

0
, θn :=

αΔt

16
‖enh‖

2
0,ΓR

.

With the above notation, the previous estimates lead to

(1 − 16cΔt)θq + θq ≤ 16cΔt

q−1∑
n=0

θn + 128cΔt

q−1∑
n=0

θn + c̃
(
θ0 + θ0 + C

)
,

where C contains the constant terms multiplied by h2k, by Δt4 and by Δt5.
Finally, taking into account that e0

h = 0, the result is concluded by discrete
Gronwall’s inequality (see, for instance, [17]).

5. Finite element spaces and quadrature formulas. Results concerning sta-
bility and consistency of scheme (3.2), when the inner products are exactly integrated,
have been proved above for a wide class of finite element spaces (we only require the
interpolation property in Hypothesis 6). Nevertheless, numerical integration has to
be used in practice to approximate the involved integrals. It is well known that, for
the classical first order in time Lagrange–Galerkin method, numerical quadrature can
lead to conditional stability [13, 19, 16]. Moreover, new terms may appear in the error
estimates (see [15, 13] and the two last paragraphs in section 6).

In the present section we analyze the stability of (3.2) when combined with some
finite element spaces and quadrature formulas, extending the studies in the litera-
ture regarding the classical scheme. In the next section we present some numerical
tests showing the influence of quadrature formulas in both stability and consistency
errors. Most of the papers in the literature study the classical Lagrange–Galerkin
method for piecewise linear finite elements. Indeed, conditional instability is shown
in [13] for Gauss–Legendre, Gauss–Lobatto (with more than three points), Radau and
Newton–Cotes formula, when applied to the linear convection equation. This work
was extended to the linear convection-diffusion equation in [19] and to a wider class of
quadrature formulas in [16]. For both convection and convection-diffusion equations,
Gauss–Lobatto quadrature formulas lead to the most stable schemes. However, only
the Trapezium rule (or two points Gauss–Lobatto) preserves unconditional stability.
We have not found in the bibliography any positive statement concerning the classical
Lagrange–Galerkin method when using quadrature formulas for quadratic elements.
The above results are established by using Fourier analysis for constant coefficients
equations and only in the one dimensional case. In [13] the analysis has been gen-
eralized to d dimensions for the linear convection equation under some particular
conditions.

In the present paper, for ν and v constant and ν ≥ 0, we consider the linear
convection (and convection-diffusion) equation with constant coefficients

∂φ

∂t
− νΔφ + v · ∇φ = 0, (x, t) ∈ Ω × [0, T ].(5.1)

Only the one dimensional equation with strictly positive velocity is treated. Similar
results can be obtained for negative velocity. Moreover, our analysis can be generalized
to d dimensions as we will establish in Lemma 5.1. A similar result has been proved
in [13] for the classical Lagrange–Galerkin method and constant linear convection
equation (i.e., ν = 0 in (5.1)).
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Remark 5.1. Although we have stated the previous results for d = 2, 3, it is easy to
prove similar results for the analogous scheme with d = 1. The only difference appears
when writing boundary conditions, which are not required in Fourier analysis.

Now, for a family of quadrangular meshes of parameter h, Th, let us introduce
the finite element spaces

Qk
h := {f ∈ C0(Ω), f |K ∈ Qk ∀K ∈ Th},(5.2)

with Qk being the space of polynomials of degree less than or equal to k in each
variable separately. Analogously, for triangular meshes, let us introduce the finite
element spaces

Pk
h := {f ∈ C0(Ω), f |K ∈ Pk ∀K ∈ Th},(5.3)

with Pk the space of polynomials of degree less than or equal to k.

5.1. Study of the one dimensional problem. Let us first introduce the no-
tation Tx[ψ] := ψ(x − vΔt), for x ∈ Ω ⊂ R and ψ : Ω → R. Similarly, T(x1,x2)[ψ] :=
ψ(x1 − v1Δt, x2 − v2Δt), Tx1 [ψ] := ψ(x1 − v1Δt, x2) and Tx2

[ψ] := ψ(x1, x2 − v2Δt),
for ψ : (x1, x2) ∈ Ω1 × Ω2 ⊂ R

2 → R, and v = (v1, v2). In the previous definitions,
Ω,Ω1, and Ω2 are intervals of R. Thus, scheme (3.2) applied to the one dimensional
version of (5.1) has the form

1

Δt

∫
Ω

φn+1
h ψjdx +

ν

2

∫
Ω

dφn+1
h

dx

dψj

dx
dx(5.4)

=
1

Δt

∫
Ω

Tx [φn
h]ψjdx− ν

2

∫
Ω

Tx

[
dφn

h

dx

]
dψj

dx
dx,

where ψj is the jth basis function of the chosen one dimensional finite element space.
Notice that, for v constant, Euler and Runge–Kutta approximations lead to the

same scheme.
Lemma 5.1. For a linear convection-diffusion equation in d dimensions with con-

stant coefficients, the second order Lagrange–Galerkin method is just a tensor product
of one dimensional second order Lagrange–Galerkin methods assuming that the basis
functions themselves are tensor products of the corresponding one dimensional basis
functions on a grid which is uniform in each coordinate direction.

Proof. It is a straightforward adaptation of the one given in [13] for the first order
Lagrange–Galerkin method in the case d = 2, by adding the new terms (see [14]).
The general case can be solved by induction on d.

In order to develop Fourier analysis, we recall the definition of the Courant num-
ber, μ := vΔt/h, and the Peclet number, ρ := νΔt/h2. Moreover, in Table 5.1 we
write some difference operators with their corresponding Fourier transforms.

Once we have stated Lemma 5.1, we consider the one dimensional Lagrange finite
elements of degree k (notice that Qk

h = Pk
h in one dimension). In particular, we

study cases k = 1 and k = 2 combined with the following Gauss–Lobatto quadrature
formulas:∫ x2

x1

ψ(x) dx ≈ x2 − x1

2
(ψ(x1) + ψ(x2)) (Trapezium),(5.5)

∫ x2

x1

ψ(x) dx ≈ x2 − x1

6

(
ψ(x1) + 4ψ

(
x1 + x2

2

)
+ ψ(x2)

)
(Simpson).(5.6)
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Table 5.1

Operators and corresponding Fourier transforms, with s = sin(θ/2) and c = cos(θ/2).

Operator Fourier transform

δ2[Uj ] := Uj+1 − 2Uj + Uj−1 −4s2

Δ0[Uj ] = (Uj+1 − Uj−1)/2 2isc

Δ−[Uj ] = Uj − Uj−1 2(isc + s2)

Er[Ui] = Ui−r e−irθ

Proposition 5.2. If scheme (3.2) with P1
h finite elements on a uniform mesh

is applied to the one dimensional equation (5.1) combined with the two point Gauss–
Lobatto quadrature (5.5) in all of the terms, then the method is unconditionally stable.

Proof. First, let us compute the terms appearing in the jth equation. We use the
notation (φh)nj := φh(xj , tn) for meshpoint (xj , tn).

• The mass term is approximated by (5.5) in the form

1

Δt

∫
Ω

φn+1
h (x) ψj(x) dx ≈ h

Δt
E0

[
(φh)n+1

j

]
.

• The stiffness term is exactly integrated by (5.5), giving rise to

ν

2

∫
Ω

dφn+1
h

dx
(x)

dψj

dx
(x) dx = −ν

2

1

h
δ2

[
(φh)n+1

j

]
.

• The integral of the second member term associated to the first order charac-
teristics method, approximated by (5.5), depends on μ in the form

1

Δt

∫
Ω

Tx[φn
h(x)] ψj(x) dx ≈ h

Δt
(E0 + (m− μ)Δ−Em−1)

[
(φh)nj

]
,

for a positive integer m such that m− 1 < |μ| < m.
• The integral of the second member term associated to the second order char-

acteristics method is

−ν

2

∫
Ω

dTx[φn
h]

dx
(x)

dψj

dx
(x) dx ≈ ν

2

1

h
Δ0Δ−Em−1

[
(φh)nj

]
,

for a positive integer m such that m− 1 < |μ| < m.
In order to apply von Neumann analysis the amplification factor is needed. Consid-
ering the approximate integrals computed above and replacing (φh)nj with gneiθj , the
following expression for the amplification factor is obtained when |μ| < 1:

gμ,ρ(θ) =
1 − 2μ(s2 + isc) + 2ρ(is3c− s2c2)

1 + 2ρs2
,(5.7)

with s = sin(θ/2) and c = cos(θ/2). Now, since

|gμ,ρ(θ)|2 =
1 + 4s2μ(μ− 1) + 4c2(ρ2s4 − ρs2)

1 + 4ρ2s4 + 4ρs4
,(5.8)

easy computations lead to |gμ,ρ(θ)| ≤ 1 for all θ ∈ [−π/2, π/2]. We can proceed
analogously for arbitrary μ. Thus, unconditional stability is stated.
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Fig. 5.1. Modulus of the amplification factor for second order Lagrange–Galerkin method with
P1
h when the exact mass matrix is used.

Remark 5.2. Note that Proposition 5.2 generalizes results in [13] and [19] for the
first order Lagrange–Galerkin method, for which we would have obtained

gμ,ρ(θ) =
1 − 2μ(s2 + isc)

1 + 4ρs2
.(5.9)

Remark 5.3. An exact integration of the mass matrix yields

Ijm1 =
h

Δt

(
1

6
δ2

[
(φh)n+1

j

]
− 2

3
E0

[
(φh)n+1

j

])
,

which, combined with the other terms computed in Proposition 5.2, leads to regions
of instability. This fact is illustrated in Figure 5.1 by plotting the modulus of the
amplification factor as a function of μ and θ for fixed ρ = 0.19.

Next, we study quadratic elements for which we have only found the following
negative result in the literature (see [13]).

Lemma 5.3. The classical Lagrange–Galerkin method applied to the one dimen-
sional version of (5.1) with ν = 0 and using piecewise quadratic elements has regions
of instability if the mass matrix is exactly computed and the right-hand side is evalu-
ated by using a quadrature formula with only interior nodes.

In the following proposition we prove that the combination of the classical La-
grange–Galerkin method with quadratic elements and Simpson quadrature preserves
the unconditional stability of the scheme when applied to the linear convection equa-
tion. It is straightforward to prove that a similar result holds for the linear convection-
diffusion equation, since the diffusion term is evaluated implicitly.

Proposition 5.4. If the classical Lagrange–Galerkin scheme with P2
h finite ele-

ments on a uniform mesh is applied to the one dimensional convection equation ( (5.1)
with ν = 0) combined with (5.6) in all of the terms, then the method is unconditionally
stable.

Proof. First, let us introduce the notation for the basis functions on the reference
element: p1(x) = 1 − 3x + 2x2, p2(x) = 4(x − x2), and p3(x) = −x + 2x2, with the
corresponding derivatives denoted by dp1, dp2, and dp3, respectively.

In this case we must take into account that the integrals depend on whether the
basis function, ψj , corresponds to an interior or to a vertex node. Moreover, for the
sake of simplicity, we only consider the case |μ| < 1.
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• The mass term provides the approximation
1

Δt

2h

3
E0

[
(φh)n+1

j

]
, when j is

an interior node, and
1

Δt

h

3
E0

[
(φh)n+1

j

]
, otherwise.

• For the second member related to the first order characteristics method we
distinguish two cases. First, when j is an interior node and |μ| < 1

2 we have

1

Δt

2h

3

[
(φh)nj−1 p1

(
1

2
− μ

)
+ (φh)nj p2

(
1

2
− μ

)
+ (φh)nj+1 p3

(
1

2
− μ

)]
;

and when 1
2 < |μ| < 3

2 , we have

1

Δt

2h

3

(
(φh)nj−3 p1

(
3

2
−μ

)
+ (φh)nj−2 p2

(
3

2
−μ

)
+ (φh)nj−1 p3

(
3

2
−μ

))
.

Second, when j is a vertex node and |μ| < 1, we have

1

Δt

h

3

(
(φh)nj−2 p1(1 − μ) + φn

j−1 p2(1 − μ) + (φh)nj p3(1 − μ)
)
.

The corresponding amplification factors satisfy condition |g| ≤ 1 (see Figure 5.2),
so unconditional stability is reached.

Remark 5.4. Notice that, when applied to the linear convection equation, the
classical scheme and the second order Lagrange–Galerkin scheme (3.2) are exactly the
same (assuming the same approximation of the characteristic lines).

In the case of scheme (3.2) combined with quadratic elements and Simpson
quadrature formula, only conditional stability has been obtained when ν > 0 (equiv-
alently, when ρ > 0). Moreover, the region of instability grows up with the Peclet
number and it is very small for low Peclet numbers (see, in Figure 5.3, the norm of the
amplification factor as a function of θ and μ for different ρ). Thus, it could be used
when convection-dominated features are present. In fact, as Priestley [16] pointed out,
“results concerning stability are largely academic in that, for the schemes using the
higher order quadratures it can be very hard to generate signs of instability. We know
of no examples where, in a physical situation, the quadrature instability has caused
any problems.” We were also unable to make second order Lagrange–Galerkin method
with quadratic elements and Simpson quadrature go unstable. We will present some
numerical results in the next section.
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Fig. 5.2. Modulus of the amplification factor for the Lagrange–Galerkin method with P 2
h applied

to linear convection equation when Simpson quadrature is used.



HIGHER ORDER CHARACTERISTICS/FINITE ELEMENT METHODS II 1871

0

0.2

0.4

0.6

0.8

1

0
0.5

1
1.5

2
2.5

3
3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ

μ

Interior node (ρ ∈ (0, 10]).

0

0.2

0.4

0.6

0.8

1

0
0.5

1
1.5

2
2.5

3
3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ

μ

Vertex node (ρ ∈ (0, 5]).

Fig. 5.3. Norm of the amplification factor for different Peclet numbers when second order
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Q1
h. Q2

h.

Fig. 5.4. Nodes of quadrature for d = 2 and Qk
h finite elements.

Table 5.2

Quadrature formula (vertex formula) used for space P1
h.

Node number Barycentric coordinates Weights

1 (1,0,0) 1/3

2 (0,1,0) 1/3

3 (0,0,1) 1/3

Table 5.3

Quadrature formula used for space P2
h.

Node number Barycentric coordinates Weights

1 (1,0,0) 3/60

2 (0,1,0) 3/60

3 (0,0,1) 3/60

4 (0.5,0.5,0) 8/60

5 (0,0.5,0.5) 8/60

6 (0.5,0,0.5) 8/60

7 (1/3,1/3,1/3) 27/60
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5.2. Analysis in d dimensions. Since spaces Qk
h satisfy hypotheses of Lemma

5.1, results given in Lemma 5.2 for k = 1 and Lemma 5.4 for k = 2 can be extended to
d dimensions for the corresponding tensor product finite element space and quadrature
formulas. In Figure 5.4 nodes of quadrature corresponding to k = 1 (left) and k = 2
(right) for the two dimensional case are shown.

However, spaces Pk
h do not satisfy the product property, thus, the theoretical

Fourier analysis developed in the present section cannot be applied. Nonetheless, we
propose, for the two dimensional case, vertex quadrature for P1

h (see Table 5.2) and a
seven points quadrature formula for P2

h (see Table 5.3). With these formulas we have
obtained satisfactory results, as we will illustrate in the next section. Let us notice
that, with quadratic elements, also the mid-edges formula has provided good results;
however, the mass matrix becomes singular (see [14] for more details).

6. Numerical results. We show numerical results for two numerical exam-
ples in two space dimensions. We have tested the above properties of the proposed
schemes. We have not found any sign of instability when using scheme (3.2) combined
with either Q2

h and Simpson rule (only conditionally stable) or P2
h and the proposed

quadrature formulas (for which, the developed Fourier analysis does not apply).
We notice that, instead of the theoretical l∞(L2(Ω)) norm, we use an approxima-

tion denoted by l∞(l2(Ω)), obtained by using quadrature formula in the integrals.
Example 1 (the rotating Gaussian hill problem). We choose A = σ1I, v =

(−y, x), r = 0, and f = 0 in the domain Ω = (−0.5, 0.5) × (−0.5, 0.5), and T = 2.
Dirichlet boundary conditions and initial condition are chosen so that the solution is

φ(x, y, t) =
σ2

σ2 + 4σ1t
exp

{
− (x̄(t) − xc)

2 + (ȳ(t) − yc)
2

σ2 + 4σ1t

}
,(6.1)

where x̄ = x cos t + y sin t, ȳ = −x sin t + y cos t, (xc, yc) = (0.25, 0), σ1 = 0.001, and
σ2 = 0.01. Moreover, we have artificially imposed v = 0 on Γ (as in [18]) and chosen
spatio-temporal meshes in such a way that Xn

RK(Ω) ⊂ Ω ∀n. In [18], results for P1
h

finite elements and a quadrature formula with 10 nodes per triangle are shown.
If Figure 6.1 we represent the computed l∞

(
(0, T ); l2(Ω)

)
error obtained versus

the number of time steps for two uniform spatial meshes with Ndof = Nx1
= Nx2

degrees of freedom in each direction. We denote by (LG)1 the classical Lagrange–
Galerkin scheme and by (LG)2 the second order one given by (3.2). In view of the
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Fig. 6.1. Computed l∞((0, T ); l2(Ω)) errors, in log-log scale, for Example 1 versus the number of
time steps for two fixed spatial meshes: on the left with Ndof = 67 and on the right with Ndof = 265.
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Fig. 6.2. Exact and computed solution of Example 1 at time T = 2 with second order Lagrange–
Galerkin method with Q1

h and mesh parameters h = 0.015625 and Δt = 0.01.

results, we have the following comments:
• The second order Lagrange–Galerkin method proposed ((LG)2) reduces the

time error and allows for a lesser number of time steps.
• In both (LG)2Q1

h and (LG)2Q2
h, a O(1/Δt) term is observed for fixed h.

• Quadratic finite elements lead to a smaller O(h) term than linear ones. Notice
that we have used meshes with the same number of degrees of freedom (d.o.f.),
or, equivalently, the linear mesh has four times the number of elements of the
quadratic mesh. For this reason, and for the same mesh, quadratic elements
lead to better algorithms than linear ones.

We can see the exact solution compared to the computed solutions in Figures 6.2
and 6.3, with Q1

h and Q2
h finite elements, respectively, and mesh parameters h =

0.015625 and Δt = 0.01. Particularly, to be noticed is the reduction of numerical
diffusion when using quadratic finite elements.

Example 2 (a convection-(degenerated) diffusion-reaction problem with variable
coefficients). The spatial domain is Ω = (0, 1) × (0, 1) and T = 1. The only nonnull
coefficient of the diffusion matrix is A22(x1, x2) = x2

1 + 0.5. Moreover, v(x1, x2) =
(0, x2), r(x1, x2) = x2. Neumann boundary conditions are imposed on Γ2,− := Γ ∩
{x2 = 0} (i.e., Robin condition with α = 0) and Dirichlet boundary conditions on
Γ \Γ2,−. Functions f and g are chosen so that the solution is φ(x1, x2, t) = ex1+x2+t.

For this problem we want not only to show the performance of scheme (3.2)
with different finite element spaces, but also to compare it with the more classical
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Fig. 6.3. Exact and computed solution of Example 1 at time T = 2 with second order Lagrange–
Galerkin method with Q2

h and mesh parameters h = 0.015625 and Δt = 0.01.
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Fig. 6.4. Computed l∞((0, T ); l2(Ω)) errors, in log-log scale, for Example 2 versus the number
of time steps for a fixed spatial mesh. On the left Q1

h finite elements with 49 d.o.f. in each spatial
direction. On the right Q2

h finite elements with 25 d.o.f. in each spatial direction.

characteristics method, when the diffusion, reaction, and source terms are totally
implicit in time. In fact, we have observed better errors for (LG)2/Q1

h than for the
corresponding first order method. Moreover, for fixed h, a term 1/Δt is added by
the quadrature formula to the error. This behavior is illustrated in Figure 6.4 (left).
Notice that an analogous term has already been observed for the (LG)1/Q1

h method
in [15, 13].

Similar comments also hold when using Q2
h finite elements. However, in this case,

it seems that the quadrature formula does not add any error term in the case of the
(LG)1/Q2

h method or, at least, a very small time step would be needed to observe it
(see Figure 6.4 (right)).

Notice that, at the boundary where the Neumann boundary condition is imposed,
the velocity field vanishes, div v = 1, and the term

A(x)∇φ(x, t) · n|Γ2,− = −(x2
1 + 0.5)ex1+t

is not null. The necessity of including the (1 + Δt div v) term at the boundary con-
dition is illustrated in Figure 6.5, where for the referred as “Bad (LG)2/Q2

h” method
we replace this term by 1 (as if div v = 0).
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Fig. 6.6. Computed l∞((0, T ); l2(Ω)) errors, in log-log scale, for Example 2 versus the number
of time steps for a fixed spatial mesh. On the left P1

h FE with 49 d.o.f. in each spatial direction.
On the right P2

h with 25 d.o.f. in each spatial direction.

With respect to the computational cost of the algorithms, we remark that first
order and second order Lagrange–Galerkin methods take approximately the same
time for the same meshes. Moreover, for the same number of degrees of freedom, the
(LG)2/Q2

h is quicker than (LG)2/Q1
h due to the different amount of mesh elements

(for the same number of nodes, a mesh of linear elements have four times the number
of elements of a mesh of quadratic elements).

The conclusion after this second test is that we have obtained better results with
(LG)2 than with (LG)1 for similar computing times. Moreover, we have obtained
better (accuracy) and quicker (less computing time) results with (LG)2/Q2

h than with
(LG)2/Q1

h for the same number of degrees of freedom.
Finally, we have observed an analogous behavior for Ph finite elements. In Fig-

ure 6.6 we show the error versus the number of time steps for fixed spatial meshes.
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tion-diffusion stationnaires, RAIRO Math. Model. Numer. Anal., 21 (1987), pp. 7–26.
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SPHERICAL INTERFACE DYNAMOS: MATHEMATICAL THEORY,
FINITE ELEMENT APPROXIMATION, AND APPLICATION∗
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Abstract. Stellar magnetic activities such as the 11-year sunspot cycle are the manifestation
of magnetohydrodynamic dynamo processes taking place in the deep interiors of stars. This paper
is concerned with the mathematical theory and finite element approximation of mean-field spherical
dynamos and their astrophysical application. We first investigate the existence, uniqueness, and
stability of the dynamo system governed by a set of nonlinear PDEs with discontinuous physical
coefficients in spherical geometry, and characterize the system by a saddle-point type variational
form. Then we propose a fully discrete finite element approximation to the dynamo system and
study its convergence and stability. For the astrophysical application, we perform some fully three-
dimensional numerical simulations of a solar interface dynamo using the proposed algorithm, which
successfully generates the equatorially propagating dynamo wave with a period of about 11 years
similar to that of the Sun.

Key words. spherical interface dynamo, well-posedness, finite element analysis
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1. Introduction. Many astrophysical bodies possess intrinsic magnetic fields.
The radio signals in connection with Jupiter’s magnetic field were first observed more
than a half century ago [8] and Jupiter’s magnetic field was later measured by the
Pioneer spacecraft [1]; the Sun’s magnetic field has been observed for a long time [31]
and undergone nearly periodic variations with a period of about 11 years. It has been
widely accepted that large-scale planetary and stellar magnetic activities represent the
manifestation of magnetohydrodynamic dynamo processes taking place in the deep
interiors of planets and stars [23, 34, 36, 4]. Though significant progress has been
made toward the understanding of quantitative features of stellar magnetic activities,
more realistic dynamo simulations in the parameter regime pertaining to stars and
planets remain a tough challenge.

Nearly all current stellar and planetary numerical dynamo models employ spec-
tral methods with spherical harmonic functions [35, 19, 22, 7]. The slow Legendre
transform and its global nature are computationally inefficient and severely limit the
application of spectral methods to general dynamo models, especially to the mod-
els with variable physical parameters of space and time. It is becoming increasingly
clear that, in order to simulate astrophysical and planetary dynamos using more re-
alistic physical parameters [36], developing other numerically more efficient methods
is necessary. The first attempt using finite element methods for numerical dynamo
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simulations was made in [11] and proved to be very promising. The current work
presents the first mathematical theory and numerical analysis for mean-field spherical
dynamos and their application to astrophysical and planetary problems.

Many stars and planets like the Sun and Jupiter are convectively unstable, which
drive small-scale turbulent flows as well as large-scale global circulations in their
interiors. The small-scale turbulent convective flows are capable of generating large-
scale magnetic fields by the complex dynamo processes [24, 9]. A widely accepted
theory for the generation of large-scale magnetic fields through the effect of small-
scale turbulence in a conducting fluid is called the mean-field dynamo theory [23], in
which a key quantity is the turbulent electromotive force defined as

E =< û × B̂ >≈ αB,(1.1)

where < . > indicates an average in the dynamo domain, B is the large-scale mean
field, û and B̂ denote the fluctuating small-scale velocity and magnetic fields, and α is
typically a tensor describing how the small-scale flows generate the large-scale mean
field. Furthermore, the small-scale dynamo simulations suggest that the turbulent
electromotive force obeys the following relation [9]:

E =
α0 B

1 + (R̂m)n|B|2/B2
eq

,(1.2)

where α0 is constant, 0 ≤ n ≤ 2 and Beq is the stellar equipartition field and R̂m

is the magnetic Reynolds number measuring the magnitude of the small-scale flow.
The factor (1 + (R̂m)n|B/Beq|2) represents the nonlinear process of alpha quenching
(the catastrophic quenching) which saturates the growing magnetic field. It should be
noted that the R̂m-dependent quenching expression should be regarded as a simplified
steady state expression for the nonlinear dynamo [4]. On the basis of the quenching
relation (1.2), one can investigate the dynamo process of large-scale stellar magnetic
fields without being complicated by the dynamic effect such as Lorentz forces. In
consequence, (1.2) has been frequently used in the numerical study of astrophysical
dynamos [26].

In the present study, we consider a general nonlinear kinematic dynamo for stars
and planets consisting of three major zones in spherical geometry; see Figure 1.
An inner radiative sphere Ω1 of radius r1, with magnetic diffusivity λ1(x), rotates
uniformly. Magnetic field B1 cannot be generated in the radiative region by dynamo
action. On the top of the radiative core, there exists a turbulent convection zone Ω2,
r1 ≤ r ≤ r2, in which thermal instabilities drive global circulations u and small-scale
turbulent flows û. Note that the effect of the small-scale turbulence in the convec-
tion zone is described by α. In the current mean-field dynamo model, we shall use
a conventional quenching formula by ignoring the R̂m-dependence in the quenching
expression. The magnetic diffusivity in the convection zone is denoted by λ2 while
the nonlinear alpha quenching is assumed to be of the form

α =
α0f(x, t)

1 + σ|B/Beq|2
,(1.3)

where f(x, t) is a model-oriented function, α0 and σ are constant parameters, and B
is the generated large-scale magnetic field in the convection zone. The outer region
Ω3, r2 ≤ r ≤ r3, exterior to the convection zone is assumed to be nearly electrically
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Ω3

Γ2Γ1

Ω2

Ω1

Fig. 1. Domain Ω, with its inner core Ω1, convection zone Ω2, and exterior region Ω3.

insulating. We nondimensionalize length by the thickness of the convection zone
d = (r2 − r1), the magnetic field by the equipartition field Beq, and time by the
magnetic diffusion time d2/λ2 of the convection zone. This leads to the three sets of
dimensionless equations for the three zones in a magnetic star. For the convection
fluid shell zone, we have

∂B2

∂t
+ ∇× (∇× B2) = Rα∇×

( f(x, t)

1 + σ|B2|2
B2

)
(1.4)

+ Rm∇× (u × B2) in Ω2 × (0, T )

∇ · B2 = 0 in Ω2 × (0, T ),(1.5)

where Rα is a dynamo parameter in connection with the generation process of small-
scale turbulence û and Rm is the magnetic Reynolds number associated with the global
circulation. For dynamo action to occur, either Rα or Rm must be sufficiently large.
The diffusion of the magnetic field B1 in the inner radiative core with a magnetic
diffusivity β1 can be described by

∂B1

∂t
+ ∇× (β1(x)∇× B1) = 0 in Ω1 × (0, T ),(1.6)

∇ · B1 = 0 in Ω1 × (0, T ) .(1.7)

The outer exterior region is usually nearly electrically insulating and governed by

∂B3

∂t
+ ∇× (β3(x)∇× B3) = 0 in Ω3 × (0, T ),(1.8)

∇ · B3 = 0 in Ω3 × (0, T ) ,(1.9)

where β3(x) is the magnetic diffusivity of the zone.
The above model system will be complemented with the initial conditions

B(x, 0) = B0(x) in Ω(1.10)
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and the boundary conditions

(β3(x)∇× B3) × n = 0, B3 · n = 0 on ∂Ω × (0, T ),(1.11)

here and in what follows, n stands for the unit outward normal to the boundary ∂Ω
of the entire physical domain Ω, which consists of the inner core Ω1, the convection
zone Ω2, and the outer exterior region Ω3. It should be mentioned that the shear near
the solar surface, the effect of which is neglected in our interface solar dynamo model
in section 6, may play an important role [3].

We shall use Γ1 and Γ2 to denote, respectively, the interface between the inner core
and outer convection zone and between the convection zone and the outer exterior; see
Figure 1. Since the magnetic diffusivity β(x) has jumps across the interfaces Γ1 and
Γ2 the magnetic field must fulfill some physical interface conditions. We shall take
the following standard physical jump conditions adopted in the geodynamo modelling
across the interfaces:

[(β(x)∇× B) × n] = 0 , [B] = 0 on (Γ1 ∪ Γ2) × (0, T ),(1.12)

here and in what follows we use [A] to denote the quantity of jumps of A across the
interfaces, and n is the outward normal of ∂Ω2.

Physically speaking, function f(x, t) and the convective flow u in (1.4) appear
only in the fluid shell region. We shall assume that the velocity u is nonslip on the
boundaries of the fluid shell, i.e., both f(x, t) and u vanish on Γ1 and Γ2. Then by
viewing f(x, t) and u to be extended by zero onto the whole physical domain Ω, we
can unify (1.4)–(1.5), (1.6)–(1.7), and (1.8)–(1.9) in three regions Ω1, Ω2, and Ω3 as
the following mean-field dynamo system:

∂B

∂t
+ ∇× (β(x)∇× B) = Rα∇×

( f(x, t)

1 + σ|B|2 B
)

(1.13)

+ Rm∇× (u × B) in Ω × (0, T )

∇ · B = 0 in Ω × (0, T ),(1.14)

where β(x) represents the magnetic diffusivity β1(x), β2(x), and β3(x) in Ω1, Ω2, and
Ω3,respectively, with β2(x) normalized to be 1, so β(x) is piecewise smooth and may
have large jumps across the interfaces.

The rest of this paper is arranged as follows. Section 2 addresses the well-
posedness of the mean-field dynamo system, which is then characterized in terms
of a saddle-point type formulation in section 3 for the convenient approximation by
finite element methods. The existing convergence theory on saddle-point systems is
first generalized in section 4, and a fully discrete finite element method is then pro-
posed and the stability and unique existence are studied. The convergence of the fully
discrete scheme is established in section 5, for which the key steps are the introduction
of a discrete projection operator and a modification of the Scott–Zhang operator as
well as the derivations of their approximation error estimates for piecewise smooth
functions. The application of the proposed numerical method to a solar interface
dynamo is carried out in section 6. Finally some concluding remarks are given in
section 7 to summarize the main contributions of the paper.

2. Well-posedness of the mean-field dynamo system. In this section, we
shall investigate the existence, uniqueness, and stability of the solutions to the mean-
field dynamo system (1.13)–(1.14) with the initial-boundary conditions (1.10)–(1.11)
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and the interface conditions (1.12). Due to space limitations, some proof details may
be omitted from time to time throughout the paper but can be found in [10].

2.1. Preliminaries. The most frequently used spaces in the subsequent analysis
are the following two Sobolev spaces:

H(curl; Ω) =
{
A ∈ L2(Ω)3; curlA ∈ L2(Ω)3

}
,

H(div; Ω) =
{
A ∈ L2(Ω)3; divA ∈ L2(Ω)

}
,

as well as their subspaces

H0(curl; Ω) =
{
A ∈ L2(Ω)3; curlA ∈ L2(Ω)3, A × n = 0 on ∂Ω

}
,

H0(div; Ω) =
{
A ∈ L2(Ω)3 , divA ∈ L2(Ω), A · n = 0 on ∂Ω

}
,

equipped with the norms

‖A‖H(curl;Ω) =
{
‖A‖2 + ‖∇ × A‖2

} 1
2

; ‖A‖H(div;Ω) =
{
‖A‖2 + ‖∇ · A‖2

} 1
2

.

In the case that the magnetic field is continuous across the interfaces, the inter-
section of the spaces H(curl; Ω) and H(div; Ω) is the natural Sobolev space to be
adopted:

H(curl,div; Ω) =
{
A ∈ L2(Ω)3; curlA ∈ L2(Ω)3, divA ∈ L2(Ω)

}
,

H0(curl,div; Ω) =
{
A ∈ H(curl,div; Ω); A · n = 0 on ∂Ω

}
,

both equipped with the norm

‖A‖H(curl,div; Ω) =
{
‖A‖2 + ‖∇ × A‖2 + ‖∇ · A‖2

} 1
2

.

As the spaces H(curl,div; Ω) and H0(curl,div; Ω) will be frequently used, we shall
write

H = H(curl,div; Ω), H0 = H0(curl,div; Ω) .

To treat the constraint equation ∇ · B = 0, we shall need the following subspace
of H0(curl,div; Ω):

V =
{
A ∈ H0(curl,div; Ω); ∇ · A = 0 in Ω

}
.

Due to the smoothness of the spherical domain Ω, it is known that the space H0(curl,
div; Ω) is equivalent to the usual Sobolev space H1(Ω)3 (see, e.g., [18]). Therefore the
Sobolev space V can also be written equivalently as

V =
{
A ∈ H1(Ω)3; ∇ · A = 0 in Ω , A · n = 0 on ∂Ω

}
,(2.1)
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and the following equivalence holds:

‖A‖2
H = ‖A‖2 + ‖∇ × A‖2 + ‖∇ · A‖ =∼ ‖A‖2

1 ∀A ∈ H0 .(2.2)

In the previous statement and what follows, ‖ · ‖s,O are always used to stand for
the norm in Sobolev space Hs(O) or Hs(O)3 for any real number s ≥ 0 and open
bounded domain O. We will simply write ‖·‖s when O = Ω and ‖·‖ when s = 0. The
notation (·, ·) is used for the scalar product in L2(Ω) or L2(Ω)3, while 〈·, ·〉 is used to
denote the dual pairing between any two Hilbert spaces, and it is the extension of the
scalar product (·, ·). For a nonnegative function β(x), we will often use the notation
‖·‖β = (β·, ·)1/2. We may also write QT = Ω×(0, T ) sometimes. In various estimates,
we shall frequently use C to stand for a generic constant that is independent of the
mesh size h, time stepsize τ , and relevant functions involved.

We end this subsection with a collection of some auxiliary results and formulae
for later use.

(1) The space V in (2.1) is a closed subspace of H1(Ω)3; see [10].
(2) Young’s inequality:

a b ≤ εa2 +
1

4ε
b2 ∀ a, b ∈ R1 and ε > 0 .

(3) Integration by parts formula which hold for B ∈ H(curl; Ω), A ∈ H1(Ω)3

and q ∈ H1(Ω):∫
Ω

(∇× B) · Adx =

∫
Ω

B · (∇× A)dx −
∫
∂Ω

(B × n) · Ads,(2.3)

∫
Ω

(∇ · B)qdx = −
∫

Ω

B · ∇qdx +

∫
∂Ω

(B · n)qds .(2.4)

(4) Compact embedding lemma [32]. Suppose that X, B, and Y are Banach
spaces satisfying X ⊂ B ⊂ Y with compact embedding X → B. Then for any q > 1,
each set bounded both in Lq(0, T ;X) and W 1,q(0, T ;Y ) is relatively compact in the
space Lq(0, T ;B).

(5) Gronwall’s inequality. Suppose h(t), g(t) are two nonnegative and square
integrable functions on [a, b], c(t) is nondecreasing, and

g(t) ≤ c(t) +

∫ t

a

h(s) g(s)ds ∀ t ∈ [a, b] ,

then the following holds

g(t) ≤ c(t) exp
(∫ t

a

h(s)ds
)

∀ t ∈ [a, b].

2.2. Well-posedness of the mean-field dynamo system. This section is
mainly devoted to the well-posedness of the dynamo system (1.4)–(1.12). Due to
the jumps in the coefficients, it is not desirable for the system to have classical type
solutions. Instead, we shall seek the weak solutions to the mean-field system.

Let us first derive the variational formulation. By multiplying both sides of (1.13)
by an A ∈ V , integrating over Ω and making use of formula (2.3) we obtain
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∫
Ω

∂B

∂t
· Adx +

3∑
i=1

∫
Ωi

(β∇× B) · (∇× A)dx −
3∑

i=1

∫
∂Ωi

(β∇× B) × ni · Ads

= Rα

3∑
i=1

∫
Ωi

( f

1 + σ|B|2 B
)
· (∇× A)dx −Rα

3∑
i=1

∫
∂Ωi

( f

1 + σ|B|2 B × ni

)
· Ads

+ Rm

3∑
i=1

∫
Ωi

(u × B) · (∇× A)dx −Rm

3∑
i=1

∫
∂Ωi

(u × B) × ni · Ads .

Using the boundary and interface conditions (1.11) and (1.12), we deduce the varia-
tional formulation for the dynamo system (1.10)–(1.14).

Find B(t) ∈ V such that B(0) = B0 and for almost all t ∈ (0, T ),

(B′(t),A) + (β∇× B(t),∇× A)

= Rα

( f(t)

1 + σ|B|2 B(t),∇× A) + Rm(u(t) × B(t),∇× A) ∀A ∈ V,(2.5)

here and in what follows, functions of x and t may be written as functions of t only
for simplicity.

The following theorem summarizes the well-posedness of the system (2.5).
Theorem 2.1. Assume that B0 ∈ V , f ∈ H1(0, T ;L∞(Ω)) and u ∈ H1(0, T ;

L∞(Ω)). Then there exists a unique solution B to the system (2.5) with the regularity

B ∈ L∞(0, T ;V ) ∩H1(0, T ;L2(Ω)),(2.6)

and the solution B is stable with the following stability estimate:

‖B‖L∞(0,T ;V ) + ‖B‖H1(0,T ;L2(Ω)3)(2.7)

≤ C (‖∇ × B(0)‖2 + ‖B(0)‖2) max
0≤t≤T

(‖f(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω))

· exp
(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖f ′(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω) + ‖u′(t)‖2
L∞(Ω)

}
dt
)
,

where the constant C depends only on the magnetic diffusivity coefficient β(x).
Proof. We shall only outline the proof and refer to [10] for the details. As H1(Ω)

is separable, we know that V is separable. Let {wk}∞k=1 be a base of V , and

Vm = {w1,w2, . . . ,wm} , m = 1, 2, 3, . . . .

Choose ψm ∈ Vm such that ψm → B0 in V . Then we consider the following approx-
imation of the problem (2.5): Find Bm(t) ∈ Vm such that Bm(0) = ψm and for any
A ∈ Vm,

(B′
m(t),A) + (β∇× Bm(t),∇× A)

= Rα

(
f

1 + σ|Bm|2 Bm(t),∇× A

)
+ Rm(u × Bm(t),∇× A) .(2.8)

We claim that the sequence {Bm(t)} is well defined. To see this, we write

Bm(t) =

m∑
j=1

αj,m(t)wj , ψm =

m∑
j=1

γj,mwj
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and substitute into (2.8) to get

Mdαm

dt
= G(αm, t) with αm(0) = γm ,(2.9)

where M = (mij) with mij = (wj ,wi), G(αm, t) is a vector-valued function of αm

and t, and

γm(t) = (γ1,m, γ2,m, . . . , γm,m)t, αm(t) = (α1,m, α2,m, . . . , αm,m)t.

As {wm} is linearly independent, the matrix M is symmetric and positive definite,
so it is invertible. Then using the Lipschitz continuity of G(αm, t) with respect to
αm, and our subsequent a priori estimates on the solutions to the system (2.8) that
ensures the boundedness of Bm(t) independent of m, one can show (cf. [10]) that the
solutions {Bm(t)} of the system (2.8) is well defined in [0, T ].

Next, we derive some a priori estimates on the solution to (2.8). By taking
A = Bm(t) in (2.8), then integrating over (0, t) and using the Cauchy–Schwartz and
Gronwall inequality, one can obtain

‖Bm‖2
L∞(0,T ;L2(Ω)3) + ‖∇ × Bm‖2

L2(0,T ;L2(Ω))

≤ ‖Bm(0)‖2
0 exp

(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖u(t)|2L∞(Ω)

}
dt
)
.(2.10)

On the other hand, letting A = B′
m(t) in (2.8), then integrating over (0, t), applying

the integration by parts and the Gronwall’s inequality, we have

‖B′
m‖2

L2(QT ) + ‖∇ × Bm‖2
L∞(0,T ;L2(Ω)3)

≤ ‖B(0)‖2 exp
(
C
{
‖f‖2

L∞(QT ) + ‖u|2L∞(QT )

})(2.11)

· exp
(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖f ′(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω) + ‖u′(t)‖2
L∞(Ω)

}
dt
)
.

Using the estimates (2.10)–(2.11), we can extract a subsequence {Bn} from {Bm}
such that

Bn → B weakly star in L∞(0, T ;V ); B′
n → B̃ weakly in L2(0, T ;L2(Ω)3) .(2.12)

By the compact embedding lemma of subsection 2.1, we know that H1(0, T ;V ′) ∩
L2(0, T ;V ) is compactly embedded in L2(0, T ;L2(Ω)3), so we have

Bn → B in L2(0, T ;L2(Ω)3).(2.13)

We can show that this B(t) solves the system (2.5). Therefore (2.5) has at least one
solution B, which has the regularity (2.6).

3. Characterization of the dynamo system in terms of a saddle-point
type problem. The Sobolev space V in the weak formulation (2.5) involves the
solenoidal functions, and it is well known that the solenoidal conditions are difficult to
enforce in finite element spaces, especially in three dimensions. Hence the variational
formulation (2.5) is inconvenient and ineffective for the use in a fully discrete finite
element approximation. Instead, we shall transform the variational problem (2.5)
into an equivalent saddle-point type system, which can be more easily adopted for its
approximations by finite element methods.
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3.1. Characterization of solenoidal functions. Let D(Ω) be the set of all
infinitely differentiable functions with compact supports in Ω, and V be the subspace
of D with all solenoidal functions:

V =
{
w ∈ D(Ω); divw = 0 in Ω

}
.

We start with the characterization of the gradient of a distribution. For any
distribution function p in Ω, written as p ∈ D′(Ω), it is easy to verify that

〈∇p,w〉 =
n∑

i=1

〈∂xip, wi〉 = −
n∑

i=1

〈p, ∂xiwi〉 = 〈p,∇ · w〉 = 0 ∀w ∈ V.

That is, ∇p lies in the polar set of V. The following lemma indicates that the converse
of this property is also true (cf. [18]).

Lemma 3.1. Let Ω be a bounded Lipschitz domain in Rn and f = (f1, f2, . . . , fn)t

with fi ∈ D′(Ω). Then f = ∇p for some p ∈ D′(Ω) if and only if

〈f ,w〉 = 0 ∀w ∈ V.

If ∂xip ∈ H−1(Ω), then p ∈ L2(Ω) and

‖p‖L2(Ω)/R ≤ C(Ω)‖∇p‖H−1(Ω).

Moreover, if ∂xi
p ∈ L2(Ω), then p,∇p ∈ L2(Ω) and

‖p‖L2(Ω)/R ≤ C(Ω)‖∇p‖L2(Ω).

3.2. Saddle-point formulation of the mean-field dynamo system. In this
subsection, we are going to show that the solution B(t) of the system (2.5) also solves
the following saddle-point type problem for some p ∈ L2(0, T ;L2(Ω)):

∂B

∂t
+ ∇× (β(x)∇× B) + ∇p

= Rα∇×
( f(x, t)

1 + σ|B|2 B
)

+ Rm∇× (u × B) in Ω × (0, T );(3.1)

∇ · B = 0 in Ω × (0, T ),(3.2)

where a pressure-like term, namely a Lagrange multiplier p, is introduced in (3.1) to
ensure that the divergence condition (3.2) is satisfied. This formulation is done purely
for the convenience of the subsequent construction of some stable and convergent finite
element approximations; the approach is widely employed in numerical solutions of
Maxwell equations (see, e.g., [2]).

To do so, we introduce

B̃(t) =

∫ t

0

B(t)dt, F̃(t) =

∫ t

0

f

1 + σ|B|2 B(t)dt, Ũ(t) =

∫ t

0

u(t) × B(t)dt .

Using the regularity of B(t) from Theorem 2.1 we have

B̃(t) ∈ H1(0, T ;V ), F̃(t) ∈ H1(0, T ;L2(Ω)3), Ũ(t) ∈ H1(0, T ;V ) .
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Clearly, both B̃(t) and F̃(t) are absolutely continuous with respect to t as B(t) and
f B(t)/(1 + σ|B|2) are integrable in L1(0, T ), and we have

B̃′(t) = B(t), F̃′(t) =
f

1 + σ|B|2 B(t), Ũ′(t) = u × B(t) .

Now, integrating both sides of (2.5), we obtain for all t ∈ [0, T ] and A ∈ V that

(B(t) − B0,A) + (β∇× B̃(t),∇× A) = Rα(F̃(t),∇× A) + Rm(Ũ,∇× A) .(3.3)

We remark that this equation is defined for every t ∈ [0, T ] as B(t), B̃(t), and F̃(t)
are all continuous with respect to t. This is why we do not treat the system (2.5)
directly but instead its integrated form.

For all t ∈ [0, T ], (3.3) can be written as

〈B(t) − B0 + ∇× (β∇× B̃(t)) −Rα∇× F̃(t) −Rm∇× Ũ(t),A〉 = 0 ∀A ∈ V,

this with Lemma 3.1 indicates that there exists a P (t) ∈ L2(Ω), for every t ∈ [0, T ],
such that

B(t) − B0 + ∇× (β∇× B̃(t)) + ∇P (t) = Rα∇× F̃(t) + Rm∇× Ũ(t),(3.4)

or we can write

∇P (t) = B0 − B(t) −∇× (β∇× B̃(t)) + Rα∇× F̃(t) + Rm∇× Ũ(t).(3.5)

Noting the right-hand side of (3.5) lies in (H0(curl,div; Ω))′, we have

∇P (t) ∈ H1(0, T ;H0(curl,div; Ω)′) ⊂ H1(0, T ;H−1(Ω)),(3.6)

then by Lemma 3.1 we obtain

‖P (t)‖L2(Ω)/R ≤ C‖∇P (t)‖H−1(Ω) ∀ t ∈ [0, T ],

this proves P (t) ∈ H1(0, T ;L2(Ω)).

Now (3.1) follows immediately by letting p(t) = ∂P (t)
∂t and differentiating (3.4)

with respect to t, and p(t) ∈ L2(0, T ;L2(Ω)).
Adding a term γ(∇ · B,∇ · A) for some constant γ > 0 in (2.5), an important

stabilization term in the subsequent numerical approximation, we are then led to the
following theorem.

Theorem 3.1. The system (2.5) is equivalent to the following variational prob-
lem:

Find B(t) ∈ H0 ≡ H0(curl,div; Ω) and p(t) ∈ L2
0(Ω) such that B(0) = B0 and⎧⎪⎨

⎪⎩
(B′(t),A) + (β∇× B(t),∇× A) + γ(∇ · B(t),∇ · A) + (p,∇ · A)

= Rα

(
f

1+σ|B|2 B(t),∇× A) + Rm(u × B(t),∇× A) ∀A ∈ H0

(∇ · B, q) = 0 ∀ q ∈ L2
0(Ω)

(3.7)

for a.e. t ∈ (0, T ). Moreover, we have the following stability estimates for the solution
(B, p):

‖B‖L∞(0,T ;V ) + ‖B‖H1(0,T ;L2(Ω)3) + ‖p‖L2(0,T ;L2
0(Ω))(3.8)

≤ C (‖∇ × B(0)‖2 + ‖B(0)‖2) max
0≤t≤T

(‖f(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω))

· exp
(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖f ′(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω) + ‖u′(t)‖2
L∞(Ω)

}
dt
)
.
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Proof. From the previous derivations, we know the solution (B, p) to (2.5) also
satisfies (3.1)–(3.2). Then using the interface conditions (1.12), we can directly derive
(3.7) from (3.1)–(3.2) by integration by parts. On the other hand, one can readily
check by integration by parts that a solution (B, p) of (3.7) is a solution of (3.1)–(3.2)
or (2.5). This proves the equivalence of (2.5) and (3.7).

The uniqueness of the solutions to (3.7) can be done similarly to the proof of
Theorem 2.1 (cf. [10]).

The estimates of the first two terms on the left-hand side of (3.8) follow from
Theorem 2.1. We next derive the estimate of the last term on the left of (3.8) for p.
For this, we introduce a φ ∈ H1(Ω) ∩ L2

0(Ω) which satisfies

Δφ = p in Ω;
∂φ

∂n
= 0 on ∂Ω.

Then it is easy to see by Poincare’s inequality that

‖∇φ‖2 ≤ ‖φ‖ ‖p‖ ≤ C‖p‖ ‖∇φ‖,
which gives

‖∇φ‖ ≤ C ‖p‖.
Letting b(A, q) =

∫
Ω
q∇ ·Adx for any A ∈ H0 and q ∈ L2

0(Ω), then we take a special
A = ∇φ. It is easy to verify that A ∈ H0, and

‖A‖H0(curl,div;Ω) =
(
‖∇φ‖2 + ‖p‖2

) 1
2 ≤ C‖p‖ ,(3.9)

b(A, p)

‖A‖H0

=
(p, p)

‖A‖H0

≥ C‖p‖ .(3.10)

But we know from (3.7) that

b(A, p) = Rα

( f

1 + σ|B|2 B(t),∇× A
)

+ Rm(u × B(t),∇× A)

− (B′(t),A) − (β∇× B(t),∇× A) ,

from which and the Cauchy–Schwarz inequality, we obtain

b(A, p) ≤ Rα‖f(t)‖L∞(Ω)‖B(t)‖ ‖∇ × A‖ + Rm‖u × B(t)‖ ‖∇ × A‖
+ ‖B′(t)‖ ‖A‖ + ‖∇ × B(t)‖β ‖∇ × A‖β

≤ C (‖f(t)‖L∞(Ω)‖B(t)‖ + ‖u(t)‖L∞(Ω)|B(t)| + ‖B′(t)‖ + ‖∇ × B(t)‖)‖A‖H0
.

Now the estimate for p follows from this, (3.10), and the estimates of first two terms
in (3.8).

4. Finite element approximations. In this section we shall address the fi-
nite element approximation of the nonlinear dynamo system (1.4)–(1.12), based on
its saddle-point type variational formulation (3.7). As we know, the so-called edge
element methods are widely used in numerical solutions of the Maxwell systems
[12, 13, 14]. Their main advantages lie in the convenience to incorporate the diver-
gence constraints implicitly and the easy satisfaction of the usual interface conditions
which involve tangential components of the fields. But the nonlinear geodynamo
system of our current interest requires the continuity of all the components of the
magnetic field across the interfaces (see (1.12)), not just the tangential components
as in other nondynamo modelling systems. This fact makes the edge element methods
inconvenient for the approximation of the geodynamo system (1.4)–(1.12). Instead
we shall make use of the standard Lagrange nodal finite element methods.
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4.1. Saddle-point system and its approximation. We first recall some ex-
isting well-posedness about the general saddle-point system and its approximation.
Let X and M be two Hilbert spaces, with scalar products (·, ·)X and (·, ·)M , respec-
tively, and a(v, w) and b(v, q) be two continuous bilinear forms on X×X and X×M ,
i.e., there exist two positive constants ‖a‖ and ‖b‖ such that

|a(v, w)| ≤ ‖a‖ ‖v‖X‖w‖X ∀ v, w ∈ X,(4.1)

|b(v, q)| ≤ ‖b‖ ‖v‖X‖q‖M ∀ v ∈ X, q ∈ M.(4.2)

We shall need the kernel space V associated with b(·, ·) and the polar set of V :

V = {w ∈ X; b(w, q) = 0 ∀ q ∈ M}, V 0 = {g ∈ X ′; 〈g, v〉 = 0 ∀ v ∈ X} .

Consider the saddle-point system: Find (u, p) ∈ X ×M such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ X,(4.3)

b(u, q) = g(q) ∀ q ∈ M,(4.4)

where f ∈ X ′ and g ∈ M ′. The following well-posedness results about this saddle-
point system can be found in [6, 18].

Lemma 4.1. Assume (4.1) and (4.2), and

sup
w∈V

a(v, w)

‖w‖X
≥ α‖v‖X ∀ v ∈ V ;(4.5)

sup
v∈V

a(v, w) > 0 ∀w ∈ V, w �= 0,(4.6)

sup
v∈X

b(v, q)

‖v‖X‖q‖M
≥ β ∀ q ∈ M, q �= 0 .(4.7)

Then there exists a unique solution (u, p) ∈ X×M to the saddle-point problem (4.3)–
(4.4).

Now we discuss the approximation of the saddle-point system (4.3)–(4.4). Let
Xh ⊂ X and Mh ⊂ M be two finite dimensional spaces, and define

Vh = {wh ∈ Xh; b(wh, qh) = 0 ∀ qh ∈ Mh} .

We then introduce a bilinear form ah(·, ·) defined on Xh ×Mh satisfying

ah(vh, vh) ≥ α∗‖vh‖2
X ∀vh ∈ Vh ,(4.8)

|ah(vh, wh)| ≤ ‖ah‖ ‖vh‖X‖wh‖X ∀ vh, wh ∈ Xh(4.9)

for two positive constants α∗ and ‖ah‖. In our later applications, ah(·, ·) comes from
some approximation of a(·, ·) and is formed from a(·, ·) in such a way that numerical
integrations on polyhedra with curved faces are replaced by much easier integrations
on polyhedra with planar faces.

Then we introduce the approximation of the saddle-point system (4.3)–(4.4).
Find (uh, ph) ∈ Xh ×Mh such that

ah(uh, vh) + b(vh, ph) = f(vh) ∀ vh ∈ Xh(4.10)

b(uh, qh) = g(qh) ∀ qh ∈ Mh .(4.11)
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We have the following convergence theorem (cf. [6]), whose detailed proof can be
found in [10].

Theorem 4.1. In addition to the assumptions (4.8)–(4.9), we assume that the
inf-sup condition

sup
vh∈Xh

b(vh, qh)

‖vh‖X‖qh‖M
≥ β∗ ∀ qh ∈ Mh, qh �= 0 .(4.12)

is also satisfied. Then the system (4.10)–(4.11) has a unique solution (uh, ph) ∈
Xh ×Mh and the following error estimate holds:

‖u− uh‖X ≤
(
1 +

‖ah‖
α∗

)(
1 +

‖b‖
β∗

)
inf

vh∈Xh

‖u− vh‖X + ‖b‖ inf
μh∈Mh

‖p− μh‖M

+
1

α∗ sup
vh∈Vh

a(u, vh) − ah(u, vh)

‖vh‖X
.(4.13)

4.2. A fully discrete finite element method and its stability. In this
section, we will propose a fully discrete finite element method for the variational
system (3.7). For this purpose, we have to approximate the problem in both time
and space. We shall use the backward Euler scheme for time discretization and the
popular Hood–Taylor finite elements (cf. [20]) for space discretization.

We start with the partition of the time interval [0, T] and the triangulation of
the physical spherical domain Ω. We divide the time interval [0, T] into M equally
spaced subintervals using the following nodal points:

0 = t0 < t1 < t2 < · · · < tM = T,

where tn = n τ for n = 0, 1, . . . ,M and τ = T/M . For any given discrete time
sequence {un}Mn=0 with each un lying in L2(Ω) or L2(Ω)3, we define the first order
backward finite differences and the averages as follows:

∂τu
n =

un − un−1

τ
, ūn =

1

τ

∫ tn

tn−1

u(·, s)ds.

If u(x, t) is a function which is continuous with respect to t, we shall often write
un(·) = u(·, tn) for n = 0, 1, . . . ,M . For the ease of exposition, we may also use the
function values for t ≤ 0, by assuming the convention that u(x, t) = u(x, 0) for all
t ≤ 0.

We now introduce the triangulation of the domain Ω, consisting of the inner core
Ω1, the outer core Ω2, and the exterior zone Ω3. For the sake of technical treatments,
we shall assume that the outer boundary of the exterior zone Ω3 is a closed convex
polygon; the actual curved boundary case can be treated in the same manner as we
handle in this and next section the curved interfaces Γ1 and Γ2; see Figure 1.

We first triangulate the inner core Ω1 using a quasi-uniform triangulation T 1
h with

tetrahedral elements of mesh size h, which form a polyhedral domain Ω1
h ⊂ Ω1. The

triangulation is done such that the boundary vertices of Ω1
h all lie on the boundary

of Ω1.
Then we triangulate the exterior zone Ω3 using a triangulation T 3

h with tetrahedral
elements, which form a polyhedral domain Ω3

h. The triangulation is done such that
all the vertices on the outer polygonal boundary ∂Ω are also vertices of Ω3

h, and the
inner boundary vertices of Ω3

h all lie on the inner boundary of Ω3.
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Finally we triangulate the outer core Ω2 using a triangulation T 2
h with tetrahedral

elements, which form a polyhedral domain Ω2
h. The triangulation is done such that all

the vertices on the outer boundary of Ω2
h match those vertices on the inner boundary

of Ω3
h, while all the vertices on the inner boundary of Ω2

h match the boundary vertices
of Ω1

h.
Now the three individual triangulations T 1

h , T 2
h , and T 3

h form a global triangula-
tion Th of Ω. By Nh we shall denote the set of all the nodal points of the triangulation
Th, and by Fh the set of all faces of elements in Th.

For convenience, any element K of Th whose interior has nonempty intersection
with the interface Γ1 and Γ2 will be called an interface element. The set of all interface
elements is denoted by T ∗

h . Let us introduce some notation needed in the subsequent
error estimates. For each interface element K ∈ T ∗

h , we know that K must lie either
in Ωh

2 or Ωh
3 according to the construction of the triangulation Th. And each interface

element K is divided by the interface into two parts, written as K1 and K2. Since the
interfaces Γ1 and Γ2 are smooth spheric surfaces, one can show (cf. [17]) that one of
the two parts K1 and K2, denoted always by K, has a volume of order h4

K , that is,

|K| =∼ h4
K .(4.14)

Here and in what follows, we shall often use the symbols <∼ and =∼, and x <∼ y means

that x ≤ Cy for some generic constant C, and x =∼ y means x <∼ y and y <∼ x.

Also we may absorb in the generic constant C the upper and lower bounds βm,
βM , fM , and uM of the functions β(x), f(x, t), and u(x, t) over Ω × (0, T ):

βm ≤ β(x) ≤ βM ; |f(x, t)| , |ft(x, t)| ≤ fM ; |u(x, t)| , |ut(x, t)| ≤ uM .

Noting the coefficient β(x) in (1.13) has large jumps across the interfaces Γ1 and
Γ2, hence it may be strongly discontinuous inside each interface element K ∈ T ∗

h ,
namely when crossing the (curved) common face of two curved polyhedra parts K1

and K2 of K. To avoid numerical integrations on polyhedra with curved faces in
forming the finite element stiffness matrix, we introduce the following approximations
of the coefficients β(x), f(x, t), and u(x, t):

βh(x) = β(x), x ∈ K ∈ Th \ T ∗
h ; βh(x) = βi(x), x ∈ K ∈ T ∗

h ∩ Ωh
i (i = 2 or 3) ,

fh(x, t) =

{
0, x ∈ K ∈ T ∗

h ∩ Ωh
3 ;

f(x, t), otherwise
uh(x, t) =

{
0, x ∈ K ∈ T ∗

h ∩ Ωh
3

u(x, t), otherwise
.

We shall use the Hood–Taylor finite elements (cf. [18, 15, 33]) to approximate
the system (3.7), namely the piecewise quadratic polynomials for the magnetic field
B and the piecewise linear polynomials for the Lagrange multiplier p. These spaces
can be defined as follows:

Hh =
{
w ∈ C(Ω̄) : w|K ∈ P2(K)3 ∀ K ∈ Th

}
,

H0h =
{
w ∈ Hh; w · nF = 0 ∀F ∈ Fh ∩ ∂Ω

}
,

Qh =
{
qh ∈ C(Ω̄); qh|K ∈ P1(K) ∀ K ∈ Th

}
,

where nF is the unit normal vector of a face F ∈ Fh. And the following subspaces of
H0h and Qh will be also needed:

H̃0h =
{
wh ∈ H0h; wh = 0 on ∂Ω

}
, Q0h =

{
qh ∈ Qh;

∫
Ω

qhdx = 0
}
.
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Now, we are ready to propose the fully discrete finite element approximation of
the variational problem (3.7) using the approximate functions βh, fh, and uh.

Find Bn
h ∈ H0h, pnh ∈ Q0h for n = 1, 2, . . . ,M such that B0

h = ShB0 and

⎧⎪⎨
⎪⎩

(∂τB
n
h,Ah) + (βh ∇× Bn

h,∇× Ah) + γ(∇ · Bn
h,∇ · Ah) + (pnh,∇ · Ah)

= Rα

(
fn
h

1+σ|Bn−1
h |2 B

n
h,∇× Ah

)
+ Rm(un

h × Bn
h,∇× Ah

)
∀Ah ∈ H0h;

(∇ · Bn
h, qh) = 0 ∀ qh ∈ Q0h,

(4.15)

where Sh is the modified Scott-Zhang interpolation to be defined in section 5. One
may replace Sh here by the computationally less expensive standard interpolation
operator Πh induced by the finite element space Hh, but as it will be seen in the
subsequent analysis, with Πh one requires a stronger regularity on the initial data B0.

We remark that the discrete system (4.15) cannot ensure ∇ · Bn
h = 0, different

from the continuous case. The next lemma verifies the well-posedness of the fully
discrete scheme (4.15).

Lemma 4.2. There exists a unique solution (Bn
h, p

n
h) to the discrete system (4.15)

for each fixed n (1 ≤ n ≤ M) and the sequence {Bn
h}Mn=0 has the following stability

estimates:

max
1≤n≤M

‖Bn
h‖2 + τ

M∑
n=1

(‖∇ × Bn
h‖2 + ‖∇ · Bn

h‖2) <∼ ‖B0
h‖2.(4.16)

Proof. Inequality (4.16) follows by taking Ah = τBn
h in (4.15) and the discrete

Gronwall’s inequality.
We now verify the existence of solutions to (4.15) for each fixed n = T/M and

h by applying the Brouwer fixed point theorem. To this aim, we define a mapping
Fh : (B̄h, p̄h) → (Bh, ph) by{

ãh(Bh,Ah) + b̃(Ah, ph) = g̃(B̄h,Ah) ∀Ah ∈ H0h,

b̃(Bh, qh) = 0 ∀ qh ∈ Q0h,
(4.17)

where ãh, b̃ and g̃ are given by

ãh(B,A) = (B,A) + τ(βh∇× B,∇× A) + γτ(∇ · B,∇ · A), b̃(A, q) = τ(q,∇ · A) ,

g̃(B,A) = (Bn−1
h ,A) + τ Rα

( fn
h

1 + σ|Bn−1
h |2

B,∇× A
)

+ τRm (un
h × B,∇× A).

By applying Theorem 4.1 one can show that the mapping Fh is well defined; see [10]
for details.

We next show that Fh maps a bounded subset of H0h ×Q0h into itself. In fact,
taking Ah = Bh in the first equation of (4.17), using the second equation and Young’s
inequality we can obtain

‖Bh‖2 + τ‖∇ × Bh‖2
βh

+ γτ‖∇ · Bh‖2 ≤ ‖Bn−1
h ‖2 +

2τ

βm
(R2

αf
2
M + 4R2

mu2
M )‖B̄h‖2 .

Thus for any B̄h lying in the ball B(0, r0) = {Ah; ‖Ah‖H0
≤ r0} with r0 =√

2‖Bn−1
h ‖, we have

‖Bh‖2 + τ‖∇ × Bh‖2
βh

+ γτ‖∇ · Bh‖2 ≤ r2
0
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when τ is appropriately small such that 4τ(R2
αf

2
M + 4R2

mu2
M ) ≤ βm. Next we show

that ph lies in the ball B(0, r̄0) with

r̄0 = C−1
0

(2

τ
+

√
γ +

√
βM√

τ
+ RαfM + 2RmuM

)
r0 .

To see this, for any Ah ∈ H0h, we obtain from (4.17) using the Cauchy–Schwarz
inequality that

τ(∇ · Ah, ph) ≤
(
‖Bh‖ + τβ

1/2
M ‖∇ × Bh‖β + γτ‖∇ · Bh‖

+ ‖Bn−1
h ‖ + τRαfM‖B̄h‖ + 2τRmuM‖B̄h‖

)
‖Ah‖H0

.

This, combined with the inf-sup condition for b̃(·, ·) (cf. [10]), leads to the conclusion
that ph lies in the ball B(0, r̄0). Thus we have proved that Fh maps the bounded
subset B(0, r0) × B(0, r̄0) of H0h × Q0h into itself. Therefore by the Brouwer fixed
point theorem, Fh has a fixed point (Bh, ph) ∈ B(0, r̄0) × B(0, r̄0). This proves the
existence of solutions to the system (4.15).

The uniqueness of the solutions can be shown in the same manner as in Theo-
rem 3.1.

5. Convergence analysis of the fully discrete finite element method.
This section will be devoted to the convergence analysis on the fully discrete finite
element approximation (4.15) to the variational problem (3.7). As we shall see, one of
the crucial tools in the analysis relies on the following projection operator Ph which
maps functions from the space H0 ×Q0 ≡ H0(curl,div; Ω) × L2

0(Ω) into H0h ×Q0h:
for any (B, p) ∈ H0 × Q0, (Bh, ph) = Ph(B, p) ∈ H0h × Q0h solves the following
saddle-point system:⎧⎨

⎩
(Bh,Ah) + ah(Bh,Ah) + (ph,∇ · Ah)

= (B,Ah) + a(B,Ah) + (p,∇ · Ah) ∀Ah ∈ H0h,
(∇ · Bh, qh) = 0 ∀ qh ∈ Q0h,

(5.1)

where for any B,A ∈ H0, a(B,A) and ah(B,A) are given by

a(B,A) = (β∇× B,∇× A) + γ(∇ · B,∇ · A) ,

ah(B,A) = (βh ∇× B,∇× A) + γ(∇ · B,∇ · A) .

By taking Ah = Bh in (5.1) and using Young’s inequality and the bounds of β(x)
and βh(x), we can directly establish the following stability estimates on the projection
Ph (cf. [10]):

Lemma 5.1. For any B ∈ H0 and p ∈ Q0, let (Bh, ph) be the projection of (B, p)
defined by (5.1), then we have

‖Bh‖H0(curl,div;Ω)
<∼ ‖B‖H0(curl,div;Ω) + ‖p‖ .

Considering the discontinuity of coefficient β(x) across the interfaces Γ1 and Γ2,
the solution (B, p) to the system (3.7) often has higher regularity locally inside each
medium subdomain Ωi (i = 1, 2, 3) than in the entire domain Ω. To make full use of
the better local regularities of (B, p) to establish the error estimates of the projection
Ph, we can introduce a specially constructed interpolation operator by modifying the
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Scott–Zhang operator [29] such that it preserves the boundary condition in H0: for
any B ∈ H0, we have ShB ∈ H0h (see [10] for details); and Sh has the following local
approximation property (cf. [29, 10]):

‖w − Shw‖Wm,p(K)
<∼ hl−m

K ‖w‖W l,p(SK) ∀w ∈ W l,p(SK),(5.2)

where 0 < m ≤ l and SK is the union of all elements in Th, whose closure has
nonempty intersection with K. We now establish the error estimates of form (5.2) in
the entire domain Ω for functions with higher regularities locally in each subdomain
Ωk (k = 1, 2, 3).

Lemma 5.2. For any s ≥ 0, and u ∈ X = H1(Ω) ∩H1+s(Ωk) (k = 1, 2, 3),

‖u− Shu‖ <∼ h1+ 2s
3

3∑
k=1

‖u‖1+s,Ωk
, ‖u− Shu‖1

<∼ h
2s
3

3∑
k=1

‖u‖1+s,Ωk
.

Proof. For any u ∈ X, let uk be the restriction of u on Ωk (k = 1, 2, 3). Noting
the interfaces Γ1 and Γ2 are smooth, one can extend (cf. [30]) uk ∈ H1+s(Ωk) onto
the whole domain Ω such that the extended function ũk ∈ H1+s(Ω) and

‖ũk‖1+s,Ω <∼ ‖uk‖1+s,Ωk
for k = 1, 2, 3.(5.3)

First, we consider the estimate on any noninterface element K �∈ T ∗
h . Since u has

H1+s-regularity in such element K, one can follow the standard error estimate in [29]
and make use of our construction of the face τi associated with each node ai to derive

‖u− Shu‖μ,K <∼ h1+s−μ
3∑

i=1

‖u‖1+s,SK∩Ωi , μ = 0, 1 .(5.4)

The tricky case happens to the interface elements. Without loss of generality, consider
an interface element K ∈ T ∗

h near the interface Γ1. We analyze the errors in K1 and
K2 separately. Clearly, K1 ⊂ Ω1, K2 ⊂ Ω2, |K1| =∼ h4

K by (4.14). Then by Hölder’s

inequality, Sobolev embedding, and (5.2), we derive for any 2 ≤ p ≤ 6/(3 − 2s) and
μ = 0, 1 that

‖u− Shu‖2
μ,K1

<∼ h
4(p−2)

p

K ‖u− Shu‖2
Wμ,p(K1)

<∼ h
4(p−2)

p

K ‖u− Shu‖2
Wμ,p(K)

<∼ h
6−2μ− 8

p

K ‖u‖2
W 1,p(SK) .

But on K2, by the choice of the face τi associated with the node ai in the definition
of Sh we know that

ũ2 = u2 on K2, Sh ũ2 = Sh u on K2 .

Using this and (5.2), we derive

‖u− Shu‖2
μ,K2

<∼ ‖ũ2 − Shũ2‖2
μ,K2

<∼ ‖ũ2 − Shũ2‖2
μ,K

<∼ h
2(1+s−μ)
K ‖ũ2‖2

1+s,SK
,(5.5)

combined with the previous estimate on K1 and (5.3) yields

∑
K∈T ∗

h

‖u− Shu‖2
μ,K

<∼ h2(1+s−μ)
3∑

k=1

‖ũk‖2
1+s,Ωk

+
∑

K∈T ∗
h

h
6−2μ− 8

p

K ‖u‖2
W 1,p(SK) .(5.6)
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Then by Hölder’s inequality and the fact that the number of interface elements in
T ∗
h
<∼ h−2,

∑
K∈T ∗

h

‖u− Shu‖2
μ,K

<∼ h2(1+s−μ)
3∑

k=1

‖u‖2
1+s,Ωk

+ h4−2μ− 4
p

( ∑
K∈T ∗

h

‖u‖pW 1,p(SK)

)2/p

.

Now the desired estimate follows by taking p = 6/(3−2s) above and using (5.4).
The following lemma provides a crucial observation needed in the subsequent

analysis.
Lemma 5.3. Let K be the interface part of any interface element K ∈ T ∗

h such
that |K| =∼ h4

K (cf. (4.14)), then the following estimates hold:

‖∇ × Ah‖2
0,K <∼ hK ‖∇ × Ah‖2

0,K , ‖Ah‖2
0,K <∼ hK ‖Ah‖2

0,K ∀Ah ∈ H0h.(5.7)

Proof. We prove only the first inequality in (5.7), the second is similar. Let K be
an interface element with 4 vertices, v1, v2, v3, and v4, and dK be the largest distance
from the curved side of K to its opposite face of K. Since the interfaces Γ1 and Γ2

are C∞-smooth, we can easily show that dK ≤ Ch2
K . Then we can construct a cube

C(K) such that K ⊂ C(K) and C(K) has a height dK and a rectangular base of length
α1hK and width α2hK , where α1 and α2 are two positive constants independent of
mesh size h. Then we divide C(K) into 6 small tetrahedra K1, . . . ,K6.

By scaling arguments, one can easily verify the equivalence

‖q‖2
0,A

=∼ |A|
4∑

i=1

(q(ai))
2 ∀ q ∈ P1(A)(5.8)

for any tetrahedron A with vertices a1, a2, a3, and a4. Let p be a component of
∇× Ah for some Ah ∈ H0h, then p ∈ P1(K). Clearly we also see p ∈ P1(K), and p
can be naturally extended to p̃ ∈ P1(C(K)), thus

‖p‖2
0,K ≤ ‖p̃‖2

0,C(K) ≤
6∑

i=1

‖p̃‖2
0,Ki .

But using (5.8) and the fact that the value p̃ at any point in Ki can be expressed as
a convex combination of the values of p at the 4 vertices of K, we obtain

‖p‖2
0,K <∼ h4

K

4∑
j=1

(p(vj))
2 =∼ hK |K|

4∑
j=1

(p(vj))
2 =∼ hK‖p‖2

0,K .

This proves the first estimate in (5.7).
Using the interpolation error estimates in Lemma 5.2 and the convergence theory

in Theorem 4.1, we can now derive the error estimate for the projection operator Ph

defined in (5.1).
Lemma 5.4. Let B ∈ H0(curl,div; Ω) and p ∈ L2

0(Ω) be given such that B ∈
H1+s1(Ωk) in each Ωk (k = 1, 2, 3) for some 0 ≤ s1 < 1 and p ∈ Hs2(Ω) for some
0 ≤ s2 < 1. Then the following error estimates hold for the projection (Bh, ph) of
(B, p) defined in (5.1):

3∑
i=1

‖B − Bh‖2
H(curl,div;Ωi)

<∼ h
4s1
3

3∑
i=1

‖B‖2
1+s1,Ωi

+ h2s2‖p‖2
s2,Ω .
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Proof. Let X = H0(curl,div; Ω) and M = L2
0(Ω), Xh = H0h, and Mh = Q0h,

then we can apply Theorem 4.1 to the system (5.1) to obtain

‖B − Bh‖H0
<∼ inf

Ah∈H0h

‖B − Ah‖H0 + inf
qh∈Q0h

‖p− qh‖(5.9)

+ sup
Ah∈Vh

a(B,Ah) − ah(B,Ah)

‖Ah‖H0h

.

Noting that for B ∈ H0, we have ShB ∈ H0h. On the other hand, for p ∈ L2
0(Ω), let

πhp be its standard L2 projection in Qh. Clearly πhp may not be in Q0h. But if we
set p̃h = πhp−πhp, where q stands for the average of q over Ω for any q ∈ L2(Ω), then
we have p̃h ∈ Q0h, and the following estimates hold using the standard approximation
property of the L2 projection:

‖p− p̃h‖ = ‖(p− πhp) − (p− πhp)‖ ≤ ‖p− πhp‖ <∼ hs2‖p‖s2,Ω .

Using this and Lemma 5.2, we derive by taking Ah = ShB and qh = p̃h in (5.9) that

inf
Ah∈H0h

‖B − Ah‖H0
+ inf

qh∈Q0h

‖p− qh‖ <∼ h
2s1
3

3∑
i=1

‖B‖1+s1,Ωi
+ hs2‖p‖2

s2,Ω .(5.10)

It remains to estimate the last term in (5.9). Let K be the same as in Lemma 5.3,
then by the definition of a(·, ·) and ah(·, ·), we can write for any Ah ∈ H0h (cf. [10]),

a(B,Ah) − ah(B,Ah) =
∑

K∈T ∗
h

∫
K
(β(x) − βh(x))∇× B · ∇ × Ahdx .

Using the Cauchy–Schwarz inequality, we obtain

|a(B,Ah) − ah(B,Ah)|
<∼

∑
K∈T ∗

h

{
‖∇ × ShB‖0,K ‖∇ × Ah‖0,K + ‖∇ × (B − ShB)‖0,K ‖∇ × Ah‖0,K

}
.

By Lemmas 5.3 and 5.2, we deduce

|a(B,Ah) − ah(B,Ah)| <∼
∑

K∈T ∗
h

hK ‖∇ × ShB‖0,K ‖∇ × Ah‖0,K

+
∑

K∈T ∗
h

h
1/2
K ‖∇ × (B − ShB)‖0,K ‖∇ × Ah‖0,K

<∼ h ‖∇ × ShB‖0,Ω ‖∇ × Ah‖0,Ω

+ h1/2 ‖∇ × (B − ShB)‖0,Ω ‖∇ × Ah‖0,Ω

<∼ (h + h1/2+2s1/3)

(
3∑

k=1

‖B‖1+s1,Ωk

)
‖∇ × Ah‖0,Ω ,

and this completes the proof of Lemma 5.4.
Now, the above preparations enable us to make full use of the better local regu-

larity of B in each subdomain Ωk to derive the main results of this section, the finite
element convergence.
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Theorem 5.1. Let (B, p) ∈ H2(0, T ;H0)×L2(0, T ;L2
0(Ω)) be the solution to the

variational problem (3.7) such that B ∈ H1(0, T ;H1+s1(Ωk)) in each Ωk (k = 1, 2, 3)
for some 0 ≤ s1 < 1 and p ∈ H1(0, T ;Hs2(Ω)) for some 0 ≤ s2 < 1. And let (Bh, ph)
be the finite element solution to the fully discrete finite element approximation (4.15),
then we have the following error estimates:

max
1≤n≤M

‖Bn
h − Bn‖2 + τ

M∑
n=1

{
‖∇ × (Bn

h − Bn)‖2 + ‖∇ · (Bn
h − Bn)‖2

}

<∼ h
4s1
3

3∑
k=1

‖B‖2
H1(0,T ;H1+s1 (Ωk)) + h2s2‖p‖2

H1(0,T ;Hs2 (Ω))

+ τ2{‖B‖2
H2(0,T ;H0)

+ ‖p‖2
L2(QT )}.

Proof. Our aim is to estimate the error (Bn − Bn
h). Using the relation

Bn − Bn
h = (Bn − B̄n) + (B̄n − PhB̄

n) + (PhB̄
n − Bn

h),(5.11)

and the projection results from Lemma 5.4, it suffices to estimate the difference ξnh =
(PhB̄

n − Bn
h) in the specified norms. To do so, letting A = τ−1Ah ∈ H0h and

q = qh ∈ Q0h in (3.7), then integrating over [tn−1, tn] we obtain⎧⎨
⎩

(∂τB
n,Ah) + (β∇× B̄n,∇× Ah) + γ(∇ · B̄n,∇ · Ah) + (p̄n,∇ · Ah)

= Rα(f̄n
B ,∇× Ah) + Rm(u × B

n
,∇× Ah) ∀Ah ∈ H0h;

(∇ · B̄n, qh) = 0 ∀ qh ∈ Q0h,
(5.12)

where

f̄n
B =

1

τ

∫ tn

tn−1

f

1 + σ|B|2 B(t)dt.

Subtracting (4.15) from (5.12) yields

(∂τξ
n
h ,Ah) + (βh∇× ξnh ,∇× Ah) + γ(∇ · ξnh ,∇ · Ah)

= (∂τ (PhB̄
n − Bn),Ah) + Rα

(
f̄n
B − fn

h

1 + σ|Bn−1
h |2

Bn
h,∇× Ah

)
,

+ Rm(u × B
n − un

h × Bn
h,∇× Ah)

+ (βh∇× PhB̄
n − β∇× B̄n,∇× Ah) + (∇ · (PhB̄

n − B̄n),∇ · Ah)

+ (Php̄
n − p̄n,∇ · Ah) + (pnh − Php̄

n,∇ · Ah) ∀Ah ∈ H0h .

Letting Ah = τξnh ∈ H0h above, then using the second equations in both (4.15) and
(5.12) and the definition of the projection Ph, we come to (cf. [10])

τ(∂τξ
n
h , ξ

n
h ) + τ(βh∇× ξnh ,∇× ξnh ) + γτ(∇ · ξnh ,∇ · ξnh )

= Rατ
(
f̄n
B − fn

1 + σ|Bn−1
h |2

Bn
h,∇× ξnh

)
+ Rmτ(u × B

n − un × Bn
h,∇× ξnh )

+ τ(∂τ (PhB̄
n − Bn), ξnh ) + τ(B̄n − PhB̄

n, ξnh )

+ τ
(Rα(fn − fn

h )

1 + σ|Bn−1
h |2

Bn
h + Rm(un − un

h) × Bn
h,∇× ξnh

)
≡: (I)1 + (I)2 + (I)3 + (I)4 + (I)5 .(5.13)
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Obviously, (I)4 can be estimated immediately by the projection property. Below,
we shall analyze (I)1, (I)2, (I)3, and (I)5 one by one. For the estimation of (I)1, we
first consider

(II)1 ≡: f̄n
B − fn

1 + σ|Bn−1
h |2

Bn
h.

By direct manipulations, we have (cf. [10])

(II)1 =
1

τ

∫ tn

tn−1

(f − fn) + σf (|Bn−1
h |2 − |B|2) + σ(f − fn)|B|2

(1 + σ|B|2)(1 + σ|Bn−1
h |2)

B(t)dt

+
1

τ

∫ tn

tn−1

fn

1 + σ|Bn−1
h |2

{
(B(t) − B̄n) + (B̄n − PhB̄

n) + (PhB̄
n − Bn

h)
}
dt,

which can be easily bounded by

(5.14)

|(II)1| ≤
2

τ

∫ tn

tn−1

|f | {|Bn−1
h − PhB̄

n−1| + |PhB̄
n−1 − B̄n−1| + |B̄n−1 − B|}dt

+
1

τ

∫ tn

tn−1

|f − fn| |B(t)|dt +
1

τ

∫ tn

tn−1

|fn|
(
|B(t) − B̄n| + |B̄n − PhB̄

n| + |ξnh |
)
dt.

By the standard error estimates [5, 14, 10], we obtain from (5.14) that

|(II)1| ≤ 5fM

{√
τ‖B‖L2(tn−1,tn) +

√
τ‖Bt‖L2(tn−2,tn) +

n∑
k=n−1

|ξkh| +
n∑

k=n−1

|PhB̄
k − B̄k|

}
.

(5.15)

Similarly, for the estimation of (I)2, we first analyze (II2) := u × B
n − un × Bn

h.
We write

(II)2 =
1

τ

∫ tn

tn−1

{(u(t) − un) × B(t) + un × (B(t) − Bn
h)}dt ,

this leads readily to (with In = (tn−1, tn])

|(II)2| ≤ uM

√
τ‖B‖L2(In) + 2uM (

√
τ‖Bt‖L2(In) + |B̄n − PhB̄

n| + |ξnh |) .(5.16)

Next, we estimate the following term needed in (5.13):

(II)3 ≡: ∂τ (PhB̄
n − Bn) = ∂τ (PhB

n − Bn) + Ph∂τ (B̄
n − Bn)

=
1

τ

∫ tn

tn−1

(PhBt(s) − Bt(s))ds + Ph∂τ (B̄
n − Bn).(5.17)

For the second term above, we can write after some manipulations [10] that

∂τ (B̄
n − Bn) =

1

τ2

∫ tn

tn−1

∫ s

s−τ

∫ μ

s

Btt(λ)dλdμds,

this enables us to rewrite (II)3 as

(II)3 =
1

τ

∫ tn

tn−1

(PhBt(s) − Bt(s))ds +
1

τ2

∫ tn

tn−1

∫ s

s−τ

∫ μ

s

PhBtt(λ)dλdμds,
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and so,

|(II)3| ≤
1√
τ
‖PhBt − Bt‖L2(In) +

√
τ‖PhBtt‖L2(In).(5.18)

For the last term (I)5 in (5.13), by Lemma 5.3 and Young’s inequality there exists
some constant C̃ independent of τ and h such that [10]

|(I)5| ≤ 2τ h C̃(RαfM + 2RmuM )
∑

K∈T ∗
h

‖Bn
h‖0,K‖∇ × ξnh‖0,K

≤ βm

4
τ‖∇ × ξnh‖2 + Cτ h2 ‖Bn

h‖2 .(5.19)

Now, we obtain from (5.13) and (5.19) and Young’s inequality that

‖ξnh‖2 − ‖ξn−1
h ‖2 + τβm‖∇ × ξnh‖2 + γτ‖∇ · ξnh‖2 <∼ (III)1,(5.20)

where the term (III)1 is given by

(III)1 = τ {‖(II)1‖2 + ‖(II)2‖2 + ‖(II)3‖2 + ‖B̄n − PhB̄
n‖2 + ‖ξnh‖2 + h2‖Bn

h‖2} .

Using the estimates for (II)1, (II)2, and (II)3 in (5.15)–(5.18), we can further estimate
(III)1 by

(III)1 <∼
∫ tn

tn−1

‖PhBt(s) − Bt(s)‖2ds + τ2

∫ tn

tn−1

‖PhBtt(t)‖2dt + τ{‖ξn−1
h ‖2 + ‖ξnh‖2}

+ τ

{
n∑

k=n−1

‖PhB̄
k − B̄k‖2 + τ

∫ tn

tn−2

(‖B(t)‖2 + ‖Bt(t)‖2)dt

}
+ τ h2‖Bn

h‖2.

Summing both sides of (5.20) over n = 1, 2, . . . , k ≤ M yields

‖ξkh‖2 + βmτ

k∑
n=1

‖∇ × ξnh‖2 + 2τ

k∑
n=1

‖∇ · ξnh‖2

<∼ ‖ξ0
h‖2 + ‖PhB(0) − B(0)‖2 + τ

k∑
n=1

‖ξnh‖2 + τ h2
k∑

n=1

‖Bn
h‖2

+

∫ T

0

‖PhBt(t) − Bt(t)‖2dt + τ2

∫ T

0

‖PhBtt(t)‖2dt

+ τ
k∑

n=1

‖PhB̄
n − B̄n‖2 + τ

∫ T

0

(‖B(t)‖2 + ‖Bt(t)‖2)dt
}
.(5.21)

Finally using Lemmas 5.1, 5.2, and 5.4, and applying the discrete Gronwall inequality,
we are led to the error estimates in Theorem 5.1.

6. Application to a solar interface dynamo. For the astrophysical applica-
tion of the mathematical theory, we shall concentrate on the numerical modelling of
solar interface dynamos. Helioseismology reveals the existence of a highly differen-
tially rotating transition zone at the bottom of the convection zone, which is usually
referred to as the solar tachocline [28]. It is thought that the tachocline offers an ideal
location for the generation and storage of the Sun’s strong toroidal magnetic fields.
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In other words, the large-scale solar surface magnetic activities can be interpreted
as a result of the rising and emerging of tachocline-seated, strong toroidal magnetic
fields driven by magnetic buoyancy [34]. The existence of the tachocline leads to
development of the solar interface dynamo first proposed by Parker [25], in which
the generation of a weak poloidal magnetic field and a strong toroidal magnetic field
takes place in separate fluid regions. Parker’s interface dynamo concept depicts an
attractive picture of generating a strong toroidal magnetic field within the tachocline
while avoiding the dilemma relating to the strong alpha quenching in the convection
zone. We shall apply the finite element dynamo theory and algorithm discussed in
the previous sections to the problem of solar interface dynamo modelling.

In the solar interface dynamo model, we shall take u as the solar-like internal
differential rotation profile, a result of the helioseismic inversion (e.g., [28]) while the
function f is assumed to be given by

f(x, t) = sin2 θ cos θ sin

[
π

(r − r1)

(r2 − r1)

]
,

where (r, θ, φ) is the spherical polar coordinates. Similar forms have been used in the
previous solar dynamo simulations [27, 21, 16]. Furthermore, the weaker pole-equator
differential rotation in the convection zone is neglected and the amplification of the
toroidal magnetic field only occurs in the tachocline. It follows that the two magnetic
induction sources, the generation of a poloidal field in the convection zone, and the
amplification of the toroidal field in the tachocline, is spatially separated, as suggested
by Parker [25].

We have simulated three nonlinear finite element dynamos at Rα = 30 for differ-
ent magnetic Reynolds numbers, Rm = 100, 200, and 500. Figure 2 displays magnetic
energies of the three nonlinear dynamo solutions as a function of time. The corre-
sponding butterfly diagram, contours of the azimuthal magnetic field evaluated at
the bottom of the convection zone plotted against time, is also shown in Figure 2
for the case with Rm = 200. In Figure 3, we illustrate the time-dependent spatial
structure of the generated magnetic field in a meridional plane for Rm = 200, showing
an equatorially propagating dynamo wave similar to that of the solar cycle.
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Fig. 2. The left panel shows magnetic energy Em of the dynamo as a function of time with a
steady tachocline for different values of Rm at Rα = 30 with β1 = 1, β2 = 1, and β3 = 150. The
right panel displays “a butterfly diagram” for the solution Rm = 200 with the azimuthal magnetic
field evaluated at the bottom of the convection zone.
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Fig. 3. Contours of the azimuthal field Bφ in a meridional plane plotted at six different instants
for t = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 (from top left to right and then from lower left to right) for Rm = 200,
β1 = 1, β2 = 1, and β3 = 150.

There are a number of important features shown in our finite element dynamo
solutions. First, the effect of the large-scale differential rotation u in the tachocline
always gives rise to an oscillatory dynamo with a period of about one magnetic dif-
fusion unit, which is about 10 years if we adopt λ2 = 108m2s−1, approximate to
what has been observed in the solar magnetic field. Second, the interface dynamo
solutions always select dipolar symmetry and propagate equator ward though the
numerical simulation is fully three-dimensional, which is again consistent with the
observed feature of the solar magnetic field. Finally, the generated magnetic field
mainly concentrates in the vicinity of the interface between the tachocline and the
convection zone. A strong toroidal magnetic field in the tachocline is likely to be
susceptible to magnetic buoyancy instabilities leading to a quick eruption of the field
into the surface of the Sun in the form of sunspots.

7. Concluding remarks. Modelling stellar and planetary dynamos represents
an important, highly active research front in astrophysics and planetary physics.
Nearly all current stellar dynamo models are based on spectral methods in terms
of spherical harmonic expansions, which are computationally inefficient on modern
parallel computers and limit the application to general dynamo models, especially to
the models with variable physical coefficients of space and time. The finite element
method discussed in this paper offers an attractive alternative for simulating dynamos
in spherical geometry.

The first attempt at using finite element methods for numerical simulations of
spherical dynamos was made in [11]. The current work presents the first mathe-
matical theory and numerical analysis for mean-field spherical dynamos, and it has
made contributions in the following aspects: (1) The well-posedness of the mean-field
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dynamo system is rigorously demonstrated; the dynamo system is characterized in
terms of a saddle-point type formulation which can be conveniently approximated by
finite element methods. (2) The existing convergence theory on saddle-point systems
is improved and generalized so that the symmetric part of the bilinear form allows the
approximations of curved interfaces by straight polygons and numerical integrations
on polyhedra with curved faces are replaced by much easier integrations on polyhe-
dra with planar faces; and this is the first work of such type on saddle-point systems.
(3) A fully discrete finite element method is proposed for the interface dynamo system
with discontinuous coefficients, and error estimates are established under very weak
global and local regularity assumptions on the solutions, and this work seems to be the
first in achieving error estimates of numerical methods for three-dimensional interface
PDEs with curved interfaces, especially for nonlinear PDEs. (4) The application of
the proposed numerical method to a solar interface dynamo verifies some important
physical observations.

We believe that the mathematical theory and finite element methods for spherical
dynamos and their successful application to the solar interface dynamo presented in
this paper open up an exciting opportunity for future numerical simulation of stellar
dynamos. We also believe that the finite element theory and method developed in the
paper would also benefit other research communities in geophysics, planetary physics,
and astrophysics where the magnetic field and spherical geometry play an essential
role.
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Abstract. An optimal control problem for 2d and 3d Stokes equations is investigated with
pointwise control constraints. This paper is concerned with the discretization of the control by piece-
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1. Introduction. The paper is concerned with the discretization of the optimal
control problem

minimize J(v, q) =
1

2
‖v − vd‖2

L2(Ω)d +
ν

2
‖q‖2

L2(Ω)d(1.1)

subject to the Stokes equations (state equation)

−Δv + ∇p = f + q in Ω,
∇ · v = 0 on Ω,

v = 0 on Γ
(1.2)

and subject to the control constraints

a ≤ q(x) ≤ b for a.a. x ∈ Ω,(1.3)

where Ω is a bounded domain in R
d with d = 2, 3 and Γ is the boundary of Ω.

The quantities a, b ∈ R
d are constant vectors, the inequality (1.3) is understood

componentwise and ν > 0 is a given regularization (or control cost) parameter. We
denote by u = (v, p) the solution of (1.2). Moreover, we assume for the desired velocity
field vd and the right-hand side f to be from L∞(Ω)d.

The set of admissible controls Qad is given by

Qad = {v ∈ Q := L2(Ω)d : a ≤ q ≤ b a.e. in Ω}.

We discuss here the discretization of the control and state variables by finite
elements. The asymptotic behavior of the discretized problem is studied.

First results in the context of a priori error analysis of optimal control problems
go back to papers by Falk [15], Geveci [16], and Malanowski [24]. In the past few
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years the theory has been extended to semilinear problems; see Arada, Casas, and
Tröltzsch [1] and Casas, Mateos, and Tröltzsch [8]. Error estimates of order h in the
L2-norm and in the L∞-norm are established in these articles.

Piecewise linear control discretizations for elliptic optimal control problems are
studied by Casas and Tröltzsch [9] and Casas [7], containing error estimates of order
h and o(h) in the L2-norm for general cases. For more regular cases an approximation
order of h3/2 can be proved; see Rösch [27, 28]. An error estimate of order h in the
L∞-norm for an elliptic problem is proved by Meyer and Rösch [26].

However, new discretization concepts have been developed in recent years. The
variational approach by Hinze [20] and the superconvergence approach of Meyer and
Rösch [25] can achieve approximation order h2 in the L2-norm.

In this paper, we will generalize the superconvergence approach of Meyer and
Rösch [25]. The controls are discretized by piecewise constant functions. Clearly, the
approximation order of the control cannot be better than h for the optimal control.
However, we will show that the point values of the control variable in the barycenter of
the elements are approximated with order h2. Moreover, we will prove that the state
and adjoint variable are approximated with order h2 with respect to the L2-norm.
This allows for a postprocessing step, which leads to h2 approximation of the control
variable in the L2-norm, too.

Apart from the fact that the Stokes equations have a more complex structure than
the equation investigated in [25], this paper contains an essential generalization in the
theory. The theory presented in [25] works only for piecewise linear finite elements.
The fact that the second derivative of each ansatz function vanishes identically on
each triangle is used in a very explicit manner. Consequently, only piecewise linear
finite elements defined on triangles can be handled by that technique. We will prove
superconvergence results without such restrictions, i.e., only stability and interpola-
tion properties of the elements are requested. Therefore, our results include many
different finite element discretization schemes for the 2d and 3d Stokes equations.

To the best of the authors knowledge this is the first paper discussing the dis-
cretization error for the optimal control of the Stokes equations with pointwise control
constraints. In principle, the classical approach [15, 16] as well as the variational ap-
proach [20] can be generalized to the Stokes equations. Of course, several papers are
published for the optimal control of the Stokes equations and the Navier–Stokes equa-
tions without control constraints; see, e.g., Gunzburger, Hou, and Svobodny [18, 19],
Bochev and Gunzburger [4], and Deckelnick and Hinze [14].

Let us remark that the investigated optimal control problems governed by the
Stokes equations occur as subproblems in several Newton-type methods for control
constrained optimal control problems for the Navier–Stokes equations. The conver-
gence theory of such Newton-type methods requires sufficiently accurate numerical
solutions of the subproblems.

The paper is organized as follows: In section 2 a general discretization concept
is introduced and the main results are stated. Section 3 contains results from the
finite element theory. The proofs of the superconvergence results are placed in sec-
tion 4. The assumption of the general discretization concept are verified for a specific
discretization in section 5. The paper ends with numerical experiments shown in
section 6.

2. Discretization and superconvergence results. Throughout this paper,
Ω denotes a bounded convex and polygonal domain in R

d, d = 2, 3. Moreover, for
the case d = 3 we assume that edge openings of the domain Ω are smaller than 2π/3.
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This will ensure the W 1,∞-regularity of the velocity field.
We denote by V and L the Hilbert spaces

V := H1
0 (Ω)d,

L :=

{
p ∈ L2(Ω) :

∫
Ω

p(x) dx = 0

}
.

In all that follows, we will omit the subscript L2 in the norms and inner products
if there is no risk of misunderstanding. We look for solutions of the Stokes equa-
tions (1.2) in the sense of a weak formulation: the following equation has to be
satisfied for arbitrary φ = (ψ, ξ) ∈ V × L:

a(u, φ) := (∇v,∇ψ) − (p,∇ · ψ) + (∇ · v, ξ) = (f + q, ψ) =: (F (q), φ).(2.1)

Lemma 2.1. Let g be a given function in L∞(Ω)d. Then there exists a unique
solution u = (v, p) ∈ V × L of

−Δv + ∇p = g in Ω,
∇ · v = 0 on Ω,

v = 0 on Γ.
(2.2)

Moreover, there exist positive constant c and with v ∈ H2(Ω)∩W 1,∞(Ω)d, p ∈ H1(Ω)
and

‖v‖H2(Ω)d + ‖v‖W 1,∞(Ω)d + ‖p‖H1(Ω) ≤ c‖g‖L∞(Ω)d(2.3)

for d = 2 or for d = 3 and all edge openings are smaller than 2π/3.
For the proof of this result on polygonal domains especially for d = 3, we refer

to [13, Theorem 6.3].
We will assume that (2.3) is valid for the investigated domain Ω. However, it

would be enough for the theory presented here to have this regularity for the optimal
adjoint velocity w̄ introduced below.

In order to formulate the optimality system, we introduce the adjoint equation

−Δw −∇r = v − vd in Ω,
∇ · w = 0 on Ω,

w = 0 on Γ.
(2.4)

We denote by z = (w, r) ∈ V × L the adjoint state. Due to Lemma 2.1 the adjoint
velocity w belongs to H2(Ω)d ∩W 1,∞(Ω)d.

We say that u = (v, p) is the state associated to q if u is the solution of (1.2).
Analogously, we call the solution z = (w, r) of (2.4) adjoint state associated to q.

Lemma 2.2. There exists a uniquely determined solution q̄ of the optimal control
problem (1.1)–(1.3). Moreover, a necessary and sufficient condition for the optimality
of a control q̄ with associated state ū and associated adjoint state z̄, respectively, is
that the variational inequality

(w̄ + νq̄, q − q̄)Q ≥ 0 for all q ∈ Qad(2.5)

holds.
The optimal control problem (1.1)–(1.3) is strictly convex and radially unbounded.

Hence, there exists a uniquely determined optimal solution and the first order nec-
essary conditions are also sufficient for optimality. Such basic results and an intro-
duction in optimal control theory governed by partial differential equations can be
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found for instance in Lions [23]. We remark that the variational inequality (2.5) can
be equivalently formulated; see, e.g., Malanowski [24], as

q̄ = Π[a,b]

(
− 1

ν
w̄

)
,(2.6)

where the projection Π is defined by

Π[a,b](f(x)) = max(a,min(b, f(x))).

Again, all functions are defined componentwise.
In order to discretize the optimal control problem, we consider a 2- or 3-d mesh Th

consisting of open cells T , which constitute a nonoverlapping covering of the domain
Ω. The cells are either triangles, tetrahedra, quadrilaterals or hexahedra. The mesh
parameter h is defined as a cellwise constant function by setting h|T = hT and hT is
the diameter of K. Usually we use the symbol h also for the maximal cell size, i.e.,

h = max
T∈Th

hT .

The straight parts which make up the boundary ∂T of a cell T are called faces. For
the mesh Th we require to be regular in the following sense; see, e.g., [10], i.e.:

(A1)
• Ω̄ = ∪T∈Th

T̄ ,
• T1 ∩ T2 = ∅ or T1 = T2, for all T1, T2 ∈ Th,
• Any face of any cell T1 ∈ Th is either a subset of the boundary ∂Ω, or a face

of another cell T2 ∈ Th.
The control variable q is discretized by piecewise constant elements on the mesh Th
using the following discrete space:

Qh := {qh ∈ L2(Ω)d : qh|T ∈ (P0)
d for all T ∈ Th}.

Here Pk denotes the polynoms with degree less than or equal to k.
Next, we introduce a general conforming finite element setting for the discretiza-

tion of the state equation. Let Vh ⊂ V and Lh ⊂ L be finite dimensional subspaces
with the following properties:

(A2) The space Vh and the mesh Th fit in the following sense: Every function
vh ∈ Vh is piecewise polynomial on Th

vh|T ∈ Pd for all T ∈ Th,

where P is a polynomial space.
For a given control q ∈ Q, the state equation (2.1) is discretized using the spaces

Vh and Lh as follows: Find uh = (vh, ph) such that

a(uh, φh) + sh(ph, ξh) = (F (q), φh) for all φh = (ψh, ξh) ∈ Vh × Lh.(2.7)

Here, the term sh(·, ·) denotes a stabilization (continuous, symmetric) bilinear form
on Lh×Lh. Such stabilization terms are needed if, e.g., finite elements of equal order
for the velocities and pressure are used; see [2] or [6]. For this discretization we require
the following conditions: We introduce the space of cellwise H2 functions

V 2
h (Ω)d := {v ∈ V : v|T ∈ H2(T )d for all T ∈ Th},
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with a discrete H2 norm defined by

‖ψh‖′H2(Ω)d :=

(
‖ψh‖2

H1(Ω)d +
∑
T∈Ω

‖∇2ψh‖2
L2(T )d

)1/2

.

(A3) There exist interpolation operators ivh : H2(Ω)d ∩V → Vh and iph : H1(Ω)∩
L → Lh with the following approximation properties:

‖v − ivhv‖L2(Ω)d + h‖∇(v − ivhv)‖L2(Ω)d ≤ cvh
2 ‖∇2v‖L2(Ω)d×d ,

‖v − ivhv‖L∞(Ω)d + h2−d/2‖v − ivhv‖′H2(Ω)d ≤ cvh
2−d/2 ‖∇2v‖L2(Ω)d×d ,

‖p− iphp‖L2(Ω) ≤ cph ‖∇p‖L2(Ω).

For the existence of operators iph we refer to Clément [11].

(A4) There exists a finite dimensional space L̃h ⊂ Lh and a continuous projection
operator π : Lh → L̃h such that

• For the pair (Vh, L̃h) the inf-sup condition holds, i.e., there exists a positive
constant γ independent of h with

sup
φh∈Vh

(ph,∇ · φh)

‖∇φh‖L2(Ω)d
≥ γ‖ph‖L2(Ω) for all ph ∈ L̃h.

• There is a positive constant c independent of h such that

‖πph‖L2(Ω) ≤ c‖ph‖L2(Ω) for all ph ∈ Lh.

• There is a positive constant c independent of h such that

‖ph − πph‖2
L2(Ω) ≤ c sh(ph, ph) for all ph ∈ Lh.

• There is a positive constant c independent of h such that

sh(iphp, i
p
hp) ≤ ch2‖∇p‖L2(Ω)d for all p ∈ L ∩H1(Ω).

Remark 2.3. If the inf-sup condition is fulfilled for the pair (Vh, Lh) itself, there
is no need for stabilization and we can set s(p, ξ) ≡ 0 and π = idLh

.
Remark 2.4. In the presence of the regularization term sh(ph, ξh), the discretiza-

tion (2.7) is not a pure Galerkin scheme for (2.1) any more. Therefore, the question
arises, if the approaches “discretize-then-optimize” and “optimize-then-discretize” co-
incide; see the discussion in Collis and Heinkenschloss [12]. In our setting these two
approaches coincide due to the fact, that sh(·, ·) is a symmetric bilinear form.

Moreover, we require the following inverse inequalities:
(A5) There is a positive constant c independent of h such that for all vh ∈ Vh

holds:

‖vh‖′H2(Ω)d ≤ ch−1‖vh‖H1(Ω)d and ‖vh‖L∞(Ω)d ≤ ch−d/2‖vh‖L2(Ω)d .

Let T be an arbitrary element of the mesh Th. We define an operator Rh :C(Ω)→Qh by

(Rhg)(x) = g(ST ),

where ST denotes the barycenter of the element T . The operator Rh is defined com-
ponentwise in the case of a vector valued function.
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(A6) Let T ∈ Th be an arbitrary element of the discretization and g ∈ H2(T ) an
arbitrary function. We require the following estimates:∣∣∣∣

∫
T

g(x) − (Rhg)(x) dx

∣∣∣∣ ≤ ch2|T |1/2‖∇2g‖L2(T ),

‖g −Rhg‖L∞(Ω) ≤ ch ‖∇g‖L∞(Ω)

with a positive constant c independent of h.
Remark 2.5. Assumptions (A1)–(A6) are standard properties of finite element

discretizations. They are fulfilled for many different conforming element pairs with
and without stabilization. We will verify these conditions for one specific discretization
in section 5.

For our superconvergence result an additional assumption is needed. It follows
from Lemma 2.1, that the optimal adjoint velocity w̄ belongs to H2(Ω)d∩W 1,∞(Ω)d.
However, the regularity of the optimal control is weaker because of the occurrence of
kinks caused by the max-function in (2.6). Nevertheless, we can group all elements
T ∈ Th into two classes:

K1 :=
⋃

T∈Th, q̄ �∈H2(T )d

T, K2 :=
⋃

T∈Th, q̄∈H2(T )d

T.(2.8)

We remark that the properties of the projection operator and Lemma 2.1 imply q̄ ∈
W 1,∞(Ω)d,

(A7)

|K1| ≤ ch.

Assumption (A7) is difficult to verify, but is valid in many practical cases.
The discrete optimization problem is given by the minimization of the cost func-

tional (1.1) subject to the discretized state equation (2.7) and subject to qh ∈ Qad
h =

Qh∩Qad. Similar to the notation for the continuous problem, we denote by q̄h ∈ Qad
h ,

ūh ∈ Vh × Lh, and z̄h ∈ Vh × Lh the optimal control, the associated state, and the
adjoint state of the discretized optimal control problem. In the following theorems we
formulate our main results.

Theorem 2.6. Assume that (A1)–(A7) holds. Then the estimate

‖q̄h −Rhq̄‖Q ≤ ch2(‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d + ‖q̄‖L∞(Ω)d)(2.9)

is valid with a positive constant c independent of h.
Theorem 2.7. The estimates

‖v̄ − v̄h‖Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d)(2.10)

‖w̄ − w̄h‖Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d)(2.11)

are valid provided that (A1)–(A7) hold.
Theorem 2.8. Assume that (A1)–(A7) holds. Then the estimate

‖q̃h − q̄‖Q ≤ ch2(‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d + ‖q̄‖L∞(Ω)d)(2.12)

is valid with

q̃h = Π[a,b]

(
− 1

ν
w̄h

)
(2.13)
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and a positive constant c independent of h.
The proofs of the Theorems 2.6 and 2.8 are contained in section 4.
Let us briefly explain why these are superconvergence results: The best possible

rate for approximation of the optimal solution by a piecewise constant function is h.
Therefore we can only expect

‖q̄ − q̄h‖Q = O(h).

However, we will show in Theorem 2.6 that the values in the barycenter are approxi-
mated with order h2. A direct implication of this result will be that the velocity and
the adjoint velocity is approximated with order h2 in the L2-norm. The projection
in (2.13) increases the accuracy of the calculated control to order h2. Hence, the
result of Theorem 2.8 provides a possibility to significantly improve the behavior of
the error by a simple postprocessing step (2.13).

Remark 2.9. Theorem 2.7 provides error bounds for the optimal velocity and the
adjoint velocity in L2-norm. As a direct consequence one obtains the corresponding
estimates for the velocity with respect to H1-norm and for the pressure with respect
to L2-norm of order O(h).

Remark 2.10. Assumption (A7) is essential for quadratic approximation results,
i.e., for ‖q − q̃h‖Q = O(h2). In the absence of this assumption one can obtain by
classical techniques:

‖q̄ − q̄h‖ = O(h) and ‖q̄ − q̃h‖ = O(h).

3. Results from finite element theory. In this section, we collect results
from finite element theory. We define (linear) solution mappings S and Sp of the
continuous state equation such that there holds for all φ = (ψ, ξ) ∈ V ×L, g ∈ Q and
vg = S(g), pg = Sp(g):

ug = (vg, pg) ∈ V × L : a(ug, φ) = (g, ψ).(3.1)

In a similar way, we define the solution mappings Sh and Sp
h of the discretized state

equation such that there holds for all φh = (ψh, ξh) ∈ Vh × Lh, g ∈ Q and vgh =
Sh(g), pgh = Sp

h(g):

ug
h = (vgh, p

g
h) ∈ Vh × Lh : a(ug

h, φh) + sh(pgh, ξh) = (g, ψh).(3.2)

Although the solution operators S and Sh have better regularity properties, it is more
convenient (in particular for section 4) to consider them in the space Q:

S : Q → Q, Sh : Q → Q.

In the following we provide some properties of these operators based on the assump-
tions (A1)–(A7). The following lemma ensures the stability of the discretization of
the state equation.

Lemma 3.1. Under assumptions (A1)–(A6) the following modified inf-sup condi-
tion holds: There exist positive constants γ̃ and c independent of h with

sup
φh∈Vh

(ph,∇ · φh) + c s(ph, ph)

‖∇φh‖L2(Ω)d
≥ γ̃‖ph‖L2(Ω) for all ph ∈ Lh.
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Proof. For the proof we refer to [2].
Next, we define the affine linear operators P : Q → Q and Ph : Q → Q by

Pq = S∗(S(q + f) − vd), Phq = S∗
h(Sh(q + f) − vd),

where S∗ and S∗
h denote the adjoint operators of S and Sh, respectively.

Lemma 3.2. Assume that the assumption (A1)–(A6) hold. Let q ∈ Q be an
arbitrary control. Then, the discretization error of the state equation and the adjoint
equation can be estimated by

(i) h‖Sh(q+f)−S(q+f)‖H1(Ω)d +‖Sh(q+f)−S(q+f)‖Q ≤ ch2 (‖q‖Q+‖f‖Q),

(ii) ‖Sh(q + f) − S(q + f)‖L∞(Ω)d ≤ ch2−d/2 (‖q‖Q + ‖f‖Q),
(iii) ‖Sh(q + f) − S(q + f)‖′H2(Ω)d ≤ c (‖q‖Q + ‖f‖Q),

(iv) ‖Phq − Pq‖Q ≤ ch2 (‖q‖Q + ‖f‖Q + ‖vd‖Q).
Proof. The proof of the error estimate (i) relies on Lemma 3.1 and is given in [2].

The result concerning L2-estimate can be obtained by standard techniques; see, e.g.,
[17] for the application of the Aubin–Nitsche trick to the Stokes problem.

For the proof of (ii) we set g = f + q and use the second inverse inequality from
(A5) and an interpolation estimate from (A3):

‖(S − Sh)(g)‖L∞(Ω)d ≤ ‖S(g) − ivhS(g)‖L∞(Ω)d + ‖Sh(g) − ivhS(g)‖L∞(Ω)d

≤ ch2−d/2 ‖∇2S(g)‖L2(Ω)d + ch−d/2‖Sh(g) − ivhS(g)‖L2(Ω)d

≤ ch2−d/2 ‖∇2S(g)‖L2(Ω)d

+ ch−d/2
{
‖S(g) − ivhS(g)‖L2(Ω)d + ‖Sh(g) − S(g)‖L2(Ω)d

}
≤ ch2−d/2 ‖∇2S(g)‖L2(Ω)d ≤ ch2−d/2 ‖g‖L2(Ω)d .

The estimate (iii) follows in the same manner using the first inverse inequality from
(A5) and an interpolation estimate from (A3).

The error estimate (iv) is obtained in a similar way as (i).
Lemma 3.3. The discretization operators Sh and S∗

h are bounded in the following
sense:

(i) ‖Sh‖Q→V ≤ c, ‖S∗
h‖Q→V ≤ c,

(ii) ‖Sh‖Q→L∞(Ω)d ≤ c, ‖S∗
h‖Q→L∞(Ω)d ≤ c,

(iii) ‖Sh‖Q→V 2
h (Ω)d ≤ c, ‖S∗

h‖Q→V 2
h (Ω)d ≤ c.

Proof. We sketch only the proof for the operator Sh. The results for the adjoint
operator S∗

h can be derived by the same techniques. In order to prove the first estimate
we set φh = (Sh(g), Sp

h(g)) in (3.2) and obtain

‖∇Sh(g)‖2
L2(Ω)d + sh(Sp

h(g), Sp
h(g)) = (g, Sh(g)).

Due to (A4) we have

‖∇Sh(g)‖2
L2(Ω)d ≤ (g, Sh(g)).

The assertion follows then by Poincaré inequality.
The second estimate is obtained using (ii) from Lemma 3.2:

‖Sh(g)‖L∞(Ω)d ≤ ‖S(g) − Sh(g)‖L∞(Ω)d + ‖S(g)‖L∞(Ω)d ≤ c(1 + h)‖g‖L2(Ω).

The third estimate is obtained similarly using (iii) from Lemma 3.2.
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Lemma 3.4. Let the conditions of Lemma 2.1 be fulfilled, i.e., in particular,
w ∈ H2(Ω)d ∩W 1,∞(Ω)d. Then the inequality

(ψh, q̄ −Rhq̄) ≤ ch2(‖ψh‖L∞(Ω)d + ‖ψh‖′H2(Ω)d)(‖q̄‖L∞(Ω)d + ‖w̄‖W 2,p′ (Ω)d)

is satisfied for all ψh ∈ Vh provided that the assumptions (A1)–(A7) are fulfilled.
Proof. With the sets K1 and K2 introduced by (2.8), we obtain

(ψh, q̄ −Rhq̄) =

∫
K1

ψh · (q̄ −Rhq̄) dx +

∫
K2

ψh · (q̄ −Rhq̄) dx.(3.3)

Using the W 1,∞-regularity of q̄, the K1-part can be estimated as follows:∫
K1

ψh · (q̄ −Rhq̄) dx =
∑

T⊂K1

∫
T

ψh · (q̄ −Rhq̄) dx

≤ ‖ψh‖L∞(Ω)d

∑
T⊂K1

‖q̄ −Rhq̄‖L∞(T )d

∫
T

dx

≤ ch‖ψh‖L∞(Ω)d |q̄|W 1,∞(Ω)d |K1|.(3.4)

Assumption (A7) and the properties of the projection (2.6) yield∫
K1

ψh · (q̄ −Rhq̄) dx ≤ ch2‖ψh‖L∞(Ω)d‖w̄‖W 1,∞(Ω)d

≤ ch2‖ψh‖L∞(Ω)d‖w̄‖W 2,p′ (Ω)d .(3.5)

On the K2-part, we proceed as follows:∣∣∣∣
∫
K2

ψh · (q̄ −Rhq̄) dx

∣∣∣∣ ≤
∣∣∣∣
∫
K2

(ψh ·Rhq̄ −Rh(ψh · q̄)) dx
∣∣∣∣

+

∣∣∣∣
∫
K2

ψh · q̄ −Rh(ψh · q̄) dx
∣∣∣∣ .(3.6)

Using Rh(ψh · q̄) = Rhψh ·Rhq̄, we find for the first integral∣∣∣∣
∫
K2

(ψh ·Rhq̄ −Rh(ψh · q̄)) dx
∣∣∣∣ ≤ ∑

T⊂K2

∣∣∣∣
∫
T

(ψh −Rhψh) ·Rhq̄ dx

∣∣∣∣ .
Note, that Rhq̄ is constant on every element T . Hence, we can continue with∣∣∣∣

∫
K2

(ψh ·Rhq̄ −Rh(ψh · q̄)) dx
∣∣∣∣ ≤ ∑

T⊂K2

∣∣∣∣Rhq̄ ·
∫
T

(ψh −Rhψh) dx

∣∣∣∣ .
Consequently, we find by means of (A6)∣∣∣∣

∫
K2

(ψh ·Rhq̄ −Rh(ψh · q̄)) dx
∣∣∣∣ ≤ ch2

∑
T⊂K2

|T |1/2‖q̄‖L∞(T )d |ψh|H2(T )d

≤ c|Ω|1/2h2‖q̄‖L∞(Ω)d‖ψh‖′H2(Ω)d

≤ ch2‖w̄‖L∞(Ω)d‖ψh‖′H2(Ω)d .(3.7)
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It remains the second integral in (3.6). Again, we can use (A6):∣∣∣∣
∫
K2

ψh · q̄ −Rh(ψh · q̄) dx
∣∣∣∣ ≤ ∑

T⊂K2

∣∣∣∣
∫
T

ψh · q̄ −Rh(ψh · q̄) dx
∣∣∣∣(3.8)

≤ ch2
∑

T⊂K2

|T |1/2|ψh · q̄|H2(T ).

We will estimate this seminorm by

|ψh · q̄|H2(T ) ≤ ‖ψh‖L∞(T )d |q̄|H2(T )d + |ψh|H2(T )d‖q̄‖L∞(T )d

+ 2|ψh|H1(T )d |q̄|W 1,∞(T )d .(3.9)

The projection formula (2.6) and the fact that q̄ smooth is on every T ⊂ K2 imply

(3.10)

|ψh · q̄|H2(T )≤c(‖ψh‖L∞(T )d |w̄|H2(T )d+|ψh|H2(T )d‖q̄‖L∞(T )d+|ψh|H1(T )d |w̄|W 1,∞(T )d)

≤c(‖ψh‖L∞(Ω)d |w̄|H2(T )d+|ψh|H2(T )d‖q̄‖L∞(Ω)d+|ψh|H1(T )d |w̄|W 1,∞(Ω)d)

Combining (3.8) with (3.10) we find∣∣∣∣
∫
K2

ψh · q̄ −Rh(ψh · q̄) dx
∣∣∣∣ ≤ ch2

∑
T⊂K2

|T |1/2(‖ψh‖L∞(Ω)d |w̄|H2(T )d

+ |ψh|H2(T )d‖q̄‖L∞(Ω)d + |ψh|H1(T )d |w̄|W 1,∞(Ω)d)

≤ ch2(‖ψh‖L∞(Ω)d‖w̄‖H2(Ω)d

+ ‖ψh‖′H2(Ω)d‖q̄‖L∞(Ω)d + ‖ψh‖H1(Ω)d‖w̄‖W 1,∞(Ω)d).

By imbedding arguments we end up with∣∣∣∣
∫
K2

ψh · q̄ −Rh(ψh · q̄) dx
∣∣∣∣ ≤ ch2(‖ψh‖L∞(Ω)d(3.11)

+ ‖ψh‖′H2(Ω)d)(‖q̄‖L∞(Ω)d + ‖w̄‖W 2,p′ (Ω)d)

Inserting (3.7) and (3.11) into (3.6), we obtain∣∣∣∣
∫
K2

(ψh ·Rhq̄ −Rh(ψh · q̄)) dx
∣∣∣∣ ≤ ch2(‖ψh‖L∞(Ω)d + ‖ψh‖′H2(Ω)d)(3.12)

(‖q̄‖L∞(Ω)d + ‖w̄‖W 2,p′ (Ω)d).

From (3.3), (3.5), and (3.12), the assertion follows immediately.
Lemma 3.5. Let p′ > d the regularity parameter of Lemma 2.1 and (A1)–(A7) be

fulfilled. Then the estimates

‖Sh(q̄ + f) − Sh(Rhq̄ + f)‖Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖w̄‖W 2,p′ (Ω)d)(3.13)

‖Phq̄ − PhRhq̄‖Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖w̄‖W 2,p′ (Ω)d)(3.14)

are valid.
Proof. We start with

‖Sh(q̄+f) − Sh(Rhq̄+f)‖2
Q = (Sh(q̄+f) − Sh(Rhq̄+f), Sh(q̄+f) − Sh(Rhq̄+f))Q

= (Sh(q̄ −Rhq̄), (Sh(q̄+f) − vd) − (Sh(Rhq̄+f) − vd))Q

= (q̄ −Rhq̄, Phq̄ − PhRhq̄)Q

≤ ch2(‖Phq̄ − PhRhq̄‖L∞(Ω)d + ‖Phq̄ − PhRhq̄‖′H2(Ω)d)

·(‖q̄‖L∞(Ω)d + ‖w̄‖W 2,p′ (Ω)d),(3.15)
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where we have used Lemma 3.4 with ψh = Phq̄−PhRhq̄. We benefit now from the fact
that Phq̄ and PhRhq̄ are solutions of the discretized adjoint equation, that means ψh =
Phq̄−PhRhq̄ = S∗

h(Sh(q̄+f)−vd)−S∗
h(Sh(Rhq̄+f)−vd) = S∗

h(Sh(q̄+f)−Sh(Rhq̄+f)).
Therefore we obtain by Lemma 3.3

‖Phq̄ − PhRhq̄‖L∞(Ω)d ≤ c‖Sh(q̄ + f) − Sh(Rhq̄ + f)‖Q(3.16)

and

‖Phq̄ − PhRhq̄‖′H2(Ω)d ≤ c‖Sh(q̄ + f) − Sh(Rhq̄ + f)‖Q.(3.17)

Inserting (3.16) and (3.17) in (3.15) and dividing by ‖Sh(q̄ + f) − Sh(Rhq̄ + f)‖Q,
the assertion (3.13) is obtained. Inequality (3.13) and the continuity of Sh in Q
yield (3.14).

Corollary 3.6. Let p′ > d the regularity parameter of Lemma 2.1 and (A1)–
(A7) be fulfilled. Then the inequality

‖w̄ − PhRhq̄‖Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d + ‖w̄‖W 2,p′ (Ω)d)(3.18)

is valid.
Proof. We apply Lemma 3.2 for q = q̄. Using w̄ = P q̄, we obtain

‖w̄ − Phq̄‖Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d)

The assertion follows now from (3.14) and the triangle inequality.

4. Superconvergence properties. In this section, we prove the main results
stated in section 2. We start with an auxiliary result.

Lemma 4.1. The inequality

ν‖Rhq̄ − q̄h‖2
Q ≤ (Rhw̄ − w̄h, q̄h −Rhq̄)Q(4.1)

is valid provided that the assumptions (A1)–(A7) hold.
Proof. First, we recall the optimality condition (2.5):

(w̄ + νq̄, q − q̄)Q ≥ 0 for all q ∈ Qad.

This formula holds also pointwise a.e. in Ω:

(w̄(x) + νq̄(x)) · (q(x) − q̄(x)) ≥ 0 for all q ∈ Qad.

Consider any element T with center of gravity ST and apply this formula for x = ST

and q = q̄h. This can be done because of the continuity of the functions w̄, q̄, and q̄h
in this point:

(w̄(ST ) + νq̄(ST )) · (q̄h(ST ) − q̄(ST )) ≥ 0 for all T ∈ Th.

Due to the definition of Rh, this is equivalent to

(Rhw̄(ST ) + νRhq̄(ST )) · (q̄h(ST ) −Rhq̄(ST )) ≥ 0 for all T ∈ Th.

We integrate this formula over T , add over all T , and get

(Rhw̄ + νRhq̄, q̄h −Rhq̄)Q ≥ 0.(4.2)
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Otherwise, the optimal control q̄h of the discretized problem fulfills the optimality
condition

(w̄h + νq̄h, q − q̄h)Q ≥ 0 for all q ∈ Qad
h .(4.3)

We apply this formula for q = Rhq̄:

(w̄h + νq̄h, Rhq̄ − q̄h)Q ≥ 0.(4.4)

Adding (4.2) and (4.4), we obtain

(Rhw̄ − w̄h + ν(Rhq̄ − q̄h), q̄h −Rhq̄)Q ≥ 0(4.5)

This completes the proof.
Remark 4.2. Lemma 4.1 is the key to prove our main results. The presented

technique benefits from the fact that the controls are discretized by piecewise constant
functions. The derivation of the estimate (4.1) motivates our choice for the control
discretization.

Now we are able to prove Theorem 2.6.
Proof of Theorem 2.6. We begin by rewriting formula (4.1):

ν‖Rhq̄ − q̄h‖2
Q ≤ (Rhw̄ − w̄h, q̄h −Rhq̄)Q

= (Rhw̄ − w̄, q̄h −Rhq̄)Q + (w̄ − PhRhq̄, q̄h −Rhq̄)Q

+ (PhRhq̄ − w̄h, q̄h −Rhq̄)Q.(4.6)

Let us now estimate these three terms. We start with the first term using (A6) and
the fact that q̄h −Rhq̄ is piecewise constant on each element,

(Rhw̄ − w̄, q̄h −Rhq̄)Q =
∑
T∈Th

∫
T

(Rhw̄(x) − w̄(x)) · (q̄h(x) −Rhq̄(x)) dx

=
∑
T∈Th

(q̄h(ST ) − q̄(ST )) ·
∫
T

(w̄(ST ) − w̄(x)) dx

≤
∑
T∈Th

ch2|q̄h(ST ) − q̄(ST )||T |1/2|w̄|H2(T )d

≤ ch2‖q̄h −Rhq̄‖Q‖w̄‖W 2,p′ (Ω)d .(4.7)

The second term in (4.6) is estimated by Corollary 3.6 and the Cauchy–Schwartz
inequality:

(w̄ − PhRhq̄, q̄h −Rhq̄)Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d(4.8)

+ ‖w̄‖W 2,p′ (Ω)d)‖q̄h −Rhq̄‖Q.

The third term can be omitted because of

(PhRhq̄ − w̄h, q̄h −Rhq̄)Q = (PhRhq̄ − Phq̄h, q̄h −Rhq̄)Q

= (S∗
h(Sh(Rhq̄ + f)−vd)−S∗

h(Sh(q̄h + f)−vd), q̄h −Rhq̄)Q

= (S∗
hSh(Rhq̄ − q̄h), q̄h −Rhq̄)Q

= (Sh(Rhq̄ − q̄h), Sh(q̄h −Rhq̄))Q

≤ 0.(4.9)
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Inserting (4.7)–(4.9) into (4.6), we end up with

ν‖Rhq̄ − q̄h‖2
Q ≤ ch2(‖q̄‖L∞(Ω)d + ‖vd‖L∞(Ω)d + ‖f‖L∞(Ω)d(4.10)

+‖w̄‖W 2,p′ (Ω)d)‖q̄h −Rhq̄‖Q.

This inequality is equivalent to the assertion (2.9).
Proof of Theorem 2.7. Using the triangle inequality, we find

‖v̄ − v̄h‖Q = ‖S(q̄ + f) − Sh(q̄h + f)‖Q
≤ ‖S(q̄+f) − Sh(q̄+f)‖Q+‖Sh(q̄+f) − Sh(Rhq̄+f)‖Q+‖Sh(Rhq̄ − q̄h)‖Q.

The first term is estimated using Lemma 3.2, for the second term we use the assertion
from Lemma 3.5, and for the third term we apply Theorem 2.6 and the boundedness
of Sh. This yields estimate (2.10).

Inequality (2.11) can be similarly obtained by Corollary 3.6, Theorem 2.6, and
the boundedness of Sh and S∗

h in L(Q).
Next, we prove Theorem 2.8.
Proof of Theorem 2.8. We use the Lipschitz continuity of the projection operator

and find

‖q̃h − q̄‖Q =

∥∥∥∥Π[a,b]

(
− 1

ν
w̄h

)
− Π[a,b]

(
− 1

ν
w̄

)∥∥∥∥
Q

≤ 1

ν
‖w̄h − w̄‖Q.

Inequality (2.11) now implies the assertion.

5. Verification of the assumptions for concrete numerical schemes. In
this section we check the assumptions (A1)–(A6) for some discretization schemes. Let
Th be a shape regular quasi-uniform mesh (see, e.g., Braess [5]) consisting of triangles
or quadrilaterals for d = 2 or tetrahedrons or hexahedrons for d = 3. Then, the
assumption (A1) is automatically fulfilled. If the control is defined on the same mesh,
then assumption (A2) is fulfilled, too.

Let P k
h denote the space of finite elements of order k on a triangle/tetrahedron

mesh Th and Qk
h denote the space of finite elements of order k (bi/trilinear, bi/triquad-

ratic etc.) on a quadrilateral/hexahedron mesh Th.
If (P k

h )d ⊂ Vh and P l
h ⊂ Lh (or (Qk

h)d ⊂ Vh and Ql
h ⊂ Lh) for k ≥ 1, l ≥ 0, then

the assumptions (A3) and (A5) follow by standard arguments; see, e.g., [5] or [10].
Assumption (A6) is also fulfilled on shape regular quasi-uniform meshes, which can
be seen by virtue of the Bramble–Hilbert lemma and a transformation argument.

It still remains to discuss the assumption (A4). As mentioned in Remark 2.3,
this assumption is obviously fulfilled, if the pair (Vh, Lh) is stable, i.e., if the inf-sup
condition is directly fulfilled for (Vh, Lh). Therefore, our results are justified for all
such pairs, as, e.g., “Taylor–Hood element” P2/P1, Q2/Q1/ or higher order “Taylor–
Hood element” Pk+1/Pk, Qk+1/Qk; see [21], different bubble elements (P b

1/P0, Q
b
1/Q0

etc.; see, e.g., [17]) etc.
In what follows we want to recall another discretization scheme, introduced in

Becker and Braack [2], which also fulfills the assumption (A4). This scheme will be
used in the next section for the numerical example.

For this discretization we assume that the (quadrilateral or hexahedron) mesh Th
is organized in a patchwise manner. This means, that it results from a coarser regular



1916 ARND RÖSCH AND BORIS VEXLER

mesh T2h by one uniform refinement. By a “patch” of elements we denote a group of
four cells (in 2D) or eight cells (in 3D) in Th which results from a common coarser
cell in T2h. The finite element spaces are chosen as

Vh = (Q1
h)d Lh = Q1

h.

The space L̃h is defined as the space of bilinear/trilinear elements on the patch-mesh
T2h, i.e., L̃h = Q1

2h. The stabilization form sh(·, ·) is defined as

sh(ph, ξh) = δ0h
2

∑
P∈T2h

(∇ph − ∇̃ph,∇ξh − ∇̃ξh)L2(P ),

where

∇̃ph =
1

|P |

∫
P

∇ph dx.

We refer to [2] for the proof that this scheme fulfills the assumption (A4). We note,
also that other equal order stabilized schemes are included in our setting; see, e.g.,
[6].

6. Numerical examples. In this section we present two numerical examples
(2D and 3D) illustrating our results. In both examples the Stokes equation are dis-
cretized by equal order elements (bilinear in 2D and trilinear in 3D) with a stabi-
lization term as described in the previous section. The resulting finite dimensional
optimal control problem is solved by primal-dual active set method; see, e.g., [3] or
[22].

6.1. Example in 2D. We consider an optimal control problem as stated in
section 1 with

Ω = (0, 1)2, ν = 1, a = (−0.1,−0.1)t, b = (0.25, 0.25)t,

and a given solution

v̄1 = w̄1 = sin2(πx) sin(πy) cos(πy),

v̄2 = w̄2 = − sin2(πy) sin(πx) cos(πx),

p̄ = r̄ = sin(2πx) sin(2πy),

and

q̄ = Π[a,b]

(
− 1

ν
w̄

)
.

The data of the problem is then given by

f = −Δv̄ + ∇p̄− q̄,

vd = v̄ + Δw̄ + ∇r̄.

In Figure 6.1 we show the first component of the optimal solution q̄. The second
component of q̄ has a similar structure.

Let us remark that the assumption (A7) is fulfilled for this example. Let

γex := {x ∈ Ω : (w̄1(x) − a1)(w̄1(x) − b1)(w̄2(x) − a2)(w̄2(x) − b2) = 0},
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Fig. 6.1. The first component of the optimal solution q̄.

Table 6.1

Convergence of ‖q̄ − q̄h‖Q and ‖q̄ − q̃h‖Q for h tending to zero.

h/
√

2 ‖q̄ − q̄h‖Q reduction rate ‖q̄ − q̃h‖Q reduction rate

2−2 7.65e-2 – 3.84e-2 –
2−3 5.06e-2 1.50 8.59e-3 4.47
2−4 2.73e-2 1.85 1.82e-3 4.72
2−5 1.39e-2 1.97 4.23e-4 4.29
2−6 6.99e-3 1.99 1.02e-4 4.15
2−7 3.51e-3 1.99 2.51e-5 4.06

i.e., the curve (consisting of four connected parts) that separates active and inactive
parts of the optimal control. Then we find the estimate

|K1| ≤ 2h|γex|

and consequently (A7) holds.

In Table 6.1 we show the behavior of the error ‖q̄ − q̄h‖Q and the error after the
postprocessing step, i.e., ‖q̄− q̃h‖Q on a sequence of uniformly refined meshes. As ex-
pected, we observe first order convergence for ‖q̄− q̄h‖Q and second order convergence
for ‖q̄ − q̃h‖Q.

In Table 6.2 we show the corresponding results concerning the error behavior with
respect to ‖·‖L∞(Ω). Although we only proved the results concerning the convergence
with respect to ‖·‖L2(Ω), we observe similar behavior also for ‖·‖L∞(Ω).

The results concerning the error behavior for the optimal velocity and the optimal
pressure are given in Table 6.3. The pressure shows better order of convergence as
O(h). Such effects are known for equal order finite elements on uniform meshes; see,
e.g., [2].

6.2. Example in 3D. For the 3D case we construct a similar example as in 2D
by setting

Ω = (0, 1)3, ν = 1, a = (−0.1,−0.1,−0.1)t, b = (0.25, 0.25, 0.01)t.
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Table 6.2

Convergence of ‖q̄ − q̄h‖L∞(Ω)d and ‖q̄ − q̃h‖L∞(Ω)d for h tending to zero.

h/
√

2 ‖q̄ − q̄h‖L∞(Ω)d reduction rate ‖q̄ − q̃h‖L∞(Ω)d reduction rate

2−2 2.60e-1 – 1.20e-1 –
2−3 2.19e-1 1.18 2.43e-2 4.96
2−4 1.27e-1 1.73 7.62e-3 3.19
2−5 6.47e-2 1.96 1.77e-3 4.30
2−6 3.25e-2 1.99 4.74e-4 3.74
2−7 1.63e-2 2.00 1.22e-4 3.88

Table 6.3

Convergence of ‖v̄ − v̄h‖L2(Ω)d and ‖p̄− p̄h‖L2(Ω) for h tending to zero.

h/
√

2 ‖v̄ − v̄h‖L2(Ω)d reduction rate ‖p̄− p̄h‖L2(Ω) reduction rate

2−2 6.81e-2 – 4.94e-1 –
2−3 1.68e-2 4.05 1.65e-1 2.99
2−4 4.08e-3 4.12 5.49e-2 3.01
2−5 9.95e-4 4.10 1.91e-2 2.87
2−6 2.47e-4 4.02 6.67e-3 2.86
2−7 6.12e-5 4.04 2.35e-3 2.84

The exact solution is given by

v̄1 = w̄1 = 2 sin2(πx) sin(2πy) sin(2πz),

v̄2 = w̄2 = − sin2(πy) sin(2πx) sin(2πz),

v̄3 = w̄3 = − sin2(πz) sin(2πx) sin(2πy),

p̄ = r̄ = sin(2πx) sin(2πy) sin(2πz),

and

q̄ = Π[a,b]

(
− 1

ν
w̄

)
.

The data of the problem is then determined by

f = −Δv̄ + ∇p̄− q̄,

vd = v̄ + Δw̄ + ∇r̄.

For this problem, Assumption (A7) is valid for similar reasons as in the previous
example. As for the 2D example, we present the behavior of error ‖q̄ − q̄h‖Q and
the error after the postprocessing step, i.e., ‖q̄ − q̃h‖Q in Table 6.4, and for the
corresponding L∞-norm in Table 6.5. In Table 6.6 the error for optimal pressure and
velocity are shown.

Table 6.4

Convergence of ‖q̄ − q̄h‖Q and ‖q̄ − q̃h‖Q for h tending to zero.

h/
√

3 ‖q̄ − q̄h‖Q reduction rate ‖q̄ − q̃h‖Q reduction rate

1/3 · 2−1 8.68e-2 – 2.13e-2 –
1/3 · 2−2 5.81e-2 1.49 5.27e-3 4.04
1/3 · 2−3 3.49e-2 1.66 1.08e-3 4.87
1/3 · 2−4 1.83e-2 1.91 2.43e-4 4.44
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Table 6.5

Convergence of ‖q̄ − q̄h‖L∞(Ω)d and ‖q̄ − q̃h‖L∞(Ω)d for h tending to zero.

h/
√

3 ‖q̄ − q̄h‖L∞(Ω)d reduction rate ‖q̄ − q̃h‖L∞(Ω)d reduction rate

1/3 · 2−1 3.29e-1 – 7.96e-2 –
1/3 · 2−2 2.99e-1 1.10 2.76e-2 2.88
1/3 · 2−3 2.59e-1 1.15 5.69e-3 4.85
1/3 · 2−4 1.39e-1 1.86 1.30e-3 4.37

Table 6.6

Convergence of ‖v̄ − v̄h‖L2(Ω)d and ‖p̄− p̄h‖L2(Ω) for h tending to zero.

h/
√

3 ‖v̄ − v̄h‖L2(Ω)d reduction rate ‖p̄− p̄h‖L2(Ω) reduction rate

1/3 · 2−1 7.59e-2 – 8.72e-1 –
1/3 · 2−2 1.81e-2 4.19 2.88e-1 3.03
1/3 · 2−3 4.40e-3 4.11 1.02e-1 2.82
1/3 · 2−4 1.08e-3 4.07 3.65e-2 2.79
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[22] K. Kunisch and A. Rösch, Primal-dual active set strategy for a general class of constrained
optimal control problems, SIAM J. Optim., 13 (2002), pp. 321–334.

[23] J. L. Lions, Contrôle Optimal de Systems Gouvernés par des Équations aux Dérivées Par-
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CONVERGENCE OF AN IMPLICIT SPACETIME GODUNOV
FINITE VOLUME METHOD FOR A CLASS OF HYPERBOLIC

SYSTEMS∗
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Abstract. We study an implicit spacetime Godunov method for a class of hyperbolic conserva-
tion laws known as Temple class systems. We establish the well-posedness of this method, a discrete
entropy inequality, a property analogous to the total variation diminishing property of certain nu-
merical schemes for scalar conservation laws, and, as a consequence, the convergence of the numerical
method.
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1. Introduction. In this paper we prove the convergence of an implicit space-
time Godunov finite volume method for solving certain systems of hyperbolic conser-
vation laws:

ut + f(u)x = 0, u : [0,∞) × R → D ⊂ R
n.(1.1)

Here u is the vector of unknown densities of conserved variables, and f : D → R
n is

the spatial flux defined on a domain of conservation states D ⊂ R
n. The system is

supplemented by the initial condition

u(0, x) = u0(x), x ∈ R,(1.2)

with the assumption that u0 is a function of bounded variation.
In the numerical scheme that we consider, we fix a partition Th of [0,∞)×R into a

union of closed triangles T with diameter ≈ h and with pairwise disjoint interiors. We
seek an approximate solution uh in the space Ph of functions u : [0,∞)×R → D that
are constant on the interior of each triangle. This approximate solution is required to
satisfy an equation of the form ∫

∂T

Fnum dH1 = 0(1.3)

for all triangles T in the triangulation Th. Here H1 denotes the one-dimensional
Hausdorff measure on ∂T , and Fnum denotes a numerical flux function, taking values
in R

n and depending on the values of uh on both sides of ∂T and on the unit normal
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to ∂T . The approximate solution uh is also required to satisfy uh(0, ·) = u0h in a
suitable sense, where u0h is a discretization of the initial data.

In this paper we always take the numerical flux in (1.3) to be the Godunov flux, the
definition of which is recalled in section 3.2; this is arguably the most natural choice
on physical grounds. In general, (1.3) is a massively coupled system of nonlinear
equations, since values of uh on adjacent triangles are coupled through the Godunov
flux. Following [18], [20], we define causal and patchwise causal triangulations (see
section 3.4) for which these equations largely decouple and take on a simpler form.
Our main results, which are summarized in Theorem 3.3, prove that for these sorts
of triangulations, and for a special class of conservation laws known as Temple class
systems, approximate solutions generated by (1.3) converge to solutions that verify
certain entropy inequalities.

With causal or patchwise causal triangulations and the Godunov flux, (1.3) is
suitable for adaptive meshing and parallelization. The computational complexity is
O(N), where N is the number of triangles on which the approximate solution is
computed. (For compactly supported initial data on a finite time interval, effectively
N ∼ h−2.) In addition, it will be clear that (1.3) with the Godunov flux is consistent
with the system (1.1).

Temple class systems were introduced in [27]. We recall their definition in section
2.2. Their chief properties are, first, that they come equipped with a coordinate system
of Riemann invariants, in our notation given by a diffeomorphism b = (b1, . . . , bn) :
D → R ⊂ R

n; and, second, that the set

Sα,c := {u ∈ D : bα1(u) = c1, . . . , b
αk(u) = ck}

is an invariant set for solutions of (1.1), for any α = (α1, . . . , αk) and c = (c1, . . . , ck)
with 1 ≤ α1 < · · · < αk ≤ n. (A particular form of this invariance property, adapted
to our purposes, is given in Lemma 5.3.) In [27] it was shown that Temple class systems
of the sort that we consider are the only genuinely nonlinear, strictly hyperbolic
systems with this abundance of invariant submanifolds.

A key point in the proof is an estimate analogous to the well-known total vari-
ation diminishing (TVD) property enjoyed by certain numerical schemes for scalar
conservation laws. We show that when (1.1) is a Temple class system, for the ap-
proximation scheme (1.3) with the Godunov flux and a suitable triangulation Th, the
approximate solution uh is such that if wi

h := bi(uh), then

t 	→ TV (wi
h(t, ·) ) is a nonincreasing function(1.4)

for every i ∈ {1, . . . , n}, where TV denotes the total variation. This conclusion
is deduced from a related statement that holds on individual triangles, and it easily
implies that sequences of approximate solutions are precompact in appropriate norms.

Note that a system that admits a convergent numerical method satisfying (1.4)
must itself have the same property, and this implies in particular that Sα,c, as defined
above, is an invariant set for such a system (1.1). Thus (1.4) can hold only if (1.1) is a
Temple class system, and hence our analysis relies very heavily on specific properties
of Temple class systems.

Related work. The method (1.3) is the k = 0 case of various spacetime discontin-
uous Galerkin (DG) finite element methods, as proposed in [8], [18], [20], for example.
Spacetime DG methods were first devised and studied for linear hyperbolic equations;
see [14], [11]. They are now well understood for scalar conservation laws, starting with
work on the shock-capturing DG method. Convergence of this method (with piecewise
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polynomial approximants of arbitrary degree) for scalar conservation laws in d space
dimensions was proven by Jaffre, Johnson, and Szepessy [8], and error estimates were
established by Cockburn and Gremaud [3]. Related earlier work established conver-
gence of the similar shock-capturing streamline diffusion finite element method (see
[24], [25]), which, however, is not a DG method, and error estimates for this method
were also given in [3]. The only work that we know of that proves convergence of
any DG method for any system of conservation laws is a very recent paper of Arvani-
tis, Makridakis, and Tzavaras [1] that considers a DG method based on a relaxation
approximation. This method, which does not reduce to (1.3) when k = 0, is shown
in [1] to converge for systems that can be controlled using compensated compactness
techniques.

As remarked earlier, our method can also be seen as a Godunov finite volume
method, and our analysis is thus related to numerous results in the large literature
on Godunov finite volume methods; see [15] for a survey. In particular, LeVeque and
Temple [16] and Serre [22] establish the stability of Godunov’s method for Temple
class systems of two equations, via TVD estimates of the form (1.4). (Serre also proves
similar results for the Lax–Friedrichs method and the Glimm scheme.) Our method
differs from the basic Godunov scheme and other standard Godunov finite volume
methods in that it is a spacetime method, and one which is implicit in the sense that,
even in the easiest case, a nonlinear system of n equations in n unknowns must be
solved to determine the approximate solution on each spacetime triangle. This causes
genuine difficulties. For example, even existence and uniqueness of solutions of the
scheme (1.3) is not immediate. Indeed, at the end of section 6 we show by example
that the solution of scheme (1.3) need not be unique without suitable restrictions on
the mesh, even in the scalar case.1 It should be noted that, despite these theoretical
difficulties, in practice approximate solutions can be computed quite efficiently using
Newton’s method; see [20] and [18] for related numerical results.

Temple class systems have also been studied by the front tracking method; see, for
example, Baiti and Bressan [2], which uses front tracking approximations to establish
the existence of a unique Lipschitz semigroup for large data. Heibig [7] proves that
entropy solutions of Temple class systems with small total variation are unique.

Contents of this paper. We sketch the organization of this paper. Section 2
presents some notation and summarizes background on hyperbolic conservation laws,
including the definition of Temple class systems and related notation that we will use
throughout the paper. Section 3 gives a precise formulation of our approximation
scheme and states our main results.

In section 4 we present results valid for hyperbolic systems not necessarily of
Temple class, including the well-posedness of the numerical method (1.3) for causal
triangulations when the flux is globally Lipschitz, and a discrete entropy inequality.

The rest of the paper deals exclusively with Temple class systems. The proof of
well-posedness of the approximation scheme on a single causal triangle, with Riemann
invariant bounds, is presented in section 5. (Well-posedness does not follow from
the general result in section 4, as Temple class systems do not satisfy the global
Lipschitz condition assumed there.) In section 6 we prove the corresponding results
on a single causal patch. Finally, in section 7 we complete the proof of the main
theorem by converting local Riemann invariant bounds (on a single element or patch)

1This issue did not arise in [8], [3], as these papers employ the Lax–Friedrichs flux where we
use the Godunov flux, and in the scalar case approximate solutions are unique for strictly monotone
numerical fluxes.
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to global estimates that imply compactness sufficient to pass to limits and obtain
weak solutions.

2. Definitions, notation, and background.

2.1. Some notation. We write Mk×� for the space of k × � matrices. We
identify R

n with Mn×1, except where explicitly noted otherwise. In particular, the
state variable u, flux f , and numerical flux Fnum are understood to be column vectors.
If ζ : R

n → R
k is any function, then Dζ denotes its gradient, which is understood to

be a k × n matrix. In particular, if ζ is a scalar function on D ⊂ R
n, then Dζ is a

row vector.
If M is a matrix, then M t denotes its transpose.
We write ‖ · ‖ to denote the Euclidean norm.
Given v1, v2 ∈ R

n, we write (v1, v2) to denote the n × 2 matrix whose first and
second columns are v1 and v2, respectively.

Given ζ : R → R
k, we write TV (ζ) to denote the total variation of ζ, i.e.,

TV (ζ) := sup
{∑

‖ζ(xi) − ζ(xi−1)‖ : · · · < xi−1 < xi < xi+1 < · · ·
}
.(2.1)

For h > 0, Th will always denote a triangulation of [0,∞) × R, that is, a collection
of closed triangles with pairwise disjoint interiors whose union is [0,∞) × R. Here
h denotes a length scale; we will be more precise about this later. We write T
to denote a generic triangle in Th. We write Ph to denote the space of functions
u ∈ L∞([0,∞) × R; R

n) such that, for every T ∈ Th, u is constant on the interior of
T .

We write e to denote a generic edge of a triangle T ∈ Th. We use the notation

νe,T := outer unit normal to T along edge e.

Given v ∈ Ph, we write vT to indicate the value of v on the interior of triangle T .
We always make the following assumption about triangulations Th: for every edge

e of a triangle T ∈ Th, if e is not contained in {t = 0} × R, then there is a unique
triangle, denoted Te, that shares edge e with T , so that T ∩ Te = e. Thus vTe

is the
value of v “across edge e from triangle T .” It will sometimes be convenient to consider
a single triangle T , not as part of a triangulation Th. When we do this, we will write
uTe

to denote prescribed data on the exterior of edge e.

2.2. Systems of conservation laws. Consider a system of conservation laws
(1.1). We always assume that the system (1.1) is strictly hyperbolic, which means
that the matrix Df(u) has real and distinct eigenvalues. Let us suppose that λ1(u) <
· · · < λn(u) for all u ∈ D. Further, let us denote by ri(u) ∈ R

n and li(u) ∈ M1×n,
i ∈ {1, . . . , n}, the corresponding right and left eigenvectors, respectively, of the matrix
Df(u). We normalize these eigenvectors by requiring that ‖ri(u)‖ = ‖li(u)‖ = 1 for
all i ∈ {1, . . . , n} and u ∈ D.

The ith characteristic field λi is called genuinely nonlinear if

Dλi(u) ri(u) �= 0 for all u ∈ D.(2.2)

If all characteristic fields of the gradient matrix Df are genuinely nonlinear, the
system (1.1) is genuinely nonlinear.

We say that system (1.1) has a coordinate system of Riemann invariants in D if
there exist a subset R ⊂ R

n and a diffeomorphism b : D → R such that

Db(u)Df(u)Db(u)−1 = Λ(u) for u ∈ D,(2.3)
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where Λ(u) is the diagonal matrix given by

Λ(u) := diag(λ1(u), . . . , λn(u)).

Let us define a := b−1. For w := b(u) ∈ R, we will sometimes use the following
notation:

f̃(w) := f(a(w)),

λ̃i(w) := λi(a(w)), i ∈ {1, . . . , n},(2.4)

Λ̃(w) := Λ(a(w)).

Notice that (2.3) is equivalent to

Df̃(w) = Da(w) Λ̃(w), for w ∈ R.(2.5)

Suppose that (1.1) is a strictly hyperbolic system of conservation laws which is
genuinely nonlinear and equipped with the coordinate system of Riemann invariants.
If in addition, the set

a({w ∈ R : wi = c})(2.6)

is contained in a hyperplane in D, for every i ∈ {1, . . . , n} and every constant c ∈ R,
the system (1.1) is said to be a genuinely nonlinear Temple class system. As remarked
in the introduction, Temple class systems are characterized by the fact that they have
numerous invariant submanifolds.

Throughout this paper, when we study genuinely nonlinear Temple class systems,
we will assume that the domain of conservation states D is such that

R = b(D) ⊂ R
n is a rectangle(2.7)

with sides parallel to the coordinate hyperplanes. We will also assume that there
exists K0 (depending on f and D) such that

‖Da‖L∞(R) + ‖Db‖L∞(D) ≤ K0.(2.8)

2.3. Entropy solutions. We next recall the notion of entropy and of an entropy
solution. Let (η, ψ) be an entropy-entropy flux pair for the system (1.1); this means
that η, ψ : D → R are smooth functions, η is convex, and

Dη(z)Df(z) = Dψ(z) for all z ∈ D.(2.9)

Because D2ψ is symmetric, any entropy η for (1.1) must satisfy

D2η(z)Df(z) = Df(z)t D2η(z) for all z ∈ D.(2.10)

In the case n = 2, the PDE system (2.10) reduces to a hyperbolic equation whose
solutions form an infinite-dimensional space of entropy functions. When n > 2, the
system (2.10) is, in general, overdetermined. However, existence of a coordinate
system of Riemann invariants is sufficient to nullify this overdeterminancy (see [5,
section 7.4]). In particular, Temple class systems are endowed with large numbers of
entropy-entropy flux pairs.

Suppose that u is a weak solution of the initial value problem (1.1), (1.2). If the
inequality

η(u)t + ψ(u)x ≤ 0(2.11)

holds in the weak sense on the spacetime domain [0,∞) × R for all entropy-entropy
flux pairs (η, ψ) of the system (1.1), then u is called an entropy solution of (1.1), (1.2).
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3. Main results.

3.1. More notation. We first introduce notation that will enable us to give a
precise formulation of our approximation scheme (i.e., (1.3) with the Godunov flux).

We define

T 0
h := {T ∈ Th : ∂T ∩ ({t = 0} × R) is an interval},(3.1)

T +
h := Th \ T 0

h .(3.2)

We write g(uT , uTe
; ν) to denote the Godunov flux. We define this below, first in full

generality, and then in an important and simpler special case. (In fact, we will rarely
need the general definition.) With this notation, we seek an approximate solution
uh ∈ Ph of (1.1) by requiring that uh satisfy∫

∂T

g(uh,T , uh,Te
; νe,T ) dH1 = 0 for every T ∈ T +

h .(3.3)

We also require that the initial condition (1.2) be approximately satisfied in the sense
that

uh,T =
1

H1(e)

∫
e

u0 dx for e := ∂T ∩ ({t = 0} × R), for every T ∈ T 0
h .(3.4)

3.2. Godunov flux. Formally, the Godunov flux associated with u1, u2 ∈ R
n

and a unit (column) vector ν = (νt, νx)t is the flux through a line element with
spacetime unit normal ν, with values u1 and u2 on the two sides of the line element.
More precisely, given u1, u2, ν as above, if νx �= 0, let u : (0,∞)×R → R

n denote the
standard entropy solution of the Riemann problem2 for (1.1) with initial data

u(0, x) =

{
u1 if signx = −sign νx,
u2 if signx = sign νx.

(3.5)

We define

ξ−(u1, u2; ν) := lim
(t,x)·ν↗0, t>0

u(t, x), ξ+(u1, u2; ν) := lim
(t,x)·ν↘0, t>0

u(t, x).

These limits exist, since the solution u of the Riemann problem has bounded variation
in x for every t and depends only on x

t . We will typically omit the dependence on
u1, u2, ν and write ξ−, ξ+. The fact that u is a weak solution of (1.1) implies that
(ξ−, f(ξ−)) ν = (ξ+, f(ξ+)) ν. Thus the definition of the Godunov flux as

g(u1, u2; ν) := (ξ−, f(ξ−)) ν = (ξ+, f(ξ+)) ν

makes sense. (In fact, in the concrete situations we consider later, it will always be
the case that ξ+ = ξ−, and so we will always write simply ξ and call it the Godunov
value.) If ν = (νt, νx)t ∈ R

2 is a unit vector with νx = 0, then we define

g(u1, u2; ν) := (u1, f(u1)) ν if νt = 1, g(u1, u2; ν) := −(u2, f(u2)) ν if νt = −1.

2The Godunov flux g(u1, u2; ν) is generally defined only if the solution of the Riemann problem
is defined.
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3.3. Causal and semicausal edges. We will study the initial-value problem
(1.1), (1.2) in situations for which we know a priori that the solution takes values in
some set D ⊂ R

n. Let e ⊂ ∂T be an edge of a triangle. If(
1, λi(u)

)
νe,T < 0, i ∈ {1, . . . , n}, for all u ∈ D,(3.6)

then we say that e is an inflow edge for element T (see Figure 1(a)). Similarly, if(
1, λi(u)

)
νe,T > 0, i ∈ {1, . . . , n}, for all u ∈ D,(3.7)

then we say that e is an outflow edge for element T (see Figure 1(b)). We also use
the terminology

an edge e is causal if it is either outflow or inflow,(3.8)

and we further say that e is semicausal if it is not causal and

(1, λi(u)) νe,T �= 0 for all i ∈ {1, . . . , n} and u ∈ D.(3.9)

We will sometimes write “causal (inflow, outflow, ...) for f , D” to emphasize the
dependence on the nonlinearity and the domain of conservation states.

νe,T

νe,T

νe,T infλ1
infλ1

infλ1 supλn
supλn

supλn

supλαe

infλαe+1

T

T

T e

e

e

(a) (b) (c)

Fig. 1. Inflow, outflow, and semicausal edges.

If e is semicausal, then the strict hyperbolicity assumption and the continuity of
u 	→ λi(u) for all i imply that there exists some αe ∈ {1, . . . , n− 1} such that

λαe(u) < − νt
νx

< λαe+1(u)(3.10)

for all u ∈ D, where ν = νe,T denotes the outer normal to T along edge e (see Fig-
ure 1(c)). Thus, there can exist semicausal edges only if supu∈D λi(u) ≤ infu∈D λi+1(u)
for some i.

It follows from well-known features of the solution of the Riemann problem that
if u1, u2 ∈ D, then

if e is an inflow edge, then g(u1, u2; νe,T ) = (u2, f(u2)) νe,T ,(3.11)

if e is an outflow edge, then g(u1, u2; νe,T ) = (u1, f(u1)) νe,T .(3.12)

We will take these last two equations as the definition of Godunov flux in situations
where the Riemann problem is not necessarily solvable but (3.6) or (3.7) is satisfied.

We will see in Lemma 6.1 that for Temple class systems the Godunov flux also
has a relatively simple form across semicausal edges.
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3.4. Causal and patchwise causal triangulations. We say that a triangle T
is causal if all of its edges are causal, and a triangulation Th is causal if every triangle
T in Th is causal.

A triangle T is semicausal if every edge of T is either causal or semicausal. Our
analysis extends to certain semicausal triangulations that we define as follows. Let
Th be a triangulation of [0,∞) × R. A patch is defined to be a union of triangles in
Th. A patch P = ∪k

i=1Ti is said to be causal if

every edge e ⊂ ∂P is causal,(3.13)

every triangle Ti ⊂ P has an outflow edge,(3.14)

if e is an edge of a triangle Ti ⊂ P , and e � ∂P , then e satisfies (3.9).(3.15)

A triangulation Th is said to be patchwise causal if it is a union of causal patches.
These causal patches can always be assumed to be minimal, which we define to mean
that

P does not have any proper subpatch satisfying (3.13)–(3.15).(3.16)

A proper subpatch is defined in the natural way: if P = ∪k
i=1Ti is a patch, then a

proper subpatch is a set of the form P ′ = ∪j
�=1Ti� for some j < k.

For a causal or semicausal triangle T , we write

∂T− = the inflow portion of ∂T ,(3.17)

∂T+ = the outflow portion of ∂T ,(3.18)

∂T 0 = the semicausal portion of ∂T ,(3.19)

some of which may be empty.
For causal triangles or patches, the system (3.3) decouples to a certain extent.

For example, in view of (3.11), (3.12), on a causal triangle T the scheme (3.3) takes
the form

(u, f(u))n +
∑

e inflow

(uTe
, f(uTe

))ne = 0,(3.20)

where we are writing simply u instead of uh, and

n :=

∫
∂T+

νe,T dH1, ne :=

∫
e

νe,T dH1 = νe,T H1(e).(3.21)

We note for future reference that

n +
∑

e inflow

ne =

∫
∂T

ν dH1 = 0.(3.22)

If the data uTe
is known on all inflow edges, then (3.20) is a system of n equations

in unknowns u = (u1, . . . , un), depending on the inflow data and triangle geometry
as parameters. Thus, once (3.20) is known to be solvable for suitable inflow data in
a single triangle, one can solve the whole system (3.3) one triangle at a time, always
considering triangles for which the inflow data have already been found. This strategy
is discussed at greater length in numerous references; see, for example, [18], [20]. Note
that we require that on every triangle T the approximate solution uT satisfy uT ∈ D,
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since this condition is assumed in our definition of causality and indeed is needed to
ensure that (3.3) reduces to (3.20).

Similarly, for a patchwise causal triangulation, we write ∂P− and ∂P+ to denote
the inflow and outflow portions, respectively, of ∂P . We will show that if P is a
causal patch, then one can solve (3.3) in P , once inflow data on ∂P− is known; thus
a patch-by-patch solution strategy is possible.

We note the following result.
Lemma 3.1. If T is a causal triangle, then it must have either one or two inflow

edges.
Proof. Multiply (3.22) on the left by the vector (1, λi(u)) for some i ∈ {1, . . . , n}

and some u ∈ D. We deduce that
∑3

j=1(1, λ
i(u)) νej ,T H1(ej) = 0, where e1, e2, e3

denote the three edges. This shows that (3.6) cannot hold for all ej , j = 1, 2, 3, and
similarly (3.7) cannot hold for all three edges.

Lemma 3.2. Let P be a causal patch, and let T ⊂ P be a triangle with two causal
edges. Then T must have an inflow edge.

Proof. Let e1, e2, and e3 be edges for triangle T . Let us suppose that e1 is an
outflow edge, and let e3 be an edge which satisfies (3.10) for some αe3 ∈ {1, . . . , n−1}.
We need to show that e2 is inflow. Exactly as in the proof of Lemma 3.1, we find
that

∑3
j=1(1, λ

i(u)) νej ,T H1(ej) = 0 for all i ∈ {1, . . . , n} and u ∈ D. Since e1 is

outflow and e3 satisfies (3.10), there must be some i such that (1, λi(u)) νe1,T and
(1, λi(u)) νe3,T are both positive. Hence (1, λi(u)) νe2,T < 0 for this i and therefore
(since e2 is causal) for all i ∈ {1, . . . , n}. Thus e2 is an inflow edge, as required.

3.5. Additional mesh-related considerations. We will see that the restric-
tion of the system (3.3) to a causal patch or causal triangle always has a solution that
is unique in a certain sense and that is bounded by the inflow data. In order to convert
these local statements to global control over an approximate solution uh, we need to
impose some additional restrictions on the triangulations that we will consider.

To derive the TVD-like estimate (1.4) from bounds on the total variation of the
Riemann invariants of an approximate solution on individual patches, we will need to
assume that for every edge e of every triangle T ∈ T

if min
(t,x)∈e

t > min
(t,x)∈T

t, then e is an outflow edge for T .(3.23)

The necessity of this assumption is illustrated in Example 7.1. The point is that if
an edge e violates (3.23), then information that enters a triangle along this edge can
propagate backwards in time within the triangle.

Next, one can easily see from (3.20) and (3.22) that if T is a causal triangle with
a single inflow edge e and inflow data uTe , then u = uTe is a solution of (3.20). We
will later prove that for Temple class systems, this is the only solution in D.

Motivated by this, we say that an edge e is trivial if e forms the entire inflow
boundary ∂T− for some causal triangle T , and nontrivial otherwise. Many of our
results will assume that there exists a constant α > 0 such that

if e is any nontrivial edge, then |νx| ≥ α|νt| for ν = νe,T .(3.24)

Assumption (3.24), together with the fact that our solution uh is constant except
along nontrivial edges, is used to obtain bounds on |uh,t| from control over |uh,x|.
(Here and in what follows, |uh,t|, |uh,x| are understood as nonnegative measures on
(0,∞) × R).) Bounds on |uh,x| in turn are an immediate consequence of the TVD
estimate (1.4).
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3.6. Main results. The main result of this paper is the following.
Theorem 3.3. Let (1.1) be a strictly hyperbolic, genuinely nonlinear Temple

class system of conservation laws, and assume that the domain of conservation states
D ⊂ R

n satisfies (2.7). Let Th be a causal or patchwise causal triangulation. Then
there exists a unique solution uh ∈ Ph of (3.3), (3.4) satisfying

min
e⊂(∂T−∪∂T 0)

wi
h,Te

≤ wi
h,T ≤ max

e⊂(∂T−∪∂T 0)
wi

h,Te
for wi

h := bi(uh)(3.25)

for every i ∈ {1, . . . , n} and T ∈ Th.
If Th also satisfies (3.23) and (3.24), then in addition

t 	→ TV (wi
h(t, ·) ) is a nonincreasing function(3.26)

for every i ∈ {1, . . . , n}.
Finally, let Th be a sequence of causal or patchwise causal triangulations such

that (3.23) holds and (3.24) is satisfied with a positive constant α independent of h.
Assume also that there exists a constant C independent of h such that

C−1h ≤ |e| ≤ Ch for every edge e of every triangle T ∈ Th.(3.27)

Then the approximate solutions {uh} are precompact in L1
loc([0,∞)×R; Rn), and any

limit of any convergent subsequence uhk
with hk → 0 is a distributional solution of

(1.1), (1.2). Moreover, given any strictly convex entropy η with entropy flux ψ, there
exists a subset D′ ⊂ D such that if u0(x) ∈ D′ for almost every x, then any limiting
solution satisfies the entropy inequality (2.11) in the sense of distributions.

Remark 3.4. One can find D′ ⊂ D such that, if u0(x) ∈ D′ for almost every x
and u0 has sufficiently small total variation, then there is a unique entropy solution
u of (1.1) with initial data u0, and the whole sequence {uh} of approximate solutions
converges to this entropy solution.

The uniqueness assertion has been proven by Heibig [7]. The convergence uh → u
follows from two considerations. First, the theorem shows that for suitable D′ any
limit of a convergent subsequence must satisfy the entropy inequality (2.11) for some
fixed strictly convex η. Second, it is well known that if a weak solution of (1.1) has
only weak shocks (this can be arranged by a choice of D′) and satisfies the entropy
inequality (2.11) for a single strictly convex entropy, it is in fact an entropy solution.
A proof of this last fact can be found, for example, in [23, Vol. 1, section 4.3].

Remark 3.5. Numerical simulations in Palaniappan, Haber, and Jerrard (see [20])
in the scalar case employ causal patches in which every patch consists of two triangles
separated by a vertical semicausal edge.

Remark 3.6. Implicit in the numerical method (3.3), (3.4) is that the Godunov
flux is well defined, and hence that the Riemann problem with initial data (3.5) is
solvable for all (u1, u2) ∈ D ×D. Solutions of the Riemann problem for Temple class
systems (see, for example, [22]) as far as we know all assume

max
u∈D

λi(u) ≤ min
u∈D

λi+1(u)

for all i. In fact, our results remain valid when this condition does not hold, pro-
vided that we take (3.11), (3.12), and (6.3) as the definitions of g(u1, u2; ν) on inflow,
outflow, and semicausal edges, respectively.

We believe that, without (3.23), the numerical method is still convergent, but the
proof would be somewhat more complicated. In particular, we give an example in
section 7 to show that (3.26) can fail if (3.23) is not assumed.
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In section 6 we also give an example showing that approximate solutions can fail
to be unique on patches of elements on which we do not assume properties (3.14) and
(3.15) from the definition of a causal patch.

4. General hyperbolic systems with causal triangulations. In this section
we prove some results that do not use the special structure of Temple class systems,
but that do, however, impose causality-type assumptions related to those introduced
earlier.

4.1. Well-posedness of the approximation scheme. In this section we prove
that, for a hyperbolic conservation law with flux f that is globally Lipschitz on R

n

(but satisfying no other structural conditions), there is a unique solution of the ap-
proximation scheme (3.20) on suitable triangles. This is not needed for other results
in this paper, but it indicates that one can at least hope to extend our stability and
convergence results to more general classes of hyperbolic systems.

Our discussion will focus on triangles with two inflow edges (Figure 2), since the
case of triangles with a single inflow edge is much easier. For triangles with two inflow
edges, we write el and er to denote inflow edges on the left and right, respectively,
and e to denote the single outflow edge. Defining nl = nel = νelH1(el) as in (3.21),
and similarly nr and n, we rewrite (3.20) in the form

F(ul, ur, u) := F (ul) nl + F (ur) nr + F (u) n = 0,(4.1)

where ul, ur denote prescribed inflow data on edges el, er. We also use the notation

F (z) := (z, f(z)) ∈ Mn×2.(4.2)

We first prove the following result.

ul ur

u

nl

nr

n

el

er

e

Fig. 2. An element with two inflow faces.

Theorem 4.1. Consider a system of hyperbolic conservation laws (1.1) with
a domain of conservation states D ⊂ R

n, and assume that there exists a constant
K1 > 0 with the property

‖f(u) − f(v)‖ ≤ K1 ‖u− v‖ for every u, v ∈ D.(4.3)

Let T be a triangle such that each edge e of T satisfies (writing ν for νe,T )

|νt| −K1|νx| > 0.(4.4)

Then there exists a constant K2 such that if u, ũ ∈ D solve (3.20) on T with inflow
data {uTe

∈ D : e ⊂ ∂T−} and {ũTe ∈ D : e ⊂ ∂T−}, respectively, then

||u− ũ|| ≤ K2

∑
e⊂∂T−

‖uTe
− ũTe

‖.(4.5)

In particular, there is at most one solution in D for inflow data in D.
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Moreover, if D = R
n, then for any inflow data {uTe

∈ R
n : e ⊂ ∂T−} there exists

a unique solution of (3.20) on triangle T .
Proof. Step 0. First note that (4.3) and (4.4) together imply that T is causal for

f,D. This follows from noting that for any u ∈ D and all i ∈ {1, . . . , n}

|λi(u)| = ‖Df(u) ri(u)‖ =

∥∥∥∥ lim
h→0

1

h
[f(u + hri(u)) − f(u)]

∥∥∥∥ ≤ K1,

by (4.3). Thus (4.4) implies that if e is an edge with normal νe,T = ν = (νt, νx)t with
νt > 0, say, then

νt + λi(u) νx ≥ |νt| −K1|νx| > 0,

so that e is an outflow edge for T . Similarly if νt < 0, then e is an inflow edge for T .
Step 1. We now prove uniqueness and continuous dependence. We start by noting

that, for n as defined in (3.21) and any u, ũ ∈ D,

‖(F (u) − F (ũ)) n‖ ≥ ‖u− ũ‖ |nt| − ‖f(u) − f(ũ)‖ |nx|
≥ ‖u− ũ‖ (|nt| −K1|nx|).

(4.6)

In view of assumption (4.4) and the definition (3.21) of n (as a multiple of ν), it
follows that u 	→ F (u) n is one-to-one, which proves that there can be at most one
solution u of (3.20), once the inflow data is specified.

Since the trivial solution u = uTe
, where e = ∂T−, always exists on a triangle

with only one inflow edge, the uniqueness of solutions proves that (4.5) holds in this
case. We next establish (4.5) for triangles with two inflow edges. We use the notation
(4.1). Writing out these equations for both u and ũ and subtracting, we obtain

(F (ũ) − F (u)) n = (F (ul) − F (ũl)) nl + (F (ur) − F (ũr)) nr.

Since f is Lipschitz, the right-hand side is bounded by C (‖ul− ũl‖+‖ur− ũr‖). Thus
(4.6) implies that

(|nt| −K1|nx|) ‖u− ũ‖ ≤ C (‖ul − ũl‖ + ‖ur − ũr‖).

Appealing again to (4.4), this implies (4.5).
Step 2. We now prove the existence of solutions when D = R

n. We have already
done this for triangles with a single inflow edge, so we consider triangles with two
inflow edges, and we use the notation (4.1).

Define the set

S := {(ul, ur) ∈ D ×D : there exists a solution u(ul, ur) ∈ D of (4.1)}.

Note that S is nonempty, since F(u, u, u) = 0 for every u ∈ D, due to (3.22).
We next claim that S is open. Let (ul, ur) ∈ S, and suppose that F(ul, ur, u) = 0.

To prove that S contains an open neighborhood of (ul, ur), it suffices (via the implicit
function theorem) to verify that DuF(ul, ur, u) is nonsingular, where Du denotes the
gradient with respect to the u variable. Clearly

DuF(ul, ur, u) = DF (u) n = nt I + nx Df(u),

where I denotes the identity matrix. The eigenvalues of this matrix are nt +nxλ
i(u).

Since e is an outflow edge, the definition (3.7) states that these eigenvalues are all
positive, and we conclude that S is open as claimed.
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We next show that S is closed. Let {(ul,k, ur,k)} ⊂ S be a sequence, and suppose
that (ul,k, ur,k) → (ul, ur). For each k, let uk satisfy F(ul,k, ur,k, uk) = 0, and let
u = limk→∞ uk. This limit exists on account of (4.5), and the continuity of F implies
that F(ul, ur, u) = 0. Thus S is closed.

Since S is nonempty, open, and closed, it follows that S is all of D, proving the
existence assertion.

Note that, in Step 2 of the above proof, the verification that S is open uses the
fact that D is open, and similarly our proof that S is closed requires that D be closed.
Thus the argument works only for D = R

n.

4.2. Discrete entropy condition. The main result of this section is the follow-
ing discrete entropy condition, which we emphasize holds for general symmetrizable
strictly hyperbolic systems.

Theorem 4.2. Consider a system of strictly hyperbolic conservation laws (1.1)
with a domain of conservation states D ⊂ R

n, and assume that T is a causal triangle
for f,D. Let η be a strictly convex entropy for (1.1), with associated entropy flux ψ.
Then there exists a subdomain D′ ⊂ D, depending on η, such that if u ∈ D′ solves
(3.20) with inflow data {uTe ∈ D′ : e ⊂ ∂T−}, then∫

∂T+

(η(uT ), ψ(uT )) ν dH1 +
∑

e inflow

∫
∂T−

(η(uTe), ψ(uTe)) νe,T dH1 ≤ 0.(4.7)

The set D′ is characterized in (4.14). In particular, we can take D′ = D if
{Dη(u) : u ∈ D} is convex.

Theorem 4.2 shows that the net entropy flux is given by an integral along the
inflow boundary of a quantity that is pointwise positive. To verify this positivity we
employ an idea that goes back to Harten and Lax [6] and perhaps earlier, integrating
along a suitable path in configuration space; see also Osher [19] for related arguments,
and [26], for example, for more recent developments and numerous references.

For the convenience of the reader, we give the complete proof, although parts of
it essentially reproduce arguments from [6].

Proof. Fix T and (η, ψ) as in the statement of the theorem. Along an inflow edge
e ⊂ ∂T− we use the notation u− := uTe , f− := f(u−), and so on. Also, (u, f) denotes
(uT , f(uT )). Then we can rewrite (3.20) in the form∫

∂T−
(ui, f i)− ν dH1 +

∫
∂T+

(ui, f i) ν dH1 = 0, i = 1, . . . , n.(4.8)

Define auxiliary functions ξ and ζ by

(ξ, ζ) := ηui(ui, f i) − (η, ψ), u ∈ D,(4.9)

where subscripts denote partial differentiation.3 Using (2.9), we deduce that

(ξ, ζ)uj = ηuiuj (ui, f i)(4.10)

for j ∈ {1, . . . , n}. We claim that∫
∂T−

(
ηui(ui, f i)− − (ξ, ζ)

)
ν dH1 +

∫
∂T+

(
ηui(ui, f i) − (ξ, ζ)

)
ν dH1 = 0.(4.11)

3Note that in this proof ξ is not the same as the Godunov value defined in section 3.2.
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Here (ξ, ζ) denotes (ξ(uT ), ζ(uT )), which is constant on T , so it is clear that∫
∂T

(ξ, ζ) ν dH1 = 0. The other terms in (4.11) are just the left-hand side of (4.8)
multiplied by the constant ηui = ηui(uT ) and implicitly summed over i. Thus (4.11)
follows from (4.8). Using the definition (4.9) of (ξ, ζ), we infer from (4.11) that∫

∂T−
(η, ψ)− ν dH1 +

∫
∂T+

(η, ψ) ν dH1 + E = 0,(4.12)

where

E =

∫
∂T−

(
ηui(ui, f i)− − (ξ, ζ) − (η, ψ)−

)
ν dH1

=

∫
∂T−

[
(ηui − ηui,−)(ui, f i)− − (ξ, ζ) + (ξ, ζ)−

]
ν dH1.

To establish the discrete entropy inequality (4.7), we need to show E ≥ 0.
Let Ep denote the integrand in E at some fixed point p ∈ ∂T−. We will prove

that Ep ≥ 0 at every p. To do this, let u : [0, 1] → D be a path (to be chosen later)
such that u(0) = u−(p) and u(1) = u(p) = uT . Then, using the fundamental theorem
of calculus and (4.10),

Ep =

∫ 1

0

d

ds

{
ηui(u(s)) (ui, f i)− − (ξ, ζ)(u(s))

}
ν ds

=

∫ 1

0

ηuiuj (u(s))
{
(ui, f i)− − (ui(s), f i(u(s)) )

}
ν u̇j(s) ds

=

∫ 1

0

ηuiuj (u(s))

{
−
∫ s

0

d

dr
(ui(r), f i(u(r)))dr

}
ν u̇j(s) ds

=

∫ 1

0

∫ s

0

ηuiuj (u(s))
(
−δik,−f i

uk
(u(r))

)
ν u̇j(s) u̇k(r) dr ds.

We write D2η(s) = D2η(u(s)) and A(r) = −νt I−νx Df(u(r)), where I is the identity
matrix. In this notation the integrand above has the form

u̇t(s) D2η(s) A(r) u̇(r).(4.13)

A difficulty in analyzing this expression arises from the fact that D2η and A = −νt I−
νx Df are evaluated at distinct points u(r), u(s) and therefore need not be related in
any special way. We eliminate this problem by a suitable choice of the path u(·). We
define

Dη(u(s)) := sDη(uT ) + (1 − s)Dη(u−(p)).

Since η is strictly convex, Dη is a bijection onto its image, and so u(·) is well defined
as long as the right-hand side above lies in the image of Dη. We therefore select D′

to be any subset of D such that

co ({Dη(u) : u ∈ D′}) ⊂ {Dη(u) : u ∈ D},(4.14)

where co({· · · }) denotes the convex hull. Then u(s) is well defined, and clearly u(0) =
u−(p), u(1) = uT , as required. By differentiating with respect to s, we find that

D2η(s) u̇(s) = Dη(uT ) −Dη(u−(p)) =: γ.
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Thus, for this choice of u(s), the expression in (4.13) becomes

u̇t(s) D2η(s) A(r) u̇(r) = γt A(r) (D2η(r))−1 γ.(4.15)

Note that only the variable r appears on the right-hand side. We conclude the proof
by showing that

γtA(r)(D2η(r))−1γ ≥ 0(4.16)

for every γ ∈ R
n and every r ∈ [0, 1]. We fix r and write simply A and D2η. Let ri

denote the ith right eigenvector of Df(u(r)), and note that ri is also an eigenvector
for A(r), with eigenvalue −νt − νxλ

i(u(r)) =: μi > 0, using the inflow assumption
(3.6). Let γi := D2η ri, i = 1, . . . , n. Then for all i, j,

γt
j A (D2η)−1 γi = rtj D2η A ri = μi(rtj D2η ri) = μj(rti D2η rj)

t.

The last identity follows from the fact that D2η A is symmetric, which is a consequence
of the necessary condition (2.10) for the entropy η. (This is where we use the fact
that (D2η(·))−1 and A(·) are evaluated at the same point r on the right-hand side of
(4.15).) Recalling the convexity of η and noting that the eigenvalues of A are distinct
(on account of the strict hyperbolicity of (1.1)), we conclude that

γt
j A (D2η)−1γi ≥ 0 if i = j, γt

j A (D2η)−1γi = 0 if i �= j.

Since {γi}ni=1 form a basis for R
n, this is easily seen to establish (4.16).

5. A single causal triangle. In this section we prove the part of Theorem 3.3
that deals with a single causal triangle, in particular the existence of a unique solution
satisfying the Riemann invariant bounds (3.25) in the causal case. In some sense this
is the main point of our analysis; we will deduce (3.25) for causal patches from the
corresponding estimate for a single causal triangle, and compactness and convergence
will then be relatively easy consequences.

The proof uses induction on n, the number of equations in the system. In section
5.1 we consider case n = 1 of scalar equations. Some properties of Temple class
systems that are used in the induction argument are given in sections 5.2 and 5.3,
and the induction argument is carried out in section 5.4.

5.1. Scalar conservation laws. In this section we prove the following.
Lemma 5.1. Consider a scalar conservation law (1.1), (1.2), and assume that

the spatial flux function f is Lipschitz continuous in an open interval D. Let T be a
causal triangle for f,D. Assume that we are given inflow data satisfying uTe ∈ D for
all e ⊂ ∂T−. Then there exists a unique u ∈ D satisfying the approximate equation
(3.20). Moreover,

min
e⊂∂T−

uTe ≤ u ≤ max
e⊂∂T−

uTe ,(5.1)

with both inequalities in (5.1) strict unless mine⊂∂T− uTe = maxe⊂∂T− uTe .
This sort of local maximum principle is well known for Godunov finite volume

methods, and more generally for monotone schemes for scalar conservation laws; such
results date back to [12], [4]. Similar results are established in [16] for Temple class
systems. A lot of recent work has been devoted to constructing higher-order accurate
schemes that enjoy a local maximum principle; see, for example, [17], [10]. Since we
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do not know of any result exactly of this sort in the implicit spacetime setting that
we consider here, we present the straightforward proof for the reader’s convenience.

Proof. We first assume that T is a triangle with two inflow edges, el on the left
and er on the right, and we use the notation as in (4.1). In view of (3.22) we can
rewrite the approximation scheme (4.1) in the form

F(ul, ur, u) = (F (ul) − F (u)) nl + (F (ur) − F (u)) nr = 0.(5.2)

Recalling the definition (4.2) of F and fact that el is an inflow edge (see (3.6)), we
obtain

d

d z
(F (z) nl) = nl,t + nl,x f

′(z) = (1, f ′(z)) nl < 0,(5.3)

and likewise

d

d z
(F (z) nr) = (1, f ′(z)) nr < 0,(5.4)

for all z ∈ D. Hence u 	→ F(ul, ur, u) is strictly increasing on D. If ul = ur, it
follows that u = ul = ur is the unique solution of (5.2). If ul �= ur, then let us write
u∗ = min(ul, ur), u

∗ = max(ul, ur). It follows from (5.2), (5.3), (5.4) that

F(ul, ur, u∗) < 0, F(ul, ur, u
∗) > 0.

Thus, again by monotonicity, there exists a unique u ∈ (u∗, u
∗) solving (5.2).

The proof for a triangle with only one inflow edge is similar, but easier.

5.2. Some facts about Temple class systems. The main result of this section
is Lemma 5.3, which makes precise the statement that, if in a genuinely nonlinear
Temple class system of n equations we fix k coordinates in the coordinate system
provided by Riemann invariants, then the system reduces to a genuinely nonlinear
Temple class system of n − k equations. This is well known, but we have not seen
the exact statement we prove (which is needed in the next section) anywhere in the
literature. In order to prove it we need the following.

Lemma 5.2. Suppose that (1.1) is a genuinely nonlinear Temple class system with
domain of conservation states D. Then for every i ∈ {1, . . . , n} and every constant
c ∈ R there exist nonzero row vectors p ∈ M1×n and q ∈ M1×2 such that

p F (u) = q for all u ∈ b−1
(
{w ∈ R : wi = c}

)
,(5.5)

where F (u) = (u, f(u)) and b denotes the diffeomorphism, defined in (2.3), from
conservation states u onto Riemann invariants w.

Proof. Fix some i ∈ {1, . . . , n} and c ∈ R, and let

C := b−1
(
{w ∈ R : wi = c}

)
.

The assertion that there exists a nonzero row vector p and a number q1 such that
pu = q1 for all u ∈ C is simply the defining attribute (2.6) of genuinely nonlinear
Temple class systems.

Since p is orthogonal to C, which is a level set of bi, it is clear that p is parallel
to Dbi on C. However, (2.3) asserts that Dbi(u) is a left eigenvector of Df(u), with
eigenvalue λi(u). Thus p is a left eigenvector of Df(u) for every u ∈ C. As a result,
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p rj(u) = 0 for j �= i. It follows that {rj(u) : j �= i} spans the tangent space to C at
any point u ∈ C. However, for j �= i and u ∈ C,

0 = p Df(u) rj(u) = D(p f(u)) rj(u),

which asserts that the directional derivative of p f(u) in the rj(u) direction vanishes
for j �= i. It follows that all tangential derivatives of p f(u) along C vanish, so that
p f(u) is constant on C.

We now present our main result of this section.
Lemma 5.3. Let (1.1) be a genuinely nonlinear Temple class system with domain

of conservation states D satisfying (2.7). Define

C := b−1({w ∈ R : wi1 = c1, . . . , w
ik = ck})

for some ij ∈ {1, . . . , n} and cj ∈ R. Then there exist a domain of conservation
states D ⊂ R

n−k, an affine map L : R
n−k → R

n that maps D onto C, and a mapping
f̄ : D → R

n−k satisfying

f(Lū) = Lf̄(ū) + K, ū ∈ D,(5.6)

for some constant vector K ∈ R
n (depending on ij , cj, j = 1, . . . , k) and such that for

the domain of conservation states D

ūt + f̄(ū)x = 0(5.7)

is a genuinely nonlinear Temple class system satisfying (2.7). Furthermore, if λ̄j , j =
1, . . . , n− k, denotes the eigenvalues of Df̄ , then

{λ̄j(ū)}n−k
j=1 = {λj(Lū)}j /∈{i1,...,ik}, ū ∈ D.(5.8)

Using the lemma, it is easy to show that if ū : (0,∞) × R → D is a solution of
ūt + f̄(ū)x = 0, then u := Lū solves (1.1) in the same sense. This is clear for classical
solutions,

ut + f(u)x = (Lū)t + f(Lū)x = Lūt + (Lf̄(ū) + K)x = L(ūt + f̄(ū)x) = 0,

and can similarly be justified for weak solutions. Thus, informally, the lemma states
that the system for u reduces in C to a smaller Temple class system for the new
dependent variable ū. Note that this also implies that C is an invariant submanifold
for (1.1), as mentioned in the introduction.

Proof. We give the proof in the case k = 1. The general case follows by a
straightforward induction argument.

Let p = (p1, . . . , pn) ∈ M1×n and q = (q1, q2) ∈ M1×2 be the vectors provided by
Lemma 5.2, satisfying (5.5). For concreteness we assume that pn �= 0; this does not
entail any loss of generality. Then for all u ∈ C we have

un =
q1
pn

− 1

pn

n−1∑
j=1

pj u
j and fn(u) =

q2
pn

− 1

pn

n−1∑
j=1

pj f
j(u).(5.9)

For ū = (ū1, . . . , ūn−1)t ∈ R
n−1 we define

Lū :=

⎛
⎝ū1, . . . , ūn−1,

q1
pn

− 1

pn

n−1∑
j=1

pj ū
j

⎞
⎠t

.(5.10)
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In view of (5.9), the image of L contains C. We next define

D :=
{
ū ∈ R

n−1 : L ū ∈ C
}
,(5.11)

and f̄ := (f̄1, . . . , f̄n−1) : D → R
n−1 is defined by

f̄ j(ū) = f j(Lū), j = 1, . . . , n− 1.(5.12)

The remainder of the proof simply consists of verifying that L, f̄ ,D have all the
required properties.

First, (5.9) and the definitions of L, f̄ imply that

f(Lū) − Lf̄(ū) =

(
0, . . . , 0,

q2 − q1
pn

)t

,

so that (5.6) holds. Note that differentiation of (5.6) with respect to ū gives

Duf(Lū) DūL = DūL Dūf̄(ū).(5.13)

We define R := {w̄ ∈ R
n−1 : (w̄1, . . . , w̄i−1, c, w̄i, . . . , w̄n−1) ∈ R} and

b̄(ū) := (b1(Lū), . . . , bi−1(Lū), bi+1(Lū), . . . , bn(Lū)) for ū ∈ D.(5.14)

It is clear that b̄ : D → R is a diffeomorphism and that R is a rectangle in R
n−1 such

that (2.7) holds for D.
We next check that b̄ provides a coordinate system of Riemann invariants. Let

j ∈ {1, . . . , n−1} and ū ∈ D be fixed. By (5.14), there exists s ∈ {1, . . . , n}\{i} such
that

b̄j(ū) = bs(Lū),(5.15)

which further gives

Dūb̄
j(ū) = Dub

s(Lū) DūL.(5.16)

Since the original system (1.1) satisfies (2.3), we have that

Dub
s(Lū) Duf(Lū) = λs(Lū) Dub

s(Lū),(5.17)

and using (5.16) and (5.13), we obtain

Dūb̄
j(ū)Dūf̄(ū) = λs(Lū)Dūb̄

j(ū),(5.18)

implying λ̄j(ū) = λs(Lū). Thus (5.7) admits a coordinate system of Riemann invari-
ants, as claimed. Note that the above also implies that (5.8) holds, and moreover it
follows from (5.8) that the system (5.7) is strictly hyperbolic.

To verify that (5.7) is a Temple class system, we must also check that (2.6) is
satisfied. This is an easy consequence of the definitions; see [9] for more details.

Finally we verify that the system (5.7) is genuinely nonlinear. By arguing as in the
verification of (5.18) above, one can check that for j and s as in (5.15), and for ū ∈ D
with Lu =: u ∈ D, there exists a nonzero constant c such that rs(u) = cDūL r̄j(ū)
and, moreover, Duλ

s(u)rs(u) = cDūλ̄
j(ū)r̄j(ū); we refer again to [9] for more de-

tails. Thus the desired conclusion follows from the fact that (1.1) is genuinely non-
linear.
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Remark 5.4. Suppose that (η, ψ) is an entropy-entropy flux pair for system (1.1).
Define

η̄(ū) := η(Lū) and ψ̄(ū) := ψ(Lū)(5.19)

for ū ∈ D. By the chain rule we have

Dūη̄(ū) = Duη(Lū)DūL and Dūψ̄(ū) = Duψ(Lū)DūL.(5.20)

With (5.13), this implies Dūη̄(ū) Dūf̄(ū) = Dūψ̄(ū), which means that (η̄, ψ̄) is an
entropy-entropy flux pair for system (5.7).

5.3. Invariant submanifolds for the approximation scheme. As men-
tioned several times, level sets of the Riemann invariants bi (defined in (2.3)) form
invariant submanifolds for Temple class systems. In this section we prove in effect
that these same sets are also invariant submanifolds for the discretized Temple class
system (3.20) on a single causal or semicausal triangle.

Lemma 5.5. Suppose that (1.1) is a genuinely nonlinear Temple class system in
domain D. Assume that ni = (ni,t, ni,x)t, i = 1, 2, 3, are such that n1 + n2 + n3 = 0
and that u1, u2, u3 ∈ D satisfy the following equation:

F (u1) n1 + F (u2) n2 + F (u3) n3 = 0.(5.21)

If for some i ∈ {1, . . . , n} and some c ∈ R, bi(u1) = bi(u2) = c and the expression
(1, λi(u)) n3 is of constant nonzero sign for all u ∈ D, then bi(u3) = c.

Proof. Let us define set C := b−1
(
{w ∈ R : wi = c}

)
, which, by (2.6), is contained

in a hyperplane in D. By Lemma 5.2 there exist matrices p and q such that p F (u) = q
for all u ∈ C. Multiplying (5.21) on the left by p and using the assumption that
n1 + n2 + n3 = 0, we obtain

(p F (u3) − q) n3 = 0.

This implies that for every v ∈ C we have

p ((u3 − v), (f(u3) − f(v))) n3 = 0.(5.22)

Define vc = b−1(wc) ∈ C, where wc ∈ R satisfies wi
c = c, wj

c = bj(u3) for all j �= i.
Let v(s) = s u3 + (1 − s) vc for s ∈ [0, 1]. We claim that

Df(v(s)(u3 − vc) = λi(v(s))(u3 − vc) for all s ∈ [0, 1].(5.23)

This is essentially just the well-known fact that, for Temple class systems, integral
curves are straight lines. We will first use (5.23) to complete the proof of the lemma,
and then for the convenience of the reader we present a proof of (5.23).

Using (5.23), we obtain

f(u3) − f(vc) =

∫ 1

0

d

ds
f(v(s)) ds =

∫ 1

0

Df(v(s)) (u3 − vc) ds

=

∫ 1

0

λi(v(s)) ds (u3 − vc).

Substituting this into (5.22), we find that

p (u3 − vc)

∫ 1

0

(1, λi(v(s))) n3 ds = 0.(5.24)
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Since (1, λi(v(s))) n3 is of constant nonzero sign for all s ∈ [0, 1], we obtain that
p (u3 − vc) = 0 and therefore p u3 = q1. Since u3 ∈ D, we conclude that u3 ∈ C,
which completes the proof.

To prove (5.23), we first recall that the defining property (2.6) of Temple class
systems states that for each j the set b−1({w ∈ R : wj = bj(u3)}) is a hyperplane.
Since this set also contains u3 and vc, it must contain the line segment joining them.
Thus all Riemann invariants bj(v(s)), j �= i, are constant for s ∈ [0, 1]. It follows that

d

ds
b(v(s)) = Db(v(s))v̇(s) = (0, . . . , 0, σi(s), 0, . . . 0)t

for some σi (in the ith component.) Hence

v̇(s) = σi(s)
(
the ith column of Db−1(v(s))

)
.

However, according to (2.3), the ith column of Db−1(v(s)) is a multiple of the nor-
malized right eigenvector ri(v(s)). Since v̇(s) = u3 − vc, this proves (5.23).

5.4. Well-posedness and Riemann invariant bounds. The central part of
the proof of Theorem 3.3 is carried out in the following.

Lemma 5.6. Let (1.1) be a strictly hyperbolic, genuinely nonlinear Temple class
system of conservation laws, and assume that the domain of conservation states D ⊂
R

n satisfies (2.7). Let T be a causal triangle for f,D. Then for any inflow data
{uTe ∈ D : e ⊂ ∂T−} there exists a unique solution u of (3.20) satisfying

min
e⊂∂T−

wi
Te

≤ wi
T ≤ max

e⊂∂T−
wi

Te
, for wi := bi(u),

with both inequalities strict unless equality holds throughout,(5.25)

for all i = 1, . . . , n.
Similar local maximum principles are proved in [16] and [22] for the Godunov

scheme for Temple class systems of two equations.
Proof. The theorem is obvious for triangles with only one inflow edge, so we

consider only triangles with two inflow edges, say el and er on the left and right,
respectively, and we write (3.20) in terms of inflow data ul and ur as in (4.1).

We will prove the existence of a solution satisfying (5.25) by induction on n, the
number of equations in the system. (Uniqueness will be established at the end of the
proof). The case n = 1 is the case of a scalar equation with strictly convex or concave
spatial flux f ; this is covered by results of section 5.1.

To do the induction step, let us assume that the conclusion holds for all gen-
uinely nonlinear Temple class systems of n− 1 equations, and let (1.1) be a genuinely
nonlinear Temple class system of n equations. Let us define

S := {(ul, ur) ∈ D ×D : there exists u ∈ D satisfying (4.1) and (5.25)}.

We will show S = D ×D.
Step 1. We prove that for every i ∈ {1, . . . , n} and every constant c ∈ R,

{(ul, ur) ∈ D ×D : bi(ul) = bi(ur) = c} ⊂ S.

Fix some c ∈ R and i ∈ {1, . . . , n}, and let C = b−1({w ∈ R : wi = c}). According
to Lemma 5.3, there exists a set D ⊂ R

n−1 and maps f̄ : D → R
n−1 and L : D → C

such that (5.6), (5.7), and (5.8) hold. It follows from (5.8) that any triangle that is
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causal for f,D is also causal for f̄ ,D. Thus the induction hypothesis and (5.7) imply
that there exists a solution ū of the equation

(ūl, f̄(ūl)) nl + (ūr, f̄(ūr)) nr + (ū, f̄(ū)) n = 0,(5.26)

where ūl, ūr ∈ D and Lūl = ul and Lūr = ur. In addition, ū satisfies the analogue
of (5.25). Let u := Lū ∈ C. Then, applying L to (5.26) and recalling from (5.6) that
Lf̄(ū) = f(Lū) + k with k constant, we deduce that

0 = (ul, f(ul) + k) nl + (ur, f(ur) + k) nr + (u, f(u) + k) n

= (ul, f(ul)) nl + (ur, f(ur)) nr + (u, f(u)) n.

We have used (3.22) for the second equality. Also, it is clear from the construction in
Lemma 5.3 that L preserves Riemann invariants, and hence that u satisfies (5.25).

Step 2. Let us define

S̃ := {(wl, wr) ∈ R×R : wl = b(ul), wr = b(ur) for some (ul, ur) ∈ S} .

To prove the existence of a solution satisfying (5.25), it suffices to show that S̃ = R×R.
Define

Q := {(wl, wr) ∈ R×R : wi
r > wi

l for all i}.

We will show that

Q ⊂ S̃.(5.27)

Exactly the same arguments can be used to show that

{(wl, wr) ∈ R×R : ±wi
r > wi

l for all i} ⊂ S̃

for any choice of signs, and so the proof of (5.27) will show that

{(wl, wr) ∈ R×R : wi
r �= wi

l for all i} ⊂ S̃.

In view of Step 1, the last inclusion implies that R × R ⊂ S̃. Hence the proof of
(5.27) will complete the proof of the existence of a solution satisfying (5.25).

We break the proof of (5.27) into three parts. For all three parts, it is convenient
to write (4.1) in Riemann invariant coordinates, in which it takes the form

F̃ (wl) nl + F̃ (wr) nr + F̃ (w) n = 0,(5.28)

where F̃ (w) := F (a(w)) = (a(w), f̃(w)) for w ∈ R. Here we are writing a = b−1 and
using notation from (2.4).

Step 2a. The set S̃ ∩Q is open in Q.
This follows from exactly the same argument given in Step 2 of the proof of

Theorem 4.1. The point is that the outflow condition (3.7) on edge e implies that
D(F̃ (w) n) is nonsingular for all w ∈ R, so that if (wl, wr, w) solves (5.28), then the
implicit function theorem asserts that for w′

l, w
′
r sufficiently near wl, wr, there is a

unique solution w′ near w, depending smoothly on w′
l, w

′
r. If (wl, wr) ∈ Q, then strict

inequality holds in (5.25) for all i, and so strict inequality will also hold in (5.25) for
all (w′

l, w
′
r, w

′) in a neighborhood of (wl, wr, w).

Step 2b. The set S̃ ∩Q is nonempty.
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Let wl ∈ R be fixed. In view of the considerations in Step 2a, for wr sufficiently
close to wl there exists a unique w in a neighborhood of wl such that (5.28) is satisfied.
We write w(wr) to denote this solution w. We must show that there exist wr such
that the solution w(wr) satisfies (5.25).

We claim that at the point w = wr = wl, the matrix
(

∂w
∂wr

)
is diagonal, with all

entries αi, i = 1 . . . , n, positive and strictly less than 1.
The claim asserts that wi(wr) = wi

l + αi(w
i
r − wi

l) + o(‖wl − wr‖) as wr → wl,
which since 0 < αi < 1 for all i, implies that w(wr) satisfies (5.25) for all wr of the
form wl + (h, . . . , h) when h is positive and sufficiently small. Thus the conclusion of
Step 2a follows from the claim about the form of ∂w/∂wr.

To prove this claim, we differentiate (5.28) with respect to wr to obtain{
nr,x Df̃(wr) + nr,t Da(wr)

}
+
{
nx Df̃(w) + nt Da(w)

}(
∂w

∂wr

)
= 0.

Multiplying on the left by (Da(w))−1 and using (2.5), we find that

Da(w)−1 Da(wr)
{
nr,x Λ̃(wr) + nr,t I

}
+
{
nx Λ̃(w) + nt I

}(
∂w

∂wr

)
= 0.

We now set wl = wr = w. Then Da(w)−1 Da(wr) = I. Due to the inflow and outflow
conditions (3.6) and (3.7), for every i ∈ {1, . . . , n} we have (1, λ̃i(wr)) nr < 0 and
(1, λ̃i(w)) n > 0. Thus at the point in question,

(
∂w

∂wr

)
= −

⎡
⎢⎢⎢⎣

(1, λ̃1(wl)) nr

(1, λ̃1(wl)) n
· · · 0

· · · . . . · · ·
0 · · · (1, λ̃n(wl)) nr

(1, λ̃n(wl)) n

⎤
⎥⎥⎥⎦ ,

and all the diagonal elements are positive. To show that ∂wi

∂wi
r
< 1, we need to show

−(1, λ̃i(wl)) nr < (1, λ̃i(wl)) n, which, in view of (3.22), is equivalent to showing
(1, λ̃i(wl)) nl < 0. This is satisfied, again as a result of the inflow constraint (3.6).

Step 2c. The set S̃ ∩Q is closed in Q.
Let (wl,k, wr,k) ∈ S̃ ∩Q, for k ∈ N, and suppose limk→∞(wl,k, wr,k) = (wl, wr) ∈

Q. We need to show (wl, wr) ∈ S̃.
For each k ∈ N, there exists a unique wk ∈ R such that

F̃ (wl,k) nl + F̃ (wr,k) nr + F̃ (wk) n = 0(5.29)

and

wi
l,k < wi

k < wi
r,k for i ∈ {1, . . . , n}.(5.30)

From (5.30), we deduce that there exists a convergent subsequence {wkm
}km

. Let us
denote w = limkm→∞ wkm . From (5.29) and (5.30) we get that

F̃ (wl) nl + F̃ (wr) nr + F̃ (w) n = 0

and

wi
l ≤ wi ≤ wi

r for i ∈ {1, . . . , n}.(5.31)
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Since (wl, wr) ∈ Q, we have wi
l �= wi

r for all i. Suppose that at least one of the
inequalities in (5.31) is not strict. Then either wi

l = wi or wi
r = wi. By Lemma

5.5, we must have wi
l = wi = wi

r, which is contradiction to the assumption. Hence,

(wl, wr) ∈ S̃.
Step 3. Finally we prove that there can be only one solution of (3.20) that satisfies

(5.25).
Suppose that

F̃ (wl) nl + F̃ (wr) nr + F̃ (wk) n = 0

for k = 1, 2, and that both w1 and w2 satisfy (5.25). Define wr(s) = wr + s(wl −wr).
The arguments of Step 2 imply that there exist functions wk(s), 0 ≤ s ≤ 1, such that
s 	→ wk(s) is C1,

wk(0) = wk, (wl, wr(s), wk(s)) satisfies (5.28) and (5.25)

for k = 1, 2. Clearly wr(1) = wl, and so (5.25) implies that w1(1) = w2(1) = wl. Let
S1 := {s ∈ [0, 1] : w1(s) = w2(s)}. We have just shown that S1 is nonempty. The
continuity of w1, w2 implies that S1 is closed, and the same implicit function theorem
arguments used above demonstrate that S1 is relatively open in [0, 1]. It follows
that S1 = [0, 1], and hence that w1 = w1(0) = w2(0) = w2. This completes the
proof.

6. A single causal patch. The main result of this section is Lemma 6.2, which
establishes those parts of Theorem 3.3 that describe the unique solvability, with
bounds on the Riemann invariants, of the approximation scheme (3.3) on a single
causal patch. The idea of the proof is to show that on such a patch the individual
triangles in fact decouple, in that we can determine a priori the values of the Godunov
flux across interior edges, in terms of only the patch geometry and inflow data; then
the problem on each triangle can be reduced to the causal case studied earlier.

We first obtain a formula for the Godunov flux that is valid in particular for
semicausal edges, such as those that occur in the interior of causal patches.

Lemma 6.1. Assume that (1.1) is a strictly hyperbolic, genuinely nonlinear Tem-
ple class system for which the domain of conservation states D ⊂ R

n satisfies (2.7),
and suppose also that

sup
u∈D

λi(u) < inf
u∈D

λi+1(u) for all i.(6.1)

Let ν = (νt, νx)t be a unit vector such that νx > 0 and satisfying (3.10) for some
α ∈ {1, . . . , n− 1}, i.e.,

λα(u) < − νt
νx

< λα+1(u) for all u ∈ D.(6.2)

Then for any ul, ur ∈ D, the Godunov flux is given by g(ul, ur; ν) = (ξ, f(ξ)) ν, where
ξ = ξ(ul, ur; ν) is expressed in Riemann invariant coordinates by

b(ξ) = (w1
r , . . . , w

α
r , w

α+1
l , . . . , wn

l )(6.3)

and wl = b(ul), wr = b(ur) denote the Riemann invariants associated with ul, ur.
Proof. To determine the Godunov flux g(ul, ur; ν) we need to solve the Riemann

problem for (1.1) with initial data

u(0, x) = ul if x < 0 and u(0, x) = ur if x > 0.
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The solution of the Riemann problem for Temple class systems satisfying (6.1) is
described4 in [22, section 2]. This solution has the form u(t, x) = v(x/t) for some
v : R → D, which among other properties satisfies

v(s) = vi for all s in an interval (ai, bi) ⊇
(

sup
u∈D

λi(u), inf
u∈D

λi+1(u)

)
,

where

b(vi) = (w1
r , . . . , w

i
r, w

i+1
l , . . . , wn

l ).

In particular, in view of (6.2) and definitions from section 3.2, this implies that
ξ−(ul, ur; ν) = ξ+(ul, ur; ν) = vα, which is what we need to show.

It is not clear how to determine g(ul, ur; ν) from the basic definition in terms of
the Riemann problem if condition (6.1) is not satisfied, since as far as we know there is
no standard solution of the Riemann problem in this situation. However, our results
remain valid if we take (6.3) as the definition of g(ul, ur; ν) in cases when (6.2) holds
but (6.1) does not.

We now fix some notation: Let P be a causal patch, minimal in the sense of
(3.16), consisting of k ≥ 2 triangles T1, . . . , Tk. We label the triangles and edges as
shown in Figure 3.5

Let ul denote the inflow data on e0, and ur the inflow data on ek, and let ui

denote the solution we seek on triangle Ti. On the patch P the system (3.3) can be
rewritten as

−F (ξj−1)nj−1 + F (uj)n
o
j + F (ξj)nj = 0, j = 1, . . . , k,(6.4)

where

ξj = ξ(uj , uj+1; νj), j ∈ {1, . . . , k − 1},(6.5)

and where we use the notation

ξ0 = ul, ξk = ur.(6.6)

Here we use the notation

nj = νj H1(ej), no
j = νoj H1(eoj), j = 0, . . . , k.(6.7)

We now prove the following result.

4Serre discusses only systems of two equations, but the general case is exactly the same.
5Note that this is always possible. Indeed, by the definition of a causal patch (see (3.14)) and

Lemma 3.2, each triangle Ti must have exactly one outflow edge, which we denote eoi . The non-
outflow edges will be denoted ej . The patch inflow boundary must be nonempty, by the argument
of Lemma 3.2. We may therefore assume that some triangle, say T1, has an inflow edge, which we
denote e0. Let us write e1 to denote the third edge of T1. This edge cannot be causal, since then
P ′ = T1 would be a proper causal subpatch, in violation of the minimality condition (3.16). Thus
the edge must be part of the interior of P , and so there must exist another triangle, say T2, such
that e1 = T1 ∩ T2. Proceeding in this way, we see that the triangles can be labeled such that Ti and
Ti+1 intersect along an edge ei for i = 1, . . . , k − 1. The final triangle Tk can intersect only Tk−1

(as all other edges of all other triangles are already accounted for), and so its final edge, which we
denote ek, must be inflow.

Let νi for i = 1, . . . , k denote the outer unit normal to Ti along ei or, equivalently, the inner unit
normal to Ti+1, and let ν0 denote the inner unit normal to T1 along e0. By reversing the ordering
of the triangles if necessary, we can assume that

−
νi,t

νi,x
< −

νi+1,t

νi+1,x
, i = 0, . . . , k − 1.

After fixing notation in this way we arrive at Figure 3.
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T1

T2

Tk

eo1

eo2

eok

νo1 νo2

νok

e0

e1 ek−1

ek

ν0

ν1 νk−1

νk

. . .

Fig. 3. A causal patch of k ≥ 2 triangles.

Lemma 6.2. Let (1.1) be a strictly hyperbolic, genuinely nonlinear Temple class
system, and assume that (2.7) holds for the domain of conservation states D ⊂ R

n.
Let P be a causal patch of k triangles for f,D (see Figure 3).Then for any inflow data
ul, ur ∈ D, there exist unique u1, . . . , uk ∈ D satisfying (6.4)–(6.6) and

min{wi
j−1, w

i
j+1} ≤ wi

j ≤ max{wi
j−1, w

i
j+1} for i ∈ {1, . . . , n}, j ∈ {1, . . . , k}.

(6.8)

Here we use the notation

w0 := b(ul), wk+1 := b(ur), and wj := b(uj), j = 1, . . . , k.(6.9)

Finally, the solution also satisfies

|wi
k+1 − wi

0| =

k+1∑
j=1

|wi
j − wi

j−1|, i = 1, . . . , n.(6.10)

Note that (6.8) is exactly conclusion (3.25) of the main Theorem 3.3.

Proof. We have fixed the orientation of the normals on the nonoutflow faces so
that νj,x > 0 for all j. Since ej is semicausal for j ∈ {1, . . . , k − 1}, there exist
α1, . . . , αk−1 such that α0 := 0 < α1 ≤ · · · ≤ αk−1 < αk := n such that

λαj (u) < − νj,t
νj,x

< λαj+1(u)(6.11)

for all u ∈ D and for all j ∈ {0, . . . , k} (where the left-hand inequality for j = 0 and
the right-hand inequality for j = k are understood to hold trivially, since λ0 and λn+1

are not defined.)

Step 1. We first prove that if u1, . . . , uk ∈ D satisfy (6.4)–(6.6) for inflow data
ul, ur ∈ D, then necessarily

ξj = ξ(ul, ur; νj), j ∈ {1, . . . , k − 1},(6.12)
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where ξj is as defined in (6.5). Fix any j. Using the notation (6.9), the formula for
the Godunov value ξ(ul, ur; νj) from Lemma 6.1, and (6.11), we can write

b(ξj) = (w1
j+1, . . . , w

αj

j+1, w
αj+1
j , . . . , wn

j ).(6.13)

In particular, in the coordinate system provided by Riemann invariants, the ith co-
ordinates of ξj and uj are equal for i = αj + 1, . . . , n. Thus, in view of (6.4) and
the invariant submanifold property of Lemma 5.5, it must be the case that the same
coordinates are shared by ξj−1. In view of (6.13) (with j replaced by j − 1), this
implies that wi

j−1 = wi
j for i = αj + 1, . . . , n. Since this holds for all j, and since

αj−1 ≤ αj , we deduce that

bi(ξj) = bi(ξ0) = bi(ul) = wi
0 for i = αj + 1, . . . , n.(6.14)

Similarly, from (6.13) we see that, in the coordinate system given by Riemann invari-
ants, the ith coordinates of ξj and uj+1 are equal for i = 1, . . . , αj , and so using (6.4)
and Lemma 5.5 again, we find that

bi(ξj) = bi(ξk) = bi(ur) = wi
k+1 for i = 1, . . . , αj .(6.15)

Again appealing to Lemma 6.1 to find an explicit formula for the Godunov value
ξ(ul, ur; νj), we find that (6.14) and (6.15) together prove (6.12).

Step 2. In view of Step 1, the triangles in the causal patch in effect decouple, and
on each triangle Tj , j = 1, . . . , k, we must show the existence of a unique solution
(with Riemann invariant bounds) for the problem

−F (ξj−1)nj−1 + F (uj)n
o
j + F (ξj)nj = 0,(6.16)

where now all the values ξj are known:

ξj = ξ(ul, ur, νj), j ∈ {1, . . . , k − 1},(6.17)

ξ0 = ul, ξk = ur.(6.18)

Fix a triangle Tj . Let us define

Cj := b−1

({
w ∈ R : wi =

{
wi

r, i = 1, . . . , αj−1,
wi

l , i = αj + 1, . . . , n.

})
From (6.17) and Lemma 6.1 we see that ξj−1, ξj ∈ Cj . Thus Lemma 5.5 implies that
any solution uj ∈ D of (6.16) must also satisfy uj ∈ Cj . If αj−1 = αj , then we have
ξj−1 = uj = ξj , and if αj−1 < αj , we show that we can find a solution in Cj by
reducing (1.1) to a smaller causal Temple class system.

Let � = αj − αj−1, so that n − � is the number of coordinates in the coordinate
system of Riemann invariants that are specified for elements of Cj . By Lemma 5.3,
there exist a domain of conservation states D ⊂ R

�, an affine bijection L : D → Cj ,
and a mapping f̄ : D → R

� such that

ūt + f̄(ū)x = 0(6.19)

is a genuinely nonlinear Temple class system for ū ∈ D, and

f(Lū) = Lf̄(ū) + K, ū ∈ D,(6.20)
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where K ∈ R
n is some constant. Furthermore, if λ̄j , j = 1, . . . , �, denotes the eigen-

values of Df̄ , then

{λ̄j(ū)}�j=1 = {λj(Lū)}αj

j=αj−1+1, ū ∈ D.(6.21)

We assert that edges ej−1 and ej are inflow edges for Tj . Indeed, our choice of notation
implies that νj,x > 0 for all j, so that (6.11) implies that νj,t + νj,xλ

i(u) < 0 for all
i ≤ αj and all u ∈ D. Also, νj is the outer normal to Tj along edge ej , so ej satisfies
the definition (3.6) of an inflow edge for Tj . Similarly, νj−1,t + νj−1,xλ

i(u) > 0 for all
i ≥ αj−1 + 1 and all u ∈ D, and −νj−1 is the outer normal to Tj along ej−1, from
which it follows that ej−1 is also an inflow edge for Tj .

Thus Tj is a causal triangle for f̄ ,D, and so Lemma 5.6 implies that there exists
a unique solution ūj of the equation

−(ξ̄j−1, f̄(ξ̄j−1))nj−1 + (ūj , f̄(ūj))n
o
j + (ξ̄j , f̄(ξ̄j))nj = 0,(6.22)

where ξ̄j ∈ D satisfies L(ξ̄j) = ξj , and similarly ξ̄j−1. This solution ūj also satisfies
Riemann invariant bounds (5.25), and is the only solution with this property.

We claim that uj := Lūj satisfies (6.16). Indeed, from (6.20), (6.22), and the fact
that no

j + nj−1 + nj = 0 (see (3.22)) we infer that

−F (ξj−1)nj−1+F (uj)n
o
j + F (ξj)nj

= −(Lξ̄j−1, f(Lξ̄j−1))nj−1 + (Lūj , f(Lūj))n
o
j + (Lξ̄j , f(Lξ̄j))nj

= −(Lξ̄j−1, Lf̄(ξ̄j−1))nj−1 + (Lūj , Lf̄(ūj))n
o
j + (Lξ̄j , Lf̄(ξ̄j))nj

= −L(ξ̄j−1, f̄(ξ̄j−1))nj−1 + L(ūj , f̄(ūj))n
o
j + L(ξ̄j , f̄(ξ̄j))nj

= 0.

Step 3. We next claim that uj satisfies (6.8) and is the only solution of (6.16)
with this property. The Riemann invariant bounds satisfied by ūj and properties of
the map L imply that uj satisfies

min{bi(ξj−1), b
i(ξj)} ≤ wi

j ≤ max{bi(ξj−1), b
i(ξj)}(6.23)

if i ∈ {αj−1 + 1, . . . , αj}. From (6.13) we see that bi(ξj−1) = wi
j−1 for i ≥ αj−1 + 1,

and bi(ξj) = wi
j+1 for i ≤ αj , so that (6.23) becomes (6.8) for i ∈ {αj−1 + 1, . . . , αj}.

If i > αj , then similarly from (6.14) we see that bi(ξj) = wi
0 = wi

j (using the fact that
uj ∈ Cj). Thus in this case (6.8) clearly holds. Similarly, in the case i ≤ αj−1, we
deduce (6.8) by noting that bi(ξj−1) = wi

k+1 = wi
j .

Note in addition that if vj is any solution of (6.16), then necessarily vj ∈ Cj , and
by undoing the above arguments one can see that vj = Lv̄j for some v̄j ∈ D solving
(6.22) and satisfying suitable Riemann invariant bounds. It follows that v̄j = ūj , so
that uj is the only solution of (6.16) for which (6.8) holds.

Step 4. Finally, to prove (6.10), fix some i ∈ {1, . . . , n}. There exists some j such
that αj−1 < i ≤ αj . It follows from Step 2 (in particular the fact that uj ∈ Cj) that

wi
m = wi

0 for m = 1, . . . , j − 1, wi
m = wi

k+1 for m = j + 1, . . . , k.

Together with (6.8), this establishes (6.10).
Remark 6.3. Suppose that all assumptions of the previous lemma hold. Let (η, ψ)

be an entropy-entropy flux pair for (1.1), and let a set D′ be characterized by (4.14).
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By taking D′ smaller, we can assume that it satisfies (2.7). Consider a triangle Tj ,
for some j ∈ {1, . . . , k}, within the patch, and let Cj ,D, and L be as in Step 2 of
the previous proof. By Remark 5.4 we have that (η̄, ψ̄) defined by (5.19) forms an
entropy-entropy flux pair for the Temple class system (6.19). Note that, by (5.20)

and the fact that the map L : D → D is linear, we have D′ ∩ Cj ⊂ L(D′
).

By Theorem 4.2 for the system (6.19) and the causal triangle Tj for f̄ ,D, we have

that if ξ̄j−1, ξ̄j , ūj ∈ D′
, then∫

eo
j

(
η̄(ūj), ψ̄(ūj)

)
νoj dH1 +

∫
ej−1

(
η̄(ξ̄j−1), ψ̄(ξ̄j−1)

)
(−νj−1) dH1

+

∫
ej

(
η̄(ξ̄j), ψ̄(ξ̄j)

)
νj dH1 ≤ 0.

Hence, if the inflow data on a causal patch P is such that {uTe
∈ D′ : e ⊂ ∂P−},

then for every triangle T within P ,∫
∂T+

(η(uT ), ψ(uT )) ν dH1 +

∫
e inflow

(η(uTe), ψ(uTe)) νe,T dH1

+
∑

e semicausal

∫
e

(η(ξe), ψ(ξe)) νe,T dH1 ≤ 0,

where ξe denotes the Godunov value along a semicausal edge e of triangle T . Using
(3.22) and letting ξe denote the inflow value uTe along an inflow edge, this can be
written more concisely in the form

∑
e noncausal

∫
e

[(η(ξe), ψ(ξe)) − (η(uT ), ψ(uT ))] νe,T dH1 ≤ 0.(6.24)

Example 6.4. In this example we show that uniqueness of solutions of the ap-
proximation scheme can fail if both conditions (3.14) and (3.15) are violated. We do
not know whether uniqueness can fail if either condition alone is not satisfied.

Let P = T1 ∪ T2 ∪ T3, as in Figure 4. Consider Burgers’ equation (scalar conser-

vation law where f(u) = u2

2 ) with D = [−a, a] for any 0 < a < 4
3 . It is clear that

every edge e ⊂ ∂P is causal. Let u−
i denote the inflow data along Ti ∩ ∂P−, where

∂P− denotes the patch inflow boundary, and let ui denote the approximate solution
on Ti. Suppose that

u−
1 = 1, u−

2 = 0, and u−
3 = −1.

↼−4, 0) (−1, 0) (4, 0)(1, 0)

(0, 3)

T1 T2 T3

ν1 ν2

Fig. 4.
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We claim that an approximate solution on P is given by

u1 = 1, u3 = −1, and u2 = σ, for arbitrary σ ∈
(
− 1

3 ,
1
3

)
.(6.25)

Fix σ ∈
(
− 1

3 ,
1
3

)
. Let ei = Ti ∩ Ti+1, and let νi denote the outer unit normal to

triangle Ti along the edge ei for i = 1, 2. Note that

ξ1 := ξ(1, σ; ν1) = 1.(6.26)

Indeed, the entropy solution of the Riemann problem for the Burgers’ equation with
initial data u(0, x) = 1, x < 0, and u(0, x) = σ, x > 0, is a shock propagating
with speed s = 1

2 (1 + σ) and having values 1 and σ on the left and on the right,
respectively. With the choice of σ we have s > 1

3 = − ν1,t

ν1,x
, which implies (6.26).

Similarly, ξ2 := ξ(σ,−1; ν2) = −1. One can then check by an easy calculation that
the equation is satisfied; indeed, this is almost obvious by symmetry. Hence, (6.25) is
a solution for all σ ∈ (−1/3, 1/3), as asserted.

7. Convergence and entropy inequalities. In this section we give the re-
mainder of the arguments needed for the proof of Theorem 3.3. We also show at the
end of the section, in Example 7.1, why the assumption (3.23) is needed.

Proof of Theorem 3.3. Recall that for this theorem we assume that Th is a
causal or a patchwise causal partition for f,D, where f is the flux function for a
genuinely nonlinear Temple class system and D satisfies (2.7). We also assume that
Th satisfies (3.23), (3.24), and (3.27), with constants independent of h. Since a causal
triangulation is also patchwise causal (in which each causal patch consists of a single
triangle), we consider only the case when Th is patchwise causal.

Step 1. First, results in Lemma 6.2 about existence and uniqueness of solutions
on a single causal patch (once the inflow data is known), together with remarks in
section 3.4 about the patch-by-patch solution strategy, imply that there exists a unique
solution uh ∈ Ph of (3.3) satisfying the elementwise Riemann invariant bounds (3.25)
on each triangle. (Recall that Ph denotes the space of piecewise constants on the
triangulation Th.)

Step 2. Next, let u0h be the discretization of the data u0 implicit in the discrete
initial condition (3.4), so that u0h is constant on intervals I ⊂ R such that {t =
0} × I = (∂T ∩ {t = 0}) for some T ∈ T 0

h , and on each such interval

u0h =
1

H1(I)

∫
I

u0 dx.

It is easy to check that for x in an interval I as above, ‖u0h(x)−u0(x)‖ ≤ TV (u0; I),
where the right-hand side denotes the total variation of u0 in the interval I. From
this one can check that

‖u0h − u0‖L1(R) → 0 as h → 0 and(7.1)

TV (u0h) ≤ 3TV (u0) for all h.(7.2)

Step 3. Fix a patchwise causal partition Th, and let uh ∈ Ph be the correspond-
ing approximate solution satisfying local Riemann invariant bounds. Let wh = b(uh)
denote the approximate solution expressed in terms of the Riemann invariant co-
ordinates, and similarly w0h = b(u0h). We next establish the claim (3.26) that
TV (wi

h(t, ·)) is nonincreasing in t for every i. The conclusion will follow only from
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assumptions about the triangulation and from the local Riemann invariant bounds
(6.10). We view this as nearly geometrically obvious, but we give a detailed proof for
the sake of completeness.

Fix i ∈ {1, . . . , n}. To simplify the notation we drop the sub- and superscripts
for this part of our argument and simply write w.

Our assumptions about the mesh (in particular, (3.24) and (3.27)) imply that
there exists δ > 0 such that for every T in Th and every nontrivial edge e ⊂ ∂T ,

sup{t : (t, x) ∈ e} − inf{t : (t, x) ∈ e} ≥ δh.(7.3)

We will show that

TV (w(σ, ·)) ≥ TV (w(τ, ·)) whenever 0 ≤ σ < τ ≤ σ + δh.(7.4)

This clearly suffices to prove (3.26).
Fix 0 ≤ σ < τ < σ + δh and choose a sequence of points · · · < yj < yj+1 < · · ·

with the property that, for each triangle T such that T o ∩ {t = τ} �= ∅, there exists
exactly one point (τ, yj) ∈ T o. (Here T o denotes the interior of T .) Then

TV (w(τ, ·)) =
∑
j

|w(τ, yj) − w(τ, yj−1)|.

We will write Tj to denote the triangle containing the point (τ, yj).
Next, for triangles S, T ∈ Th, we write S ∼ T if S and T are separated by a trivial

edge, as defined immediately before (3.24). In particular, if S ∼ T , then wS = wT .
We define

I :=
{
j ∈ Z : either T o

j ∩ {t = σ} �= ∅ or ∃S with S ∼ Tj and So ∩ {t = σ} �= ∅
}
.

We can index the elements of I by the integers, with · · · < j−1 < j0 < j1 < · · · . For
j� ∈ I, let

S� :=

{
Tj� if T o

j�
∩ {t = σ} �= ∅,

the triangle S such that S ∼ Tj� , S
o ∩ {t = σ} �= ∅ if not,

and for each � let x� be a point such that (σ, x�) ∈ So
� . The definitions imply that

x� < x�+1 and that w(σ, x�) = w(τ, yj�) for all �. Thus

TV (w(σ, ·)) ≥
∑
�

|w(σ, x�) − w(σ, x�−1)| =
∑
�

|w(τ, yj�) − w(τ, yj�−1
)|.

Thus to prove (7.4) it suffices to show that

|w(τ, yj�) − w(τ, yj�−1
)| =

j�∑
m=j�−1+1

|w(τ, ym) − w(τ, ym−1)|(7.5)

when j�−1, j� are adjacent points in I. To simplify the notation, let us assume that
j� = 0, and let us also write k + 1 := j�+1. We may assume that k ≥ 1, as otherwise
(7.5) is trivial.

We claim that if j �∈ I, then Tj must have exactly one vertex, say Qj , in [σ, τ)×R.
It is easy to see from the definition of I that Tj must have at least one such vertex.
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And if Tj has two vertices in this slab, then (7.3) and the assumption that τ < σ+ δh
imply that the edge e joining these two vertices must be trivial, and so Tj ∼ Tj,e.
Again from (7.3) and the choice of σ, τ , it follows that T o

j,e∩{t = σ} �= ∅, which would
imply that j ∈ I.

Next note that for j = 1, . . . , k − 1, Tj and Tj+1 intersect along an edge that
terminates at a shared vertex of Tj , Tj+1 in the set (0, τ) × R, and hence in the slab
[σ, τ) × R. It follows that Q1 = Q2 = · · · = Qk =: Q. Thus triangles T1, . . . , Tk

appear exactly as pictured in Figure 3. For the duration of this discussion, we adopt
the notation for edges and normals displayed in Figure 3. Assumption (3.23) implies
that eoj is outflow for j = 1, . . . , k, as in Figure 3.

Now consider triangle T1. We claim that e0 is an inflow edge for T1, or equivalently
an outflow edge for T0. To prove this, recall that either T o

0 ∩ {t = σ} �= ∅ or T0 ∼ S�

for some S� such that So
� ∩ {t = σ} �= ∅. In the former case, the claim then follows

from assumption (3.23). In the latter case, it follows from the fact that (by definition
of ∼) the edge T0 ∩ S� is a trivial edge, which (by the definition of a trivial edge)
means that the other edges of T0 are outflow.

The same considerations show that ek is an inflow edge for Tk. Now let k∗ =
max{j : ej is inflow for Tj+1} and k∗ = min{j : ej+1 is inflow for Tj+1}, and note
that k∗ < k∗. It is now straightforward to check the following.

First, if k∗ > 1, then edges e0, . . . , ek∗−1 are all trivial, and as a result w(τ, y0) =
· · · = w(τ, yk∗−1). Similarly, if k∗ < k, then w(τ, yk∗+1) = · · · = w(τ, yk+1).

Second, Tk∗∪· · ·∪Tk∗ form a causal patch (consisting possibly of a single triangle),
and so (6.10) implies that

|wk∗+1 − wk∗−1| =

k∗+1∑
j=k∗

|wj − wj−1|.

Combining the last observations, we obtain (7.5), so this completes the proof of (3.26).
Step 4. We next show that there exists a constant C, depending only on TV (u0)

and the constants K0 from (2.8) and α from (3.24), such that for any τ > 0,∫ τ

0

∫
R

(|uh,x| + |uh,t|) ≤ C τ.(7.6)

Here |uh,x| and |uh,t| are understood as measures on (0,∞)×R. To prove (7.6), first
note that, for any t > 0,

TV (uh(t, · )) ≤ K0 TV (wh(t, · )) ≤ K0

n∑
i=1

TV (wi
h(t, · )) ≤ K0

n∑
i=1

TV (wi
0h)

≤ nK2
0 TV (u0h),

using (2.8) and (3.26). Thus
∫ τ

0

∫
R
|uh,x| =

∫ τ

0
TV (uh(t, ·)) dt ≤ C τ , by (7.2) and

the assumption that TV (u0) is finite. Also, (3.24) together with standard facts about
functions of bounded variation show that∫

A

|uh,t| ≤ 1

α

∫
A

|uh,x|

for every A ⊂ [0,∞)×R. By combining these last two inequalities, we arrive at (7.6).
From (7.6), a version of Rellich’s compactness theorem implies that the sequence

{uh} is precompact in L1
loc([0,∞) × R).
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Completion of the proof. The proof that any limit of a convergent subsequence
is an entropy solution of (1.1) follows by standard arguments, along the lines of the
proof of the Lax–Wendroff theorem. A detailed exposition is presented in [9].

Example 7.1. In this example we show why assumption (3.23) is needed in order
to deduce from elementwise Riemann invariant bounds (3.25) that property (3.26)
holds.

Consider Burgers’ equation with D = [a, b], for 0 < a < b < 1. Then a triangula-
tion is causal if and only if no triangle has an edge that is a subset of a line with slope
in the interval [1b ,

1
a ]. In particular the mesh shown in Figure 5 is causal (assuming

that the vertical and horizontal scales are related in a suitable way.) Let the initial
data be given by u0 = b to the left of point Q and u0 = a to the right of Q. Note that
the total variation of the initial data is b− a. Let ui denote the approximate solution
in triangle Ti. Clearly, u1 = b, u3 = a, and by Lemma 5.1 we have u2 ∈ (a, b). Since
the edge separating triangles T2 and T4 is trivial, we conclude u4 = u2. Finally, again
by Lemma 5.1, we obtain that a < u5 < u2 < b. Thus the total variation of the
approximate solution at time t = t1 is at least

|u1 − u2| + |u2 − u3| + |u3 − u5| = b− a + (u5 − a),

which is strictly greater than the total variation at t = 0.

t = t1
t = 0

T1
T2 T3

T4

T5

u0 = au0 = b Q

t

x

. . .. . .

Fig. 5.
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Abstract. In this paper, starting from a sequence of results which can be traced back to I. J.
Schoenberg, we analyze a class of spline collocation methods for the numerical solution of ordinary
differential equations (ODEs) with collocation points coinciding with the knots. Such collocation
methods are naturally associated to a special class of linear multistep methods, here called B-spline
(BS) methods, which are able to generate the spline values at the knots. We prove that, provided
the additional conditions are appropriately chosen, such methods are all convergent and A-stable.
The convergence property of the BS methods is naturally inherited by the related spline extensions,
which, by the way, are easily and safely computable using their B-spline representation.
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1. Introduction. We analyze a class of spline collocation methods for the nu-
merical solution of the general ordinary differential equation

(1.1) y′(x) = f(x,y(x)), x ∈ [a, b],

that could be subject to either boundary (g(y(a),y(b)) = 0) or initial (y(a) = ya)
conditions; f : [a , b] × R

d → R
d is a sufficiently smooth function.

We started our research by reconsidering the classical papers [16] and [17], where
a spline collocation approach at uniform knots is presented. In those papers, using
xi = a+ ih, i = 0, . . . , N, h = (b− a)/N as knots, a spline of degree k + 1, collocating
the differential equation at the knots, is constructed with a forward approach, which
is possible thanks to the use of k − 1 additional initial conditions. The authors also
prove that the knot restriction of the defined spline is the numerical solution of a
suitable linear k-step method. It turned out that the approach was effective only
for k ≤ 2, that is, for the trapezoidal and the Simpson rules, because in this case
it allowed the authors to define a convergent spline with uniform convergence order
equal to 2 and 4, respectively. Unfortunately the convergence was lost for k > 2. This
is clear considering that the resulting methods are not 0-stable, as proved in [16], for
such values of k, and then not even convergence at knots can be obtained.

We first revisit this class of methods, showing how they can be implemented effec-
tively as boundary value methods (BVMs) (see [5, 6] for a more detailed description
of BVMs; also see section 4 below) and discussing in detail their stability properties.
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Then we explain how we have changed the approach introduced in [17] for defining
the related spline extension, showing that convergence is recovered for all values of k.
In our version, the spline is constructed in two successive steps: first, we compute a
numerical solution of (1.1) by using the underlying multistep methods as BVMs, and
then we construct a related spline extension by solving a linear system. The main
features of this approach are that

1. it is a collocation method related to a class of linear multistep methods;
2. the continuous extension has the derivatives globally continuous up to order

k;
3. we do not use extra collocation points which are different from the knots.

Other approaches devoted to obtaining spline collocation methods are well known in
the literature; see, for example, those presented in [3, 4, 10, 25] that are related to
Runge–Kutta methods, or the ones presented in [22, 23]. In this paper we rather prefer
proving some mathematical properties of this approach than comparing it numerically
with existing ones. Such an analysis allows us to gain insight into its deep relations
with the BVM approach. As a matter of fact, it may be seen as an alternative way
of constructing a BVM.

The importance of having a continuous extension of the solution provided by mul-
tistep methods is particularly relevant when we deal with a mesh refinement strategy,
such as, for example, in the solution of boundary value problems, where it is necessary
to work on the entire interval of integration [a , b]. In our case, we have implemented
some BVMs in the code TOM [18, 20] (available at http://www.dm.uniba.it/˜mazzia/
bvp/index.html) and we have realized that, for many difficult problems, the interpo-
lation needed by the mesh selection strategy may be a critical component. In the
current version available on the Web, the solver uses cubic spline interpolation of the
discrete computed solution as a tool to evaluate the approximation of the solution at
off-mesh points.

The paper is organized as follows. In section 2 we introduce the special class
of symmetric schemes we shall deal with, which will be called BS methods, since
they are derived from B-splines. A detailed analysis of both their order of accuracy
and their stability properties then follows. In sections 3 and 4 the problems of the
computation of the related spline extensions and of choosing correctly the additional
boundary conditions are considered, respectively. In section 5 we give the related
global convergence analysis. As usual, all the properties are studied on a uniform
mesh. Naturally, to have a class of methods that could be effectively implemented,
it is necessary to extend them in order to use them on a nonuniform mesh. An
extended treatment of the computation of the variable coefficients on a nonuniform
mesh is presented in [19]. A preliminary implementation of the BS methods using
a mesh selection strategy similar to the one described in [7, 8, 20], an error control
strategy, and a technique for the solution of the nonlinear systems similar to the
ones described in [18] has been done. As a tool to evaluate the approximation of the
solution at off-mesh points, such an implementation uses the previously mentioned
spline extension of the numerical solution. Some numerical results, using both uniform
and nonuniform meshes, are reported in section 6 to confirm the features of the
presented approach.

2. The BS linear multistep methods. Let xi = a + ih, i = 0, . . . , N, h =
(b− a)/N , be a uniform partition of the integration interval [a , b], and let us denote
by yi an approximation of y(xi). For any k ≥ 1, let us consider the classical B-spline
Bk+2(·) of degree (k+1) with uniform integer active knots 0, 1, . . . , k+1, k+2, which
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is given, using the notation of truncated power [9], by

(2.1) Bk+2(x) :=
1

(k + 1)!

k+2∑
i=0

(−1)i
(

k + 2
i

)
(x− i)k+1

+ .

As proved in [16, Thm. 3], if a spline function s(x) of degree k + 1 collocates the
differential equation at the knots (that is, s′(xi) = f(xi, s(xi))), then s(x) satisfies
the following relation:

(2.2)

k∑
i=0

α
(k)
i s(xn+i) = h

k∑
i=0

β
(k)
i s′(xn+i), n =, 0, . . . , N − k,

with

(2.3)

⎧⎪⎨
⎪⎩

α
(k)
i := B′

k+2(k − i + 1),
i = 0, . . . , k.

β
(k)
i := Bk+2(k − i + 1),

This result is a consequence of the previous theorem in the same paper, [16, Thm.
2], attributed to I. J. Schoenberg. In our notation it can be stated as follows,

Theorem 1 (Schoenberg). For any spline function s of degree k+1 and uniform
knots 0, h, . . . , (n− 1)h, n ≥ k + 1, the following relation holds:

(2.4)
k∑

i=0

α
(k)
i s(ih) = h

k∑
i=0

β
(k)
i s′(ih),

where α
(k)
i and β

(k)
i are defined as in (2.3).

The BS method with k steps is defined as follows:

(2.5)

k∑
i=0

α
(k)
i yn+i = h

k∑
i=0

β
(k)
i f(xn+i,yn+i), n = 0, . . . , N − k.

Considering the symmetry properties of uniform B-splines, it can be shown that
we are dealing with symmetric schemes, i.e.,

α
(k)
i = −α

(k)
k−i; β

(k)
i = β

(k)
k−i.

In addition, the following relations among the β coefficients come from the well-
known recurrence relation for B-splines,

(2.6) β
(k)
i =

1

k + 1
[(k − i + 1)β

(k−1)
i−1 + (i + 1)β

(k−1)
i ], i = 0, . . . , k,

where β
(k−1)
−1 = β

(k−1)
k = 0. In Table 2.1 the α(k) and β(k) coefficients of the BS

methods with k = 1, . . . , 5 are reported.
The related ρ(k) and σ(k) polynomials (that arise in the standard stability analysis

of these formulas) are defined as

ρ(k)(z) :=

k∑
i=0

α
(k)
i zi, σ(k)(z) :=

k∑
i=0

β
(k)
i zi.
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Table 2.1

The α(k) and β(k) coefficients of the BS methods with k = 1, . . . , 5.

k α(k) β(k)

1 −1 1
1

2

1

2

2 −1

2
0

1

2

1

6

4

6

1

6

3 −1

6
−1

2

1

2

1

6

1

24

11

24

11

24

1

24

4 − 1

24
− 5

12
0

5

12

1

24

1

120

13

60

11

20

13

60

1

120

5 − 1

120
− 5

24
−1

3

1

3

5

24

1

120

1

720

19

240

151

360

151

360

19

240

1

720

An investigation of some properties of this class of methods is carried out in the
following subsections.

Remark 1. We have used here an approach slightly different from that presented
in [17]. In that paper the collocation spline of degree k + 1 and smoothness Ck

is first defined by using a forward approach based on the use of k − 1 additional
initial conditions. Then it is shown that its restriction to the knots verifies (2.5) with
coefficients defined as in (2.3). Here we first compute the values generated by the
linear multistep method at the knots, and then we compute the spline continuous
extension. On the other hand, we observe that, if we had used the same approach,
then the Ck continuity conditions at the knots would have generated exactly the
conditions expressed in (2.5) (this assertion can be proved by considering the result of
Theorem 6). The converse is also true; that is, the choice (2.3) of the coefficients will
permit the definition of a spline extension of smoothness Ck collocating the differential
equation at the knots (see section 3).

2.1. Order of the BS methods. The order of the k-step BS method can be
proved by the following theorem.

Theorem 2. A k-step BS method is of order p = k + 1 if k is odd and of order
p = k + 2 if k is even.

Proof. The proof that p is at least k+1 can be obtained easily by using Theorem
1, by considering that any polynomial of degree less than or equal to k + 1 is a spline
of degree k+1, and that the relations defined in (2.4) are, if s is a polynomial, nothing
but the order conditions. A direct proof that p ≥ k + 1, along the lines of the usual
methodology used in the ordinary differential equation (ODE) setting, is reported in
the appendix.

The fact that p = k + 2 when k is even can be proved by using the symmetry of
the BS methods. If s(x) is an even function with respect to the midpoint x = kh/2 of

the interval [0 , kh], we have that
∑k

i=0 α
(k)
i s(ih) = h

∑k
i=0 β

(k)
i s′(ih) = 0. Now,

since for k = 2ν the polynomial (x− ν)k+2 is an even function with respect to ν, we
can conclude that (2.4) still holds for s(x) = (x− ν)k+2.

2.2. Behavior of the polynomials ρ(k)(z) and σ(k)(z). Concerning the
polynomial ρ(k)(z), by using the derivative formula for B-splines (see for instance [24,
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p. 141], it can be observed that

(2.7) ρ(k)(z) = (z − 1)σ(k−1)(z).

Then its behavior depends on that of the σ polynomials.
Considering the symmetry of the B-splines, it is also easy to verify that σ(k)(z)

has the root z1 = −1 if k is odd and that in all the cases, if z is one of its roots,
then w = 1/z is also one of them. In addition, it will be proved that all the roots of
σ(k)(z), except z1 = −1 for k odd, do not belong to the boundary of the unit circle
of the complex plane. This statement is important in proving the stability properties
of the methods [5, 11], and its proof needs some preliminary considerations.

To begin with, it is almost trivial to recognize that, for any symmetric k-step
linear multistep method, σ(k)(z) has the following form when evaluated at z = eiθ:

(2.8) σ(k)(eiθ) =

{
2 fk(θ) cos( θ2 ) ei k

θ
2 if k = 2ν − 1,

2 fk(θ) e
i k θ

2 if k = 2ν,

where ν is any positive integer and fk(θ) is a trigonometric polynomial defined as

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fk(θ) := β
(k)
ν−1 +

1

cos( θ2 )

ν∑
j=2

β
(k)
ν−j cos

(
(2j − 1)

θ

2

)
if k = 2ν − 1,

fk(θ) :=
β

(k)
ν

2
+

ν∑
j=1

β
(k)
ν−j cos(j θ) if k = 2ν

(in fact, for all j ∈ N
+, cos θ

2 divides cos (2j − 1) θ2 exactly; see also below).

From (2.8), it follows that the proof that the polynomials σ(k)(z) have no roots
of unit modulus, except for z = −1 for odd values of k, is equivalent to the statement
that the trigonometric polynomials fk(θ) are of constant sign in [0 , 2π]. Now, the
problem of establishing whether a trigonometric polynomial of the form (2.9) does
not change sign is well known in the literature. Results may be found in [12, 21];
more recent results can be found in [2]. Unfortunately, it seems that our coefficients

β
(k)
i , i = 0, . . . , k, do not satisfy the conditions established in the above mentioned

references, and we need to look for new conditions valid for our case. In order to
consider simultaneously both the odd and even cases, we introduce the following
vector b(k) ∈ R

k+1:

(2.10) b(k) :=

{
(0, β

(k)
ν−1, 0, β

(k)
ν−2, 0, . . . , β

(k)
0 )T if k = 2ν − 1,

(β
(k)
ν /2, 0, β

(k)
ν−1, . . . , β

(k)
0 )T if k = 2ν,

and the vector function v(k)(θ) : [0 , 2π] → R
k+1,

(2.11) v(k)(θ) :=

(
1, cos

(
θ

2

)
, cos

(
2
θ

2

)
, cos

(
3
θ

2

)
, . . . , cos

(
k
θ

2

))T

.

Using this notation, we can write⎧⎨
⎩ cos

(
θ

2

)
fk(θ) = [b(k)]T v(k)(θ) if k = 2ν − 1,

fk(θ) = [b(k)]T v(k)(θ) if k = 2ν.
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Now, considering that cos(jθ/2) = Tj(cos(θ/2)), where Tj are the Chebyshev polyno-
mials of first kind, an infinite matrix C can be found such that, for all k ∈ N

+, the
following formula holds:

(2.12) v(k)(θ) = Ck+1 w(k)(θ),

where Ck+1 is the principal submatrix of order k + 1 of C and the vector function
w(k)(θ) is defined as

w(k)(θ) := (1, cos(θ/2), cos2(θ/2), . . . , cosk(θ/2))T .

The infinite matrix C is lower triangular and its principal submatrix C2 is coincident
with the identity matrix I2. The entries of the other rows are defined by the following
recurrence relations (derived from the recurrence relation for Chebyshev polynomials):{

Ci,j := −Ci−2,j if j = 1, i ≥ 3,
Ci,j := 2Ci−1,j−1 − Ci−2,j if j ≥ 2, i ≥ 3.

For example, its principal submatrix C8 is

C8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 2 0 0 0 0 0
0 −3 0 4 0 0 0 0
1 0 −8 0 8 0 0 0
0 5 0 −20 0 16 0 0
−1 0 18 0 −48 0 32 0
0 −7 0 56 0 −112 0 64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We remark that through (2.12) the cosine of the jth multiple of θ/2 is expressed
as a linear combination of powers of cos(θ/2) of degree ≤ j. In particular, because
of the checkerboard structure of C, cosines of even multiples of θ/2 become linear
combinations of even powers, while cosines of odd multiples are transformed into
linear combinations of odd powers. We are now in the position to prove the following
theorem.

Theorem 3. For all k ∈ N
+, if

b̂(k) := CT
k+1 b(k)

is nonnegative with at least one positive entry, then the trigonometric polynomials fk
defined in (2.9) are positive.

Proof. The proof is almost trivial considering that the entries of b̂(k) are the
coefficients of the trigonometric polynomials in the new basis of powers of cos(θ/2).
In fact, as already observed, if k is even only even powers are involved in the expression
of fk(θ). If k is odd, only odd powers are involved in the expression of cos(θ/2) fk(θ).
Then, again, only even powers are involved in the expression of fk(θ).

We remark that the theorem holds true for any class of symmetric linear multistep
methods and it allows us to assert that the polynomial σ(k)(z) has no roots of unit

modulus, except z1 = −1 when k is odd, provided that the vector b̂(k) is nonnegative
with at least one positive entry. In the case of BS methods, such a question is settled
by the following theorem.
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Theorem 4. If BS methods are considered, then for all k ∈ N
+ the vector b̂(k)

is nonnegative with at least one positive entry.
Proof. This can be proved by taking into account (2.6). In fact, by using the

same notation as before, such a relation can be posed in matrix form as

(2.13) bk =
1

k + 1
A(k) bk−1,

where A(k) is a bidiagonal rectangular matrix (Ai,j �= 0 only if j = i− 1 or j = i+ 1)
of size (k + 1) × k whose nonzero entries are as follows, assuming that ν = �k/2�:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(k)
2,1 = 2ν,

A
(k)
3,2 = ν,

A
(k)
2i,2i−1 = ν + 1 − i, i = 2, . . . , ν − 1,

A
(k)
2i+1,2i = ν + 1 − i, i = 2, . . . , ν − 1,

A
(k)
2ν,2ν−1 = 1,

A
(k)
2i−1,2i = ν + i, i = 1, . . . , ν − 1,

A
(k)
2i,2i+1 = ν + i, i = 1, . . . , ν − 1.

These relations need to be completed by the following two nonzero entries when k is
even (k = 2ν): {

A
(2ν)
2ν+1,2ν = 1,

A
(2ν)
2ν−1,2ν = 2ν.

Consequently, the vectors b̂k satisfy the recurrence relation

b̂k =
1

k + 1
R(k) b̂k−1,

where R(k) = CT
k+1 A

(k) (C−T
k ). Such a matrix can be constructed in explicit form

considering the checkerboard and bidiagonal structures, respectively, of Ck and A(k).
It is not difficult to see that R(k) has the same structure of A(k). Moreover, its nonzero
entries are, still assuming that ν = �k/2�,

(2.14)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R
(k)
2i,2i−1 = 2 (ν + 1 − i), i = 1, . . . , ν − 1,

R
(k)
2i+1,2i = 2 (ν + 1 − i), i = 1, . . . , ν − 1,

R
(k)
2ν,2ν−1 = 2,

R
(k)
j,j+1 = j, j = 1, . . . , k − 1,

which must be completed, if k = 2ν, by

R
(2ν)
2ν+1,2ν = 2.

These relations can be proved by checking that CT
k+1 A

(k) = R(k) CT
k . Thus, noting

that R(k) is a nonnegative matrix and that b̂1 = (0, 1/2)T , the theorem is proved by
induction.

Before stating Corollary 1, we need the following definition.
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Definition 2.1. A k-degree polynomial is of type (r, k− r− s, s), with r+ s ≤ k,
r, s ≥ 0 if it has r roots inside the open unit disk, k − r − s roots on the unit circle,
and s roots outside the closed unit disk.
We can now state the following corollary.

Corollary 1. For all k ∈ N
+, the trigonometric polynomial fk(θ) defined in

(2.9) and associated with the kth step BS method is positive in [0 , 2π]. Consequently,
if k1 = �k

2 � and k2 = 	k
2 
, the corresponding σ(k)(z) polynomial is of type (k1, 0, k2)

if k is even and of type (k1 − 1, 1, k2) if k is odd.
Proof. The proof trivially follows from Theorems 3 and 4.

2.3. Stability of the BS methods. Taking into account (2.7), Corollary 1
implies that the BS methods with k ≥ 3 are not 0-stable and, as a consequence,
they cannot be used as initial value methods because convergence is lost, as already
pointed out by Loscalzo [17]. However, convergence can be recovered if they are used
as BVMs with k1 = �k

2 � initial and k2 = 	k
2 
 final conditions. This can be proved

by noting that such methods are 0k1,k2-stable, which is a concept generalizing the
classical 0-stability. A deeper discussion about the generalization of the concept of
0-stability and A-stability (see Ak1,k2-stability below) can be found in [5, 6]. In fact
(2.7) implies that ρ(k)(z) has k1 and k2 roots whose modulus is less than or equal to
1 and greater than 1, respectively, and that the roots on the unit circle (1 and, for k
even, −1) are simple. Together with the fact that these methods have order p ≥ k+1,
this leads to convergence, provided that the additional conditions are appropriately
chosen.

On the other hand, we are not only interested in convergence, but also in a
good behavior of the methods for fixed h. More explicitly, we would like these
methods, for fixed h, to generate well-conditioned discrete problems when applied
to well-conditioned continuous ones. In this regard, a BVM using k1 initial and k2

final conditions is said to be Ak1,k2-stable if it generates a well-conditioned discrete
problem for each well-conditioned continuous linear problem, thus generalizing the
well-known concept of A-stability. We say that a method is precisely Ak1,k2-stable if
the associated Dahlquist polynomial π(k)(z, q) := ρ(k)(z)− qσ(k)(z) has constant type
(k1, 0, k2) only for all q ∈ C−. This implies that the boundary of the stability region
is the imaginary axis. Precisely Ak1,k2-stable methods are the safest in the case of
nondissipative problems. In fact it can be proved that Ak1,k2-stable methods which
are not precisely stable can give wrong results for such problems [5].

The connection between the type of the Dahlquist polynomial and the position
of q in the complex plane can be investigated by looking at the boundary locus (see
(2.15) below) associated to the method considered. Essentially, such a set is the locus
in the complex plane, where π(k)(z, q) changes its type, that is, one root reaches the
unit circle. For the BS method, we have the following result.

Theorem 5. The boundary locus related to the k-step BS method is the imaginary
axis of the complex plane if k is odd and is just a segment of the imaginary axis of
the complex plane if k is even.

Proof. The boundary locus Γk of a k-step linear multistep method is defined as

(2.15) Γk :=

{
qk(θ) ∈ C | qk(θ) =

ρ(k)(eiθ)

σ(k)(eiθ)
, θ ∈ [0 , 2π]

}
.

Considering (2.7), we have now that for the k-step BS method the boundary locus is

(2.16) qk(θ) = k (eiθ − 1)
σ(k−1)(eiθ)

σ(k)(eiθ)
.
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On the other hand, (2.8) implies that we can also write

(2.17) qk(θ) =

⎧⎨
⎩

k i sin(θ) fk−1(θ)
fk(θ) if k = 2ν,

2k i tan( θ2 ) fk−1(θ)
fk(θ) if k = 2ν + 1,

where i denotes the imaginary unit. The statement of the theorem is proved by using
the result proved in Corollary 1.

Noting that Γk is the locus where the Dahlquist polynomial changes its type it
then follows that such a type is constantly equal to (k1, 0, k2) in C− for all k. Since
Γk coincides with the imaginary axis for k odd, in this case π(k)(z, q) changes its type,
moving from C− to C+. Consequently, we can conclude that the BS methods are
always Ak1,k2-stable and that they are precisely Ak1,k2-stable if k is odd (see [5]).

We postpone until section 4, after the definition of the spline extension, the dis-
cussion about possible strategies for choosing the necessary additional conditions. At
the moment, we assume that each method, together with the given initial or bound-
ary condition and with the k − 1 additional conditions, generates a unique discrete
solution.

3. The spline extension. Let us now assume that a numerical solution {yi, i =
0, . . . , N} has been computed by the k-step BS method used as a BVM. Thus, if we
put y′

i := f(xi,yi), i = 0, . . . , N , we are interested in determining a vector spline

function sk(x) = (s1
k(x), . . . , sdk(x))T with sjk ∈ Sk,N , j = 1, . . . , d, such that

(3.1)

{
sk(xi) = yi, i = 0, . . . , N,

s′k(xi) = y′
i, i = 0, . . . , N

(i.e., a spline solution of the Hermite interpolation problem at the mesh points),
where Sk,N denotes the classical linear functional space of piecewise polynomials of
degree k + 1 and knots xi, i = 0, . . . , N, with global smoothness Ck([a , b]). Now,
after defining k + 1 auxiliary left knots xi = a + ih, i = −(1 + k), . . . ,−1, and k + 1
auxiliary right knots xi = a + ih, i = N + 1, . . . , N + k + 1, we can write

Sk,N := 〈B−(1+k),k+2, . . . , BN−1,k+2 〉,

where

(3.2) Bj,k+2(x) := Bk+2

(
x− xj

h

)
, j = −(1 + k), . . . , N − 1.

Thus, using the B-spline representation of any sjk ∈ Sk,N , we can write

(3.3) sk(x) =

N−1∑
i=−(1+k)

ciBi,k+2(x), x ∈ [a, b],

where ci ∈ R
d, i = −(1+k), . . . , N−1, are the vector spline coefficients we are looking

for. Consequently, (3.1) can be rewritten in the compact form

(3.4) (A⊗ Id) c = (yT
0 , . . . ,y

T
N , h(y′

0)
T , . . . , h(y′

N )T )T ,

where c = (cT−(1+k), . . . , c
T
N−1)

T ∈ R
d (N+k+1), Id is the identity matrix of size d× d,

and A is the block matrix

(3.5) A :=

(
A1

A2

)
.
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Considering (3.2) and (2.3), it is easy to show that both the block matrices A1, A2 in
(3.5) are Toeplitz matrices of size (N + 1) × (N + k + 1),

(3.6) A1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β
(k)
0 · · · β

(k)
k 0 . . . . . . 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 β
(k)
0 · · · β

(k)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.7) A2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(k)
0 · · · α

(k)
k 0 . . . . . . 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 α
(k)
0 · · · α

(k)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The spline solution of (3.1), sk(x), is uniquely determined, as proved in the following
theorem.

Theorem 6. The rectangular linear system (3.4) has only one solution if the
entries of the vector on the right-hand side satisfy (2.5) with α and β coefficients as
defined in (2.3).

Proof. From the classical theory of spline interpolation, we know that the coef-
ficient matrix defined in (3.5) is a full rank matrix. In fact, this is a consequence of
the general results about osculatory spline interpolation first presented in the classic
paper [15] and reported also in [9, Thm. XIII.4, p. 228]. On the other hand, we
know that the right-hand side of (3.4), (yT

0 , . . . ,y
T
N , h(y′

0)
T , . . . , h(y′

N )T )T , satisfies
the N − k + 1 linear conditions given in (2.5), because the numerical solution is com-

puted using just these relations. Now it is also easy to verify that, if a
(j)
1 , . . . ,a

(j)
N+1

denote the rows of Aj , j = 1, 2, then

k∑
i=0

α
(k)
i a

(1)
n+i =

k∑
i=0

β
(k)
i a

(2)
n+i, n = 0, . . . , N − k.

Consequently, in (3.4) there are N − k + 1 redundancies, and this implies that there
exists a unique solution of it since A is a full rank matrix.

3.1. Procedure for constructing the spline extension. Once we have proved
that there exists a unique solution, sk(x), of (3.1), we need to choose an algorithm
for the computation of its coefficient vectors ci, i = −(1 + k), . . . , N − 1. Clearly, we
could solve (3.4) in the least squares sense, but this is too expensive, considering we
know that there exists an exact solution of it. From spline theory (see again [9, Thm.
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Table 3.1

The condition numbers of M1 in the Euclidean norm.

N k = 1 k = 2 k = 3 k = 4 k = 5
5 10.9 4.1 49.8 260.2 4708.7

10 20.2 3.9 71.0 226.0 5515.6
20 38.9 3.9 104.0 223.9 7503.7
40 76.3 3.9 156.3 223.7 10478.3
80 151.2 3.9 245.1 223.6 14747.3

XIII.4, p. 228]), we know that the square submatrix M1 of A, given by

(3.8) M1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

a
(2)
1
...

a
(2)
k1

⎞
⎟⎟⎠

A1⎛
⎜⎜⎝

a
(2)
N−k2+1

...

a
(2)
N

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is nonsingular, where we recall that k1 = �k
2 � and k2 = 	k

2 
. So we could solve the
equivalent square linear system

(3.9)
(M1 ⊗ Id) c

= (h(y′
0)

T , . . . , h(y′
k1

)T ,yT
0 , . . . ,y

T
N , h(y′

N−k2+1)
T , . . . , h(y′

N )T )T .

In the case of odd degree splines, interpolants at the knots are often determined by
solving such a system. Nevertheless, this is a good idea only if k is even. Looking at
Table 3.1, it is possible to realize that the condition number of M1 does not depend
on N (i.e., M1 is well conditioned) only if k is even. If k is odd, it grows with N in
a linear fashion (i.e., M1 is weakly well conditioned). This behavior is explained by
Theorem 7 and Corollary 2.

Unfortunately it is the case of k odd that we are more interested in because of
the precise stability feature of the corresponding BS methods (see Theorem 5). Since
we have the freedom of choosing from among the equations in (3.4), we have replaced
(3.9) with the equivalent linear system

(3.10)
(M2 × Id) c

= (yT
0 , . . . ,y

T
k1
, (y0 + hy′

0)
T , . . . , (yN + hy′

N )T ,yT
N−k2+1, . . . ,y

T
N )T ,

where

(3.11) M2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

a
(1)
1
...

a
(1)
k1

⎞
⎟⎟⎠

A1 + A2⎛
⎜⎜⎝

a
(1)
N−k2+1

...

a
(1)
N

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Table 3.2

The condition numbers of M2 in the Euclidean norm.

N k = 1 k = 2 k = 3 k = 4 k = 5
5 4.6 10.5 46.6 493.4 6179.7

10 4.6 10.3 46.3 432.6 4861.2
20 4.6 10.3 46.3 416.5 4850.7
40 4.6 10.3 46.3 416.1 4850.2
80 4.6 10.3 46.3 416.1 4850.2

Now the condition number of the new matrix M2 does not depend on N for any value
of k, as confirmed by Table 3.2 and explicitly proved in Theorem 7 and Corollary 3.
Before introducing Theorem 7, we recall that the polynomial and the symbol associated
to a (k + 1)-banded Toeplitz matrix T = (ti,j), ti,j = τj−i, with k1 nonzero lower

diagonals are p(z) =
∑k

i=0 τ−k1+i z
i and z−k1p(z), respectively (see, e.g., [13, 14]).

Theorem 7. Assume that
1. k, k1, and k2 are three positive integers, with 1 ≤ k1 < k and k2 = k − k1;
2. M = T +R, where T is an n×n, n > 2k, (k+1)-banded Toeplitz matrix with

k1 nonzero lower diagonals;
3. R is a matrix having nonzero entries Ri,j only if i = 1, . . . , k1 and j =

1, . . . , k + k1 or if i = n− k2 + 1, . . . , n and j = n− k − k2 + 1, . . . , n;
4. the polynomial p(z) associated to T is of type (k1 − s, s, k2), s = 0, 1.

Then, constants η > 0 and 0 < ζ < 1 independent of n exist such that the following
two statements hold:

(a) The matrix |M−1| whose entries are the absolute values of the corre-
sponding ones in M−1 satisfies the componentwise bound

(3.12)
|M−1| ≤ η(In + Δn + ΔT

n ) for s = 0,
|M−1| ≤ η(In + Ωn + ΔT

n ) for s = 1,

where

Δn :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0

ζ 0
. . .

...
...

. . .
. . . 0

ζn−1 . . . ζ 0

⎞
⎟⎟⎟⎟⎟⎠

n×n

and Ωn =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0

1 0
. . .

...
...

. . .
. . . 0

1
. . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

n×n

;

(b) ||M−1||∞, ||M−1||1, ||M−1||2 ≤ η
1−ζ for s = 0,

||M−1||∞, ||M−1||1, ||M−1||2 ≤ ηn for s = 1.
Proof. If the perturbation matrix R is not taken into account, the proof fol-

lows immediately from a more general result about conditioning of banded Toeplitz
matrices given in [1] and in [5, p. 74]. Then, since the matrix M−1 can be recast as

(3.13) M−1 = (In + T−1R)−1T−1,

the proof is reduced to showing that the matrix (In + T−1R)−1 exists and has en-
tries bounded with respect to n. This has been done in [14], and we omit the long
manipulation for brevity.

Corollary 2. The matrix M1 defined in (3.8) is well conditioned in the case of
k even and weakly well conditioned in the case of k odd.
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Proof. M1 can be split as M1 = T1 + R1, where T1 is a (k + 1)-banded Toeplitz
matrix whose associated symbol is z−k1σ(k)(z) and R1 satisfies the related hypothesis
assumed in Theorem 7. Having proved in section 2.2 that σ(k)(z) is of type (k1, 0, k2)
if k is even and of type (k1 − 1, 1, k2) if k is odd, the proof follows from the previous
theorem.

Corollary 3. The matrix M2 defined in (3.11) is well conditioned for all values
of k.

Proof. M2 can be split as M2 = T2 + R2, where T2 is a k-banded Toeplitz
matrix whose associated symbol is z−k1(ρ(k)(z) + σ(k)(z)). In section 2.3 it has been
proved that the k-step BS method is Ak1,k2-stable. This implies that the polynomial
ρ(k)(z) − qσ(k)(z) always has the same type (k1, 0, k2) for all q ∈ C−. By taking
q = −1, the corollary follows from the previous theorem.

4. The additional conditions. The BVM usage of a k-step linear multistep
formula does not impose all the k − 1 additional conditions at the beginning of the
interval, but it carefully splits such conditions at the beginning and at the end of
the interval. It is interesting to note that the construction of interpolating splines has
exactly the same degrees of freedom, and usually the required additional conditions are
split similarly. In order to show the deep similarity between the spline interpolation
process and the BVM approach, we consider the classical cubic spline interpolation;
see [9, p. 53]. If the free slopes denoted there by si, i = 2, n− 1 are taken to be equal
to f(xi, yi) defined in (1.1), then the continuity conditions give rise to the 2-step BS
method, i.e., Simpson’s method. On the other hand, it is known that the boundary
conditions suggested in [9] are imposed one at the beginning and the other at the end
of the interval, as suggested, using different reasoning, in [5]. The use of Simpson’s
method with both conditions at the beginning gives rise to a very unstable method.

Therefore, in order to use the k-step BS method correctly as a BVM we need to
define the k1 = �k

2 � initial and the k2 = 	k
2 
 final conditions. One condition is natu-

rally given by problem (1.1); the others need to be defined. There are many possible
choices for the additional boundary conditions, precisely as in the classical definition
of spline interpolating functions. Usually, they are obtained by using different linear
multistep methods of order ≥ p − 1. Here, alternatively, we can take advantage of
the methodology used in the spline setting. One possibility is to use the so called
“not-a-knot” condition which implies that some knots of the spline near the extremes
of the integration interval are removed. The not-a-knot condition at the generic point

xj is s
(k+1)
k (x−

j ) = s
(k+1)
k (x+

j ). Such a condition can be translated into a linear condi-
tion on the functional and derivative values assumed by the spline at the knots. Each
translated condition will become an additional condition. For example, it is known
(see [9]) that for the Simpson method the not-a-knot condition at xN−1 corresponds
to the equation

(4.1) −yN−2 − 4yN−1 + 5yN = h (4y′
N−1 + 2y′

N ).

For brevity, we avoid presenting the manipulation needed to obtain such conditions
for k > 2 (it is fully introduced in the general case of a nonuniform mesh in [19]).

Different techniques are also possible. For example, one can compute an estimate
of some derivatives of y(x) at the boundary points using finite differences. In the
above example, a good choice (which does not affect the fourth order convergence)
could be to compute the derivative using the backward differentiation formula of the
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same order, that is,

y′
N =

−2yN−3 + 9yN−2 − 18yN−1 + 11yN

6h
.

This means that y′
N is taken to be equal to the derivative value at xN of the cubic

polynomial passing through (xi,yi), i = N − 3, . . . , N.

5. Convergence of the spline extension. An important feature of the class
of BS methods is the convergence in the uniform norm of the related continuous
extension sk(x) to the solution y(x) of (1.1). We now prove the following theorem,
where for the sake of brevity we restrict ourselves to d = 1.

Theorem 8. Let us assume that y ∈ Ck+2[a, b]. Then

‖sk − y‖∞ ≤ Ck,y h
p,

where Ck,y is a suitable constant depending on k and y and

(5.1) p =

{
k + 2 if k is even,
k + 1 if k is odd.

Proof. Clearly, we can write

(5.2) ‖sk − y‖∞ ≤ ‖sk − ŝk‖∞ + ‖ŝk − y‖∞ ,

where ŝk(x) ∈ Sk,N is the best approximation of y(x) in Sk,N . The second term on
the right-hand side of (5.2) can be bounded using the general result proved in the
Jackson-type theorem reported in [9, Thm. XII.1, p. 170],

(5.3) ‖ŝk − y‖∞ ≤ C
(1)
k hk+2 ‖y(k+2)‖∞,

where C
(1)
k is a constant depending only on k and y(k+2) denotes the (k+2)-derivative

of y.
So let us consider the first term on the right-hand side of (5.2). If sk(x) =∑N−1

i=−(1+k) ci Bi,k+2(x), and ŝk(x) =
∑N−1

i=−(1+k) ĉi Bi,k+2(x), since the B-splines

Bi,k+2(·), i = (−1 + k), . . . , N − 1, are nonnegative and satisfy the unit partition
property in [a , b], we can write

‖sk − ŝk‖∞ =

∥∥∥∥∥∥
n−1∑

i=−(1+k)

(ci − ĉi)Bi,k+2(x)

∥∥∥∥∥∥
∞

≤ ‖c − ĉ‖∞.

Now, as mentioned in section 4.1, the coefficient vector c can be safely computed
for all k by solving linear system (3.10). Thus, considering that p defined in (5.1) is
the order of the k-step BS method, we can write

(5.4) M2 c = by + O (hp),

where M2 is the square matrix defined in (3.11) and by = (y(x0), . . . , y(xk1
),

y(x0) + hy′(x0), . . . , y(xN ) + hy′(xN ), y(xn−k2+1), . . . , y(xN ))T . On the other hand,
since M2 is nonsingular, we can also write

M2 ĉ = bŝk ,
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where bŝk is defined similarly to by. Now, (5.3) implies that bŝk = by + O (hk+2).
Thus,

M2 (c − ĉ) = O (hp).

Recalling from section 4.1 that the condition number of M2 does not depend on N ,
we can conclude that ‖c− ĉ‖∞ = O (hp), and this implies that there exists a suitable
constant C̄k,y depending on k and y such that

(5.5) ‖sk − ŝk‖∞ ≤ C̄k,y h
p.

Now, using (5.2), the statement of the theorem is proved.

6. Numerical results. In order to test the features of the BS methods and of the
related spline extensions, we have applied the methods for the numerical solution of
classical test problems for which we know the exact solutions. We presents numerical
results using both uniform (Problem 1 and 2) and nonuniform (Problem 3) meshes.

The additional (k1 − 1) = �k
2 � − 1 left and k2 = 	k

2 
 right conditions have been
chosen by requiring that the associated spline extension sk verifies the not-a-knot
condition at the knots x1, . . . , xk1−1 and xN−k2

, . . . , xN−1. As pointed out in section 4,
alternative choices are possible, but this one guarantees a quite natural additional
request to the spline extension.

In the case of a nonuniform mesh we use a preliminary implementation of the BS
methods written in Matlab that is very similar to the one presented in [18, 20] for the
code TOM; they are especially similar concerning the stepsize variation strategy and
the solution of the nonlinear equations. The continuous extension is used to compute
the new approximation of the solution if the mesh is changed. This approximation
is also used in the stopping criteria for the quasi-linearization procedure. We do not
give details of this implementation because here we are interested only in showing
that these methods can be effectively used for the numerical solution of boundary
value problems. The extension of the BS methods to the general case of a nonuniform
mesh requires the computation of the variable coefficients of the numerical scheme.
Details on this topic are presented in [19].

Problem 1. The first problem is the second order boundary value problem

(6.1)

{
εy′′(x) = y′(x), x ∈ [0 , 1],
y(0) = 1, y(1) = 0.

with ε = 0.05, which corresponds to a moderately and poorly conditioned continuous
problem. The results related to this test problem are presented in Table 6.1. For each
value of N and k two relative errors are reported, one related to the numerical solution

and the other to the spline extension, defined by Em
(k)
N := maxi=0,...,N |sk(xi) −

y(xi)|/max(1, |y(xi)|) and Es
(k)
N := ‖(sk − y)/max(1, |y|)‖∞, respectively. The latter

has always been evaluated sampling both sk and y on 3000 uniformly spaced points
of the integration interval.

Table 6.1 shows both Em
(k)
N and Es

(k)
N for different values of k. More precisely,

each row contains the results for two successive BS methods of the same order (i.e.,

Em
(k)
N , Es

(k)
N and Em

(k+1)
N , Es

(k+1)
N for a fixed even value of k). The columns labeled

LN contain the values of the numerically computed order of convergence for the spline
extension. It is evident that for k even the error in the solution is greater with respect
to the method of the same order with odd k.
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Table 6.1

Test problem 1.

k N Em
(k+1)
N Es

(k+1)
N L

(k+1)
N Em

(k)
N Es

(k)
N L

(k)
N

2 40 2.36 10−4 2.42 10−4 3.96 1.54 100 1.55 100

2 80 1.11 10−5 1.13 10−5 4.42 8.87 10−2 8.88 10−2 4.12
2 160 4.32 10−7 4.33 10−7 4.71 6.59 10−3 6.60 10−3 3.75
2 320 1.50 10−8 1.50 10−8 4.85 4.54 10−4 4.51 10−4 3.87
2 640 4.96 10−10 4.92 10−10 4.93 2.98 10−5 2.95 10−5 3.93

4 40 1.75 10−5 1.83 10−5 5.39 2.60 10−3 2.60 10−3 4.11
4 80 2.59 10−7 2.63 10−7 6.12 7.87 10−5 7.87 10−5 5.04
4 160 2.80 10−9 2.81 10−9 6.54 1.70 10−6 1.70 10−6 5.53
4 320 2.58 10−11 2.58 10−11 6.76 3.13 10−8 3.13 10−8 5.76
4 640 2.19 10−13 2.17 10−13 6.89 5.30 10−10 5.26 10−10 5.90

We can thus conclude that, in general, BS methods with odd k are preferable.
Problem 2. The second test considered is the harmonic oscillator equation with

boundary conditions described by

(6.2)

⎧⎨
⎩

y′(x) = Ay(x), x ∈ [0 , 2π],
y1(0) = 3,
y2(2π) = 3,

where A =

(
0 5

−5 0

)
. As is known, the solution in the phase plane is a circle (with

radius 3
√

2). Figures 6.1 and 6.2 show the obtained results. The values used for k are
3 and 5. In both cases the spline extension does not introduce undesirable additional
perturbations, but for relatively small mesh sizes it nicely reproduces the shape of the
continuous solution.

Problem 3. The third test problem is

(6.3)

{
εy′′(x) = y(x) + y2(x) − exp(−2x/

√
ε), x ∈ [0 , 1],

y(0) = 1, y(1) = exp(−1/
√
ε),

whose exact solution is y(x) = exp(−x/
√
ε). This is a nonlinear problem that has

been solved using a variable stepsize implementation of the numerical schemes with
k odd. This problem has been chosen because we know the exact solution, so we can
compute the error. Moreover, the numerical solution presents a boundary layer at
x = 0, and the use on a nonuniform mesh is preferable.

Table 6.2 reports the numerical results obtained for different values of ε and
different values of the relative and absolute tolerances used to compute the solution.
In the example we use tol = rtol = atol and we accept the solution if

max
i=1,N

|yi − ŷi|/max(atol, rtol|ŷi|) < 1,

where yi is the computed solution at the mesh points, and ŷi is an approximation of the
exact solution computed using a higher order method in the same class by a deferred
correction like procedure. We compare the order 4, 6, and 8 (k = 3, 5, 7) schemes.
Their behavior seems to be consistent with the order of the methods. For lower values
of the tolerances the order 8 scheme reaches the solution using the minimum number
of mesh points (Nmax in the table). The error at the mesh points and the error in
the spline are very similar, so we report only the error at the mesh points (Em in the
table).
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Fig. 6.1. Test problem (6.2). Results for the case when k = 3 (’-’ exact solution; ’-*’ computed
solution and mesh points).
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Fig. 6.2. Test problem (6.2). Results for the case when k = 5 (’-’ exact solution; ’-*’ computed
solution and mesh points).
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Table 6.2

Test problem 3.

k = 3 k = 5 k = 7

ε Nmax
hmax

hmin
Em Nmax

hmax

hmin
Em Nmax

hmax

hmin
Em

tol = 1e-4

10−2 21 1.0e0 2.0e-4 21 1.0e0 1.1e-4 21 1.0e0 1.1e-04
10−4 97 2.7e1 3.8e-6 105 2.8e1 3.7e-6 99 2.0e1 3.7e-06
10−6 131 1.3e3 5.7e-7 133 1.3e3 2.9e-7 156 5.1e2 7.1e-08

tol = 1e-6

10−2 87 2.5e0 6.4e-8 21 1.0e0 1.5e-5 21 1.0e0 1.9e-06
10−4 169 1.3e1 1.8e-7 105 2.8e1 9.3e-8 99 2.0e1 9.1e-08
10−6 331 6.4e2 2.3e-7 233 3e+2 3.6e-9 192 2.5e2 1.2e-09

tol = 1e-8

10−2 173 4.5e0 4.8e-09 41 1.0e0 2.3e-07 41 1.0e0 6e-09
10−4 631 2.7e1 3.5e-09 185 1.4e1 6.8e-10 99 2.0e1 2.7e-09
10−6 1085 2.6e3 1.2e-08 249 3e2 6.0e-10 284 2.1e2 3.4e-11

The behavior of Em is consistent with the order of the methods. For lower values
of the tolerances higher order methods reach the solution using a smaller number of
mesh points. As expected, the ratio hmax/hmin increases as ε decreases, showing that
the BS methods could also be used with the nonuniform mesh. More details and
examples about the BS methods on nonuniform grids are presented in [19].

Appendix (alternative proof of the convergence order). We give here an
alternative proof that p ≥ k + 1, starting from the following identity, which holds for
arbitrary t, x ∈ R, (see for instance [24, Thm. 4.21, p. 125]):

(A.1) (t − x)k+1 =

+∞∑
i=−∞

φi,k+1(t)Bk+2(x− i),

where φi,k+1 ∈ Πk+1 is the factorial power

φi,k+1(t) := (t− i− 1)(k+1).

Deriving (A.1) successively with respect to t, we get

(A.2) (k + 1)(j) (t− x)k+1−j =

+∞∑
i=−∞

dj φi,k+1

dj t
(t) Bk+2(x− i), j = 0, . . . , k + 1.

Assuming that t = x, these identities allow us to rederive the well-known partition of
unity property of B-splines (obtained for j = k + 1),

(A.3)

+∞∑
i=−∞

Bk+2(x− i) = 1,

and the identities

(A.4)

+∞∑
i=−∞

dj φi,k+1

dj x
(x) Bk+2(x− i) = 0, j = 0, . . . , k.
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If we consider x ∈ [k + 1 , k + 2], the range for the index i in both (A.3) and (A.4)
can be restricted to i = 0, . . . , k+1 and so these identities can be rewritten in matrix
form using finite matrices as

(A.5) Z(x)B(x) = (1, 0, . . . , 0)T ,

where B(x) := (Bk+2(x), . . . , Bk+2(x − k − 1))T and where Z(x) is a square matrix
of order k + 2 defined as

Z(x) :=

⎛
⎜⎜⎜⎝

1 · · · 1
dk φ0,k+1

dk x
(x) · · · dk φk+1,k+1

dk x
(x)

...
...

...
φ0,k+1(x) · · · φk+1,k+1(x)

⎞
⎟⎟⎟⎠ .

Now each φi,k+1(x) is a polynomial of degree k + 1 and can be expressed in terms of
the classical power basis as

φi,k+1(x) =

k+1∑
r=0

S(k+1)
r (x− i− 1)r,

where the coefficients S
(k+1)
r , r = 0, . . . , k + 1, are the Stirling numbers of first kind.

Thus, there exists a nonsingular constant lower triangular matrix L such that

(A.6) Z(x) = LW (x),

where W (x) is the Vandermonde matrix

W (x) :=

⎛
⎜⎜⎜⎝

1 · · · 1
x− 1 · · · x− k − 2

...
...

...
(x− 1)k+1 · · · (x− k − 2)k+1

⎞
⎟⎟⎟⎠ ,

and where the nonzero elements of L are L1,1 = 1 and Li,j = S
(k+1)
j+k−i+1 (j + k − i +

1)(k+2−i), j ≤ i , i = 2, . . . , k + 2.
Replacing (A.6) in (A.5), we get W (x)B(x) = L−1(1, 0, . . . , 0)T and, deriving

with respect to x, we obtain the formula

(A.7) W ′(x)B(x) + W (x)B′(x) = 0,

where the meanings of W ′(x) and B′(x) are obvious. Considering that

W ′(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0

1
. . . · · ·

...

0 2
. . . · · ·

...
...

. . .
. . .

. . .
...

0 0 · · · k + 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

W (x) ,

and that ⎧⎪⎨
⎪⎩

B(k + 2) = (0, β
(k)
0 , . . . , β

(k)
k )T = (0, β

(k)
k , . . . , β

(k)
0 )T ,

B′(k + 2) = (0, α
(k)
0 , . . . , α

(k)
k )T = − (0, α

(k)
k , . . . , α

(k)
0 )T ,
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evaluating (A.7) in x = k + 2, we get the usual k + 1 order conditions (expressed in
matrix form, see, e.g., [5]).

Acknowledgments. The authors are grateful to the referees for several helpful
comments.
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Abstract. A weighted-norm least-squares method is considered for the numerical approximation
of solutions that have singularities at the boundary. While many methods suffer from a global loss
of accuracy due to boundary singularities, the least-squares method can be particularly sensitive to
a loss of regularity. The method we describe here requires only a rough lower bound on the power of
the singularity and can be applied to a wide range of elliptic equations. Optimal order discretization
accuracy is achieved in weighted H1, and functional norms and L2 accuracy are retained for boundary
value problems with a dominant div/curl operator. Our analysis, including interpolation bounds
and several Poincaré-type inequalities, are carried out in appropriately weighted Sobolev spaces.
Numerical results confirm the error bounds predicted in the analysis.
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1. Introduction. In this paper, we develop a method for treating div/curl sys-
tems with reduced regularity. While motivated by first-order systems that arise from
second-order elliptic boundary value problems, div/curl systems appear in many con-
texts, such as for example, Maxwell’s equations and the vorticity form of Stokes
equations. These problems have the fortunate property of a guaranteed smooth solu-
tion as long as the data and domain are smooth. However, many problems of interest
are posed in nonsmooth domains and, as a consequence, lose this property at a finite
number of points on the boundary in two dimensions or along curves on the boundary
in three dimensions. In the present paper, we study two-dimensional problems that
have nonsmooth solutions at irregular boundary points, that is, points that are cor-
ners of polygonal domains, locations of changing boundary condition type, or both.
Similar behavior occurs in problems with discontinuous material coefficients, and the
methods presented here can easily be extended to that situation.

Standard solution techniques that attempt to approximately solve a div/curl sys-
tem with reduced regularity using H1-conforming finite elements will, in general, fail
to converge. This phenomenon can be explained by noting that the Sobolev space
(H1)2 is a closed subspace of H(div)∩H(curl) (see section 2), which implies either that
(H1)2 = H(div) ∩H(curl), the case of full regularity, or (H1)2 is a proper subspace.
In this case, the codimension is finite and is spanned by so-called singular functions.
In the presence of reduced regularity, the solution will, in general, not be in (H1)2.
A standard finite element method using H1-conforming elements will converge to the
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element of (H1)2 closest to the true solution in the H(div) ∩ H(curl) norm. Local
mesh refinement will not alter this outcome.

If a basis for the singular functions is known, it can be incorporated directly
into the finite element space (cf. [10, 16, 24]). In [3, 4], this approach is applied to
div/curl systems and shown to restore optimal convergence throughout the domain
at a minimal additional cost. For some two-dimensional problems, the singular basis
functions are known and can be included in the finite element space. For the other
problems, or in three dimensions, the exact character of the singular functions is less
understood, which makes this approach more difficult to implement.

As a different type of remedy for this so-called pollution effect, least-squares
methods based on inverse norms can be effective for problems with irregular boundary
points, discontinuous coefficients, and data in H−1. For example, in [5, 8, 11, 12, 13,
19], the functional is posed in terms of H−1-norms rather than L2-norms, resulting in
optimal L2-approximations to the solution. A more recent approach, called FOSLL∗,
uses an inverse norm induced by the equations and is shown in [14, 22] to be more
efficient than the H−1-norm methods.

Graded mesh refinement in weighted Sobolev spaces has been shown to be ef-
fective in restoring optimal convergence, in L2- and H1-norms, in the context of a
Galerkin formulation of second-order elliptic problems with reduced regularity (cf.
[2, 1]). However, in that context, the solution is in H1. Convergence would occur,
although more slowly, without weighting and mesh refinement.

In [15], a weighted norm and a sequence of graded meshes is used in an H(div)
least-squares functional, arising from a second-order elliptic problem, to restore op-
timal convergence for the primal variable, in both L2- and H1-norms, if the flux
variable is approximated in a finite element space satisfying the grid decomposition
property, for example, Raviart–Thomas elements (cf. [6]). The flux variable converges
in a weighted H(div)-norm.

In this paper we examine div/curl systems that lack regularity within the first-
order system least-squares (FOSLS) framework. The basic FOSLS approach is to
recast the original system as an appropriate first-order system and apply an L2 min-
imization principle over the residual of the equations. If possible, this reformulation
is done by minimizing a functional whose quadratic part is equivalent to the product
H1-norm, indicating that the process is similar to solving a weakly coupled system
of Poisson-like equations. This equivalence also guarantees optimal H1-accuracy for
standard discretizations. For div/curl systems with reduced regularity, as briefly men-
tioned above, the L2-based functional fails to be H1-equivalent and, as a consequence,
standard discretizations suffer from the pollution effect. Here, a weighted-norm least-
squares method is developed that restores optimal convergence using H1-conforming
finite elements without graded mesh refinement. It replaces the L2-norms in the
FOSLS functional with weighted L2-norms, making the functional norm equivalent to
a weighted H1-norm. With an appropriate weighting function, this method recovers
optimal order accuracy in the weighted L2- and H1-norms and retains optimal L2

convergence even near the singularity. Our method requires only the power of the
singularity (not the actual singular solution) to be known a priori and, in practice,
can be used with only a rough estimate of the power of the singularity, which can be
adaptively determined if unknown (cf. [4]).

The method developed here has some similarity to [15] but considers an H(div)∩
H(curl) functional and considers more general boundary conditions. Most important,
our analysis admits a more aggressive weighting, resulting in optimal order accuracy in
the weighted norms without mesh refinement. In addition, we prove several Poincaré-
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type inequalities in weighted Sobolev spaces under a variety of boundary conditions
that, in addition to being necessary for our main result, may be of independent inter-
est.

We use Poisson’s equation on a domain with a reentrant corner as a model problem
and as the formal setting for analysis. The resulting div/curl system is the focus. The
analysis in this paper is restricted to two dimensions. However, the approach suggests
a natural generalization to problems with reduced regularity due to discontinuous
coefficients and to problems in three dimensions.

This paper is organized as follows. Section 2 contains notation and a preliminary
discussion. In section 3, the weighted FOSLS functionals are described. Section 4
contains Poincaré inequalities and regularity results in weighted Sobolev spaces. Error
bounds for the weighted FOSLS functional are presented in section 5, and section 6
contains computational results.

2. Singular solutions and preliminaries. For vector function u = (u1, u2)
t,

let the divergence and curl of u be defined in the standard way: ∇ · u = ∂xu1 + ∂yu2

and ∇× u = ∂xu2 − ∂yu1. Further, define the formal adjoint of the curl operator by

∇⊥q =

(
∂yq
−∂xq

)
.

We use standard notation for Sobolev spaces Hk(Ω)d, corresponding inner product
(·, ·)k,Ω, and norm ‖ ·‖k,Ω, for k ≥ 0. We drop subscript Ω and superscript d when the
domain and dimension are clear by context. Since H0(Ω) coincides with L2(Ω) we
often denote ‖ · ‖0 by ‖ · ‖. Define the subspaces of L2(Ω) induced by the divergence
and curl of u by

H(div) = {u ∈ L2(Ω) : ‖∇ · u‖ < ∞},
H(curl) = {u ∈ L2(Ω) : ‖∇ × u‖ < ∞}.

We also make use of the following general inequalities for nonnegative a and b:

(2.1) |a|2 + |b|2 ≤ |a + b|2 ≤ 2(|a|2 + |b|2).

Consider the function f(r, θ) = ra in two-dimensional polar coordinates. Assume
that the origin lies on the boundary of domain

Ωw = {(r, θ) : 0 < r < R, 0 < θ < ω < 2π},

as pictured in Figure 2.1. By a direct computation it is clear that f ∈ Hk(Ω) only
for k < a + 1.

Now, consider Poisson’s equation on a domain in R
2 with a corner of interior angle

ω. It is well known that, for the case of Dirichlet or Neumann boundary conditions,
the solutions of this boundary value problem may include those with radial part of
the form p ∼ r

π
ω in a local polar coordinate system centered at the corner. Thus, for

the case of reentrant corners, ω > π, the solution fails to be in H2(Ω) and we say that
the problem has a singularity (or singular solution). For problems with Dirichlet and
Neumann boundary conditions meeting at the corner, solutions may have components
of the form p ∼ r

π
(2ω) . Thus, for mixed boundary conditions, singularities may occur

at corners with ω > π/2. We now explore this issue in more detail.
Define the power of the singularity to be α = π/ω for Dirichlet or Neumann

boundary conditions and α = π/(2ω) for mixed boundary conditions. The solution
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ω

R

Fig. 2.1. Simple wedge-shaped domain, Ωw.

to Poisson’s equation may be written as

p(r, θ) = p0(r, θ) + s(r, θ),

where p0(r, θ) ∈ H2(Ω) and s(r, θ) ∈ H1+m(Ω) for m < α. The singular part of the
solution has the form

s(r, θ) = rα(κ1 sin(αθ) + κ2 cos(αθ)),

where the values of κ1 and κ2 depend on boundary conditions (see [17, 18]).
For the FOSLS formulation of this problem, we may similarly decompose unknown

u = ∇p as

u(r, θ) = u0(r, θ) + ∇s(r, θ),

where ∇s(r, θ) has the form

∇s(r, θ) = αrα−1

(
κ1 sin(α− 1)θ + κ2 cos(α− 1)θ
κ1 cos(α− 1)θ − κ2 sin(α− 1)θ

)
.

Thus, the unknown u(r, θ) is in Hk(Ω) only for k < α.
For example, consider Poisson’s equation posed on the simple domain in Fig-

ure 2.1. Let the solution to this boundary value problem in polar coordinates be
p = χ(r)r

2
3 sin(2θ/3), where χ(r) is a smooth transition function that is 1 on a plat-

form near the origin and vanishes at the boundaries not adjacent to the origin. Then,
p = 0 on ∂Ω and

Δp =
1

r
∂r(r∂rp) +

1

r2
∂2
θθp

=

(
r

2
3χ′′(r) +

7

3
r

−1
3 χ′(r)

)
sin(2θ/3),

and, thus, it is clear that Δp ∈ L2(Ω), but p /∈ H2(Ω). We say this problem fails
to provide full lifting of the data (from L2(Ω) to H2(Ω), for example). The solution,
u = ∇p, is thus not in H1(Ω).

3. Weighted-norm least squares. As before, let Ω be a domain with a corner
of interior angle ω at the origin, and we may, without loss of generality, further assume
diam(Ω) ≤ 1. For f ∈ L2(Ω), let p satisfy

(3.1)

⎧⎪⎨
⎪⎩

−Δp = f in Ω,

p = 0 on ΓD,

n · ∇p = 0 on ΓN ,
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where n is the outward unit normal to Ω and ∂Ω = Γ̄D ∪ Γ̄N . When this problem
is H2 regular, the normal FOSLS methodology is to introduce the new unknown,
u = ∇p, and rewrite system (3.1) as

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u −∇p = 0 in Ω,

−∇ · u = f in Ω,

∇× u = 0 in Ω,

τ · u = 0 on ΓD,

n · u = 0 on ΓN ,

p = 0 on ΓD,

n · ∇p = 0 on ΓN .

Here, τ is the counterclockwise unit tangential vector to Ω. Since this system can be
posed completely in terms of u, we may decouple the equations in (3.2), solve for u
first, and then recover p from u. To this end, define the two L2-norm functionals,

G(u; f) = ‖∇ · u + f‖2 + ‖∇ × u‖2,

G2(p;u) = ‖u −∇p‖2,

and the spaces,

V = {v ∈ H1(Ω) : τ · v = 0 on ΓD, n · v = 0 on ΓN},
W = {q ∈ H1(Ω) : q = 0 on ΓD}.

Thus, the two-stage solution process is to minimize G(v; f) over V and then, given
the minimizer u, minimize G2 over W:

G(u; f) = inf
v∈V

G(v; f),(3.3a)

G2(p;u) = inf
q∈W

G2(q;u).(3.3b)

The goal of the FOSLS methodology is, generally, to formulate functionals whose
quadratic part is equivalent to the H1-norm whenever possible. The second stage
functional is H1-equivalent and the solution we seek is always in H1. The first
stage functional, however, is not always H1-equivalent. For domains with reentrant
corners, there is no H1 sequence of functions that converges to the solution in the
H(div) ∩ H(curl) norm. To see an illustration, consider the example above, where

p = χ(r)r
2
3 sin(2θ/3) and u = ∇p. A simple computation reveals that ∇ · u,∇× u ∈

L2(Ω), but u /∈ H1(Ω).
Define the weighted functional by

(3.4) Gw(u; f) = ‖w(∇ · u + f)‖2 + ‖w∇× u‖2,

where the weight function has the form w = rβ for some β > 0.
Define the weighted Sobolev norm, ‖ · ‖k,β , on Ω in terms of the standard L2

norm, ‖ · ‖0, by

(3.5) ‖q‖k,β =

⎛
⎝∑

|j|≤k

‖rβ−k+|j|Djq‖2
0

⎞
⎠

1
2

,
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where Dj is the standard distributional derivative of order j. Similarly, define the
weighted seminorm by

(3.6) |q|k,β =

⎛
⎝∑

|j|=k

‖rβ−k+|j|Djq‖2
0

⎞
⎠

1
2

and the associated weighted Sobolev space by

(3.7) Hk
β (Ω) = {q : ‖q‖k,β < ∞}.

Define the div/curl operator, L, and vector f by L =
(

∇·
∇×

)
and f =

(
f
0

)
. We may

now write the weighted functional from (3.4) as

Gw(u; f) = ‖Lu − f‖2
0,β .

The weighted-norm least-squares minimization problem for the first-stage solution is
then the following: Find u ∈ V such that

Gw(u; f) = inf
v∈V

Gw(v; f).

The second-stage solution for p remains as described above. We seek values of β that
make H1(Ω) dense in H(div)∩H(curl) in the weighted functional norm and result in
the most accurate discretizations possible.

For the discrete problem, we may choose any finite-dimensional subset of H1 over
which to minimize the weighted functional. Let Ph denote the space of C0 piecewise
polynomial (or tensor product) elements on triangles (or quadrilaterals) of meshsize
h, and let Vh denote the subspace of Ph that satisfies the appropriate boundary
conditions on Ω:

Vh = {vh ∈ Ph : τ · vh = 0 on ΓD, n · vh = 0 on ΓN}.

The discrete weighted-norm least-squares minimization problem is, then, to minimize
the discrete functional as follows: Find uh ∈ Vh such that

(3.8) Gw(uh; f) = min
vh∈Vh

Gw(vh; f).

By unweighting the equations near the singularity, the functional is freed from
trying to approximate the solution (which is not in H1(Ω)) in the H1 sense near the
singularity. But, away from the singularity, the weighted functional retains the same
character as the normal nonweighted functional. We now consider the choice of weight
parameter β and its relation to weighted and nonweighted a priori error bounds on
the approximated solution.

4. Poincaré bounds and regularity estimates. In this section, we estab-
lish several theoretical results in weighted Sobolev spaces and error bounds for the
weighted-norm method.

Here, we establish several Poincaré bounds in the domain Ωw. We prove first
a result for the scalar pure Neumann and pure Dirichlet problems and then for the
scalar mixed boundary condition problem. These results lead to a Poincaré inequality
for the vector case.
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Lemma 4.1. Take Ω = Ωw and let β > 0, ε > 0, and γ = β − 3/2 − ε. Further,
assume that γ �= −2. For functions q ∈ H1

β(Ω), with rβ−ε∇q, rγ+1∇q ∈ L2(Ω), that
can be chosen to satisfy

(4.1)

∫∫
Ω

rγ q(r, θ) r dr dθ = 0,

we have the bound

(4.2) ‖q‖0,β−1 ≤ C(ε)‖∇q‖0,β−ε,

where C(ε) depends on ε, β, and Ω and C(ε) → ∞ as ε → 0.
Proof. For any two points (r, θ) and (r0, θ0) in Ω, write q(r, θ) as

q(r, θ) = q(r0, θ0) +

∫ r

r0

∂q(r̂, θ)

∂r̂
dr̂ +

∫ θ

θ0

∂q(r0, θ̂)

∂θ̂
dθ̂.

Multiplying both sides of the equation by rγ+1
0 , integrating with respect to r0 and θ0

over Ω, and using Fubini’s theorem yield

Rγ+2ω

γ + 2
q(r, θ)

=

∫ ω

0

∫ R

0

∫ r

r0

rγ+1
0

∂q(r̂, θ)

∂r̂
dr̂ dr0 dθ0 +

∫ ω

0

∫ R

0

∫ θ

θ0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0 dθ0

= ω

∫ r

0

∫ r̂

0

rγ+1
0

∂q(r̂, θ)

∂r̂
dr0 dr̂ − ω

∫ R

r

∫ R

r̂

rγ+1
0

∂q(r̂, θ)

∂r̂
dr0 dr̂

+

∫ R

0

∫ θ

0

∫ θ̂

0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ0 dθ̂ dr0 −

∫ R

0

∫ ω

θ

∫ ω

θ̂

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ0 dθ̂ dr0

=
ω

γ + 2

∫ R

0

r̂γ+2 ∂q(r̂, θ)

∂r̂
dr̂ − ωRγ+2

γ + 2

∫ R

r

∂q(r̂, θ)

∂r̂
dr̂

+

∫ R

0

∫ ω

0

θ̂ rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0 − ω

∫ R

0

∫ ω

0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0.

Note from above that q is, by assumption, sufficiently smooth to apply Fubini’s the-
orem. By the triangle inequality, we have that∣∣∣∣Rγ+2ω

γ + 2
q(r, θ)

∣∣∣∣
≤ ω

γ + 2

∫ R

0

r̂γ+2

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂ +
ωRγ+2

γ + 2

∫ R

r

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂

+ 2ω

∫ R

0

∫ ω

0

rγ+1
0

∣∣∣∣∣∂q(r0, θ̂)∂θ̂

∣∣∣∣∣ dθ̂ dr0.
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Now, squaring each side and using (a + b + c)2 ≤ 3(a2 + b2 + c2), we get

(4.3)

|q(r, θ)|2 ≤ 3

R2(γ+2)

(∫ R

0

r̂γ+2

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂

)2

+ 3

(∫ R

r

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂

)2

+
12(γ + 2)2

R2(γ+2)

(∫ R

0

∫ ω

0

rγ+1
0

∣∣∣∣∣∂q(r0, θ̂)∂θ̂

∣∣∣∣∣ dθ̂ dr0

)2

.

Multiply each side of (4.3) by r2β−1 and integrate with respect to r and θ over Ω. We
consider each of the terms on the resulting right-hand side separately. First,∫ ω

0

∫ R

0

r2β−1

(∫ R

0

r̂γ+2

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂

)2

dr dθ

≤ R

∫ ω

0

∫ R

0

∫ R

0

r2β−1 r̂2γ+4

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 dr̂ dr dθ

=
R2β+1

2β

∫ ω

0

∫ R

0

r̂2γ+3

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 r̂ dr̂ dθ

≤ R2β+1

2β
‖∇q‖2

0,γ+ 3
2
.

We now consider the second term in (4.3). Since by the Schwarz inequality,(∫ R

r

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂

)2

=

(∫ R

r

r̂(ε−1)/2r̂(1−ε)/2

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂

)2

≤
∫ R

r

r̂ε−1 dr̂

∫ R

r

r̂1−ε

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 dr̂

=
Rε

ε

∫ R

r

r̂1−ε

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 dr̂,

we can apply Fubini’s theorem to bound the second term:∫ ω

0

∫ R

0

r2β−1

(∫ R

r

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣ dr̂

)2

dr dθ

≤ Rε

ε

∫ ω

0

∫ R

0

∫ R

r

r2β−1 r̂1−ε

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 dr̂ dr dθ

=
Rε

ε

∫ ω

0

∫ R

0

∫ r̂

0

r2β−1 r̂1−ε

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 dr dr̂ dθ

=
Rε

2εβ

∫ ω

0

∫ R

0

r̂2β−ε

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 r̂ dr̂ dθ

=
Rε

2εβ
‖∇q‖2

0,β− ε
2

≤ Rε

2εβ
‖∇q‖2

0,β−ε,
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The third term can be bounded similarly:

∫ ω

0

∫ R

0

r2β−1

(∫ R

0

∫ ω

0

rγ+1
0

∣∣∣∣∣∂q(r0, θ̂)∂θ̂

∣∣∣∣∣ dθ̂ dr0

)2

dr dθ

≤
(∫ R

0

∫ ω

0

r2β−1 dr dθ

)
Rω

∫ ω

0

∫ R

0

r2γ+2
0

∣∣∣∣∣∂q(r0, θ̂)∂θ̂

∣∣∣∣∣
2

dr0 dθ̂

=
R2β+1ω2

2β

∫ ω

0

∫ R

0

r2γ+3
0

∣∣∣∣∣ 1

r0

∂q(r0, θ̂)

∂θ̂

∣∣∣∣∣
2

r0 dr0 dθ̂

=
R2β+1ω2

2β
‖∇q‖2

0,γ+ 3
2
.

Putting the three terms together and substituting γ = β− 3/2− ε, we may now write
the bound ∫ ω

0

∫ R

0

r2β−2 |q(r, θ)|2 r dr dθ

≤
(

3R−2ε

2β
+

3Rε

2εβ
+

6(β + 1
2 − ε)2R−2εω2

β

)
‖∇q‖2

0,β−ε,

and the lemma follows by taking the square root of both sides.
In what follows, let χ be a smooth function of r, where χ = 1 for r < η and χ = 0

for r > 2η. We take η to be sufficiently small to ensure that supp(χ) ⊂ Ω.
Lemma 4.2. Take Ω = Ωw and let q be a scalar function in H1

β(Ω), where β > 0.
The following bound holds for χ as defined above:

(4.4) ‖χq‖0,β−1 ≤ 1

β
‖∇(χq)‖0,β .

Proof. Hardy’s inequality for f(t) defined for t > 0 with limt→0 f(t) = 0 gives
(see [20])

(4.5)

∫ ∞

0

f2

t2
dt ≤ 4

∫ ∞

0

|f ′|2 dt.

The lemma follows after a change of variables, t = r−2β , a substitution f(r) = χq(r, θ)
for fixed θ, and an integration on both sides with respect to θ.

Lemma 4.3. Take Ω = Ωw and let either q ∈ H1
β(Ω) with q = 0 on ∂Ω or

q ∈ H1
β(Ω)/R with n · ∇q = 0 on ∂Ω. Then

(4.6) ‖q‖0,β−1 ≤ C‖∇q‖0,β

for β > 0, where C depends only on Ω and β.
Proof. First, if q = 0 on ∂Ω, write q = q(r, θ) as

q(r, θ) =

∫ θ

0

∂q(r, θ̂)

∂θ̂
dθ̂.
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Square both sides and multiply by r2β−1:

r2β−1 |q(r, θ)|2 = r2β−1

∣∣∣∣∣
∫ θ

0

∂q(r, θ̂)

∂θ̂
dθ̂

∣∣∣∣∣
2

≤ r2β+1ω

∫ ω

0

∣∣∣∣∣1r ∂q(r, θ̂)∂θ̂

∣∣∣∣∣
2

dθ̂.

Integrate both sides with respect to r and θ over Ω:

∫ ω

0

∫ R

0

r2β−2 |q(r, θ)|2 r dr dθ ≤ ω

∫ ω

0

∫ R0

0

r2β+1

∫ ω

0

∣∣∣∣∣1r ∂q(r, θ̂)∂θ̂

∣∣∣∣∣
2

dθ̂ dr dθ

≤ ω2

∫ ω

0

∫ R0

0

r2β

∣∣∣∣∣1r ∂q(r, θ̂)∂θ̂

∣∣∣∣∣
2

r dr dθ̂.

The lemma follows since the right-hand side is bounded by C‖∇q‖2
0,β .

Now, if q ∈ H1
β(Ω)/R, then it may be chosen to satisfy

(4.7)

∫∫
Ω

rγ q r dr dθ = 0

for γ chosen as in Lemma 4.1. By the triangle inequality and Lemma 4.2, we get

‖q‖0,β−1 ≤ ‖χ q‖0,β−1 + ‖(1 − χ)q‖0,β−1

≤ C‖∇(χq)‖0,β +

(∫ ω

0

∫ R

η

(
r

η

)2

r2β−2(1 − χ)2 q2 r dr dθ

) 1
2

≤ C (‖∇(q)‖0,β + ‖q‖0,β) .

Apply Lemma 4.1 with ε = 1 to the ‖q‖0,β term on the right-hand side, and the
Lemma follows.

For the problem with mixed boundary conditions, consider Ωw partitioned into
subdomains Ω0 = {(r, θ) : r ≤ 1

2R0, 0 ≤ θ ≤ ω} and Ω1 = Ω\Ω0, as shown in
Figure 4.1.

Lemma 4.4. Consider domain Ω = Ωw, as pictured in Figure 4.1, and let q ∈
H1

β(Ω) vanish on the line segment of ∂Ω corresponding to θ = 0 and r < R0. Then
there is a constant, C, dependent only on Ω, β, and R0, such that

(4.8) ‖q‖0,β−1 ≤ C‖∇q‖0,β

for β > 0.
Proof. For points (r, θ) in Ω0 we may derive the bound,

(4.9) ‖q‖0,β−1,Ω0 ≤ C‖∇q‖0,β,Ω0 ,

completely analogous to the proof of Lemma 4.3. Now, consider points (r, θ) in Ω1.
We may write q = q(r, θ) as

q(r, θ) =

∫ r

r̃

∂q(r̂, θ)

∂r̂
dr̂ +

∫ θ

0

∂q(r̃, θ̂)

∂θ̂
dθ̂,
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Ω0

1
2
R0

Ω1

R0 R

Fig. 4.1. Wedge-shaped domain, Ωw, partitioned into subdomains Ω0 and Ω1.

where the point (r̃, 0) is on the part of ∂Ω1 where q vanishes. By the Schwarz in-
equality, the triangle inequality, and inequality (2.1), we have the bound

(4.10) |q(r, θ)|2 ≤ 2(R− 1

2
R0)

∫ r

r̃

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2dr̂ + 2ω

∫ θ

0

∣∣∣∣∣∂q(r̃, θ̂)∂θ̂

∣∣∣∣∣
2

dθ̂.

We now expand the limits in the integrals, multiply each side by r2β−1, integrate with
respect to r over ( 1

2R0, R), integrate with respect to θ over (0, ω), and integrate with

respect to r̃ over ( 1
2R0, R0), and apply Fubini’s theorem to get

(4.11)

(
1

2
R0

)∫ ω

0

∫ R

1
2R0

r2β−1|q(r, θ)|2 dr dθ

≤ 2

(
R− 1

2
R0

)∫ R0

1
2R0

∫ ω

0

∫ R

1
2R0

∫ R

1
2R0

r2β−1

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2dr̂ dr dθ dr̃
+ 2ω

∫ R0

1
2R0

∫ ω

0

∫ R

1
2R0

∫ θ

0

∣∣∣∣∣∂q(r̃, θ̂)∂θ̂

∣∣∣∣∣
2

dθ̂ dr dθ dr̃.

We use the inequalities

1

2
R0 ≤ r̃ ≤ R0, r̃ ≤ r̂ ≤ r ≤ R

to derive the following simple bounds:

(4.12) 1 ≤
(

2r̂

R0

)
, r ≤

(
2R

R0

)
r̂, r ≤

(
2R

R0

)
r̃.
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By applying the bounds in (4.12) and by Fubini’s theorem, we may now write (4.11)
as (

1

2
R0

)∫ ω

0

∫ R

1
2R0

r2β−2|q(r, θ)|2r dr dθ

≤
(
R− 1

2
R0

)2

R0

∫ ω

0

∫ R

1
2R0

(
2r̂

R0

)2 (
2R

R0

)2β−1

r̂2β−1

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2dr̂ dθ
+ 2ω2

(
R− 1

2
R0

)∫ R0

1
2R0

∫ ω

0

(
2R

R0

)2β−1

r̃2β−1

∣∣∣∣∣∂q(r̃, θ̂)∂θ̂

∣∣∣∣∣
2

dθ̂ dr̃

≤ 22β+1

(
R− 1

2
R0

)2

R−2β
0 R2β−1

∫ ω

0

∫ R

1
2R0

r̂2β

∣∣∣∣∂q(r̂, θ)∂r̂

∣∣∣∣2 r̂ dr̂ dθ

+ 22βω2

(
R− 1

2
R0

)(
R

R0

)2β−1 ∫ R

1
2R0

∫ ω

0

r̃2β

∣∣∣∣∣1r̃ ∂q(r̃, θ̂)∂θ̂

∣∣∣∣∣
2

r̃ dθ̂ dr̃,

which directly implies

(4.13) ‖q‖0,β−1,Ω1 ≤ C‖∇q‖0,β,Ω1
,

where

C = 22β+1

(
R− 1

2
R0

)
R2β−1R−2β−1

0

(
2(R− 1

2
R0) +

ω2

R0

)
.

Combining inequalities (4.9) and (4.13) completes the lemma.
We now consider a similar Poincaré inequality for the vector case. Again, consider

Ω = Ωw, where ∂Ω is partitioned into Dirichlet and Neumann boundaries ΓD and ΓN ,
respectively. The following lemma is valid for the pure Dirichlet and Neumann cases
and for the mixed boundary condition cases when ΓD includes a part of the boundary
adjacent to the origin and ω �= 3π

2 .
Lemma 4.5. Take Ω = Ωw and let u ∈ H1

β(Ω)2 satisfy τ · u = 0 on ΓD and
n ·u = 0 on ΓN . Assume for the mixed boundary condition case that ω �= 3π/2. Then
there is a constant, C, dependent only on Ω, β, and the length of the segments of ΓD

and ΓN adjacent to the origin, such that

(4.14) ‖u‖0,β−1 ≤ C‖∇u‖0,β

for β > 0.
Proof. First, consider the case when τ · u = 0 on ∂Ω. Denote the part of ∂Ω

aligned with θ = 0 as Γ1 and the part of ∂Ω aligned with θ = ω as Γ2. Thus, u1 = 0
on Γ1 and τxu1 + τyu2 = 0 on Γ2. Since u1 and τxu1 + τyu2 satisfy the conditions in
Lemma 4.4, we may use

‖u1‖0,β−1 ≤ C‖∇u1‖0,β

and

‖τxu1 + τyu2‖0,β−1 ≤ C‖∇(τxu1 + τyu2)‖0,β .
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Further, take τy �= 0, since τy = 0 corresponds to either ω = π, for which the result
holds trivially since the boundary is smooth, or ω = 2π, which we do not consider.
Now,

‖u‖2
0,β−1 = ‖u1‖2

0,β−1 + ‖u2‖2
0,β−1

= ‖u1‖2
0,β−1 +

1

τ2
y

‖τxu1 − τxu1 + τyu2‖2
0,β−1

≤
(

1 + 2
τ2
x

τ2
y

)
‖u1‖2

0,β−1 +
2

τ2
y

‖τxu1 + τyu2‖2
0,β−1

≤ C(‖∇u1‖2
0,β + ‖∇(τxu1 + τyu2)‖2

0,β)

≤ C‖∇u‖2
0,β .

The case when n·u = 0 on ∂Ω is analogous since u2 = 0 on Γ1 and nxu1+nyu2 = 0 on
Γ2. Also, when ω �= π

2 ,
3π
2 , the case for mixed boundary conditions follows similarly

using the result of Lemma 4.4. The case for mixed boundary conditions when ω = π/2
follows from appealing to symmetry in pure Dirichlet problem for ω = π.

Remark 4.6. Lemma 4.5 can be directly extended to more generally shaped
domains. The proof of the scalar Poincaré bounds in Lemmas 4.1, 4.2, 4.3, and 4.4
is simplified when the domain has the shape of Ωw with only one irregular boundary
point. Since we are primarily interested in a local result, proving Lemma 4.5 in the
simple domain is sufficient for our purposes.

Consider the following scalar Poisson problem in Ωw:

(4.15)

⎧⎪⎨
⎪⎩

Δp = f in Ω,

p = 0 on ΓD,

n · ∇p = 0 on ΓN .

We refer to system (4.15) as the pure Dirichlet problem when ∂Ω = ΓD; the
pure Neumann problem when ∂Ω = ΓN ; and the mixed boundary condition problem
when ΓD includes the part of ∂Ω coinciding with one of either θ = 0 or θ = ω, and
ΓN = ∂Ω\ΓD with ΓN �= ∅.

The following regularity results can be found in [23] and [21].
Lemma 4.7. Assume |1− β| < π/ω for the pure Dirichlet problem, 0 < |1− β| <

π/ω for the pure Neumann problem, and |1 − β| < π/2ω for the mixed bound-
ary condition problem. Then, for every f ∈ H0

β(Ω), there exists a unique solution

to (4.15), p ∈ H2
β(Ω) for the pure Dirichlet and mixed boundary condition cases, and

p ∈ H2
β(Ω)/R for the pure Neumann problem. Moreover, there exists a constant, C,

independent of p, such that

(4.16) ‖p‖2,β ≤ C‖f‖0,β .

Proof. See Chapter 1 of [23] for the Dirichlet and Neumann problems and Chapter
2 of [21] for the mixed boundary problem.

Define the subspace of functions in H1
β(Ω) satisfying the appropriate boundary

conditions by

Vβ = {v ∈ H1
β(Ω) : τ · v = 0 on ΓD, n · v = 0 on ΓN}.
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We now prove a regularity result for functions in Vβ . Recall that the power of the
singularity is defined as α = π/ω for Dirichlet or Neumann boundary conditions and
α = π/(2ω) for mixed boundary conditions.

Lemma 4.8. Consider domain Ω = Ωw. Then there is a positive constant, C,
independent of u, such that, for |1−β| < α, the following bound holds for all u ∈ Vβ:

(4.17) ‖u‖1,β ≤ C‖Lu‖0,β .

Proof. From Lemma 4.7 we know that any u ∈ Vβ has the decomposition

(4.18) u = ∇φ + ∇⊥ψ,

where φ, ψ ∈ H2
β(Ω) satisfy

(4.19)

{
Δφ = ∇ · u in Ω,

φ = 0 on ∂Ω,

and

(4.20)

{
Δψ = ∇× u in Ω,

n · ∇ψ = 0 on ∂Ω.

Then, by applying Lemma 4.7 to problems (4.19) and (4.20) we have

‖u‖1,β = ‖∇φ + ∇⊥ψ‖1,β ≤ ‖∇φ‖1,β + ‖∇⊥ψ‖1,β

≤ ‖φ‖2,β + ‖ψ‖2,β ≤ C(‖∇ · u‖0,β + ‖∇ × u‖0,β) ≤ C‖Lu‖0,β ,

which completes the proof.

5. Error bounds. Let T h = ∪N
i=1τi be a quasi-uniform triangulation of polyg-

onal domain Ω. Let Ih represent standard interpolation onto a piecewise polynomial
finite element space of degree k. From finite element theory, we have the following
interpolation bounds.

Lemma 5.1. Let Ω be a polygonal domain. There exists a constant, C, indepen-
dent of v, such that, for all v ∈ Hm(Ω),

(5.1)

⎛
⎝ ∑

τ∈T h

‖v − Ihv‖2
s,τ

⎞
⎠1/2

≤ Chm−s|v|m

for 0 ≤ s ≤ m and 1 < m. Here, Ih denotes interpolation by a piecewise polynomial
of degree k = m− 1. (Note that here the norm ‖ · ‖s,τ is the standard Hs(τ) norm.)

Proof. See [9] or [7].
We now consider a weighted interpolation bound for functions on domains with

a polygonal corner at the origin. Define the modified interpolation operator, Ih
0 , by

Ih
0 u|τ =

{
Ihu =

∑n
i=0 u(ai)φi if τ does not intersect the origin,∑n

i=1 u(ai)φi if τ intersects the origin,

where Ih is a standard polynomial interpolation operator, φi are basis functions
corresponding to the n + 1 nodal points, ai, and a0 is the origin, (0, 0). Thus, the
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modified interpolation has a value of zero at the origin and resembles Ih away from
the origin.

Lemma 5.2. Let Ω be a polygonal domain. There exists a constant, C, indepen-
dent of u, such that, for all u ∈ Hm

β (Ω) satisfying (4.8),

(5.2)

⎛
⎝ ∑

τ∈T h

‖u− Ih
0 u‖2

1,β,τ

⎞
⎠1/2

≤ Chm−1‖u‖m,β ,

for 1 < m and β > 0, where Ih
0 is the modified interpolation operator onto piecewise

polynomials of degree k = m− 1 defined above.
Proof. Define K0 = {τ | τ̄ ∩ (0, 0) �= ∅} as the set of elements adjacent to the

origin. On T h\K0, we have h ≤ rmin ≤ r =
√
x2 + y2 ≤ rmax ≤ rmin +

√
2h with

rmin = inf{r|(x, y) ∈ τ} and rmax = sup{r|(x, y) ∈ τ} in τ , and

‖u− Ih
0 u‖2

1,β,τ = ‖u− Ihu‖2
1,β,τ

=

∫
τ

r2β |∇(u− Ihu)|2 + r2(β−1)|u− Ihu|2dτ

≤ r2β
max

∫
τ

|∇(u− Ihu)|2dτ + r2β
maxr

−2
min

∫
τ

|u− Ihu|2dτ

≤ Cr2β
maxh

2(m−1)|u|2m,0,τ + Cr2β
maxr

−2
minh

2m|u|2m,0,τ

= Cr2β
maxh

2(m−1)(1 + r−2
minh

2)|u|2m,0,τ ≤ Cr2β
maxh

2(m−1)|u|2m,0,τ

≤ Ch2(m−1)r2β
maxr

−2β
min

∫
τ

r2β |Dmu|2dτ

≤ Ch2(m−1)

(
rmin +

√
2h

rmin

)2β ∫
τ

r2β |Dmu|2dτ

≤ Ch2(m−1)

∫
τ

r2β |Dmu|2dτ.

We now consider the case for which τ ∈ K0. Let δ ∈ C∞ be a cut-off function
defined by

δ(r) =

{
1 if r ≤ h/3,
0 if r > 2h/3,

with |δ(m)| ≤ ch−m, where δ(m) is the mth derivative of δ. By the triangle inequality,

(5.3) ‖u− Ih
0 u‖1,β,τ ≤ ‖δu− Ih

0 (δu)‖1,β,τ + ‖(1 − δ)u− Ih
0 ((1 − δ)u)‖1,β,τ .

By the definition of δ we have Ih
0 ((1 − δ)u) = Ih((1 − δ)u) and Ih

0 (δu) = 0. For the
second term in (5.3), we apply Lemmas 4.4 and 5.1, the properties in δ, and Fubini’s
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theorem to obtain

‖(1 − δ)u− Ih
0 ((1 − δ)u)‖2

1,β,τ = ‖(1 − δ)u− Ih((1 − δ)u)‖2
1,β,τ

≤ C‖∇((1 − δ)u− Ih((1 − δ)u))‖2
0,β,τ ≤ Ch2β

∫
τ

|∇((1 − δ)u− Ih((1 − δ)u))|2dτ

≤ Ch2(β+m−1)

∫
τ

|Dm((1 − δ)u)|2dτ ≤ Ch2(β+m−1)

∫
τ

∑
|j|≤m

|Dm−j(1 − δ)Dju|2dτ

≤ Ch2(β+m−1)

⎛
⎝∫∫ 2h

3

h
3

∑
|j|≤m−1

|h|j|−mDju|2dτ +

∫∫ r(θ)

h
3

|(1 − δ)Dmu|2dτ

⎞
⎠

≤ Ch2(β+m−1)

⎛
⎝ ∑

|j|≤m−1

∫∫ 2h
3

h
3

h−2βr2(β+|j|−m)|Dju|2dτ +

∫∫ r(θ)

h
3

( r

h

)2β

|Dmu|2dτ

⎞
⎠

= Ch2(m−1)
∑

|j|≤m

∫
τ

r2(β+|j|−m)|Dju|2dτ = Ch2(m−1)‖u‖2
m,β,τ .

Using the properties of δ and Fubini’s theorem results in a similar bound for the first
term in (5.3):

‖δu− Ih
0 (δu)‖2

1,β,τ = ‖δu‖2
1,β,τ =

∫
τ

r2β |∇(δu)|2 + r2(β−1)|δu|2dτ

≤ C

∫
τ

r2β(|∇δ · u|2 + |δ∇u|2) + r2(β−1)|δu|2dτ

≤ C

∫ ∫ 2h
3

h
3

r2βh−2|u|2dτ + C

∫ ∫ 2h
3

0

r2β |∇u|2 + r2(β−1)|u|2dτ

≤ C

∫ ∫ 2h
3

h
3

r2(β−1)|u|2dτ + C

∫ ∫ 2h
3

0

r2β |∇u|2 + r2(β−1)|u|2dτ

≤ C

∫
τ

r2(m−1)(r2(β−m+1)|∇u|2 + r2(β−m)|u|2)dτ ≤ Ch2(m−1)‖u‖2
m,β,τ .

Thus we have∑
τ∈Th

‖u− Ih
0 u‖2

1,β,τ ≤ Ch2(m−1)
∑
τ∈Th

‖u‖2
m,β,τ ≤ Ch2(m−1)‖u‖2

m,β ,

and the lemma follows.
Lemma 5.3. Assume (4.14) holds in Ω. Then, for all uh ∈ Vh,

(5.4) ‖uh‖0,β ≤ Ch−η‖uh‖0,β+η

for β > −1 and η > 0.
Proof. Using Lemma 4.5 and an inverse inequality, we may write

‖uh‖0,β ≤ C‖∇uh‖0,β+1 ≤ Ch−1‖uh‖0,β+1,

which establishes (5.4) for η = 1. Repeated application of this inequality thus vali-
dates (5.4) for any positive integer. Now consider

‖uh‖2
0,β = 〈rβuh, rβuh〉 = 〈rβ−1/2uh, rβ+1/2uh〉

≤ ‖uh‖
0,β−1/2

‖uh‖
0,β+1/2

≤ Ch−1‖uh‖2

0,β+1/2
.
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Taking the square root establishes (5.4) for η = 1/2. Repeating these steps leads
to (5.4) for all η = ηn = kn/2

�n for any nonnegative integers kn and �n. For any
η > 0, choose a monotonically decreasing sequence, {ηn}, such that ηn > η and
limn→∞ |ηn − η| = 0. Now, gn = (rβ+ηnuh)2 is a monotonically increasing function
that converges to g = (rβ+ηuh)2 pointwise everywhere. Thus, by the Lebesgue mono-
tone convergence theorem, we have

‖uh‖2
0,β+η =

∫
gdx = lim

n

∫
gndx = lim

n
‖uh‖2

0,β+ηn

and, therefore,

‖uh‖0,β = lim
n

‖uh‖0,β

≤ lim
n

Ch−ηn‖uh‖0,β+ηn

= (lim
n

Ch−ηn)(lim
n

‖uh‖0,β+ηn)

= Ch−η‖uh‖0,β+η,

which completes the proof.
Define an irregular boundary point of polygonal domain Ω to be a point on ∂Ω,

where interior angle ω satisfies ω > π when Dirichlet or Neumann boundary conditions
are applied on both sides of the point or ω > π/2 when one Dirichlet boundary
condition and one Neumann boundary meet at the corner. We now present error
bounds for the numerical solution in weighted and unweighted norms.

Theorem 5.4. Let Ω be a polygonal domain with one irregular boundary point
of interior angle ω and let f ∈ L2(Ω). Suppose u ∈ V satisfy Lu = f . If uh ∈ Vh is
chosen to minimize the weighted functional,

Gw(uh; f) = ‖Luh − f‖2
0,β = inf

vh∈Vh
‖Lvh − f‖2

0,β ,

for |1 − β| < α, then the approximation error, u − uh, satisfies the following bounds:

(5.5) ‖u − uh‖1,β ≤ Chα+β−1‖u‖α+β,β ,

(5.6) Gw(u − uh;0)
1
2 ≤ Chα+β−1‖u‖α+β,β ,

(5.7) ‖u − uh‖0,β ≤ Chs+β‖u‖α+β,β ,

(5.8) ‖u − uh‖0 ≤ Chs‖u‖α+β,β ,

where s < α, for α+β ≤ k+1 with k the degree of the piecewise polynomial elements
in Vh.

Proof. By Lemmas 4.8 and 5.2, we have

‖u − uh‖1,β ≤ C‖L(u − uh)‖0,β ≤ C‖L(u − Ih
0 u)‖0,β

≤ C‖u − Ih
0 u‖1,β ≤ Chα+β−1‖u‖α+β,β ,

which establishes both (5.5) and (5.6) since we may write

‖L(u − uh)‖0,β = Gw(u − uh;0)
1 2.

Note that Lemmas 4.8 and 5.2 are satisfied for |1 − β| < α and α + β ≤ 2.
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For the weighted L2-norm, we write

‖u − uh‖2
0,β =

∑
τ∈T h

‖u − uh‖2
0,β,τ .

The Cauchy inequality yields, for any ε ∈ (0, 1),

‖u − uh‖2
0,β,τ =

∫
τ

r2β |u − uh|2dτ ≤
(∫

τ

1dτ

)1−ε (∫
τ

(
r2β |u − uh|2

) 1
ε dτ

)ε

≤ Ch2−2ε

(∫
τ

(
rβ |u − uh|

) 2
ε dτ

) ε
2 ·2

= Ch2−2ε‖rβ(u − uh)‖2

L
2
ε (τ)

.

Since H1(Ω) is continuously imbedded into Lq(Ω) for all q ∈ [1,∞),

‖u − uh‖2
0,β =

∑
τ∈T h

‖u − uh‖2
0,β,τ ≤ Ch2−2ε

∑
τ∈T h

‖rβ(u − uh)‖2

L
2
ε (τ)

≤ Ch2−2ε‖rβ(u − uh)‖2

L
2
ε (Ω)

≤ Ch2−2ε‖rβ(u − uh)‖2
H1(Ω)

≤ Ch2−2ε‖u − uh‖2
1,β .

Thus, by (5.5), we have

‖u − uh‖0,β ≤ Ch1−ε‖u − uh‖1,β ≤ Chs+β‖u‖α+β,β ,

where any s < α.
We now consider the bound on ‖u − uh‖0. Let K0 = {τ | τ̄ ∩ (0, 0) �= ∅} and

K1 = T h\K0. First, we consider the case β < 1. If τ ∈ K0, then r ≤ Ch and
r1−β ≤ Ch1−β . Thus, we have

(5.9) ‖u − uh‖2
0,τ ≤ Ch2(1−β)‖u − uh‖2

0,β−1,τ ≤ Ch2(1−β)‖u − uh‖2
1,β,τ .

If τ ∈ K1, we use the technique above to get

‖u − uh‖2
0,τ ≤ Ch2(1−ε)‖u − uh‖2

L
2
ε (τ)

.

Again, since H1 is continuously imbedded into Lq for all q ∈ [1,∞), we have∑
τ∈K1

‖u − uh‖2
0,τ ≤ Ch2−2ε

∑
τ∈K1

‖u − uh‖2

L
2
ε (τ)

≤ Ch2−2ε‖u − uh‖2

L
2
ε (K1)

≤ Ch2−2ε‖u − uh‖2
H1(K1)

= Ch2−2ε

∫
K1

r−2βr2β (|u − uh|2 + |∇(u − uh)|2) dΩ

≤ Ch2(1−β−ε)‖u − uh‖2
1,β,K1

.(5.10)

Hence by (5.9), (5.10), and (5.5) we have

‖u − uh‖2
0 =

∑
τ∈K0

‖u − uh‖2
0,τ +

∑
τ∈K1

‖u − uh‖2
0,τ ≤ h2(1−β−ε)‖u − uh‖2

1,β

≤ Ch2s ‖u‖2
α+β,β ,

where s < α. The proof for β ≥ 1 follows analogously.
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Remark 5.5. For the optimal finite element convergence of O(h) with respect
to the weighted functional and H1-norms, we select β = 2 − α. But Theorem 5.4
also requires that β < 1 + α. Thus, when α ∈ [1/2, 1), we may use a weighting with
β = 2 − α and expect optimal rates, but when α ∈ (0, 1/2), our theory guarantees
only at best O(2α) convergence using β = 1+α. Numerical results, however, indicate
that values of β larger than the theory allows can be used to recover optimal rates.
We explore this in the next section.

6. Computational results. In this section, we present some numerical exam-
ples of the weighted-norm procedure to validate the error bounds in the previous
section.

As a test problem, we minimize the weighted functional on the following L-shaped
domain: Ω = (−0.5, 0.5)2 \ [0, 0.5)× (−0.5, 0], which yields α = π/ω = 2/3. Function

f is chosen so that the solution of this test problem is u = ∇(χ(r)r
2
3 sin(2θ/3)), where

χ(r) = 1 for r < 1/8, χ(r) = 0 for r > 3/8, and χ(r) is C2 smooth. Again, note that
f ∈ L2(Ω) but u /∈ H1(Ω).

Define the following measures of the accuracy of the computed solution, uh:

nonweighted functional norm G
1/2 = (‖∇ · uh − f‖2

0 + ‖∇ × uh‖2
0)

1/2,

nonweighted L2-norm of the error ε0 = ‖u − uh‖0,

nonweighted H1 seminorm of the error ε1 = |u − uh|1,

weighted functional norm G
1/2

w = Gw(uh; f)
1/2,

weighted L2-norm of the error ε0w = ‖u − uh‖0,β ,

weighted H1 seminorm of the error ε1w = |u − uh|1,β .

Since α = 2/3, we choose the optimal weight parameter, β = 2 − α = 4/3, for
our computations. Table 6.1 summarizes discretization error and convergence rates
for β = 4/3.

Table 6.1

Convergence of discretization error for weighted-norm FOSLS.

h G
1/2
w Ratio Rate ε1w Ratio Rate

8−1 5.52 3.81
16−1 4.34 1.27 0.35 1.47 2.59 1.37
32−1 2.34 1.85 0.89 6.66e-01 2.21 1.14
64−1 1.19 1.97 0.98 2.97e-01 2.24 1.16
128−1 5.98e-01 1.99 0.99 1.41e-01 2.11 1.08
256−1 3.00e-01 1.99 0.99 6.74e-02 2.09 1.06
512−1 1.50e-01 2.00 1.00 3.31e-02 2.04 1.03

h ε0w Ratio Rate ε0 Ratio Rate

8−1 3.08e-01 3.72e-01
16−1 1.35e-01 2.28 1.19 1.93e-01 1.93 0.95
32−1 4.07e-02 3.32 1.73 8.93e-02 2.16 1.11
64−1 1.11e-02 3.67 1.88 4.93e-02 1.81 0.86
128−1 2.98e-03 3.72 1.90 3.00e-02 1.64 0.71
256−1 7.84e-04 3.80 1.93 1.87e-02 1.60 0.68
512−1 2.06e-04 3.81 1.93 1.18e-02 1.58 0.66
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Ω0

Ω1

Fig. 6.1. L-shaped domain Ω and subdomains Ω0 and Ω1.

Table 6.2

Accuracy in Ω0, Ω1, and Ω with β = 2 − α.

G
1/2
w G

1/2 ε1w ε1 ε0w ε0

Ω1 O(h) O(h) O(h) O(h) O(h2) O(h2)

Ω0 O(h) O(1) O(h) O(1) O(h2) O(h
2
3 )

Ω O(h) O(1) O(h) O(1) O(h2) O(h
2
3 )

Asymptotic convergence rates in Ω are found to be approximately O(h) for G
1
2
w

and ε1w, O(h2) for ε0w, and O(h
2
3 ) for ε0. The approximation does not converge in

either the ε1 or G
1
2 measures since u /∈ H1(Ω).

To distinguish between behavior near to and away from the singularity, we con-
sider the error of the solution above on a partitioning of Ω. Define Ω0 = Ω ∩ ( 3

8 ,
5
8 )2

and Ω1 = Ω\Ω0; see Figure 6.1.
Table 6.2 summarizes the asymptotic discretization accuracy obtained at the finest

mesh size in subdomains Ω0 and Ω1. Away from the singularity we observe optimal
accuracy in all measures. As expected, near the singularity, the solution fails to
converge in the nonweighted functional and H1-norms. The nonweighted L2 error
achieves accuracy of approximately O(h

2
3 ) near the singularity.

Figure 6.2 shows the first component of the exact solution, u1, and the standard
FOSLS approximation uh

1 . Figure 6.3 shows the error of the first component of the
approximated solution for the standard FOSLS and the weighted-norm FOSLS meth-
ods. We see that the error in the approximation in standard FOSLS is highest near the
singularity but remains large even away from the corner point. In the weighted-norm
FOSLS implementation, the error remains large near the singularity, as we expect,
but is now concentrated only near the corner point. The pollution effect is removed
by the weighting procedure.

There are many boundary value problems not directly covered by the theory
presented here that are of interest. For example, Poisson’s equation with mixed
boundary conditions on the domain used above has a value of α = 1/3. To recover
optimal convergence for this problem, the weighted-norm method requires a value of
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Fig. 6.2. Exact solution component u1 and solution component uh
1 approximated by standard

FOSLS on the h = 32−1 mesh.
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(b) Weighted-norm FOSLS, β = 2 − α.

Fig. 6.3. Reduction of the pollution effect by the weighted-norm procedure. Each plot is the
error of solution component uh

1 on the h = 32−1 mesh.

β larger than Theorem 5.4 allows. In other elliptic equations (e.g., Stokes or the linear
elasticity equations), the value of α is generally smaller than for Poisson’s equation
for the same domain and boundary condition type. In each of these cases, a larger β
value is necessary for optimal convergence. This leads us to consider using larger β
than the theory allows.

Consider the same example problem as above on uniform mesh sizes of h =
1/8, 1/16, . . . , 1/512, and values of β ranging from 1/3 to 23/6.

Figure 6.4 plots the convergence rate at the finest level for the weighted functional

norm, G
1/2
w ; the weighted L2-norm, ε0w; and the L2-norm, ε0. While the functional

norm retains optimal accuracy for large values of β, the solution fails to converge in
the weighted and nonweighted L2 measures for β � 3. This indicates that, although
the weighted-norm approach seems to be more robust than the theory allows, large
values of β should still be used with caution.
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weighted functional norm
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Fig. 6.4. Convergence rates versus β. The shaded region indicates values of β for which the
assumptions of Theorem 5.4 are satisfied.

The method presented here is applicable to a wide range of problems and provides
an efficient alternative to more specialized techniques for treating singularities in
boundary value problems.
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Birkhäuser Verlag, Basel, 2000. Operator Theory Advances and Applications.

[24] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood
Cliffs, NJ, 1973.



SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 5, pp. 1997–2024

CONVERGENCE OF A COMPACT SCHEME FOR
THE PURE STREAMFUNCTION FORMULATION OF

THE UNSTEADY NAVIER–STOKES SYSTEM∗

MATANIA BEN-ARTZI† , JEAN-PIERRE CROISILLE‡ , AND DALIA FISHELOV§

Abstract. This paper is devoted to the analysis of a new compact scheme for the Navier–
Stokes equations in pure streamfunction formulation. Numerical results using that scheme have
been reported in [M. Ben-Artzi et al., J. Comput. Phys., 205 (2005), pp. 640–664]. The scheme
discussed here combines the Stephenson scheme for the biharmonic operator and ideas from box-
scheme methodology. Consistency and convergence are proved for the full nonlinear system. Instead
of customary periodic conditions, the case of boundary conditions is addressed. It is shown that in
one dimension the truncation error for the biharmonic operator is O(h4) at interior points and O(h)
at near-boundary points. In two dimensions the truncation error is O(h2) at interior points (due to
the cross-terms) and O(h) at near-boundary points. Hence the scheme is globally of order four in
the one-dimensional periodic case and of order two in the two-dimensional periodic case, but of order
3/2 for one- and two-dimensional nonperiodic boundary conditions. We emphasize in particular that
there is no special treatment of the boundary, thus allowing robust use of the scheme. The finite
element analogy of the finite difference schemes is invoked at several stages of the proofs in order to
simplify their verifications.
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1. Introduction. In a recent paper [3] we presented a fourth-order compact
scheme for the pure streamfunction formulation of the two-dimensional (incompress-
ible) Navier–Stokes equations. We have given there a convergence analysis for the
linearized model. In this paper we prove the convergence of the nonlinear scheme,
without any further assumptions. Recall that the pure streamfunction formulation of
the (two-dimensional) Navier–Stokes equations is classical [15]. It has the advantage
of reducing the system to a single evolution equation for the scalar streamfunction
having the form

∂Δψ

∂t
+ ∇⊥ψ · ∇Δψ − νΔ2ψ = 0.(1)

The velocity field is (u, v) = ∇⊥ψ = (−∂ψ
∂y ,

∂ψ
∂x ), and the vorticity is ω = Δψ. The

price paid for reducing the system to a single equation is that one must now deal with
the biharmonic Δ2 operator. There are therefore two boundary conditions imposed
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on ψ. For the typical “no-leak no-slip” conditions (vanishing velocity on the fixed
boundary) we have

∇ψ = 0 on the boundary.(2)

Since the function ψ is only determined up to a constant, condition (2) is equivalent
to

ψ =
∂ψ

∂n
= 0,(3)

which, for simplicity, will be the case treated in this paper. Clearly (2) is equivalent
to the assumption ψ ∈ H2

0 , the closure of smooth compactly supported test functions
in the Sobolev space of functions having square-summable derivatives up to second
order.

Our scheme can be described as follows (see [3] for details). At each time step the
scheme solves a time implicit version of (1). This leads to a fourth-order biharmonic
problem of the form

Δψ − νΔ2ψ = f,(4)

subject to the boundary conditions (2).
The spatial discretization of (4) makes use of the Stephenson scheme for the

the biharmonic operator introduced in [19], [12]. See also [2]. This scheme can be
interpreted as a mixed scheme in (ψ,∇ψ), similar in form to a version of a box scheme
[14], [7]. More specifically, its design is obtained by a spline collocation procedure on
a nine-point stencil, which we recall in section 3 below.

The streamline-vorticity formulation has been extensively used for the simulation
of the two-dimensional Navier–Stokes system. As representative references we mention
[17], [8], [5], [9], [13], and the references therein. One difficult point is that “. . . the
ψ − ω system is inextricably coupled; BC’s and solution methods must contend with
this fact. . . ” [10, p. 431]. Indeed, one must cope with the vorticity boundary values,
resulting from the fact that the relation Δψ = ω is overdetermined under condition
(2). An attempt to avoid this difficulty has been made in [4], where the need to
determine these values was circumvented by switching to the biharmonic equation (at
each time step), exploiting the natural condition (2). The scheme presented in [3],
whose convergence is proved here, has avoided all explicit mention of the vorticity
by using a pure streamfunction formulation. We mention that recently in [11] a very
similar algorithm has been proposed, but it deals only with the steady-state Navier–
Stokes system.

The paper is organized as follows. First, we introduce in section 2 our notation and
the setup for our discrete spaces. Then we establish in sections 3 and 4 the necessary
analytic properties of the scheme in one and two dimensions. In particular, in analogy
with the coercivity of Δ2 in H2

0 , we prove the coercivity of the discretized biharmonic
operator in a suitable discrete analogue of H2

0 . We prove that the truncation error
of the biharmonic scheme is of order four in one dimension and of order two in two
dimensions, at all interior points and of first order at near-boundary points, giving
a 3/2 order of convergence rate in the natural discrete L2 norm. Note that in the
periodic case all points are interior. Then in section 5, we prove that the same order
of convergence extends to the spatial semidiscrete version of the full nonlinear scheme.
We emphasize the fact that we do not need any special treatment of boundary points,
and the boundary condition (2) is naturally incorporated here. As mentioned above,
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this causes a reduced (from four to one) order of local truncation error at the boundary,
and is reflected in the fact that our result yields a 3/2 convergence rate in the discrete
L2 norm. The present convergence result can be compared to the convergence results
obtained in [9], [13]. In both papers, the time evolution is performed on the vorticity,
and hence a very careful treatment of the vorticity boundary conditions is required,
either by “ghost-points” [9] or by replacing condition (2) on the normal derivative
of the streamfunction by boundary conditions on the vorticity [13] (which, as these
authors observe, amounts to an algorithm for vorticity generation on the boundary).

2. Discrete spaces and basic inequalities. Let 0 ≤ i, j ≤ N . We denote by
(ih, jh) a finite difference mesh on the square [0, 1]2, with equal mesh size h = 1/N in
the x and y directions. We denote by ui,j a grid function on [0, 1]2, with 0 ≤ i, j ≤ N .
The centered and upwind derivative operators δx, δ±x are defined as usual in each
direction by

δxui,j =
ui+1,j − ui−1,j

2h
, δ+

x ui,j =
ui+1,j − ui,j

h
, δ−x ui,j =

ui,j − ui−1,j

h
,(5)

and similarly in the y direction:

δyui,j =
ui,j+1 − ui,j−1

2h
, δ+

y ui,j =
ui,j+1 − ui,j

h
, δ−y ui,j =

ui,j − ui,j−1

h
.(6)

The centered second-order derivatives are

δ2
xui,j =

ui+1,j + ui−1,j − 2ui,j

h2
, δ2

yui,j =
ui,j+1 + ui,j−1 − 2ui,j

h2
.(7)

The five-point Laplacian is

Δhui,j = δ2
xui,j + δ2

yui,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
.(8)

The crossed derivative operators δ+
xy, δ

−
xy, δxy are

δ+
xyui,j = δ+

x δ
+
y ui,j =

ui+1,j+1 − ui+1,j − ui,j+1 + ui,j

h2
,(9)

δ−xyui,j = δ−x δ−y ui,j =
ui,j − ui,j−1 − ui−1,j + ui−1,j−1

h2
,(10)

δxyui,j = δxδyui,j =
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4h2
.(11)

It is easy to check that

δ2
xδ

2
yui,j = δ+

xyδ
−
xyui,j .(12)

The L2
h space is the space of sequences ui,j , 0 ≤ i, j ≤ N . L2

h,0 is the subspace of
ui,j with zero boundary conditions ui,j = 0 for i ∈ {0, N} or j ∈ {0, N}. The scalar
product on L2

h,0 is

(u, v)h = h2
N−1∑
i,j=1

ui,jvi,j ,(13)
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with the corresponding norm

|u|h =

{
h2

N−1∑
i,j=1

(ui,j)
2

}1/2

.(14)

Furthermore, we denote by l2h the space of sequences ui, 0 ≤ i ≤ N , and by l2h,0 the
subspace of sequences with zero boundary conditions. The scalar product and the
norm on l2h,0 are

(u, v)h = h

N−1∑
i=1

uivi, |u|2h =

{
h

N−1∑
i=1

u2
i

}1/2

.(15)

We also define the discrete infinity norm

|u|∞,h = max
i

|ui|.(16)

We skip the proof of the following lemma, which states the discrete integration
by parts in L2

h,0 for the operators δ±x , δ2
x. For each grid function u ∈ L2

h,0, we denote

the one-dimensional column vector uj = [u1,j , u2,j , . . . , uN−1,j ]
T , 1 ≤ j ≤ N − 1.

Lemma 2.1 (discrete integration by parts). For any u, v ∈ L2
h,0, we have

(i) (δ+
x u, v)h = −(u, δ−x v)h;(17)

(ii) (δ2
xu, v)h = −(δ+

x u, δ
+
x v)h = −(δ−x u, δ−x v)h.(18)

Note that in (17), (18), the finite difference operators are extended to the points
i = 0, i = N by

δ±x u0 = δ±x uN = 0, δ2
xu0 = δ2

xuN = 0.(19)

Observe that this assumption is only for notational convenience, in order to have
formally δ±x u, δ2

xu ∈ L2
h,0. Results similar to (17), (18) in the y direction are ob-

tained by substituting the subscript y to the subscript x. The following lemma is the
counterpart of the Poincaré inequality at the discrete level.

Lemma 2.2 (discrete Poincaré inequality). For all u ∈ L2
h,0 and any 1 ≤ j ≤

N − 1,

|uj |h ≤ 2|δ+
x u

j |h.(20)

Corollary 2.1. For all u ∈ L2
h,0,

|u|h ≤
√

2
[
|δ+

x u|2h + |δ+
y u|2h

]1/2
.(21)

Proof. For all u ∈ l2h,0, we have

|u|2h = h

N−1∑
i0=1

u2
i0 .(22)

For all 1 ≤ i0 ≤ N − 1,

u2
i0 =

i0−1∑
i=0

(ui+1 − ui)(ui+1 + ui) =

i0−1∑
i=0

hδ+
x ui(ui + (Su)i)

≤ 2|δ+
x u|h|u|h,
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where (Su)j = uj+1, j = 0, . . . , N − 1. Therefore,

|u|2h = h

N−1∑
i0=1

u2
i0 ≤ 2|δ+

x u|h|u|h,(23)

which gives (20).
Now for all u ∈ L2

h,0, we have

|u|2h = h

N−1∑
j0=1

|uj0 |2h ≤ 2h

N−1∑
j0=1

|δ+
x u

j0 |h|uj0 |h(24)

≤ 2

(N−1∑
j0=1

h|δ+
x u

j0 |2
)1/2(N−1∑

j0=1

h|uj0 |2
)1/2

≤ 2|δ+
x u|h|u|h.

In a similar way, we obtain in the y direction

|u|2h ≤ 2|δ+
y u|h|u|h.(25)

Summing (24) and (25), we obtain (21).

3. The Stephenson scheme in one dimension.

3.1. Design by collocation. Consider the one-dimensional biharmonic equa-
tion {

u(4)(x) = f(x), 0 < x < 1,
u(0) = u(1) = ux(0) = ux(1) = 0.

(26)

Suppose that at each node xj = jh, 0 ≤ j ≤ N , of a finite difference grid, there
are two unknowns uj and ux,j approximating, respectively, u(xj) and ux(xj), which
is referred to as a “mixed scheme.” The values uj , ux,j are solutions of the linear
system, designed by the following Galerkin collocation method. At each interior node
j, 1 ≤ j ≤ N − 1, we consider a fourth-order polynomial, with domain [xj−1, xj+1]

Q(x) = a0 + a1(x− xj) + a2(x− xj)
2 + a3(x− xj)

3 + a4(x− xj)
4.(27)

The five coefficients ak, k ∈ {0, 1, 2, 3, 4}, are defined by the five collocation conditions
on the compact stencil {xj−1, xj , xj+1} (see Figure 1):{

Q(xj−1) = uj−1, Q(xj) = uj , Q(xj+1) = uj+1,
Q′(xj−1) = ux,j−1, Q′(xj+1) = ux,j+1.

(28)

The five coefficients of the unique polynomial (27), solution of (28), are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = uj ,

a1 =
3

2
δxuj −

1

4
(ux,j+1 + ux,j−1),

a2 = δ2
xuj −

1

2
(δxux)j ,

a3 =
1

h2
(δxuj − ux,j) =

1

6
(δ2

xux)j ,

a4 =
1

2h2

[
(δxux)j − δ2

xuj

]
.

(29)
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Fig. 1. Stephenson’s scheme for u(4) = f : The finite difference operator δ4xuj at point j is

Q(4)(xj), where Q(x) ∈ P 4[xj−1, xj+1] is defined by the five collocated values for uj−1, uj , uj+1,
ux,j−1, ux,j+1.

Now, since Q′(xj) = a1 and Q′′′′(xj) = 24a4, it is natural to define the following com-
pact scheme: find [u0, u1, . . . , uN−1, uN ], [ux,0, ux,1, . . . , ux,N−1, ux,N ] ∈ l2h,0, which
solve ⎧⎨

⎩
(a) (Pxux)j = δxuj , 1 ≤ j ≤ N − 1,
(b) δ4

xuj = f(xj), 1 ≤ j ≤ N − 1,
(c) u0 = u1 = ux,0 = ux,N = 0,

(30)

where the operators Px, δ4
x are, respectively, defined in (31), (34).

For u ∈ l2h,0, the operator Px is defined by

(Pxu)j =
1

6
uj−1 +

2

3
uj +

1

6
uj+1, 1 ≤ j ≤ N − 1.(31)

Px will be referred to as the Simpson operator in the x direction, because the coef-
ficients in (30) are those of the Simpson quadrature formula over [xj−1, xj+1]. Note
also that

Px = I +
h2

6
δ2
x.(32)

We also note that the connection (30)(a) is already given in the classical book by
Collatz [6, Chap. III, Eq. 2.9]. We call S the discrete space of grid functions (u, ux) ∈
l2h,0 × l2h,0,

S =
{
(u, ux) ∈ l2h,0 such that Pxux = δxu

}
.(33)

In (30), we define the Stephenson discrete biharmonic to be the compact difference
operator given on S by

δ4
xuj =

12

h2

{
(δxux)j − δ2

xuj

}
, 1 ≤ j ≤ N − 1.(34)

This is a one-dimensional version of the original scheme proposed by Stephenson in
[19]. Note that for simplicity, we will refer in what follows to a grid function in S by
u ∈ S, meaning that it is the first component of a pair (u, ux) ∈ S.

Remark. We note that the implicit scheme (30)(a) defining the grid function ux as
a function of u is exactly the one obtained in the piecewise cubic spline interpolation;
see, e.g., [18]. The classical question that occurs in spline interpolation about fixing
the two degrees of freedom ux,0, ux,N at end points is here pointless, since they are
precisely given in (30)(c).
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3.2. Consistency. On a periodic grid, the order of consistency can be obtained
by a simple Taylor expansion at point xj . Equivalently, one can compute the symbol
of the operators. Recall that in the context of finite difference operators, we have
to use the semidiscrete Fourier transform; see, e.g., [20]. In practice, if the values of
the periodic grid function (uj) are represented by eijξh, then the symbol of the linear
operator Lh is lh(ξ) defined by

Lhuj = lh(ξ)uj .(35)

Furthermore, if l(ξ) is the symbol of L, then the order of consistency is given by the
greatest value p > 0 such that (see [20])

lh(ξ) − l(ξ) = O(hp).(36)

Doing so, it is quite easy to verify that the Stephenson gradient is fourth-order accu-
rate and that the biharmonic operator (34) is as well. Indeed, we verify the following:

• The symbol of the discrete operator ux in (30)(a) is

gh(ξ) = iξ − 1

180
iξ5h4 + O(h6),(37)

so that the order of accuracy with respect to the operator ∂x, whose symbol is iξ, is

gh(ξ) − iξ = O(h4).(38)

• The symbol of the discrete operator δ4
xu in (34) is

dh(ξ) = ξ4 − 1

720
ξ8h4 + O(h6),(39)

so that the order of accuracy with respect to ∂4
x is

dh(ξ) − (iξ)4 = O(h4).(40)

On a finite grid with homogeneous boundary conditions at the two ends, we have to
perform a more careful analysis, because the symbolic computation no longer holds
in this case.

Lemma 3.1. Suppose that u(x) is a regular function on [0, 1]. Then the finite
difference gradient ux defined from the values u(xj), 0 ≤ j ≤ N , by (Pxux)j = δxu(xj)
has a truncation error (ux)j − u′(xj) of order four at each point xj. More precisely,

|(ux)j − u′(xj)| ≤ Ch4|u(5)|∞,[0,1].(41)

Proof. The Stephenson gradient ux is defined in the space l2h,0 by

(Pxux)j = (δxu)j , 1 ≤ j ≤ N − 1,(42)

where Px is the N − 1×N − 1 matrix-operator acting on l2h,0 as defined in (31), that
is,

Px =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
3

1
6 0 . . . 0

1
6

2
3

1
6

. . .
...

. . .
. . .

0 . . . 1
6

2
3

1
6

0 . . . . . . 1
6

2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(43)
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Consider a regular function u(x), differentiable as much as needed, and denote by u′,
u′′, . . . , u(p), its derivatives. At each point xj , 1 ≤ j ≤ N−1, the Taylor formula gives

(we note u
(m)
j = u(m)(xj))

(δxu)(xj) = u′
j +

h2

6
u

(3)
j +

h4

2 5!

[
u(5)(ξ−1,j) + u(5)(ξ+

1,j)
]
,(44)

where ξ−1,j ∈ ]xj−1, xj [ and ξ+
1,j ∈ ]xj , xj+1[. Similarly, there exist ξ−2,j ∈ ]xj−1, xj [,

ξ+
2,j ∈ ]xj , xj+1[ such that

(δ2
xu)(xj) = u′′

j +
h2

4!

[
u(4)(ξ−2,j) + u(4)(ξ+

2,j)
]
.(45)

We deduce that, applying (45) to u′,

δxu(xj) − Pxu
′(xj) = δxu(xj) −

[
u′(xj) +

h2

6
δ2
xu

′(xj)

]

= u′
j +

h2

6
u

(3)
j +

h4

2.5!

(
u(5)(ξ−1,j) + u(5)(ξ+

1,j)

)

−
[
u′
j +

h2

6

(
u

(3)
j +

h2

4!

[
u(5)(ξ−2,j) + u(5)(ξ+

2,j)
])]

= h4vj ,

where the grid function vj is defined by

vj =
1

2.5!

(
u(5)(ξ+

1,j) + u(5)(ξ−1,j)
)
− 1

6.4!

(
u(5)(ξ−2,j) + u(5)(ξ+

2,j)
)
.(46)

Therefore, the grid function u ∈ l2h,0 verifies the identity

δxu(xj) − Pxu
′(xj) = h4vj .(47)

On the other hand, ux ∈ l2h,0 is defined by

δxu− Pxux = 0.(48)

Subtracting (48) from (47), we obtain the identity in l2h,0,

u′ − ux = h4P−1
x v,(49)

where u′ = [u′(x1), . . . , u
′(xN−1)]. Writing Px = I+ h2

6 δ2
x, the inverse of Px is obtained

by the Neumann series

P−1
x =

∞∑
k=0

(
− h2

6
δ2
x

)k

,(50)

which gives the estimate of |P−1
x |∞,h,

|P−1
x |∞,h ≤

∞∑
k=0

h2k

6k
|δ2

x|k∞,h ≤
∞∑
k=0

(
2

3

)k

= 3.(51)
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Observe that the matrix-operator δ2
x above is defined at the near-boundary points

j = 1, j = N − 1 by

δ2
xu1 =

u2 − 2u1

h2
, δ2

xuN−1 =
uN−2 − 2uN−1

h2
.(52)

We deduce now from (49) and (51) that

|u′ − ux|∞,h ≤ h4|P−1
x |∞,h|v|∞,h ≤ Ch4|u(5)|∞,[0,1].(53)

Lemma 3.2. Suppose that u(x) is a regular function on [0, 1]. Then the Stephen-
son biharmonic operator δ4

x defined by (34) has a truncation error δ4
xu− u(4) of order

3/2 in the l2h,0 norm,

|δ4
xu− u(4)|h ≤ Ch3/2

(
|u(6)|∞,[0,1] + |u(5)|∞,[0,1]

)
,(54)

where the notation u(4) stands for

u(4) = [u(4)(x1), . . . , u
(4)(xN−1)] ∈ l2h,0.(55)

Remark. The difference in accuracy between the periodic case and the nonperiodic
case is only due to the near-boundary points 1 and N − 1.

Proof. Recall that the finite difference biharmonic operator δ4
x is the three-points

compact operator, expressed in terms of u and ux by

δ4
xuj =

12

h2

[
δxux − δ2

xu
]
.(56)

Here, we handle the finite difference operators acting on one-dimensional grid func-
tions u = [u1, . . . , uN−1], as N − 1 ×N − 1 matrices; see [3]. We can rewrite (30)(a)
as

Pxux =
1

2h
Ku = δxu ∈ l2h,0,(57)

where the antisymmetric matrix K = {Ki,m}1≤i,m≤N−1 is given by

Ki,m =

{
sgn(m− i), |m− i| = 1,
0, |m− i| �= 1,

(58)

and the operator δx is expressed as

δx =
1

2h
K.(59)

In matrix form, (57) is simply written as

Pxux = δxu or ux = P−1
x δxu.(60)

Using (34), the operator δ4
x can be rewritten in matrix form

δ4
x =

12

h2

[
δxP

−1
x δx − δ2

x

]
=

12

h2

[
P−1
x (δx)2 +

[
δxP

−1
x − P−1

x δx
]
δx − δ2

xu
]
.
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Applying the operator Px, we obtain, for all u ∈ l2h,0,

Px

[
δ4
xu− u(4)

]
=

12

h2

[
(δx)2u + [Pxδx − δxPx]P−1

x δxu− Pxδ
2
xu
]
− Pxu

(4) := v.(61)

Note that in (60)–(61), we refer to Px as the symmetric positive definite matrix (see
(32)–(43)),

(Px)i,m =

⎧⎪⎨
⎪⎩

2
3 , m = i,
1
6 , |m− i| = 1,

0, |m− i| ≥ 2.

(62)

Clearly the commutator [Px,K] = PxK −KPx is

(PxK −KPx)i,j =

⎧⎨
⎩

− 1
3 , i = j = 1,

1
3 , i = j = N − 1,
0 otherwise,

(63)

so that the commutator [Px, δx] = 1
2h [Px,K] is

Pxδx − δxPx =

⎧⎨
⎩

− 1
6h , i = j = 1,

1
6h , i = j = N − 1,
0 otherwise.

(64)

This means that the operators Px and δx do not commute and that the nonzero
commutator values are restricted to points j = 1 and j = N − 1.

Let us first evaluate (61) at points j = 2, 3, . . . , N − 2.

12

h2

[
(δx)2uj − Pxδ

2
xuj

]
− Pxu

(4)
j =

12

h2

{
(δx)2uj(65)

−
[
2

3
δ2
xuj +

1

6
δ2
xuj+1 +

1

6
δ2
xuj−1

]}

−
[
2

3
u

(4)
j +

1

6
u

(4)
j−1 +

1

6
u

(4)
j+1

]
.

The first term on the right-hand side of (65) is

(δx)2uj = u′′
j +

h2

3
u

(4)
j +

32

6!
h4u

(6)
j +

128

8!
h6u

(8)
j + Ch8u(10)(ξj).(66)

Using (45) for evaluating δ2
xum at m = j − 1, j, j + 1, we find that Pxδ

2
xuj in (65) is

2

3
δ2
xuj +

1

6
δ2
xuj+1 +

1

6
δ2
xuj−1 = u′′

j +
1

4
h2u

(4)
j +

22

6!
h4u

(6)
j +

86

8!
h6u

(8)
j + h8wj ,(67)

where |wj | ≤ C|u(10)|∞,[0,1]. In addition, we have that the third line of the right-hand
side in (65) is [

2

3
u

(4)
j +

1

6
u

(4)
j−1 +

1

6
u

(4)
j+1

]
= u

(4)
j +

1

6
h2u

(6)
j + Ch4zj ,(68)
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where |zj | ≤ C|u(8)|∞,[0,1]. Therefore, we have, for 2 ≤ j ≤ N − 2,∣∣∣∣12

h2

[
(δx)2u− Pxδ

2
xuj

]
− Pxu

(4)
j

∣∣∣∣ ≤ Ch4|u(8)|∞,[0,1],(69)

and this order is optimal. Consider now the truncation term for j = 1 (the computa-
tion is the same for j = N − 1). We have

(δ4
xu)1 =

12

h2

[
(δxux)1 − δ2

xu1

]
.(70)

Since |ux,j − u′
j | ≤ Ch4|u(5)|∞,[0,1], we have

(δxux)1 =
ux,2

2h
=

ux,2 − ux,0

2h
(71)

=
u′(x2) − u′(x0)

2h
+ ṽ

= u′′(x1) +
h2

6
u(4)(x1) + ṽ,

where ṽ stands for a generic term such that |ṽ| ≤ Ch3|u(5)|∞,[0,1]. In addition, we
have

(δ2
xu)1 = u′′(x1) +

h2

12
u(4)(x1) + w,(72)

where

|w| ≤ Ch4|u(6)|∞,[0,1].(73)

Therefore (71), (73) show that the truncation error at the near-boundary point x1 is

12

h2

[
(δxux)1 − (δ2

xu)1
]
− u(4)(x1) = t1, with |t1| ≤ Ch|u(5)|∞,[0,1].(74)

We deduce from (61), (69), (74) that the truncation error e = δ4
xu−u(4) is the solution

of the linear system

P xe = v, v ∈ l2h,0, e ∈ l2h,0,(75)

where P x is the matrix

P x =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1
6

2
3

1
6 . . . 0

...
...

... . . .
...

0 . . . 1
6

2
3

1
6

0 . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,(76)

and v is such that

|v1|, |vN−1| ≤ Ch|u(5)|∞,[0,1]; |vj | ≤ Ch4|u(8)|∞,[0,1], j = 2, . . . , N − 2.(77)

By Gerschgorin’s theorem, P
−1

x is a bounded matrix independent of h; therefore

e = P
−1

x v is such that

|e|h ≤ C|v|h,(78)
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where

|v|2h ≤ Ch

(
2h2 +

N−2∑
j=2

h8

)
≤ Ch3.(79)

Taking the square root in (79), we obtain (54) (using the weaker estimate |vj | ≤
Ch2|u(6)|∞,[0,1] at interior points).

Remark. Note that the error at the interior points is fourth order and that the
h3/2 error is fully due to the loss of accuracy at the two boundary points j = 1,
j = N − 1.

3.3. Interpretation with finite elements. In this section, we establish the fi-
nite element counterpart of scheme (30). This allows us to obtain in a simple way the
stability of the Stephenson finite difference operator δ4

x. To each grid function v ∈ l2h,0,
we match the function vh(x) defined by vh(xj) = vj , in the finite element space
P 1
c,0, the space of continuous functions, piecewise linear in each interval [xj , xj+1],

j = 0, . . . , N − 1, and such that vh(x0) = vh(xN ) = 0. Clearly, it is an isomorphism
between l2h,0 and P 1

c,0. In addition, starting with v ∈ l2h,0, we introduce the two piece-
wise constant functions v̄h and vh,x, defined in each interval Kj+1/2 = ]xj , xj+1[ by

v̄h,j+1/2 =
vj + vj+1

2
, vh,x,j+1/2 =

vj+1 − vj
h

.(80)

An important aspect of using P 1
c,0 in the study of finite difference schemes is that

it allows one to streamline analytic operations like integration by parts or averaged
quantities over intervals Kj+1/2 = [xj , xj+1]. The L2[0, 1] scalar product is denoted by

(ϕ,ψ) =

∫ 1

0

ϕ(x)ψ(x)dx.(81)

Writing the representation of uh(x) in Kj+1/2 as (xj+1/2 = 1
2 (xj+1 + xj)),

uh(x)|Kj+1/2
= ūh,j+1/2 + uh,x,j+1/2(x− xj+1/2),(82)

we can compare different scalar products for (., .)h and in L2(0, 1) as follows.
Lemma 3.3. For any u, v ∈ l2h,0, let uh(x), vh(x) ∈ P 1

c,0 be the corresponding
finite element functions. Then we have

(i) (u, v)h = (uh, vh) +
h2

6
(uh,x, vh,x) = (ūh, v̄h) +

h2

4
(uh,x, vh,x);(83)

(ii) (δxu, v)h = (uh,x, vh);(84)

(iii) (δ2
xu, v)h = −(δ+

x u, δ
+
x v)h = −(δ−x u, δ−x v)h = −(uh,x, vh,x) (see (18)).(85)

Proof. The proof is an elementary computation resulting from the piecewise
linearity of uh(x) in each Kj+1/2 = [xj , xj+1] given by (82). In fact, it clearly suffices
to check that (83), (84), (85) hold for uh = ϕk, vh = ϕm, where (ϕk) is a basis of
P 1
c,0.

Let (u, ux) ∈ S. Since ux ∈ l2h,0, it has a matching function ph ∈ P 1
c,0. On the

other hand, we have the piecewise constant function uh,x. The connection between
these two functions is given by the following lemma.
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Lemma 3.4. (i) Let u ∈ S with grid gradient ux ∈ l2h,0. Then the finite element

function ph(x) ∈ P 1
c,0 corresponding to ux is the orthogonal projection of the piecewise

constant function uh,x onto P 1
c,0. In other words, it is the unique solution ph ∈ P 1

c,0

of

(ph, qh) = (uh,x, qh) ∀qh ∈ P 1
c,0.(86)

In addition, we have, with qh ∈ P 1
c,0 corresponding to q ∈ l2h,0,

(Pxux, q)h = (ph, qh) = (ux, Pxq)h.(87)

(ii) Let u, v ∈ S and let (uh, ph), (vh, qh) ∈ P 1
c,0 × P 1

c,0 be the matching finite
element functions. Then the bilinear form 〈.; .〉h defined on S × S by

〈u, v〉h = (δ4
xu, v)h =

12

h2

(
uh,x − ph, vh,x − qh

)
= (u, δ4

xv)h(88)

is a scalar product on S × S.
(iii) Translated in terms of finite difference operators, (88) is

(89)

〈u, v〉h =

N−1∑
j=0

h
ux,j+1 − ux,j

h

vx,j+1 − vx,j
h

+
12

h2

N−1∑
j=0

h

[
uj+1 − uj

h
− 1

2
(ux,j + ux,j+1)

][
vj+1 − vj

h
− 1

2
(vx,j + vx,j+1)

]
.

Proof. (i) The discrete gradient ux ∈ l2h,0 is defined by[
Pxux

]
j

= δxuj , 1 ≤ j ≤ N − 1,(90)

where Px is the Simpson operator given in (31). Equation (90) is equivalent to

(ux, q)h +
1

6
h2(δ2

xux, q)h = (δxu, q)h ∀q ∈ l2h,0.(91)

Taking any q ∈ l2h,0 and the ph corresponding to ux ∈ l2h,0, and using (83), (84), and
(85), we can rewrite (91) as

(uh,x, qh) = (δxu, q)h = (ux, q)h +
h2

6
(δ2

xux, q)h

= (ph, qh) +
h2

6
(ph,x, qh,x) − h2

6
(ph,x, qh,x)

= (ph, qh),

which gives (86). The symmetry of Px is clear from the definition; see (31), (62). In
addition, we have

(Pxux, q)h = (δxu, q)h = (uh,x, qh) = (ph, qh),(92)

which proves (87).
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(ii) The Stephenson biharmonic operator is (see (34))

δ4
xuj =

12

h2

{
(δxux)j − δ2

xuj

}
.(93)

We have

(δ4
xu, v)h =

12

h2

[
(ph,x, vh) + (uh,x, vh,x)

]
=

12

h2

(
vh,x, uh,x − ph

)
.(94)

Subtracting (qh, uh,x − ph) = 0 from (94), we deduce

〈u, v〉h = (δ4
xu, v)h =

12

h2

(
uh,x − ph, vh,x − qh

)
.(95)

We verify now that 〈u, u〉1/2h is a norm on S. 〈u, u〉h = 0 is equivalent to |uh,x−ph| = 0.
Therefore the piecewise affine function ph ∈ P 1

c,0 is actually piecewise constant. Since
it vanishes at x = 0 and is continuous at any xj , we have ph ≡ 0, which is uh,x ≡ 0.
Therefore uh is piecewise constant as well. Since uh(0) = 0 we have also uh ≡ 0.

Finally, we prove (89). Recall that for any qh ∈ P 1
c,0, the difference qh − qh is

orthogonal to piecewise constant functions. Thus, replacing in (95) ph, qh by ph, qh,
respectively, and noting (see (83)) that

(ph, qh) = (ph, qh) +
h2

12
(ph,x, qh,x),(96)

we get

〈u, v〉h = (ph,x, qh,x) +
12

h2
(uh,x − p̄h, vh,x − q̄h),(97)

which gives (89) using (80).
Remarks. The result of Lemma 3.4(ii) gives the uniqueness of the discrete solution

of scheme (30).
The following lemma states the discrete counterpart of the equivalence of
(i) |ux| and ‖u‖H1 for u ∈ H1

0 ;
(ii) |uxx| and ‖u‖H2 for u ∈ H2

0 .
Lemma 3.5. There exist constants C, C ′, C ′′ independent of h such that for any

grid function u ∈ S,

(i) |uh| ≤ |u|h ≤ C|δ+
x u|h = C|uh,x| (Poincaré inequality);(98)

(ii) |δ+
x u|h ≤ C ′〈u, u〉1/2h ;(99)

(iii) |δ+
x ux|h ≤ C ′′〈u, u〉1/2h .(100)

Proof. Inequality (i) is simply the Poincaré inequality (21) in the one-dimensional
setting, reformulated with the finite element notation. Inequality (iii) follows directly
from (97) since δ+

x ux = ph,x as piecewise constant functions.
For (ii), we use the notation p for the grid function ux and, as before, denote by

uh, ph the P 1
c,0 functions associated with u, p, respectively. In view of (86), we have

|δ+
x u|2h = |uh,x|2 = (uh,x − ph, uh,x − ph) + (ph, ph)(101)

=
h2

12
〈u, u〉h + |ph|2,
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where in the second equality we have used (95). Now, applying the Poincaré inequality
(98) to p instead of u, we get

|ph|2 ≤ C2|δ+
x p|2h ≤ C2(C ′′)2〈u, u〉h,(102)

where in the last inequality we have used (100). Inserting this inequality in (101), we
obtain (99) with C ′ = CC ′′.

Remarks. 1. We know that |uxx|0,[0,1] is a norm on the Sobolev space H2
0 . We

may wonder if, at the discrete level, |δ+
x ux|h = |ph,x|0,[0,1] is a norm on S. Actually it

is a norm only if the number of points N is an even integer. We have that ph,x = 0
implies ph = 0. But the relation Pxux = δxu implies only δxu = 0, which gives u = 0
only if N is an even integer.

2. For other finite difference schemes for the biharmonic problem and their link
with the finite element method, we refer to the book by Li, Chen, and Wu [16].

3.4. Convergence of the Stephenson scheme. We derive now the following
convergence result

Proposition 3.1. Let U be the P 1
c,0 Lagrange interpolate of the exact solution

u(x) of (26) and ũ the discrete solution of (30). Then the following error estimate

holds in the mesh dependent norm 〈ṽ, ṽ〉1/2h ,

〈U − ũ, U − ũ〉1/2h ≤ Ch3/2
(
|f ′′|∞,[0,1] + |f ′|∞,[0,1]

)
,(103)

where the constant C is independent of h.

Proof. We estimate as usual the error by the sum of the approximation error and

of the consistency error. Here, we work with the discrete norm 〈., .〉1/2h , so that there
is no approximation error. We have

〈U − ũ, U − ũ〉1/2h = sup
ṽ∈S,ṽ 	=0

〈U − ũ, ṽ〉h
〈ṽ, ṽ〉1/2h

.(104)

For the numerator on the right-hand side of (104),

〈U − ũ, ṽ〉h = (δ4
x(U − ũ), ṽ)h = h

N−1∑
j=1

(δ4
xUj − fj)ṽj .(105)

Therefore, in view of Lemma 3.2,

|〈U − ũ, ṽ〉h| ≤ |δ4
xU − f |h|ṽ|h(106)

≤ Ch3/2|ṽ|h
(
|f ′′|∞,[0,1] + |f ′|∞,[0,1]

)
.

Using the fact that |ṽ|h ≤ C〈ṽ, ṽ〉1/2h (see (99), (100)), we find that

|〈U − ũ, ṽ〉h| ≤ Ch3/2〈ṽ, ṽ〉1/2h

(
|f ′′|∞,[0,1] + |f ′|∞,[0,1]

)
,(107)

which gives the result.
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4. The Stephenson scheme in two dimensions.

4.1. The compact biharmonic scheme of Stephenson. We consider in this
section the biharmonic problem in a square Ω = ]0, 1[2:{

Δ2u(x, y) = ∂4
xu(x, y) + ∂4

yu(x, y) + 2∂2
xyu(x, y) = f(x, y), (x, y) ∈ Ω,

u = ∂u
∂n = 0 on ∂Ω.

(108)

For any f ∈ L2(Ω), problem (108) has a unique solution u ∈ H2
0 (Ω). Its discrete

version, using the Stephenson scheme, is to find a solution ui,j ∈ L2
h,0 to the equation{

Δ2
hui,j = f(xi, yj), 1 ≤ i, j ≤ N − 1,

ui,j = ux,i,j = uy,i,j = 0 for {i, j} ∈ {0, N}.(109)

The Stephenson biharmonic operator Δ2
h is defined by

Δ2
hui,j = δ4

xui,j + δ4
yui,j + 2δ2

xδ
2
yui,j .(110)

For any u ∈ L2
h,0, the grid gradient (ux, uy) ∈ (L2

h,0)
2 is defined by{

Pxux,i,j = δxui,j , 1 ≤ i, j ≤ N − 1,
Pyuy,i,j = δyui,j , 1 ≤ i, j ≤ N − 1,

(111)

where Px, Py are the Simpson operators (see (31)),⎧⎪⎨
⎪⎩

Px = Id +
1

6
h2δ2

x,

Py = Id +
1

6
h2δ2

y.
(112)

The one-dimensional operators δ4
xui,j , δ

4
yui,j are given as functions of u, ux, uy by

δ4
xui,j =

12

h2

[
(δxux)i,j − (δ2

xu)i,j
]
, δ4

yui,j =
12

h2

[
(δyuy)i,j − (δ2

yu)i,j
]
.(113)

For the convenience of the reader, we recall briefly how the operator Δ2
h has been

originally derived by Stephenson [19]. At each point (xi, yj) of the grid, 0 ≤ i, j ≤ N ,
are attached the three unknowns ui,j , ux,i,j , uy,i,j as well as a fourth-order polynomial
Pi,j , simply denoted P (x, y),

P (x, y) =
∑

xlym∈V

al,mxlym,(114)

where the monomial set V is

V = {1, x, y, x2, y2, xy, x3, x2y, xy2, y3, x4, x2y2, y4}, #V = 13.(115)

The 13 coefficients al,m are uniquely determined by the following collocation condi-
tions (see Figure 2):⎧⎪⎪⎨

⎪⎪⎩
• 9 collocations for ul,m at points (xl, ym) for l ∈ {i− 1, i, i + 1},

m ∈ {j − 1, j, j + 1}.
• 2 collocations for ux,l,m at points (xi−1,j , yi,j), (xi+1,j , yi,j).
• 2 collocations for uy,l,m at points (xi,j , yi,j+1), (xi,j , yi,j−1).

(116)
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The collocation system gives a 13 × 13 linear system which can be solved explicitly.
The result is given by [19].

Lemma 4.1. Denoting by �, �, and �′ the finite difference operators⎧⎨
⎩

�ui,j = ui−1,j + ui+1,j + ui,j+1 + ui,j−1,
�ui,j = ui+1,j+1 + ui+1,j−1 + ui−1,j−1 + ui−1,j+1,
�′ui,j = ux,i+1,j − ux,i−1,j + uy,i,j+1 − uy,i,j−1,

(117)

the 13 coefficients al,m of P (x, y) at point (xi, yj) uniquely determined by the 13
conditions (116) are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0,0 = ui,j ,

a1,0 =
3

2
δxui,j −

1

4
(ux,i+1,j + ux,i−1,j), a0,1 =

3

2
δyui,j −

1

4
(uy,i,j+1 + uy,i,j−1),

a2,0 = δ2
xui,j −

1

2
(δxux)i,j , a0,2 = δ2

yui,j −
1

2
(δyuy)i,j , a1,1 = δxyui,j ,

a3,0 =
1

6
(δ2

xux)i,j , a0,3 =
1

6
(δ2

yuy)i,j ,

a2,1 =
1

2
(δ2

xδyu)i,j , a1,2 =
1

2
(δ2

yδxu)i,j ,

a4,0 =
1

2h2

[
(δxux)i,j − δ2

xui,j

]
, a0,4 =

1

2h2

[
(δyuy)i,j − δ2

yui,j

]
,

a2,2 =
1

4
(δ2

xδ
2
yu)i,j .

(118)

The gradient of P (x, y) at (xi, yj) is (∂xP (xi, yj), ∂yP (xi, yj)) = (a1,0, a0,1).
Defining ux,i,j = Px(xi, yj), uy,i,j = Py(xi, yj), we obtain (111). Furthermore the
operators δ4

x, δ4
y are defined by

{
δ4
xui,j = ∂4

xP (xi, yj) = 24a4,0,

δ4
yui,j = ∂4

yP (xi, yj) = 24a0,4,
(119)

which is (113). Finally the operator Δ2
hui,j is defined by Δ2

hui,j = Δ2P (xi, yj) =
24a4,0 +8a2,2 +24a0,4, which is (110). Furthermore, by expanding the finite difference
operators, we find the following expression for the biharmonic operator Δ2

h:

Δ2
hui,j =

1

h4

{
56ui,j − 16

[
ui+1,j + ui,j+1 + ui−1,j + ui,j−1

]
+ 2

[
ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1

]
+ 6h

[
(ux)i+1,j − (ux)i−1,j + (uy)i,j+1 − (uy)i,j−1

]}
.

For alternative schemes for (108), see [19, 1].

4.2. Consistency and convergence for the elliptic operator. The order of
consistency is deduced from the consistency in the one-dimensional case.
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Fig. 2. Stephenson’s scheme for Δ2u = f : The finite difference operator Δ2
hui,j at point (i, j)

is Δ2
hui,j = Δ2Q(xi, yj), where Q(x, y) ∈ P 3.5

(
[xi−1, xi+1] × [yj−1, yj+1]

)
is defined by the 13

collocated values on the picture.

Lemma 4.2. Let u be continuously differentiable up to sixth order in Ω and
suppose that it vanishes, along with its gradient on ∂Ω. Then the truncation grid
function e = Δ2

hu(xi, yj) − Δ2u(xi, yj) ∈ L2
h,0 satisfies

|e|h ≤ Ch3/2‖u‖6,∞,(120)

where ‖u‖6,∞ is

|u|6,∞ =
∑

0≤α1+α2≤6

|∂α1
x ∂α2

y u|∞,[0,1]2 .

Proof. We have

|Δ2
hu− Δ2u|h ≤ |δ4

xu− ∂4
xu|h + |δ4

yu− ∂4
yu|h + 2|δ2

xδ
2
yu− ∂2

x∂
2
yu|h.(121)

Using the consistency result (54) row by row and column by column we obtain

|δ4
xu− ∂4

xu|h ≤ Ch3/2
(
|∂6

xu|∞,[0,1]2 + |∂5
xu|∞,[0,1]2

)
,(122)

|δ4
yu− ∂4

yu|h ≤ Ch3/2
(
|∂6

yu|∞,[0,1]2 + |∂5
yu|∞,[0,1]2

)
.(123)
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The consistency for the mixed term is deduced from (45):

|δ2
xδ

2
yu− ∂2

x∂
2
yu|h ≤ Ch2

( ∑
α1+α2=6

|∂α1
x ∂α2

y u|∞,[0,1]2

)
.(124)

In order to carry out convergence analysis, we need to develop discrete ana-
logues of the basic differential estimates, as in the one-dimensional case of section 3.
We do this in the framework of a suitable “finite element” space, namely, the Q1

c

space of continuous functions in Ω satisfying the following condition: In every cell
Ki+1/2,j+1/2 = [xi, xi+1] × [yj , yj+1], they are linear (separately) in x, y. Otherwise
stated, it is (in every cell) in Span(1, x, y, xy). The subspace of interest to us is Q1

c,0,
consisting of functions (in Q1

c) vanishing on ∂Ω. It is clear how to match an element
uh ∈ Q1

c,0 to a given u ∈ L2
h,0: we simply take the function a0 + a1x + a2y + a3xy,

which interpolates the four values ui,j , ui+1,j , ui,j+1, ui+1,j+1. Since uh(x, y) is linear
in x (resp., in y) for every fixed value of y (resp., of x), we can in particular treat the
function u(xi, yj), for every fixed j, as a function of xi in l2h,0 and then associate with

it the functions ux in l2h,0 (see (30)) and uh, ph, their associated P 1
c,0 functions.

Note that these functions are determined for each fixed value of yj . In the same
way, we define the piecewise constant in [xj , xj+1] function uh,x(., yj). We define also
the analogous functions in the y direction. Finally, uh,xy is the piecewise (in cells)
constant function given by the coefficient a3 above. We now equip Q1

c,0 with two
scalar products. Each of them corresponds to an L2(0, 1) product in one direction
(i.e., the function is regarded as an element of P 1

c,0 in that direction), followed by an
l2h,0 product in the other direction. They are given by

⎧⎨
⎩

(uh, vh)x = h
∑N−1

j=1 (uh(., yj), vh(., yj))L2(0,1),

(uh, vh)y = h
∑N−1

i=1 (uh(xi, .), vh(xi, .))L2(0,1).
(125)

The link between the grid scalar product (u, v)h on L2
h,0 and the two scalar products

(uh, vh)x, (uh, vh)y is given by (see (83))

(u, v)h = (uh, vh)x +
h2

6
(uh,x, vh,x)x,(126)

(u, v)h = (uh, vh)y +
h2

6
(uh,y, vh,y)

y.(127)

As in the one-dimensional case (see (33)), we introduce here a space S consisting of
triples (u, ux, uy) ∈ L2

h,0, where ux, uy are related to u by (111). For brevity, we shall
sometimes refer to the triple simply by u ∈ S. As in the one-dimensional case (see
Lemma 3.4), we have the following result.

Lemma 4.3. Let u ∈ S. Let ph, qh ∈ Q1
c,0 correspond to ux, uy, respectively.

Then they are the projections of uh,x, uh,y in the following sense:

(ph, vh)x = (uh,x, vh)x, (qh, vh)y = (uh,y, vh)y ∀vh ∈ Q1
c,0.(128)
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Proof. For each 1 ≤ j0 ≤ N − 1, it results from (86) that

(ph, vh)x = h

N−1∑
j=1

(ph(., yj), vh(., yj))L2(0,1)

= h

N−1∑
j=1

(uh,x(., yj), vh(., yj))L2(0,1)

= (uh,x, vh)x.

Therefore, the function ph ∈ Q1
c,0 matching ux ∈ L2

h,0 is the unique solution of

(ph, vh)x = (uh,x, vh)x ∀vh ∈ Q1
c,0.(129)

The proof is the same for uh,y.
We summarize in the following proposition the basic properties of the discrete

operator Δ2
h. As in the one-dimensional case, that operator gives rise to a positive

definite bilinear form.
Proposition 4.1. (i) Let (u, ux, uy), (v, vx, vy)∈S, and let (uh, ph, qh), (vh, rh, zh)

be their matches, respectively, in Q1
c,0. Then the discrete biharmonic operator Δ2

h de-
fined by

Δ2
hui,j = δ4

xui,j + δ4
yui,j + 2δ2

xδ
2
yui,j , 1 ≤ i, j ≤ N − 1,(130)

induces a scalar product 〈u, v〉h = (Δ2
hu, v)h on S × S defined by

〈u, v〉h = (Δ2
hu, v)h =

12

h2
(uh,x − ph, vh,x − rh)x +

12

h2
(uh,y − qh, vh,y − zh)y

+ 2(uh,xy, vh,xy).(131)

In particular, the discrete operator Δ2
h is symmetric positive definite on S.

(ii) In terms of the basic finite difference operators, the product 〈u, v〉h is given
by

(Δ2
hu, v)h = (δ+

x ux, δ
+
x vx)h + (δ+

y uy, δ
+
y vy)h + 2(δ+

x δ
+
y u, δ

+
x δ

+
y v)h(132)

+
12

h2

(
δ+
x u− 1

2
(ux + ux,i+1,j), δ

+
x v −

1

2
(vx + vx,i+1,j)

)
h

+
12

h2

(
δ+
y v −

1

2
(uy + uy,i,j+1), δ

+
y v −

1

2
(vy + vy,i,j+1)

)
h

.

(iii) We have the two following coercivity properties of the norm 〈u, u〉h =
(Δ2

hu, u)h:

〈u, u〉h ≥ C
[
|δ+

x ux|2h + |δ+
y uy|2h + |δ+

x uy|2h + |δ+
y ux|2h

]
(133)

and

〈u, u〉1/2h ≥ C ′|u|h,(134)

where C, C ′ are constants independent of h.
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Proof. (i) By (130), we have

(Δ2
hu, v)h = (δ4

xu, v)h︸ ︷︷ ︸
(I)

+ (δ4
yu, v)h︸ ︷︷ ︸
(II)

+2 (δ2
xδ

2
yu, v)h︸ ︷︷ ︸
(III)

.(135)

We consider separately each term (I), (II), (III). For the term (I), we have

(δ4
xu, v)h = h

N∑
j=1

(
δ4
xu(·, yj), v(·, yj)

)
h

= h

N∑
j=1

{
12

h2
(uh,x(·, yj) − ph, vh,x(·, yj) − rh(·, yj)

}

=
12

h2
(uh,x − ph, vh,x − rh)x.

In the same way

(δ4
yu, v)h =

12

h2
(uh,y − qh, vh,y − zh)y.(136)

For (III), we just note that

(δ2
xδ

2
yu, v)h = (δ+

x δ
+
y u, δ

+
x δ

+
y u)h = (uh,xy, vh,xy).(137)

Consider now the positive-definiteness of (131). Suppose that (Δ2
hu, u) = 0. Then

ph(., yj) is constant and continuous and is zero at the end points; therefore ph = 0.

The same result holds for qh and uh. We conclude that 〈u, u〉1/2h = (Δ2
hu, u)

1/2
h is a

norm in S.
(ii) Translating (131) in term of finite difference operators, we obtain (132), as in

(89).
(iii) It results from (132) that

(Δ2
hu, u)h ≥ |δ+

x ux|2h + |δ+
y uy|2h + 2|δ+

x δ
+
y u|2h.(138)

For the mixed term δ+
x δ

+
y u, we will show next that

|δ+
x δ

+
y u|h ≥ 1

6
|δ+

x uy|h.(139)

Indeed

δ+
x δ

+
y ui,j =

δ+
y ui+1,j − δ+

y ui,j

h
.(140)

Using δ+
y ui,j = δyui,j + h

2 δ
2
yui,j and the definition of Py (see (112)), we deduce

δ+
x δ

+
y ui,j =

δyui+1,j − δyui,j

h
+

1

2

[
δ2
yui+1,j − δ2

yui,j

]
=

1

h

[
uy,i+1,j − uy,i,j

]
+

h

6

[
δ2
yuy,i+1,j − δ2

yuy,i,j

]
+

1

2

[
δ2
yui+1,j − δ2

yui,j

]
= δ+

x uy,i,j +
h2

6
δ2
yδ

+
x uy,i,j +

1

2
hδ2

yδ
+
x ui,j .
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In addition, using the definition of δ2
y we have

|δ2
yδ

+
x uy| ≤

4

h2
|δ+

x uy|h(141)

and

|δ2
yδ

+
x u|h ≤ 2

h
|δ+

y δ
+
x u|h.(142)

Therefore, we have

|δ+
x δ

+
y u|h ≥ |δ+

x uy|h − h2

6
|δ2

yδ
+
x uy|h − h

2
|δ2

yδ
+
x u|h

≥ |δ+
x uy|h − 2

3
|δ+

x uy|h − |δ+
x δ

+
y u|h,

which gives finally 2|δ+
x δ

+
y u|h ≥ 1

3 |δ+
x uy|h, or equivalently (139). We proceed in the

same way in proving the symmetric estimate

|δ+
x δ

+
y u|h ≥ 1

6
|δ+

y ux|h.(143)

Finally, the last coercivity inequality (134) is obtained starting from

|δ+
x u|2h = (|uh,x|x)2(144)

and following along the same lines as in the proof of (99) in Lemma 3.5.
We conclude this section with the following error estimate.
Proposition 4.2. Let U be the Q1

c,0 Lagrange interpolation of the exact solution
u(x) of (108) and ũ the discrete solution of (109). Then there exists a constant C
independent of h such that

〈U − ũ, U − ũ〉1/2h ≤ Ch3/2
∑

α1+α2≤6

|∂α1
x ∂α1

y u|∞,[0,1]2 .(145)

Proof. The proof follows along the same lines as the one of Proposition 3.1. We
use in particular (134).

5. A Stephenson-based compact scheme for the streamfunction formu-
lation of the Navier–Stokes equations. The pure streamfunction form of the
Navier–Stokes equation is

∂tΔψ = −∇⊥ψ · ∇(Δψ) + νΔ2ψ.(146)

The streamfunction was introduced already by Lagrange; see [15, Chap. IV]. For
simplicity, we deal only with the “no-slip” boundary condition, namely, the velocity
vanishes on the boundary. This implies that we seek the streamfunction ψ ∈ H2

h,0

(see [3] for a full discussion of the functional space for ψ). The notation is as follows.
We denote by ψi,j ∈ L2

h,0 a grid function and by ψx,i,j , ψy,i,j ∈ L2
h,0 the Stephenson

gradient defined by

Pxψx = δxψ, Pyψy = δyψ,(147)
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where the interpolation operators Px, Py are (see (112))

Pxψ|i,j =
1

6
ψi−1,j +

2

3
ψi,j +

1

6
ψi+1,j , Pyψ|i,j =

1

6
ψi,j−1 +

2

3
ψi,j +

1

6
ψi,j+1.(148)

The discrete gradient ∇hψ is defined as the pair of the discrete functions (ψx, ψy) and
the discrete velocity is defined as the discrete curl of the streamfunction in the sense

∇⊥
h ψi,j = Ui,j =

[
ui,j , vi,j

]
=
[
− ψy,i,j , ψx,i,j

]
.(149)

The discrete Laplacian is defined by the standard five-points formula

Δhψi,j = δ2
xψi,j + δ2

yψi,j .(150)

The discrete Stephenson biharmonic Δ2
h introduced in (109) is

Δ2
hui,j = δ4

xui,j + δ4
yui,j + 2δ2

xδ
2
yui,j , 1 ≤ i, j ≤ N − 1.(151)

Δ2
h is a nine point operator acting at every point (i, j) interior to the domain. The

semidiscrete scheme associated with (146) consists in finding ψ̃(t) ∈ L2
h,0, which sat-

isfies the evolution equation

∂tΔhψ̃ = −∇⊥
h ψ̃ · (Δh∇hψ̃) + νΔ2

hψ̃,(152)

with initial condition

ψ̃i,j(0) = (ψ0)(xi, yj).(153)

Note that in (152) and in what follows we use pointwise multiplication of functions in

L2
h,0, i.e., (u · v)i,j = ui,jvi,j . We denote by e(t) = ψ̃(t) − ψ(t) the difference between

the computed and exact solutions. The exact solution verifies

∂tΔhψ = −∇⊥
h ψ ·

[
Δh∇h(ψ)

]
+ νΔ2

hψ + F,(154)

where F is the truncation error of the scheme depending on the regularity of the exact
solution. We call U and Ũ the discrete velocities associated to ψ, ψ̃ by

U = (−ψy, ψx), Ũ = (−ψ̃y, ψ̃x).(155)

Recall that in (155), the x and y subscripts stand for the discrete derivatives defined
in (147). In particular, ψx, ψy are not the values of the exact derivatives of ψ. The
error e(t) evolves according to

∂tΔhe− νΔ2
he = −

[
Ũ · Δh(ψ̃x, ψ̃y) − U · Δh(ψx, ψy)

]
− F.(156)

The right-hand side of (156) is decomposed into four terms:

[
(Ũ · Δh(ψ̃x, ψ̃y) − U · Δh(ψx, ψy)

]
+ F = (Ũ − U) · Δh

[
(ψ̃ − ψ)x, (ψ̃ − ψ)y

]
+ (Ũ − U) · Δh

[
(ψx, ψy

]
+U · Δh

[
(ψ̃ − ψ)x, (ψ̃ − ψ)y

]
+ F.
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Taking the h scalar product with e(t), we obtain

(∂tΔheh − νΔ2
he, e)h = −

(
(Ũ − U) · Δh

[
(ψ̃ − ψ)x, (ψ̃ − ψ)y

]
, e

)
h

(157)

−
(
(Ũ − U) · Δh(ψx, ψy), e

)
h

−
(
U · Δh

[
(ψ̃ − ψ)x, ψ̃ − ψ)y

]
, e

)
h

−
(
F, e

)
h
.

We denote the four terms of the right-hand side by J1, J2, J3, J4:

J1 =
(
(Ũ − U) · Δh(ψ̃ − ψ)x, (ψ̃ − ψ)y, e

)
h
,

J2 =
(
(Ũ − U) · Δh(ψx, ψy), e

)
h
,

J3 =
(
U · Δh(ψ̃ − ψ)x, (ψ̃ − ψ)y, e

)
h
,

J4 = (F, e)h.

We estimate separately the four terms J1, J2, J3, J4.

Term J1. The term J1 is

J1 =
(
(Ũ − U) · Δh(ex, ey), e

)
h
.(158)

We have

Ũ − U =
[
− (ψ̃ − ψ)y, (ψ̃ − ψ)x

]
= (−ey, ex),(159)

where the subscripts x and y are the Stephenson derivation operators. Therefore

J1 =
(
(Ũ − U) · Δh(ex, ey), e

)
h

=
(
− ey(δ

2
xex + δ2

yex) + ex(δ2
xey + δ2

yey), e
)
h

=
(
− ey(δ

2
xex + δ2

yex), e
)
h

+
(
ex(δ2

xey + δ2
yey), e

)
h

= −
(
δ2
xex, eey

)
h
−
(
δ2
yex, eey

)
h

+
(
δ2
xey, eex

)
h

+
(
δ2
yey, eex

)
h

=
(
δ+
x ex, δ

+
x (eey)

)
h

+
(
δ+
y ex, δ

+
y (eey)

)
h

−
(
δ+
x ey, δ

+
x (eex)

)
h
−
(
δ+
y ey, δ

+
y (eex)

)
h
.

In order to formulate a discrete Leibniz rule for w, z ∈ L2
h,0 we use the “shift operators”

(Sxw)i,j = wi+1,j , (Syz)i,j = zi,j+1. In terms of these operators we have

δ+
x (wz) = (Sxw)i,jδ

+
x z + zδ+

x w,(160)

which is quite easy to verify. Using (160), we expand J1 in the sum of eight terms:

J1 =
(
δ+
x ex, (Sxey)i,jδ

+
x e

)
h

+
(
δ+
x ex, eδ

+
x ey

)
h

+
(
δ+
y ex, (Syey)i,jδ

+
y e

)
h

+
(
δ+
y ex, eδ

+
y ey

)
h

−
(
δ+
x ey, (Sxex)i,jδ

+
x e

)
h
−
(
δ+
x ey, eδ

+
x ex

)
h

−
(
δ+
y ey, (Syex)i,jδ

+
y e

)
h
−
(
δ+
y ey, eδ

+
y ex

)
h
.
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There is a cancellation of terms 2 and 6 on one hand, and 4 and 8 on the other hand,
so that

J1 =
(
δ+
x ex, (Sxey)δ

+
x e

)
h

+
(
δ+
y ex, (Syey)δ

+
y e

)
h

+
(
δ+
x ey, (Sxex)δ+

x e
)
h

+
(
δ+
y ey, (Syex)δ+

y e
)
h
.

We now observe that if θ ∈ L2
h,0, then |θ|∞,h ≤ 1

h |θ|h. We can therefore estimate J1

as follows:

|J1| =
∣∣((Ũ − U) · Δh(ex, ey), e

)
h

∣∣
≤ ε

[
|δ+

x ex|2h + |δ+
y ex|2h + |δ+

x ey|2h + |δ+
y ey|2h

]
+

1

4ε

[
|(ex, ey)|2∞,h

(
|δ+

x e|2h + |δ+
y e|2h

)]
≤ ε

[
|δ+

x ex|2h + |δ+
y ex|2h + |δ+

x ey|2h + |δ+
y ey|2h

]
+

C

εh2

[
|δ+

x e|2h + |δ+
y e|2h

]2
,

where in the last step we have used (51) to estimate |ex|∞,h ≤ C|δ+
x e|∞,h and

|ey|∞,h ≤ C|δ+
y e|∞,h with a constant independent of h. The factor ε > 0 will be

specified later.

Term J2. The term J2 is estimated by (C is a generic constant)

|J2| = |
(
(Ũ − U) · Δh(ψx, ψy), e

)
h
| ≤ C

[
|Ũ − U |2h + |e|2h

]
.(161)

We have used that Δh(ψx, ψy) is the discrete operator Δh composed by the Stephen-
son gradient applied to the exact solution, and is bounded if the exact solution is
sufficiently regular. In addition, using the fact that Ũ −U =

[
− (ψ̃y −ψy), ψ̃x −ψx

]
,

we have

|Ũ − U |2h = |ex|2h + |ey|2h.(162)

Furthermore, we have, in view of (60), (78),

|ex|h ≤ C|δ+
x e|h, |ey|h ≤ C|δ+

y e|h,(163)

and, due to the Poincaré inequality (21), we deduce

|J2| ≤ C
[
|δ+

x e|2h + |δ+
y e|2h

]
.(164)

Term J3. We have

J3 =
[
U · Δh(ex, ey), e

]
h

= (uδ2
xex, e)h︸ ︷︷ ︸
J3,1

+ (uδ2
yex, e)h︸ ︷︷ ︸
J3,2

+ (vδ2
xey, e)h︸ ︷︷ ︸
J3,3

+ (vδ2
yey, e)h︸ ︷︷ ︸
J3,4

.

We have

J3,1 = (uδ2
xex, e)h = (δ2

xex, ue)h = −
[
δ+
x ex, δ

+
x (ue)

]
h
.(165)

Using (160), the term J3,1 is estimated by

|J3,1| = |
[
δ+
x ex, δ

+
x (ue)

]
h
≤ |δ+

x ex|h|δ+
x (ue)|h

≤ |δ+
x ex|h

[
|(Sxu)i,jδ

+
x e|h + |eδ+

x u|h
]

≤ |δ+
x ex|h

[
|u|∞,h|δ+

x e|h + |δ+
x u|∞,h|e|h

]
.
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Therefore, using the Poincaré inequality (21), the term J3,1 is estimated by

|J3,1| ≤ max
[
|u|∞,h, |δ+

x u|∞,h

][
ε|δ+

x ex|2h +
1

4ε
(|δ+

x e|h + |e|h)2
]

≤ max(|u|∞,h, |δ+
x u|∞,h)

[
ε|δ+

x ex|2h +
C

ε
(|δ+

x e|2h + |δ+
y e|2h)

]
.

Using the same principle in the y direction, we obtain for the term J3,2

|J3,2| = |(uδ2
yex, e)h| ≤ max(|u|∞,h, |δ+

y u|∞,h)

[
ε|δ+

y ex|2h +
C

ε
(|δ+

x e|2h + |δ+
y e|2h)

]
.

(166)

Therefore, with m(u) = max
[
|u|∞,h, |δ+

x u|∞,h, |δ+
y u|∞,h

]
, the estimate for the term

J3,1 + J3,2 is

|J3,1 + J3,2| ≤ |J3,1| + |J3,2| ≤ m(u)

[
ε
{
|δ+

x ex|2h + |δ+
y ex|2h

}
+

C

ε

{
|δ+

x e|2h + |δ+
y e|2h

}]
.

(167)

Treating the term J3,3 + J3,4 in the same way, we obtain

|J3,3 + J3,4| ≤ |J3,3| + |J3,4| ≤ m(v)

[
ε{|δ+

x ey|2h + |δ+
y ey|2h} +

C

ε
{|δ+

x e|2h + |δ+
y e|2h}

]
.

(168)

The estimate for the term J3 is finally, with M(u, v) = max(m(u),m(v)),

|J3| ≤ M(u, v)

[
ε
{
|δ+

x ex|2h + |δ+
y ex|2h + |δ+

x ey|2h + |δ+
y ey|2h

}
+

2C

ε

{
|δ+

x e|2h + |δ+
y e|2h

}]
.

(169)

Term J4. The term J4 is the truncation error and is of order 3/2 (in the | · |h
norm) in view of Lemmas 3.1 and 4.2. For any time T > 0, the term J4 is estimated
by

|J4| ≤ C(T )|e|hh3/2 ≤ C(T )
[
|δ+

x e|2h + |δ+
y e|2h + h3

]
,(170)

where C(T ) is a constant depending only on T > 0 and on the regularity of the exact
solution ψ(t) on [0, T ].

Turning back to (157), we have, on [0, T0],(
∂

∂t
Δhe, e

)
h

− ν(Δ2
he, e)h = −1

2

d

dt
{|δ+

x e|2h + |δ+
y e|2h} − ν(Δ2

he, e)h

= −J1 − J2 − J3 − J4,

or

1

2

d

dt
{|δ+

x e|2h + |δ+
y e|2h} = J1 + J2 + J3 + J4 − ν(Δ2

he, e)h

≤ |J1| + |J2| + |J3| + |J4| − ν(Δ2
he, e)h

≤ |J1| + |J2| + |J3| + |J4|
−Cν

[
|δ+

x ex|2h + |δ+
y ey|2h + |δ+

x ey|2h + |δ+
y ex|2h

]
,
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where in the last inequality we have used the coercivity property (133). Collecting the
terms of the form |δ+

x ex|2h+ |δ+
y ey|2h+ |δ+

x ey|2h+ |δ+
y ex|2h, which appear in the estimates

for J1, J2, J3, J4, and selecting ε > 0 sufficiently small, we find that these terms are
absorbed in the right-hand side of the last inequality. We are therefore left with the
estimate

d

dt

{
|δ+

x e|2h + |δ+
y e|2h

}
≤ C

[
|δ+

x e|2h + |δ+
y e|2h

][
1 +

1

h2
(|δ+

x e|2h + |δ+
y e|2h)

]
+ C ′h3,(171)

where C,C ′ depend on the exact solution ψ and on the viscosity coefficient ν but not
on h.

In order to prove convergence of the approximate solution ψ̃ to the exact solution
ψ using (171), we proceed as follows. We use the fact that at t = 0 the error e = 0 to
prove an estimate for |δ+

x e|h + |δ+
y e|h up to any given time T > 0.

Theorem 5.1. Let T > 0. Then there exist constants C, h0 > 0, depending
possibly on T, ν, and the exact solution ψ, such that, for all 0 ≤ t ≤ T ,

|δ+
x e|2h + |δ+

y e|2h ≤ Ch3, 0 < h ≤ h0.(172)

Using Corollary 2.1, we obtain a 3/2 convergence rate in the discrete L2 norm.
Proof. Fix some K > 0. Observe that at t = 0 we have e = 0; hence also

δ+
x e = δ+

y e = 0 (at t = 0). Thus, taking h > 0, there exists a time τ > 0 (in general
depending on h) such that

sup
0≤t≤τ

{
|δ+

x e|h + |δ+
y e|h

}
≤ Kh.(173)

Inserting (173) in (171) we have for t ≤ τ

d

dt

[
|δ+

x e|2h + |δ+
y e|2h

]
≤ C(1 + K2)

[
|δ+

x e|2h + |δ+
y e|2h

]
+ C ′h3, 0 < h ≤ h0;(174)

hence by Gronwall’s inequality (174) gives

|δ+
x e|2h + |δ+

y e|2h ≤ C1e
C(1+K2)th3, t ≤ τ,(175)

with a suitable constant C1 > 0. Observe that in (175) τ depends on h, and define
τ0 = τ0(h) by

τ0 = sup{t > 0 such that |δ+
x e|h + |δ+

y e|h ≤ Kh}.(176)

We have τ0 ≥ τ and, as in (175), we obtain

|δ+
x e|2h + |δ+

y e|2h ≤ C1e
C(1+K2)th3, t ≤ τ0.(177)

We can now select h0 so small that

C1e
C(1+K2)Th0 < K2.(178)

Now the definition of τ0 and (177)–(178) imply that, for any 0 < h ≤ h0, we have
τ0(h) ≥ T and, in particular, for such h, the estimate (175) holds true for all t ≤ T .
This concludes the proof of the theorem.
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NUMERICAL ANALYSIS OF VANKA-TYPE SOLVERS FOR
STEADY STOKES AND NAVIER–STOKES FLOWS∗

S. MANSERVISI†

Abstract. We consider Vanka-type smoothers for solving Stokes and Navier–Stokes problems.
In each iteration step, this smoother requires the solution of several small local subproblems over
finite element blocks. It is shown that for particular choices for the blocks, the algorithm always
converges to the solution of the Stokes problem and, under suitable conditions, to the solution of
the Navier–Stokes problem. The convergence properties are analyzed and numerical examples are
presented.

Key words. Navier–Stokes equations, Vanka solvers, finite elements
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1. Introduction. In recent years, a new multigrid method has been proposed for
solving the Navier–Stokes equations based on the iterative solution of several problems
over small overlapping domains; for examples, see [12, 13, 14, 24, 25]. This smoothing
procedure can be considered a block Gauss–Seidel algorithm whose iteration step
consists of solving local problems for each block of unknowns involving pressure and
velocity over small subdomains. In this multigrid smoothing step the solution must
be computed and updated subdomain by subdomain as in a multiplicative Schwarz-
type iterative algorithm. This multigrid technique shows excellent convergence and is
naturally suitable for domain decomposition problems and parallel computing [2, 4,
5, 12, 13, 14, 24]. It is not restricted to the Navier–Stokes equations since it can be
easily extended to elliptic operators and mixed variational problems if the appropriate
local problems for the smoothing procedure are identified. The finite element method
introduces a natural decomposition of the problem in subdomains which turns out to
be ideal for block subdivisions. For particular blocks of elements some Vanka-type
smoothers are well known to be computationally among the best laminar solvers of
the stationary Stokes problem [12, 24].

Despite these excellent properties very little is known so far about convergence and
smoothing properties of this Gauss–Seidel block iterative method. There is substan-
tial literature on Schwarz alternating methods for the incompressible Navier–Stokes
equations for domain decomposition (see, for example, [6, 9, 10, 15, 16, 17, 22, 26] and
the references therein), but nothing at all on Vanka-type smoothers. An attempt to
investigate this method can be found in [19, 21]. In the first paper a Fourier analysis
for a simple model for the Poisson equation in one dimension is presented. In [21]
an additive Schwarz-type version of the iterative algorithm for the Stokes problem
is presented and transformed into an inexact Uzawa methods under suitable condi-
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tions. These conditions cannot in general be satisfied and the additive version of the
algorithm does not match the real multiplicative Schwarz-type nature of the iterative
method.

The aim of this paper is to prove that, for a particular choice of the block, this
method leads to a monotonic convergent algorithm for the steady Stokes problem and
that the same algorithm applied to the nonlinear Navier–Stokes equations converges
for relative small Reynolds numbers. In this paper we consider conforming finite ele-
ments and construct the unknown block directly from the finite element discretization.
We investigate the convergence for two Vanka-type smoothers which we call type A
and type B blocks. In type A we consider finite element blocks of unknowns whose
solution leads to divergence-free approximate solutions, i.e., all the approximates sat-
isfy the global divergence-free constraint. In type B we consider finite element blocks
of unknowns whose solution does not satisfy the global divergence-free constraint but
only a local one. In type B the global constraint is satisfied only when convergence
is reached. We will prove that this local problem for the Stokes system can be ob-
tained as a minimization problem of a suitable functional of the residuals. This leads
to a monotonic convergence of the residual norm and the smoothing property for the
multigrid algorithm. The same algorithm for the steady Navier–Stokes system cannot
converge unconditionally but will be proved to be convergent for small Reynolds num-
bers. This iterative algorithm has been applied successfully to domain decomposition
and optimal flow control problems [2, 3, 18, 4, 5]. We leave the numerical analysis of
these problems to future papers.

The paper is organized as follows. In section 2 we introduce the variational prob-
lem and the continuous domain decomposition problem. In section 3, we give a precise
definition of the discrete finite element problem with Vanka-type smoothers. We prove
convergence and some properties. Issues related to the numerical implementation of
the fully discrete algorithms and some computational experiments are discussed in
section 4.

2. Formulation of the variational problem.

2.1. Notation. We introduce the following standard notation over a bounded,
connected, open set Ω with polygonal boundary Γ. We shall use the standard notation
for the vector-valued Sobolev spaces Hs(Ω) with its norm ‖ · ‖s (H0(Ω) = L2(Ω) and
‖ · ‖0 = ‖ · ‖). Let H1

0 (Ω) denote the closure of C∞
0 (Ω) under the norm ‖ · ‖1 and let

H−1(Ω) be the dual space of H1
0 (Ω). Also, we define

L2
0(Ω) =

{
p ∈ L2(Ω) :

∫
Ω

p d�x = 0

}
.

In the remainder of the paper 〈·, ·〉 denotes the duality pairing between H1
0 (Ω) and

H−1(Ω) and (·, ·)0 the usual scalar product in L2(Ω). The scalar product in H1
0 (Ω) is

denoted by (·, ·)1, which defines the seminorm | · |1 in the same space. Let V0(Ω) be
the space of divergence-free vectors that vanish on the boundary. We define V⊥

0 (Ω),
the orthogonal complement of V0(Ω) in H0(Ω) with respect to the scalar product
(·, ·)1, by

V⊥
0 (Ω) = {�u ∈ H1

0(Ω) : (�u,�v)1 = 0 ∀�v ∈ V0(Ω)},

which can also be identified with the following set [11]:

{�v ∈ H1
0(Ω) : �v = −A−1B∗p; p ∈ L2

0(Ω)},(2.1)
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where A−1 is the Green’s function which solves the Laplacian problem with homoge-
neous boundary conditions; see (2.5) for the definition of B. For details concerning
these spaces, see [1, 11, 23]. In order to define the weak form of the Stokes and
Navier–Stokes equations, we introduce two continuous bilinear forms,

a(�u,�v) = 2ν
n∑

i,j=1

∫
Ω

Dij(�u)Dij(�v) d�x ∀ �u,�v ∈ H1(Ω),

b(�v, q) = −
∫

Ω

q�∇ · �v d�x ∀q ∈ L2
0, ∀�v ∈ H1(Ω),

and the trilinear form,

c(�w; �u,�v) =

n∑
i,j=1

∫
Ω

wj

(
∂ui

∂xj

)
vi d�x ∀ �w, �u,�v ∈ H1(Ω),

where D(�u) = 1
2 (∇�u + ∇�uT ). It is well known that (see, e.g., [11, 18, 23])

c(�u;�v, �w) = −c(�u; �w,�v) ∀ �u ∈ V (Ω), ∀�v, �w ∈ H1(Ω),

c(�u;�v,�v) = 0 ∀ �u ∈ V (Ω), ∀�v ∈ H1(Ω),(2.2)

|c(�u;�v, �w)| ≤ C|�u|1 |�v|1 |�w|1 ∀ �u,�v, �w ∈ H1
0 (Ω),

where C is independent of the functions �u, �w, and �v. For details concerning notation
employed and properties of the forms, one may consult, e.g., [11, 23].

We will also make use the following operators:

A : H1(Ω) → H−1(Ω)(2.3)

〈A�u,�v〉 = a(�u,�v) ∀ �u ∈ H1(Ω), ∀�v ∈ H1
0 (Ω),

C : H1(Ω) ×H1(Ω) → H−1(Ω)(2.4)

〈C(�w)�u,�v〉 = c(�w; �u,�v) ∀ �w, �u ∈ H1(Ω), ∀�v ∈ H1
0 (Ω),

B : H1(Ω) → L2
0(Ω)(2.5)

〈B�u, p〉 = b(�u, p) ∀ p ∈ L2
0(Ω), ∀ �u ∈ H1(Ω),

B∗ : L2
0(Ω) → H−1(Ω)(2.6)

〈�u,B∗p〉 = b(�u, p) ∀ p ∈ L2
0(Ω), ∀ �u ∈ H1

0 (Ω).

With this notation we can introduce the Stokes problem from different points of
view. In the rest of the paper we assume homogeneous Dirichlet boundary conditions,
but a generalization to nonhomogeneous Dirichlet and Neumann boundary conditions
can be extended in a straightforward manner.

Theorem 2.1. Let Ω be a Lipschitz open bounded domain and �f ∈ H−1(Ω).
These formulations of the Stokes problems are equivalent:

(a) Find (�u, p) ∈ H1
0(Ω)× ∈ L2

0(Ω), solution of the system{
νa(�u,�v) + b(�v, p) = 〈�f,�v〉 ∀�v ∈ H1

0(Ω),

b(�u, q) = 0 ∀ q ∈ L2
0(Ω).

(2.7)

(b) Find (�u, p) ∈ H1
0(Ω)× ∈ L2

0(Ω), which solves the saddle point problem

min
ũ∈H1

0(Ω)

(
sup

p̃∈L2
0(Ω)

L(ũ, p̃)
)
,(2.8)
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where

L(ũ, p̃) =
1

2
νa(ũ, ũ) + b(ũ, p̃) − 〈�f, ũ〉.(2.9)

(c) Find �u ∈ V0(Ω), which solves

νa(�u,�v) = 〈�f,�v〉 ∀�v ∈ V0(Ω).(2.10)

(d) Find �u ∈ V0(Ω), which minimizes the functional

L(ũ) =
1

2
νa(ũ, ũ) − 〈�f, ũ〉(2.11)

for all ũ ∈ V1
0(Ω).

(e) Find �u⊥ ∈ V⊥
0 (Ω), which solves

νa(�u⊥, �v⊥) + 〈�f,�v⊥〉 = 0 ∀�v⊥ ∈ V⊥
0 (Ω).(2.12)

(f) Find �u⊥ ∈ V⊥
0 (Ω), which minimizes the functional

L(ũ⊥) =
1

2
νa(ũ⊥, ũ⊥) + 〈�f, ũ⊥〉(2.13)

for all ũ⊥ ∈ V⊥
0 (Ω).

Proof. The proof can be found in [11].
The formulations in (2.12) and (2.13) take into account the decomposition V0(Ω)+

V⊥(Ω) of the space H1
0(Ω). We also remark that the formulation in (2.12) is the Schur

complement formulation when the equation is written in pressure terms. The equa-
tions in (2.12) and (2.10) can be solved separately and yield the uncoupled form of
the Stokes problem. However, this uncoupled form is not very useful from the nu-
merical point of view since the construction of test functions in V⊥

0 (Ω) involves the
construction of a scalar function as in the original formulation.

Now we can introduce the Navier–Stokes problem. Let �f ∈ H−1(Ω) denote the
steady distributed force and �u ∈ H1

0 (Ω) and p ∈ L2
0(Ω) the state variables, i.e., the

velocity and pressure fields, respectively. The state variables are constrained to satisfy
the weak form of the following Navier–Stokes equations:{

a(�u,�v) + c(�u; �u,�v) + b(�u, p) = 〈�f,�v〉 ∀�v ∈ H1
0 (Ω),

b(�u, p) = 0 ∀ q ∈ L2
0(Ω),

(2.14)

with Dirichlet boundary conditions �u = 0 over Γ.
Existence and uniqueness results for solutions of the system (2.14) are contained

in the following theorem; see, e.g., [23].
Theorem 2.2. Let Ω be an open, bounded set with polygonal boundary Γ. Let

�f ∈ H−1(Ω). Then
(i) there exists at least one solution (�u, p) ∈ H1

0(Ω) × L2
0(Ω) of (2.14);

(ii) the set of velocity fields that are solutions of (2.14) is closed in H1
0(Ω) and is

compact in L2
0(Ω);

(iii) if ν > ν0(Ω, �f) for some positive ν0 whose value is determined by the given
data, then the set of solutions of (2.14) consists of a single element.

Note that solutions of (2.14) exist for any value of the Reynolds number. However,
(iii) implies that uniqueness can be guaranteed only for “large enough” values of ν or

for “small enough” data �f .
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2.2. Vanka-type smoothers and domain decomposition. Let Ω be an
open, bounded, and simply connected domain with polygonal boundary such that
Ω = ∪m

i Ωi, where the subdomains Ωi have smooth boundary Γi and are overlapping
in the sense that H1

0(Ω) = H1
0(Ω

1) + H1
0(Ω

2) + · · · + H1
0(Ω

m). The idea behind the
Vanka-type smoother is that it is possible to solve the problem over the domain Ω
simply by updating and solving a sequence of local problems over all the overlapping
subdomains. In the discrete case the subdomain is taken as a small block of finite
elements, but at the continuous level this method can be seen as a domain decompo-
sition method over a countable number of overlapping smooth subdomains. We will
show that in both the discrete and the continuous cases convergence can be proved.
In the rest of the paper we use “hat” notation to denote functions defined over the
whole domain Ω and standard notation for local variables defined over the subregions
Ωi.

For example, we can define the local problem i over the domain Ωi in the following
way. Given the velocity field û i−1 ∈ V0(Ω) at step i−1, we define the local problems
for the state (�u i, p i) ∈ H1

0(Ω
i) × L2

0(Ω
i) over the subregion Ωi by{

νa(�u i, �v i) + c(�u i, �u i, �v i) + b(p i, �v i) = 〈�f,�v i〉 ∀�v i ∈ H1
0 (Ωi),

b(ri, �v i) = 0 ∀ri ∈ L2
0(Ω

i),
(2.15)

with boundary condition �u i = û i−1 over Γi. At each iteration the global solution
(û i, p̂ i) is determined by the local solution as û i = �u i, p̂ i = p i over Ωi and û i = û i−1,
p̂ i = p̂ i−1 over Ω − Ωi. We remark that the local pressure p i is the solution of the
system (2.15) and a constant must be determined such that the global solution p̂ i is
in L2

0(Ω).
The problem over this subdomain Ωi can be rewritten in a more appropriate way.

As in the standard Schwarz alternating method we can define �w i by �u i− û i−1 over Ωi

and zero over Ω − Ωi and solve the residual equation instead of the original problem
(2.15). The function �w i is in V0(Ω

i) and the residual equation takes the form{
νa(�w i + û i−1, �v i) + c(�w i + û i−1, �w i + û i−1, �v i) = 〈�f,�v i〉 ∀�v i ∈ H1

0(Ω
i),

b(ri, �w i) = 0 ∀ri ∈ L2
0(Ω

i),

with boundary condition �w i = 0 over Γi. Now the solution of the Navier–Stokes
equations over different domains is in the standard space H1

0(Ω
i) and the old velocity

field û i−1 over Ωi can be seen as the projection from the space V0(Ω) to the space
V0(Ω

i) with respect to the scalar product (·, ·)1. It is clear that the convergence of
the Vanka-type smoother is related to the properties of these projection operators,
and the starting point is to investigate the decomposition of the global solution into
the sum of many local solutions. We start to state a space decomposition theorem
which was partially shown in [15, 16, 17].

Theorem 2.3. Let H1
0(Ω) = H1

0(Ω
1)+H1

0(Ω
2)+H1

0(Ω
3) · · ·H1

0(Ω
m) and H1

0(Ω
i)

= V⊥
0 (Ωi)+V0(Ω

i) for all i = 1, . . . ,m, where V0(Ω
i) and V⊥

0 (Ωi) are the divergence-
free function space and its orthogonal complement in H1

0(Ω
i) with respect to the inner

product (·, ·)1 over Ωi. Then we have
(a) V0(Ω) = V0(Ω

1) + V0(Ω
2) + V0(Ω

3) · · ·V0(Ω
m);

(b) V⊥
0 (Ω) = V⊥

0 (Ω1) + V⊥
0 (Ω2) + V⊥

0 (Ω3) · · ·V⊥
0 (Ωm).

Proof. (a) In [15] it is proved that if Ω = Ω1 ∪ Ω2 and H1
0(Ω) = H1

0(Ω
1) +

H1
0(Ω

2), then V0(Ω) = V0(Ω
1) + V0(Ω

2). In the case of m domains we can write
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Ω∗ = Ω1 ∪ Ω2 ∪ Ω3 ∪ · · · ∪ Ωm−1 and prove the assertion by induction. By induc-
tion hypothesis H1

0(Ω
∗) = H1

0(Ω
1) + H1

0(Ω
2) + H1

0(Ω
3) · · ·H1

0(Ω
m−1) and V0(Ω

∗) =
V0(Ω

1) + V0(Ω
2) + V0(Ω

3) · · ·V0(Ω
m−1). Combining this and the result in [15] we

have H1
0(Ω) = H1

0(Ω
∗) + H1

0(Ω
m) and V0(Ω) = V0(Ω

∗) + V0(Ω
m).

(b) First consider the case for m = 2. Let �u⊥ ∈ V⊥
0 (Ωh). Since the domains are

overlapping in the space H1
0(Ω) we can write �u⊥ = �u1 +�u2 with �ui ∈ H1

0(Ω
i), i = 1, 2.

The vector �u1 can be decomposed in H1
0(Ω

1) as �u1 = �u⊥
1 + �u o

1 with �u⊥
1 ∈ V⊥

0 (Ω1)
and �u o

1 ∈ V0(Ω
1).

Consider the zero extension �w⊥
1 and �w o

1 to Ω of �u⊥
1 and �u o

1 . The vectors �w⊥
1

and �w o
1 are in V⊥

0 (Ω) and V0(Ω), respectively. The extension �w1 of �u1 to Ω can be
written as �w1 = �w⊥

1 + �w o
1 .

In a similar way we can decompose �u2 = �u⊥
2 + �u o

2 with �u⊥
2 ∈ V⊥

0 (Ω2) and �u o
1 ∈

V0(Ω
1). The extension �w2 of �u2 to Ω can be written as �w2 = �w⊥

2 + �w o
2 , where �w⊥

2 and
�w o

2 are the corresponding extensions. From the hypothesis we have that �u⊥ = �u1 +�u2

and therefore �u2 = �u⊥−�u1 and �w2 = �u⊥− �w1. The unique decomposition of �w2 over
the subspaces V⊥

0 (Ω) and V0(Ω) implies that �u o
2 = −�u o

1 and that �u o
1 = �w o

1 is zero over
Ω−(Ω1∩Ω2). Therefore �u⊥

1 = �u1−�u o
1 ∈ Vh⊥

0 (Ω1) and �u⊥
2 = �u⊥−�u1+�u o

1 ∈ V⊥
0 (Ω2)

give the desired decomposition �u⊥ = �u⊥
1 + �u⊥

2 . For any m the theorem can be
proved by induction using the case m = 2 and standard techniques [15, 16, 11]. In
the case of m domains we can write Ω∗ = Ω1 ∪ Ω2 ∪ Ω3 ∪ · · · ∪ Ωm−1 and prove
the assertion by induction. By induction hypothesis H1

0(Ω
∗) = H1

0(Ω
1) + H1

0(Ω
2) +

H1
0(Ω

3) · · ·H1
0(Ω

m−1) and V⊥
0 (Ω∗) = V⊥

0 (Ω1) + V⊥
0 (Ω2) + V⊥

0 (Ω3) · · ·V⊥
0 (Ωm−1).

Combining this and the above results for m = 2 we have H1
0(Ω) = H1

0(Ω
∗) +H1

0(Ω
m)

and V⊥
0 (Ω) = V⊥

0 (Ω∗) + V⊥
0 (Ωm).

Let Ti, Pi, and Πi denote the orthogonal projections from H1
0(Ω),V0(Ω),V⊥

0 (Ω)
onto H1

0(Ω
i),Vi

0(Ω
i), and V⊥i

0 (Ωi) with respect to the inner product (·, ·)1 defined by
the operator a(�u,�v) for all �u and �v in H1

0(Ω). The projections Ti û, Pi û,Πi û of û from
H1

0(Ω),V0(Ω),V⊥
0 (Ω) onto H1

0(Ω
i),V0(Ω

i),V⊥
0 (Ωi) are defined by the solutions of

the equations

a(Tiû, �v
i) = a(û, �v i) ∀�v i ∈ H1

0(Ω
i),

a(Piû, �v
i) = a(û, �v i) ∀�v i ∈ V0(Ω

i),

a(Πiû, �v
⊥i) = a(û, �v⊥i) ∀�v⊥i ∈ V⊥i

0 (Ωi),

respectively. We note that Πiû is in general different from û due to the homogeneous
boundary conditions on the boundary Γi. The orthogonal projections Ti, Pi, and Πi

have the following properties [15, 6].
Theorem 2.4. Let Ω be a bounded simply connected domain with smooth bound-

ary and let Ωi, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains with smooth
boundary such that Ω = Ω1∪Ω2 · · ·Ωm. Let Ti (Pi or Πi) be the orthogonal projection
from H1

0(Ω) (V0(Ω) or V⊥
0 (Ω)) onto H1

0(Ω
i) (V0(Ω

i) or V⊥
0 (Ωi)) for i = 1, 2, . . . ,m.

Then
(a) |I − Ti|1 ≤ 1 (|I − Pi|1 ≤ 1 or |I − Πi|1 ≤ 1) for i = 1, 2, . . . ,m;
(b) |Πm

i=1(I − Ti)|1 < 1 (|Πm
i=1(I − Pi)|1 < 1 or |Πm

i=1(I − Πi)|1 < 1).
Proof. We use a standard minimization approach. Let V(Ω) be a subspace of

H1
0(Ω) such that V(Ω) = V(Ω1) + V(Ω2) + · · · + V(Ωm) with V(Ωi) ⊆ H1

0(Ω
i) for

i = 1, 2, . . . ,m. Here V(Ω) could be H1
0(Ω), V0(Ω), or V⊥

0 (Ω). Consider the Laplace
operator A : H1

0 (Ω) → H−1(Ω) defined by

〈A�u,�v〉 = (�u,�v)1 ∀ �u ∈ H1
0 (Ω), ∀�v ∈ H1

0 (Ω)
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and the following equation for �u ∈ V(Ω) with homogeneous Dirichlet boundary con-
dition:

〈A�u,�v〉 = 〈�f,�v〉 ∀�v ∈ V(Ω).(2.16)

We note that the operator A is elliptic, and therefore the natural approach is the
minimization of the associated functional

L =

(
1

2
(Aũ, ũ) − 〈�f, ũ〉 +

1

2
〈A−1 �f, �f〉

)
(2.17)

over the sequence of spaces V(Ωi) for i = 1, 2, . . . ,m. The constant 1
2 〈A−1 �f, �f〉 is

used to vanish the functional at the critical point, and the operator A−1 from H−1(Ω)
to H1

0(Ω) denotes the Green’s operator of the homogeneous problem with the operator
A. We remark that (2.17) can also be written as

L =

(
1

2
(A ũ, ũ) − 〈A�u, ũ〉 +

1

2
〈A�u, �u〉

)
=

1

2
(A ũ− �u, ũ− �u),

where �u is the unique critical point which solves (2.16). Let û i−1 be the solution at
step i − 1 over Ω and let Ri be the projector from V(Ω) to V(Ωi). The operator
Πm

i=1(I −Ri) is defined from the solution sequence of the minimization problem over
V(Ωi) for i = 1, 2, . . . ,m. In fact the minimization over Ωi gives

(A�u i, �v i) = 〈�f,�v i〉 ∀�v i ∈ V(Ωi).(2.18)

If we set �w i = �u i − ûi−1 ∈ V(Ωi), then (2.18) gives

(A�w i, �v i) + (Aû i−1, �v i) = 〈�f,�v i〉 ∀�v i ∈ V(Ωi).(2.19)

Let �u be the solution of (2.16) and let �e i = �u i − �u over Ωi and ê i−1 = û i−1 − �u over
Ω. We have �w i = �e i − ê i−1 and �w i and �e i can be seen as a local error over Ωi or
as a global error over Ω if the corresponding extensions are considered. We use “hat”
notation for functions defined over the domain Ω or the corresponding extensions.
We remark that ŵ i is the zero extension to Ω of �w i. With this notation the above
equation becomes

(A�w i, �v i) + (Aê i−1, �v i) = 0 ∀�v i ∈ V(Ωi),

which is solved by

�u i = (I −Ri) û
i−1 + A−1 �f or ê i = (I −Ri) ê

i−1.(2.20)

Since this estimate is true for all i = 1, 2, . . . ,m we can combine them in the following
solution:

ê m = Πm
i=1(I −Ri) ê

0,(2.21)

which gives the global error over Ω needed to estimate the functional Li and the
operator norm over the domain Ω.

Now we show that the functional Li, which is the norm of the error ê i, is mono-
tonically decreasing for increasing i for all initial guesses ê 0 ∈ V(Ωi). In fact

Li =
1

2
(Aû i, û i) − 〈�f, û i〉 +

1

2
〈A−1 �f, �f〉

=
1

2
(A(�w i + û i−1), �w i + û i−1) − 〈�f, �w i + û i−1〉 +

1

2
〈A−1 �f, �f〉

= Li−1 +
1

2
(A�w i, �w i) + (Aû i−1, �w i) − 〈�f, �w i〉,
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and by using the optimality condition (2.19) we have

Li = Li−1 − 1

2
(A�w i, �w i),(2.22)

which implies Li ≤ Li−1 or Li < Li−1 if we assume �w = 0. Now

Li =
1

2
(û i −A−1 �f, û i −A−1 �f) =

1

2
(ê i, ê i)1 < Li−1 =

1

2
(ê i−1, ê i−1)1,

and therefore

|ê i |21 = (ê i, ê i)1 ≤ (ê i−1, ê i−1)1 = |ê i−1|21.(2.23)

Since |ê i|21 ≤ |ê i−1|21 for all initial vectors ê i−1 ∈ V(Ω) this implies that |(I−Ri)|1 ≤
1 for all i = 1, . . . ,m, which proves (a).

(b) We use the same notation as in (a). By starting with an initial guess û 0 ∈
V(Ω) after a smoothing step over m domains, from (2.22), we have

Lm = L0 − 1

2

m∑
i=1

|ŵ i|21,

with ŵ i = −Riê
i−1, Lm = |ê m|21/2, and L0 = |ê 0|21/2. Also we have ê m = Πm

i=1(I−
Ri) ê

0 for all ê 0 ∈ V(Ω). From the definition of norm we have

|Πm
i=1(I −Ri)|1 = sup |ê m|1 =

√√√√1 − inf

m∑
i=1

|ŵ i|21,(2.24)

where the sup and inf are taken over the set of functions ê 0 ∈ V(Ω) with |ê 0|1 = 1.
The infimum is the minimizer of the minimization problem

min

m∑
i=1

|ŵ i|21,

where the minimum is taken over all the functions ê 0 in V(Ω) with |ê 0|1 = 1. We
remark that

∑m
i=1 |ŵ i|21 = |êm − ê 0|21. Standard theory can be applied to prove

existence, well-posedness, and uniqueness of the solution of the problem over the set
V(Ω). Now by contradiction we prove that the minimum cannot be zero and the
corresponding norm |Πm

i=1(I − Ri)|1 < 1. Suppose that the minimum is zero; then
this implies, from the definition of the norm itself, that there exists an ê 0 in V(Ω)
such that ê m = ê 0, and therefore ŵ i = −Riê

0 = 0 for all i = 1, 2, . . . ,m. Such a
function ê 0 has norm 1 but zero projections over all V(Ωi), i = 1, 2, . . . ,m, and this
contradicts the fact that V(Ω) = V(Ω1) + V(Ω2) + · · · + V(Ωm) ; i.e., the domains
are overlapping in the space V(Ω). Therefore the functional must be different from
zero and must assume a well-defined positive value at the critical point. Combining
this result with (3.15), we obtain the inequality |Πm

i=1(I −Ri)|1 < 1.

2.3. Domain decomposition of type A. The projections introduced above
can be used to solve the Stokes and the Navier–Stokes equations with different types
of domain decompositions. There are several different possible domain decomposi-
tions, but we are interested only in the discussion of domain decompositions whose
discretization leads to the Vanka-type smoothers with elements of our interest.
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Consider the following domain decomposition algorithm, which we can call type A
domain decomposition since all the approximates satisfy globally the divergence-free
constraint. Let Ω be an open, bounded, and simply connected domain with polygonal
boundary. Let Ω = ∪m

i Ωi, where the subdomains Ωi have smooth boundary Γi and
are overlapping in the sense that H1

0(Ω) = H1
0(Ω

1) + H1
0(Ω

2) + · · · + H1
0(Ω

m). Given
the velocity field û i−1 ∈ V0(Ω) at step i − 1 we define the local problem over the
domain Ωi for the unknown �w i = �u i − û i−1 ∈ V0(Ω

i) by

a(�w i + û i−1, �v i) + c(�w i + û i−1, �w i + û i−1, �vi) = 〈�f,�v i〉 ∀�v i ∈ V0(Ω
i),

with boundary condition �w i = 0. We remark that �w i is solved over Ωi and can be
extended to Ω such that û i = ŵ i + û i−1 is defined over the whole domain Ω. Also
we note that the vector solution �w i is in the standard space V0(Ω

i), but the old
velocity field û i−1 is in V0(Ω

i), and therefore it can be seen as a projection from the
space V0(Ω) to the space V0(Ω

i) with respect to the scalar product (·, ·)1. At the ith
iteration the global solution û i is determined by the local solution as û i = �u i over
the subdomain Ωi and û i = û i−1 over Ω − Ωi. We remark that if û 0 is in V0(Ω),
then the sequence û i is in V0(Ω) for all i = 1, 2, . . . ,m.

This domain decomposition algorithm can be proved to be convergent for the
Stokes problem.

Details on the Stokes problem for finite element discretizations are reported in the
next sections. The Navier–Stokes case requires more restrictions since the uniqueness
of the solution can be guaranteed only for small Reynolds numbers, as stated in
Theorem 2.2. Therefore we state a convergence theorem only for small Reynolds
numbers [16, 17].

Theorem 2.5. Let Ω be a bounded simply connected domain with smooth bound-
ary and let Ωi, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains with smooth
boundary such that Ω = Ω1 ∪Ω2 ∪ · · · ∪Ωm. Let the jth smoothing step û j,m ∈ V0(Ω)
be defined by solving iteratively the local system over the domain Ωi for i = 1, . . . ,m
with û j,0 = û j−1,m ∈ V0(Ω). The global sequence is defined by û j,i = �w i+û j,i−1 over
the subdomain Ωi and û j,i = û j,i−1 over Ω − Ωi (i = 1, . . . ,m), where �w i ∈ V0(Ω

i)
solves the local problem

(2.25)

νa(�w i + û j,i−1, �v i) + c(�w i + û j,i−1, �w i + û j,i−1, �v i) = 〈�f,�v i〉 ∀�v i ∈ V0(Ω
i),

with boundary condition �w i = 0.
Let û 0,0 ∈ V0(Ω). Then the global sequence û j,m ∈ V0(Ω) converges (j → ∞)

for sufficiently small Reynolds number to the solution of the Navier–Stokes problem
in (2.14).

Proof. At the smoothing step j over the subdomain Ωi in (2.25) we have

νa(�w i, �v i) + c(�u i, �u i, �v i) = 〈�f,�v i〉 − νa(û j,i−1, �v i),(2.26)

where �u i = �w i + û j,i−1 is the local unknown velocity field defined over Ωi. Let
�u ∈ V0(Ω) be the solution of the Navier–Stokes problem in (2.14), i.e., �u is the
solution of the equation

νa(�u j , �v i) + Δt c(�u j , �u j , �v i) = (�u j−1, �v i) + Δt 〈�f,�v i〉 ∀�v i ∈ V0(Ω
i),

with the appropriate boundary conditions over Γi. The appropriate boundary condi-
tions are Dirichlet boundary conditions that match the global solution �u itself over Γi.
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We note that �w i is in V0(Ω
i) but that û j,i−1 and �u i do not vanish on the boundary

Γi, and therefore they are not in V0(Ω
i). Equation (2.26) becomes

νa(�w i + Pi (û
j,i−1 − �u), �v i) + c(�u i − �u, �u i − �u,�v i)

+ c(�u, �u i − �u,�v i) + c(�u i − �u, �u,�v i) = 0,(2.27)

where Pi is the projector operator from V0(Ω) to V0(Ω
i). Let �e j,i = �u i − �u and

�e j,i−1 = û j,i−1 − �u be the errors at smoothing steps i and i − 1, respectively. The
error functions �e j,i and �e j,i−1 defined over Ωi can be extended over Ω naturally
and will be denoted by ê j,i and ê j,i−1, respectively. Then (2.27) can be written in
operator form as

A(�w i + Pi ê
j,i−1) +

1

ν

(
C(�e j,i)�e j,i + C(�u)�e j,i + C(�e j,i)�u

)
= 0 on Ωi(2.28)

or

�w i + Pi ê
j,i−1 = −1

ν
A−1

i

(
C(�e j,i)�e j,i + C(�u)�e j,i + C(�e j,i)�u

)
over Ωi,(2.29)

where A−1
i is the inverse operator of A over the domain Ωi with homogeneous bound-

ary condition on Γi. If we define ŵ j,i as the zero extension over Ω of �w i, then (2.29)
gives a global estimate in ê j,i which satisfies

ê j,i = (I − Pi) ê
j,i−1 − 1

ν
A−1

i

(
C(�e j,i)�e j,i − C(�u)�e j,i − C(�e j,i)�u

)
.(2.30)

Now we can prove that the error ê j,i is bounded for large values of ν. By using
the Schwarz inequality and (2.2) in (2.30) we have

|ê j,i|1 ≤ |(I − Pi) ê
j,i−1|1 +

1

ν
K (|ê j,i|21 + |�u|1 |ê j,i|1)(2.31)

for some K constant. Let the initial error |ê j,0|1 be bounded by M and let λ be a

positive number such that λ < 1 − |Πm
i=1(I − Pi)|1/m1 . Theorem 2.4 assures us that

λ > 0 since |Πm
i=1(I − Pi)|1 < 1. Since |�u|1 is bounded, then from a simple geometric

consideration there exists a ν∗ such that if ν > ν∗, then

λx >
K

ν
(x2 + x|�u j |1)(2.32)

for 0 ≤ x ≤ M/(1−λ)m = M ′. It is easy to see that if |ê j,0|1 ≤ M , then |ê j,i|1 ≤ M ′

for all i = 1, 2, . . . ,m. In fact for i = m in (3.27) and ν > ν∗ we have

(1 − λ)|ê j,m|1 ≤ |ê j,m−1|1,

and for i = m− 1 and ν > ν∗ we can write

(1 − λ)2|ê j,m|1 ≤ | ê j,m−2|1

since |(I−Pm)|1 ≤ 1. We can obtain similar estimates for i = m−2,m−3, . . . , 1 and
combine them to obtain

|ê j,i|1 ≤ | ê j,0|1
(1 − λ)i

≤ M ′(2.33)
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for all i = 1, . . . ,m and ν > ν∗. However, this estimate is not sharp enough since
M ′ can be much larger than M and the global sequence in j may diverge. In order
to improve the bound we need to take larger values of ν and prove that the sequence
|ê j,m| is monotone decreasing. Consider (3.27) and the fact that |ê j,m|1 ≤ |ê j,0|1/(1−
λ)m and |ê j,0|1 ≤ M for some large ν > ν∗. We can write, for i = m,

|ê j,m|1 ≤ |(I − Pm) ê j,m−1|1 +
1

ν
C |ê j,0|1(2.34)

for some constant C and ν > ν∗. By substituting (2.30) for i = m − 1 in (2.34) and
using the same estimates, we have

|ê j,m|1 ≤ |(I − Pm)(I − Pm−1) ê
j,m−2|1 + 2

1

ν
C |ê j,0|1 .

Again by using (2.30) for i = m− 2, . . . , 1 we finally obtain

|ê j,m|1 ≤ |Πm
i=1(I − Pi) ê

j,0|1 + m
1

ν
C |ê j,0|1 .

We remark that this is not a very sharp bound and can be improved, i.e., for example,
the integer number m in the bound can be substituted by the maximum number of
overlapping domains. If ν is taken greater than ν1 = (1 − |Πm

i=1(I − Pi)|1) 1
mC , then

|ê j,m|1 < |ê j,0|1.

We can apply this technique to each smoothing step for j = 1, 2, . . . and claim that,
for ν > ν1 > ν∗, the sequence |�e j,m|1 is bounded by the initial error M . Also the
sequence |ê j,m|1 converges to zero and therefore û j,m to solution of (2.14).

2.4. Domain decomposition of type B. The domain decomposition algo-
rithm of type A keeps the global solution divergence-free at each step. This could be
computationally very expensive since the divergence-free constraint must be satisfied
everywhere and at each iteration. This global constraint could be relaxed and im-
posed only locally if we use a different form of the Navier–Stokes system. Since any
vector �u

′ ∈ H1
0(Ω) can be written in a unique way as �u + �u⊥ where �u ∈ V0(Ω) and

�u⊥ ∈ V⊥
0 (Ω) we can set �u = �u

′ − �u⊥ in the Navier–Stokes system (2.14) and write⎧⎪⎪⎨
⎪⎪⎩

νa(�u
′
, �v) − a(�u⊥, �v) + c(�u, �u,�v) + b(p,�v) = 〈�f,�v〉 ∀�v ∈ H1

0(Ω),

b(r, �u⊥) = b(r, �u
′
) ∀r ∈ L2

0(Ω),

�u = �u
′ − �u⊥.

(2.35)

Since the Stokes operator in the continuous form satisfies the LBB condition from the
definition of V⊥

0 (Ω) in (2.1) for each p ∈ L2
0(Ω) there is a unique �u⊥ ∈ V⊥

0 (Ω) such
that [11]

a(�u⊥, �v) = b(p,�v) ∀�v ∈ H1
0(Ω).

We identify �u⊥ with p, and this implies that the system (2.35) can be written as⎧⎪⎪⎨
⎪⎪⎩

νa(�u
′
, �v) + c(�u, �u,�v) = 〈�f,�v〉 ∀�v ∈ H1

0(Ω),

a(�v⊥, �u⊥) = a(�v⊥, �u
′
) ∀�v⊥ ∈ V⊥

0 (Ω),

�u
′
= �u + �u⊥.

(2.36)
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The second equation in (2.36) can be seen as a simple projection of �u
′
from the space

H1
0(Ω) to V⊥

0 (Ω) or as an equation formulated in terms of the Schur complement oper-
ator. The Navier–Stokes system is reduced to solving its Schur complement equation,
and this form of the Navier–Stokes system allows us to relax the divergence-free con-
straint. A new domain decomposition theorem can be proved for this different class
of problems.

Theorem 2.6. Let Ω be a bounded simply connected domain with smooth bound-
ary and let Ωi, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains with smooth
boundary such that Ω = Ω1∪Ω2∪· · ·∪Ωm. Let the jth smoothing step (û

′j,m, û j,m⊥) ∈
H1

0(Ω) × V⊥
0 (Ω) be defined by solving iteratively the local system over the domain Ωi

for i = 1, . . . ,m with û
′j,0 = û

′j−1,m and û⊥j,0 = û⊥j−1,m. The global sequence is
defined by û

′j,i = �w
′i + û

′j,i−1, û⊥j,i = �z⊥i + û⊥j,i−1 over Ωi and û
′j,i = û

′j,i−1,
û⊥j,i = û⊥j,i−1 over Ω − Ωi (i = 1, . . . ,m), where (�w

′i, �z⊥i) solves the local problem⎧⎪⎪⎨
⎪⎪⎩

νa(�w
′i + û

′j,i−1, �v i) + c(�u i, �u i, �v i) = 〈�f,�v i〉 ∀�v i ∈ H1
0(Ω

i),

a(�z⊥i + û⊥j,i−1, �v⊥i) = a(�w
′i + û

′j,i−1, �v⊥i) ∀�v⊥i ∈ V⊥
0 (Ωi),

û
′j,i = �u i + û⊥j,i on Ωi.

(2.37)

Let (û
′0,0, û⊥0,0) be in H1

0(Ω)×V⊥
0 (Ω). Then the global sequence (û

′j,m, û⊥j,m)
converges (j → ∞) for sufficiently small Reynolds numbers to the solution of the
Navier–Stokes problem in (2.36).

Proof. Let (�u
′
, �u⊥) ∈ H1

0(Ω) × V⊥
0 (Ω) be the solution of the Navier–Stokes

problem in (2.36). Then (�u
′
, �u⊥) satisfies

νa(�u
′
, �v i) + c(�u, �u,�v i) = 〈�f,�v i〉 ∀�v i ∈ H1

0(Ω
i),(2.38)

a(�u⊥, �v⊥i) = a(�u
′
, �v⊥i) ∀�v⊥i ∈ V⊥

0 (Ωi),(2.39)

with �u = �u
′ − �u⊥ and appropriate Dirichlet boundary conditions, i.e., the solution

(�u
′
, �u⊥) matches the boundary condition over Γi. With this notation at the smoothing

step j and over Ωi, the function �w
′i satisfies

νa(�w
′i, �v i) + c(�u i − �u, �u i − �u,�v i) + c(�u, �u i − �u,�v i)(2.40)

+ c(�u i − �u, �u,�v i) + νa(û
′j,i−1 − �u

′
, �v i) = 0 ∀�v i ∈ H1

0(Ω
i).

We define �e j,i = �u j,i − �u, �e j,i−1 = û j,i−1 − �u, �e
′j,i = �u

′j,i − �u
′
, �e

′j,i−1 = û
′j,i−1 − �u

′

over Ωi and the corresponding extensions as ê j,i, ê j,i−1, ê
′j,i, ê

′j,i−1 over Ω in the
usual way. Then (2.40) gives

νa(�w
′i, �v i) + c(�e j,i, �e j,i, �v i)

+ c(�u,�e j,i, �v i) + c(�e j,i, �u,�v i) + νa(�e
′j,i−1, �v i) = 0.(2.41)

Again we note that �w
′i is in H1

0(Ω
i) and that û

′j,i−1, �u
′i do not vanish on the

boundary Γi. For this reason we need to introduce Ti, the projector operator from
H1

0(Ω) to H1
0(Ω

i), and write (2.41) in the form

(2.42)

A(�w
′i + Ti ê

′j,i−1) +
1

ν

(
C(�e j,i)�e j,i + C(�u)�e j,i + C(�e j,i)�u j

)
= 0 over Ωi
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or

ê
′j,i = (I − Ti) ê

′j,i−1 +
1

ν
A−1

∗i

(
C(�e j,i)�e j,i + C(�u)�e j,i + C(�e j,i)�u

)
(2.43)

by introducing A−1
∗i , the inverse operator of A∗ over the domain Ωi with homogeneous

boundary condition on Γi and the global estimate ê j,i over Ω.
Now it is possible to prove that |ê j,i|1 is bounded for i = 1, 2, . . . ,m and |ê j,m|1

monotonically decreases as j increases for large values of ν. In fact from (2.43) by
using the Schwarz inequality and the inequalities in (2.2), since |ê j,i|1 ≤ |ê ′j,i|1, we
have

|ê ′j,i|1 ≤ |(I − Ti) ê
′j,i−1|1 +

K

ν
(|ê ′j,i|21 + |�u|1 |ê

′j,i|1)(2.44)

for some K constant. Let the initial error |�e ′j,0|1 be bounded by M and therefore by

M ′ = M/(1−λ)m, where λ = 1− |Π(I −Ti)|1/m1 > 0. By following the same steps as

in the previous theorem we can claim that for ν sufficiently large, the error |�e ′j,i|1 is
bounded by M ′ for i = 1, 2, . . . ,m and |�e ′j,m|1 < |�e ′j,0|1 for j = 1, 2, . . . .

Now consider (2.37) in the form

a(�z ⊥j,i − �w
′i, �v⊥i) + a(û⊥j,i−1 − û

′j,i−1, �v⊥i) = 0

or

a(�z ⊥j,i − S �w
′j,i + Πi(û

⊥′j,i−1 − S û
′j,i−1), �v⊥i) = 0,(2.45)

where Πi is the projector from V⊥
0 (Ω) to V⊥

0 (Ωi) and S is the projection operator
from H1

0(Ω) to V⊥
0 (Ω). Let �r j,i = û⊥j,i − S �u

′j,i and �r j,i−1 = û⊥j,i−1 − S �u
′j,i−1

over Ωi and let the corresponding extension over Ω be denoted by r̂ j,i and r̂ j,i−1,
respectively. With this notation (2.45) becomes

a(�z ⊥j,i − S �w
′j,i + Πir̂

j,i−1, �v⊥i) = 0(2.46)

and its solution �z ⊥j,i − S �w
′j,i = −Πi r̂

j,i−1. If we consider the zero extension of
�z ⊥j,i and �w

′j,i and the corresponding extension r̂ j,i over Ω, then the global solution
r̂ j,i satisfies

r̂ j,i = (I − Πi) r̂
j,i−1

for i = 1, 2, . . . ,m, which implies

r̂ j,m = Πm
i=1(I − Πi) r̂

j,0.

Since |Πm
i=1(I −Πi)|1 < 1 we have |r̂ j,m|1 < |r̂ j,0|1. Applying the same procedure for

each smoothing step j we have that the sequence |r̂ j,m|1 monotonically decreases for
increasing j. However, from the previous estimate, the sequence |ê ′j,m|1 is monotoni-
cally decreasing and therefore û

′j,m tends to û
′
. The sequence û⊥j,m tends to S �u

′j,m

and therefore to S�u
′
= �u⊥, which is the solution of (2.36) as j tends to infinity.

We can reformulate the above algorithm with standard notation in velocity and
pressure. Given (û i−1, p̂ i−1) ∈ H1

0(Ω) × L2
0(Ω) at the local step i − 1 we define the

local problem for �w i = �u i − û i−1 ∈ H1
0(Ω

i) and z i = p i − p i−1 ∈ L2
0(Ω

i) by⎧⎪⎨
⎪⎩

νa(�w i, �v i) + b(z i, �v i) + c(�w i, �w i, �v i) = 〈�f,�v i〉 − νa(û i−1, �v i) − b(p̂ i, �v i)

− c(û i−1, �w i, �v i) − c(�w i, û i−1, �v i) ∀�v i ∈ H1
0(Ω

i),

b(ri, �w i) + b(ri, û i−1) = 0 ∀ri ∈ L2
0(Ω

i),
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with boundary condition �w i = 0. The global solution (û i, p̂ i) is determined by the
local solution as û i = �w i+û i−1, p̂ i = z i+p̂ i−1 over the subdomain Ωi and û i = û i−1,
p̂ i = p̂ i−1 over Ω − Ωi. We remark that the restriction of û i over Ωi is in V0(Ω

i),
but the global function û i is not in V0(Ω). The divergence-free constraint is relaxed
and is matched only in the limit of the algorithm when convergence is reached.

3. Formulation of the discrete problem.

3.1. Introduction. In this section we investigate the numerical behavior of the
Vanka-type smoothers by using the finite element method. The finite element method
is particularly suitable for multigrid and Vanka-type smoothers since the domain
geometry is well defined by the finite element structure and the local problems can be
solved at the element level, where the topology is already available. In this paper we
deal only with the convergence issue and leave the multigrid discussion to successive
papers. In particular we would like to discuss the convergence of the Vanka smoothers
when the local solution is obtained over overlapping subdomains that consist of a
cluster of a few finite elements. It is possible to show that smoothers based on these
blocks lead to the solution of the Stokes system for any value of viscosity. The same
smoothers can be used to solve the Navier–Stokes system but only at low Reynolds
numbers. The issue of the high Reynolds is not treated here but can be studied in
the analysis of the time-dependent Navier–Stokes formulation.

In order to avoid technicalities in this approach we use rectangular conforming
finite elements (standard Taylor–Hood). It is possible to generalize to triangular ele-
ments in a very straightforward manner. It is also possible to use different elements
and generalize the analysis to nonstandard Taylor–Hood elements. Under these as-
sumptions we consider two cases. In case A the local subdomain Ωi consists of one
quadrilateral finite element and all its neighboring elements. In order to solve the local
problem we have to solve for all the velocity and pressure unknowns. The boundary
conditions are imposed along the boundary Γi

h of the subdomain Ωi. For the two-
dimensional case we can see such an element in Figure 3.1 on the left. In the case of
Taylor–Hood finite elements we have sixteen unknowns for each velocity component
and pressure.

Case B consists of one quadrilateral finite element and all its neighboring elements,
but we do not solve for the pressure on the boundary Γi

h. The two-dimensional case
can be seen in Figure 3.1 on the right. The two-dimensional case for the Taylor–Hood
rectangular finite element has four pressure unknowns and sixteen nodes for each
velocity component.

Other elements have been used with Vanka-type smoothers and many, especially
nonconforming elements, can be found in the literature; see, for example, [13, 14, 24]
and the references therein.

Let Ωh be a polygonal domain with boundary Γh. Then we subdivide the domain
Ωh into the rectangle elements by using unstructured families of meshes, T i,l0

h . In this
analysis we consider only conforming finite element approximations. Let Xh ⊂H1(Ω)
and Ph ⊂ L2(Ω) be two families of finite-dimensional subspaces parameterized by h,
which tends to zero. We also denote Xh

0 = Xh ∩H1
0 (Ω) and Ph

0 = Ph ∩ L2
0(Ω). We

make the following assumptions on Xh and Ph:
(a) The approximation hypotheses: there exists an integer l and a constant C,

independent of h, �u, and p, such that for 1 ≤ k ≤ l we have

inf
�uh∈Xh

‖�uh − �u‖1 ≤ Chk‖�u‖k+1 ∀ �u ∈ Hk+1(Ω) ∩H1
0 (Ω),(3.1)
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Fig. 3.1. A block of type A (on the left) and a block of type B (on the right) with velocity
(circle), pressure (square), and velocity-pressure (black square) nodes for rectangular Taylor–Hood
elements in the two-dimensional geometry.

inf
ph∈Ph

‖p− ph‖ ≤ Chk‖p‖k ∀ p ∈ Hk(Ω) ∩ L2
0(Ω).(3.2)

(b) The inf-sup condition or LBB condition: there exists a constant C ′, indepen-
dent of h, such that

inf
0 �=qh∈Ph

sup
0 �=�uh∈Xh

∫
Ω
qhdiv�uh

‖�uh‖1‖qh‖
≥ C ′ > 0.(3.3)

This condition assures the stability of the discrete Navier–Stokes solutions and
plays a key role in the case of blocks of type B.

3.2. Stokes problem with element blocks of type A. Let Ωh be a bounded
simply connected domain with polygonal boundary Γh and rectangular triangulations.
Let Ωh = ∪m

i Ωi
h, where the subdomains Ωi

h are blocks of finite elements of type A with
boundary Γi

h. This family of subdomains is overlapping in the sense that Xh
0 (Ωh) =

Xh
0 (Ω1

h) + Xh
0 (Ω2

h) + · · · + Xh
0 (Ωm

h ).
We introduce the divergence-free function space as

Vh
0 (Ωh) = {�uh ∈ Xh

0 (Ωh) : b(�uh, rh) = 0 ∀rh ∈ Ph
0 (Ωh)},

which is also Vh
0 (Ωh) = Ker (Bh) ∩ Xh

0 (Ωh), and note that this is not a subspace of
V0(Ωh). We equip Xh

0 (Ωh) and Vh
0 (Ωh) with the scalar product (·, ·)1 and the norm

| · |1 defined by (�vh, �uh)1 = a(�vh, �uh) and |�uh|1 = ah(�uh, �uh) for all �vh, �uh in Xh
0 (Ωh),

respectively.
With this notation we can introduce the Stokes problem over the domain Ωh.
Given �f ∈ H−1(Ωh), find the pair (�uh, ph) ∈ Xh

0 (Ωh) × Ph
0 (Ωh) solution of{

a(�uh, �vh) + b(ph, �vh) = 〈�f,�vh〉 ∀�vh ∈ Xh
0 (Ωh),

b(rh, �vh) = 0 ∀rh ∈ Ph
0 (Ωh),

(3.4)

with boundary condition �v i
h = 0 over Γh.

The Vanka-type smoother of type A is an iterative method which computes the
solution of the Stokes problem in (3.4) by solving local Stokes problems over the un-
knowns which are located in a finite element block of type A. The main characteristic
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of this block is that the velocity solution �vh is in Vh
0 (Ωh) at each step and is de-

termined by the solution of a Stokes local problem. More precisely, given the state
solution (�v i−1

h , p i−1
h ) ∈ Vh

0 (Ωh)×Ph
0 (Ωh) at step i−1, we define the ith local problem

for the pair (�v i
h, p

i
h) ∈ Xh(Ωi

h) ∩ Vh(Ωi
h) × Ph

0 (Ωi
h) by{

a(�u i
h, �v

i
h) + b(p i

h, �v
i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Xh

0 (Ωi
h),

b(rih, �v
i
h) = 0 ∀rih ∈ Ph

0 (Ωi
h),

(3.5)

with boundary conditions �v i
h = �v i−1

h over Γi
h and �v i

h = 0 over Γi
h ∩ Γh. At the ith

iteration the global solution (û i, p̂ i) is determined by the local solution as û i = �u i,
p̂ i = p i over Ωi

h and by the old solution as û i = û i−1, p̂ i = p̂ i−1 over Ωh − Ωi
h.

The local problem in (3.5) can be written in the natural way as a projection of
the initial Stokes problem over the domain Ωi

h if we use the variable �w i = �u i− û i−1 ∈
Xh

0 (Ωi
h) ∩ Vh

0 (Ωi
h) and rewrite the system as{

a(�w i
h, �v

i
h) + b(p i

h, �v
i
h) + a(û i−1

h , �v i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Xh

0 (Ωi
h),

b(rih, �w
i
h) = 0 ∀rih ∈ Ph

0 (Ωi
h),

with boundary condition �w i
h = 0 over Γi

h.
If the projection P i

h from Vh
0 (Ωi

h) onto Vh
0 (Ωi

h) with respect to the inner product
(·, ·)1 is introduced, then we can write the local problem for �w i

h ∈ Xh
0 as

a(�w i
h, �v

i
h) + a(P i

h û
i−1
h , �v i

h) = 〈�f,�v i
h〉 ∀�v i

h ∈ Vh
0 (Ωi

h),(3.6)

which matches exactly the projection of the Stokes problem over Vh
0 (Ωi

h). The global
solution û i

h can be computed by �w i
h + û i−1

h . The solution of (3.6) is clearly �w i
h =

−Ph
i û

i−1
h +A−1

ih
�f and the global solution simply û i

h = (I−Ph
i )û i−1

h +A−1
i

�f , where A−1
ih

is the green operator of the Laplacian operator over Ωi
h with homogeneous boundary

conditions on Γi
h. Therefore we start to discuss convergence for these Vanka smoothers

by investigating the properties of the operators (I − P i
h).

In order to study the behavior of the projection operator Ph
i we state a space

decomposition theorem which allows us to search the solution of the original Stokes
problem in the projection spaces.

Theorem 3.1. Let Ωh be a bounded simply connected domain with polygonal
boundary and let Ωi

h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains obtained
by clustering blocks of elements of type A such that Ωh = Ω1

h∪Ω2
h · · ·Ωm

h and X1
0(Ωh) =

Xh
0 (Ω1

h) + Xh
0 (Ω2

h) + Xh
0 (Ω3

h) · · ·Xh
0 (Ωm

h ). Let Vh
0 (Ωi

h) be the divergence-free function
space in Xh

0 (Ωi
h) with respect to the inner product (·, ·)1 for i = 1, 2, . . . ,m. Then we

have that Vh
0 (Ωh) = Vh

0 (Ω1
h) + Vh

0 (Ω2
h) + Vh

0 (Ω3
h) · · ·Vh

0 (Ωm).
Proof. First consider the case for m = 2. Let �vh ∈ Vh

0 (Ωh). Since the domains
are overlapping in the space Xh

0 (Ωh) we can write �vh = �v1h +�v2h with �vih ∈ Xh
0 (Ωi

h),
i = 1, 2. Let Ωh

12 = Ω1
h ∩ Ωh

2 . Then there exists an �sh over Ωh
12 with zero extension

such that Bh (�sh−�v1h) = 0. Then �v
′

1h = �v1h−�sh and �v
′

2h = �v2h−�sh gives the desired
decomposition. For any m the theorem can be proved by induction by clustering the
subdomains into two groups and using the result for m = 2 [15, 16, 11].

In order to prove convergence of the algorithm we need to use the following
properties of the projection P i

h.
Theorem 3.2. Let Ωh be a bounded simply connected domain with polygonal

boundary and let Ωi
h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains obtained
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by clustering blocks of elements of type A such that Ωh = Ω1
h ∪ Ω2

h · · ·Ωm
h . Let Ph

i

be the orthogonal projections from Vh
0 (Ωh) onto Vh

0 (Ωi
h) for i = 1, 2, . . . ,m. Then

|Πm
i=1(I − Ph

i )|1 < 1.
Proof. As in the continuous case we use a standard minimization approach. Given

�f ∈ L2(Ωh) consider the solution ûh ∈ Vh
0 (Ωh) of the following Laplace problem:

a(ûh, v̂h) = 〈�f, v̂h〉 ∀v̂h ∈ Vh
0 (Ωh),(3.7)

with homogeneous Dirichlet boundary condition or the equivalent minimization prob-
lem

ûh = min
ũ∈Vh

0 (Ωh)

(
1

2
(Ahũh, ũh) − 〈�f, ũh〉 +

1

2
〈A−1

h
�f, �f〉

)
.(3.8)

The constant 1
2 〈A

−1
h

�f, �f〉 is added to the functional in order to make the functional

vanish at the critical point ũh = ûh, and the operator A−1
h from H−1(Ωh) to Xh

0 (Ωh)
denotes the Green’s operator of the homogeneous problem with the operator Ah.

Given ûh ∈ Vh
0 (Ωh), then the projection �u i

h = P i
hûh from Vh

0 (Ωh) to Vh
0 (Ωi

h) can
be seen as a solution of the following problem:

(Ah�u
i
h, �v

i
h) = (Ahûh, �v

i
h) ∀�v i

h ∈ Vh
0 (Ωi

h),(3.9)

with homogeneous boundary conditions over Ωi
h. The residual vector can be written

as �w i
h = ûh − �u i

h over Ωi
h or ŵ i

h = ûh − P i
hû

i
h = (I − P i

h)û i
h over Ωh. The natural

approach of studying the operator Πm
i=1(I−P i

h) is to minimize (3.8) over the sequence
of domains Ωi

h in the space Vh
0 (Ωi

h) for i = 1, 2, . . . ,m and solve for the residual vector.
Let û i−1

h be the iterative solution over the whole domain Ωh at step i−1 and let Ph
i be

the projector from Vh
0 (Ωh) to V i

h(Ωi
h). Minimization with respect to the unknowns

ũ i
h related to the domain Ωi

h gives

(Ah�u
i
h, �v

i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Vh

0 (Ωi
h),(3.10)

where �v i
h is set to be equal to the variation δũi

h and �u i
h is the minimizer over Vh

0 (Ωi
h).

If we set �w i
h = �u i

h − ûi−1
h over the domain Ωi

h, then (3.10) gives

(Ah �w
i
h, �v

i
h) + (Ahû

i−1
h , �v i

h) = 〈�f,�v i
h〉 ∀�v i

h ∈ Vh
0 (Ωi

h).

It is clear that in the above equation the information on the boundary is taken from
the old solution û i−1

h . If we use the exact solution �uh which satisfies

(Ah�uh, �v
i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Vh

0 (Ωi
h),

then we have

(Ah �w
i
h, �v

i
h) + (Ah(û i−1

h − �uh), �v i
h) = 0 ∀�v i

h ∈ Vh
0 (Ωi

h),

which is solved by

�w i
h = −Ph

i (û i−1
h − �uh)(3.11)

over Ωi
h or

û i
h = (I − Ph

i ) û i−1
h + Ph

i �uh(3.12)
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over Ωh, where the extension û i
h of �u i

h over Ωh − Ωi
h is taken to be equal to û i−1

h .
If we define the error as the difference between the iterative and the finite element
solution,

ê i−1
h = û i−1

h − �uh and ê i
h = û i

h − �uh,

then the solution error of the Laplace problem satisfies

ê i
h = (I − Ph

i ) ê i−1
h .(3.13)

Since these estimates are true for all i = 1, 2, . . . ,m, we can combine them in the
following solution:

ê m
h = Πm

i=1(I − Ph
i ) ê 0

h ,(3.14)

which gives the global error over Ωh needed to estimate the functional Li
h and the

operator norm over the domain Ωh.
Now we show that the functional Li

h, which is the norm of the error ê i
h , is mono-

tonically decreasing for increasing i for all initial guesses ê 0
h ∈ Vh

0 (Ωi
h). In fact

Li
h =

1

2
(Ahû

i
h, û

i
h) − 〈�f, û i

h〉 +
1

2
〈A−1

h
�f, �f〉

=
1

2
(Ah(�w i

h + û i−1
h ), �w i

h + û i−1
h ) − 〈�f, �w i

h + û i−1
h 〉 +

1

2
〈A−1

h
�f, �f〉

= Li−1
h +

1

2
(Ah �w

i
h, �w

i
h) + (Ahû

i−1
h , �w i

h) − 〈�f, �w i
h〉,

and by using the optimality condition (3.10),

Li
h = Li−1

h − 1

2
(Ah �w

i
h, �w

i
h).

Therefore, by starting with an initial guess û 0
h ∈ Vh

0 (Ωh) after a smoothing step over
m domains, we have

Lm = L0 − 1

2

m∑
i=1

|ŵ i
h|21,

with ŵ i
h = −Ph

i ê
i−1
h , Lm

h = |ê m
h |21/2, and L0

h = |ê 0
h |21/2. Also we have ê m

h =
Πm

i=1(I − Ph
i ) ê 0

h for all ê 0
h ∈ Vh

0 (Ωh). From the definition of norm we have

|Πm
i=1(I − Ph

i )|1 = sup |ê m
h |1 =

√√√√1 − inf

m∑
i=1

|ŵ i
h|21,(3.15)

where the sup and inf are taken over the set of functions ê 0
h ∈ Vh

0 (Ωh) with |ê 0
h |1 = 1.

The infimum is the minimizer of the minimization problem

min
m∑
i=1

|ŵ i
h|21,

where the minimum is taken over all the functions ê 0
h in Vh

0 (Ωh) with |ê 0
h |1 = 1.

Standard theory can be applied to prove existence, well-posedness, and uniqueness of
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the solution of the problem over the set Vh
0 (Ωh). Now we prove that the minimum

cannot be zero and the corresponding norm |Πm
i=1(I − Ph

i )|1 < 1. Suppose that the
minimum is zero. Then this implies, from the definition of the norm itself, that
there exists an ê 0

h in Vh
0 (Ωh) such that ê n

h = ê 0
h , and therefore Ph

i ê
0
h = 0 for all

i = 1, 2, . . . ,m. Such a function ê 0
h has norm 1 but zero projections over all Vh

0 (Ωi
h)

i = 1, 2, . . . ,m, and this contradicts the fact that Vh
0 (Ωh) = Vh

0 (Ω1
h) + Vh

0 (Ω2
h) +

· · · + Vh
0 (Ωm

h ), i.e., the domains are overlapping in the space Vh
0 (Ωh). Therefore the

functional must be different from zero and must assume a well-defined positive value at
the critical point. Combining this result with (3.15), the inequality |Πm

i=1(I−Ph
i )|1 < 1

is obtained.
The projections introduced above can be used to solve the Stokes and the Navier–

Stokes equations with different types of domain decompositions.
Now we are ready to state a convergence theorem for the Stokes problem.
Theorem 3.3. Let Ωh be a bounded simply connected domain with polygonal

boundary Γh and let Ωi
h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains of

type A such that Ωh = Ω1
h∪Ω2

h∪ · · ·∪Ωm
h . Let the jth smoothing step û j,m

h ∈ Vh
0 (Ωh)

be defined by solving iteratively the local system over the domain Ωi
h for i = 1, . . . ,m

with û j,0 = û j−1,m ∈ Vh
0 (Ωh). The global sequence is defined by û j,i

h = �w i
h + û i−1

h

over Ωi
h and û j,i

h = û i−1
h over Ωh −Ωi

h (i = 1, . . . ,m), where �w i
h ∈ Vh

0 (Ωi
h) solves the

local problem

νa(�w i
h, �v

i
h) + νa(û i−1

h , �v i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Vh

0 (Ωi
h),(3.16)

with boundary condition �w i
h = 0 over Γi.

Let û 0,0 be in Vh
0 (Ωh). Then global sequence û j,m converges (j → ∞) to the

solution of the Stokes problem in (3.4).
Proof. Let û j,i−1

h be in V h
0 (Ωh). In (3.16) we have

νa(�w j,i
h , �v i

h) + νa(û j,i−1
h , �v i

h) = 〈�f,�v i
h〉 ∀�v i

h ∈ Vh
0 (Ωi

h).

Let �uh be the solution of the Stokes problem. Then

νa(Pi�uh, �v
i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Vh

0 (Ωi
h),

and therefore

νa(�w j,i
h , �v i

h) + νa(Ph
i (û j,i−1

h − �uh), �v i
h) = 0.(3.17)

If we set �e j,i
h = û j,i

h − �uh over Ωi
h and ê j,i−1

h = û j,i−1
h − �uh over Ωh, the solution of

(3.17) gives

�e j,i
h = (I − Ph

i ) ê j,i−1
h .

We can define ê j,i
h as the extension of ê j,i

h over Ωh and write the solution as

ê j,i
h = (I − Ph

i ) ê j,i−1
h .(3.18)

Since (3.18) is true for all i and j, then

ê j,m
h = (I − Ph

m)(I − Ph
m−1)(I − Ph

m−2) · · · (I − Ph
2 )(I − Ph

1 ) ê j,0
h ,(3.19)

and from Theorem 3.2 we have that

|ê j,m
h |1 = λj |ê j,0

h |1,
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with λj < 1. Since λj < 1 for all j the sequence ê j,m
h converges to zero as j → ∞,

and therefore û j,m
h to �uh.

Now we analyze the algorithm with blocks of type A for the Navier–Stokes system.
Given �f ∈ H−1(Ω), then (�uh, ph) is called a generalized solution of the fully

discrete approximate Navier–Stokes equations if �uh ∈ Xh
0 (Ωh), ph ∈ Sh

0 (Ωh) and
satisfies the following system of equations:{

νa(�uh, �vh) + c(�uh; �uh, �vh) + b(�vh, ph) = 0 ∀�vh ∈ Xh
0 (Ωh),

b(�vh, qh) = 0 ∀ qh ∈ Sh
0 (Ωh).

(3.20)

The Vanka smoother of type A for the steady Navier–Stokes problem can be proved
to be convergent only for small Reynolds numbers.

Theorem 3.4. Let Ωh be a bounded simply connected domain with smooth bound-
ary and let Ωi

h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains of type A

such that Ωh = Ω1
h ∪ Ω2

h ∪ · · · ∪ Ωm
h . Let the jth smoothing step û j,m

h ∈ Vh
0 (Ωh) be

defined by solving iteratively the local system over the domain Ωi
h for i = 1, . . . ,m

with û j,0
h = û j−1,m

h ∈ Vh
0 (Ωh). The global sequence is defined by û j,i

h = �w i
h + û j,i

h over

Ωi
h and û j,i

h = û i−1
h over Ωh −Ωi

h (i = 1, . . . ,m), where �w i
h ∈ Vh

0 (Ωi
h) solves the local

problem

νa(�w i
h, �v

i
h) + c(�w i

h + û i−1, �w i
h + û i−1, �v i

h) = 〈�f,�v i
h〉 − νa(û i−1

h , �v i
h)(3.21)

for all �v i
h ∈ V1

0(Ω
i
h) with boundary condition �w i

h = 0 over Γi
h.

Let û 0,0 be in V0(Ωh). Then the global sequence û j,m
h converges (j → ∞) for

sufficiently small Reynolds numbers to the solution of the Navier–Stokes problem in
(3.20).

Proof. The proof follows the Stokes approach. From (3.21) we have

νa(�w i, �v i
h) + c(ŵ i + û j,i−1, ŵ i + û j,i−1, �v i

h) + νa(û j,i−1, �v i) = 〈�f,�v i〉(3.22)

for all �v i
h ∈ V1

0(Ω
i
h). Let �uh be the solution of the Navier–Stokes problem in (3.20)

with the appropriate boundary condition. Then we have

νa(�uh, �v
i
h) + c(�uh, �uh, �v

i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Vh

0 (Ωh),

and we can rewrite (3.22) in the following form:

νa(�w j,i
h + û j,i−1

h , �v i) + c(�w j,i
h + û j,i−1

h , �w j,i
h + û j,i−1

h , �v i) = c(�uh, �uh, �v
i
h).(3.23)

If we set �e j,i
h = �w j,i

h + û j,i−1
h − �uh over Ωi

h and ê j,i−1
h = û j,i−1

h − �uh over Ωh, then
(3.23) gives

νa(�w i
h , �v

i
h) + c(�uh, ê

j,i
h , �v i

h) + c(ê j,i, �uh, �v
i
h) + νa(ê j,i−1

h , �v i
h) = 0.(3.24)

We note that �w i
h = �e j,i

h − ê j,i−1
h is in V1

0(Ω
i
h). By using the zero extension of �w i

h we

can define the extension ê j,i
h = ê j,i−1

h + �w i
h of �e j,i

h to Ωh. Then (3.24) can be written
in operator form as

(3.25)

A(�w i
h + Ph

i ê j,i−1
h ) +

1

ν

(
C(�e j,i

h )�e j,i
h + C(�uh)�e j,i

h + C(�e j,i
h )�u

)
= 0 on Ωi

h
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or

ê j,i
h = (I − Ph

i ) ê j,i−1
h +

1

ν
A−1

i

(
C(�e j,i

h )�e j,i
h + C(�uh)�e j,i

h + C(�e j,i
h )�uh

)
(3.26)

over Ωi
h, where A−1

i is the inverse operator of A over the domain Ωi
h with homogeneous

boundary condition on Γi
h. By using the discrete analogous inequalities (2.2) we

estimate

|ê j,i
h |1 ≤ |(I − Ph

i ) ê j,i−1
h |1 +

1

ν
K (|ê j,i

h |21 + |�uh|1 |ê j,i
h |1)(3.27)

for some K constant.
By using the same approach as in the continuous case we can prove that the error

ê j,i
h is bounded for large values of ν; i.e., if the initial error |ê 0,0

h |1 is bounded by M ,

then for some large ν > ν∗, the error in the smoothing step |ê j,i
h |1 can be bounded for

i = 1, 2, . . . ,m. Also we can prove, with the same approach used in the continuous
case, that |ê j,m

h | < |ê j,0
h |1 for large ν > ν1 > ν∗. Since ν1 and ν∗ are independent of

j, then we can claim that the sequence |�e j,m
h |1 is bounded by the initial error M and

converges to zero. Therefore û j,m
h tends to the solution of (3.20) for small Reynolds

numbers 1/ν.
In primitive variables û j,i

h = �w i
h + û j,i−1

h and pih, the local problem, corresponds
to solve⎧⎪⎪⎨

⎪⎪⎩
νa(�w i

h, �v
i
h) + c(�w i

h, �w
i
h, �v

i
h) + c(�w i

h, û
i−1
h , �v i

h) + c(û i−1
h , �w i

h, �v
i
h) + b(pih, �v

i
h)

= 〈�f,�v i
h〉 − a(�u i−1

h , �v i
h) − c(û i−1

h , û i−1
h , �v i

h) ∀�v i
h ∈ Vh

0 (Ωi
h),

b(rih, �w
i
h) = −b(rih, �u

i−1
h ) ∀rih ∈ Ph

0 (Ωi
h),

(3.28)

with homogeneous boundary condition over Γi
h. In order to solve the system (3.28)

we must solve the pressure at all points of the block and keep the global solution
divergence-free. If parabolic or linear finite elements are used in order to satisfy the
divergence-free constraint, all the equations that contain the block variables must be
solved. Sometimes this is too expensive and the block of type B seems more attractive.

3.3. Stokes problem with block of type B. The Vanka solver with blocks of
type A keeps the solution divergence-free at each iteration but has a high number of
equations to be solved. The divergence-free constraint on the boundary of the block
can be relaxed and the pressure on the border taken from the previous iteration, which
leads to a block of type B. In order to prove convergence for this type of block we
need to write the Stokes problem without using the divergence-free functions or the
divergence-free constraints.

Given Ph
0 (Ωh) and Xh

0 (Ωh) we can define the set V h
0 (Ωh) of free-divergence vec-

tors and its orthogonal complement with respect to the scalar product (·, ·)1 by

V h⊥
0 (Ωh) = {�uh ∈ Xh

0 (Ωh) : (�uh, �vh)1 = 0 ∀�vh ∈ Vh
0 (Ωh)}.

Suppose that the functions in the space Xh
0 (Ωh) and Vh

0 (Ωh) satisfy the approximation
properties and in particular the LLB condition. Then the orthogonal Vh⊥

0 (Ωh) of
Vh

0 (Ωh) in Xh
0 (Ωh) is a well-defined space (see, for example, [11] for a more abstract

setting).
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For each �u⊥
h ∈ V h⊥

0 (Ωh) there is an associated pressure ph which is the solution
of the following Stokes problem:{

a(�uh, �vh) + b(ph, �vh) = a(�u⊥
h , �vh) ∀�vh ∈ Xh

0 ,

b(�uh, rh) = 0 ∀rh ∈ P h
0 (Ωh).

(3.29)

The solution ph is unique in P h
0 (Ωh) and �uh is zero. If �u⊥

h ∈ V h⊥
0 (Ωh), the set of all

solutions ph is a subspace of P h
0 (Ωh). We introduce the natural space for the discrete

pressure by

S h
0 (Ωh) = {ph ∈ Ph

0 : ph is a solution of (3.29) ∀�uh ∈ Vh
0 (Ωh)}.

The set S h
0 (Ωh) ⊆ Ph

0 (Ωh) ⊆ L2
0(Ωh) is a space equipped with the norm ‖ · ‖Sh

generated by the Schur complement operator Sh = BhA
−1
h BT

h . The Schur complement
norm is the natural norm for the set S h

0 (Ωh) which is defined by (3.29). The LBB
condition assures that ‖ · ‖Sh

is a norm (see, for example, [20, 7]). The solution of
(3.29) is unique and therefore for each �u⊥

h ∈ V h⊥
0 (Ωh) there is a unique ph ∈ S h

0 (Ωh).
Also for each ph ∈ S h

0 (Ωh) there is an element �u⊥
h ∈ V⊥h

0 (Ωh) such that �u⊥
h is the

unique solution of

a(�u⊥
h , �vh) = b(ph, �vh) ∀�vh ∈ Xh

0 .(3.30)

Clearly for all �vh ∈ V h
0 (Ωh) we have (�u⊥

h , �vh)1 = a(�u⊥
h , �vh) = b(�vh, ph) = 0, which

implies that the �u⊥
h ∈ Xh

0 (Ωh) is indeed in V h⊥
0 (Ωh). Therefore for all ph ∈ S h(Ωh),

(3.30) associates a vector �u⊥
h ∈ V h⊥

0 (Ωh).
With these spaces we can write the Stokes problem in a different equivalent way;

i.e., given �f ∈ H−1(Ωh), find (�u
′

h, �uh, �u
⊥
h ) ∈ Xh

0 (Ωh) × Vh
0 (Ωh) × Vh⊥

0 (Ωh), which
solves the following system:

⎧⎪⎪⎨
⎪⎪⎩

νa(�u
′

h, �vh) = (�f,�vh) ∀�vh ∈ Xh
0 (Ωh),

a(�u⊥
h , �v

⊥
h ) = (�u

′

h, �v
⊥
h )1 ∀�v⊥h ∈ Vh⊥

0 (Ωh),

�u
′

h = �uh + �u⊥
h .

(3.31)

The second equation in (3.31) can be seen as a projection of �u
′

h over the space Vh⊥
0 or

the Schur complement equation for the pressure. The system in (3.31) is an uncoupled
system of equations in the sense that we can solve first for the variable �u

′

h, then for
the variable �u⊥

h , and finally for �uh. It is clear that �uh is in Vh
0 (Ωh) since the second

equation in (3.31) implies that

(�uh, �v
⊥
h )1 = (�u

′

h − �u⊥
h , �v

⊥
h )1 = (�u

′

h�v
⊥
h )1 − (�u⊥

h , �v
⊥
h )1 = 0

for all �v⊥h ∈ Vh⊥
0 (Ωh). It is also clear that the solution of the second equation can-

not be done easily since this involves the construction of basis functions in the space
Vh⊥

0 (Ωh). However, the formulation in (3.31) is very useful from the theoretical
point of view, especially in the analysis of algorithms that relax the incompress-
ibility constraints. The equivalence between these two forms of the Stokes system
is a consequence of the LBB inf-sup hypothesis [11] and is stated in the following
theorem.



VANKA-TYPE SOLVERS FOR STEADY NAVIER–STOKES FLOWS 2047

Theorem 3.5. The solution (�uh, �u
⊥
h ) ∈ ×Vh

0 (Ωh) × Vh⊥
0 (Ωh) in (3.31) solves{

νa(�uh, �vh) + b(ph, �vh) = (�fh, �vh) ∀�vh ∈ Xh
0 (Ωh),

b(rh, �uh) = 0 ∀rh ∈ Ph
0 (Ωh),

(3.32)

with ph defined by (3.29), and conversely, if (�uh, ph) ∈ Vh
0 (Ωh)×Sh

0 (Ωh) is a solution
of (3.32), then it solves (3.31) with �u⊥

h defined by (3.30).
Proof. If (�uh, �u

⊥
h ) ∈ Vh

0 (Ωh) × Vh⊥
0 (Ωh) solves (3.31) with ph defined by (3.29),

we have �uh ∈ Vh
0 , b(rh, �uh) = 0 for all rh ∈ Ph

0 (Ωh), and �u
′

h = �uh + �u⊥
h , namely,

νa(�u
′

h, �vh) = νa(�uh + �u⊥
h , �vh) = νa(�uh, �vh) + νa(�u⊥

h , �vh) = νa(�uh, �vh) + b(ph, �uh)

which implies that (�uh, ph) solves (3.32).
Conversely, if (�uh, ph) solves (3.32) with (3.30) and �u

′

h = �uh + �u⊥
h , then from the

first equation we obtain

a(�u
′

h, �vh) = (�f,�vh) ∀�vh ∈ Xh
0 (Ωh).(3.33)

If we set �vh = �v⊥
h ∈ V⊥

0 (Ωh), the first equation in (3.32) and the above equation give

a(�u⊥
h , �v

⊥
h ) = (�uh, �v

⊥
h )1 ∀�v⊥h ∈ Vh⊥

0 (Ωh),(3.34)

which proves the theorem.
The formulation in (3.31) can be seen as a simple change of the variable ph in

the Stokes formulation. There is no advantage in this formalism from the numerical
point of view, but in the formulation (3.31) the system can now be solved in sequence
and the divergence-free constraint can be relaxed during the iteration.

In order to prove convergence for our algorithm we should be able to decompose
the global problem into a sequence of local subproblems over the projection subspaces.
First we state a space decomposition theorem which allows us to search the solution
of the original Stokes problem in the projection spaces.

Theorem 3.6. Let Ωh be a bounded simply connected domain with polygonal
boundary and let Ωi

h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains obtained
by clustering blocks of elements of type A or B such that Ωh = Ω1

h ∪ Ω2
h · · ·Ωm

h and
X1

0(Ωh) = Xh
0 (Ω1

h) + Xh
0 (Ω2

h) + Xh
0 (Ω3

h) · · ·Xh
0 (Ωm

h ). Let V h⊥
0 (Ωi

h) be the orthogonal
space to the divergence-free function space Vh

0 (Ωi
h) in Xh

0 (Ωi
h) with respect to the

inner product (·, ·)1 over Ωi
h. Then we have that V h⊥

0 (Ωh) = V h⊥
0 (Ω1

h)+V h⊥
0 (Ω2

h)+
V h⊥

0 (Ω3
h) + · · · + V h⊥

0 (Ωm).
Proof. First consider the case for m = 2. Let �u⊥

h ∈ Vh⊥
0 (Ωh). Since the domains

are overlapping in the space Xh
0 (Ωh) we can write �u⊥

h = �u1 + �u2 with �ui ∈ Xh
0 (Ωi

h),
i = 1, 2. The vector �u1 can be decomposed in Xh

0 (Ω1
h) as �u1 = �u⊥

1 + �u o
1 , with

�u⊥
1 ∈ Vh⊥

0 (Ω1
h) and �u o

1 ∈ Vh
0 (Ω1

h).
Consider the zero extension �w⊥

1 and �w o
1 to Ωh of �u⊥

1 and �u o
1 . The vectors �w⊥

1

and �w o
1 are in Vh⊥

0 (Ωh) and Vh
0 (Ωh), respectively. The extension of �w1 of �u1 to Ωh

can be written as �w1 = �w⊥
1 + �w o

1 .
In a similar way we can decompose �u2 = �u⊥

2 + �u o
2 with �u⊥

2 ∈ Vh⊥
0 (Ω2

h) and
�u o

1 ∈ Vh
0 (Ω1

h). The extension of �w2 of �u2 to Ωh can be written as �w2 = �w⊥
2 + �w o

2 ,
where �w⊥

2 and �w o
2 are the corresponding extensions. From the hypothesis we have

that �u⊥
h = �u1 + �u2, and therefore �u2 = �u⊥

h − �u1 and �w2 = �u⊥
h − �w1. The unique

decomposition of �w2 over the subspaces Vh⊥
0 (Ωh) and Vh

0 (Ωh) implies that �u o
2 = −�u o

1

and that �u o
1 = �w o

1 is zero over Ωh − (Ω1
h ∩ Ω2

h). Therefore �u⊥
1 = �u1 − �u o

1 ∈ Vh⊥
0 (Ω1

h)
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and �u⊥
2 = �u⊥

h − �u1 + �u o
1 ∈ Vh⊥

0 (Ω2
h) gives the desired decomposition �u⊥

h = �u⊥
1 + �u⊥

2 .
For any m the theorem can be proved by induction using the case m = 2 and standard
techniques [15, 16, 11].

Let Th
i , Ph

i , and Πh
i denote the orthogonal projections from Xh

0 (Ωh), V h
0 (Ωh),

and V h⊥
0 (Ωh) onto Xh

0 (Ωi
h), V h

0 (Ωi
h), and V h⊥

0 (Ωi
h) with respect to the inner product

(·, ·)1 defined by the operator a(·, ·). The projection Th
i �uh, Ph

i �uh, and Πh
i �uh of �uh

onto Xh
0 (Ωi

h), V h
0 (Ωi

h), and V h⊥
0 (Ωi

h) is defined by

a(Th
i �uh, �vh) = a(�uh, �vh) ∀�vh ∈ Xh

0 (Ωi
h),

a(Ph
i �uh, �v

⊥
h ) = a(�u,�v⊥

h ) ∀�v⊥
h ∈ V h

0 (Ωi
h),

a(Πh
i �uh, �v

⊥
h ) = a(�u,�v⊥

h ) ∀�v⊥
h ∈ V h⊥

0 (Ωi
h),

respectively.
It is possible to prove that the iterative application of these operators leads to a

contraction in norm | · |1.
Theorem 3.7. Let Ωh be a bounded simply connected domain with polygonal

boundary and let Ωi
h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains of

type B with boundary such that Ωh = Ω1
h ∪Ω2

h ∪ · · · ∪Ωm
h . Let Th

i , P
h
i , and Πh

i be the
orthogonal projections from Xh

0 (Ωh),Vh
0 (Ωh), and V h⊥

0 (Ωh) onto Xh
0 (Ωi

h),Vh
0 (Ωi

h),
and V h⊥

0 (Ωi
h), respectively, for i = 1, 2, . . . ,m. Then |Πm

i=1(I − Ti)|1 < 1, |Πm
i=1(I −

Pi)|1 < 1 and |Πm
i=1(I − Πi)|1 < 1.

Proof. The proof can follow the approach used in Theorem 2.4 or 3.2. Let Vh(Ωh)
be a closed subspace of Xh

0 (Ωh) such that Vh(Ωh) = Vh(Ω1
h)+Vh(Ω2

h)+· · ·+Vh(Ωm
h )

with Vh(Ωi
h) ⊆ Xh

0 (Ωi
h) for i = 1, 2, . . . ,m. Here Vh could be Xh

0 , Vh
0 , or Vh⊥

0 . Given
�f ∈ H−1(Ωh), consider the solution ûh ∈ Vh(Ωh) of the discrete Laplace equation

a(ûh, v̂h) = 〈�f, v̂h〉 ∀v̂h ∈ V(Ωh),(3.35)

with homogeneous Dirichlet boundary condition or the equivalent minimization prob-
lem

ûh = min
ũ∈Vh(Ωh)

(
1

2
(Aũh, ũh) − 〈�f, ũh〉 +

1

2
〈A−1 �f, �f〉

)
,(3.36)

where the constant 1
2 〈A−1 �f, �f〉 is introduced in order to vanish the functional at the

critical point ũh = ûh. The natural approach is to minimize (3.36) over the sequence
of domains Ωi

h in the space Vh(Ωi
h) for i = 1, 2, . . . ,m. Let û i−1

h be the solution
of the minimization problem over the whole domain Ωh at step i − 1 and let Rh

i be
the projector from Vh(Ωh) onto Vh(Ωi

h). By proceeding as in Theorem 2.4 we have
|Πm

i=1 (I −Rh
i )|1 < 1.

Now we are ready to state a convergence theorem for the Stokes problem. If a
subdomain of type B is used, the classical Stokes formulation must be modified since
the divergence-free constraint is not satisfied at each iteration. The formulation in
(3.32) can be used where the solution is written in the variables �u

′

h and �u⊥
h (which

represents the pressure distribution).
Theorem 3.8. Let Ωh be a bounded simply connected domain with polygon bound-

ary and let Ωi
h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains of type B

such that Ωh = Ω1
h ∪ Ω2

h ∪ · · · ∪ Ωm
h . Let the jth smoothing step (û

′j,m
h , û⊥j,m

h ) ∈
Xh

0 (Ωh)×Vh⊥
0 (Ωh) be defined by solving iteratively the local system over the domain

Ωi
h for i = 1, . . . ,m with û

′j,0
h = û

′j−1,m
h ∈ Xh

0 (Ωh) and û⊥j,0
h = û⊥j−1,m

h ∈ Vh⊥
0 (Ωh).
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Let the global sequence be defined by û
′j,i
h = �w

′i
h + û

′j,i−1
h , û⊥j,i

h = �z⊥i
h + û⊥j,i−1

h

over Ωi
h and û

′j,i
h = û

′j,i−1
h , û⊥j,i

h = û⊥j,i−1
h over Ωh − Ωi

h (i = 1, . . . ,m), where

(�w
′i
h , �z⊥i

h ) ∈ Xh
0 (Ωi

h) × Vh⊥
0 (Ωi

h) solves the local problem⎧⎪⎪⎨
⎪⎪⎩

νa(�w
′i
h , �v i

h) = 〈�f,�v i〉 − νa(�u
′j,i−1
h , �v i

h) ∀�v i
h ∈ Xh

0 (Ωi
h),

a(�z ⊥i
h , �v⊥i

h ) = a(�w
′i
h , �v⊥i

h ) + a(û
′j,i−1
h , �v⊥i

h ) − a(û⊥j,i−1
h , �v⊥i

h )

∀�v⊥i
h ∈ Vh⊥

0 (Ωi
h),

(3.37)

with boundary condition �w
′i
0 = 0 over Γi

h.

Given (û
′0,0
h , û⊥0,0

h ) ∈ Xh
0 (Ωh)×Vh⊥

0 (Ωh), then the global sequence (û
′j,m
h , û⊥j,m)

converges (j → ∞) to the solution of the Stokes problem in (3.32).
Proof. At the smoothing step j and iteration over Ωi in (3.37) we have

νa(�w
′i
h , �v i

h) + νa(û
′j,i−1
h , �v i

h) = 〈�f,�v i
h〉 ∀�v i

h ∈ Xh
0 (Ωi

h).

Let �u
′

h be the solution of the Stokes problem in (3.31). Then

νa(�u
′

h, �v
i
h) = 〈�f,�v i

h〉 ∀�v i
h ∈ Xh

0 (Ωi
h),

and therefore

νa(�w
′i
h , �v i

h) + νa(û
′j,i−1
h − �u

′

h, �v
i
h) = 0.(3.38)

If we set �e
′j,i
h = �w

′i
h + û

′j,i−1
h − �u

′

h over Ωi
h and ê

′j,i−1
h = û

′j,i−1
h − �u

′

h over Ωh, the
solution of (3.38) is

�e
′j,i = (I − Th

i ) ê
′j,i−1
h .

The global error ê
′j,i
h over Ωh satisfies

ê
′j,i = (I − Th

i ) ê
′j,i−1
h .(3.39)

Now consider the second equation in (3.37). We have

a(�z⊥i − �w
′i, �v⊥i

h ) + a(û⊥j,i−1 − û
′j,i−1, �v⊥i

h ) = 0.

Let �r j,i
h = �z⊥i − �w

′i ∈ Xh
0 (Ωi

h) and r̂ j,i−1
h = û⊥j,i−1 − û

′j,i−1 over Ωh. Then the

solution error for �r j,i
h is given by

�r j,i
h = (I − Πh

i ) r̂ j,i−1
h .

If we extend the function �r j,i
h to Ωi

h, then the extension r̂ j,i
h satisfies

r̂ j,i
h = (I − Πh

i ) r̂ j,i−1
h .(3.40)

Since (3.39)–(3.40) are true for all i and j, then

ê
′j,m
h = (I − Th

m)(I − Th
m−1)(I − Th

m−2) · · · (I − Th
2 )(I − Th

1 ) ê
′j,0
h ,(3.41)

r̂ j,m
h = (I − Πh

m)(I − Πh
m−1)(I − Πh

m−2) · · · (I − Πh
2 )(I − Πh

1 ) r̂ j,0
h .(3.42)
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By using Theorem 3.7 we have |ê
′j,m
h |1 < |ê

′j,0
h |1 and |r̂ j,m

h |1 < |r̂ j,0
h |1. Since this

is true for all j, then the sequences |ê
′j,m
h |1 and |r̂ j,m

h |1 converge to zero as j → ∞.

The sequence (û
′j,m
h , û⊥j,m

h ) tends to (�u
′

h, �u
⊥
h ), which is the solution of (3.31).

For elements of type B the Navier–Stokes system must be written in a different
form. If we proceed as in the Stokes case, then the problem is reduced to finding
(�u

′

h, �uh, �u
⊥
h ) ∈ Xh

0 (Ωh) × Vh
0 (Ωh) × Vh⊥

0 (Ωh), which solves the following system:⎧⎪⎪⎨
⎪⎪⎩

νa(�u
′

h, �vh) + c(�uh, �uh, �vh) = (�fh, �vh) ∀�vh ∈ Xh
0 (Ωh),

a(�u⊥
h , �v

⊥
h ) = (�u

′

h, �v
⊥
h )1 ∀�v⊥h ∈ Vh⊥

0 (Ωh),

�uh = �u
′

h − �u⊥
h .

(3.43)

We can solve the Navier–Stokes system above as a sequence of local problems over sub-
domains of type B. The following theorem states the convergence for small Reynolds
numbers.

Theorem 3.9. Let Ωh be a bounded simply connected domain with polygon bound-
ary and let Ωi

h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains of type B

such that Ωh = Ω1
h ∪ Ω2

h ∪ · · · ∪ Ωm
h . Let the jth smoothing step (û

′j,m
h , û⊥j,m

h ) ∈
Xh

0 (Ωh)×Vh⊥
0 (Ωh) be defined by solving iteratively the local system over the domain

Ωi
h for i = 1, . . . ,m with û

′j,0
h = û

′j−1,m
h ∈ Xh

0 (Ωh) and û⊥j,0
h = û⊥j−1,m

h ∈ Vh⊥
0 (Ωh).

Let the global sequence be defined by û
′j,i
h = �w

′i
h + û

′j,i−1
h , û⊥j,i

h = �z⊥i
h + û⊥j,i−1

h

over Ωi
h and û

′j,i
h = û

′j,i−1
h , û⊥j,i

h = û⊥j,i−1
h over Ωh − Ωi

h (i = 1, . . . ,m), where

(�w
′i
h , �z⊥i

h ) ∈ Xh
0 (Ωi

h) × Vh⊥
0 (Ωi

h) solves the local problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

νa(�w
′i
h , �v i

h) + c(�u i
h, �u

i
h, �v

i
h) = 〈�f,�v i〉 − νa(û

′j,i−1
h , �v i

h) ∀�v i
h ∈ Xh

0 (Ωi
h),

a(�z ⊥i
h , �v⊥i

h ) + a(û⊥j,i−1
h , �v⊥i

h ) = (�w
′i
h , �v⊥i

h )1 + (û
′j,i−1
h , �v⊥i

h )1

∀�v⊥i
h ∈ Vh⊥

0 (Ωi
h),

�u i
h = �u

′i
h − �u⊥i

h ,

(3.44)

with boundary condition �w
′i
0 = 0 over Γi

h.

Given (û
′0,0
h , û⊥0,0)h ∈ Xh

0 (Ωh)×Vh⊥
0 (Ωh), then the global sequence (û

′j,m
h , û⊥j,m)

converges (j → ∞) to the solution of the Navier–Stokes problem in (3.43).
Proof. For the first equation the estimate can be obtained by using the same

techniques as in the continuous case.

Let �e
′j,i
h = �w

′i
h + û

′j,i−1
h − �u

′

h in Ωi
h and ê

′j,i−1
h = û

′j,i−1
h − �u

′

h over Ωh, where

�u
′

h is the solution of the problem in (3.43). Also let ê
′j,i
h be the extension of �e

′j,i
h to

Ωh when the corresponding zero extension of �w
′i
h is considered. Following the same

steps as in the continuous case we obtain

|ê
′j,m
h |1 < |ê

′j,0
h |1(3.45)

for all j = 1, 2, . . . and for small Reynolds numbers. Consider the second equation in
the following form:

a(�z ⊥i
h − �w

′i
h , �v⊥i

h ) + a(û⊥j,i−1
h − û

′j,i−1
h , �v⊥i

h ) = 0 ∀�v⊥i
h ∈ Vh⊥

0 (Ωi
h).

Let �r j,i
h = �z ⊥i

h − �w
′i
h + û⊥j,i−1

h − û
′j,i−1
h over Ωi

h and r̂ j,i−1
h = û⊥j,i−1

h − û
′j,i−1
h over

Ωh. If r̂ j,i
h is the extension of �r j,i

h obtained with the zero extension of �z ⊥i
h − �w

′i
h over
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Ωh, then, following the same steps as in the continuous case, we obtain

|r̂ j,m
h |1 < |r̂ j,0

h |1

for small Reynolds numbers. By using standard arguments we can conclude that the
errors vanish as j tends to infinity.

The Vanka-type smoother of type B in the standard velocity and pressure variable
solves the following local problem over the subregion Ωi

h of type B.
Given the global solution (û i−1

h , p̂ i−1
h ) ∈ Xh

0 (Ωh)×Ph
0 (Ωh) obtained after solving

and updating the solution over the block Ωi−1
h , we solve for the variable (�w i

h, z
i
h) ∈

Xh
0 (Ωi

h) × Ph
0 (Ωi

h) the following local problem:⎧⎪⎪⎨
⎪⎪⎩

νa(�w i
h, �v

i
h) + b(�z i

h, �v
i
h) + c(�w i

h + û i−1
h , �w i

h + û i−1
h , �v i

h)

= 〈�f,�v i
h〉 − νa(û i−1

h , �v i
h) − b(p̂ i−1

h , �v i
h) ∀�v i

h ∈ Xh
0 (Ωi

h),

b(�w i
h , rh) = −b(û i−1

h , rh) ∀rh ∈ Ph
0 (Ωi

h),

(3.46)

with boundary condition �w i
h = 0 over Γi

h. The update for the solution (û j,i
h , p̂ j,i

h ) is
defined by (�w i

h + û i−1
h , z i

h + p̂ i−1
h ) over Ωi

h and by (û i−1
h , p̂ i−1

h ) over Ωh − Ωi
h.

We remark that only the node inside the block of element of type B must be solved,
and therefore the divergence-free constraint is enforced only inside the domain.

The area close to the boundary Γi
h is not divergence-free and there the pressure

can take the value of the previous iteration. Only when convergence is reached does
the value of the pressure match the global solution and the divergence-free constraint
is completely enforced.

4. Computational examples. In order to compute the solution of the Navier–
Stokes equation we combine standard finite element techniques in conjunction with
multigrid methods. It is well known that Vanka smoothers converge slowly, but the
combination of these smoothers with multigrid methods shows that they are extremely
competitive in both CPU time and accuracy (see [13, 24]). We would like to use
rectangular conforming finite elements (standard Taylor–Hood) over the domain Ωh

and a Vanka-type smoother with blocks of type B. By starting at the multigrid coarse
level l0, we subdivide Ωh into unstructured families of rectangular meshes, T i,l0

h .
Based on the simple element midpoint refinement, different multigrid levels can be
constructed to reach the finest multigrid level l. The unique representations of �uhl

and
phl

as a function of the nodal point values �ul(k1, n) and pl(k2, n) (k1 = 1, 2, . . . , nvt,
with nvt = number of velocity nodal points, and k2 = 1, 2, . . . , npt, with npt = number
of pressure nodal points) define the finite element isomorphisms Φl : Ul → Xhl ,
Ψl : Πl → Shl between the vector spaces Ul, Πl of nvt-dimension and npt-dimension
vectors and the finite element spaces Xhl , Shl at the multigrid level l.

Essential elements of a multigrid algorithm are the velocity and pressure prolon-
gation maps

Pl,l−1(u) : Ul−1 → Ul, Pl,l−1(p) : Πl−1 → Πl(4.1)

and the velocity and pressure restriction operators

Rl−1,l(u) = P ∗
l,l−1(u) : Ul → Ul−1, Rl−1,l(u) = P ∗

l,l−1(u) : Πl → Πl−1.(4.2)

Since we would like to use conforming Taylor–Hood finite element approximation
spaces we have the nested finite element hierarchies Xh0 ⊆ Xh1 ⊆ · · · ⊆ Xhl and
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Sh0 ⊆ Sh1 ⊆ · · · ⊆ Shl , and the canonical prolongation maps Pl,l−1(u), Pl,l−1(p) can
be obtained simply by

Pl,l−1(u) = Φl−1(Φ
−1
l (u)),(4.3)

Pl,l−1(p) = Ψl−1(Ψ
−1
l (p)).(4.4)

Let Ωi
h, i = 1, 2, . . . ,m, be a sequence of overlapping subdomains of type B such

that Ωh = Ω1
h ∪ Ω2

h ∪ · · · ∪ Ωm
h and the jth smoothing step be defined by solving

iteratively the local system over the domain Ωi
h for i = 1, . . . ,m. Given the global

solution (û i−1
h , p̂ i−1

h ) ∈ Xh
0 (Ωh) × Ph

0 (Ωh), obtained after solving and updating the
solution over the block Ωi−1

h , we solve for (�w i
h, z

i
h) ∈ Xh

0 (Ωi
h) × Ph

0 (Ωi
h) the following

local problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νa(�w i
h, �v

i
h) + b(�z i

h, �v
i
h) + c(�w i

h, �w
i
h, �v

i
h) + c(�w i

h, û
i−1
h , �v i

h)

+ c(û i−1
h , �w i

h, �v
i
h) = 〈�f,�v i

h〉 − νa(û i−1
h , �v i

h)

− b(p̂ i−1
h , �v i

h) − c(û i−1
h , û i−1

h , �v i
h) ∀�v i

h ∈ Xh
0 (Ωi

h),

b(�w i
h , rh) + b(û i−1

h , rh) = 0 ∀rh ∈ Ph
0 (Ωi

h),

(4.5)

with boundary condition �w i
h = 0 over Γi

h. Then the global sequence is defined by

û j,i
h = �w i

h + û i−1
h , p̂ j,i

h = z i
h + p̂ i−1

h over Ωi
h and û j,i

h = û i−1
h , p̂ j,i

h = p i−1
h over Ωh−Ωi

h

(i = 1, . . . ,m). The jth smoothing step (û j,m
h , p̂ j,m

h ) ∈ Xh
0 (Ωh) × Sh

0 (Ωh) is defined
by solving iteratively the local system over the domain Ωi

h for i = 1, . . . ,m, with

û j,0
h = û j−1,m

h ∈ Xh
0 (Ωh) and p̂ j,0

h = p̂ j−1,m
h ∈ Sh

0 (Ωh).
We solve the coupled system (4.5) exactly, but preconditioner or other iterative

methods can be used. However, we remark that the exact solution or the coupled
in velocity-pressure solution of (4.5) allows us to solve unconditionally the Stokes
problem. In the remainder of the paper we perform two tests to show the stability of
the convergence and the capability for parallel computations.

4.1. Convergence test. In this test we compute the solution of the Navier–
Stokes system with different Reynolds numbers and by using the iterative method
proposed in the previous section when we impose a velocity and pressure test field
defined by ⎧⎪⎨

⎪⎩
�u = sin(πx)2 sin(2πy),

�v = − sin(πy)2 sin(2πx),

p = xy.

(4.6)

The results are shown in Tables 4.1 and 4.2. As expected this Vanka-type smoother
cannot converge around 1000 Reynolds (1/ν) and therefore the results are given in
the range 0–500 Reynolds. However, with this resolution it is possible to compute
a solution beyond 10000 Reynolds if the time-dependent Navier–Stokes equation is
solved with reasonable small time steps. Also the range of Reynolds numbers can
be substantially increased if a regularization term is included in the formulation. In
Tables 4.1 and 4.2 the norms of the error between the computed solution and the
true solution in (4.6) are shown. The error for the velocity is given in the L2 and
H1 norms as a function of different Reynolds numbers and different resolutions. The
error in pressure is shown only in the L2 norm. All the results are obtained by using a
Vanka-type smoother with block of type B and a V multigrid cycle. The convergence
is considered achieved when the multigrid residual norm reaches 10−13.
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Table 4.1

Error norm for velocity and pressure fields for 1–10 Reynolds and different resolutions.

Re Grid L2(vel) H1(vel) L2(p)
1 8 × 8 1.65e-3 1.04e-1 2.96e-3

16 × 16 2.06e-4 2.56e-2 2.41e-4
64 × 64 2.57e-5 6.38e-3 1.88e-5

128 × 128 3.22e-6 1.59e-3 1.52e-6
256 × 256 4.02e-7 3.99e-4 1.27e-7

10 8 × 8 1.66e-3 1.04e-1 5.6e-4
16 × 16 2.06e-4 2.56e-2 3.92e-5
64 × 64 2.57e-5 6.38e-3 2.68e-6

128 × 128 3.22e-6 1.59e-3 1.93e-7
256 × 256 4.02e-7 3.99e-4 1.48e-8

Table 4.2

Error norm for velocity and pressure fields for 100–500 Reynolds and different resolutions.

Re Grid L2(vel) H1(vel) L2(p)
100 8 × 8 2.04e-3 1.23e-1 7.38e-4

16 × 16 2.22e-4 2.75e-2 4.26e-5
64 × 64 2.62e-5 6.52e-3 2.02e-6

128 × 128 3.24e-6 1.60e-3 1.15e-7
256 × 256 4.03e-7 3.99e-4 7.11e-9

500 8 × 8 3.84e-3 2.06e-1 2.57e-3
16 × 16 4.23e-4 4.81e-2 2.00e-4
64 × 64 3.67e-5 9.01e-3 6.49e-6

128 × 128 3.62e-6 1.79e-3 1.85e-7
256 × 256 4.16e-7 4.12e-4 1.06e-8

Fig. 4.1. L-shaped domain configuration at the multigrid low level l0.

4.2. L-shaped channel. In this second numerical experiment parallel compu-
tations of a flow through an L-shaped channel is presented. The first multigrid level l0
is the coarse mesh designed to contains all relevant information such as boundary con-
ditions and geometric details and is shown in Figure 4.1. The mesh is an unstructured
coarse mesh of rectangular finite elements for P2/P1 velocity/pressure representation.
The other levels li (i = 1, 2, 3) are generated by an unstructured grid generator by
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Fig. 4.2. CPU time (on the left) with exchange at the end of the block relaxation (case A) and
at the end of the grid relaxation (case B) as a function of the number n of the CPUs used.

midpoint refinements. With Vanka-like solvers we can partition the domain and the
processor load at the element block over the level l0 and therefore in a very efficient
and flexible way. The processors are distributed in a different way for different cases
in order to balance the load and speed up the computations. In this case all the
processors are distributed uniformly over the 32 elements of level l0. Since we have
32 elements in the coarse grid, no more than 32 processors can be used. However,
since the communication time should be optimized it is reasonable to use only 16
processors and assign the pair elements along the L-shape to only one processor. We
compute and compare the solutions of the problem obtained by using 1, 2, 4, 8, and
16 processors, respectively.

The boundary conditions for this problem are inflow boundary conditions on the
bottom with parabolic profile and outflow boundary conditions on the right side.
Dirichlet boundary conditions are applied at the rest of the boundary. In the configu-
ration proposed the solution is obtained at the level l3 by a standard V-cycle multigrid
and is stopped when the residual of the linear system is 10−13 for the velocity. The
reference velocity is 1 m/s, which is the maximum velocity of the parabolic inflow
profile at the inlet.

In the Vanka relaxation approach the solution of the multigrid algebraic system
requires the solution, block by block, of several small algebraic systems and the it-
erative update of the solution. We call the solution of this small algebraic system a
block relaxation since this operation gives the solutions and the new update for the
block unknowns. Since our solving block is based on an element the update between
different processor regions can be performed in many ways. In order to minimize the
communication among processors the necessary data exchange for the update during
the global relaxation can be performed after a fixed number of block relaxations. In
this paper we explore the different possibilities by computing the two limiting cases:
the data exchange is performed after every element block relaxation (case A) or the
data exchange is performed at the end of a global relaxation (grid relaxation) (case B).
In Figure 4.2 we show the CPU time and in Figure 4.3 the relative speedup for the
parallel computations for these two different communication configurations (cases A
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Fig. 4.3. CPU relative time with exchange at the end of the block relaxation (case A) and at
the end of the grid relaxation (case B) as a function of the number n of the CPUs used.

and B). We note that the use of parallel computing can reduce the time of compu-
tation enormously. This test is not intended to show the performance, which can
be improved with a real full parallel Vanka smoother, but rather the natural way in
which the Vanka-type smoothers can be implemented in the finite element framework.
In Figure 4.3 we have the relative speedup as a function of the number of CPUs for
cases A and B. All the results are relative to the computation with one single CPU.
We note that the relative speedup scales with the number of processors in case A
but not in case B. In this case it converges very slowly with this data exchange and
the speedup reaches a saturation value. The updating of the solution after a single
block relaxation appears to be important for a very fast and regular convergence of
the multigrid. However, this could be an effect of the geometry since the domain
is divided into very narrow regions. Also we remark that the absolute CPU time is
not significantly reduced if the communication is performed at the end of the grid
relaxation instead of the end of a single block relaxation. This suggests that the
communication time is negligible.

All the computations are performed at 150 Reynolds number in the steady laminar
regime. We have performed computation at different Reynolds numbers with similar
results.

5. Conclusions. In this paper we have investigated the numerical convergence
of a Vanka-type multigrid solver for the Navier–Stokes equations based on the iter-
ative solution of several problems over small overlapping domains. In each iteration
step, this smoother requires the solution of several small local subproblems over fi-
nite element blocks. We prove that for a particular choice of the block, this method
leads to a monotonic convergent algorithm for the steady Stokes problem and that the
same algorithm applied to the nonlinear Navier–Stokes equations converges for rela-
tive small Reynolds numbers. It is shown that for particular choices for the blocks, the
algorithm always converges to the solution of the Stokes problem and, under suitable
conditions, to the solution of the Navier–Stokes problem.
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Abstract. We present a first-order system least-squares (FOSLS) method to approximate the
solution to the equations of geometrically nonlinear elasticity in two dimensions. With assumptions of
regularity on the problem, we show H1 equivalence of the norm induced by the FOSLS functional in
the case of pure displacement boundary conditions as well as local convergence of Newton’s method
in a nested iteration setting. Theoretical results hold for deformations satisfying a small strain
assumption, a set we show to be largely coincident with the set of deformations allowed by the
model. Numerical results confirm optimal multigrid performance and finite element approximation
rates of the discrete functional with a total work bounded by about 25 fine-grid relaxation sweeps.
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1. Introduction. The primary goal in the study of elasticity is to model the
deformation of an elastic body under applied forces, including both internal body
forces, such as gravity, and applied surface tractions. For simplicity, we consider forces
whose associated density per unit volume is independent of the deformation. Under
these applied forces, the elastic body is said to occupy the deformed configuration
and, in the absence of forces, the reference configuration. With this in mind, we
may think of the central problem as one of finding the mapping from the reference
configuration to the deformed configuration. We refer to this mapping function as
the deformation and to the Jacobian of the map as the deformation gradient. Two
tensor-valued physical quantities are also of interest: strain and stress. The strain
tensor, a completely geometrical quantity, is purely a measure of deviation from the
reference configuration, while the stress tensor is directly related to the internal force
density across the deformed configuration. While the deformation itself is usually the
primary unknown in the study of elasticity, the resulting stress and strain are often
of interest as well. In this case, the solution methodology we describe in this paper
has a distinct advantage over more traditional approaches.

The partial differential equations that are commonly used to govern the deforma-
tion are composed of two main components: the equilibrium equation and a consti-
tutive equation. The equilibrium equation and associated boundary conditions relate
a balance of forces in the deformed configuration. But, since the deformed configu-
ration is unknown, the equation is mapped back to the reference configuration. The
necessity of this mapping introduces a source of nonlinearity into the equations of
elasticity.
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The constitutive equation, or material law, as it is sometimes called, relates the
stress to the strain, taking the material properties into account. In general, a material
law may be designed for a specific material in a specific range of deformations, as is
often the case in applications. There can be as many material laws as materials, but
we focus here on a general two-parameter linear relationship between the stress and
strain. When this approximation is valid for homogeneous, isotropic materials, we
call them St. Venant–Kirchhoff materials. To understand the general behavior of the
elasticity system, such materials are considered exclusively.

The model we have described here is both three-dimensional and nonlinear. In
this paper, we consider the plane strain model of two-dimensional elasticity, which
retains the same character as the full three-dimensional problem both physically and
mathematically. It is common to linearize this problem about the reference configu-
ration. However, inherent in the linearization of this naturally nonlinear model is the
additional assumption that the displacement is small. There are many applications
in which this is a valid assumption and the resulting solution remains sufficiently ac-
curate. For example, a structure whose displacement is magnitudes of order smaller
than the structure itself may be accurately modeled by this linear approximation.
However, when the small displacement assumption is unreasonable, the partial differ-
ential equations of linear elasticity should be used with caution. For this reason, we
choose to study a more realistic problem.

In [5, 6, 8, 16], the first-order system least-squares (FOSLS) method is applied
to the equations of linear elasticity using the displacement gradient as a new vari-
able. A suitable least-squares functional is minimized over finite element subspaces
of H1. This method allows for the displacement gradient and displacement to be
approximated in a two-stage algorithm, with full H1 control on all variables when the
solution is sufficiently smooth. More recent methods, developed in [4, 9, 10], use the
stress and displacement as primary unknowns for linear elasticity. The stress, which
for linear elasticity is naturally in H(div), is approximated in an H(div) conforming
space, thereby avoiding the need to consider effects of boundary singularities. Results
from these studies show that a least-squares formulation can be effective for elasticity
problems.

This leads us to consider a least-squares method for the geometrically nonlinear
model of elasticity that relaxes the small displacement assumption while retaining
a linear material law, thus widening the scope of problems that can be effectively
treated by least-squares methods. In this model, a linear stress-strain relationship is
assumed, but the full nonlinear strain-displacement relationship is preserved. Such a
formulation is accurate for the “large displacement, small strain” cases. While not
necessarily the best model to use for a given material or for configurations with large
strain, this is a common model for elastic materials, and certainly more accurate than
linear elasticity. See [11] for further background on elasticity theory.

Our general approach is to linearize the equations of elasticity about a current
approximation by Newton’s method, to reformulate the resulting linear problem as a
well-posed least-squares minimization problem, and to let its minimizer become the
new approximation. The reference configuration (i.e., zero displacement) is always
taken to be the initial approximation. Thus, the first Newton step reduces to the
equations of linear elasticity and subsequent steps are corrections thereof. Since the
constitutive equation involves products of the unknowns, we focus on using the dis-
placement gradient as the new dependent variable. The stress and strain tensors are
then just simple combinations of this new dependent variable and can be computed
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in a postprocessing stage with no loss of accuracy. Each Newton step is cast as an ap-
propriate first-order system, and the associated least-squares functional is minimized
over an appropriate finite element subspace of H1(Ω).

Our approach also employs a two-stage solution process. The first stage solves for
the displacement gradients, while the second stage recovers the actual displacement
vector. This decoupling of the unknowns in stages is desirable for several reasons.
First, when the primary interest is in the stress or strain, the second stage does not
need to be performed. Second, if the problem requires several Newton steps, the
deformations can be retrieved after the first stage converges. Third, this approach
obviates the need to determine relative weights for the stages if they are incorporated
into a single functional. Finally, decoupling the variables is somewhat more efficient
than solving for them simultaneously.

We define the term H1 ellipticity to mean H1 equivalence with the norm induced
by the homogeneous FOSLS functional. The focus of much of this paper is on the
formulation and efficiency of the first-stage algorithm by establishing H1 ellipticity of
the FOSLS functional for a general linearization step. The second stage is essentially
a coupled Poisson problem that is ideally suited for FOSLS and already discussed in
some detail in [6, 8].

2. Notation. Throughout this paper, we refer to our Newton-FOSLS algorithm
as linearized elasticity (linearized about a current approximation) and to the first
Newton step as linear elasticity (linearized about the reference configuration). This
is not strictly standard convention, but one we find convenient in what follows.

Vector u and matrix U are represented componentwise by

u =

(
u1

u2

)
and U =

(
U11 U12

U21 U22

)
.

The gradient of scalar p and vector u are given by

∇p =

(
∂xp
∂yp

)
and ∇u =

(
∂xu1 ∂yu1

∂xu2 ∂yu2

)
.

Define the respective divergence, curl, and trace operators by

∇ · u = ∂xu1 + ∂yu2, ∇ · U =

(
∂xU11 + ∂yU12

∂xU21 + ∂yU22

)
,

∇× U =

(
∂xU12 − ∂yU11

∂xU22 − ∂yU21

)
, and tr(U) = U11 + U22.

Also, denoting the formal adjoint of the curl operator by ∇⊥, we define

∇⊥p =

(
∂yp
−∂xp

)
and ∇⊥u =

(
∂yu1 −∂xu1

∂yu2 −∂xu2

)
.

We extend the respective outward unit normal and counterclockwise unit tangential
operators, n· and τ ·, componentwise to block column vectors and matrices in the
natural way:

n · U =

(
nxU11 + nyU12

nxU21 + nyU22

)
and τ · U =

(
τxU11 + τyU12

τxU21 + τyU22

)
.

We also note that nx = τy and ny = −τx, and that n · ∇ = −τ · ∇⊥.
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We use standard notation for Sobolev spaces Hk(Ω)d, corresponding inner prod-
uct (·, ·)k,Ω, and norm ‖ · ‖k,Ω for k ≥ 0. We drop subscript Ω and superscript d
when the domain and dimension are clear by context. For noninteger k, Hk(Ω) is the
interpolation space between H�k�(Ω) and H�k�(Ω) as in [17]. The case of k = 0 corre-
sponds to the Lebesgue measurable space, L2(Ω), in which case we generally denote
the norm and inner product by ‖ · ‖ and 〈·, ·〉, respectively. Define the subspaces of
L2(Ω) induced by the divergence and the curl of vector u by

H(div) = {u ∈ L2(Ω) : ‖∇ · u‖ < ∞},
H(curl) = {u ∈ L2(Ω) : ‖∇ × u‖ < ∞},

with norms

‖u‖2
H(div) = ‖u‖2 + ‖∇ · u‖2,

‖u‖2
H(curl) = ‖u‖2 + ‖∇ × u‖2.

Denote by Ck(Ω) the space of k times continuously differentiable functions on Ω,
an open set in R

2. The boundary of Ω, denoted by ∂Ω, is of class Ck if it satisfies the
conditions of a Lipschitz boundary (see [20]) and is the union of the graphs of a finite
number of Ck functions. We say that ∂Ω is a Ck,l boundary when it is Lipschitz and
is the graph of the union of a finite number of Hölder continuous Ck,l functions.

We also make use of the following general inequalities:

|a|2 + |b|2 ≤ |a + b|2 ≤ 2(|a|2 + |b|2).(2.1)

3. The nonlinear problem. Let Ω be a bounded open connected subset of
R

2 with boundary ∂Ω, which is partitioned into displacement, ΓD, and traction,
ΓT , segments (Γ̄D ∪ Γ̄T = ∂Ω and ΓD ∩ ΓT = ∅). For simplicity, we assume that
the displacements vanish on ΓD, as is often the case in practice. The geometrically
nonlinear elasticity equations may be written as⎧⎪⎨

⎪⎩
∇ · [(I + ∇u)Σ] = f in Ω,

n · [(I + ∇u)Σ] = g on ΓT ,

u = 0 on ΓD,

(3.1)

where the material law,

Σ = Σ(E) = λtr(E)I + 2μE,(3.2)

is the second Piola–Kirchhoff stress tensor and

E = E(∇u) =
1

2
(∇u + ∇ut + ∇ut∇u)(3.3)

is the Green–St. Venant strain tensor. This problem is often referred to as one for
a St. Venant–Kirchhoff material. Again, this describes materials in configurations in
which the “large displacement, small strain” assumption is valid.

We may also separate the linear and nonlinear parts of the first equation in (3.1)
and write it as

μΔu + (λ + μ)∇∇ · u + ∇ · P3(∇u) = f ,(3.4)
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where Δu = ∇ · ∇u is the vector Laplacian of u and P3(∇u) is the following matrix
of degree 3 polynomials of the components of ∇u:

P3(X) =
1

2
λ
(
tr(XtX)I + tr(X + Xt + XtX)X

)
+ μ

(
X2 + XtX + XXt + XXtX

)
.

The linear part of the left-side operator in (3.4) is simply the linear elasticity equations,
and the nonlinear part can be thought of as a perturbation that begins to dominate
as ∇u becomes large compared to u.

The unknown, u, is the usual displacement vector. We assume that the Lamé
constants, λ and μ, are bounded by satisfying 0 < μ0 < μ < μ1 and 0 < λ0 < λ < λ1,
for appropriate positive bounds. Physically, this corresponds to an assumption of
compressibility of the material. The more difficult problem of incompressible materials
is considered for linear elasticity in [5, 6, 8, 16]. A complete study of the geometrically
nonlinear elasticity problem in a least-squares context in the incompressible limit
remains an open problem. Without loss of generality, we scale the problem so that
μ = 1 and let λ determine the level of compressibility. See section 11 for examples of
Lamé constants for different materials.

The case where ΓT = ∅ corresponds to a pure displacement problem, ΓD = ∅ a
pure traction problem, and otherwise a mixed boundary condition problem.

4. Existence and uniqueness of solutions. In this section, we establish exis-
tence and uniqueness results that confirm well-posedness of system (3.1). We restrict
ourselves here to the pure displacement problem on domains with sufficiently smooth
data and boundaries (see Remark 4.3 at the end of this section).

Let ∂ represent either first partial derivative, ∂x or ∂y, and suppose δ > 0 and
k ≥ 0. The following lemma addresses smoothness of products of functions in H1+δ(Ω)
and H1+k(Ω).

Lemma 4.1. Let Ω be a bounded Lipschitz domain in R
2. Then there exists a

constant, C, depending only on Ω, such that, for u ∈ H1+δ(Ω) and v ∈ H1+k(Ω), the
product uv satisfies

‖uv‖1+k ≤ C‖u‖1+δ‖v‖1+k,

‖∂(uv)‖k ≤ C‖u‖1+δ‖v‖1+k.

Proof. This is a consequence of the Sobolev imbedding theorem, and a proof can
be seen in Chapter 1 of [14].

The following theorem establishes criteria for existence and uniqueness of solutions
to problem (3.1).

Theorem 4.2. Let Ω be a domain in R
2 with boundary of class C2+m for some

m > 0. Then there exists a neighborhood, Qm
0 , of the origin in Hm(Ω) and a neighbor-

hood, U1+m
0 , of the origin in U1+m = {∇v : v ∈ H2+m(Ω),v = 0 on ∂Ω} ⊂ H1+m(Ω)

such that for each f ∈ Qm
0 , the boundary value problem

L(∇u) := ∇ · [(I + ∇u)Σ(E(∇u))] = f(4.1)

has exactly one solution, ∇u∗, in U1+m
0 .

Proof. We observe that nonlinear operator L maps ∇u ∈ H1+m(Ω) into Hm(Ω)
by applying Lemma 4.1, and that L is differentiable between these spaces (in fact, all
derivatives of order ≥ 4 are zero).

Since L(0) = 0, we can then apply the implicit function theorem in a neighbor-
hood of the origin in U1+m × Hm(Ω). Thus, we now only need to check that the
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derivative of L at the origin, L′(0), is bijective between U1+m and Hm(Ω) and has
continuous inverse.

But L′(0) is exactly the operator of linear elasticity. It is known that if ∂Ω
is a C2+m boundary and f ∈ Hm(Ω), then there is a unique weak solution to the
linear pure displacement problem, u ∈ H2+m(Ω) (see [11]). This immediately implies
∇u ∈ H1+m(Ω). Thus, we have shown that continuous operator L′(0) is bijective.
Now since L′(0) is a continuous, bijective, linear map between two Banach spaces, by
the closed graph theorem, it must have a continuous inverse.

By the implicit function theorem there is, therefore, a neighborhood, Qm
0 , of the

origin in Hm(Ω) and a neighborhood, U1+m
0 , of the origin in U1+m such that there is

a unique solution, ∇u∗ ∈ U1+m
0 , for any function f ∈ Qm

0 .
Thus, the pure displacement problem with sufficiently smooth data and domain

is well-posed, and the solution, ∇u, remains small in the H1+m norm, with no direct
restriction on u itself. This is consistent with the small strains assumption in the
geometrically nonlinear elastic model.

Remark 4.3. We are ultimately interested in nonhomogeneous problems on polyg-
onal domains, which are known to have solutions less smooth than described above.
At corner points and/or points of changing boundary condition type on the boundary,
a locally weighted norm can be used to remove the effect of the nonsmooth solution.
In [19] a weighted-norm least-squares method is developed for problems with boundary
singularities. For simplicity, we choose here to focus on the formulation and analysis
of the linearized problem since, even for problems lacking full global regularity, we
may expect the regularity predicted in Theorem 4.2 away from abruptly changing
material interfaces in the interior of Ω for sufficiently smooth data f .

5. Least-squares formulation. We want to replace the nonlinear elasticity
problem with a series of linear problems, which we then reformulate as a first-order
system. Introducing the deformation, φ = x+u, the deformation gradient, Φ = ∇φ,
and the displacement gradient, U = ∇u, we see that problem (3.1) becomes one of
finding the zero of

F(U) = ∇ ·
[
1

2
λtr(U + Ut + UtU)(I + U) + (I + U)(U + Ut + UtU)

]
− f(5.1)

subject to the constraint

∇× U = 0(5.2)

for U satisfying appropriate boundary conditions (recall also that we assume μ = 1).
The Fréchet derivative of F(U) in the direction of V is

F ′(U)[V] = ∇ ·
[
λtr

(
U +

1

2
UtU

)
V + λtr(V + VtU)(I + U)

+ (I + U)(V + Vt + UtV + VtU) + V(U + Ut + UtU)

]
.

(5.3)

Thus, Newton’s method for approximating the solution of (5.1) is given by iteratively
solving the linear problem{

F ′(Un)[Un+1] = F ′(Un)[Un] −F(Un),

∇× Un+1 = 0
(5.4)
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for Un+1, with initial approximation U0 = 0.
It is convenient to view 2 × 2 matrices as 4 × 1 vectors so that general linear

operators on such quantities can be written as 4 × 4 matrices. Thus, define operator
K : R

2×2 → R
4×1 by

K
(
U11 U12

U21 U22

)
= (U11 , U12 , U21 , U22)

t

for any 2×2 matrix, (U)ij = Uij . If A is a 4×4 matrix, then the quantity AU should
be interpreted as AU = K−1 (AKU).

With the relation Φ = I + U, we define the following linear operators:

M1(Φ) =

⎛
⎜⎜⎝

Φ2
11 Φ11Φ12 Φ11Φ21 Φ11Φ22

Φ12Φ11 Φ2
12 Φ12Φ21 Φ12Φ22

Φ21Φ11 Φ21Φ12 Φ2
21 Φ21Φ22

Φ22Φ11 Φ22Φ12 Φ22Φ21 Φ2
22

⎞
⎟⎟⎠ ,

M2(Φ) = (Φ2
11 + Φ2

12 + Φ2
21 + Φ2

22 − 2)I,

M3(Φ)=

⎛
⎜⎝

3Φ2
11 + Φ2

12 + Φ2
21 2Φ11Φ12 + Φ21Φ22 2Φ11Φ21 + Φ12Φ22 Φ12Φ21

2Φ11Φ12 + Φ21Φ22 Φ2
11 + 3Φ2

12 + Φ2
22 Φ11Φ22 Φ11Φ21 + 2Φ12Φ22

2Φ11Φ21 + Φ12Φ22 Φ11Φ22 Φ2
11 + 3Φ2

21 + Φ2
22 Φ11Φ12 + 2Φ21Φ22

Φ12Φ21 Φ11Φ21 + 2Φ12Φ22 Φ11Φ12 + 2Φ21Φ22 Φ2
12 + Φ2

21 + 3Φ2
22

⎞
⎟⎠.

Using the relation Φ = I + U as a change of variables, define the system matrix, A,
as a function of U by

A(U) = λM1(I + U) +
1

2
λM2(I + U) + M3(I + U) − I.

In this way, we may denote the linear operator in (5.4) as

F ′(U)[V] = ∇ ·A(U)V.

Denoting An = A(Un) and Fn = F(Un), the Newton step for the (n+1)st iterate
U (dropping the subscript) may now be written as{

∇ ·AnU = ∇ ·AnUn −Fn,

∇× U = 0.
(5.5)

We may apply an analogous linearization technique to the traction boundary
conditions by defining

T (U) = n ·
[
1

2
λtr(U + Ut + UtU)(I + U) + (I + U)(U + Ut + UtU)

]
− g

and letting Tn = T (Un). The corresponding Newton step for the traction boundaries
then becomes

n ·AnU = n ·AnUn − Tn on ΓT .(5.6)

Since u = 0 on the displacement boundaries, we may enforce the derivative of u along
those boundaries to be zero:

τ · U = 0 on ΓD.(5.7)
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Thus, we may completely decouple the unknowns in u from the unknowns in U. We
concentrate here on the first-stage solution of U, that is, solving the problem for U
and later recovering u, if necessary.

We take the initial approximation for Newton’s method to be the reference con-
figuration, U0 = 0; the system matrix for the first Newton step is

A0 =

⎛
⎜⎜⎝
λ + 2 0 0 λ

0 1 1 0
0 1 1 0
λ 0 0 λ + 2

⎞
⎟⎟⎠ ;

and we can write ∇ · (A0U0)−F0 = f and n · (A0U0)−T0 = g. Thus, we may write
the first step of Newton’s method as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇ · (A0U) = f in Ω,

∇× U = 0 in Ω,

τ · U = 0 on ΓD,

n · (A0U) = g on ΓT .

(5.8)

This is the form of the linear elasticity equations studied in [5, 8].
System (5.5) depends explicitly on the current approximation to the solution.

Specifically, matrix An deviates from A0 as Φ deviates from the identity (or, as U
deviates from 0). Much is known about the first Newton step because it is exactly the
linear elasticity case. For example, assuming sufficient smoothness of the solution, a
least-squares functional associated with system (5.8) can be shown to be H1 elliptic
with the aid of Korn’s inequality. In fact, this ellipticity property is even retained for a
modification of system (5.8) in the incompressible limit in [8]. Existence, uniqueness,
and optimal finite element approximation bounds immediately follow (see [5, 8]). For
the linearized problem, however, the literature reflects relatively little theory in W k,2

Sobolev spaces, and a thorough study of these equations in a least-squares context
has, to our knowledge, not been explored. Thus, we are led to develop new theory
that establishes well-posedness of, and a fast solution technique for, the linearized
equations consisting of (5.5), (5.6), and (5.7).

6. Problem modification. One goal of the least-squares methodology is to
develop a functional that is H1 elliptic whenever possible. It is well known that such
systems admit uniform and optimal H1 approximations when using standard finite
elements for the discretization and standard multigrid solvers for the resulting linear
system (see [7]). For system (5.5), this poses a challenge because the system matrix,
An, is generally pointwise indefinite. In this section, we introduce a modification to
(5.5) that overcomes this difficulty, and we make a reasonable physical assumption
that guarantees positive-definiteness of the modified system matrix. To this end,
consider modifying An by adding to it a matrix of the form

B(c) =

⎛
⎜⎜⎝

0 0 0 c
0 0 −c 0
0 −c 0 0
c 0 0 0

⎞
⎟⎟⎠ ,

where c is any fixed constant. It is easy to see that ∇ ·B(c)∇p = 0 for any function
p, so the solution to (5.5) is unaffected by replacing An with An + B(c). (We note,
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however, that this modification cannot be applied to the traction boundary conditions
given in (5.6).) In [5, 8], this idea is applied with c = μ = 1 in conjunction with a
rotation of the unknowns so that the equations of linear elasticity in the incompressible
limit mirror the Stokes equations. We apply the same idea here, not to transform the
equations to a more well known form, but rather to shift the spectrum to be positive.
Indeed, in the linear case, the spectrum of A0, which is {0, 2, 2, 2λ+2}, can be shifted
by B(1) so that the spectrum of A0 + B(1) becomes {1, 1, 1, 2λ + 3}. Numerical
experiments on the spectrum of An indicate that a choice of c = 1 is also most
effective for shifting the spectrum to be positive for general deformations. We now
study this question analytically.

Matrix Ãn = An + B(1) seems to depend on the four linearly independent com-
ponents of Φn. However, under an appropriate change of variables, the eigenvalues
can be exactly expressed in terms of just two scalar functions over Ω:

σ = Φ2
11 + Φ2

12 + Φ2
21 + Φ2

22,

δ = Φ11Φ22 − Φ12Φ21.
(6.1)

In fact, the eigenvalues of Ãn are as follows:

Λ1 =
1

2
(λ + 2)σ − δ − λ,

Λ2 =
1

2
(λ + 2)σ + δ − λ− 2,

Λ3 =

(
λ +

3

2

)
σ − (λ + 1) −

√
1

4
(λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1,

Λ4 =

(
λ +

3

2

)
σ − (λ + 1) +

√
1

4
(λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1.

(6.2)

That the spectrum can be represented by only two independent quantities is surpris-
ing, but that the two quantities have such an obvious physical meaning is remarkable.
For example, δ, the determinant of the Jacobian of the mapping of the current ap-
proximation, is a local measure of change in volume: δ > 1 indicates areas under
tension and δ < 1 indicates areas under compression. Similarly, σ < 2 when there
is significant local compression. In general, we know that in the small strains regime
σ ≈ 2 and 0 < δ ≈ 1.

Since the model for the geometrically nonlinear elasticity equations assumes a de-
formed configuration with small strains, we may assume small strains of the solution.
We show in section 8 that for an initial guess sufficiently close to the solution, each
iterate remains bounded near the solution and Newton’s method converges. Under
these constraints, we take each iterate to satisfy some small strain condition of the
form ‖E‖ � 1. We now choose the norm to enforce this condition.

Define the following Frobenius norm for tensor-valued quantities:

‖X‖2
Fr = sup

Ω

∑
ij

(Xij)
2
.

Thus, we may write ‖Φ‖Fr = ‖σ‖∞. We can also express the Frobenius norm of
the strain tensor exactly in terms of variables σ and δ. We now establish bounds on
the strain that guarantee that the modified system matrix is uniformly symmetric
positive definite.
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Recall that the strain tensor is given by E(U) = 1
2 (U + Ut + UtU). Define

Sλ =

{
U : ‖U + Ut + UtU‖Fr <

√
2

λ + 3

}

as the set of all displacement gradients corresponding to deformations with “small
strains.” We may choose Qm

0 small enough to ensure that f ∈ Qm
0 guarantees U ∈ Sλ.

Thus, the condition of small strains follows from the assumptions in Theorem 4.2. We
explore the regime of small strains in more detail in section 11.

Theorem 6.1. For all U ∈ Sλ, matrix Ã = A(U) + B(1) is uniformly positive
definite over Ω.

Proof. We directly compute positive lower bounds on each eigenvalue of Ã. For
convenience, we work with Φ = I + U, where U + Ut + UtU = ΦtΦ − I. Let
ε = ‖ΦtΦ − I‖Fr. By direct computation, we write

ε2 = (σ − 1)2 − 2δ2 + 1.(6.3)

We also have

σ ≥ 2δ(6.4)

because σ − 2δ = (Φ1 − Φ22)
2 + (Φ12 + Φ21)

2 ≥ 0. Using (6.4), we can also establish
upper and lower bounds on σ in terms of ε. Specifically, ε2 = (σ − 1)2 − 2δ2 + 1 ≥
(σ − 1)2 − 1

2σ
2 − 1 = 1

2 (σ − 2)2, so

2 −
√

2ε ≤ σ ≤ 2 +
√

2ε.(6.5)

Expressions for the eigenvalues of Ã are given in (6.2). Starting with Λ1 and using
(6.4) and (6.5), we obtain

Λ1 =
1

2
(λ + 2)(σ − 2) − δ + 2

≥ 1

2
(λ + 2)(σ − 2) − 1

2σ + 2

=
1

2
(λ + 1)σ − λ

≥ 1

2
(λ + 1)(2 −

√
2ε) − λ

= 1 −
√

2

2
(λ + 1)ε,

which is strictly positive when ε <
√

2
λ+1 .

Again, using (6.4) and (6.5) along with (6.3), the second eigenvalue satisfies

Λ2 =
1

2
(λ + 2)(σ − 2) + δ

≥ 1

2
(λ + 2)(2δ − 2) + δ

= δ(λ + 3) − (λ + 2)

=

√
2

2
((σ − 1)2 + 1 − ε2)

1
2 (λ + 3) − (λ + 2)
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≥
√

2

2
((1 −

√
2ε)2 + 1 − ε2)

1
2 (λ + 3) − (λ + 2)

=

(
1 −

√
2ε +

1

2
ε2

) 1
2

(λ + 3) − (λ + 2),

which is strictly positive when f(ε) = 1
2ε

2 −
√

2ε + 1 − (λ+2
λ+3 )2 > 0. Solving for the

roots of f(ε), we see that f(ε) is positive for ε <
√

2
λ+3 .

The third eigenvalue is more cumbersome to treat and requires a bit more care
than the first two. Write Λ3 = R −

√
Z, where R = (λ + 3

2 )σ − (λ + 1) and Z =
1
4 (λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1. It can be seen that Z must be nonnegative for
λ > 0 by writing

Z =
1

4
(λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1

=
1

4
λ2σ2 + 1

4 (6λ + 9)(σ + 2δ)(σ − 2δ) + 2λδ + 1

> 0,

since σ ≥ 2δ. From the bound on Λ2 and (6.5), we know, for λ > 0, that

σ ≥ 2 −
√

2ε > 2 −
√

2

( √
2

λ + 3

)
>

4

3

and, thus, R > 0. Therefore, Λ3 is positive when R2 − Z is positive. But we may
write

R2 − Z =

(
λ +

3

2

)2

σ2 − 2(λ + 1)

(
λ +

3

2

)
σ + (λ + 1)2

− 1

4
(λ + 3)2σ2 + (6λ + 9)δ2 − 2λδ − 1

≥
(
λ +

3

2

)2

σ2 − 2(λ + 1)

(
λ +

3

2

)
σ + (λ + 1)2

− 1

4
(λ + 3)2σ2 + (6λ + 9)δ2 − λσ − 1

=

(
λ +

3

2

)2

σ2 − 2(λ + 1)

(
λ +

3

2

)
σ + (λ + 1)2

− 1

4
(λ + 3)2σ2 +

1

2
(6λ + 9)((σ − 1)2 − ε2 + 1) − λσ − 1

=
1

4
(λ2 + 6λ + 6)(3σ − 2)(σ − 2) + (2λ + 3)

(
1 − 3

2
ε

)
.

Since σ > 4
3 implies that the quadratic term in σ, (3σ − 2)(σ − 2), is monotonically

increasing, we can apply the lower bound in (6.5) to get

R2 − Z ≥ 1

4
(λ2 + 6λ + 6)(3σ − 2)(σ − 2) + (2λ + 3)

(
1 − 3

2
ε

)

≥ 1

4
(λ2 + 6λ + 6)

(
−
√

2ε +
3

2
ε2

)
+ (2λ + 3)

(
1 − 3

2
ε

)
=

3

2
(λ2 + 4λ + 3)ε2 −

√
2(λ2 + 6λ + 6)ε + 2λ + 3.
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Again, solving for the roots of this quadratic equation in ε, we see that R2 − Z is

positive when ε <
√

2
λ+3 .

Finally, the fourth eigenvalue, Λ4, is bounded below by Λ3 and the proof is
complete.

It is interesting to note that the bounds for the first three eigenvalues are of the
same order (the second and third are even the exact same bound). This suggests that
the modification to matrix An is optimally balanced with B(c) for c = 1.

The full, modified, linearized system may now be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · (ÃnU) = fn in Ω,

∇× U = 0 in Ω,

τ · U = 0 on ΓD,

n · (AnU) = gn on ΓT ,

where fn = ∇ · (ÃnUn) −Fn and gn = n · (AnU) − Tn.
Define the L2 functional

G(U;Un, fn) = ‖∇ · (ÃnU) − fn‖2 + ‖∇ × U‖2,(6.6)

and define, for any m > 0, the space

Vm = {V ∈ Hm(Ω)4 : n · (AnV) = gn on ΓT , τ · V = 0 on ΓD}.

In the case of pure displacement boundary conditions (ΓN = ∅), we denote the space
by Vm

D .
The least-squares minimization problem for each Newton step is as follows: given

Un, fn, and gn, find U ∈ V1 such that

G(U;Un, fn) = inf
V∈V1

G(V;Un, fn).

7. Ellipticity. To use the L2-based functional in (6.6) on each Newton step,
we must assume that the previous iterate is in H1+δ(Ω) for some δ > 0 because
(6.6) is composed of derivatives of products of the unknown and the previous solution
and, in R

2, the space H1+δ(Ω) is closed under multiplication only for δ > 0 (see
Lemma 4.1). Thus, showing only H1 ellipticity of (6.6) is not sufficient to establish a
well-defined Newton iteration; we must show that each iterate remains in H1+δ(Ω).
In this section, we establish H1+k ellipticity of an Hk-based functional for k ≥ 0 and
show that minimizing the L2-based functional is sufficient to guarantee the required
smoothness of each iterate. Our theoretical results hold for the pure displacement
problem.

For clarity, we use the following conventions: δ > 0 and k ≥ 0 (our final results
require the cases k = 0 and k = δ).

In Theorem 6.1, matrix Ã = A(U)+B(1) is uniformly symmetric positive definite
over Ω when the strain of U is sufficiently small, that is, for U ∈ Sλ. In this section,
we assume this property holds and consider the solution of a general Newton step of
the pure displacement problem by minimizing the more general Hk-based functional

Gk(U;Un, fn) = ‖∇ · (ÃnU) − fn‖2
k + ‖∇ × U‖2

k.(7.1)

Its associated minimization problem is as follows: given Un ∈ H1+δ(Ω) and fn ∈
Hk(Ω), find U ∈ V1+k

D such that

Gk(U;Un, fn) = inf
V∈V1+k

D

Gk(V;Un, fn).(7.2)
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By Lemma 4.1, it is clear that U ∈ H1+k(Ω) and Un ∈ H1+δ(Ω) are sufficient to
ensure that ∇ · (ÃnU) ∈ Hk(Ω).

The following series of lemmas leads to establishing equivalence of Gk(U;Un,0)
1
2

to the H1+k norm.
Lemma 7.1. Let Ω be a simply connected domain in R

2 and suppose V ∈ L2(Ω)4.
Then ∇ · V = 0 and

∫
∂Ω

n · V = 0 if and only if there exists a function r ∈ H1(Ω)2

such that V = ∇⊥r. Furthermore, r ∈ H1(Ω)2 is unique up to an additive constant
vector in R

2.
Proof. The result follows by applying Theorem 3.1 in Chapter I of [14] to each

block component of V.
Lemma 7.2. Let Ω be a simply connected domain in R

2. Every V ∈ L2(Ω)4

has the orthogonal decomposition V = ∇p + ∇⊥q for p ∈ H1(Ω)2,q ∈ H1
0 (Ω)2.

Furthermore, q is unique in H1
0 (Ω)2 and p is unique in H1(Ω)2 up to an additive

constant vector in R
2.

Proof. The result follows by applying Theorem 3.2 in Chapter I of [14] to each
block component of V.

Lemma 7.3. Assume that U ∈ Sλ and denote Ã = A + B, with A = A(U) and
B = B(1) as defined in section 6. Also assume that AZ and BZ are in L2(Ω)4. If
Z ∈ V1

D satisfies the system

{
∇ · ÃZ = 0 in Ω,

∇× Z = 0 in Ω,
(7.3)

then it must be the trivial solution, Z = 0.
Proof. By Lemma 7.2, Z = ∇p + ∇⊥q for p ∈ H1(Ω)2,q ∈ H1

0 (Ω)2. The second
equation in (7.3) implies

0 = ∇× Z = ∇×∇p + ∇×∇⊥q = −Δq,

and, since q ∈ H1(Ω)20, we must have q = 0. Thus, Z = ∇p.
Now, using Green’s formula with 1 = (1, 1)t, we get

0 = 〈∇ ·AZ,1〉 + 〈AZ,∇1〉 =

∫
∂Ω

n ·AZ.

Applying Lemma 7.1 to AZ yields AZ = ∇⊥r for r ∈ H1(Ω)2. Since 0 = τ ·Z = τ ·∇p
on ∂Ω, we know that p = p0 is constant on ∂Ω. We thus have

〈AZ,Z〉 = 〈∇⊥r,∇p〉

= 〈−∇ · ∇⊥r,p〉 +

∫
∂Ω

(n · ∇⊥r)p

=

∫
∂Ω

(n · ∇⊥r)p

= p0

∫
∂Ω

n ·AZ

= 0.
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Since Z = ∇p, we may then write BZ = ∇⊥s, where s =
( p2
−p1

)
. Thus,

〈BZ,Z〉 = 〈∇⊥s,∇p〉

= 〈s,∇×∇p〉 −
∫
∂Ω

(τ · ∇p)s

= −
∫
∂Ω

(τ · ∇p0)s

= 0,

which implies 〈ÃZ,Z〉 = 0. Since U ∈ Sλ, matrix Ã is positive definite, and we must
have Z = 0.

Now consider the following elliptic boundary value problem:

∇ ·M∇p = f in Ω,(7.4)

satisfying either p = 0 or n · M∇p = 0 on ∂Ω. When Ω has C1+k,1 boundary and
M is uniformly positive definite over Ω with coefficients in Ck,1(Ω̄), problem (7.4)
admits the regularity bound,

‖p‖2+k ≤ C‖f‖k,(7.5)

for p ∈ H2+k(Ω). Chapter 2 of [15] establishes this for integer values of k. For
noninteger k, we may appeal to interpolation in Sobolev norms as in [17]. Similar
regularity results, with different assumptions than here, are given in [1, 2, 12].

Lemma 7.4. Assume a solution to nonlinear problem (5.1): U∗ ∈ V2+k
D ∩ Sλ.

Assume also that Ω is smooth enough to admit (7.5) for k ≥ 0. Let Ã∗ = A(U∗) +
B(1). Then there exists a positive constant, c∗, independent of U, such that

‖U‖1+k ≤ c∗(‖∇ · Ã∗U‖k + ‖∇ × U‖k)

for all U ∈ V1+k
D .

Proof. Consider the skew-symmetric orthogonal matrix

Q =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ .(7.6)

The following relations are easily derived:

∇× = ∇ ·Q,

∇· = ∇×Qt,

∇⊥ = Q∇,

∇ = Qt∇⊥,

n· = −τ ·Q,

τ · = n ·Qt.

(7.7)

Since Ã∗ is uniformly positive definite over Ω, there are constants, λ1, λ2 > 0, such
that

λ1ξ
tξ ≤ ξtÃ∗ξ ≤ λ2ξ

tξ(7.8)
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and

1

λ2
ξtξ ≤ ξtÃ−1

∗ ξ ≤ 1

λ1
ξtξ(7.9)

for any ξ ∈ R
4. Define

C = QtÃ−1
∗ Q,

and note that

ξtξ = ξtQtQξ = (Qξ)t(Qξ)

and

ξtCξ = ξtQtÃ−1
∗ Qξ = (Qξ)tÃ−1

∗ (Qξ).

Now, it can easily be seen that C is symmetric and uniformly positive definite over Ω:

1

λ2
ξtξ ≤ ξtCξ ≤ 1

λ1
ξtξ.(7.10)

We also note that

∇× Ã−1
∗ ∇⊥ = ∇ ·QÃ−1

∗ Q∇ = −∇ · C∇.

With U∗ ∈ V2+k
D and U ∈ V1+k

D , we have that ∇ · Ã∗U ∈ Hk(Ω), and thus, for any

U ∈ V1+k
D , there is a unique p ∈ H2+k(Ω) that satisfies{

∇ · Ã∗∇p = ∇ · Ã∗U in Ω,

p = 0 on ∂Ω
(7.11)

and a q ∈ H2+k(Ω) that satisfies{
−∇ · C∇q = ∇× U in Ω,

n · C∇q = 0 on ∂Ω,
(7.12)

and
∫
Ω

q dx = 0. Now define Z = U−∇p− Ã−1
∗ ∇⊥q. Note that Z ∈ H1+k(Ω) and,

on ∂Ω, that

τ · Z = τ · U − τ · ∇p − τ · Ã−1
∗ ∇⊥q

= −τ ·QCQt∇⊥q

= n · C∇q

= 0.

Thus, Z ∈ V1+k
D . We further see that

∇ · Ã∗Z = ∇ · Ã∗U −∇ · Ã∗∇p −∇ · Ã∗Ã
−1
∗ ∇⊥q

= 0

and

∇× Z = ∇× U −∇×∇p −∇× Ã−1
∗ ∇⊥q

= ∇× U + ∇ · C∇q

= 0.
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By Lemma 7.3, we therefore conclude that Z = 0. Since U∗ ∈ H2+k(Ω) ⊆ Ck,1(Ω̄),
we may apply (7.5) to problems (7.11) and (7.12). Combining these bounds with the
triangle inequality and (7.9), we may write

‖U‖1+k ≤ ‖∇p‖1+k + ‖Ã−1
∗ ∇⊥q‖1+k

≤ ‖p‖2+k + 1/λ1‖q‖2+k

≤ C(‖∇ · Ã∗U‖k + ‖∇ × U‖k).

Application of (2.1) completes the proof.
Recall that we cast the solution of nonlinear problem (3.1) as the zero of F(U),

where F ′(U)[V] is given in (5.3). We consider the boundedness of the second Fréchet
derivative of F(U) in directions V and W in the following lemma.

Lemma 7.5. For all U,V ∈ H1+δ(Ω) and W ∈ H1+k(Ω), there exists a positive
constant, c2, such that

‖F ′′(U)[V,W]‖k ≤ c2‖U‖1+δ‖V‖1+δ‖W‖1+k.(7.13)

Proof. Writing the second Fréchet derivative of F in the directions V and W as

F ′′(U)[V,W] = ∇ ·
[
λtr(WtV)(I + U) + λtr(Vt(I + U))W + λ|tr(Wt(I + U))V

+ (I + U)(WtV + VtW) + V(W + Wt + W tU + UtW)

+W(V + Vt + V tU + UtV)
]
,

we see that each component may be written as a linear combination of terms of the
form ∂(WiVjUk) or ∂(WiVj), i, j, k = 1, 2, 3, 4, where ∂ again represents either ∂x or
∂y. The lemma then follows by the triangle inequality and by applying Lemma 4.1 to
each term once or twice.

Define the H1+δ neighborhood of the solution by

Br = {U ∈ H1+δ(Ω) : ‖U − U∗‖1+δ < r}.

We now are able to state the main result of this section.
Theorem 7.6. Assume Ω has C3+k boundary and that f ∈ H1+k(Ω) is small

enough to guarantee that problem (5.1) has solution U∗ ∈ H2+k(Ω) ∩ Sλ by Theo-
rem 4.2. Then there exist some r > 0 and constants c0, c1 > 0, depending only on f
and Ω, such that, for all Un ∈ V1+δ

D ∩ Br,

c0‖U‖2
1+k ≤ Gk(U;Un,0) ≤ c1‖U‖2

1+k(7.14)

for every U ∈ V1+k
D for k ≥ 0.

Proof. The upper bound follows from the triangle inequality and Lemma 4.1.
With Un ∈ H1+δ(Ω), Lemma 4.1 guarantees that AU, BU ∈ H1+k(Ω) when U ∈
H1+k(Ω). By Theorem 4.2 with m = 1 + k, there is a solution to problem (5.1),
U∗ ∈ H2+k(Ω) ∩ Sλ. Thus, by Lemma 7.4, we know there exists a positive constant,
c∗, independent of U, such that

‖U‖1+k ≤ c∗(‖∇ · Ã(U∗)U‖k + ‖∇ × U‖k)(7.15)

for all U ∈ V1+k
D . We now need only to extend this result to the operator linearized

about Un rather than U∗. Recall that we may denote F ′(Un)[U] = ∇·A(Un)U and
F ′(U∗)[U] = ∇ ·A(U∗)U. By the mean value theorem, we may write

F ′(Un)[U] −F ′(U∗)[U] = F ′′(Û)[U,Un − U∗](7.16)
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for some Û = θUn + (1 − θ)U∗ with θ ∈ [0, 1]. Since Un ∈ Br, Û can be bounded in
the H1+δ norm in the following way:

‖Û‖1+δ = ‖θUn + (1 − θ)U∗‖1+δ

≤ ‖θ(Un − U∗)‖1+δ + ‖U∗‖1+δ

≤ r + ‖U∗‖1+δ.

(7.17)

So, by (7.16), the triangle inequality, (7.13), and (7.15), we have

‖∇ · Ã(Un)U‖k + ‖∇ × U‖k
= ‖F ′(Un)[U]‖k + ‖∇ × U‖k
= ‖F ′(U∗)[U] + F ′′(Û)[U,Un − U∗]‖k + ‖∇ × U‖k
≥ ‖F ′(U∗)[U]‖k − ‖F ′′(Û)[U,Un − U∗]‖k + ‖∇ × U‖k
≥ ‖∇ ·A(U∗)U‖k + ‖∇ × U‖k − c2‖Û‖1+δ‖U‖1+k‖Un − U∗‖1+δ

≥ c−1
∗ ‖U‖1+k − c2r(r + ‖U∗‖1+δ)‖U‖1+k

= (c−1
∗ − c2r(r + ‖U∗‖1+δ))‖U‖1+k

≥ C‖U‖1+k,

(7.18)

where C is guaranteed to be positive for r sufficiently small. Application of (2.1)
completes the proof.

Corollary 7.7. Assume that Ω, f , U∗, and Un ∈ V1+δ
D ∩ Br satisfy the as-

sumptions of Theorem 7.6. Then, for some r sufficiently small, the unique U that
satisfies

G0(U;Un, fn) = inf
V∈V1

D

G0(V;Un, fn)(7.19)

also satisfies

Gδ(U;Un, fn) = inf
V∈V1+δ

D

Gδ(V;Un, fn).(7.20)

Proof. From the Riesz representation theorem and Theorem 7.6 with k = 0, we
have a unique minimizer, U, of the L2-based functional in (7.19) in H1(Ω). Similarly,
for k = δ > 0, we also have a unique minimizer, U′, of the Hδ-based functional
in (7.20) in H1+δ(Ω). Since these functionals both have zero minimum, U′ must also
minimize the functional in (7.19). Thus, U = U′ ∈ H1+δ(Ω).

Therefore, we are able to conclude that under sufficient smoothness requirements,
minimizing the L2-based functional is sufficient to guarantee that each Newton iterate,
U = Un+1, remains in H1+δ(Ω).

8. Convergence of Newton’s method. We now consider the sequence of iter-
ates arising from the minimization of each linearized functional under the assumptions
of Theorem 7.6. This section details the theory and assumptions for the convergence
of Newton’s method. As in Theorem 7.6, we assume the solution to the previous
Newton step to be in Br. Here, we show convergence of the iterates in the H1+δ norm
and that each iterate remains in Br.

Consider the Taylor expansion of F(U∗) about the current approximation Un:

0 = F(U∗) = F(Un) + F ′(Un)[U∗ − Un] +
1

2
F ′′(Ũ)[U∗ − Un,U

∗ − Un](8.1)
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for Ũ = ωUn + (1 − ω)U∗ with ω ∈ [0, 1]. As in (7.17), if Un ∈ Br, then Ũ satisfies

‖Ũ‖1+δ ≤ r + ‖U∗‖1+δ.(8.2)

Recall that we may write the Newton iterate, U, as the solution to problem (7.2) and,
thus,

F ′(Un)[U − Un] = −F(Un),(8.3)

with ∇× U = ∇× Un = ∇× U∗ = 0.
Applying (8.1), (8.3), (7.13), and (8.2) to the bound in (7.18), and recalling that

Un ∈ Br, we get

‖U∗ − U‖1+δ ≤ 1
√
c0

‖F ′(Un)[U∗ − U]‖δ + ‖∇ × (U∗ − U)‖δ

=
1

√
c0

‖F ′(Un)[U∗ − Un] −F ′(Un)[U − Un]‖δ

=
1

2
√
c0

‖F ′′(Ũ)[U∗ − Un,U
∗ − Un]‖δ

≤ c2
2
√
c0

‖Ũ‖1+δ‖U∗ − Un‖1+δ‖U∗ − Un‖1+δ

≤ c2
2
√
c0

(r + ‖U∗‖1+δ)r‖U∗ − Un‖1+δ

:= c3 r ‖U∗ − Un‖1+δ,

(8.4)

which proves that Newton’s method converges for r sufficiently small. Again noting
that Un ∈ Br, we further note that

‖U∗ − U‖1+δ ≤ c3r‖U∗ − Un‖1+δ

≤ c3r
2.

To verify that U ∈ Br, we only need to show that c3r
2 < r. Substituting the definition

of c3, we see that this is satisfied for

r <
1

2

(√
‖U∗‖2

1+δ + η − ‖U∗‖1+δ

)
<

η

4‖U∗‖1+δ
,

where η =
8
√
c0

c2
. This shows that for guaranteed convergence, larger solutions require

better initial guesses than smaller solutions (as measured in the H1+δ norm). We now
consider the issue of finding an appropriate “good” initial guess.

9. Multilevel solution. As described above, the solution to nonlinear sys-
tem (3.1) is generally comprised of several Newton iterations. The first few iterations
are crude approximations to the true solution of the nonlinear problem. It is therefore
appropriate to represent the early approximations on a mesh with fewer degrees of
freedom. As the Newton iterates remove more of the error due to the nonlinearity,
the approximations can be represented on increasingly finer meshes. In other words,
we wish to eliminate as much of the nonlinear error as possible on coarse grids where
it is less expensive.

The approach in [13] uses this multilevel nested iteration Newton idea with a
FOSLS finite element discretization and a multigrid solver to achieve a robust solu-
tion strategy for a certain class of nonlinear problems. Under particular assumptions
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on the form of the nonlinearity, the finite element spaces used, the smoothness of
the solution, and the ellipticity of the linearized equations, convergence to the so-
lution is established with accuracy comparable to discretization error on the finest
level at a cost proportional to the degrees of freedom on the finest level. We briefly
summarize this nested iteration-Newton-FOSLS-multigrid (NI-Newton-FOSLS-MG)
algorithm and detail the additional assumptions we must make for application to the
geometrically nonlinear elasticity system.

Define the hierarchy of discrete nested subspaces,

Vh0 ⊂ Vh1 · · · ⊂ VhJ ⊂ V1+δ
D .(9.1)

The following algorithm describes the NI-Newton-FOSLS-MG method:
1. Begin with a zero approximation, U0, on coarsest level Vh0 .
2. Linearize the equations about the current approximation and form the dis-

crete least-squares minimization problem.
3. Apply m multigrid cycles to the resulting matrix equations.
4. Repeat steps 2 and 3 n times on the current level.
5. Interpolate the current approximation to the next finer level, Vhi .
6. Repeat steps 2–5 until desired accuracy is achieved.

To apply the results of [13] to the nonlinear elasticity system, we must make the
following series of assumptions.

A1. Assume the existence of a solution, U∗ ∈ H2+δ(Ω), to problem (3.1). For our
problem, this is justified in section 4. Theorem 4.2 with m = 1 + δ requires
that the boundary of Ω be C3+δ smooth and f ∈ H1+δ(Ω) in order to guaran-
tee U∗ ∈ H2+δ(Ω). In the context of elasticity, the internal forcing function,
f , is generally at least this smooth for a wide range of practical problems.
Assuming a very smooth domain, however, is a stronger restriction than we
generally wish to adhere to in practice. We do find that in practice this can
be relaxed in some cases, but in many cases we must consider complimentary
methods for dealing with nonsmooth domains.

A2. Assume the operator of linearized elasticity maps V1+k
D into Hk(Ω). This is

established in section 7.
A3. Assume H1+k ellipticity of the functional as in (7.1). Theorem 7.6 establishes

this for the pure displacement problem under the small strains assumption of
Theorem 6.1.

A4. Assume boundedness of the second Fréchet derivative of F as in (7.13). Jus-
tification of this is established in Lemma 7.5.

A5. Assume the finite element spaces in (9.1) guarantee the following approxi-
mation properties and inverse estimate. Let Ihν be a bounded Hν projection
onto finite element space Vh. We assume interpolation bounds of the form

‖U − Ih1+δU‖γ ≤ Ch2+δ−γ‖U‖2+δ ∀γ ∈ [0, 1 + δ]

and the inverse estimate

‖U‖β ≤ C

hβ−γ
‖U‖γ ∀U ∈ Vh, β ∈ [0, 1 + δ], γ ∈ [0, β].

We concentrate on standard finite element subspaces of H1 (for example,
bilinears on rectangles) which exhibit these properties; see [3] for details.

A6. Assume a sufficiently fine coarsest level by insisting that Br∩Vh0 �= ∅ and that
the initial guess is sufficiently close to the solution by choosing U0 ∈ Br∩Vh0 .
Bounds on r can be found in the full theory in [13].
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Under these assumptions, we may directly apply the theory developed in [13]. By
this theory, there are values of m and n, independent of h, in the multilevel algorithm
described above that result in an approximation on the finest level that is accurate
to the level of discretization error at a cost proportional to the degrees of freedom on
the finest level.

There are many contributions to the error in each approximation in the NI-
Newton-FOSLS-MG solution process. In the innermost iteration, the multigrid solver
reduces the algebraic error by performing a number of multigrid cycles before relin-
earizing. On each grid level, there is discretization error associated with the finite
element space used. A sufficient number of Newton steps must be performed on each
level to eliminate the error associated with the nonlinearity. For a truly optimal al-
gorithm, we must consider the sources of error that contribute to the total error in
the current approximation, and make decisions on how to proceed in the algorithm
in order to efficiently reduce the total error to an acceptable level.

10. Computational results. To validate the theory presented above, consider
the numerical approximation to the solution of a pure displacement problem on do-
main Ω = [0, 1]2, with Lamé constants λ = 2.15, μ = 1. As a test problem, we choose
the solution to nonlinear problem (3.1) to be

u∗ =

(
x(1 − x)y2(1 − y)2 sin(πx)
x2(1 − x)2y2(1 − y)2 cos(πy)

)
,

and let U∗ = ∇u∗ be the exact solution for the first-stage problem. The right-side
function, f , is computed accordingly.

Denote by Vh the space of continuous piecewise bilinear finite elements on a
uniform grid of mesh size h. For convenience, we use this space for all test problems.
Each step of the pure displacement problem is found by minimizing the discrete
functional,

G(Uh;Uh
n, fn) = ‖∇ · (ÃnU

h) − fn‖2 + ‖∇ × Uh‖2,(10.1)

over the space

Vh
D = {Vh ∈ Vh : τ · Vh = 0 on ∂Ω}.

We begin with an initial guess of U0 = 0 so that the first Newton step corresponds
to the linear elasticity case. Recall that we seek the solution to the original nonlinear
problem as well as each linearized step. Define the following nonlinear functional to
measure the convergence to nonlinear problem (3.1):

G(U; f) = ‖F(U)‖2 + ‖∇ × U‖2.(10.2)

In an H1+δ neighborhood near the solution, a simple computation on a Taylor series of
F about U∗ (invoking Lemma (7.5)) shows that G(U; f) is equivalent to G(U;U∗,0),
indicating that the H1 norm of the error to the nonlinear problem can be effectively
monitored by G(U; f). Near convergence of Newton’s method, the nonlinear and
linearized functionals tend to take on the same values. Thus, a practical measure of
how much of the error in the approximation is due to the nonlinearity can be obtained
by the difference in the linearized and nonlinear functional values.

For the test problem summarized in Table 10.1, we ensure that essentially all
algebraic error is removed from each system by reducing the residual by a factor of
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106 using V (1, 1) cycles. Numerical results are reported for the following: grid level,

N (h = (N + 1)−1); Newton step, m; linearized functional norm, G(Uh;Uh
n, f)

1
2 ;

nonlinear functional norm, G(Uh; f)
1
2 ; L2 error of the solution, ‖U∗ − Uh‖; and

asymptotic multigrid convergence factor, ρ. On each mesh size, the Newton iterations
were started with initial guess Uh

0 = 0.

Table 10.1

Numerical results for the pure displacement problem with known smooth solution, without using
nested iteration, using V (1, 1) cycles.

N m G(Uh;Uh
n, f)

1
2 G(Uh; f)

1
2 ‖U∗ − Uh‖ ρ

8 1 4.73e-02 4.73e-02 2.16e-03 0.70
8 2 2.58e-02 2.58e-02 1.91e-03 0.67
8 3 2.58e-02 2.58e-02 1.91e-03 0.61
16 1 1.32e-02 4.44e-02 1.31e-03 0.70
16 2 1.29e-02 1.29e-02 4.84e-04 0.69
16 3 1.29e-02 1.29e-02 4.84e-04 0.46
32 1 6.66e-03 4.38e-02 1.26e-03 0.73
32 2 6.44e-03 6.44e-03 1.22e-04 0.73
32 3 6.44e-03 6.44e-03 1.22e-04 0.70
64 1 3.38e-03 4.37e-02 1.26e-03 0.77
64 2 3.22e-03 3.22e-03 3.02e-05 0.75
64 3 3.22e-03 3.22e-03 3.04e-05 0.72
128 1 1.73e-03 4.36e-02 1.27e-03 0.80
128 2 1.61e-03 1.62e-03 7.63e-06 0.79
128 3 1.61e-03 1.61e-03 7.53e-06 0.76

By comparing the functional norm and L2 error values after three Newton steps
on a sequence of levels in Table 10.1, we see that the method achieves the optimal
discretization accuracy of O(h2) with respect to the L2 error norm, and O(h) with
respect to the linearized and nonlinear functional norms. Newton’s method essentially
converges by the second iteration independent of the mesh size. But, even with such
fast convergence, we see that the nonlinear functional values of the first Newton step
on each level essentially stall, indicating that, even for this relatively simple prob-
lem, the linear elasticity approximation is a poor approximation to the geometrically
nonlinear approximation.

We see that, for this problem, the multigrid convergence factors based on V (1, 1)
cycles are bounded above by about 0.8. While these are acceptable convergence
factors, in the remainder of the numerical test problems, we use an AMG V (1, 1)
preconditioned conjugate gradient cycle to improve performance. We denote these
accelerated cycles by V (1, 1)-pcg, and because these cycles generally do not reduce the
error by a consistent amount, we report the average convergence factor, ρ̄, rather than
the asymptotic convergence factor. Refer to [18] for complete details on such cycles.

The convergence factor does not take into account the amount of work done per
cycle. For an appropriate measure of the work expended by a multigrid cycle, we define
the cycle complexity as the total work per cycle relative to one fine grid relaxation
sweep. To obtain a numerical estimate of the cycle complexity, we compute the total
number of nonzero matrix entries on each level, multiplied by the number of relaxation
sweeps on that level, divided by the number of nonzero matrix entries of the finest
level operator. Define the work per Newton step as the work per cycle multiplied by
the number of cycles per step, and the total work, WT , as the cumulative amount of
work expended relative to the current level. One such work unit is equivalent to one
relaxation sweep on the finest level.
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We now wish to solve the same problem as above, but in the most efficient way
possible. To this end, we implement the nested iteration strategy described in sec-
tion 9. Instead of reducing the residual of each linear system by a given amount, we
take only three V (1, 1)-pcg cycles per Newton step and one Newton step per level.
Table 10.2 summarizes these results.

Table 10.2

Numerical results for the pure displacement problem with known smooth solution, using nested
iteration and three V (1, 1)-pcg cycles per step.

N m G(Uh; f)
1
2 ρ̄ WT time (s)

8 2 2.64e-02 0.29 12.3 1
16 3 1.31e-02 0.25 16.0 4
32 4 6.61e-03 0.24 19.0 15
64 5 3.32e-03 0.24 20.8 60
128 6 1.66e-03 0.23 21.6 242

As Tables 10.1 and 10.2 show, the nested iteration method achieves optimal dis-
cretization accuracy, and the nonlinear functional on the finest grid is within 5% of
discretization error. The average convergence factors for the V (1, 1)-pcg cycles re-
main bounded and of very reasonable size for this problem. The total amount of work
required for the solution at each level is essentially bounded at less than 25 work
units, and the time to solution for each level scales almost exactly with the number
of degrees of freedom of the problem.

The numerical results presented here are for the pure displacement problem with
small strains. In practice, we find that the method performs similarly to the results
shown here for mixed boundary conditions and for somewhat larger strains than the
theory allows. In the next section, we show that the small strains assumption admits
a large class of interesting problems.

11. Validating the small strains assumption. According to Ciarlet in [11],
for any homogeneous, isotropic, elastic material, the stress and strain tensors satisfy
the relation given by

Σ(E) = λtr(E)I + 2μE + o(E).(11.1)

But the model of geometrically nonlinear elasticity uses the linear stress-strain relation
given in (3.2), that is, we drop the higher-order terms, o(E), under an assumption
of small strains. Thus, in analysis of the geometrically nonlinear elasticity system,
we are free to impose reasonable restrictions on the size of ‖E‖ without limiting the
scope of the model.

In Theorem 6.1, we assume that the strain associated with the solution of each
Newton iterate satisfies

‖ΦtΦ − I‖Fr <

√
2

λ + 3
,(11.2)

where we have scaled the problem such that μ = 1. In this section, we investigate
this restriction and provide examples of different configurations and their relation to
(11.2) and material constant λ.

Since physically we must have λ > 0, we first see that an upper bound on the
allowed strain is at ‖ΦtΦ − I‖Fr =

√
2/3 ≈ 0.471. We further notice that bound

(11.2) is always violated by any nonzero strain in the limit as λ → ∞. Thus, our
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Table 11.1

Material constants of homogeneous isotropic materials.

ν λ
Rubber 0.49 33.3
Lead 0.44 7.30

Aluminum 0.34 2.15
Nickel 0.30 1.56
Steel 0.28 1.22
Glass 0.25 1.00

β α

1 1

Fig. 11.1. Pure shear and pure tensile strains.

notion of “small strains” is coupled to the assumption of compressibility. The Poisson
ratio of an elastic material is given by

ν =
λ

2(λ + μ)
,

and we may think of the incompressible limit as λ → ∞ (for bounded μ) or ν → 0.5.
In Table 11.1, we provide a few examples of common materials and their material
properties. Because we are chiefly concerned with the value of λ relative to μ, we
report the unitless λ ← λ/μ. For unscaled constants with meaningful physical units,
consult [11].

For the numerical test problems in this paper, we uniformly choose to use λ =
2.15, that of aluminum, as the level of compressibility.

Consider the two basic modes of strain: shear and tensile strain. A unit square
domain under either uniform shear or uniform tensile strain has corresponding dis-
placements of the form

ushear =

(
βy
0

)
or utensile =

(
αx
0

)
.

Parameters β and α determine the extent of deformation as pictured in Figure 11.1.
Under these deformations, we may apply (6.1) and (6.3) to satisfy (11.2) for these

two cases. For pure shear strain, we require β and λ to satisfy

(λ + 3)2β2(β2 + 2) − 2 < 0,
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Fig. 11.2. Shear and tensile strain limits for small strains.

Fig. 11.3. Displacement plot for cantilever beam displaying “large displacement and small
strains.”

and, for pure tensile strain, we require α and λ to satisfy

(λ + 3)2α2(α + 2)2 − 2 < 0.

These relations are satisfied for the parameters in the shaded regions shown in Fig-
ure 11.2.

Now consider the following example of a deformed configuration with large dis-
placements but small strains. The strain of the discrete approximation is computed
pointwise from (6.3) for mesh size h = 1/16. The deformation is from a simple can-
tilever beam under a constant gravitational force. The max pointwise strain is 0.241
and, for this configuration to satisfy (11.2), the largest allowable λ is approximately
2.88, which corresponds to a Poisson ratio of ν = 0.37. Figure 11.3 shows a plot of
the deformed configuration.
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Abstract. We develop a mixed finite element method for single phase flow in porous media
that reduces to cell-centered finite differences on quadrilateral and simplicial grids and performs well
for discontinuous full tensor coefficients. Motivated by the multipoint flux approximation method
where subedge fluxes are introduced, we consider the lowest order Brezzi–Douglas–Marini (BDM)
mixed finite element method. A special quadrature rule is employed that allows for local velocity
elimination and leads to a symmetric and positive definite cell-centered system for the pressures.
Theoretical and numerical results indicate second-order convergence for pressures at the cell centers
and first-order convergence for subedge fluxes. Second-order convergence for edge fluxes is also
observed computationally if the grids are sufficiently regular.
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tensor coefficient, error estimates
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1. Introduction. Mixed finite element (MFE) methods have been widely used
for modeling flow in porous media due to their local mass conservation, accurate ap-
proximation of the velocity, and proper treatment of discontinuous coefficients. A
computational drawback of these methods is the need to solve an algebraic system of
saddle point type. One possible approach to address this issue is to use the hybrid
form of the MFE method [9, 15]. In this case the method can be reduced to a sym-
metric positive definite system for the pressure Lagrange multipliers on the element
faces. Alternatively, it was established in [29] that, in the case of diagonal tensor
coefficients and rectangular grids, MFE methods can be reduced to cell-centered fi-
nite differences (CCFD) for the pressure through the use of a quadrature rule for the
velocity mass matrix. This relationship was explored in [33] to obtain convergence of
CCFD on rectangular grids. This result was extended to full tensor coefficients and
logically rectangular grids in [7, 6], where the expanded mixed finite element (EMFE)
method was introduced. The EMFE method is very accurate for smooth grids and
coefficients, but loses accuracy near discontinuities. This is due to the arithmetic
averaging of discontinuous coefficients. Higher order accuracy can be recovered if
pressure Lagrange multipliers are introduced along discontinuous interfaces [6], but
then the cell-centered structure is lost.

Several other methods have been introduced that handle well rough grids and
coefficients. The control volume mixed finite element (CVMFE) method [16] is based
on discretizing Darcy’s law on specially constructed control volumes. Mimetic finite
difference (MFD) methods [23] are designed to mimic on the discrete level critical
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properties of the differential operators. The approximating spaces in both methods
are closely related to RT0, the lowest order Raviart–Thomas MFE spaces [27]. These
relationships have been explored in [17, 30] and [10, 12] to establish convergence of
the CVMFE methods and the MFD methods, respectively. However, as in the case
of MFE methods, both methods lead to an algebraic saddle point problem. The
multipoint flux approximation (MPFA) method [1, 2, 19, 20] has been developed as a
finite volume method and combines the advantages of the above mentioned methods;
i.e., it is accurate for rough grids and coefficients and reduces to a cell-centered stencil
for the pressures. However, due to the nonvariational formulation of the MPFA,
there exist only limited theoretical results in the literature for the well posedness and
convergence of this method [24].

In this paper we design a MFE method that reduces to accurate CCFD for full
tensors and irregular grids and performs well for discontinuous coefficients. Motivated
by the MPFA [2, 20], where subedge fluxes are introduced, we consider the lowest
order Brezzi–Douglas–Marini (BDM) MFE method [14, 15]. In two dimensions, for
example, there are two velocity degrees of freedom per edge. A special quadrature rule
is employed that allows for local velocity elimination and leads to a cell-centered stencil
for the pressures. The resulting algebraic system is symmetric and positive definite.
We call our method a multipoint flux mixed finite element (MFMFE) method, due to
its close relationship with the MPFA method.

We emphasize that the formulation of the MFMFE method involves K−1; see
(2.41)–(2.42). For diagonal discontinuous K, the resulting coefficient is a harmonic
average. This explains the superior performance of the MFMFE method for problems
with rough grids and coefficients, compared to the EMFE method.

The MFMFE method results in a smaller algebraic system than the hybrid MFE
method does, since finite element partitions have fewer elements than edges or faces.
Moreover, many existing petroleum simulators are based on cell-centered discretiza-
tions and their data structures are more compatible with the MFMFE method than
with the hybrid MFE method.

The variational framework allows for MFE analysis tools to be combined with
quadrature error analysis to establish well posedness and accuracy of the MFMFE
method. We formulate and analyze the method on simplicial grids in two and three
dimensions as well as on quadrilateral grids. We obtain first order convergence for the
pressure in the L2-norm and for the velocity in the H(div)-norm. A duality argument
is employed to establish second order convergence for the pressure in a discrete L2-
norm involving the centers of mass of the elements.

The analysis in the quadrilateral case is more involved, since it requires mapping
to a reference element. As a result a restriction needs to be imposed on the geometry
of each quadrilateral, namely, that it is an O(h2)-perturbation of a parallelogram;
see (3.1). We have verified numerically that this restriction is not just an artifact
of the analysis, but is needed in practice as well. We also note that second order
convergence is observed numerically for the velocities at the midpoints of the edges
on h2-parallelogram grids.

The techniques used in this paper can be employed to formulate and analyze
extensions of the MFMFE method to nonmatching multiblock grids via mortar finite
elements in the spirit of [5], multiscale MFMFE methods in the spirit of [4], and
adaptive mortar MFMFE methods in the spirit of [34].

The rest of the paper is organized as follows. The method is developed in section
2. Sections 3 and 4 are devoted to the error analysis of the velocity and the pressure,
respectively. Numerical experiments are presented in section 5. We end with some
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conclusions in section 6.

2. Definition of the method.

2.1. Preliminaries. We consider the second order elliptic problem written as a
system of two first order equations,

u = −K∇p in Ω,(2.1)

∇ · u = f in Ω,(2.2)

p = g on ΓD,(2.3)

u · n = 0 on ΓN ,(2.4)

where the domain Ω ⊂ Rd, d = 2 or 3, has a boundary ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅,
measure(ΓD) > 0, n is the outward unit normal on ∂Ω, and K is a symmetric,
uniformly positive definite tensor satisfying, for some 0 < k0 ≤ k1 < ∞,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ ∀x ∈ Ω ∀ξ ∈ Rd.(2.5)

In flow in porous media modeling, p is the pressure, u is the Darcy velocity, and K
represents the permeability divided by the viscosity. The choice of boundary condi-
tions is made for the sake of simplicity. More general boundary conditions, including
nonhomogeneous full Neumann problems, can also be treated.

Throughout this paper, C denotes a generic positive constant that is independent
of the discretization parameter h. We will also use the following standard notation.
For a domain G ⊂ Rd, the L2(G) inner product and norm for scalar and vector valued
functions are denoted (·, ·)G and ‖ · ‖G, respectively. The norms and seminorms of
the Sobolev spaces W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G,
respectively. The norms and seminorms of the Hilbert spaces Hk(G) are denoted by
‖ · ‖k,G and | · |k,G, respectively. We omit G in the subscript if G = Ω. For a section
of the domain or element boundary S ⊂ Rd−1 we write 〈·, ·〉S and ‖ · ‖S for the
L2(S) inner product (or duality pairing) and norm, respectively. For a tensor-valued
function M , let ‖M‖α = maxi,j ‖Mij‖α for any norm ‖ · ‖α. We will also use the
space

H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}

equipped with the norm

‖v‖div = (‖v‖2 + ‖∇ · v‖2)1/2.

The weak formulation of (2.1)–(2.4) is the following: find u ∈ V and p ∈ W such
that

(K−1u,v) = (p,∇ · v) − 〈g,v · n〉ΓD
, v ∈ V,(2.6)

(∇ · u, w) = (f, w), w ∈ W,(2.7)

where

V = {v ∈ H(div; Ω) : v · n = 0 on ΓN}, W = L2(Ω).

It is well known [15, 28] that (2.6)–(2.7) has a unique solution.
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Fig. 2.1. Mapping in the case of a quadrilateral.

2.2. Finite element mappings. Consider a polygonal domain Ω ∈ Rd and let
Th be a finite element partition of Ω consisting of triangles and/or convex quadrilater-
als in two dimensions and tetrahedra in three dimensions, where h = maxE∈Th

diam(E).
We assume that Th is shape regular and quasi-uniform [18]. For any element E ∈ Th
there exists a bijection mapping FE : Ê → E where Ê is the reference element. Denote
the Jacobian matrix by DFE and let JE = |det(DFE)|. Denote the inverse mapping
by F−1

E , its Jacobian matrix by DF−1
E , and let JF−1

E
= |det(DF−1

E )|. We have that

DF−1
E (x) = (DFE)−1(x̂), JF−1

E
(x) =

1

JE(x̂)
.

In the case of convex quadrilaterals, Ê is the unit square with vertices r̂1 = (0, 0)T ,
r̂2 = (1, 0)T , r̂3 = (1, 1)T , and r̂4 = (0, 1)T . Denote by ri = (xi, yi)

T , i = 1, . . . , 4,
the four corresponding vertices of element E as shown in Figure 2.1. The outward
unit normal vectors to the edges of E and Ê are denoted by ni and n̂i, i = 1, . . . , 4,
respectively. In this case FE is the bilinear mapping given by

FE(r̂) = r1 (1 − x̂)(1 − ŷ) + r2 x̂(1 − ŷ) + r3 x̂ŷ + r4 (1 − x̂)ŷ

= r1 + r21x̂ + r41ŷ + (r34 − r21)x̂ŷ,
(2.8)

where rij = ri− rj . It is easy to see that DFE and JE are linear functions of x̂ and ŷ:

DFE = [(1 − ŷ) r21 + ŷ r34, (1 − x̂) r41 + x̂ r32]

= [r21, r41] + [(r34 − r21)ŷ, (r34 − r21)x̂],
(2.9)

JE = 2|T1| + 2(|T2| − |T1|)x̂ + 2(|T4| − |T1|)ŷ,(2.10)

where |Ti| is the area of the triangle formed by the two edges sharing ri. Since E is
convex, the Jacobian determinant JE is uniformly positive, i.e., JE(x̂, ŷ) > 0.

In the case of triangles, Ê is the reference right triangle with vertices r̂1 = (0, 0)T ,
r̂2 = (1, 0)T , and r̂3 = (0, 1)T . Let r1, r2, and r3 be the corresponding vertices of
E, oriented in a counterclockwise direction. The linear mapping for triangles has the
form

FE(r̂) = r1(1 − x̂− ŷ) + r2x̂ + r3ŷ,(2.11)

with respective Jacobian matrix and Jacobian determinant

DFE = [r21, r31]
T

and JE = 2|E|.(2.12)
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The mapping in the case of tetrahedra is described similarly to the triangular case.
Note that in the case of simplicial elements the mapping is affine and the Jacobian
matrix and its determinant are constants.

Using the mapping definitions (2.8)–(2.12), it is easy to check that for any edge
(face) ei ⊂ ∂E

ni =
1

|ei|
JE(DF−1

E )T n̂i.(2.13)

It is also easy to see that, for all element types, the mapping definitions and the
shape-regularity and quasiuniformity of the grids imply that

‖DFE‖0,∞,Ê ∼ h, ‖JE‖0,∞,Ê ∼ hd, and ‖JF−1
E

‖0,∞,Ê ∼ h−d ∀E ∈ Th,(2.14)

where the notation a ∼ b means that there exist positive constants c0 and c1 inde-
pendent of h such that c0b ≤ a ≤ c1b.

2.3. Mixed finite element spaces. Let Vh ×Wh be the lowest order BDM1

MFE spaces [14, 15]. On the reference unit square these spaces are defined as

V̂(Ê) = P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2)

=

(
α1x̂ + β1ŷ + γ1 + rx̂2 + 2sx̂ŷ
α2x̂ + β2ŷ + γ2 − 2rx̂ŷ − sŷ2

)
, Ŵ (Ê) = P0(Ê),

(2.15)

where α1, α2, β1, β2, γ1, γ2, s, r are real constants and Pk denotes the space of polyno-
mials of degree ≤ k. In the case where the reference element Ê is the unit triangle or
tetrahedron, the BDM1 spaces are defined as

V̂(Ê) = P1(Ê)d, Ŵ (Ê) = P0(Ê).(2.16)

Note that in all three cases ∇̂ · V̂(Ê) = Ŵ (Ê) and that for all v̂ ∈ V̂(Ê) and for any
edge (or face) ê of Ê,

v̂ · n̂ê ∈ P1(ê).

It is well known [14, 15] that the degrees of freedom for V̂(Ê) can be chosen to
be the values of v̂ · n̂ê at any two points on each edge ê if Ê is the unit triangle or
the unit square, or any three points on each face ê if Ê is the unit tetrahedron. We
choose these points to be the vertices of ê; see Figure 2.2 for the quadrilateral case.
This choice is motivated by the requirement of accuracy and certain orthogonalities
for the quadrature rule introduced in the next section.

The BDM1 spaces on any element E ∈ Th are defined via the transformations

v ↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E , w ↔ ŵ : w = ŵ ◦ F−1
E .

The vector transformation is known as the Piola transformation. It is designed to
preserve the normal components of the velocity vectors on the edges (faces) and
satisfies the important properties [15]

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê.(2.17)
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Fig. 2.2. Degrees of freedom and basis functions for the BDM1 spaces on quadrilaterals.

Moreover, (2.13) implies

v · ne =
1

JE
DFEv̂ · 1

|e|JE(DF−1
E )T n̂ê =

1

|e| v̂ · n̂ê.(2.18)

Also note that the first equation in (2.17) and (∇ · v, w)E = (∇̂ · v, ŵJE)Ê imply

∇ · v =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x).(2.19)

Therefore on quadrilaterals ∇ · v|E �= constant.
The BDM1 spaces on Th are given by

Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂(Ê) ∀E ∈ Th},
Wh = {w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê) ∀E ∈ Th}.

(2.20)

It is known [14, 15, 32] that there exists a projection operator Π from V ∩ (H1(Ω))d

onto Vh satisfying

(∇ · (Πq − q), w) = 0 ∀w ∈ Wh.(2.21)

The operator Π is defined locally on each element E by

Πq ↔ Π̂q, Π̂q = Π̂q̂,(2.22)

where Π̂ : (H1(Ê))d → V̂(Ê) is the reference element projection operator satisfying

∀ ê ⊂ ∂Ê, 〈(Π̂q̂ − q̂) · n̂, p̂1〉ê = 0 ∀ p̂1 ∈ P1(ê).(2.23)

To see that Πq ·n = 0 on ΓN if q ·n = 0 on ΓN , note that for any e ∈ ΓN and for all
p1 ↔ p̂1 ∈ P1(ê),

〈Πq · n, p1〉e = 〈Π̂q · n̂, p̂1〉ê = 〈Π̂q̂ · n̂, p̂1〉ê = 〈q̂ · n̂, p̂1〉ê = 0,

implying Πq · n = 0, where we have used (2.17), (2.22), and (2.23).
In addition to the mixed projection operator Π onto Vh, we will use a similar

projection operator onto the lowest order Raviart–Thomas spaces [27, 15]. The RT0

spaces are defined on the unit square as

V̂0(Ê) =

(
α1 + β1x̂
α2 + β2ŷ

)
, Ŵ 0(Ê) = P0(Ê),(2.24)
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and on the unit triangle as

V̂0(Ê) =

(
α1 + βx̂
α2 + βŷ

)
, Ŵ 0(Ê) = P0(Ê).(2.25)

On the unit tetrahedron V̂0(Ê) has an additional component α3 + βẑ. In all cases

∇̂ · V̂0(Ê) = Ŵ 0(Ê) and v̂ · n̂ê ∈ P0(ê). The degrees of freedom of V̂0(Ê) are
the values of v̂ · n̂ê at the midpoints of all edges (faces) ê. The projection operator

Π̂0 : (H1(Ê))d → V̂0(Ê) satisfies

∀ ê ⊂ ∂Ê, 〈(Π̂0q̂ − q̂) · n̂, p̂0〉ê = 0 ∀ p̂0 ∈ P0(ê).(2.26)

The spaces V0
h and W 0

h on Th and the projection operator Π0 : (H1(Ω))d → V0
h are

defined similarly to the case of BDM1 spaces. Note that V0
h ⊂ Vh and W 0

h = Wh. It
follows immediately from the definition of Π0 that

∇ · v = ∇ · Π0v ∀v ∈ Vh(2.27)

and

‖Π0v‖ ≤ C‖v‖ ∀v ∈ Vh.(2.28)

2.4. The BDM1 method. The BDM1 mixed finite element method is based on
approximating the variational formulation (2.6)–(2.7) in the discrete spaces Vh×Wh:
find ubdm

h ∈ Vh and pbdmh ∈ Wh such that

(K−1ubdm
h ,v) = (pbdmh ,∇ · v) − 〈g,v · n〉ΓD

, v ∈ Vh,(2.29)

(∇ · ubdm
h , w) = (f, w), w ∈ Wh.(2.30)

The method has a unique solution and is second order accurate for the velocity and
first order accurate for the pressure in L2-norms on affine grids [14, 32]. It handles
well discontinuous coefficients due to the presence of K−1 in the mass matrix. A
drawback is that the resulting algebraic system is a large coupled velocity-pressure
system of a saddle point problem type. In the next section we develop a quadrature
rule that allows for local elimination of the velocities and results in a positive definite
cell-centered pressure matrix.

2.5. A quadrature rule. For q, v ∈ Vh, define the global quadrature rule

(K−1q,v)Q ≡
∑
E∈Th

(K−1q,v)Q,E .

The integration on any element E is performed by mapping to the reference element
Ê. The quadrature rule is defined on Ê. Using the definition (2.20) of the finite
element spaces and omitting the subscript E, we have∫

E

K−1q · v dx =

∫
Ê

K̂−1 1

J
DF q̂ · 1

J
DF v̂ J dx̂

=

∫
Ê

1

J
DFT K̂−1DF q̂ · v̂ dx̂ ≡

∫
Ê

K−1q̂ · v̂ dx̂,

where

K = JDF−1K̂(DF−1)T .(2.31)
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Clearly, due to (2.14),

‖K‖0,∞,Ê ∼ hd−2‖K‖0,∞,E and ‖K−1‖0,∞,Ê ∼ h2−d‖K−1‖0,∞,E .(2.32)

The quadrature rule on an element E is defined as

(K−1q,v)Q,E ≡ (K−1q̂, v̂)Q̂,Ê ≡ |Ê|
s

s∑
i=1

K−1(r̂i)q̂(r̂i) · v̂(r̂i),(2.33)

where s = 3 for the unit triangle and s = 4 for the unit square or the unit tetrahedron.
Note that on the unit square this is the trapezoidal quadrature rule.

The corner vector q̂(r̂i) is uniquely determined by its normal components to the
two edges (or three faces) that share that vertex. Recall that we chose the velocity
degrees of freedom on any edge (face) ê to be the normal components at the vertices
of ê. Therefore, there are two (three) degrees of freedom associated with each corner
r̂i and they uniquely determine the corner vector q̂(r̂i). More precisely,

q̂(r̂i) =

d∑
j=1

q̂ · n̂ij(r̂i)n̂ij ,

where n̂ij , j = 1, . . . , d, are the outward unit normal vectors to the two edges (three
faces) intersecting at r̂i, and q̂ · n̂ij(r̂i) are the velocity degrees of freedom associated
with this corner. Let us denote the basis functions associated with r̂i by v̂ij , j =
1, . . . , d; see Figure 2.2, i.e.,

v̂ij · n̂ij(r̂i) = 1, v̂ij · n̂ik(r̂i) = 0, k �= j, and v̂ij · n̂lk(r̂l) = 0, l �= i, k = 1, . . . , d.

Clearly the quadrature rule (2.33) couples only the two (or three) basis functions
associated with a corner. On the unit square, for example,

(K−1v̂11, v̂11)Q̂,Ê =
K−1

11 (r̂1)

4
, (K−1v̂11, v̂12)Q̂,Ê =

K−1
12 (r̂1)

4
,(2.34)

and

(K−1v̂11, v̂ij)Q̂,Ê = 0 ∀ ij �= 11, 12.(2.35)

Remark 2.1. The quadrature rule can be defined directly on an element E. It is
easy to see from (2.10) and (2.12) that on simplicial elements

(K−1q,v)Q,E =
|E|
s

s∑
i=1

K−1(ri)q(ri) · v(ri),(2.36)

and on quadrilaterals

(K−1q,v)Q,E =
1

2

4∑
i=1

|Ti|K−1(ri)q(ri) · v(ri).(2.37)

The above quadrature rules are closely related to some inner products used in the
mimetic finite difference methods [23]. We note that in the case of quadrilaterals, it
is simpler to evaluate the quadrature rule on the reference element Ê.
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Denote the element quadrature error by

σE(K−1q,v) ≡ (K−1q,v)E − (K−1q,v)Q,E(2.38)

and define the global quadrature error by σ(K−1q,v)|E = σE(K−1q,v). Similarly,
denote the quadrature error on the reference element by

σ̂Ê(K−1q̂, v̂) ≡ (K−1q̂, v̂)Ê − (K−1q̂, v̂)Q̂,Ê .(2.39)

The next two lemmas will be used in the analysis.
Lemma 2.1. On simplicial elements, if q ∈ Vh(E), then

σE(q,v0) = 0 for all constant vectors v0.

Proof. It is enough to consider v0 = (1, 0)T or v0 = (1, 0, 0)T ; the arguments for
the other cases are similar. We have

(q,v0)Q,E =
|E|
s

s∑
i=1

q1(ri) =

∫
E

q · v0 dx,

using that the quadrature rule (ϕ)E = |E|
s

∑s
i=1 ϕ(ri) is exact for linear func-

tions.
Lemma 2.2. On the reference square, for any q̂ ∈ V̂(Ê),

(q̂ − Π̂0q̂, v̂0)Q̂,Ê = 0 for all constant vectors v̂0.(2.40)

Proof. On any edge ê, if the degrees of freedom of q̂ are q̂ê,1 and q̂ê,2, then

(2.26) and an application of the trapezoidal quadrature rule imply that Π̂0q̂|ê =
(q̂ê,1 + q̂ê,2)/2. The assertion of the lemma follows from a simple calculation, using
(2.33).

2.6. The multipoint flux mixed finite element method. We are now ready
to define our method. We seek uh ∈ Vh and ph ∈ Wh such that

(K−1uh,v)Q = (ph,∇ · v) − 〈g,v · n〉ΓD
, v ∈ Vh,(2.41)

(∇ · uh, w) = (f, w), w ∈ Wh.(2.42)

Remark 2.2. We call the method (2.41)–(2.42) a MFMFE method, since it is
related to the MPFA method.

To prove that (2.41)–(2.42) is well posed, we first show that the quadrature rule
(2.33) produces a coercive bilinear form. We will need the following auxiliary result.

Lemma 2.3. If E ∈ Th and q ∈ (L2(E))d, then

‖q‖E ∼ h
2−d
2 ‖q̂‖Ê .(2.43)

Proof. The assertion of the lemma follows from the relations∫
E

q · qdx =

∫
Ê

1

J
DF q̂ · 1

J
DF q̂ J dx̂,∫

Ê

q̂ · q̂dx̂ =

∫
E

1

JF−1

DF−1q · 1

JF−1

DF−1qJF−1 dx,

and bounds (2.14).
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Lemma 2.4. There exists a positive constant C independent of h such that

(K−1q,q)Q ≥ C‖q‖2 ∀q ∈ Vh.(2.44)

Proof. Let q =
∑s

i=1

∑d
j=1 qijvij on an element E. Using (2.36)–(2.37) and (2.5)

we obtain

(K−1q,q)Q,E ≥ C
|E|
k1

s∑
i=1

q(ri) · q(ri) ≥ C
|E|
k1

s∑
i=1

d∑
j=1

q2
ij .

On the other hand,

‖q‖2
E =

(
s∑

i=1

d∑
j=1

qijvij ,

s∑
k=1

d∑
l=1

qklvkl

)
≤ C|E|

s∑
i=1

d∑
j=1

q2
ij .

A combination of the above two estimates implies the assertion of the lemma.
Corollary 2.5. The bilinear form (K−1q,v)Q is an inner product in Vh and

(K−1q,q)
1/2
Q is a norm in Vh equivalent to ‖ · ‖.

Proof. Since (K−1q,v)Q is linear and symmetric, Lemma 2.4 implies that it is

an inner product and that (K−1q,q)
1/2
Q is a norm in Vh. Let us denote this norm

by ‖ · ‖Q,K−1 . It remains to show that it is bounded above by ‖ · ‖. Using (2.32),

(2.5), the equivalence of norms on reference element Ê, and (2.43), we have that for
all q ∈ Vh

(K−1q,q)Q,E = (K−1q̂, q̂)Q̂,Ê ≤ C
h2−d

k0
‖q̂‖2

Ê
≤ C‖q‖2

E ,

which, combined with (2.44), implies that

c0‖q‖ ≤ ‖q‖Q,K−1 ≤ c1‖q‖(2.45)

for some positive constants c0 and c1.
Remark 2.3. The results of Lemma 2.4 and Corollary 2.5 hold if K−1 is replaced

by any symmetric and positive definite matrix M .
We are now ready to establish the solvability of (2.41)–(2.42).
Lemma 2.6. The MFMFE method (2.41)–(2.42) has a unique solution.
Proof. Since (2.41)–(2.42) is a square system, it is enough to show uniqueness.

Let f = 0, g = 0, and take v = uh and w = ph. This implies that (K−1uh,uh)Q = 0,
and therefore uh = 0, due to (2.44). We now consider the auxiliary problem

−∇ ·K∇φ = −ph in Ω,

φ = 0 on ΓD,

−K∇φ · n = 0 on ΓN .

The choice v = ΠK∇φ ∈ Vh in (2.41) gives

0 = (ph,∇ · ΠK∇φ) = (ph,∇ ·K∇φ) = ‖ph‖2,

therefore ph = 0.
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Fig. 2.3. Interactions of the degrees of freedom in MFMFE.

2.7. Reduction to a cell-centered stencil. We next describe how the MFMFE
method reduces to a system for the pressures at the cell centers. Let us consider any
interior vertex r and suppose that it is shared by k elements E1, . . . , Ek; see Fig-
ure 2.3(A) for a specific example with 5 elements. We denote the edges (faces) that
share the vertex by e1, . . . , ek, the velocity basis functions on these edges (faces) that
are associated with the vertex by v1, . . . ,vk, and the corresponding values of the nor-
mal components of uh by u1, . . . , uk. Note that for clarity the normal velocities on
Figure 2.3(A) are drawn at a distance from the vertex.

Since the quadrature rule (K−1·, ·)Q localizes the basis functions interaction (see
(2.34)–(2.35)), taking v = v1 in (2.41), for example, will only lead to coupling u1 with
u5 and u2. Similarly, u2 will only be coupled with u1 and u3, etc. Therefore, the k
equations obtained from taking v = v1, . . . ,vk form a linear system for u1, . . . , uk.

Proposition 2.7. The k × k local linear system described above is symmetric
and positive definite.

Proof. The system is obtained by taking v = v1, . . . ,vk in (2.41). On the left-
hand side we have

(K−1uh,vi)Q =

k∑
j=1

uj(K
−1vj ,vi)Q ≡

k∑
j=1

aijuj , i = 1, . . . , k.

Using Corollary 2.5 we conclude that the matrix Ā = {aij} is symmetric and positive
definite.

Solving the small k×k linear system allows us to express the velocities ui in terms
of the cell-centered pressures pi, i = 1, . . . , k. Substituting these expressions into the
mass conservation equation (2.42) leads to a cell-centered stencil. The pressure in
each element E is coupled with the pressures in the elements that share a vertex with
E; see Figure 2.3(B).

For any vertex on the boundary ∂Ω, the size of the local linear system equals the
number of non-Neumann (interior or Dirichlet) edges/faces that share that vertex.
Inverting the local system allows one to express the velocities in terms of the element
pressures and the boundary data.

We use the example in Figure 2.3(A) to describe the CCFD equations obtained
from the above procedure. Taking v = v1 in (2.41), on the left-hand side we have

(K−1uh,v1)Q = (K−1uh,v1)Q,E1 + (K−1uh,v1)Q,E2 .(2.46)
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The first term on the right in (2.46) gives

(K−1uh,v1)Q,E1 = (K−1ûh, v̂1)Q̂,Ê

=
1

4
(K−1

11,E1
û1v̂1,1 + K−1

12,E1
û5v̂1,1)

=
1

4
(K−1

11,E1
|e1|u1 + K−1

12,E1
|e5|u5)|e1|,

(2.47)

where we have used (2.18) for the last equality. Here K−1
ij,E1

denotes a component of

K−1 in E1 and all functions are evaluated at the vertex of Ê corresponding to vertex
r in the mapping FE1 . Similarly,

(K−1uh,v1)Q,E2 =
1

6
(K−1

11,E2
|e1|u1 + K−1

12,E2
|e2|u2)|e1|.(2.48)

For the right-hand side of (2.41) we write

(ph,∇ · v1) = (ph,∇ · v1)E1 + (ph,∇ · v1)E2

= 〈ph,v1 · nE1
〉e1 + 〈ph,v1 · nE2

〉e1
= 〈p̂h, v̂1 · n̂E1〉ê1 + 〈p̂h, v̂1 · n̂E2〉ê1

=
1

2
(p1 − p2)|e1|,

(2.49)

where we have used the trapezoidal rule for the integrals on ê1, which is exact since
p̂h is constant and v̂1 · n̂ is linear. A combination of (2.46)–(2.49) gives the equation(

1

2
K−1

11,E1
+

1

3
K−1

11,E2

)
|e1|u1 +

1

2
K−1

12,E1
|e5|u5 +

1

3
K−1

12,E2
|e2|u2 = p1 − p2.

The other four equations of the local system for u1, . . . , u5 are obtained similarly.
We end the section with a statement about an important property of the CCFD

algebraic system.
Proposition 2.8. The CCFD system for the pressure obtained from (2.41)–

(2.42) using the procedure described above is symmetric and positive definite.
Proof. Let {vi} and {wj} be the bases of Vh and Wh, respectively. The algebraic

system that arises from (2.41)–(2.42) is of the form(
A BT

B 0

)(
U
P

)
=

(
G
F

)
,(2.50)

where Aij = (K−1vi,vj)Q and Bij = −(∇ · vi, wj). The matrix A is block-diagonal
with symmetric and positive definite blocks, as noted in Proposition 2.7. The elimi-
nation of U leads to a system for P with a matrix

BA−1BT ,

which is symmetric and positive semidefinite. In the proof of Lemma 2.6 we showed
that BTP = 0 implies P = 0. Therefore BA−1BT is positive definite.

3. Velocity error analysis. Although our method can be defined and is well
posed on general quadrilaterals (see section 2), for the convergence analysis we need
to impose a restriction on the element geometry. This is due to the reduced approx-
imation properties of the MFE spaces on general quadrilaterals [8]. The restriction
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is not needed for theoretical purpose only; deterioration of convergence is observed
computationally as well [3].

For the remainder of the paper we will assume that the quadrilateral elements
are O(h2)-perturbations of parallelograms:

‖r34 − r21‖ ≤ Ch2.(3.1)

We call such elements h2-parallelograms, following the terminology from [21]. Ele-
ments of this type are obtained by uniform refinements of a general quadrilateral grid.
It is not difficult to check that in this case ||T2|− |T1|| ≤ Ch3, ||T4|− |T1|| ≤ Ch3, and

|DFE |1,∞,Ê ≤ Ch2 and

∣∣∣∣ 1

JE
DFE

∣∣∣∣
j,∞,Ê

≤ Chj−1, j = 1, 2.(3.2)

In this section we establish first-order convergence for the velocity. We start with
several auxiliary results that will be used in the analysis.

In addition to the mixed projection operators defined earlier, we will also make
use of the L2-orthogonal projection onto Wh: for any φ ∈ L2(Ω), let Qhφ ∈ Wh satisfy

(φ−Qhφ,w) = 0 ∀w ∈ Wh.

We state several well-known approximation properties of the projection operators.
On simplices and h2-parallelograms,

‖φ−Qhφ‖ ≤ C‖φ‖rhr, 0 ≤ r ≤ 1,(3.3)

‖q − Πq‖ ≤ C‖q‖rhr, 1 ≤ r ≤ 2,(3.4)

‖q − Π0q‖ ≤ C‖q‖1h,(3.5)

‖∇ · (q − Πq)‖ + ‖∇ · (q − Π0q)‖ ≤ C‖∇ · q‖rhr, 0 ≤ r ≤ 1.(3.6)

Bound (3.3) is a standard L2-projection approximation results [18]; bounds (3.4),
(3.5), and (3.6) can be found in [15, 28] for affine elements and [32, 8] for h2-
parallelograms. We note that on general quadrilaterals bounds (3.3) and (3.5) are
also true, while bounds (3.4) and (3.6) are only valid for r = 1 and r = 0, respectively
[8].

It was shown in [21, Lemma 5.5] that on h2-parallelograms, for u ∈ Hj(E),

|û|j,Ê ≤ Chj‖u‖j,E , j ≥ 0.(3.7)

We will make use of the following continuity bounds for Π and Π0.
Lemma 3.1. For all elements E there exists a constant C independent of h such

that

‖Πq‖j,E ≤ C‖q‖j,E ∀q ∈ (Hj(E))d, j = 1, 2,(3.8)

‖Π0q‖1,E ≤ C‖q‖1,E ∀q ∈ (H1(E))d.(3.9)

Proof. The proof uses the inverse inequality

‖v‖j,E ≤ Ch−1‖v‖j−1,E , j = 1, 2 ∀E ∈ Th, v ∈ Vh(E),(3.10)
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which is well known for affine elements [18] and can be shown for quadrilaterals via
mapping to the reference element Ê and using the standard inverse inequality on Ê;
see [11] for details.

Let q̄ be the L2(E)-projection of q onto the space of constant vectors on E. Using
(3.10), we have

|Πq|1,E = |Πq − q̄|1,E ≤ Ch−1‖Πq − q̄‖E
≤ Ch−1(‖Πq − q‖E + ‖q − q̄‖E) ≤ C‖q‖1,E ,

where we have used the approximation properties (3.3) and (3.4) for the last inequality.
Similarly, taking q1 to be the L2(E)-projection of q onto the space of linear

vectors on E, we obtain

|Πq|2,E = |Πq − q1|2,E ≤ Ch−2‖Πq − q1‖E
≤ Ch−2(‖Πq − q‖E + ‖q − q1‖E) ≤ C‖q‖2,E .

The bound ‖Πq‖E ≤ C‖q‖1,E follows from the approximation property (3.4). This
completes the proof of (3.8). The proof of (3.9) is similar.

The following two lemmas will also be used in the analysis.
Lemma 3.2. If E is an h2-parallelogram, then there exists a constant C indepen-

dent of h such that

|K−1|j,∞,Ê ≤ Chj‖K−1‖j,∞,E , j = 1, 2.(3.11)

Proof. Using (3.2), we have

|K−1|1,∞,Ê ≤ C(|K̂−1|1,∞,Ê + h‖K̂−1‖0,∞,Ê) ≤ Ch‖K−1‖1,∞,E ,

where the last inequality follows from the use of the chain rule and (2.14). Similarly,

|K−1|2,∞,Ê ≤ C(|K̂−1|2,∞,Ê + h|K̂−1|1,∞,Ê + h2‖K̂−1‖0,∞,Ê) ≤ Ch2‖K−1‖2,∞,E ,

where we have also used |DFE |2,∞,Ê = 0.

Let Wα
Th

consist of functions ϕ such that ϕ|E ∈ Wα(E) for all E ∈ Th and ‖ϕ‖α,E
is uniformly bounded, independently of h. Let |||ϕ|||α = maxE∈Th

‖ϕ‖α,E .

Lemma 3.3. On h2-parallelograms, if K−1 ∈ W 1,∞
Th

, then there exists a constant
C independent of h such that for all v ∈ Vh

|(K−1Πu,v − Π0v)Q| ≤ Ch‖u‖1‖v‖.(3.12)

Proof. On any element E we have

(K−1Πu,v − Π0v)Q,E = (K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê

= ((K−1 −K−1)Π̂û, v̂ − Π̂0v̂)Q̂,Ê + (K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê ,
(3.13)

where K−1 is the mean value of K−1 on Ê. Using Taylor expansion and (2.45), we
have for the first term on the right above

|((K−1 −K−1)Π̂û, v̂ − Π̂0v̂)Q̂,Ê | ≤ C|K−1|1,∞,Ê‖Π̂û‖Ê‖v̂‖Ê
≤ Ch‖K−1‖1,∞,E‖u‖1,E‖v‖E ,

(3.14)
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where we have used (3.11), (2.43), and (3.8) for the last inequality. Using (2.40) and

letting Π̂û be the L2-projection of Π̂û onto the space of constant vectors on Ê, we
bound the last term in (3.13) as follows:

|(K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê | = |(K−1(Π̂û − Π̂û), v̂ − Π̂0v̂)Q̂,Ê |

≤ C‖K−1‖0,∞,Ê |Π̂û|1,Ê‖v̂‖Ê ≤ Ch‖K−1‖0,∞,E‖u‖1,E‖v‖E ,

(3.15)

where we have also used (2.32), (3.7), and (3.8). The proof is completed by combining
(3.13)–(3.15).

3.1. First-order convergence for the velocity. Subtracting the numerical
method (2.41)–(2.42) from the variational formulation (2.6)–(2.7), we obtain the error
equations

(K−1(Πu − uh),v)Q = (Qhp− ph,∇ · v)

− (K−1u,v) + (K−1Πu,v)Q, v ∈ Vh,(3.16)

(∇ · (Πu − uh), w) = 0, w ∈ Wh.(3.17)

The last two terms in (3.16) can be manipulated as follows:

− (K−1u,v) + (K−1Πu,v)Q = −(K−1u,v − Π0v) − (K−1(u − Πu),Π0v)

− (K−1Πu,Π0v) + (K−1Πu,Π0v)Q + (K−1Πu,v − Π0v)Q.
(3.18)

For the first term on the right above we have

(K−1u,v − Π0v) = 0,(3.19)

which follows by taking v−Π0v as a test function in the variational formulation (2.6)
and using (2.27). Using (3.4) and (2.28), the second term on the right in (3.18) can
be bounded as

|(K−1(u − Πu),Π0v)| ≤ Ch‖K−1‖0,∞‖u‖1‖v‖.(3.20)

The third and fourth term on the right in (3.18) represent the quadrature error, which
can be bounded by Lemma 3.5 as

|σ(K−1Πu,Π0v)| ≤ Ch|||K−1|||1,∞‖u‖1‖v‖,(3.21)

using also (3.8) and (2.28). The last term on the right in (3.18) is bounded in
Lemma 3.3.

We take v = Πu − uh in the error equation (3.16) above. Note that

∇ · (Πu − uh) = 0,(3.22)

since, due to (2.19), we can choose w = JE∇ · (Πu − uh) ∈ Wh on any element E in
(3.17) and JE is uniformly positive. Combining (3.18)–(3.21) with (2.44) and (3.12),
we obtain

‖Πu − uh‖ ≤ Ch|||K−1|||1,∞‖u‖1.(3.23)

The theorem below now follows from (3.23), (3.22), (3.4), and (3.6).
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Theorem 3.4. If K−1 ∈ W 1,∞
Th

, then, for the velocity uh of the MFMFE method
(2.41)–(2.42), there exists a constant C independent of h such that

‖u − uh‖ ≤ Ch‖u‖1,(3.24)

‖∇ · (u − uh)‖ ≤ Ch‖∇ · u‖1.(3.25)

We now proceed with the analysis of the quadrature error.
Lemma 3.5. If K−1 ∈ W 1,∞

Th
, then there exists a constant C independent of h

such that for all q ∈ Vh and for all v ∈ V0
h,

|σ(K−1q,v)| ≤ C
∑
E∈Th

h‖K−1‖1,∞,E‖q‖1,E‖v‖E .(3.26)

Proof. We first consider the case of simplicial elements. We have on any element E

|σE(K−1q,v)| ≤ |σE((K−1 −K−1)q,v)| + |σE(K−1q,v)|,(3.27)

where K−1 is the mean value of K−1 on E. For the first term on the right we have

|σE((K−1 −K−1)q,v)| ≤ Ch|K−1|1,∞,E‖q‖E‖v‖E ,(3.28)

where we have used Taylor expansion and (2.45). Let q be the L2-projection of q
onto the space of constant vectors on E. For the second term on the right in (3.27),
using Lemma 2.1, we have that

|σE(K−1q,v)| = |σE(K−1(q − q),v)| ≤ Ch‖K−1‖0,∞,E‖q‖1,E‖v‖E ,(3.29)

using (3.3). Combining (3.27)–(3.29), we obtain

|σE(K−1q,v)| ≤ Ch‖K−1‖1,∞,E‖q‖1,E‖v‖E ,(3.30)

completing the proof of (3.26) for simplicial elements.
Next, consider the quadrature error on h2-parallelograms. We have

σE(K−1q,v) = σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1 −K−1)q̂, v̂) + σ̂Ê(K−1q̂, v̂),(3.31)

where K−1 is the mean value of K−1 on Ê. Using Taylor expansion, the first term on
the right above can be bounded as

|σ̂Ê((K−1 −K−1)q̂, v̂)| ≤ C|K−1|1,∞,Ê‖q̂‖Ê‖v̂‖Ê ≤ Ch‖K−1‖1,∞,E‖q‖E‖v‖E ,
(3.32)

where we used (3.11) and (2.43) for the last inequality. For the last term in (3.31)
we have that σ̂Ê(K−1q̂0, v̂) = 0 for any constant vector q̂0, since the trapezoidal
quadrature rule (·, ·)Q̂,Ê is exact for linear functions. Hence, the Bramble–Hilbert

lemma [13] implies

|σ̂Ê(K−1q̂, v̂)| ≤ C‖K−1‖0,∞,Ê |q̂|1,Ê‖v̂‖Ê .
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Using (3.7) and (2.32), we obtain

|σ̂Ê(K−1q̂, v̂)| ≤ Ch‖K−1‖0,∞,E‖q‖1,E‖v‖E .(3.33)

The above bound, together with (3.31)–(3.32), implies that

|σE(K−1q,v)| ≤ Ch‖K−1‖1,∞,E‖q‖1,E‖v‖E .

The proof is completed by summing over all elements E.

4. Error estimates for the pressure. In this section we use a standard inf-sup
argument to prove optimal convergence for the pressure. We also employ a duality
argument to establish superconvergence for the pressure at the element centers of
mass.

4.1. First-order convergence for the pressure. We start with an optimal
error bound for the pressure.

Theorem 4.1. If K−1 ∈ W 1,∞
Th

, then, for the pressure ph of the MFMFE method
(2.41)–(2.42), there exists a constant C independent of h such that

‖p− ph‖ ≤ Ch(‖u‖1 + ‖p‖1).

Proof. It is well known [27, 15, 32] that the RT0 spaces V0
h × W 0

h satisfy the
inf-sup condition

inf
0 �=w∈W 0

h

sup
0 �=v∈V0

h

(∇ · v, w)

‖v‖div‖w‖
≥ β,(4.1)

where β is a positive constant independent of h. Using (4.1) and (3.16), we obtain

‖Qhp− ph‖

≤ 1

β
sup

0 �=v∈V0
h

(∇ · v,Qhp− ph)

‖v‖div

=
1

β
sup

0 �=v∈V0
h

(K−1(Πu − uh),v)Q − (K−1(Πu − u),v) + σ(K−1Πu,v)

‖v‖div

≤ C

β
h|||K−1|||1,∞‖u‖1,

where we have used the Cauchy–Schwarz inequality, (3.23), and (3.26) in the last
inequality. The proof is completed by an application of the triangle inequality and
(3.3).

4.2. Second-order convergence for the pressure. We continue with the
superconvergence estimate. We first present a bound on the quadrature error that
will be used in the analysis.

Lemma 4.2. Let K−1 ∈ W 2,∞
Th

. On simplicial elements, for all v,q ∈ Vh, there
exists a positive constant C independent of h such that

|σ(K−1q,v)| ≤ C
∑
E∈Th

h2‖K−1‖2,∞,E‖q‖1,E‖v‖1,E .(4.2)
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On h2-parallelograms, for all q ∈ Vh, v ∈ V0
h, there exists a positive constant C

independent of h such that

|σ(K−1q,v)| ≤ C
∑
E∈Th

h2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E .(4.3)

Proof. We present first the proof for simplicial elements. For any element E,
using Lemma 2.1, we have

σE(K−1q,v) = σE((K−1 −K−1)(q − q̄),v) + σE((K−1 −K−1)q̄,v − v̄)

+ σE(K−1q̄, v̄) + σE(K−1(q − q̄),v − v̄),
(4.4)

where q̄ and v̄ are the L2(E)-orthogonal projections of q and v, respectively, onto
the space of constant vectors, and K−1 is the mean value of K−1 on E. Using (2.45),
the first, second, and fourth term on the right above are bounded by

Ch2‖K−1‖1,∞,E‖q‖1,E‖v‖1,E .(4.5)

For the third term on the right in (4.4) it is easy to check that the quadrature rule is
exact for linear tensors. An application of the Bramble–Hilbert lemma [13] gives

|σE(K−1q̄, v̄)| ≤ Ch2|K−1q̄|2,E‖v̄‖E ≤ Ch2|K−1|2,∞,E‖q‖E‖v‖E .(4.6)

A combination of (4.4)–(4.6) completes the proof for simplicial elements.
We proceed with the bound on the quadrature error in the case of h2-parallelograms.

We have

σE(K−1q,v) = σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1q̂)1, v̂1) + σ̂Ê((K−1q̂)2, v̂2).(4.7)

Let us consider the first term on the right. Since the quadrature rule is exact for
linear functions, the Peano kernel theorem [31, Theorem 5.2–3] implies

σ̂Ê((K−1q̂)1, v̂1) =

∫ 1

0

∫ 1

0

ϕ(x̂)
∂2

∂x̂2
((K−1q̂)1v̂1)(x̂, 0)dx̂ dŷ

+

∫ 1

0

∫ 1

0

ϕ(ŷ)
∂2

∂ŷ2
((K−1q̂)1v̂1)(0, ŷ) dx̂dŷ

+

∫ 1

0

∫ 1

0

ψ(x̂, ŷ)
∂2

∂x̂∂ŷ
((K−1q̂)1v̂1)(x̂, ŷ)dx̂ dŷ,

(4.8)

where ϕ(s) = s(s− 1)/2 and ψ(s, t) = (1− s)(1− t)− 1/4. Therefore, using that v̂ is
linear,

|σ̂Ê((K−1q̂)1, v̂1)| ≤ C((|K−1|1,∞,Ê‖q̂‖Ê + ‖K−1‖0,∞,Ê |q̂|1,Ê)|v̂|1,Ê
+ (|K−1|2,∞,Ê‖q̂‖Ê + |K−1|1,∞,Ê |q̂|1,Ê + ‖K−1‖0,∞,Ê |q̂|2,Ê)‖v̂‖Ê).

The term σ̂Ê((K−1q̂)2, v̂2) in (4.7) can be bounded similarly. Using (4.7), (2.32),
(3.11), and (3.7), we obtain

|σE(K−1q,v)| ≤ Ch2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E .

Summing over all elements completes the proof.
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We are now ready to establish superconvergence of the pressure at the cell centers.
Theorem 4.3. Assume that K ∈ W 1,∞

Th
and K−1 ∈ W 2,∞

Th
and the elliptic

regularity (4.11) below holds. Then, for the pressure ph of the MFMFE method (2.41)–
(2.42), there exists a constant C independent of h such that

‖Qhp− ph‖ ≤ Ch2(‖u‖1 + ‖∇ · u‖1) on simplices(4.9)

and

‖Qhp− ph‖ ≤ Ch2‖u‖2 on h2-parallelograms.(4.10)

Proof. The proof is based on a duality argument. Let φ be the solution of

−∇ ·K∇φ = −(Qhp− ph) in Ω,

φ = 0 on ΓD,

−K∇φ · n = 0 on ΓN .

We assume that this problem has H2-elliptic regularity:

‖φ‖2 ≤ C‖Qhp− ph‖0.(4.11)

Sufficient conditions for (4.11) can be found in [22, 26]. For example, (4.11) holds if
the components of K ∈ C0,1(Ω), ∂Ω is smooth enough, and either ΓD or ΓN is empty.

Let us consider first the case of simplicial elements. Here it is more convenient to
rewrite the error equation (3.16) as

(K−1(u − uh),v) = (Qhp− ph,∇ · v) − σ(K−1uh,v).(4.12)

Take v = ΠK∇φ ∈ Vh in (4.12) to get

‖Qhp− ph‖2
0 = (Qhp− ph,∇ · ΠK∇φ)

= (K−1(u − uh),ΠK∇φ) + σ(K−1uh,ΠK∇φ).(4.13)

For the first term on the right above we have

(K−1(u − uh),ΠK∇φ)

= (K−1(u − uh),ΠK∇φ−K∇φ) + (u − uh,∇φ)

= (K−1(u − uh),ΠK∇φ−K∇φ) − (∇ · (u − uh), φ−Qhφ)

≤ C(h‖u − uh‖|||K|||1,∞‖φ‖2 + h‖∇ · (u − uh)‖‖φ‖1)

≤ Ch2|||K|||1,∞(‖u‖1 + ‖∇ · u‖1)‖φ‖2,

(4.14)

where we have used (3.4) and (3.3) for the first inequality, and (3.24) and (3.25) for
the second inequality.

Using (4.2), we bound the second term on the right in (4.13) as

|σ(K−1uh,ΠK∇φ)|

≤ C|||K−1|||2,∞
∑
E∈Th

h2‖uh‖1,E‖ΠK∇φ‖1,E

≤ C|||K−1|||2,∞
∑
E∈Th

h2(‖uh − Πu‖1,E + ‖Πu‖1,E)‖K∇φ‖1,E

≤ C|||K−1|||2,∞
∑
E∈Th

h2(h−1‖uh − Πu‖E + ‖u‖1,E)‖K‖1,∞,E‖φ‖2,E

≤ Ch2|||K−1|||2,∞|||K|||1,∞‖u‖1‖φ‖2,

(4.15)
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where we have used (3.8), the inverse inequality (3.10), and (3.23). Now (4.9) follows
from (4.13)–(4.15) and (4.11).

For the analysis on h2-parallelograms we rewrite the error equation (3.16) in the
form

(K−1(Πu − uh),v)Q = (Qhp− ph,∇ · v) + (K−1(Πu − u),v) − σ(K−1Πu,v).

(4.16)

Take v = Π0K∇φ ∈ Vh in (4.16) to get

‖Qhp− ph‖2
0 = (Qhp− ph,∇ · Π0K∇φ)

= (K−1(Πu − uh),Π0K∇φ)Q − (K−1(Πu − u),Π0K∇φ)

+ σ(K−1Πu,Π0K∇φ).(4.17)

Using (3.4) and (3.9), the second term on the right above can be bounded as

|(K−1(Πu − u),Π0K∇φ)| ≤ Ch2‖K−1‖0,∞|||K|||1,∞‖u‖2‖φ‖2.(4.18)

For the last term on the right in (4.17), bounds (4.3), (3.8), and (3.9) imply that

σ(K−1Πu,Π0K∇φ) ≤ Ch2|||K−1|||2,∞|||K|||1,∞‖u‖2‖φ‖2.(4.19)

The first term on the right in (4.17) can be manipulated as follows:

(K−1(Πu − uh),Π0K∇φ)Q,E

= ((K−1 −K−1
0 )(Πu − uh),Π0K∇φ)Q,E + (K−1

0 (Πu − uh),Π0(K −K0)∇φ)Q,E

+ (K−1
0 (Πu − uh),Π0K0(∇φ−∇φ1))Q,E + (K−1

0 (Πu − uh),Π0K0∇φ1)Q,E ,

(4.20)

where K0 is the value of K at the center of E and φ1 is a linear approximation to φ
such that (see [13])

‖φ− φ1‖E ≤ Ch2‖φ‖2,E , ‖φ− φ1‖1,E ≤ Ch‖φ‖2,E .(4.21)

Using (3.9), the first term on the right in (4.20) can be bounded as

|((K−1 −K−1
0 )(Πu − uh),Π0K∇φ)Q,E | ≤ Ch‖K−1‖1,∞,E‖K‖1,∞,E‖Πu − uh‖E‖φ‖2,E .

(4.22)

For the second and third terms on the right in (4.20) we use that for any ψ ∈ (H1(E))2

‖Π0ψ‖E ≤ ‖Π0ψ − ψ‖E + ‖ψ‖E ≤ C(h‖ψ‖1,E + ‖ψ‖E)

to obtain

|(K−1
0 (Πu − uh),Π0(K −K0)∇φ)Q,E | ≤ Ch‖K−1‖0,∞,E‖K‖1,∞,E‖Πu − uh‖E‖φ‖2,E

(4.23)

and

|(K−1
0 (Πu − uh),Π0K0(∇φ−∇φ1))Q,E |
≤ Ch‖K−1‖0,∞,E‖K‖0,∞,E‖Πu − uh‖E‖φ‖2,E ,

(4.24)
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having also used (4.21) in the last inequality. For the last term in (4.20) we have

(K−1
0 (Πu − uh),Π0K0∇φ1)Q,E = (Πu − uh,∇φ1)Q,E = (Π̂û − ûh, ∇̂φ̂1)Q̂,Ê ,

(4.25)

using ∇φ1 = (DF−1)T ∇̂φ̂1 in the second equality. Note that φ̂(x̂, ŷ) is a bilinear

function. Let φ̃1 be the linear part of φ̂1. We have

(Π̂û − ûh, ∇̂φ̂1)Q̂,Ê = (Π̂û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê + (Π̂û − ûh, ∇̂φ̃1)Q̂,Ê .(4.26)

Since (see (2.8))

∇̂(φ̂1 − φ̃1) = [(r34 − r21) · ∇φ1]

(
ŷ
x̂

)
,

(3.1) implies

|(Π̂û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê | ≤ Ch2‖Π̂û − ûh‖Ê‖∇φ1‖Ê
≤ Ch‖Πu − uh‖E‖∇φ1‖E ≤ Ch‖Πu − uh‖E‖φ‖2,E .

(4.27)

It remains to bound the last term in (4.26). Using (2.40) and the fact that the
trapezoidal rule is exact for linear functions, we have

(Π̂û − ûh, ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂û − ûh), ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂û − ûh), ∇̂φ̃1)Ê

= (Π̂0(Π̂û − ûh), ∇̂(φ̃1 − φ̂1))Ê + (Π̂0(Π̂û − ûh), ∇̂φ̂1)Ê .
(4.28)

The first term on the right in (4.28) is bounded similarly to (4.27):

|(Π̂0(Π̂û − ûh), ∇̂(φ̃1 − φ̂1))Ê | ≤ Ch‖Πu − uh‖E‖φ‖2,E .(4.29)

For the last term in (4.28) we have

(Π̂0(Π̂û − ûh), ∇̂φ̂1)Ê = (Π0(Πu − uh),∇φ1)E .(4.30)

Combining (4.20)–(4.30) and summing over all elements, we obtain

(K−1(Πu − uh),Π0K∇φ)Q = R +
∑
E∈Th

(Π0(Πu − uh),∇φ1)E ,(4.31)

where

|R| ≤ Ch2|||K−1|||1,∞|||K|||1,∞‖u‖1‖φ‖2,(4.32)

having also used (3.23). For the last term in (4.31), using the regularity of φ, (3.22),
(2.27), and that (Πu − uh) · n = 0 on ΓN and φ = 0 on ΓD, we obtain∣∣∣∣∣ ∑

E∈Th

(Π0(Πu − uh),∇φ1)E

∣∣∣∣∣ =

∣∣∣∣∣ ∑
E∈Th

(Π0(Πu − uh),∇(φ1 − φ))E

∣∣∣∣∣
≤ C

∑
E∈Th

‖Πu − uh‖E‖φ1 − φ‖1,E

≤ Ch2|||K−1|||1,∞‖u‖1‖φ‖2,

(4.33)
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Fig. 5.1. Computed solution on the second level of refinement in Example 1.

where we have used (3.23) and (4.21). The proof of (4.10) is completed by combining
(4.17)–(4.19) and (4.31)–(4.33), and using (4.11).

Remark 4.1. Since Qhp is O(h2)-close to p at the center of mass of each element,
the above theorem implies that

|||p− ph||| ≤ Ch2,

where ||| · ||| =
(∑

E |E|(p(mE) − ph)2
)1/2

and mE is the center of mass of E.

5. Numerical experiments. In this section we present several numerical re-
sults on quadrilateral grids that confirm the theoretical results from the previous
sections.

In the first example we test the method on a sequence of meshes obtained by a
uniform refinement of an initial rough quadrilateral mesh. The boundary conditions
are of Dirichlet type. The tensor coefficient and the true solution are

K =

(
5 1
1 2

)
, p(x, y) = (1 − x)4 + (1 − y)3(1 − x) + sin(1 − y) cos(1 − x).

The initial 8 × 8 mesh is generated from a square mesh by randomly perturbing the
location of each vertex within a disk centered at the vertex with a radius h

√
2/3. Due

to (2.31), the nonsmoothness of the grid translates into a discontinuous computational
permeability K. The computed solution on the second level of refinement is shown
in Figure 5.1. The colors represent the pressure values and the arrows represent the
velocity vectors. The numerical errors and asymptotic convergence rates are obtained
on a sequence of six mesh refinements and are reported in Table 5.1. Here, for scalar
functions |||w||| is the discrete L2-norm defined in Remark 4.1 and for vectors |||v|||
denotes a discrete vector L2-norm that involves only the normal vector components
at the midpoints of the edges. We note that the obtained convergence rates of O(h2)
for |||p−ph||| and O(h) for ‖u−uh‖ confirm the theoretical results. The O(h2) accuracy
for |||u− uh||| and |||∇ · (u− uh)||| indicates superconvergence for the normal velocities
at the midpoints of the edges and for the divergence at the cell-centers.

In the second example we consider an irregularly shaped domain consisting of
two subdomains; see Figure 5.2. The grid is nonsmooth across the interface leading
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Table 5.1

Discretization errors and convergence rates for Example 1.

1/h |||p− ph||| ‖u − uh‖ |||u − uh||| |||∇ · (u − uh)|||
8 0.123E-1 0.882E-1 0.281E-1 0.112E-1
16 0.372E-2 0.542E-1 0.129E-1 0.287E-2
32 0.103E-2 0.292E-1 0.411E-2 0.722E-3
64 0.270E-3 0.151E-1 0.114E-2 0.181E-3
128 0.692E-4 0.772E-2 0.307E-3 0.455E-4
256 0.175E-4 0.390E-2 0.817E-4 0.127E-4

Rate 1.98 0.99 1.91 1.84

Fig. 5.2. Computed solution on the second level of refinement in Example 2.

to a discontinuous computational permeability K. The permeability tensor and true
solution are

K =

(
4 + (x + 2)2 + y2 1 + sin(xy)

1 + sin(xy) 2

)
, p(x, y) = (sin(3πx))2(sin(3πy))2.

The boundary conditions are of Neumann type. The computed solution on the second
refinement level is shown in Figure 5.2. The numerical errors and asymptotic con-
vergence rates are presented in Table 5.2. As in the previous example, the numerical
convergence rates confirm the theory.

6. Conclusions. We have presented a BDM1-based MFE method with quadra-
ture that reduces to CCFD for the pressure on simplicial and quadrilateral grids. The
resulting algebraic system is symmetric and positive definite. The method is closely
related to the MPFA method and it performs well on irregular grids and rough coef-
ficients. The analysis is based on combining MFE techniques with quadrature error
estimates. First order convergence is obtained for the pressure and the velocity in
their natural norms. Second order convergence is obtained for the pressure and the
element centers of mass. Computational results also indicate superconvergence for the
velocity at the midpoints of the edges on h2-parallelogram grids. We have also devel-
oped and analyzed the method on hexahedral elements that are O(h2)-perturbations
of parallelepipeds. These results will be presented in a forthcoming paper.

Remark 6.1. We recently learned of the concurrent and related work of Klausen
and Winther [25]. They formulate the MPFA method from [1] as a MFE method
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Table 5.2

Discretization errors and convergence rates for Example 2.

1/h |||p− ph||| ‖u − uh‖ |||u − uh||| |||∇ · (u − uh)|||
8 0.177E+2 0.492E0 0.512E0 0.764E-2
16 0.151E0 0.179E0 0.138E0 0.647E-4
32 0.653E-1 0.919E-1 0.513E-1 0.279E-4
64 0.185E-1 0.453E-1 0.132E-1 0.790E-5
128 0.460E-2 0.226E-1 0.334E-2 0.196E-5
256 0.116E-4 0.113E-1 0.838E-3 0.494E-6

Rate 1.99 0.99 1.99 1.99

using an enhanced Raviart–Thomas space and obtain convergence results on h2-
parallelogram grids.
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STABILIZED FEM-BEM COUPLING FOR HELMHOLTZ
TRANSMISSION PROBLEMS∗
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Abstract. We consider time-harmonic acoustic scattering at a nonsmooth penetrable object
and coupled boundary element finite element schemes for its numerical simulation. Straightforward
coupling approaches are haunted by instabilities at wave numbers related to interior resonances, the
so-called spurious resonances. A remedy is offered by adopting the idea underlying the widely used
combined field integral equations. We apply it in the form of modified trace operators. These will also
feature regularizing operators to offset the lack of compactness of the double-layer potential integral
operators on nonsmooth surfaces. Calderón projectors can be defined based on the modified trace
operators. Thus, Costabel’s approach to the symmetric coupling of domain variational formulations
and boundary integral equations carries over. The modified traces guarantee uniqueness of solu-
tions of the coupled problem, whereas regularization ensures coercivity. From this we immediately
concludeasymptotic quasi-optimality of a combined finite element and boundary element Galerkin
discretization for all frequencies.

Key words. acoustic scattering, boundary integral equations, combined field integral equations,
Galerkin discretization, finite elements, boundary elements

AMS subject classifications. 65N38, 65N12, 65R20, 65N30

DOI. 10.1137/050639958

1. Introduction. Let Ω− ⊂ R
3 denote volume occupied by an inhomogeneous

bounded object.1 Plane time harmonic sound waves described by a pressure amplitude
U i propagate in the exterior homogeneous air region Ω+ := R

3 \ Ω̄−, hit the object,
and get scattered.

As explained in [14, sect. 2.1], a suitably scaled pressure amplitude U of the
resulting sound field will satisfy the homogeneous Helmholtz equation

−ΔU − κ2n(x)U = 0 in Ω− ∪ Ω+,(1)

plus suitable radiation boundary conditions at ∞. The refractive index n belongs
to L∞ (

R
3
)
. It is allowed to vary spatially inside Ω−, but is equal to 1 in Ω+.

Furthermore, we assume the wave number κ to be positive and real.
The numerical simulation of this acoustic scattering problem is faced with the

unbounded domain Ω+. Many different strategies have been devised to cope with this
challenge: one could truncate Ω+ and use standard finite elements in conjunction with
absorbing boundary conditions [22]. An alternative is provided by infinite elements
in Ω+ [5, 3] or the method of fundamental solutions [20].

However, in this article we will restrict ourselves to another possibility, namely
boundary integral equation methods, which reduce the problem in Ω+ to equations
on the bounded surface Γ := ∂Ω−. Boundary integral equations come in different
varieties, among them direct and indirect methods [21, Ch. 8].

Useful integral equations remain elusive for boundary value problems with non-
constant coefficients. This is the case inside Ω− and, therefore, we are forced to use a
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2006; published electronically November 3, 2006.
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classical spatial discretization like the finite element method to discretize (1) in Ω−.
This entails linking the weak variational formulation of (1) with boundary integral
equations on Γ.

In short, coupled problems are derived by expressing the Dirichlet-to-Neumann
map of the exterior problem by means of boundary integral operators. This can
be done in many ways. Yet, in many cases, in particular with so-called indirect
formulations, the resulting operator lacks structural properties of the Dirichlet-to-
Neumann map. This is blatantly obvious in the case of second order elliptic problems
[25]. If structure is not preserved, theoretical analysis becomes much more difficult,
and the linear systems of equations obtained through Galerkin boundary element
discretization are adversely affected.

For second order elliptic problems, Costabel [15] discovered that the so-called
direct boundary integral equations provide a remedy. The key concept is that of
the Calderón projector acting on the Cauchy data of the problem. For details and
theoretical examinations we refer to [12, sect. 4.5] and [18]. In short, the Calderón
projector supplies two sets of boundary integral equations. Judiciously combining
them yields a version of the Dirichlet-to-Neumann map that perfectly lends itself to
a Galerkin discretization. The realization of Costabel’s idea is called the “symmetric
coupling approach” to marrying finite elements and boundary elements. It has been
applied to a wide range of transmission problems; see, among many others, [11, 23,
27, 24].

Unfortunately, for the acoustic scattering problem the direct symmetric coupling
approach invariably leads to equations vulnerable to spurious resonances [19, 31]: if κ2

agrees with a Dirichlet or Neumann eigenvalue (resonant frequency) of the Laplacian
in Ω−, then the integral equations may fail to possess a unique solution, though the
overall scattering problem remains well posed.

One way to deal with spurious resonances is the use of integral operators with
modified kernels [35, 26]. Here we will restrict our attention to another remedy, namely
the widely used combined field integral equations (CFIE). They owe their name to the
typical complex linear combination of different boundary integral operators on the left-
hand side of the final boundary integral equation. In the case of indirect schemes this
trick has been discovered independently by Brakhage and Werner [6], Leis [28], and
Panich [30] in 1965. In 1971 Burton and Miller used the same idea to obtain direct
boundary integral equations without spurious resonances [10]. Meanwhile, CFIEs
have become the foundation for numerous numerical methods in direct and inverse
acoustic and electromagnetic scattering [14, Ch. 3 & 6].

We aim to pursue symmetric coupling based on CFIE. To do so we first have
to identify related Calderón projectors. Second, we have to overcome a potential
lack of coercivity of the coupled system due to the fact that the double-layer integral
operators fail to be compact on nonsmooth surfaces. Both problems are tackled
by introducing modified trace operators. These are motivated by the regularization
approach to CFIE developed in [7, 8, 9] based on ideas by Panich [30]. We remark that
introducing additional operators into boundary integral equations in order to improve
their properties has also been successful in the case of high frequency scattering [1, 2].

Throughout this paper, we adopt a theoretical focus stressing complete and rig-
orous mathematical analysis of the resulting variational formulations. Assessing the
practical relevance of the new approach is difficult, because gains from unconditional
stability have to be weighed against increased computational effort.
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2. The transmission problem. We depart from a formulation of the scatter-
ing problem as a transmission problem. To do so we have to rely on the following
continuous and surjective trace mappings [16, Lemma 3.2]:

Dirichlet trace γ±
0 : H1

loc

(
Ω±) → H

1
2 (Γ) ,

Neumann trace γ±
1 : Hloc

(
Δ,Ω±) → H− 1

2 (Γ) .

We refer to [29, Ch. 3] for the definitions of function spaces H1
loc (Ω±), Hloc (Δ,Ω±),

H
1
2 (Γ), and H− 1

2 (Γ). The trace operators generalize the following pointwise restric-

tions of smooth functions V ∈ C∞
(
Ω±

)
:

(γ±
0 V )(x) := V (x) and (γ±

1 V )(x) := gradV (x) · n(x), x ∈ Γ.

Then the mathematical model for the acoustic scattering problem boils down to
the following transmission problem for the Helmholtz equation; see [32, sect. 2.9]:

−ΔU − κ2n(x)U = f(x) in Ω−,

γ+
0 U s − γ−

0 U = g0 on Γ,

−ΔU s − κ2U s = 0 in Ω+,

γ+
1 U s − γ−

1 U = g1 on Γ,

∂U s

∂r
− iκU s = o(r−1) uniformly for r := |x| → ∞,

(2)

with the refractive index n ∈ L∞ (Ω−), the source term f ∈ H−1 (Ω−), and the wave
number κ > 0. In the case of excitation by an incident field U i the generic jump data
g0 ∈ H

1
2 (Γ) and g1 ∈ H− 1

2 (Γ) evaluate to the Dirichlet and Neumann data of U i on
the boundary Γ:

g0 := −γ+
0 U i, g1 := −γ+

1 U i.

It is known that the transmission problem (2) has a unique solution u ∈ Hloc

(
Δ,R3

)
[32, sect. 2.10].

Remark 2.1. Please note that inside Ω− the field U in (2) refers to the total
field, whereas in Ω+ we write U s for the scattered field. There the total field can be
recovered through U = U s + U i.

3. Potentials and boundary integral operators. In this section we define
relevant boundary integral operators and review some of their properties. Only
sketches of proofs will be given and the reader is referred to [32, 29, 16] for details.
To begin with, let us fix some notations and notions: jumps of traces across Γ will be
designated by

[γ0V ]Γ := γ+
0 V − γ−

0 V, [γ1V ]Γ := γ+
1 V − γ−

1 V,

and averages across Γ will be denoted by

{γ0V }Γ := 1
2

(
γ+
0 V + γ−

0 V
)
, {γ1V }Γ := 1

2

(
γ+
1 V + γ−

1 V
)
.

For a fixed wave number κ > 0 a distribution U on R
3 is called a radiating Helmholtz

solution if

ΔU + κ2U = 0 in Ω− ∪ Ω+, lim
r→∞

r

(
∂U

∂r
− iκU

)
= 0,
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where the limit is assumed to hold uniformly in all directions. Based on the Helmholtz
kernel

Gκ (z) :=
1

4π

exp (iκz)

z
(3)

we can state the transmission formula for radiating Helmholtz solutions U [32, Thm.
3.1.6] as

U = −Ψκ
SL ([γ1U ]Γ) + Ψκ

DL ([γ0U ]Γ) ,(4)

with the potentials

single-layer potential Ψκ
SL (ϑ) (x) :=

∫
Γ

Gκ (|x − y|)ϑ (y) dS(y),

double-layer potential Ψκ
DL (v) (x) :=

∫
Γ

∂Gκ (|x − y|)
∂n (y)

v (y) dS(y).

The potentials provide radiating Helmholtz solutions and continuous mappings [32,
Thm. 3.1.16]

Ψκ
SL : H− 1

2 (Γ) → H1
loc

(
R

3
)
∩Hloc

(
Δ,Ω− ∪ Ω+

)
,

Ψκ
DL : H

1
2 (Γ) → Hloc

(
Δ,Ω− ∪ Ω+

)
.

Applying the trace mappings yields the following four continuous boundary integral
operators:

Vκ : Hs− 1
2 (Γ)→ Hs+ 1

2 (Γ) , Vκ := {γ0Ψ
κ
SL}Γ ,

Kκ : Hs+ 1
2 (Γ)→ Hs+ 1

2 (Γ) , Kκ := {γ0Ψ
κ
DL}Γ ,

K′
κ : Hs− 1

2 (Γ)→ Hs− 1
2 (Γ) , K′

κ := {γ1Ψ
κ
SL}Γ ,

Wκ : Hs+ 1
2 (Γ)→ Hs− 1

2 (Γ) , Wκ := −{γ1Ψ
κ
DL}Γ ,

for a scale of Sobolev spaces with |s| < 1
2 ; see [16, Thm. 1]. From the jump relations

[32, Thm. 3.3.1]

[γ0Ψ
κ
SL (ϑ)]Γ = 0, [γ1Ψ

κ
SL (ϑ)]Γ = −ϑ ∀ϑ ∈ H− 1

2 (Γ) ,

[γ0Ψ
κ
DL (ϕ)]Γ = ϕ, [γ1Ψ

κ
DL (ϕ)]Γ = 0 ∀ϕ ∈ H

1
2 (Γ) ,

(5)

we can directly deduce the following four identities:

γ±
0 Ψκ

SL = Vκ, γ±
1 Ψκ

SL = Kκ ± 1
2 Id,

γ±
0 Ψκ

DL = K′
κ ∓ 1

2 Id, γ±
1 Ψκ

DL = −Wκ.
(6)

In what follows (·, ·)Γ will stand for the L2 (Γ)-inner product

(ϑ, ϕ)Γ :=

∫
Γ

ϑϕ dS, ϑ, ϕ ∈ L2 (Γ) ,

which can be extended to a duality pairing on H− 1
2 (Γ)×H

1
2 (Γ). Adjoints of operators

with respect to (·, ·)Γ will be tagged by ∗.
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Crucial for any variational formulation based on boundary integral operators will
be the following three lemmata; see [32, Lemma 3.9.8], [16, Thm. 2].

Lemma 3.1. The following operators are compact:

Vκ − V0 : H− 1
2 (Γ) → H

1
2 (Γ) ,

Kκ − K0 : H
1
2 (Γ) → H

1
2 (Γ) ,

K′
κ − K′

0 : H− 1
2 (Γ) → H

1
2 (Γ) ,

Wκ − W0 : H
1
2 (Γ) → H− 1

2 (Γ) .

The proof relies on the fact that both Vκ−V0 and Kκ−K0 turn out to be integral
operators with continuous and bounded kernels, which ensures that they map into
H1 (Γ), which is compactly embedded in H

1
2 (Γ). Details can be found in [8, sect. 2].

This result combined with the ellipticity of both V0 and W0 in H− 1
2 (Γ) and H

1
2 (Γ),

respectively, yields the next lemma.
Lemma 3.2. The operators Vκ and Wκ satisfy a generalized G̊arding inequality

in the sense that there exist a constant γ > 0 and compact operators

TV : H− 1
2 (Γ) → H

1
2 (Γ) , TW : H

1
2 (Γ) → H− 1

2 (Γ)

such that

Re {(ϑ, (Vκ + TV) (ϑ))Γ} ≥ γ ‖ϑ‖2

H− 1
2 (Γ)

,

Re {((Wκ + TW) (ϕ), ϕ)Γ} ≥ γ ‖ϕ‖2

H
1
2 (Γ)

holds true for all ϑ ∈ H− 1
2 (Γ) and ϕ ∈ H

1
2 (Γ).

Finally, K′
κ is the (·, ·)Γ-adjoint of Kκ up to a compact perturbation.

Lemma 3.3. There exists a compact operator TK : H− 1
2 (Γ) → H− 1

2 (Γ) such that

(K∗
κ (ϑ), ϕ)Γ = ((K′

κ + TK) (ϑ), ϕ)Γ

holds true for all ϑ ∈ H− 1
2 (Γ) and ϕ ∈ H

1
2 (Γ), where K∗

κ denotes the L2 (Γ)-adjoint
of Kκ.

Proof. Following [32, sect. 3.1] and [16], we recall the representations

Kκ = {γ0}Γ ◦ Nκ ◦ γ1
∗, K′

κ = {γ1}Γ ◦ Nκ ◦ γ0
∗,

where Nκ : H−1
comp

(
R

3
)
→ H1

loc

(
R

3
)

is the Newton potential for the Helmholtz kernel.

Kκ
∗ − K′

κ = {γ1}Γ ◦ (Nκ −Nκ
∗) ◦ γ0

∗.

Observe that

(Nκ −Nκ
∗) (V ) (x) =

i

2π

∫
R3

sin(κ|x − y|)
|x − y| V (y) dy

is an integral operator with analytic kernel, which maps continuously H−1
comp

(
R

3
)
�→

Hs
loc(R

3) for any s ∈ R. Thus, K∗
κ − K′

κ : H− 1
2 (Γ) �→ H1 (Γ) is continuous and the

compact embedding H1 (Γ) ↪→ H− 1
2 (Γ) finishes the proof.
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4. Calderón projectors. A crucial tool for the coupling of the variational equa-
tions on Ω− and boundary integral equations on Γ are the two Calderón projectors
[32, sect. 3.6]

P± :=

[
1
2 Id ± Kκ ∓Vκ

∓Wκ
1
2 Id ∓ K′

κ

]
: H

1
2 (Γ) ×H− 1

2 (Γ) �→ H
1
2 (Γ) ×H− 1

2 (Γ) .

They arise from applying the trace operators γ±
0 and γ±

1 to (4) and using (6). The
operators P+ and P− obviously satisfy the identity

P+ + P− = Id.(7)

The Calderón projectors can be used to characterize pairs of functions in H
1
2 (Γ) ×

H− 1
2 (Γ) that are eligible as traces of Helmholtz solutions; see [36].

Theorem 4.1. If and only if (ϕ, ϑ) ∈ H
1
2 (Γ) ×H− 1

2 (Γ) belongs to the range of
P±, there is a Helmholtz solution U such that ϕ = γ±

0 U and ϑ = γ±
1 U .

The theorem paves the way for establishing expressions for the exterior Dirichlet-
to-Neumann map for the Helmholtz problem in Ω+. This is the operator DtN+

κ :

H
1
2 (Γ) �→ H− 1

2 (Γ) returning the Neumann traces of an exterior Helmholtz solution
matching prescribed Dirichlet boundary conditions on Γ. Three different formulas can
instantly be obtained from (4.1), at least formally, because the inverses of operators
might not exist:

DtN+
κ := Vκ

−1 ◦
(
Kκ − 1

2 Id
)
,(8)

DtN+
κ := −

(
1
2 Id + K′

κ

)−1 ◦ Wκ,(9)

DtN+
κ := −Wκ +

(
1
2 Id − K′

κ

)
◦ Vκ

−1 ◦
(
Kκ − 1

2 Id
)
.(10)

Only the third formula reflects the essential symmetry of the boundary value problem
in the case κ = 0. It will be the starting point for symmetric coupling.

Remark 4.2. If the incident wave U i can be extended to an interior Helmholtz
solution, which is evidently the case, when U i is a plane wave or generated by a sound
source compactly supported in Ω+, then, by (4) and (5), its traces on Γ will fulfill[

γ0U
i

γ1U
i

]
= P−

[
γ0U

i

γ0U
i

]
⇔ P+

[
γ0U

i

γ1U
i

]
= 0.(11)

For the same reasons, the scattered field U s satisfies[
γ+
0 U s

γ+
1 U s

]
= P+

[
γ+
0 U s

γ+
1 U s

]
.(12)

Since the total field in Ω+ is given by U = U s + U i, we can eliminate U s from (11)
and (12) and end up with[

γ+
0 U

γ+
1 U

]
= P+

[
γ+
0 U

γ+
1 U

]
−
[

g0

g1

]
.(13)

As above, Dirichlet-to-Neumann maps for the total field can be constructed from this
relationship.
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5. Classical symmetric coupling. For the sake of completeness we will review
the classical approach to the coupling of boundary integral equations and variational
formulation in Ω− due to Costabel [15]. First, integration by parts shows that a
solution U of problem (2) will fulfill

a (U, V ) −
(
γ−
1 U, γ−

0 V
)
Γ

= f (v) ∀v ∈ H1
(
Ω−) ,(14)

where we have used the abbreviations

a (U, V ) :=

∫
Ω−

gradU · gradV − κ2n(x)U V dx, U, V ∈ H1
(
Ω−) ,

f (V ) :=

∫
Ω−

f V dx, V ∈ H1
(
Ω−) .

Lemma 5.1. The sesquilinear form a satisfies a generalized G̊arding inequality in
the sense that there exists a constant γ > 0 and a compact sesquilinear form

k : H1
(
Ω−)×H1

(
Ω−) → C

such that

Re {a (U,U) + k (U,U)} ≥ γ ‖U‖2
H1(Ω−)

holds true for all u ∈ H1 (Ω−).
Proof. The lemma is a straightforward consequence of the compact embedding

H1 (Ω−) ↪→ L2 (Ω−).
The variational problem associated with the classical symmetric coupling ap-

proach emerges by employing the transmission conditions of (2) and using the Dirichlet-
to-Neumann map (10) to express γ−

1 U in (14). In order to avoid the operator products
occurring in (10) we also introduce γ+

1 U s as the new variable,

ϑ :=
(
Vκ

−1 ◦
(
Kκ − 1

2Id
)) (

γ−
0 U + g0

)
∈ H− 1

2 (Γ) .

Thus, we end up with: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−),

ϕ ∈ H− 1
2 (Γ) there holds

a (U, V ) +
(
Wκ

(
γ−
0 U

)
, γ−

0 V
)
Γ
−
((

1
2 Id − K′

κ

)
(ϑ), γ−

0 V
)
Γ

= f̃(V ),(
ϕ,

(
1
2 Id − Kκ

) (
γ−
0 U

))
Γ

+ (ϕ,Vκ (ϑ))Γ = g̃(ϕ),
(15)

where

f̃(V ) := f (V ) −
(
g1, γ

−
0 V

)
Γ
−

(
Wκ (g0), γ

−
0 V

)
Γ
,

g̃(ϕ) :=
(
ϕ,

(
Kκ − 1

2 Id
)
(g0)

)
Γ
.

Using the lemmata of the previous section it is not difficult to verify that the bilinear
form associated with (15) satisfies a G̊arding inequality. Unfortunately, this is no
safeguard against spurious resonances.

Assume the resonance case, that is, κ2, is a Dirichlet eigenvalue of −Δ in Ω−.
Then we can find U ∈ H1 (Ω−) \ {0} such that

ΔU + κ2U = 0 in Ω− and U = 0 on Γ.
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Since γ−
0 U = 0, by Theorem 4.1 we have that[

0
γ−
1 U

]
= P−

[
0

γ−
1 U

]
=

[
Vκ

(
γ−
1 U

)(
1
2 Id + K′

κ

) (
γ−
1 U

) ]
,

which means that (0, γ−
1 U) provides a solution of (15) in the case f̃ = g̃ = 0.

Even in the resonance case, the right-hand side of (15) will be consistent and
the variational problem still has solutions (U, ϑ), whose first component will still
be unique. Alas, this is little comfort as far as numerical solution procedures are
concerned: first, inevitable perturbations introduced by discretization will destroy the
consistency of the right-hand side. Second, whenever κ2 is merely close to an interior
resonant frequency, the resulting linear systems of equations may not be useless, but
will be extremely ill-conditioned; see the profound analysis of the impact of spurious
resonances in the case of electromagnetic scattering given in [13].

So, from a numerical point of view suppressing spurious resonances is essential
for the efficacy of methods based on boundary integral equations.

Remark 5.2. Under the assumptions made in Remark 4.2 we may use a sym-
metric Dirichlet-to-Neumann map derived from (13). This will lead to a coupled

variational problem of the form (15) with much simpler right-hand sides f̃(V ) =
f (V ) −

(
g1, γ

−
0 V

)
Γ

and g̃(ϕ) = − (ϕ, g0)Γ.

6. Transformed traces. As pointed out at the end of the previous section, the
existence of spurious resonances is directly linked to the fact that for certain κ there are
nontrivial interior Helmholtz solutions U that satisfy γ−

0 U = 0. We know that there
are Robin-type (mixed) boundary conditions that ensure the unique solvability of the
corresponding boundary value problem for −ΔU − κ2U = 0 in Ω−. Note that we can
rely on two Robin-type boundary operators to state the transmission conditions of (2)
as long as we can recover from them the conventional Dirichlet and Neumann trace.
In fact, this idea can serve as the starting point for the derivation of all CFIEs. Here,
it motivates the introduction of the following generic trace transformation operator:

T :=

[
A B
C D

]
: H

1
2 (Γ) ×H− 1

2 (Γ) → H
1
2 (Γ) ×H− 1

2 (Γ) .(16)

We demand that the interior homogeneous “Dirichlet problem” for −ΔU − κ2U = 0
and the modified traces have a unique solution for every κ. In light of Theorem 4.1
this amounts to the following assumption.

Assumption 6.1. The trace transformation operator T satisfies

Range (T ◦ P−) ∩
(
{0} ×H− 1

2 (Γ)
)

= {0} .

Then one can use T , build associated Calderón projectors for the modified traces,
derive symmetrically coupled variational problems, and check their properties. Here,
we would like to skip this tedious process of creative discovery and present the final
finding on what is required for T .

Assumption 6.2. The blocks of the transformation operator T from (16) are
assumed to possess the following properties:

1. T : H− 1
2 (Γ) ×H

1
2 (Γ) → H− 1

2 (Γ) ×H
1
2 (Γ) is bijective,

2. A : H
1
2 (Γ) → H

1
2 (Γ) is bounded and bijective,

3. B : H− 1
2 (Γ) → H

1
2 (Γ) is compact,
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4. C : H
1
2 (Γ) → H− 1

2 (Γ) is compact,

5. D : H− 1
2 (Γ) → H− 1

2 (Γ) is bounded and bijective.
The first requirement enables us to retrieve the conventional Dirichlet and Neu-

mann trace from their transformed counterparts. This is essential because it is these
traces that will invariably occur in (14) so that we have to resort to them in one
way or another when pursuing the coupling of (14) with boundary integral equations.
Switching back and forth between conventional and transformed traces employs the
following splitting of the trace transformation operator:

T = R + S, R :=

[
A 0
0 D

]
, S :=

[
0 B
C 0

]
.(17)

Based on the splitting above, we define the following generalized Calderón projectors:

P± := R−1 ◦ (T ◦ P± − S) .(18)

Note that they are meant to act on conventional traces. Let us make the transformed
exterior Calderón projector more explicit: an elementary computation yields

P+ =

[
A B

C D

]
,(19)

where the entries of the operator matrix are given by

A := 1
2 Id + Kκ − A−1 ◦ B ◦ Wκ,(20)

B := −A−1 ◦ B ◦
(

1
2 Id + K′

κ

)
− Vκ,(21)

C := D−1 ◦ C ◦
(
Kκ − 1

2 Id
)
− Wκ,(22)

D := 1
2 Id − K′

κ − D−1 ◦ C ◦ Vκ.(23)

An analogue of Theorem 4.1 still holds for the transformed Calderón projectors.
Lemma 6.3. If and only if U is an exterior/interior radiating Helmholtz solution

we have

P±

[
γ±
0 U

γ±
1 U

]
=

[
γ±
0 U

γ±
1 U

]
.

Proof. As T is one-to-one, we immediately conclude from Theorem 4.1 that U is
an exterior/interior radiating Helmholtz solution if and only if

P±

[
γ±
0 U

γ±
1 U

]
=

[
γ±
0 U

γ±
1 U

]
�

(T ◦ P±)

[
γ±
0 U

γ±
1 U

]
= T

[
γ±
0 U

γ±
1 U

]
= (R + S)

[
γ±
0 U

γ±
1 U

]
�[

γ±
0 U

γ±
1 U

]
= R−1 ◦ (T ◦ P± − S)

[
γ±
0 U

γ±
1 U

]
.

(24)

Now, the same formal manipulations as in section 4 yield the following operator
expression for the Dirichlet-to-Neumann map:

DtN+
κ := C + D ◦ B

−1 ◦ (Id − A) ,(25)
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which maps exterior Dirichlet traces of radiating Helmholtz solutions U to exterior
Neumann traces.

Remark 6.4. Again, if the incident wave U i can be extended to an interior
Helholtz solution, then we can apply the trace transformation operator to (13) and
end up with

T
[

γ+
0 U

γ+
1 U

]
= (T ◦ P+)

[
γ+
0 U

γ+
1 U

]
− T

[
g0

g1

]
.(26)

Using the operator splitting (17) and definition (18) of the generalized Calderón pro-
jector we can eliminate the trace transformation operator T from the left-hand side
of (26) and obtain [

γ+
0 U

γ+
1 U

]
= P+

[
γ+
0 U

γ+
1 U

]
−
(
R−1 ◦ T

) [ g0

g1

]
.(27)

As above this relationship can be used to construct new Dirchlet-to-Neumann maps
for the total field.

We end this section with an easily verifiable criterion telling us when Assump-
tion 6.1 is satisfied.

Lemma 6.5. If the following equivalence holds:

Im
{(

ϑ,
(
A−1 ◦ B

)
(ϑ)

)
Γ

}
= 0 ⇔ ϑ = 0,

then

Range (T ◦ P−) ∩
(
{0} ×H− 1

2 (Γ)
)

= {0} .

Proof. If ξ ∈ H− 1
2 (Γ) satisfies[

0
ξ

]
∈ Range (T ◦ P−) ,

then there exists ϑ ∈ H
1
2 (Γ) and ϕ ∈ H− 1

2 (Γ) such that[
0
ξ

]
= (T ◦ P−)

[
ϑ
ϕ

]
.

Taking the transformed interior traces of the function

U (x) := −Ψκ
DL (ϑ) (x) + Ψκ

SL (ϕ) (x) , x ∈ Ω−

gives us the following set of equations:

T
[

γ−
0 U

γ−
1 U

]
= (T ◦ P−)

[
ϑ
ϕ

]
=

[
0
ξ

]
.(28)

Thus U is a solution to the boundary value problem

ΔU + κ2U = 0 in Ω−,(29)

A
(
γ−
0 U

)
+ B

(
γ−
1 U

)
= 0 on Γ.(30)
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Recalling (14) and using that A is bijective, we obtain

a (U,U) −
(
γ−
1 U, γ−

0 U
)
Γ

= a (U,U) +
(
γ−
1 U, (A−1 ◦ B)

(
γ−
1 U

))
Γ

= 0.

Since, a (U,U) ∈ R, by taking the imaginary part we get

Im
{(

γ−
1 U,

(
A−1 ◦ B

) (
γ−
1 U

))
Γ

}
= 0.

Thus, the assumption of the lemma implies γ−
1 U = 0, and via (30) we conclude

γ−
0 U = 0. Eventually, (28) shows that ξ = 0.

7. Stabilized coupling. Parallel to the approach in section 5, we use (14) in
combination with the transformed Dirichlet-to-Neumann map (25) and introduce the
new variable

ϑ := −
(
B
−1 ◦ (Id − A)

) (
γ−
0 U + g0

)
∈ H− 1

2 (Γ) .(31)

If U solves the Helmholtz transmission problem (2), then γ−
0 U + g0 = γ+

0 U s, and we
learn from Lemma 6.3 and (19) that actually ϑ = −γ+

1 U s. As in the case of classical
coupling, ϑ will supply the exterior Neumann trace of the scattered field.

Thus we arrive at the following regularized variational formulation: find U ∈
H1 (Ω−), ϑ ∈ H− 1

2 (Γ) such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1
2 (Γ) there holds

a (U, V ) −
(
C
(
γ−
0 U

)
, γ−

0 V
)
Γ

+
(
D (ϑ), γ−

0 V
)
Γ

= f̂(V ),(
ϕ, (A − Id)

(
γ−
0 U

))
Γ
− (ϕ,B (ϑ))Γ = ĝ(ϕ),

(32)

where

f̂(V ) := f (V ) −
(
g1, γ

−
0 V

)
Γ

+
(
C (g0), γ

−
0 V

)
Γ
,(33)

ĝ(V ) := (ϕ, (Id − A) (g0))Γ .(34)

We first investigate the H1 (Ω−)×H− 1
2 (Γ)-coercivity of the sesquilinear form under-

lying (32). From Assumption 6.2 it is immediate that the operators A−1 ◦B, D−1 ◦ C
are compact. This plays a key role in the proofs of the following two lemmata.

Lemma 7.1. There exists a constant γ > 0 and compact operators

TB : H− 1
2 (Γ) → H

1
2 (Γ) , TC : H

1
2 (Γ) → H− 1

2 (Γ)

such that

− Re {(ϑ, (B + TB) (ϑ))Γ} ≥ γ ‖ϑ‖2

H− 1
2 (Γ)

,

− Re {(ϕ, (C + TC) (ϕ))Γ}≥ γ ‖ϕ‖2

H
1
2 (Γ)

for all ϑ ∈ H− 1
2 (Γ) and ϕ ∈ H

1
2 (Γ).

Proof. Using (21) and (22) a straightforward application of Lemma 3.2 yields

Re
{
− (ϑ,B (ϑ))Γ −

(
ϑ,

(
A−1 ◦ B ◦

(
1
2 Id + K′

κ

))
(ϑ)

)
Γ

+ (ϑ,TV (ϑ))Γ
}

= Re {(ϑ, (Vκ + TV) (ϑ))Γ} ≥ γ ‖ϑ‖2

H− 1
2 (Γ)

,

Re
{
− (C (ϕ), ϕ)Γ +

((
D−1 ◦ C ◦

(
Kκ − 1

2 Id
))

(ϕ), ϕ
)
Γ

+ (TW (ϕ), ϕ)Γ
}

= Re {((Wκ + TW) (ϕ), ϕ)Γ} ≥ γ ‖ϕ‖2

H
1
2 (Γ)
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for all ϑ ∈ H− 1
2 (Γ), ϕ ∈ H

1
2 (Γ).

Lemma 7.2. There exist compact operators

TA : H
1
2 (Γ) → H

1
2 (Γ) , TD : H− 1

2 (Γ) → H− 1
2 (Γ)

such that

(ϑ, (A − Id + TA) (ϕ))Γ + ((D + TD) (ϑ), ϕ)Γ = 0

for all ϑ ∈ H− 1
2 (Γ), ϕ ∈ H

1
2 (Γ).

Proof. We begin with an application of Lemma 3.3 and obtain((
1
2 Id − K′

κ

)
(ϑ), ϕ

)
Γ

+
(
ϑ,

(
Kκ − 1

2 Id
)
(ϕ)

)
Γ

=
((

1
2 Id − K∗

κ + TK

)
(ϑ), ϕ

)
Γ
−

((
1
2 Id − K∗

κ

)
(ϑ), ϕ

)
Γ

for all ϑ ∈ H− 1
2 (Γ), ϕ ∈ H

1
2 (Γ). Using this result we finally arrive at the following

equation:

(ϑ, (A − Id) (ϕ))Γ + (D (ϑ), ϕ)Γ
=

((
TK − D−1 ◦ C ◦ Kκ

)
(ϑ), ϕ

)
Γ
−

(
ϑ,

(
A−1 ◦ B ◦ Wκ

)
(ϕ)

)
Γ
,

which holds for arbitrary ϑ ∈ H− 1
2 (Γ), ϕ ∈ H

1
2 (Γ).

Summing up, from the previous lemmata and Lemma 5.1 we conclude that the
sesquilinear form of the regularized variational problem (32) satisfies a G̊arding in-

equality in H1 (Ω−)×H− 1
2 (Γ). It remains to establish uniqueness of solutions, which

amounts to confirming that (32) is really immune to spurious resonances.
Theorem 7.3. Solutions to the regularized variational problem (32) are unique.
Proof. In order to establish uniqueness of solutions of (32) we consider the case

f̂ = ĝ = 0: seek U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−),

ϕ ∈ H− 1
2 (Γ) there holds

a (U, V ) −
(
C
(
γ−
0 U

)
, γ−

0 V
)
Γ

+
(
D (ϑ), γ−

0 V
)
Γ

= 0,(35) (
ϕ, (A − Id)

(
γ−
0 U

))
Γ
− (ϕ,B (ϑ))Γ = 0.(36)

Using integration by parts, we obtain

ΔU + κ2n(x)U = 0 in Ω−.

As a consequence, a (U, V ) =
(
γ−
1 U, γ−

0 V
)
Γ
. Plugging this identity into (35) and

using the definition of P+ from (18), the identity[
γ−
0 U

γ−
1 U

]
= P+

[
γ−
0 U
−ϑ

]
(37)

is immediate. By the definition of P+ and (7)

P+ = R−1 ◦ (T ◦ P+ − S)

= R−1 ◦ (T ◦ (Id − P−) − S)

= R−1 ◦ (R + S − T ◦ P− − S)

= Id −R−1 ◦ T ◦ P−,
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and we infer

T ◦ P− = R ◦ (Id − P+).

Together with (37) this identity confirms

(T ◦ P−)

[
γ−
0 U
−ϑ

]
= −R

[
0

γ−
1 U + ϑ

]
∈
(
{0} ×H

1
2 (Γ)

)
,

and, by Assumption 6.1,

R
[

0
γ−
1 U + ϑ

]
= 0 ⇒ D(γ−

1 U + ϑ) = 0.

Next, from Assumption 6.2, 5., we conclude that

γ−
1 U = −ϑ.(38)

From this and (37) we directly obtain, as in (24) in the proof of Lemma 6.3,[
γ−
0 U

γ−
1 U

]
= P+

[
γ−
0 U
−ϑ

]
.

Hence, by virtue of Theorem 4.1, setting

W (x) :=

{
U (x) , x ∈ Ω−,

Ψκ
DL

(
γ−
0 U

)
(x) − Ψκ

SL (−ϑ) (x) , x ∈ Ω+

provides us with a solution to the Helmholtz transmission problem with zero right-
hand side, and uniqueness of solutions to the Helmholtz transmission problem ensures
U = 0 and, by (38), ϑ = 0. We have demonstrated that (35) and (36) only possess
the trivial solution and this finishes the proof.

Eventually, the existence of solutions to the variational problem (32) follows from
Theorem 7.3 and a Fredholm argument; see, for instance, [29, Thm. 2.33].

Finally, the arguments in the proof of Theorem 7.3 have also confirmed that we
really get information about the solution of the Helmholtz transmission problem from
(32).

Corollary 7.4. If (W,ϑ) ∈ H1 (Ω−) ×H− 1
2 (Γ) solves (32), then W = U and

ϑ = −γ+
1 U s with (U,U s) solving (2).

8. Regularization operators. In this section we present a rather simple spec-
imen of a trace transformation operator T , which satisfies both Assumptions 6.2 and
6.1. Its main ingredient is a regularizing operator

M : H− 1
2 (Γ) → H

1
2 (Γ) ,

which satisfies the following assumption.

Assumption 8.1. We suppose that

1. M : H− 1
2 (Γ) → H

1
2 (Γ) is compact, and

2. (ϑ,M (ϑ))Γ > 0 for all ϑ ∈ H− 1
2 (Γ) \ {0}.



2120 R. HIPTMAIR AND P. MEURY

Various examples of such operators are discussed in [9]. Below we will present a
concrete representative. Then, for η ∈ R \ {0} we choose the following trace transfor-
mation operators:

T1 :=

[
Id iηM
iη Id

]
, T2 :=

[
Id iηM
0 Id

]
.(39)

Now, we have to verify Assumptions 6.1 and 6.2. We note that Assumption 6.1 can
instantly be concluded from Assumption 8.1, 2., and Lemma 6.5. Items 2. through
5. of Assumption 6.2 are evidently appealing to 1. in Assumption 8.1. It is also
obvious that T2 is bijective with

T2
−1 =

[
Id −iηM
0 Id

]
.

It remains to be established whether T1 is bijective, too. The key will be the following
lemma.

Lemma 8.2. For ζ ∈ R+ or ζ ∈ iR the following operators are bijective:

Id + ζM : H− 1
2 (Γ) → H− 1

2 (Γ) , Id + ζM : H
1
2 (Γ) → H

1
2 (Γ) .

Proof. We verify that the operators have trivial kernel. In the first case we find
that (Id + ζM) (ϑ) = 0 implies

(ϑ, ϕ)Γ + ζ (M (ϑ), ϕ)Γ = 0,

which holds true for all ϕ ∈ H
1
2 (Γ). We choose ϕ := M (ϑ) and we obtain

(ϑ,M (ϑ))Γ + ζ ‖M (ϑ)‖2
L2(Γ) = 0.

For either ζ > 0 or ζ ∈ iR Assumption 8.1, 2., implies

(ϑ,M (ϑ))Γ = 0 ⇔ ϑ = 0.

Thanks to Assumption 8.1, 1., we have a Fredholm alternative argument [29, Thm.

2.27] at our disposal and conclude that the operator Id + ζM : H− 1
2 (Γ) → H− 1

2 (Γ)
is surjective from the fact that it is injective.

In the H
1
2 (Γ)-setting (Id + ζM) (ϕ) = 0 is equivalent to

(ϑ, ϕ)Γ + ζ (ϑ,M (ϕ))Γ = 0 ∀ϑ ∈ H− 1
2 (Γ) .

The same reasoning as above also settles this case.
The lemma tells us that the formal inverse

T1
−1 =

(
Id + η2M

)−1 ◦
[

Id −iηM
−iη Id

]
is well defined, which implies Assumption 6.2, 1., for T1.

A particularly convenient regularizing operator has been presented in [8]: there,
M : H−1 (Γ) → H1 (Γ) is implicitly defined by

(gradΓM (p),gradΓq)Γ + (M (p), q)Γ = (p, q)Γ(40)

for all q ∈ H1 (Γ). It is an easy exercise to verify Assumption 8.1 for this M; see [8,
sect. 4.2]. For later use we define the following sesquilinear form:

b (p, q) := (gradΓp,gradΓq)Γ + (p, q)Γ , p, q ∈ H1 (Γ) ,(41)

which allows us to restate definition (40) as

b (M (p), q) = (p, q)Γ ∀q ∈ H1 (Γ) .(42)



FEM-BEM COUPLING FOR HELMHOLTZ TRANSMISSION PROBLEMS 2121

9. Mixed regularized variational formulations. Using the two trace trans-
formation operators we obtain two variational formulations which are free from spuri-
ous resonances. However, from the point of view of boundary element discretization,
they are not yet useful, because they still contain products of (nonlocal) operators
that elude a straightforward Galerkin discretization. To get rid of the operator prod-
ucts, we rely on the usual trick and introduce extra unknown functions. We discuss
the resulting variational problems for the trace transformation operators T1 and T2

from (39) and M given by (40).

Case T = T1: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−),

ϕ ∈ H− 1
2 (Γ)

a (U, V ) −
((
iη

(
Kκ − 1

2 Id
)
− Wκ

) (
γ−
0 U

)
, γ−

0 V
)
Γ

+
((

1
2 Id − K′

κ − iηVκ

)
(ϑ), γ−

0 V
)
Γ

= f1 (V ) ,(
ϕ,

(
iηM ◦

(
1
2 Id + K′

κ

)
+ Vκ

)
(ϑ)

)
Γ

+
(
ϕ,

(
Kκ − 1

2 Id − iηM ◦ Wκ

) (
γ−
0 U

))
Γ

= g1 (ϕ) ,

(43)

where the right-hand sides are given by

f1 (V ) := f (V ) −
(
g1, γ

−
0 V

)
Γ

+
((
iη

(
Kκ − 1

2 Id
)
− Wκ

)
(g0), γ

−
0 V

)
Γ
,

g1 (ϕ) :=
(
ϕ,

(
1
2 Id − Kκ + iηM ◦ Wκ

)
(g0)

)
Γ
.

Case T = T2: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−),

ϕ ∈ H− 1
2 (Γ)

a (U, V ) +
(
Wκ

(
γ−
0 U

)
, γ−

0 V
)
Γ

+
((

1
2 Id − K′

κ

) (
γ−
0 U

)
, γ−

0 V
)
Γ

= f2 (V ) ,(
ϕ,

(
Kκ − 1

2 Id − iηM ◦ Wκ

) (
γ−
0 U

))
Γ

+
(
ϕ,

(
iηM ◦

(
1
2 Id + K′

κ

)
+ Vκ

)
(ϑ)

)
Γ

= g2 (ϕ) ,

(44)

where the right-hand sides are given by

f2 (V ) := f (V ) −
(
g1, γ

−
0 V

)
Γ
−
(
Wκ (g0), γ

−
0 V

)
Γ
,

g2 (ϕ) :=
(
ϕ,

(
1
2 Id − Kκ + iηM ◦ Wκ

)
(g0)

)
Γ
.

Both regularized variational formulations contain the same operator products,
namely

−B = Vκ + iηM ◦
(

1
2 Id + K′

κ

)
,

A − Id = Kκ − 1
2 Id − iηM ◦ Wκ.

This suggests that we introduce the new variable

p :=
(
M ◦

(
1
2 + K′

κ

))
(ϑ) − (M ◦ Wκ)

(
γ−
0 U + g0

)
∈ H1 (Γ) ,(45)

which converts (32) into the following two variational problems. The first arises

from using T1: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ), and p ∈ H1 (Γ) such that for all

V ∈ H1 (Ω−), ϕ ∈ H− 1
2 (Γ), and q ∈ H1 (Γ) there holds

a (U, V ) + iη
((

Kκ − 1
2 Id

) (
γ−
0 U

)
, γ−

0 V
)
Γ

+
(
Wκ

(
γ−
0 U

)
, γ−

0 V
)
Γ

+
((

1
2 Id − K′

κ

)
(ϑ), γ−

0 V
)
Γ

+ iη
(
Vκ (ϑ), γ−

0 V
)
Γ

= f1(V ),(
ϕ,

(
Kκ − 1

2 Id
) (

γ−
0 U

))
Γ

+ (ϕ,Vκ (ϑ))Γ + iη (ϕ, p)Γ = g1(ϕ),(
Wκ

(
γ−
0 U

)
, q
)
Γ
−

((
K′
κ + 1

2 Id
)
(ϑ), q

)
Γ

+ b (p, q) = h1(q),

(46)
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with right-hand sides

f1 (V ) := f (V ) −
(
g1, γ

−
0 V

)
Γ
− iη

((
Kκ − 1

2 Id
)
(g0), γ

−
0 V

)
Γ
−

(
Wκ (g0), γ

−
0 V

)
Γ
,

g1 (ϕ) :=
(
ϕ,

(
1
2 Id − Kκ

)
(g0)

)
Γ
,

h1 (q) := − (Wκ (g0), q)Γ .

The second arises from using T2: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ), and p ∈ H1 (Γ)

such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1
2 (Γ), and q ∈ H1 (Γ) there holds

a (U, V ) +
(
Wκ

(
γ−
0 U

)
, γ−

0 V
)
Γ

+
((

1
2 Id − K′

κ

)
(ϑ), γ−

0 V
)
Γ

= f2 (V ) ,(
ϕ,

(
Kκ − 1

2 Id
) (

γ−
0 U

))
Γ

+ (ϕ,Vκ (ϑ))Γ + iη (ϕ, p)Γ = g2 (V ) ,(
Wκ

(
γ−
0 U

)
, q
)
Γ
−

((
K′
κ + 1

2 Id
)
(ϑ), q

)
Γ

+ b (p, q) = h2 (q) ,

(47)

with right-hand sides

f2 (V ) := f (V ) −
(
g1, γ

−
0 V

)
Γ
−

(
Wκ (g0), γ

−
0 V

)
Γ
,

g2 (ϕ) :=
(
ϕ,

(
1
2 Id − Kκ

)
(g0)

)
Γ
,

h2 (q) := − (Wκ (g0), q)Γ .

In order to settle the issue of existence and uniqueness of solutions of (46) and
(47) we first observe that by the very definition of M in (40) and (45) the first two
components of any solution (U, ϑ, p) of (46) and (47) will also solve (43) and (44),
respectively. Since these are special cases of (32) and both T1 and T2 are valid trace
transformation operators, Theorem 7.3 yields uniqueness.

Next, it follows directly from the compact embeddings H1 (Γ) ↪→ H
1
2 (Γ) and

H− 1
2 (Γ) ↪→ H−1 (Γ) that all new off-diagonal terms are compact sesquilinear forms.

Since b is H1 (Γ)-elliptic, we obtain that the sesquilinear forms for both variational
formulations satisfy a generalized G̊arding inequality.

Again, a Fredholm argument ensures the existence of solutions from the unique-
ness result. The statement of Corollary 7.4 directly carries over to the (U, ϑ)-compo-
nents of (43) and (44). Thus we have obtained two well-posed variational formulations
which yield weak solutions to the Helmholtz transmission problem 2 and which are
also amenable to standard Galerkin discretizations.

We finish this section by making an important observation: (45) can be recast
into

p =
(
M ◦ ( 1

2 + K′
κ)
)
(ϑ) − (M ◦ Wκ)

(
γ−
0 U + g0

)
.

At second glance, we realize that p = 0, if (U, ϑ) solves (43) and (44), respectively.
This directly follows from Corollary 7.4, Theorem 4.1, and the definition of the exterior
Calderón projector P+. In short, p is a “dummy variable.”

Remark 9.1. Under the assumptions made in Remark 4.2 we can derive a
Dirichlet-to-Neumann map from (27) to obtain coupled variational problems of the
form (46) and (47) with much simpler right-hand sides:

f1 (V ) = f (V ) + iη
(
g0, γ

−
0 V

)
Γ
−
(
g1, γ

−
0 V

)
Γ
,

g1 (ϕ) = (ϕ, g0)Γ ,

h1 (q) = − (g1, q)Γ ,

f2 (V ) = f (V ) −
(
g1, γ

−
0 V

)
Γ
,

g2 (ϕ) = + (ϕ, g0)Γ ,

h2 (q) = − (g1, q)Γ .

(48)

The solution U in Ω− will remain the same.
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10. Galerkin discretization. With operator products removed, the Galerkin
discretization of the variational problems (43) and (44) is easily achieved by restricting
them to finite element subspaces Vh of H1 (Ω−) and boundary element subspaces Θh

and Qh of H− 1
2 (Γ) and H1 (Γ), respectively. A powerful theorem about the Galerkin

approximation of coercive variational problems, see [33] and [37], will then yield the
asymptotic quasi-optimality of the Galerkin solutions: assuming a minimal resolution
of Vh, Θh, and Qh, existence and uniqueness of discrete solutions (Uh, ϑh, ph) ∈
Vh ×Θh ×Qh of (43) and (44) is guaranteed and we have the a priori error estimate

(49) ‖U − Uh‖H1(Ω−) + ‖ϑ− ϑh‖
H− 1

2 (Γ)

≤ γ

(
inf

Vh∈V
‖U − Vh‖H1(Ω−) + inf

ϕh∈Θh

‖ϑ− ϕh‖
H− 1

2 (Γ)

)
,

where the constant γ > 0 does not depend on the discrete trial spaces.
The standard choices for Vh, Θh, and Qh are based on a tetrahedral or quadri-

lateral mesh M of Ω−, which yields a mesh MΓ of Γ by plain restriction to Γ. Then
we may pick

Vh :={V ∈ C0(Ω−) : V|K ∈ Pk(K) ∀K ∈ M},
Θh :={ϕ ∈ L2 (Γ) : ϕ|K ∈ Pk−1(K) ∀K ∈ MΓ},
Qh :={q ∈ C0(Γ) : q|K ∈ Pk(K) ∀K ∈ MΓ}.

(50)

Here, Pk(K) stands for the space of polynomials of degree ≤ k on the cell K. This
refers to the total degree in the case of tetrahedra and the degree in each variable in
the case of hexahedra.

Then, the usual best approximation estimates [32] for the h-version of finite ele-
ments and boundary elements give us

inf
Vh∈Vh

‖U − Vh‖H1(Ω−) ≤ γhmin{s−1,k} ‖U‖Hs(Ω−) ,

inf
ϕh∈Θh

‖ϑ− ϕh‖
H− 1

2 (Γ)
≤ γhmin{s+1/2,k} ‖ϑ‖Hs(Γ) ,

with constants depending on the shape regularity of M and h > 0 denoting the
meshwidth of M.

Remark 10.1. Why do we have to approximate the dummy variable p at all,
since it vanishes and apparently the choice of Qh does not affect the convergence of
Galerkin solutions? The reason is that (49) is an asymptotic statement, whose proof
also hinges on sufficiently good approximation properties of Qh. In the context of the
h-version of finite elements and boundary elements, this means that the mesh has to
be sufficiently fine to make (49) hold.

11. Numerical experiments. Limited computational resources allow the nu-
merical exploration of asymptotic convergence rates only in two dimensions. Fortu-
nately, the above theoretical developments carry over to two dimensions verbatim,
when replacing the kernel Gκ by

Gκ(z) :=
i

4
H

(1)
0 (kz) ,(51)

where H
(1)
0 is the Hankel function of the first kind of order zero.
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For the numerical experiments we considered the following:

• The unit circle Ω−
◦ := {x ∈ R

2 : |x| < 1} as a specimen of a domain with
smooth boundary. The two smallest interior resonant frequencies are κ1 =
5.5201 and κ2 = 11.7915, which correspond to the second and fourth zero of
the Bessel function J0 (x).

• The unit square Ω− := {x ∈ R
2 : −1/2 < x1, x2 < 1/2}, as representative

of polygonal domains. The associated two lowest resonant frequencies are
κ3 = 2π/

√
2 and κ4 = 5π/

√
2.

On each domain finite element meshes Ml, l ∈ N, consisting of quadrilaterals
with straight edges were used. In the case of Ω−

◦ the triangulation Ml is created by
inscribing Ω−

◦ a regular 2l+3-gon and a centered unit square. The portions of the line
segments from the center to the corners of the polygon are split into 2l equal parts,
whose endpoints are connected to form a quadrilateral mesh outside the unit square.
This is extended by an orthogonal tensor product mesh inside the unit square. The
mesh M1 is drawn in Figure 1. The family of meshes arising from this construction
will be quasi-uniform and shape-regular with meshwidth h of Ml being proportional
to 2−(l+1).

Fig. 1. Quadrilateral mesh of the unit circle.

On Ω− the mesh Ml is a plain uniform orthogonal tensor product grid with

meshwidth h = 2−(l+1).

We used mapped bilinear Lagrangian finite elements to build Vh, piecewise con-
stants on MΓ for Θh, and linear surface elements for Qh, that is, the case k = 1 of
(50). The finite element stiffness matrix was assembled using a four-point Gaussian
quadrature rule on the reference element. The dense matrices of the discrete bound-
ary integral operators were computed using Duffy’s trick and highly accurate adaptive
composite Gauss–Legendre quadrature as proposed in [32, Example 5.1.9] and [34].
All computations were done in MATLAB and a direct solver was used whenever we
aimed to study discretization errors.

In all the experiments we used n(x) = 1 in Ω− and excitation by incident plane
waves. These will also provide the exact solutions. Please note that in this setting
ϑ = −γ+

1 U , because there is no scattered field. As far as the stable regularized
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coupled schemes are concerned we consistently used the second regularized variational
formulation (47) together with the simple right-hand sides (48).

When analytic solutions are known, we measure the discretization error in the
interior total field in either the H1 (Ω−) or the L2 (Ω−)-norm and the error in ϑ

in either the H− 1
2 (Γ) or the L2 (Γ)-norm. Integer Sobolev norms are calculated by

means of four-point Gaussian quadrature. The H− 1
2 -norm is evaluated by means of

the discrete single layer potential operator on the current mesh after the exact solution
for ϑ has been projected onto Θh.

Experiment 1. A plane incident wave U i(x) = exp(−iκd · x), |d| = 1, is used,
where the incident angle between the propagation direction d and the x-axis is π/4.
We measure the discretization errors in different norms on the domain Ω− for the two
frequencies κ3 and κ4 on the series of shape-regular meshes and for a regularization
parameter η = 1; see Figures 2 and 3 for results. Table 1 lists the observed convergence
rates, which are very low because of the corner discontinuity of ϑ.
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Fig. 2. Discretization errors for κ3 (−) and κ4 (− ·) on the unit square Ω−.

Table 1

Observed convergence rates for different error norms.

‖U − Uh‖H1(Ω−) ‖U − Uh‖L2(Ω−) ‖ϑ− ϑh‖
H

− 1
2 (Γ)

‖ϑ− ϑh‖L2(Γ)

Exp. 1 O(h) O(h) O(h) O(h
1
2 )

Exp. 2 O(h) O(h2) O(h2) O(h)

Experiment 2. Using the same excitation as before, we measure the discretization
errors on the series of shape-regular meshes of the unit circle Ω−

◦ for the two frequencies
κ1 and κ2; see Figures 4 and 5. Now both ϑ and U are smooth, which translates into
optimal convergence rates; see Table 1.
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Fig. 3. Discretization errors for κ3 (−) and κ4 (− ·) on the unit square Ω−.

Experiment 3. We examine the dependence of the discretization error, measured
in the H1 (Ω−), and H− 1

2 (Γ)-norms, respectively, on the wave number for a mesh of
the domain Ω− with 14161 elements. The results for conventional symmetric FEM-

BEM coupling (15) are recorded in Figure 6. In Figure 7 the discretization errors are
plotted for the second version of regularized FEM-BEM coupling (47). We note that
the discretization errors for both methods are of exactly the same size. Moreover,
they grow as κ increases. This is hardly surprising, because this is already observed
for low order finite element discretizations of the Helmholtz equation [4].

The pronounced spikes in the discretization error graph for the ϑ-component in
Figure 7 are due to the resonant frequencies which affect the conventional symmetric
FEM-BEM coupling. In contrast, they are completely suppressed when using the
second version of regularized FEM-BEM coupling (47) as we can see in Figure 6.

Experiment 4. We recorded the dependence of the spectral condition number of
the entire system matrix on the wave number for

1. the symmetric FEM-BEM coupling (15) and
2. the second version of regularized FEM-BEM coupling (47)

in the neighborhood of the resonant frequency κ3 for a mesh of the domain Ω− with
14161 elements; see Figure 8. In each case the extremal eigenvalues were computed
by means of direct and inverse power iterations. Obviously, regularization manages to
suppress the pronounced peak in the condition number in the case of the symmtrically
coupled problem.
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Condition numbers of the matrix underlying the classical variational formulation are labelled with ◦,
whereas condition numbers related to the matrix underlying the regularized variational formulation
are labelled with �.
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[22] T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta

Numer., 8 (1998), pp. 47–106.
[23] R. Hiptmair, Symmetric coupling for eddy current problems, SIAM J. Numer. Anal., 40 (2002),

pp. 41–65.
[24] R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering,

SIAM J. Numer. Anal., 41 (2003), pp. 919–944.
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Abstract. We have developed and analyzed a new class of discontinuous Galerkin methods (DG)
which can be seen as a compromise between standard DG and the finite element (FE) method in the
way that it is explicit like standard DG and energy conserving like FE. In the literature there are
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conservation, and optimal higher order accuracy, but as far as we know only our new algorithms
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1. Introduction. Many applications involve the solution of wave equations. Ex-
amples are electromagnetic waves for radar and communication as well as acoustic
and seismic wave propagation. Let Ω ⊂ R

2 be a two dimensional polygonal domain
with outward normal vector n and let T > 0 be a fixed time. Given two positive
constants a1 > 0, a2 > 0 and two given functions F1(x, t), F2(x, t), we will consider,
for (x, t) ∈ Ω× (0, T ), the following wave propagation problem: find a function u(x, t)
and a vector field v(x, t) ∈ R

2 such that

a1
∂u

∂t
+ Bv = F1,(1.1)

a2
∂v

∂t
−B∗u = F2,(1.2)

where the two operators B and B∗ satisfy∫
Ω0

(B∗φ)ψ dx−
∫

Ω0

(Bψ)φ dx =

∫
∂Ω0

(Lψ)φ dσ(1.3)

for all subset Ω0 ⊂ Ω. Here L is some operator depending on the two operators B,
B∗ and the subdomain Ω0. We also denote by L⊥ the operator such that |ψ|2 =
|Lψ|2 + |L⊥ψ|2. Assume that there is an operator B⊥ such that BB⊥p = 0 for all p.
Acting (B⊥)∗ to (1.2) and using (B⊥)∗B∗ = 0, we have the following:

∂

∂t
(a2(B

⊥)∗v) = (B⊥)∗F2.(1.4)
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The condition (1.4) usually has important physical significance. For example, in the
case of electromagnetic wave propagation (see (E) in the following), v represents the
electric field, (B⊥)∗ is the divergence operator, and (1.4) is just the continuity equation
expressing the conservation of charges. We supplement the system (1.1)–(1.2) with
boundary condition

Lv = 0 ∀x ∈ ∂Ω(1.5)

and initial conditions

u(x, 0) = u0(x) and v(x, 0) = v0(x) ∀x ∈ Ω,(1.6)

where u0(x) and v0(x) are given. In particular, we are interested in the acoustic and
the electromagnetic wave equations, which correspond to the following choice of B
and B∗:

(A) Acoustic: Bv = −∇ · v, B∗u = ∇u, and Lv = v · n.
(E) Electromagnetic: Bv = ∇× v, B∗u = ∇× u, and Lv = v × n.

Notice that, in (1.1)–(1.2), u(x, t) is a function while v(x, t) = (v1(x, t), v2(x, t)) is a
vector having two components. So the operator ∇× is defined as ∇×v = ∂1v

2−∂2v
1

for any vector field v and ∇ × u = (∂2u,−∂1u) for any function u. Here v × n =
v1n2−v2n1 with n = (n1, n2). In (A) and (E), we use n to denote generically the unit
normal vector of the corresponding subdomain which defines L and L⊥. Moreover,
we have L⊥ψ = ψ × n for (A) while L⊥ψ = ψ · n for (E). Furthermore, we have
B⊥p = ∇× p and (B⊥)∗p = ∇× p for (A) while B⊥p = ∇p and (B⊥)∗p = −∇ · p for
(E). Wave propagation problems can be solved by partial differential equation (PDE)
techniques, integral equation techniques, and asymptotic techniques. Among PDE
techniques, finite difference (FD) method, finite volume (FV) method, finite element
(FE) method, and discontinuous Galerkin (DG) method are the most popular choices.
The FD method provides a simple way to solve wave propagation problems, but it
is typically low order and applies only to structured grids. The FV method can be
seen as a generalization of the FD method to unstructured grids, but it is still low
order. The FE and DG methods provide high order solvers for the time dependent
wave equations on unstructured grids.

Nédélec [15] introduces a curl-conforming FE method for solving Maxwell’s equa-
tions. Geveci [8] proposed a mixed FE method for the scalar wave equation. The
inversion of the mass matrix at each time step causes some possible drawback in the
efficiency of those methods. Mass lumping techniques can be used to avoid solving
linear systems. In Cohen and Monk [6], a mass lumping method for rectangular grids
is developed. In Bécache, Joly, and Tsogka [1], a new class of mixed FE method, which
is suitable for mass lumping, is developed for the scalar wave equation. Cohen, Joly,
Torjman, and Roberts [5] design a mass lumping technique for triangular grids for
polynomial order up to five. Discontinuous Galerkin methods provide explicit schemes
in the sense that only block diagonal mass matrices have to be inverted. Hesthaven and
Warburton [10] proposed a DG method based on upwind flux and Cockburn, Li, and
Shu [4] proposed a DG method based on locally divergence free basis and upwind flux.
While the schemes are successful, energy is not conserved due to the upwinding. Fe-
zoui, Lanteri, Lohrengel, and Piperno [7] proposed a DG method based on central flux.
This method preserves energy, but the convergence rate of the scheme is suboptimal.
Recently, a new DG method has been developed for the wave equation in second order
form; see Grote, Schneebeli, and Schötzau [9]. The method is also energy conserving
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Fig. 1.1. Comparison among standard DG, our new DG, and FE methods.

in the sense of a newly defined energy. A space-time DG method has also been
developed in Monk and Richter [14].

In this paper, we will develop and analyze a new class of DG methods which can be
seen as a compromize between FE and DG methods. Our new DG method combines
the advantages of FE and DG methods in the sense that it is both energy conserving
and explicit. The idea is to use discontinuous functions with extra continuity. In
the velocity-potential formulation of the scalar wave equation (A), we will add extra
continuity to the velocity where the potential is discontinuous and add extra continuity
to the potential where the velocity is discontinuous. For Maxwell’s equations (E), a
similar idea can be applied to the electric and magnetic fields. As a result, the flux
integrals are evaluated exactly, which is the basis of energy conservation. However, the
addition of the extra continuity cannot be done arbitrarily due to stability concerns.
It has to be done in such a way that some inf-sup conditions are satisfied. In Figure
1.1, we illustrate this idea in one space dimension. For standard DG, both unknown
functions u and v, which are velocity and potential for scalar wave equation and
are electric and magnetic fields for Maxwell’s equations, are discontinuous at cell
boundaries. For FE methods, both u and v are continuous. For our new DG, the two
functions are continuous at different points.

Yee’s scheme [16] has been a very popular numerical method for computational
electromagnetics. It is a second order central FD method on structured grids. The
success of the scheme is due to the use of a staggered grid. Our new DG method is
a FE method on staggered grids and can be seen as a higher generalization of Yee’s
scheme on unstructured grids. In particular, in one space dimension, our new DG
method with piecewise constant approximation is the same as Yee’s scheme. In two
space dimensions, our new DG method in the lowest order is some averaged version
of Yee’s scheme.

The rest of the paper is organized as follows. In section 2, we will introduce
the new FE spaces and prove the corresponding unisolvence and interpolation error
estimates. The new DG is then derived in section 3. In section 4, under the assumption
of some inf-sup conditions, the stability and convergence of the method are proved.
The inf-sup conditions are then verified in section 5. Furthermore, some numerical
experiments are presented in section 6. The paper ends with a conclusion.

Remark. We consider only two space dimensions in this paper. For three space
dimensions, a careful choice of the two FE spaces Uh and Vh that verify (3.1) and
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(3.2) as well as the two inf-sup conditions (4.1)–(4.2) are required. This work will be
developed in a forthcoming paper.

2. FE spaces. Assume the domain Ω is triangulated by a family of triangles T
so that Ω = ∪{τ | τ ∈ T }. Let τ ∈ T . We define hτ as the diameter of τ and ρτ as the
supremum of the diameters of the circles inscribed in τ . The mesh size h is defined
as h = maxτ∈T hτ . We will assume the set of triangles T forms a regular family of
triangulation of Ω so that there exist a uniform constant K independent of the mesh
size such that [3]

hτ ≤ Kρτ ∀τ ∈ T .

In addition, we will assume the triangulation satisfies the inverse assumption [3].
Let E be the set of all edges and let E0 ⊂ E be the set of all interior edges of the

triangles in T . The length of σ ∈ E will be denoted by hσ. We also denote by N the
set of all interior nodes of the triangles in T . Here, by interior edge and interior node,
we mean any edge and node that does not lie on the boundary ∂Ω. Let ν ∈ N . We
define

S(ν) = ∪{τ ∈ T | ν ∈ τ}.(2.1)

That is, S(ν) is the union of all triangles having vertex ν. We will assume the
triangulation of Ω satisfies the following condition.
Assumption on triangulation: There exists a subset N1 ⊂ N such that

(A1) Ω = ∪{S(ν) | ν ∈ N1}.
(A2) S(νi) ∩ S(νj) ∈ E0 for all distinct νi, νj ∈ N1.

Let ν ∈ N1. We define

Eu(ν) = {σ ∈ E | ν ∈ σ}.(2.2)

That is, Eu(ν) is the set of all edges that have ν as one of their endpoints. We further
define

Eu = ∪{Eu(ν) | ν ∈ N1} and Ev = E\Eu.(2.3)

Notice that Eu contains only interior edges since one of the endpoints of edges in Eu
has a vertex from N1. On the other hand, Ev has both interior and boundary edges.
So, we also define E0

v = Ev ∩ E0 which contains elements from Ev that are interior
edges. Notice that we have Ev\E0

v = E ∩ ∂Ω. Furthermore, for σ ∈ E0
v , we will let

R(σ) be the union of the two triangles sharing the same edge σ. For σ ∈ Ev\E0
v , we

will let R(σ) be the only triangle having the edge σ.
In practice, triangulations that satisfy assumptions (A1)–(A2) are not difficult

to construct. In Figure 2.1, we illustrate how this kind of triangulation is generated.
First, the domain Ω is triangulated by a family of triangles, called T̃ . Each triangle in
this family is then subdivided into three subtriangles by connecting a point inside the
triangle with its three vertices. Then we define the union of all these subtriangles to
be our triangulation T . Each triangle in T̃ corresponds to an S(ν) for some ν inside
the triangle. In Figure 2.1, we show two of the triangles, enclosed by solid lines, in
this family T̃ . This corresponds to 6 triangles in the triangulation T . The dotted
lines represent edges in the set Eu while solid lines represent edges in the set Ev.

Lemma 2.1. Each τ ∈ T has exactly two edges that belong to Eu.
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S(ν2)
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Fig. 2.1. Triangulation.

Proof. First of all, τ has at least one interior vertex. We will show that there is
exactly one vertex of τ that belongs to N1. If none of the three vertices of τ belong
to N1, then τ0 ∩ S(ν) is an empty set for all ν ∈ N1, where τ0 is the interior of τ .
Then, ∪{S(ν) | ν ∈ N1} ∩ τ0 is an empty set. So, ∪{S(ν) | ν ∈ N1} 	= Ω, which
violates assumption (A1). If τ has two vertices, νi and νj , that belong to N1, then
S(νi) ∩ S(νj) contains τ . So, it violates assumption (A2). The case that τ has all
vertices belonging to N1 can be discussed in the same way. In conclusion, τ has
exactly one vertex which belongs to N1. So, by the definition of Eu, the two edges
having the vertex in N1 belong to Eu.

Given τ ∈ T , we will denote by ν(τ)1, ν(τ)2, and ν(τ)3 the three vertices of
τ . Moreover, ν(τ)1 is the vertex that is one of the endpoints of the two edges of τ
that belong to Eu. Then ν(τ)2 and ν(τ)3 are named in a counterclockwise direction.
In addition, λτ,1(x), λτ,2(x), and λτ,3(x) are the barycentric coordinates on τ with
respect to the three vertices ν(τ)1, ν(τ)2, and ν(τ)3.

Now, we will discuss the FE spaces. Let k ≥ 0 be a nonnegative integer. Let
τ ∈ T . We define P k(τ) as the space of polynomials of degree less than or equal to k
on τ . We also define

Rk(τ) = P k(τ) ⊕ P̃ k+1(τ),(2.4)

where P̃ k+1(τ) is the space of homogeneous polynomials of degree k+1 on τ in the two
variables λτ,2 and λτ,3 such that the sum of the coefficients of λk+1

τ,2 and λk+1
τ,3 is equal to

zero. That is, any function in P̃ k+1(τ) can be written as
∑

i+j=k+1,i≥0,j≥0 ai,jλ
i
τ,2λ

j
τ,3

such that ak+1,0 + a0,k+1 = 0. Now, we define

Uh = {φ | φ|τ ∈ Rk(τ);φ is continuous at the k + 1 Gaussian points of σ ∀σ ∈ Eu}.

For any edge σ, we use P k(σ) to represent the space of one dimensional polynomials
of degree less than or equal to k on σ. We define the following degrees of freedom:
(UD1) For each edge σ ∈ Eu, we have ∫

σ

φpk dσ

for all pk ∈ P k(σ).
(UD2) For each triangle τ ∈ T , we have∫

τ

φpk−1 dx

for all pk−1 ∈ P k−1(τ) (for k ≥ 1).
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Notice that (UD1) is equivalent to φ(αi) where αi, for i = 1, 2, . . . , k + 1, are the
k + 1 Gaussian points of σ. For a smooth function φ, we will define Iuφ ∈ Uh by the
following degrees of freedom:

(U1) For each edge σ ∈ Eu, we have∫
σ

(Iuφ− φ)pk = 0

for all pk ∈ P k(σ).
(U2) For each triangle τ ∈ T , we have∫

τ

(Iuφ− φ)pk−1 dx = 0

for all pk−1 ∈ P k−1(τ) (for k ≥ 1).
Theorem 2.2. Let Iu : Πν∈N1W

k+1,p(S(ν)) → Uh. Then Iu is uniquely deter-
mined by (U1)–(U2). Moreover,

|φ− Iuφ|Wm,p(S(ν)) ≤ Khk+1−m|φ|Wk+1,p(S(ν)).(2.5)

Proof. Notice that dim(P k) = 1
2 (k+1)(k+2). Then (UD1) gives (k+1)|Eu| con-

ditions while (UD2) gives 1
2k(k+1)|T | conditions where |S| is the number of elements

in the set S. Notice that |S(ν)| = |Eu(ν)| for all ν ∈ N1. So, by the assumption (A1)–
(A2) and the definition of Eu, we have |T | =

∑
ν∈N1

|S(ν)| =
∑

ν∈N1
|Eu(ν)| = |Eu|.

So, the total number of degrees of freedom defined by (UD1)–(UD2) is 1
2 (k + 1)(k +

2)|T |. Next, we will find the dim(Uh). Notice that dim(P̃ k+1(τ)) = k + 1. So, we
have dim(Uh) = 1

2 (k + 1)(k + 2)|T | + (k + 1)|T | − (k + 1)|Eu|, where the subtraction
of the third term is due to the continuity condition imposed on the k + 1 Gaussian
points of each edge in Eu. Since |T | = |Eu|, we have dim(Uh) = 1

2 (k + 1)(k + 2)|T |,
which is equal to the number of degrees of freedom defined by (UD1)–(UD2).

Next, we will show Iuφ = 0 if φ = 0. Let τ ∈ T . Then the degree of freedom
(UD1) implies that Iuφ is zero at the k + 1 Gaussian points of the two edges of τ
that belong to Eu. More precisely, we denote by αj (j = 1, 2, . . . , k + 1) the k + 1
Gaussian points of the edge of τ having endpoints ν(τ)1 and ν(τ)2. Then we define
real numbers wj (j = 1, 2, . . . , k + 1) such that 0 < w1 < w2 < · · · < wk+1 < 1 and
αj = (1 − wj)ν(τ)1 + wjν(τ)2. Moreover, we denote by βj (j = 1, 2, . . . , k + 1) the
k + 1 Gaussian points of the edge of τ having endpoints ν(τ)1 and ν(τ)3. Then the
real numbers wj also satisfy βj = (1 − wj)ν(τ)1 + wjν(τ)3. So, we have

Iuφ = cΠk+1
j=1 (λτ,2 − wj) + cΠk+1

j=1 (λτ,3 − wj) − c(−1)k+1Πk+1
j=1wj + λτ,2λτ,3qk−1

for some qk−1 ∈ P k−1(τ). By the definition of Rk(τ), the sum of the coefficients of
λk+1
τ,2 and λk+1

τ,3 is zero. So, we have c= 0. Using (UD2), we have
∫
τ
λτ,2λτ,3q

2
k−1 dx= 0.

Since λτ,2λτ,3 > 0 in the interior of τ , we have qk−1 = 0. Hence, Iuφ = 0.
Now, we will prove (2.5). Let τ ∈ T and let pk ∈ P k(τ). It suffices to show that

Iu preserves polynomials. By (U1), Iupk − pk is zero at the k + 1 Gaussian points of
the two edges that belong to Eu. So,

Iupk − pk = bΠk+1
j=1 (λτ,2 − wj) + bΠk+1

j=1 (λτ,3 − wj)

−b(−1)k+1Πk+1
j=1wj + λτ,2λτ,3rk−1
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for some constant d and rk−1 ∈ P k−1(τ). Since Iupk ∈ Rk(τ), we have b = 0. Using
(U2), we have rk−1 = 0. Hence, Iupk = pk.

We define

Vh = {ψ | ψ|τ ∈ P k(τ)2;Lψ is continuous along σ∀σ ∈ Ev;Lψ = 0 on ∂Ω}.

We also define the following degrees of freedom:
(VD1) For each triangle τ ∈ T , we have∫

τ

(L⊥ψ)pk dx ∀pk ∈ P k(τ).

(VD2) For each triangle τ ∈ T , we have∫
τ

(Lψ)λτ,1pk−1 dx ∀pk−1 ∈ P k−1(τ).

(VD3) For each edge σ ∈ E0
v , we have∫

σ

(Lψ)qk dσ ∀qk ∈ P k(σ).

Furthermore, for a smooth vector field ψ, we define Ivψ as the corresponding inter-
polation operator by the following degrees of freedom:

(V1) For each triangle τ ∈ T , we have∫
τ

L⊥(Ivψ − ψ)pk dx = 0 ∀pk ∈ P k(τ).

(V2) For each triangle τ ∈ T , we have∫
τ

L(Ivψ − ψ)λτ,1pk−1 dx = 0 ∀pk−1 ∈ P k−1(τ).

(V3) For each edge σ ∈ E0
v , we have∫
σ

L(Ivψ − ψ)qk dσ = 0 ∀qk ∈ P k(σ).

Theorem 2.3. Let Iv : Πσ∈E0
v
W k+1,p(R(σ))2 → Vh. Then Iv is uniquely deter-

mined by (V1), (V2), and (V3). Moreover,

|ψ − Ivψ|Wm,p(R(σ))2 ≤ Khk+1−m|ψ|Wk+1,p(R(σ))2 .(2.6)

Proof. First of all, the number of degrees of freedom defined by (VD1), (VD2),
and (VD3) are 1

2 (k + 1)(k + 2)|T |, 1
2k(k + 1)|T |, and (k + 1)|E0

v |, respectively. Also,
the dimension of Vh is given by

dim(Vh) = 2
1

2
(k + 1)(k + 2)|T | − (k + 1)|E0

v | − (k + 1)|Ev\E0
v |,

where the second term on the right-hand side is due to the continuity condition that
Lψ is continuous on σ for all σ ∈ E0

v , and the third term on the right-hand side is
due to the boundary condition Lψ = 0 on ∂Ω. Notice that |T | = 2|E0

v | + |Ev\E0
v |.
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Fig. 2.2. S(ν) for k = 1.

ν(τ)1

ν(τ)3

ν(τ)2• •
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Fig. 2.3. A single triangle for k = 1.

Now, a direct calculation shows that dim(Vh) is equal to the total number of degrees
of freedom defined by (VD1), (VD2), and (VD3).

Now, we will show Ivψ = 0 if ψ = 0. First, (VD1) implies that L⊥(Ivψ) = 0 on
each τ ∈ T . Using (VD3), we have L(Ivψ) = 0 on each σ ∈ E0

v . So, on each τ ∈ T ,
we have L(Ivψ) = λτ,1qk−1 for some qk−1 ∈ P k−1(τ). Indeed, we can write

L(Ivψ) = a +

k∑
j=1

(bjλ
j
τ,1 + cjλ

j
τ,2).

Since L(Ivψ)|σ = 0, we have a = 0, cj = 0, and L(Ivψ) =
∑k

j=1 bjλ
j
τ,1. Applying

(VD2), we have L(Ivψ) = 0 on each τ ∈ T . Since |Ivψ|2 = |L⊥(Ivψ)|2 + |L(Ivψ)|2,
we have Ivψ = 0.

The estimate (2.6) follows from the fact that the operator Iv preserves polyno-
mials of degree k.

Let us consider an example for k = 1. For Uh, the degrees of freedom are the two
Gaussian points on each edge belonging to Eu and the cell center. In Figure 2.2, we
illustrate three triangles in the triangulation which corresponds to an S(ν) for some
ν ∈ N1. The dotted lines denote edges from the set Eu while solid lines denote edges
from the set Ev. The solid dots denote the continuity points defined by (UD1), which
are the two Gaussian points of the edges in Eu. The circle in each triangle represents
the degree of freedom defined by (UD2). In Figure 2.3, we show the degrees of freedom
on a single triangle. Any function φ ∈ Rk(τ) can be expressed as

φ = a + bλτ,2 + cλτ,3 + d(λ2
τ,2 − λ2

τ,3) + eλτ,2λτ,3.

For Vh, Lψ is defined as a linear function which is continuous on the edge σ while
L⊥ is defined as a linear function on each triangle with no continuity requirement.
In Figure 2.4, we illustrate an R(σ) for some σ ∈ E0

v , where σ is represented by the
solid line. We represent the degrees of freedom of Lψ by solid dots and the degrees
of freedom of L⊥ψ by circles.
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Fig. 2.4. R(σ) for k = 1.

3. The new scheme. In this section, we will derive the new discontinuous
Galerkin method for the wave propagation problem (1.1)–(1.2). Multiplying both
sides of (1.1) by φ, integrating the resulting equation on S(ν), and using (1.3) yields

a1

∫
S(ν)

∂u

∂t
φ dx +

∫
S(ν)

(B∗φ)v dx−
∫
∂S(ν)

(Lv)φ dσ =

∫
S(ν)

F1φ dx.

Summing over all ν ∈ N1,

a1

∫
Ω

∂u

∂t
φ dx +

∫
Ω

(B∗φ)v dx−
∑
ν∈N1

∫
∂S(ν)

(Lv)φ dσ =

∫
Ω

F1φ dx.

If Lv is continuous along each σ ∈ E0
v and Lv is zero along each edge in Ev\E0

v , then

∑
ν∈N1

∫
∂S(ν)

(Lv)φ dσ =
∑
σ∈E0

v

∫
σ

(Lv)[φ] dσ,(3.1)

where [φ] = φ+ − φ− is the jump of φ along σ. Similarly, multiplying both sides of
(1.2) by ψ, integrating the resulting equation on R(σ), and using (1.3) yields

a2

∫
R(σ)

∂v

∂t
ψ dx−

∫
R(σ)

(Bψ)u dx−
∫
∂R(σ)

(Lψ)u dσ =

∫
R(σ)

F2ψ dx.

Summing for all σ ∈ Ev,

a2

∫
Ω

∂v

∂t
ψ dx−

∫
Ω

(Bψ)u dx−
∑
σ∈Ev

∫
∂R(σ)

(Lψ)u dσ =

∫
Ω

F2ψ dx.

Now if Lψ is a polynomial of degree k and u is a (k + 1)th degree polynomial which
is continuous at the k + 1 Gaussian points of σ ∈ Eu, then

∑
σ∈Ev

∫
∂R(σ)

(Lψ)u dσ =
∑
σ∈Eu

∫
σ

[Lψ]u dσ,(3.2)

where [Lψ] denotes the jump of Lψ along σ. Then, the new discontinuous Galerkin
method is defined as follows.
The new discontinuous Galerkin method: Find uh ∈ Uh and vh ∈ Vh such that

a1

∫
Ω

∂uh

∂t
φ dx + Bh(vh, φ) =

∫
Ω

F1φ dx,(3.3)

a2

∫
Ω

∂vh
∂t

ψ dx−B∗
h(uh, ψ) =

∫
Ω

F2ψ dx(3.4)
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for all φ ∈ Uh and ψ ∈ Vh, where

Bh(vh, φ) =

∫
Ω

(B∗φ)vh dx−
∑
σ∈E0

v

∫
σ

(Lvh)[φ] dσ,(3.5)

B∗
h(uh, ψ) =

∫
Ω

(Bψ)uh dx +
∑
σ∈Eu

∫
σ

[Lψ]uh dσ.(3.6)

The initial conditions uh(0) and vh(0) will be defined as uh(0) = Iuu0 and vh(0) =
Ivv0. We remark here that we define the spaces Uh and Vh so that (3.1) and (3.2) are
valid. Furthermore, we define the discrete derivative operators Bh and B∗

h by

〈Bhψ, φ〉 = Bh(ψ, φ) ∀φ ∈ Uh,

〈B∗
hφ, ψ〉 = B∗

h(φ, ψ) ∀ψ ∈ Vh.

The two operators Bh and B∗
h are the discrete analogue of the two derivative operators

B and B∗.
Lemma 3.1. For all φ ∈ Uh and ψ ∈ Vh, we have

Bh(ψ, φ) = B∗
h(φ, ψ).(3.7)

Proof. Let φ ∈ Uh and ψ ∈ Vh. Then, by the definition of Bh and (3.1),

Bh(ψ, φ) =

∫
Ω

(B∗φ)vh dx−
∑
σ∈E0

v

∫
σ

(Lvh)[φ] dσ

=

∫
Ω

(B∗φ)ψ dx−
∑
ν∈N1

∫
∂S(ν)

(Lψ)φ dσ

=
∑
ν∈N1

{∫
S(ν)

(B∗φ)ψ dx−
∫
∂S(ν)

(Lψ)φ dσ

}
.

Using integration by parts on each triangle,

Bh(ψ, φ) =
∑
ν∈N1

{∫
S(ν)

φ(Bψ) dx +
∑

σ∈Eu(ν)

∫
σ

[Lψ]u dσ

}
= B∗

h(φ, ψ).

This completes the proof.
We define the discrete L2 norms and H1 norms in the following ways. For all

φ ∈ Uh, we define

‖φ‖2
W =

∫
Ω

φ2 dx +
∑
σ∈Eu

(hσ)2
k+1∑
j=1

φ(αj)
2,(3.8)

‖φ‖2
Z =

∫
Ω

(B∗φ)2 dx +
∑
σ∈Ev

h−1
σ

∫
σ

[φ]2 dσ.(3.9)

For all ψ ∈ Vh, we define

‖ψ‖2
W ′ =

∫
Ω

ψ2 dx +
∑
σ∈Ev

hσ

∫
σ

(Lψ)2 dσ,(3.10)

‖ψ‖2
Z′ =

∫
Ω

(Bψ)2 dx +
∑
σ∈Eu

(hσ)−1

∫
σ

[Lψ]2 dσ.(3.11)
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With these definitions, we have the following continuity conditions for all φ ∈ Uh

and ψ ∈ Vh:

|Bh(ψ, φ)| ≤ K‖ψ‖W ′‖φ‖Z ,(3.12)

|Bh(ψ, φ)| ≤ K‖ψ‖Z′‖φ‖W .(3.13)

Moreover, we have, in Uh, the norm ‖φ‖W is equivalent to the standard L2 norm ‖φ‖,
while in Vh, the norm ‖ψ‖W ′ is equivalent to the standard L2 norm ‖ψ‖. That is,
there are two uniform constants K1 and K2 such that

K1‖φ‖ ≤ ‖φ‖W ≤ K2‖φ‖ ∀φ ∈ Uh,(3.14)

K1‖ψ‖ ≤ ‖ψ‖W ′ ≤ K2‖ψ‖ ∀ψ ∈ Vh.(3.15)

Now, we will prove the following interpolation error estimates. The first one is
the interpolation error in the discrete L2 norms.

Lemma 3.2. Assume (u, v) ∈ W k+1,∞(Ω)3. Then for any integer m with 1 ≤
m ≤ k + 1,

‖u− Iuu‖W ≤ Khm|u|Wm,∞(Ω), ‖v − Ivv‖W ′ ≤ Khm|v|Wm,∞(Ω)2 .(3.16)

Proof. By the definition of W -norm and W ′-norm,

‖u− Iuu‖W ≤ K‖u− Iuu‖L∞(Ω), ‖v − Ivv‖W ′ ≤ K‖v − Ivv‖L∞(Ω)2 .

The proof is complete by using (2.5) and (2.6).
The second one is the interpolation error in the discrete H1 norms.
Lemma 3.3. Assume (u, v) ∈ Hk+1(Ω)3. Then for any integer m with 1 ≤ m ≤ k,

‖u− Iuu‖Z ≤ Khm|u|Hm+1(Ω), ‖v − Ivv‖Z′ ≤ Khm|v|Hm+1(Ω)2 .(3.17)

Proof. Let Iuu ∈ Uh be the interpolant of u. By the definition of Z-norm,

‖Iuu− u‖2
Z =

∫
Ω

(B∗(Iuu− u))2 dx +
∑
σ∈E0

v

(hσ)−1

∫
σ

[Iuu− u]2 dσ.

The first term will be estimated by using the inverse inequality and the interpolation
estimate (2.5) ∫

Ω

(B∗(Iuu− u))2 dx ≤ Kh2k|u|2Hk+1(Ω).

For the second term, we will use the trace inequality∫
σ

(Iuu− u)2 dσ ≤ K(‖Iuu− u‖L2(R(τ))‖∇(Iuu− u)‖L2(R(τ))

+h−1‖Iuu− u‖2
L2(R(τ))).

So, ∫
σ

[Iuu− u]2 dσ ≤ Kh2k+1|u|2Hk+1(Ω),

and this implies

‖Iuu− u‖Z ≤ Khk|u|Hk+1(Ω).

The estimate for ‖v − Ivv‖Z′ can be proved by a similar argument.
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4. Stability and convergence analysis. In this section, we will prove the
stability and convergence of the scheme (3.3)–(3.4). We write 〈u, v〉 =

∫
Ω
uv dx and

‖u‖ = 〈u, u〉 1
2 . In order to obtain an optimal error estimate, we will assume the

following.
The inf-sup conditions:

inf
ψ∈Vh

sup
φ∈Uh

Bh(ψ, φ)

‖ψ‖Z′‖φ‖W
≥ K,(4.1)

inf
φ∈Uh

sup
ψ∈Vh

B∗
h(φ, ψ)

‖φ‖Z‖ψ‖W ′
≥ K.(4.2)

For a general introduction to this topic; see Brezzi and Fortin [2].
Consequently, we have

‖Bhψ‖W ≥ K‖ψ‖Z′ ,(4.3)

‖B∗
hφ‖W ′ ≥ K‖φ‖Z .(4.4)

By the continuity conditions (3.12) and (3.13), we have

K1‖ψ‖Z′ ≤ ‖Bhψ‖W ≤ K2‖ψ‖Z′ ,(4.5)

K1‖φ‖Z ≤ ‖B∗
hφ‖W ′ ≤ K2‖φ‖Z .(4.6)

So, the discrete H1 norm is equivalent to the discrete L2 norm of the discrete derivative
operator. Notice that, the above two inf-sup conditions (4.3)–(4.4) imply the existence
of projection operators Pv and Pu such that

Bh(Pvv − v, φ) = 0 ∀φ ∈ Uh,(4.7)

B∗
h(Puu− u, ψ) = 0 ∀ψ ∈ Vh.(4.8)

Regarding the initial condition uh(0) and vh(0), we can obtain them by solving
the following:

Bh(Pvv0 − v0, φ) = 0 ∀φ ∈ Uh,(4.9)

B∗
h(Puu0 − u0, ψ) = 0 ∀ψ ∈ Vh;(4.10)

then set uh(0) = Puu0 and vh(0) = Pvv0. However, in order to retain the accuracy
of the approximation, the initial conditions can also be defined as uh(0) = Iuu0 and
vh(0) = Ivv0, where Iu and Iv are some interpolation operators with the same order
of accuracy and stability estimates ‖uh(0)‖ ≤ K‖u0‖ and ‖vh(0)‖ ≤ K‖v0‖.

One important property of the numerical approximation (3.3)–(3.4) is that energy
is conserved, as is the case for the continuous problem (1.1)–(1.2). In particular, the
method (3.3)–(3.4) is stable in the discrete L2 norm. Moreover, the convergence in
the L2 norm is optimal. We state these results in the following theorem.

Theorem 4.1. Let u ∈ U and v ∈ V be the solution to (1.1)–(1.2) and let
uh ∈ Uh and vh ∈ Vh be the solution to the numerical scheme (3.3)–(3.4). Then,
energy is conserved, namely

d

dt
(‖uh‖2 + ‖vh‖2) = 0.(4.11)
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Moreover, for 0 ≤ t ≤ T , we have

‖(u− uh)(t)‖ + ‖(v − vh)(t)‖

≤ K

{
inf

φ∈Uh

‖u− φ‖W + inf
ψ∈Vh

‖v − ψ‖W ′

+

∫ t

0

(
inf

φ∈Uh

‖ut − φ‖W + inf
ψ∈Vh

‖vt − ψ‖W ′

)
ds

}
.

(4.12)

Proof. Taking φ = uh and ψ = vh in (3.3)–(3.4) yields

a1

〈
duh

dt
, uh

〉
+ Bh(vh, uh) = 0,

a2

〈
dvh
dt

, vh

〉
−B∗

h(uh, vh) = 0.

Adding the two equations and using (3.7), we obtain (4.11).
In the following, we will prove (4.12). Let Iuu and Ivv be arbitrary elements in

Uh and Vh, respectively. First, we have

a1

〈
d(u− uh)

dt
, φ

〉
+ Bh(v − vh, φ) = 0 ∀φ ∈ Uh,(4.13)

a2

〈
d(v − vh)

dt
, ψ

〉
−B∗

h(u− uh, ψ) = 0 ∀ψ ∈ Vh.(4.14)

By the definitions of the projection operators Pu and Pv, we obtain

a1

〈
d(u− uh)

dt
, φ

〉
+ Bh(Pvv − vh, φ) = 0 ∀φ ∈ Uh,(4.15)

a2

〈
d(v − vh)

dt
, ψ

〉
−B∗

h(Puu− uh, ψ) = 0 ∀ψ ∈ Vh.(4.16)

Let Q2
u : Uh → ker(B∗

h)⊥ and Q2
v : Vh → ker(Bh)⊥ be the projection operators.

Taking φ = Q2
u(Puu − uh) and ψ = Q2

v(Pvv − vh), we have, by adding the two
equations,

a1

〈
d(u− uh)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(v − vh)

dt
,Q2

v(Pvv − vh)

〉
= 0,(4.17)

which implies

d

dt
(a1‖Q2

u(Puu− uh)‖2 + a2‖Q2
v(Pvv − vh)‖2)

= a1

〈
d(Puu− u)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(Pvv − v)

dt
,Q2

v(Pvv − vh)

〉
.

This can be rewritten as

d

dt
(a1‖Q2

u(Puu− uh)‖2 + a2‖Q2
v(Pvv − vh)‖2)

= a1

〈
d(Puu− Iuu)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(Pvv − Ivv)

dt
,Q2

v(Pvv − vh)

〉

+ a1

〈
d(Iuu− u)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(Ivv − v)

dt
,Q2

v(Pvv − vh)

〉
.
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Consequently,

‖a1Q
2
u(Puu− uh)‖ + ‖a2Q

2
v(Pvv − vh)‖

≤ K

∫ t

0

{
‖Q2

u(Puut − Iuut)‖ + ‖Q2
v(Pvvt − Pvvt)‖

}
ds

+ K

∫ t

0

{
‖Iuut − ut‖ + ‖Ivvt − vt‖

}
ds.

Using the triangle inequality, we finally have

‖a1Q
2
u(Iuu− uh)‖ + ‖a2Q

2
v(Ivv − vh)‖

≤ K(‖Q2
u(Puu− Iuu)‖ + ‖Q2

v(Pvv − Ivv)‖)

+ K

∫ t

0

{
‖Q2

u(Puut − Iuut)‖ + ‖Q2
v(Pvvt − Pvvt)‖

}
ds

+ K

∫ t

0

{
‖Iuut − ut‖ + ‖Ivvt − vt‖

}
ds.

It suffices to estimate the norms ‖Q2
v(Pvv−Ivv)‖ and ‖Q2

u(Puu−Iuu)‖. In particular,
we will prove ‖Q2

v(Pvv−Ivv)‖ ≤ K‖v−Ivv‖W ′ and ‖Q2
u(Puu−Iuu)‖ ≤ K‖u−Iuu‖W .

We consider the following variational problem: Given u2 ∈ ker(B∗
h)⊥, find ψ̃ ∈ Vh

such that

Bh(ψ̃, φ) = 〈u2, φ〉 ∀φ ∈ Uh.(4.18)

The existence of ψ̃ is ensured by the fact that Bh : Vh → ker(B∗
h)⊥ is surjective.

Taking the supremum in φ and using (4.3), we derive the following estimate:

‖ψ̃‖Z′ ≤ K‖u2‖.(4.19)

Now, we have

‖Q2
u(Puu− Iuu)‖2 = Bh(ψ̃, Q2

u(Puu− Iuu))

= B∗
h(Q2

u(Puu− Iuu), ψ̃)

= B∗
h(Puu− Iuu, ψ̃)

= B∗
h(u− Iuu, ψ̃)

≤ ‖ψ‖Z′‖u− Iuu‖W
≤ K‖Q2

u(Puu− Iuu)‖‖u− Iuu‖W .

Hence, we have

‖Q2
u(Puu− Iuu)‖ ≤ ‖u− Iuu‖W .(4.20)

Replacing u by ut, we have

‖Q2
u(Puut − Iuut)‖ ≤ ‖ut − Iuut‖W .(4.21)

Similarly, we consider the problem: Given v2 ∈ ker(Bh)⊥, find φ̃ ∈ Uh such that

B∗
h(φ̃, ψ) = 〈v2, ψ〉 ∀ψ ∈ Vh(4.22)
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with the estimate

‖φ̃‖Z ≤ K‖v2‖.(4.23)

Hence, we have

‖Q2
v(Pvv − Ivv)‖ ≤ ‖v − Ivv‖W ′ .(4.24)

Replacing v by vt, we have

‖Q2
v(Pvvt − Ivvt)‖ ≤ ‖vt − Ivvt‖W ′ .(4.25)

This finishes the proof of estimates of the components of the errors in ker(B∗
h)⊥ and

ker(Bh)⊥. In the following, we will estimate the components of errors in ker(B∗
h) and

ker(Bh).
Define Q1

u : Uh → ker(B∗
h) and Q1

v : Vh → ker(Bh) as the orthogonal projection
operators. Taking φ = Q1

u(Iuu− uh) and ψ = Q1
v(Ivv − vh), we have

a1

〈
d(u− uh)

dt
,Q1

u(Iuu− uh)

〉
+ a2

〈
d(v − vh)

dt
,Q1

v(Ivv − vh)

〉
= 0.

Hence, we obtain

‖a1Q
1
u(Iuu− uh)‖ + ‖a2Q

1
v(Ivv − vh)‖ ≤

∫ t

0

{
‖Iuut − ut‖ + ‖Ivvt − vt‖

}
ds.

Combining all results,

‖Iuu− uh‖u + ‖Ivv − vh‖v ≤ K
{
‖Q1

u(Iuu− uh)‖u + ‖Q2
u(Iuu− uh)‖u

+ ‖Q1
v(Ivv − vh)‖v + ‖Q2

v(Ivv − vh)‖v
}
.

The proof is complete by noticing that

‖u− uh‖ ≤ ‖u− Iuu‖ + ‖Iuu− uh‖,
‖v − vh‖ ≤ ‖v − Ivv‖ + ‖Ivv − vh‖.

Now, we will state the convergence theorems. The following is the convergence in
L2 norm. We see that the numerical scheme is O(hk+1) when the FE spaces Uh and
Vh contain polynomials of degree k.

Corollary 4.2. Let (u, v) ∈ W 1,1(0, T ;W k+1,∞(Ω))3 be the exact solution to
the wave propagation problem (1.1)–(1.2) and let (uh, vh) be the solution to (3.3)–(3.4).
Then

‖u− uh‖ + ‖v − vh‖ ≤ Khk+1(‖u‖W 1,1(0,T ;Wk+1,∞(Ω)) + ‖v‖W 1,1(0,T ;Wk+1,∞(Ω))2).

(4.26)

Theorem 4.1 and Corollary 4.2 state that the numerical scheme (3.3)–(3.4) is
stable and convergent, with optimal rate, with respect to the discrete L2-norms. The
L2 stability can be satisfied by a very large class of spaces Uh and Vh. However, with L2

stability only, it is not sufficient to deduce the weak convergence to the true solution;
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see Joly [11]. As a result, the numerical solution may behave badly and the optimal
rate of convergence is not achieved. This fact can be seen by some numerical examples
in the following sections. The extra conditions needed are the inf-sup conditions (4.1)–
(4.2), as many mixed FE methods require some compatibility conditions between the
two spaces Uh and Vh. These conditions yield a stability in the discrete H1 norm and
we state this result in the following theorem.

Theorem 4.3. Let uh ∈ Uh and vh ∈ Vh be the solution to the numerical scheme
(3.3)–(3.4). Then

‖uh‖Z + ‖vh‖Z′ ≤ K

{∥∥∥∥du0

dt

∥∥∥∥ +

∥∥∥∥dv0

dt

∥∥∥∥ +

∫ t

0

(∥∥∥∥dF1

dt

∥∥∥∥ +

∥∥∥∥dF2

dt

∥∥∥∥
)

ds

}
.(4.27)

Proof. Taking t-derivative in (3.3)–(3.4), we have

a1

〈
d2uh

dt2
, φ

〉
+ Bh

(
dvh
dt

, φ

)
=

〈
dF1

dt
, φ

〉
∀φ ∈ Uh,

a2

〈
d2vh
dt2

, ψ

〉
−B∗

h

(
duh

dt
, ψ

)
=

〈
dF2

dt
, ψ

〉
∀ψ ∈ Vh.

Taking φ = duh

dt and ψ = dvh
dt and adding the two equations, we obtain

1

2

d

dt

(
a1

∥∥∥∥duh

dt

∥∥∥∥2

+ a2

∥∥∥∥dvhdt
∥∥∥∥2)

=

〈
dF1

dt
,
duh

dt

〉
+

〈
dF2

dt
,
dvh
dt

〉
,

and consequently∥∥∥∥a1
duh

dt

∥∥∥∥ +

∥∥∥∥a2
dvh
dt

∥∥∥∥ ≤ K

{∥∥∥∥du0

dt

∥∥∥∥ +

∥∥∥∥dv0

dt

∥∥∥∥ +

∫ t

0

(∥∥∥∥dF1

dt

∥∥∥∥ +

∥∥∥∥dF2

dt

∥∥∥∥
)

ds

}
.

By using (4.3),

‖vh‖Z′ ≤ K‖Bhvh‖W = K sup
φ∈Uh

|Bh(vh, φ)|
‖φ‖W

≤ K sup
φ∈Uh

|〈duh

dt , φ〉|
‖φ‖W

= K

∥∥∥∥duh

dt

∥∥∥∥.
Similarly, we have

‖uh‖Z ≤ K

∥∥∥∥dvhdt
∥∥∥∥.

This completes the proof.
Before we state the convergence theorem, we will state a L2 convergence result

which is very similar to Theorem 4.1—that all functions are replaced by their time
derivative. It can be proved in exactly the same way as the proof of Theorem 4.1.

Lemma 4.4. Let u ∈ U and v ∈ V be the solution to (1.1)–(1.2) and let uh ∈ Uh

and vh ∈ Vh be the solution to the numerical scheme (3.3)–(3.4). Then for 0 ≤ t ≤ T ,
we have

∥∥∥∥ d

dt
(u− uh)(t)

∥∥∥∥+

∥∥∥∥ d

dt
(v − vh)(t)

∥∥∥∥ ≤ K

{
inf

φ∈Uh

‖ut − φ‖W + inf
ψ∈Vh

‖vt − ψ‖W ′

+

∫ t

0

(
inf

φ∈Uh

‖utt − φ‖W + inf
ψ∈Vh

‖vtt − ψ‖W ′

)
ds

}
.

(4.28)
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The following theorem states the convergence of the method (3.3)–(3.4) in the
discrete H1 norm. It can be seen that the H1 error is optimal with respect to the
norms and the FE spaces.

Theorem 4.5. Let u ∈ U and v ∈ V be the solution to (1.1)–(1.2) and let
uh ∈ Uh and vh ∈ Vh be the solution to the numerical scheme (3.3)–(3.4). Then for
0 ≤ t ≤ T , we have

‖v − vh‖Z′ ≤ K

(∥∥∥∥ d

dt
(u− uh)

∥∥∥∥ + inf
ψ∈Vh

‖ψ − v‖Z′

)
,(4.29)

‖u− uh‖Z ≤ K

(∥∥∥∥ d

dt
(v − vh)

∥∥∥∥ + inf
φ∈Uh

‖φ− u‖Z
)
.(4.30)

Proof. By the inf-sup condition (4.3), we obtain

‖Pvv − vh‖Z′ ≤ K‖Bh(Pvv − vh)‖W = K sup
φ∈Uh

Bh(Pvv − vh, φ)

‖φ‖W
.

Recalling (4.15), we have〈
d(u− uh)

dt
, φ

〉
+ Bh(Pvv − vh, φ) = 0 ∀φ ∈ Uh,

and consequently,

‖Pvv − vh‖Z′ ≤ K

∥∥∥∥ d

dt
(u− uh)

∥∥∥∥.
Let Ivv ∈ Vh be an arbitrary element of the FE space Vh, using the triangle inequality

‖v − vh‖Z′ ≤ ‖v − Ivv‖Z′ + ‖Ivv − Pvv‖Z′ + ‖Pvv − vh‖Z′ .

Following the proof of Theorem 4.1, we have

‖Ivv − Pvv‖Z′ ≤ K‖Ivv − v‖Z′ .

Hence, we obtain

‖v − vh‖Z′ ≤ K

(∥∥∥∥ d

dt
(u− uh)

∥∥∥∥ + ‖Ivv − v‖Z′

)
.

Since Ivv is arbitrary,

‖v − vh‖Z′ ≤ K

(∥∥∥∥ d

dt
(u− uh)

∥∥∥∥ + inf
ψ∈Vh

‖ψ − v‖Z′

)
.

So, (4.29) is proved. The estimte (4.30) can be proved in a similar fashion.
Now, we state and prove the convergence in the discrete H1 norm. We see that

the numerical scheme is O(hk) in the discrete H1 norm when the FE spaces Uh and
Vh contain polynomials of degree k.

Corollary 4.6. Assume k ≥ 0 is the largest integer such that Uh and Vh contain
polynomials of degree k. Let (u, v) ∈ W 1,p(0, T ;Hk+1(Ω))3 ∩W 2,p(0, T ;W k,∞(Ω))3,
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for p > 1, be the exact solution to the wave propagation problem (1.1)–(1.2), and let
(uh, vh) be the solution to the numerical scheme (3.3)–(3.4). Then

‖u− uh‖Z + ‖v − vh‖Z′ ≤ Khk(‖(u, v)‖W 1,p(0,T ;Hk+1(Ω))3

+ ‖(u, v)‖W 2,p(0,T ;Wk,∞(Ω))3).
(4.31)

Next, we prove a superconvergence result for some component of the derivative
of uh. We state this result as the following theorem.

Theorem 4.7. Let u be the exact solution to the wave propagation problem (1.1)–
(1.2) and let uh be the solution to the numerical method (3.3)–(3.4). Then

‖L⊥B∗(u− uh)‖L2(Ω)

≤ Khk+1
{
‖(u, v)‖W 2,1(0,T ;Wk+1,∞(Ω))3 + ‖u‖W 1,1(0,T ;Hk+2(Ω))

}
.

(4.32)

Proof. To prove this, we observe that for all ψ ∈ Vh

a2

∫
Ω

∂

∂t
(v − vh) · ψ dx−B∗

h(u− uh, ψ) = 0.

Let πhu be a function such that πhu|τ is a (k+ 1)th degree polynomial interpolant of
u|τ . Then we have

B∗
h(uh − πhu, ψ) = B∗

h(u− πhu, ψ) − a2

∫
Ω

∂

∂t
(v − vh) · ψ dx.

Recalling the definition of B∗
h, we have

B∗
h(uh − πhu, ψ) =

∫
Ω

B∗(uh − πhu)ψ dx +
∑
σ∈Eu

∫
σ

[uh − πhu]Lψ dσ.

Now, we choose ψ ∈ Vh such that Lψ = 0 and L⊥ψ = L⊥B∗(uh − πhu). This is
equivalent to sets (VD2) and (VD3) to being zero. Therefore,

B∗
h(uh − πhu, ψ) =

∫
Ω

(L⊥B∗(uh − πhu))2 dx,

‖ψ‖L2(Ω) = ‖L⊥B∗(uh − πhu)‖L2(Ω).

Consequently, we have

‖L⊥B∗(uh − πhu)‖2
L2(Ω) = B∗

h(u− πhu, ψ) − a2

∫
Ω

∂

∂t
(v − vh) · ψ dx.(4.33)

Now we will estimate the right-hand side of (4.33). By Lemma 4.4 and interpola-
tion error estimates (3.16), the second term on the right-hand side of (4.33) can be
estimated by

∥∥∥∥ ∂

∂t
(v − vh)

∥∥∥∥
L2(Ω)

≤ Khk+1(‖u‖W 2,1(0,T ;Wk+1,∞(Ω)) + ‖v‖W 2,1(0,T ;Wk+1,∞(Ω))2).

Using inverse type inequalities, we have

‖B∗(u− πhu)‖L2(Ω) ≤ Khk+1|u|Hk+2(Ω), ‖ψ · l‖L2(σ) ≤ Kh− 1
2 ‖ψ‖L2(τ ′),
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and by the trace inequality, we obtain

‖u− πhu‖L2(σ) ≤ Khk+ 3
2 |u|Hk+2(Ω).

Then the first term on the right-hand side of (4.33) can be estimated by

B∗
h(u− πhu, ψ) ≤ ‖B∗(u− πhu)‖L2(Ω)‖ψ‖L2(Ω)

+
∑
σ∈Eu

‖u− πhu‖L2(σ)‖Lψ‖L2(σ)

≤ Khk+1|u|Hk+2(Ω)‖ψ‖L2(Ω).

Combining the result, we prove the theorem.
Now, we will discuss the condition (1.4). In the following theorem, we show that

the numerical solution vh satisfies (1.4) in a weak sense. Let Sh be the space of
standard H1-conforming FE space of degree k + 1, namely p ∈ Sh if p|τ ∈ P k+1(τ)
and p is continuous across each σ ∈ E .

Theorem 4.8. Let v be the exact solution of the wave propagation problem (1.1)–
(1.2) and let vh be the numerical solution to the numerical scheme (3.3)–(3.4). Then∫

Ω

∂(v − vh)

∂t
ψ dx = 0(4.34)

if and only if ψ = B⊥p for p ∈ Sh.
Proof. If ψ = ∇p for p ∈ Sh, then ψ ∈ Vh. Using (4.16), we have proved (4.34).

Assume (4.34) holds. Then, using (4.16), we have B∗
h(Puu− uh, ψ) = 0. By (4.3), we

have ‖ψ‖Z′ = 0. By the definition of Z ′-norm, we have Bψ = 0 and [Lψ]|σ = 0 for
all σ ∈ Eu. Using Bψ = 0, we have ψ = B⊥p for some p. Since ψ|τ ∈ P k(τ)2, we
have p|τ ∈ P k+1(τ). Notice that Lψ is continuous on each edge in E0

v . Using this and
[Lψ]|σ = 0 for all σ ∈ Eu, we have that p is continuous across each edge in Eu ∪ E0

v .
So, the proof is complete.

5. Verification of inf-sup conditions. Now, we are in a position to prove that
the choice of Uh and Vh above satisfies the inf-sup condition (4.1)–(4.2).

Theorem 5.1. There is a uniform constant K > 0 such that

inf
ψ∈Vh

sup
u∈Uh

B∗
h(u, ψ)

‖u‖W ‖ψ‖Z′
≥ K.(5.1)

Proof. Let ψ ∈ Vh. It suffices to find u ∈ Uh such that

B∗
h(u, ψ) ≥ K‖ψ‖2

Z′ and ‖u‖ ≤ K‖ψ‖Z′ .(5.2)

Recalling the definition of B∗
h, we have

B∗
h(u, ψ) =

∫
Ω

u(Bψ) dx +
∑
σ∈Eu

∫
σ

[Lψ]u dσ.

First, we will define u1 ∈ Uh such that∫
Ω

u1(Bψ) dx ≥ K

∫
Ω

(Bψ)2 dx and

∫
Ω

(u1)
2 dx ≤

∫
Ω

(Bψ)2 dx.(5.3)
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Let τ ∈ T . We define the function u1 such that u1|τ = λτ,2λτ,3Bψ. Notice that
Bψ|τ ∈ P k−1(τ) and u1|τ is zero on the two edges of τ that belong to Eu, so u1|τ ∈
Rk(τ). Since λτ,2λτ,3 ≤ 1, the second equation in (5.3) holds. Notice that the quantity∫
τ
q2
k−1λτ,2λτ,3 dx defines a norm for qk−1 in the space P k−1(τ). Since norms in finite

dimensional spaces are equivalent, we have∫
τ

λτ,2λτ,3(Bψ)2 dx ≥ K

∫
τ

(Bψ)2 dx.

Summing up this equation for all τ ∈ T proves the first equation in (5.3).
Next, we will define u2 ∈ Uh such that∑

σ∈Eu

∫
σ

[Lψ]u2 dσ =
∑
σ∈Eu

(hσ)−1

∫
σ

[Lψ]2 dσ,(5.4)

∫
Ω

(u2)
2 dx ≤ K

∑
σ∈Eu

(hσ)−1

∫
σ

[Lψ]2 dσ.(5.5)

To do so, we define u2 so that
1. u2 = (hσ)−1[Lψ] at the k + 1 Gaussian points of σ for all σ ∈ Eu, and
2.

∫
τ
u2qk−1 dx = 0 for all qk−1 ∈ P k−1(τ) and τ ∈ T .

Then, clearly, (5.4) is satisfied. We will define a subspace U0
h of Uh by

U0
h =

{
φ ∈ Uh |

∫
τ

φqk−1 dx = 0,∀qk−1 ∈ P k−1(τ),∀τ ∈ T
}
.

Then the following quantity

∑
σ∈Eu

h2
σ

k+1∑
j=1

φ(αj)
2

defines a norm for U0
h . Since norms in finite dimensional spaces are equivalent, we

have ∫
τ

u2
2 dx ≤ K

∑
σ∈Eu

h2
σ

k+1∑
j=1

u2(αj)
2.

By the definition of u2, ∫
τ

u2
2 dx ≤ K

∑
σ∈Eu

k+1∑
j=1

[Lψ(αj)]
2.

Since [Lψ] is a polynomial of degree k, we have

k+1∑
j=1

[Lψ(αj)]
2 ≤ K(hσ)−1

∫
σ

[Lψ]2 dx,

which follows from norm equivalence in finite dimensional spaces. So, (5.5) is proved.
To prove (5.2), we take u = u1 + u2. Notice that by the definitions of u1 and u2,

we have ∫
τ

u2(Bψ) dx = 0 and

∫
σ

[Lψ]u1 dσ = 0.
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Using this together with (5.3), (5.4), and (5.5), we have proved (5.2).
Theorem 5.2. There is a uniform constant K > 0 such that

inf
φ∈Uh

sup
v∈Vh

Bh(v, φ)

‖v‖W ′‖φ‖Z
≥ K.(5.6)

Proof. Let φ ∈ Uh. As in the proof of the previous theorem, we find v ∈ Vh such
that

Bh(v, φ) ≥ K‖φ‖2
Z and ‖v‖ ≤ K‖φ‖Z .(5.7)

Recalling the definition of Bh, we have

Bh(v, φ) =

∫
Ω

(B∗φ)v dx−
∑
σ∈E0

v

∫
σ

(Lv)[φ] dσ.

We define v1 ∈ Vh such that∫
Ω

(B∗φ)v1 dx ≥ K1

∫
Ω

|B∗φ|2 dx and

∫
Ω

|v1|2 dx ≤ K

∫
Ω

|B∗φ|2 dx.(5.8)

We define the set

V 1
h (τ) = {v|τ | v ∈ Vh;Lv|σ = 0 ∀σ ∈ Ev}

and the linear functional

fτ (η) =

∫
τ

(B∗φ)η dx

for η ∈ V 1
h (τ). With the standard L2 norm, V 1

h (τ) is a Hilbert space. By the Riesz
representation theorem, there exist v1,τ ∈ V 1

h (τ) such that

fτ (η) =

∫
τ

v1,τη dx and ‖v1,τ‖L2(τ) = ‖fτ‖L2(τ)∗ ,

where ∗ denotes a norm in the dual space. That is,

‖fτ‖L2(τ)∗ = sup
η∈V 1

h (τ)

fτ (η)

‖η‖L2(τ)
.

We define v1 such that v1|τ = v1,τ . Then∫
Ω

|v1|2 dx =
∑
τ∈T

∫
τ

|v1,τ |2 dx ≤
∑
τ∈T

∫
τ

|B∗φ|2 dx =

∫
Ω

|B∗φ|2 dx,

which proves the second inequality in (5.8). To prove the first inequality in (5.8),
we will first show ‖fτ‖L2(τ)∗ defines a norm for B∗Uh on τ . So, it suffices to show
B∗φ = 0 if ‖fτ‖L2(τ)∗ = 0. Assume ‖fτ‖L2(τ)∗ = 0. Then we have

∫
τ
(B∗φ)η dx = 0

for all η ∈ V 1
h (τ). Notice that B∗φ ∈ P k(τ)2. Taking Lη = 0 and L⊥η = L⊥(B∗φ)

yields
∫
τ
(L⊥(B∗φ))2 dx = 0. So, we have L⊥(B∗φ) = 0 on τ . By the definitions of

L⊥ and B∗, we have (∂λτ,2 − ∂λτ,3)φ = 0. So, we have

φ =
k+1∑
j=0

cj(λτ,2 + λτ,3)
j .
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Since φ ∈ Uh, we have ck+1 = 0 and therefore L(B∗φ) ∈ P k−1(τ). Taking L⊥η = 0
and Lη = λτ,1L(B∗φ), we have

∫
τ
λτ,1(L(B∗φ))2 dx = 0, which implies L(B∗φ) = 0.

Hence B∗φ = 0. Since norms in finite dimensional spaces are equivalent, we have
‖fτ‖L2(τ)∗ ≥ K‖B∗φ‖L2(τ). Consequently, we obtain∫

Ω

(B∗φ)v1 dx =
∑
τ∈T

∫
τ

(B∗φ)v1,τ dx =
∑
τ∈T

fτ (v1,τ ) =
∑
τ∈T

∫
τ

v2
1,τ dx,

which proves the first inequality in (5.8).
We will find v2 ∈ Vh and a function v+ such that

−
∑
σ∈Ev

∫
σ

(L(v2 + v+))[φ] dσ ≥ K2

∑
σ∈E0

v

(hσ)−1

∫
σ

[φ]2 dσ,(5.9)

∫
Ω

|v2 + v+|2 dx ≤ K3

∑
σ∈E0

v

(hσ)−1

∫
σ

[φ]2 dσ.(5.10)

Let σ ∈ E0
v and let τ, τ̃ be the two triangles sharing the same edge σ. We define

V 2
h (τ ∪ τ̃) as follows:

V 2
h (τ ∪ τ̃) = {v|τ∪τ̃ + ∇(λτ,2λτ,3qk) | v ∈ Vh, (V D1) = (V D2) = 0; qk ∈ P k(τ ∪ τ̃)}.

Here, by (VD1) = (VD2) = 0, we mean both the degrees of freedom defined by (VD1)
and (VD2) are equal to zero. Also, the polynomial qk is fixed and will be chosen in
the following. With the standard L2(τ ∪ τ̃)2 norm, V 2

h (τ ∪ τ̃) is a Hilbert space. We
also define the following linear functional:

gτ (η) =

∫
σ

(Lη)[φ] dσ

for all η ∈ V 2
h (τ ∪ τ̃). By the Riesz representation theorem, there is an element

v2,τ + v+
τ ∈ V 2

h (τ ∪ τ̃) such that

gτ (η) =

∫
τ∪τ̃

(v2,τ + v+
τ )η dx and ‖v2,τ + v+

τ ‖L2(τ∪τ̃)2 = ‖gτ‖(L2(τ∪τ̃)2)∗ ,

where the norm ‖gτ‖(L2(τ∪τ̃)2)∗ is defined as

‖gτ‖(L2(τ∪τ̃)2)∗ = sup
η∈V 2

h (τ∪τ̃)

gτ (η)

‖η‖L2(τ∪τ̃)2
.

We then define v2 by v2|τ = v2,τ and v+ by v+|τ = v+
τ . Since

∫
σ
(Lη)2 dσ ≤ K(h−1

σ )∫
τ∪τ̃

|η|2 dx, we have

‖gτ‖2
(L2(τ∪τ̃)2)∗ ≤ 1

‖η‖2
L2(τ∪τ̃)2

∫
σ

(Lη)2 dσ

∫
σ

[φ]2 dσ ≤ Kh−1
σ

∫
σ

[φ]2 dσ.

Summing up all τ ∈ T proves (5.10). To prove (5.9), we will first show that [φ]|σ =
0 if ‖gτ‖(L2(τ∪τ̃)2)∗ = 0. Now, we assume ‖gτ‖(L2(τ∪τ̃)2)∗ = 0. Then we have
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σ
(Lη)[φ] dσ = 0 for all η ∈ V 2

h (τ ∪ τ̃). We take η|τ ∈ P k(τ)2 and η|τ̃ ∈ P k(τ̃)2

such that Lη = [φ] at the k + 1 Gaussian points of σ. Then, η ∈ V 2
h (τ ∪ τ̃) and

hσ

k+1∑
j=1

wj [φ(αj)]
2 dx =

∫
σ

(Lη)[φ] dx = 0,

where the first equality follows from the Gaussian quadrature rule; here wj denotes
the weight and αj denotes the quadrature point. Since the weights wj > 0, we have
[φ] = 0 at the k + 1 Gaussian points of σ. Notice that [φ]|σ is a polynomial of degree
k + 1. So, we have that [φ]|σ is a scalar multiple of the (k + 1)th degree Legendre
polynomial, namely [φ]|σ = bPk+1 for some constant b, where Pk+1 is the Legendre
polynomial of degree k + 1. We take η = ∇(λτ,2λτ,3qk) with qk to be determined
below. Notice that Lη is the tangential derivative of λτ,2λτ,3qk along σ. By a change
of variable, we have∫

σ

(Lη)[φ] dσ = d

∫ 1

−1

d

dz
((1 − z2)qk(z))[φ(z)] dz

= d

∫ 1

−1

d

dz
((1 − z2)qk(z))bPk+1(z) dz

for some constant d > 0. Notice that Pk+1 satisfies the Legendre differential equation

d

dz

(
(1 − z2)

dPk+1

dz

)
= −(k + 1)(k + 2)Pk+1.

So, we take qk|σ = dPk+1

dz and extend the definition of qk over all of τ ∪ τ̃ . Then we
obtain ∫

σ

(Lη)[φ] dx = −bd(k + 1)(k + 2)

∫ 1

−1

P
2
k+1(z) dz.

This implies that b = 0. Hence [φ] = 0. So, ‖gτ‖(L2(τ∪τ̃)2)∗ defines a norm on L2(σ).
Since norms in finite dimensional spaces are equivalent, we obtain

‖gτ‖(L2(τ∪τ̃)2)∗ ≥ K(τ ∪ τ̃)‖[φ]‖L2(σ).

A standard scale change argument yields

‖gτ‖(L2(τ∪τ̃)2)∗ ≥ K(hσ)−
1
2 ‖[φ]‖L2(σ),

which proves (5.9).
Combining (5.8), (5.9), and (5.10), we have

Bh(δv1 + v2 + v+, φ) ≥ δK1

∫
Ω

|B∗φ|2 dx + K2

∑
σ∈Ev

(hσ)−1

∫
σ

[φ]2 dσ

+

∫
Ω

(B∗φ)(v2 + v+) dx.

By the Cauchy–Schwarz inequality,∫
Ω

(B∗φ)(v2 + v+) dx ≥ − K2

2K3

∫
Ω

|v2 + v+|2 dx− K3

2K2

∫
Ω

|B∗φ|2 dx.
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So, we have

Bh(δv1 + v2 + v+, φ) ≥
(
δK1 −

K3

2K2

)∫
Ω

|B∗φ|2 dx +
K2

2

∑
σ∈Ev

(hσ)−1

∫
σ

[φ]2 dσ.

Now, we choose δ such that δK1 − K3

2K2
= 1. Then we have

Bh(δv1 + v2 + v+, φ) ≥ min

(
1,

K2

2

)
‖φ‖2

Z .

Since Bh(v+, φ) = 0, we have

Bh(δv1 + v2, φ) ≥ min

(
1,

K2

2

)
‖φ‖2

Z .

We take v = δv1 + v2 ∈ Vh so that the first inequality in (5.7) is proved. To prove
the second inequality in (5.7), we first notice that ‖v2,τ‖L2(σ) defines a norm for
V 2
h (τ ∪ τ̃) since ‖v2,τ‖L2(σ) = 0 implies (VD3) = 0 which in turn implies v2,τ = 0 by

unisolvence of the FE space Vh. By norm equivalence in finite dimensional spaces, we
have ‖v2,τ‖L2(τ) ≤ Kh

1
2 ‖v2,τ‖L2(σ) ≤ ‖v2,τ‖L2(τ). Then we obtain

‖δv1 + v2‖L2(τ) ≤ δ‖v1‖L2(τ) + ‖v2‖L2(τ) ≤ K‖v1‖L2(τ) + h
1
2 ‖v2‖L2(σ).

Furthermore, we have the following orthogonality condition:∫
σ

v2,τv
+
τ dσ =

∫ 1

−1

v2,τ
d

dz

(
(1 − z2)

dPk+1

dz

)
dz

= −(k + 1)(k + 2)

∫ 1

−1

v2,τPk+1 dz = 0

since the function Pk+1 is equal to zero at the k + 1 Gaussian points of σ. By the
orthogonality condition,

‖v2‖2
L2(σ) ≤ ‖v2‖2

L2(σ) + ‖v+‖2
L2(σ) = ‖v2 + v+‖2

L2(σ) ≤ Kh−1‖v2 + v+‖2
L2(τ∪τ̃),

where the last inequality follows from trace inequality. So, we have

‖δv1 + v2‖L2(τ∪τ̃)2 ≤ K‖v1‖L2(τ∪τ̃)2 + K‖v2 + v+‖L2(τ∪τ̃)2 .

Summing up all τ ∈ T and using estimates (5.8) and (5.10) completes the
proof.

6. Numerical examples. In this section we present a series of numerical ex-
periments which give quantitative results and confirm the rate of convergence of the
method (3.3)–(3.4). We will, in particular, consider the TE mode of Maxwell’s equa-
tions (E) and set Ω = [0, 2π]2, a1 = a2 = 1, and F1 = F2 = 0. In addition, the
function u is the magnetic field H while the vector v is the electric field E. The exact
solution to Maxwell’s equations is

H(x, t) = cos(t) cos(x1) + cos(t) cos(x2),

E1(x, t) = − sin(t) sin(x2),

E2(x, t) = sin(t) sin(x1).
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Table 6.1

L2 norm errors at T = π/4 for k = 0. Rate of convergence is 1.0298.

N NT L2 error

10 100 1.311
20 200 0.4799
40 400 0.2782
80 800 0.1301
160 1600 0.06653
320 3200 0.03378

Table 6.2

Errors in various norms at T = π/4 for k = 1.

N NT L2 error ‖H −Hh‖Z ‖E − Eh‖Z′

10 100 0.1809 1.526 0.7213
20 200 0.04528 0.6619 0.3472
40 400 0.01111 0.3498 0.1623
80 800 0.002797 0.1597 0.1019
160 1600 0.0007022 0.06220 0.04968

The domain Ω is triangulated in the following manner. First, we divide Ω into
N × N uniform squares. Then, we subdivide each square by connecting the lower
left corner and the upper right corner to obtain two triangles. We further subdivide
each triangle into three triangles by connecting the center of the triangle to its three
vertices. For the resulting ODE system in time, we use the standard leap-frog scheme.
Below we use NT to represent the number of time steps.

We first consider an example for the first order method, that is, k = 0. We then
test the rate of convergence by comparing the solution to the scheme (3.3)–(3.4) and
the exact solution at T = π

4 . Table 6.1 shows the discrete L2 errors for various mesh
sizes, from N = 10 to N = 320. Here, we choose the time step small enough so that
a suitable CFL condition for the leap-frog scheme is satisfied. We will use the results
from Table 6.1 and the least squares method to estimate the rates of convergence of the
scheme in the discrete L2 norm. More precisely, we assume the error is proportional
to hβ for some β ∈ R, and then perform a least square data fitting using the data
from Table 6.1. Doing this, the numerical rate of convergence is 1.0298. This confirms
that the scheme is first order convergence in the discrete L2 norm.

Next, we consider an example with k = 1, that is, the FE spaces Uh and Vh, which
contain all linear polynomials and a subset of quadratic polynomials. We will test the
rates of convergence in various norms at T = π/4. Table 6.2 shows the results of error
in various norms with various mesh sizes. In the third column of Table 6.2, we give
the sum of the error for both H and E in the discrete L2 norm. In the fourth column,
we have the error for the magnetic field in the Z-norm. In the fifth column, we have
the error for the electric field in the Z ′-norm. Table 6.3 shows the estimated rates
of convergence. From the table, we see that the estimated rate of convergence in the
discrete L2 norm is approximately 2. Moreover, the estimated rates of convergence
in H1 semi-norms are approximately equal to 1. Our theoretical statements are thus
confirmed by this experiment.

In Table 6.4, we also show the error for the divergence of E as well as the normal
jump of E. We have not proved convergence results in these two norms, but they
are implied by the estimates that we proved in previous sections. The error in the
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Table 6.3

Estimated rate of convergence at T = π/4 for k = 1.

Norm Estimated rate

L2 norm 2.004

‖H −Hh‖Z 1.129

‖E − Eh‖Z′ 0.9489

Table 6.4

Normal jump and divergence errors at T = π/4 for k = 1.

N NT
∑

σ∈E (h
− 1

2
σ )‖L⊥(E − Eh)‖L2(σ) ‖div(E − Eh)‖L2(Ω)

10 100 1.212 0.2519

20 200 0.5692 0.1180

40 400 0.2610 0.05039

80 800 0.1387 0.03494

160 1600 0.06686 0.01632

divergence of E is measured by ‖div(E − Eh)‖L2(Ω) while the error in the normal

jump of E is measured by
∑

σ∈E(h
− 1

2
σ )‖L⊥(E − Eh)‖L2(σ). The estimated rates in

both norms are 0.9652 and 1.040, respectively. So, the rates of convergence are indeed
first order for these two norms.

In what follows, we will consider the one dimensional scalar wave equation on
Ω = [0, 2π],

∂u

∂t
=

∂v

∂x
,

∂v

∂t
=

∂u

∂x
,

with periodic boundary condition. The purpose is to compare our new optimal DG
with the central DG method. The central DG method is typically based on piecewise
polynomial approximation without continuity requirement across cell interfaces. Flux
integrals along cell boundaries are evaluated by using the average of two values of the
numerical solutions from the two neighboring cells, or the so called central numerical
flux; see, for example, [7]. We choose u(x, t) = esin(x−t) and v(x, t) = −esin(x−t) to
be the exact solution. We will compare the numerical solutions by the two methods
at T = 20 using 20 spatial cells and the leap-frog scheme for the time discretization.
Figure 6.1 shows the numerical solutions. First, we see that both methods preserve
energy. Second, we see that there are spurious modes in the numerical solutions
obtained by the central DG. It can be shown that the central DG does not satisfy the
inf-sup conditions that we introduce in this paper. With our new optimal DG, which
verifies the inf-sup conditions, we see that there is no spurious mode appearing in the
numerical solution.

Now we will compare our new DG with an upwind DG method. The upwind DG
method is typically based on piecewise polynomial approximation without continuity
requirement. Flux integrals along cell boundaries are evaluated by taking the upwind
value of the numerical solution from the two neighboring cells, or the so called upwind
numerical flux; see, for example, [10]. We will compare the numerical solutions by
both methods using the same setting except that T = 100 and the 4th order Runge–
Kutta method is used for time stepping for the upwind DG. Figure 6.2 shows the
numerical results. We see that both methods contain no spurious mode. For the
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Fig. 6.1. Comparison of the optimal DGM and central DGM.
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Fig. 6.2. Comparison of the optimal DGM and upwind DGM.

upwind DG, it is well known that it is dissipative as seen from the numerical result.
On the contrary, our optimal DG preserves energy well.

Before ending this section, we will compare the upwind DG, central DG, and
our new optimal DG with piecewise linear approximation. Due to the nature of the
three schemes, they are all explicit and suitable for unstructured grids. Because of
upwinding, the upwind DG is not energy preserving. In terms of the total number
of degrees of freedom (DOF), both the upwind DG and the central DG need 4N
unknowns. This is because there are 4 unknowns on each cell. On the contrary,
owing to the extra continuity conditions, our new DG needs only 3N unknowns,
which is more efficient in terms of memory storage. In addition, the central DG
is only first order accurate, which is suboptimal since we are considering piecewise
linear approximation. Both the upwind DG and our new DG have optimal order of
convergence, namely, second order in the L2 norm. We summarize all these properties
in Table 6.5.

7. Conclusion. In this paper, we have developed and analyzed a new class of
discontinuous Galerkin methods. This new DG can be seen as a compromise between
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Table 6.5

Comparison among upwind, central, and our new DG with piecewise linear polynomials.

Upwind Central Our

Explicit scheme Y Y Y

Unstructured grid Y Y Y

Energy conservation N Y Y

DOF 4N 4N 3N

Order O(h2) O(h) O(h2)

the standard DG and the FE in the sense that our new DG is explicit as standard
DG and is energy conserving as FE. Energy conservation is an important property for
a large class of applications that involves the numerical solutions of wave equations
while explicitness provides a more efficient scheme where no matrix inversion is needed
at each time step. We have shown that the new DG is stable in both the discrete L2

norm and discrete H1 norm. Moreover, the convergence rate is optimal with respect
to the order of the polynomial space. To the best of our knowledge, our new DG is the
first method that satisfies all of the following properties: explicit, energy conserving,
suitable for unstructured grids, and optimal rate of convergence.
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ANALYSIS OF A STABILIZED FINITE ELEMENT
APPROXIMATION OF THE TRANSIENT

CONVECTION-DIFFUSION EQUATION USING AN ALE
FRAMEWORK∗
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Abstract. In this paper we analyze a stabilized finite element method to approximate the
convection-diffusion equation on moving domains using an arbitrary Lagrangian Eulerian (ALE)
framework. As basic numerical strategy, we discretize the equation in time using first and second
order backward differencing (BDF) schemes, whereas space is discretized using a stabilized finite
element method (the orthogonal subgrid scale formulation) to deal with convection dominated flows.
The semidiscrete problem (continuous in space) is first analyzed. In this situation it is easy to identify
the error introduced by the ALE approach. After that, the fully discrete method is considered. We
obtain optimal error estimates in both space and time in a mesh dependent norm. The analysis
reveals that the ALE approach introduces an upper bound for the time step size for the results to
hold. The results obtained for the fully discretized second order scheme (in time) are associated to a
weaker norm than the one used for the first order method. Nevertheless, optimal convergence results
have been proved. For fixed domains, we recover stability and convergence results with the strong
norm for the second order scheme, stressing the aspects that make the analysis of this method much
more involved.

Key words. stabilized finite elements, second order backward differencing, arbitrary Lagrangian
Eulerian
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1. Introduction. In this paper we propose and analyze two time integration
schemes, of first and of second order, for the numerical approximation of the transient
convection-diffusion equation in moving domains. This equation is written in an
arbitrary Lagrangian Eulerian (ALE) framework, in which the temporal derivatives
are expressed with respect to the reference of a moving domain Ωt obtained from
a mapping of the domain at the initial time. The space discretization is carried out
using a stabilized finite element method (FEM) that allows us to deal with convection
dominated flows.

The ALE framework, initially used with a finite element approximation in [14], has
become widely popular when simulating fluid-structure interaction problems. Even
though one can find a lot of numerical experimentation using the ALE approach, some
aspects have remained in the dark for a long time. For instance, the meaning and
effect of the geometric conservation law (GCL) and how the accuracy of a numerical
method in fixed domains is spoiled when introducing moving domains with an ALE
formulation were not clear. Farhat, Geuzaine, and Grandmont have shown in [15]
that the GCL makes the numerical scheme preserve a maximum principle. In [18], the
authors have shown that this condition is not necessary to obtain second order ALE
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schemes in a finite volume framework. More recently, in a finite element setting where
the transient convection-diffusion equation is taken as the model equation, works such
as [16] and [25] have also clarified the effect of the GCL on the stability properties,
identified the different behavior of conservative and nonconservative formulations, and
proved some convergence results. Further analyses, for second order schemes, have
been developed in later works, such as [17] and [3]. Herein we use the mathematical
setting used, e.g., in [25] for the description of this method.

The ALE framework itself does not introduce any error at the continuous level.
However, when the problem is discretized in time, some errors due to the ALE descrip-
tion arise. At this step, for fixed domains, the only source error is the time derivative
of the unknown. In addition, for moving domains, the error from the evaluation of
the mesh velocity also has to be accounted for. This velocity is calculated as the time
derivative of the space position of a particle. Thus, an error is induced when this time
derivative is calculated numerically.

On the other hand, in practical applications the mesh velocity belongs to the finite
element space and does not introduce any interpolation error. Thus, we consider that
the ALE formulation is better understood by analyzing the problem semidiscretized
in time. However, most numerical analyses (see [16], [17], and [3]) first study the
semidiscrete problem in space and then the fully discretized problem.

The convection-diffusion equation (as the Navier–Stokes equations) when dis-
cretized in space with the standard Galerkin formulation shows numerical oscillations
if the convective term is dominant. With the aim of developing an FEM free of spuri-
ous oscillations many methods have been proposed during the last twenty years, such
as streamline upwind/Petrov–Galerkin (SUPG) (see [6]), Galerkin/least-squares (see
[24]), or the subgrid scale stabilization (see [22]). A comparison of different stabiliza-
tion methods can be found in [7]. The orthogonal subgrid scale (OSS) method used
in this paper belongs to this last family and was introduced by Codina in [8]. The
method is designed by taking as starting point the subgrid scale variational setting
proposed by Hughes et al. in [23] and modeling the subgrid problem in a certain way,
in particular by taking the subgrid scales orthogonal to the finite element space. The
common aspect of all of these methods is found in the convergence analysis of the
discrete problem in space. For the Galerkin approximation, the error estimate bound
depends on the physical properties (the Péclet number for the convection-diffusion
equation) and increases as the convective term is more dominant. In fact, the stabil-
ity bound blows up as diffusion goes to zero, reflecting the fact that the continuous
problem is a singularly perturbed one. But when using stabilized methods this neg-
ative feature does not appear anymore. This is because the new terms introduced
by the stabilization control the convective term norm. In the present analysis we
have been able to obtain appropriate error estimates by controlling only a part of the
convective term, which is an innovative result.

As far as we know, most of the existing stabilization techniques are extended
to transient problems using the framework of the discontinuous Galerkin space-time
formulation, increasing notably the computer cost for schemes in time of order two
or higher. This situation has been improved by Guermond in [20], where he analyzes
the introduction of a certain numerical subgrid viscosity. Optimal convergence results
are obtained for an evolutionary equation. The key point is the uncoupling of the sta-
bilization terms with the temporal derivative of the unknown. Another stabilization
method with this feature is presented in [4].

Codina and Blasco analyze in [12] the transient convection-diffusion-reaction
equation discretized in space using the OSS method and in time with the backward
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Euler time integration. Further, they consider the tracking of the subscales in time.
Optimal convergence and stability results are obtained.

The present paper can be viewed as an extension of [12]. We generalize the
situation to moving domains (using an ALE approach). In addition, first and second
order backward differencing (BDF) time integration schemes are considered, which
will be denoted by BDF1 and BDF2, respectively. The blend of a stabilized FEM
with the use of an ALE framework is one of the innovative aspects of this paper.

In order to analyze the stabilized method for transient problems, the following
strategy is adopted in [12]: First the semidiscrete problem is studied (where no sta-
bilization terms appear) and later the fully discrete method is analyzed. As shown
in [12], this provides a natural way to deal with the subscales whose approximation
enhances the stability and accuracy of the formulation. The main drawback of this
strategy is that space regularity for the convergence analysis needs to be assumed for
the semidiscrete solution, not for the continuous one.

The first time integration scheme considered uses the classical backward Euler
formula for the approximation of both the time derivative of the unknown and the
calculation of the mesh velocity. We label this method as follows:

• BDF1-BDF1δt for the problem semidiscretized in time,
• BDF1-BDF1δt,h for the fully discretized problem using the classical Galerkin

approximation in space,
• BDF1-BDF1-OSSδt,h for the fully discretized problem using the OSS method

in space,
• BDF1-OSSδt,h for the fully discretized problem using the OSS method in

space on fixed domains (not in an ALE framework).
In the second method the time integration makes use of the second order BDF formula.
Again, we use the following notation:

• BDF2-BDF2δt for the problem semidiscretized in time,
• BDF2-BDF2δt,h for the fully discretized problem using the classical Galerkin

approximation in space,
• BDF2-BDF2-OSSδt,h for the fully discretized problem using the OSS method

in space,
• BDF2-OSSδt,h for the fully discretized problem using the OSS method in

space on fixed domains (not in an ALE framework).
Let us underline what is new in each case. The BDF1-BDF1δt,h method has been

analyzed in [16]. As explained above, we change the order of the discretization: First
we analyze BDF1-BDF1δt and then BDF1-BDF1-OSSδt,h, introducing the appropri-
ate stabilization terms. For fixed domains, BDF1-OSSδt,h has been analyzed in [12].
However, the analysis herein is slightly different. The analysis of convergence and
stability of the semidiscrete method BDF2-BDF2δt is new, as it is for the method’s
fully discrete stabilized version BDF2-BDF2-OSSδt,h. We specially note the fact that
convergence results independent of the physical properties can be obtained without
the full norm of the convective term. Even for fixed domains, the stability and con-
vergence results for BDF2-OSSδt,h are new. In all cases the long-term behavior has
been considered.

Numerical experimentation with the ALE methods (for diffusion dominated prob-
lems using the Galerkin method) BDF1-BDF1δt,h and BDF2-BDF2δt,h can be found
in [17], [3], and [25], showing the expected behavior. The application of BDF1-OSSδt,h

and BDF2-OSSδt,h can be found in [9] and [11] for the solution of fluid problems. Fi-
nally, the blend of these methods, BDF1-BDF1-OSSδt,h and BDF2-BDF2-OSSδt,h,
has been used for simulating engineering problems in [1], with excellent results.
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Table 1.1

List of main results.

Method Main result Label
BDF1-BDF1δt Coercivity Theorem 3.1

Conditional stability Corollary 3.3
Convergence Theorem 3.4

BDF2-BDF2δt Coercivity Theorem 3.6
Conditional stability Corollary 3.7
Convergence Theorem 3.8

BDF1-BDF1-OSSδt,h Weak coercivity Theorem 4.2
Strong inf-sup Corollary 4.7
Strong conditional stability Corollary 4.8
Strong convergence Theorem 4.11

BDF2-BDF2-OSSδt,h Weak coercivity Theorem 4.12
Weak conditional stability Corollary 4.13
Weak convergence Theorem 4.17

BDF2-OSSδt,h Results of BDF2-BDF2-OSSδt,h +
Strong Λ-coercivity Theorem 4.20
Strong stability Corollary 4.22
Strong convergence Theorem 4.25

The paper is organized as follows. In section 2 we state the governing equations for
moving domains in an ALE framework. Some important ingredients needed to define
the ALE approach are introduced. The semidiscrete problem is formulated for both
BDF1 and BDF2. The section ends with the presentation of the OSS stabilization
method and the fully discrete problem. Section 3 is devoted to the semidiscrete
problem. First and second order methods are considered, for which stability and
optimal convergence estimates are obtained. Section 4 presents an analogous analysis
to that of section 3 but for the fully discrete problem. Finally, some conclusions are
drawn in section 5.

In Table 1.1 we have summarized the main results proved in this paper in order
to provide the reader with a road map for the subsequent discussion. The concepts
used in this table (weak, strong, and Λ-coercivity) will be introduced later.

2. Problem statement.

2.1. The continuous problem. In order to study the ALE framework together
with a stabilized FEM, we take as a model test problem the transient convection-
diffusion equation. The problem written in an Eulerian framework consists in finding
a function u such that

∂u

∂t
− νΔu + a · ∇u = f in Ωt × (0, T ),(2.1a)

u = 0 on ∂Ωt × (0, T ),(2.1b)

u(x0, 0) = u0 in Ω0 × {0},(2.1c)

where Ωt ⊂ R
d

(d=2,3) is a bounded and polyhedral domain (moving in time), [0, T ]
is the time interval of analysis, a is a divergence-free velocity field, and ν > 0 is the
diffusion coefficient. Homogeneous boundary conditions are assumed to clarify the
analysis. We also assume the following regularity of the data:

f ∈ L2(0, T ;H−1(Ωt)), u0 ∈ L2(Ω0), a ∈ L∞(Ωt),

assuring the existence of a unique solution u(t) ∈ L2(0, T ;H1(Ωt))∩C0(0, T ;L2(Ωt)).
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We introduce some key ingredients of an ALE framework. Let At be a family of
mappings, which for all t ∈ [0, T ] map a point x0 ∈ Ω0 into a point x ∈ Ωt:

At : Ω0 −→ Ωt, x(x0, t) = At(x0).

We assume that At is invertible with inverse A−1
t . For t1, t2 ∈ [0, T ] we define

At1,t2 : Ωt1 −→ Ωt2 , At1,t2 = At2 ◦ A−1
t1 .

We note that the family of mappings is arbitrary. Several techniques have been
suggested in order to construct this ALE mapping. If At is the mapping arising from
the motion of the particles, the resulting formulation would be of pure Lagrangian
type.

Let us consider a function f : Ωt × [0, T ] −→ R. We indicate with f̂ = f ◦At the
corresponding function in the ALE frame:

f̂ : Ω0 × [0, T ] −→ R, f̂(x0, t) = f(At(x0), t).

Furthermore, the time derivatives in the ALE frame are defined as follows:

∂f

∂t

∣∣∣∣
x0

: Ωt × [0, T ] −→ R,
∂f

∂t

∣∣∣∣
x0

(x, t) =
∂f̂

∂t
(x0, t).

The domain velocity w is calculated using the expression

w(x, t) =
∂x

∂t

∣∣∣∣
x0

=
∂At(x0)

∂t
,

and the Jacobian of the ALE mapping is given by

Jt = det(J t), J t =
∂x

∂x0
.

We recall the Reynolds transport formula. Let ψ(x, t) be a function defined in Ωt.
Then, for any subdomain Vt ⊆ Ωt such that Vt = At(V0) with V0 ⊆ Ω0, it holds that

d

dt

∫
Vt

ψ(x, t) dV =

∫
Vt

(
∂ψ

∂t

∣∣∣∣
x0

+ ψ∇ ·w
)

dV.

In particular, if v : Ωt −→ R, that is, if v does not depend explicitly on time, we have
that

d

dt

∫
Ωt

v dΩ =

∫
Ωt

v∇ ·w dΩ.(2.2)

With all this notation introduced, we are ready to write (2.1) in the ALE frame-
work. It now reads

∂u

∂t

∣∣∣∣
x0

− νΔu + (a−w) · ∇u = f in Ωt × (0, T ),(2.3a)

u = 0 on ∂Ωt × (0, T ),(2.3b)

u(x0, 0) = u0 in Ω0 × {0}.(2.3c)
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The functional space

V(Ωt) :=
{
v : Ωt → R, v = v̂ ◦ A−1

t , v̂ ∈ H1
0 (Ω0)

}
, t ∈ (0, T ),

allows us to write (2.3) in its variational form. The variational problem reads as
follows: find u(t) ∈ V(Ωt) for all t ∈ (0, T ) such that(

∂u(t)

∂t
, v

)
Ωt

+ ν (∇u(t),∇v)Ωt
+ ((a−w(t)) · ∇u(t), v)Ωt

= 〈f(t), v〉Ωt ,(2.4)

for all v ∈ V(Ωt), where (·, ·)Ωt stands for the L2(Ωt) inner product and 〈·, ·〉Ωt for
the duality pairing in H−1(Ωt) ×H1

0 (Ωt).
Let us rescale the time variable as t ← t/T so that the new time interval is [0, 1]

and the coefficient 1/T has to be inserted in front of the time derivatives. The reason
for this change is to display which terms in the stability and convergence results
disappear as T → ∞, that is, the long-term behavior. After rescaling, problem (2.4)
is transformed into

1

T

(
∂u(t)

∂t
, v

)
Ωt

+ ν (∇u(t),∇v)Ωt
+ ((a−w(t)) · ∇u(t), v)Ωt

= 〈f(t), v〉Ωt ,(2.5)

and now the domain velocity is

w(x, t) =
1

T

∂x

∂t

∣∣∣∣
x0

.(2.6)

We take into account this rescaling in property (2.2), which now reads

1

T

d

dt

∫
Ωt

v dΩ =

∫
Ωt

v∇ ·w dΩ.(2.7)

2.2. The semidiscrete problem in time. Let us introduce some notation that
we will use throughout the work. Consider a uniform partition of [0, 1] into N time
intervals of length δt. Let us denote by fn the approximation of a time dependent
function f at time level tn = nδt. We will also denote

δfn+1 ≡ δ(1)fn+1 = fn+1 − fn,

δ(i+1)fn+1 = δ(i)fn+1 − δ(i)fn, i = 1, 2, 3, . . . .

The discrete operators δ(i+1) are centered. We will also use the backward difference
operators

D1f
n+1 =

δfn+1

δt
=

fn+1 − fn

δt
,

D2f
n+1 =

3

2δt

(
fn+1 − 4

3
fn +

1

3
fn−1

)
.

Let us discretize problem (2.5) in time, once t has been normalized. We assume
the force term is continuous in time and denote the time level by a superscript. We
start using the BDF1 time integration scheme. It leads to the following problem: for
n = 0, 1, . . . , N − 1, given un, find un+1 ∈ V(Ωtn+1) such that

1

T

(
un+1 − un, vn+1

)
Ωtn+1

+ δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

= δt〈fn+1, vn+1〉Ωtn+1 ,(2.8)

with u0 = u0 in L2(Ω0).
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Furthermore, we discretize in time the ALE mapping using a linear interpolation.
The discretized ALE mapping An+1

t is defined for a given time slab [tn, tn+1] as

An+1
t (x0, t) =

t− tn

δt
Atn+1(x0) +

tn+1 − t

δt
Atn(x0).

Thus, the mesh velocity is constant on each time step and is given by

ŵn+1(x0) =
Atn+1(x0) −Atn(x0)

Tδt

and wn+1(x, t) = ŵn+1((An+1
t )−1(x)) for t ∈ (tn, tn+1]. Equation (2.8) with this

mesh velocity defines the BDF1-BDF1δt method. Note that the superscript n + 1
in w denotes that it varies with time within the time interval (tn, tn+1] where it is
defined. However, in section 3 we will simply denote wn+1 ≡ wn+1(x, tn+1). Since
An+1

tn+1 = Atn+1 , we will write wn+1(x, tn+1) = ŵn+1(A−1
tn+1(x)) or, for x arbitrary,

wn+1 = ŵn+1 ◦ A−1
tn+1 .

For the numerical analysis we rewrite the transient problem using a different
setting. The sequence of problems (2.8) can be written in a unified manner as follows:
find a sequence U = {u0, u1, u2, . . . , uN} such that

B(U, V ) = L(V )(2.9)

for all sequences V , where

B(U, V ) :=
1

2T

(
u0, v0

)
Ω0

+

N−1∑
n=0

[
1

T

(
δun+1, vn+1

)
Ωtn+1

+ δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

]
,(2.10)

L(V ) :=
1

2T

(
u0, v0

)
Ω0

+

N−1∑
n=0

δt〈fn+1, vn+1〉Ωtn+1 .(2.11)

Observe that the initial condition has been embedded in the variational problem.
In order to reach second order accuracy in time, the BDF2 integration scheme is

used. It leads to the following time discretization of (2.5):

1

2T

(
3un+1 − 4un + un−1, vn+1

)
Ωtn+1

+ δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

= δt〈fn+1, vn+1〉Ωtn+1 .(2.12)

This problem has to be initialized. For instance, we can obtain u1 with (2.8) and
u0 = u0 in L2(Ω0) keeping the order of convergence of the method. In order to keep
this accuracy, a quadratic interpolation is used to approximate the ALE mapping.
For a given time slab [tn, tn+1], this interpolation is given by

An+1
t (x0, t) =

(t− tn)(t− tn−1)

2δt2
Atn+1(x0)

− (t− tn+1)(t− tn−1)

2δt2
Atn(x0) +

(t− tn+1)(t− tn)

2δt2
Atn−1(x0).
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Thus, the mesh velocity on each time step is linear in time and is given by

ŵn+1(x0, t) =
2t− tn − tn−1

2Tδt2
Atn+1(x0)

− 2t− tn+1 − tn−1

2Tδt2
Atn(x0) +

2t− tn+1 − tn

2Tδt2
Atn−1(x0)

and wn+1(x, t) = ŵn+1((An+1
t )−1(x), t) for t ∈ (tn, tn+1]. It is easily checked that at

tn+1 we recover the BDF2 formula for the mesh velocity.
Again, we can rewrite the transient problem as an abstract “variational” problem

(2.9), now with the bilinear form

B(U, V ) =
1

T

(
u1 − u0, v1

)
Ωt1

+ δtν
(
∇u1,∇v1

)
Ωt1

+ δt
(
(a−w1) · ∇u1, v1

)
Ωt1

+
1

2T

(
u0, v0

)
Ω0

+

N−1∑
n=1

[
1

2T

(
3un+1 − 4un + un−1, vn+1

)
Ωtn+1

+ δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

]
(2.13)

and the linear form

L(V ) :=
1

2T

(
u0, v0

)
Ω0

+

N−1∑
n=0

δt〈fn+1, vn+1〉Ωtn+1 .(2.14)

We end this subsection by giving the norm for which stability and convergence
results are obtained in section 3 for the previous semidiscrete problems:

|||V |||2 =
1

T
sup

n∈[0,N ]

‖vn‖2
L2(Ωtn ) +

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
.(2.15)

Given a normed space X, for 1 ≤ q < ∞ we define the space �q(X) as that of

sequences V = {vn}Nn=0 such that
∑N

n=0 δt‖vn‖
q
X < ∞, and �∞(X) the space of

sequences such that supn=0,...,N ‖vn‖X < ∞. With this notation, the norm defined in
(2.15) can be considered that of �∞(L2(Ωt)) ∩ �2(H1

0 (Ωt)). Here, the subscript t has
to be understood as tn for the nth component of the sequence.

2.3. The fully discrete problem. At this point we treat the space discretiza-
tion of systems (2.8) and (2.12). The BDF1-BDF1-OSSδt,h reads as follows: for
n = 0, 1, . . . , N − 1, given un

h, find un+1
h ∈ Vh(Ωt) such that

1

T

(
un+1
h − un

h, v
n+1
h

)
Ωtn+1

+ δtν
(
∇un+1

h ,∇vn+1
h

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1

h , vn+1
h

)
Ωtn+1

+ δt
(
Π⊥

h

(
(a−wn+1) · ∇un+1

h

)
, τn+1(a−wn+1) · ∇vn+1

h

)
Ωtn+1

= δt〈fn+1, vn+1
h 〉Ωtn+1 ,(2.16)

where Vh(Ωt) is a finite element approximation space of V(Ωt), τ
n+1 is a mesh de-

pendent parameter, which we will call the stabilization parameter, whose expression
is detailed later, and Π⊥

h (·) =: Id(·) − Πh (·), with Id the identity in L2(Ωt) and
Πh (·) the L2-projection onto this finite element space (and therefore Π⊥

h (·) is the
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projection orthogonal to the finite element space). The description and motivation of
this formulation, which we call OSS stabilization, can be found in [10].

Let Θt
h be a finite element partition of the domain Ωt in a family of elements

{Ke}nel
e=1, nel being the number of elements. We denote the diameter of the sphere

that circumscribes element K by hK and the diameter of the sphere inscribed in K
by �K . We also call h = maxK∈Θt

h
(hK) and � = minK∈Θt

h
(�K). We assume that

all the element domains K ∈ Θt
h are the image of a reference element K̃ through

polynomial mappings FK , affine for simplicial elements, bilinear for quadrilaterals,
and trilinear for hexahedra. On K̃ we define the polynomial spaces Rp(K̃), where Rp

is, for simplicial elements, the set of polynomials in x1, . . . , xd of degree less than or
equal to p, called Pp. For quadrilaterals and hexahedra, Rp consists of polynomials
in x1, . . . , xd of degree less than or equal to p in each variable, a set called Qp. The
finite element spaces introduced before and that we will use in the following are

Vf
h (Ω0) = {v̂h ∈ C0(Ω0) | v̂h|K = ṽ ◦ F−1

K , ṽ ∈ Rp(K̃), K ∈ Θt
h},

Vh(Ω0) = {vh ∈ Vh(Ω0) | vh|∂Ω0 = 0},
Vf
h (Ωt) = {vh ∈ C0(Ωt) | vh = v̂h ◦ A−1

t , v̂h ∈ Vh(Ω0)},
Vh(Ωt) = {vh ∈ C0(Ωt) | vh = v̂h ◦ A−1

t , v̂h ∈ Vh,0(Ω0)}.

Moreover, Θt
h is assumed to be quasi-uniform; that is to say, there exists a constant

�2 > 0, independent of h, such that �
h ≥ �2 > 0 as h tends to zero. This will simplify

the analysis and, in particular, will allow us to use stabilization parameters constant
in space.

Let us note that in practical applications Atn+1 maps Θ0
h onto Θn+1

h . Therefore,
it is easily checked that wn+1 ∈ (Vh(Ωtn+1))d. In the following we will not distinguish
between wn+1 and wn+1

h .
Also in this case we can write the problem using a “variational” formalism. The

fully discrete sequence of problems given by (2.16) can be written as follows: find a
sequence Uh = {u0

h, u
1
h, . . . , u

N
h } such that

Bh(Uh, Vh) = L(Vh)(2.17)

for all sequences Vh, with the bilinear form Bh given by

Bh(Uh, Vh) =
1

2T

(
u0
h, v

0
h

)
Ω0

+

N−1∑
n=0

[
1

T

(
un+1
h − un

h, v
n+1
h

)
Ωtn+1

+ bh
(
wn+1;un+1

h , vn+1
h

)
Ωtn+1

]
,(2.18)

where bh is defined as

bh
(
wn+1;un+1

h , vn+1
h

)
Ωtn+1

= δtν
(
∇un+1

h ,∇vn+1
h

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1

h , vn+1
h

)
Ωtn+1

+ δt
(
Π⊥

h

(
(a−wn+1) · ∇un+1

h

)
, τn+1(a−wn+1) · ∇vn+1

h

)
Ωtn+1

.(2.19)

The OSS method modifies the discretized equation of the classical Galerkin method
by introducing the last term, which enhances the stability of the original method.
The value of the stabilization parameter τn+1 has been justified in [10]. In an ALE
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framework it depends on the difference between the advection velocity a and the mesh
velocity w. The expression we use is

τn+1 =

(
c1

ν

h2
+ c2

‖a−w‖L∞(Ωtn+1 )

h

)−1

,(2.20)

which is constant in space. Here, c1 and c2 are algorithmic constants that depend on
the order of the finite element interpolation. As will be shown later (see (4.7)), they
are related to the constant Cinv in the inverse estimate introduced in (4.1).

As in [12], we will make further assumptions. We assume that for each n the
parameter τn satisfies

τn ≤ CTδt,(2.21)

which in particular implies that we cannot let δt → 0 without refining the finite
element mesh. This condition is not only theoretical, but probably has practical
consequences. It is shown in [2] in a particular numerical example that instabilities
occur in the case of the transient Stokes problem if a condition similar to (2.21) is
violated. Moreover, from the theoretical point of view there is a way to circumvent
this, which consists in considering the subscales time dependent. This is the approach
followed in [13], where stability of a stabilized FEM for the linearized Navier–Stokes
equations is proved with and without condition (2.21).

For the space discretization of the second order method (2.12), the bilinear form
is given by

(2.22)

Bh (Uh, Vh)

=
N−1∑
n=1

[
1

2T

(
3un+1

h − 4un
h + un−1

h , vn+1
h

)
Ωtn+1

+ bh
(
wn+1;un+1

h , vn+1
h

)
Ωtn+1

]

+
1

T

(
u1
h − u0

h, v
1
h

)
Ωt1

+ bh
(
w1;u1

h, v
1
h

)
Ωt1

+
1

T

(
u0
h, v

0
h

)
Ω0

.

We end this section with two norms that are useful in the following numerical
analysis. The first is a norm that we will call weak, which is given by

|||V |||2w =
1

T
sup

n∈[0,N ]

‖vn‖2
L2(Ωtn ) +

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+

N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )
.

Observe that only the orthogonal projection of the convective term appears. The full
convective term appears in the norm that we will call strong, given by

|||V |||2s =
1

T
sup

n∈[0,N ]

‖vn‖2
L2(Ωtn ) +

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+

N−1∑
n=0

δtτn+1
∥∥(a−wn+1) · ∇vn+1

∥∥2

L2(Ωtn+1 )

= |||V |||2w +

N−1∑
n=0

δtτn+1
∥∥Πh

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )
.
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3. Analysis of the semidiscrete problem. In this section we analyze prob-
lems BDF1-BDF1δt and BDF2-BDF2δt. In both cases, stability and error estimates
will be given. We denote by C a positive constant, possibly with different values at
different appearances.

3.1. Analysis of BDF1-BDF1δt. Let us define by Uex = {u0, u(t1), u(t2),
. . . , u(tN )} the sequence of solutions of the continuous problem (2.4) and by U =
{u0, u1, u2, . . . , uN} the sequence of solutions of the semidiscrete problem (in time)
(2.9)–(2.11). We start by obtaining a stability result for this method. With this aim,
first we prove that the bilinear form (2.10) that governs the semidiscrete problem is
coercive.

Theorem 3.1 (coercivity). There exists δt1cr such that for 0 < δt < δt1cr the
bilinear form B(·, ·) defined in (2.10) is coercive; that is, for every sequence V =
{vn}Nn=0, with vn ∈ V(Ωtn),

B(V, V ) ≥ β1|||V |||2

for a certain constant β1 > 0.
Proof. We know, from the definition of the bilinear form, that

B(V, V ) =
N−1∑
n=0

[
1

T

(
vn+1 − vn, vn+1

)
Ωtn+1

+ δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+ δt
(
(a−wn+1) · ∇vn+1, vn+1

)
Ωtn+1

]

+
1

2T

∥∥v0
∥∥2

L2(Ω0)
.

We can rewrite the term coming from the time derivative as follows:

1

T

(
vn+1 − vn, vn+1

)
Ωtn+1

=
1

2T

[∥∥vn+1
∥∥2

L2(Ωtn+1 )
− ‖vn‖2

L2(Ωtn+1 ) +
∥∥vn+1 − vn

∥∥2

L2(Ωtn+1 )

]
.

Integrating (2.7) from tn to tn+1 for the function (vn)2, we get

1

T
‖vn‖2

L2(Ωtn+1 ) =
1

T
‖vn‖2

L2(Ωtn ) +

∫ tn+1

tn

∫
Ωs

(∇ ·wn+1)(vn)2 dΩ ds,

where we have profited from the fact that the discrete mesh velocity is constant at
every time step. On the other hand, due to the fact that the convective velocity a is
divergence-free, we get

(
(a−wn+1) · ∇vn+1, vn+1

)
Ωtn+1

= −1

2

∫
Ωtn+1

wn+1 · ∇(vn+1)2 dΩ

=
1

2

∫
Ωtn+1

(∇ ·wn+1)(vn+1)2 dΩ.



2170 SANTIAGO BADIA AND RAMON CODINA

We bound the terms associated to the mesh velocity as follows:∫ tn+1

tn

∫
Ωs

(∇ ·wn+1)(vn)2 dΩ ds

≤ δt sup
s∈(tn,tn+1)

∥∥∥JAtn+1,s
∇ ·wn+1

∥∥∥
L∞(Ωtn+1 )

‖vn‖2
L2(Ωtn+1 ) ,

−δt

∫
Ωtn+1

wn+1 · ∇(vn+1)2 dΩ = δt

∫
Ωtn+1

(∇ ·wn+1)(vn+1)2 dΩ

≤ δt
∥∥∇ ·wn+1

∥∥
L∞(Ωtn+1 )

∥∥vn+1
∥∥2

L2(Ωtn+1 )
.

Let us define the parameters

γn+1
1 = T sup

s∈(tn,tn+1)

∥∥∥JAtn+1,s
∇ ·wn+1

∥∥∥
L∞(Ωtn+1 )

(3.1)

for n = −1, . . . , N − 2 and γN
1 = 0, together with

γn+1
2 = T ‖∇ ·wn‖L∞(Ωtn+1 )(3.2)

for n = 0, . . . , N − 1 and γ0
2 = 0.

With the inequalities just proved we can easily obtain that

B(V, V ) +
1

2T

N−1∑
n=−1

δt(γn+1
1 + γn+1

2 )
∥∥vn+1

∥∥2

L2(Ωtn+1 )

≥ sup
n∈[−1,N−1]

1

2T

∥∥vn+1
∥∥2

L2(Ωtn+1 )
+

N−1∑
n=0

2δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
.

If the maximum of ‖vn‖L2(Ωtn ) is achieved at n = Nm, the sequence

{v0, v1, . . . , vNm , 0, . . . , 0}

has to be added to the test sequence. Sometimes in the paper we obtain the maximum
using this technique. Invoking the Gronwall lemma (see [21]), we can absorb the
second term of the left-hand side with the first term of the right-hand side for a δt
small enough. More precisely, the time step must be such that

δt <
1

supn∈[0,N ] (γ
n
1 + γn

2 )
=: δt1cr.

We note that this is the time step size of the normalized problem in time. The original
δt1cr does not depend on T any longer.

This result, together with the continuity of L(·) proved in the next lemma, will
lead us to a classical stability bound.

Lemma 3.2 (continuity). The following inequality holds:

L(V ) ≤
N−1∑
n=0

δt

2βν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
+

N−1∑
n=0

δtβν

2

∥∥∇vn+1
∥∥2

L2(Ωtn+1 )

+
1

4T

∥∥u0
∥∥2

L2(Ω0)
+

1

4T

∥∥v0
∥∥2

L2(Ω0)

for all β > 0.
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Proof. The right-hand side has the following expression:

L(V ) =
1

2T

(
u0, v0

)
Ω0

+

N−1∑
n=0

δt〈fn+1, vn+1〉Ωtn+1 .

The Cauchy–Schwarz inequality leads to

L(V ) ≤
(

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )

) 1
2
(

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

) 1
2

+
1

2T

∥∥u0
∥∥
L2(Ω0)

∥∥v0
∥∥
L2(Ω0)

.

The proof is finished by invoking Young’s inequality.
From Theorem 3.1 and Lemma 3.2 the following stability result is straightforward.
Corollary 3.3 (stability). There exists δt1cr such that, for 0 < δt < δt1cr, the

sequence U , solution of problem (2.9)–(2.11), is bounded as follows:

|||U |||2 ≤ C

{
1

T

∥∥u0
∥∥2

L2(Ω0)
+

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )

}
.

Remark 3.1. The BDF1 method is unconditionally stable for fixed domains.
However, for moving domains this property is not maintained anymore. In this case
only conditional stability can be proved, with the critical time step value obtained
above.

The next task is to obtain an optimal convergence result. In the following theorem,
relying on the stability properties proved in Corollary 3.3, optimal error estimates are
obtained. We denote by en+1 := u(tn+1) − un+1 the error introduced by the time
integration at time tn+1, and by E := Uex − U the sequence of these errors.

Theorem 3.4 (convergence). There exists δt1cr such that, for 0 < δt < δt1cr, the
sequence of errors E = Uex − U satisfies the following error estimate:

|||E|||2 ≤ C
δt2

T

N−1∑
n=0

δt

⎛
⎝∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥
L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )

⎞
⎠ .(3.3)

Proof. We start by taking the exact solution sequence Uex in the bilinear form.
We get

B(Uex, V ) = L(V ) +

N−1∑
n=0

1

T

(
u(tn+1) − u(tn) − δt

∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

−
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.

We subtract the equation for the semidiscrete sequence of solutions to the previous
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equations and arrive at

B(U − Uex, V ) = −
N−1∑
n=0

1

T

(
u(tn+1) − u(tn) − δt

∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

+

N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.

We test the previous equation with V = U − Uex = E, obtaining

B(E,E) = −
N−1∑
n=0

1

T

(
u(tn+1) − u(tn) − δt

∂u

∂t

∣∣∣∣
tn+1

, en+1

)
Ωtn+1

+

N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), en+1

)
Ωtn+1

.

Exploiting the fact that the bilinear form is coercive, the remaining ingredient is an
appropriate bound for the error terms associated to the time discretization. Let us
start with the terms related to the time derivative. We use the following Taylor
formula for u:

u(x0, t
n+1) − u(x0, t

n)

Tδt
− 1

T

∂u

∂t

∣∣∣∣
x0

(tn+1) = − 1

Tδt

∫ tn+1

tn
(s− tn)

∂2u

∂t2

∣∣∣∣
x0

(s) ds.

(3.4)

For the mesh velocity, we use

wn+1 −w(tn+1) = − 1

Tδt

(∫ tn+1

tn
(s− tn)

∂2As

∂t2
ds

)
◦ A−1

tn+1 .(3.5)

As explained in section 2, it is understood with this notation that this equality holds
for arbitrary x ∈ Ωt.

With (3.4) we get a bound for the term associated to the time derivative of u as
follows: ∫

Ωtn+1

en+1 ·
(∫ tn+1

tn
(s− tn)

∂2u

∂t2

∣∣∣∣
x0

(x0, s) ds

)
◦ A−1

tn+1 dΩ

≤
∫ tn+1

tn

∫
Ω0

JAtn+1 (s− tn)ên+1
∂̂2u

∂t2
dΩ ds

≤
(∫ tn+1

tn
(s− tn)2

∥∥en+1
∥∥2

L2(Ωtn+1 )

) 1
2

×

⎛
⎝∫ tn+1

tn

∫
Ω0

JAtn+1

(
∂̂2u

∂t2

)2

dΩ ds

⎞
⎠

1
2

≤ β1δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt3

∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

,
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where β1 is the coercivity constant introduced in Theorem 3.1. Similarly, using (3.5)
for the term related to the time derivative of the mapping, we get

−
∫

Ωtn+1

en+1

(∫ tn+1

tn
(s− tn)

∂2As

∂t2
ds

)
◦ A−1

tn+1 · ∇un+1 dΩ

≤
∫ tn+1

tn

∫
Ω0

JAtn+1 (s− tn)ên+1
∂2As

∂t2
· ̂∇un+1 dΩ ds

≤
(∫ tn+1

tn
(s− tn)2

∥∥en+1
∥∥2

L2(Ωtn+1 )
ds

) 1
2

×

⎛
⎝∫ tn+1

tn

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥
L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
ds

⎞
⎠

1
2

≤ β1δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt3 sup

s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥
L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
.

With these results we can write

B(E,E) ≤ 1

T

N−1∑
n=0

⎛
⎝δtβ1

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt3

∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ Cδt3 sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥
L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )

⎞
⎠ .(3.6)

At this point we invoke the coercivity property of the bilinear form proved in Theo-
rem 3.1. Thus, the first term of the right-hand side in (3.6) can be absorbed using
the Gronwall lemma. We note that in this case we can apply the Gronwall lemma
without any extra condition over the time step size (see [21]).

Clearly, the second term in the right-hand side of (3.3) is bounded if the second
time derivatives of the ALE mapping are uniformly bounded in [0, T ]. In this case, its
norm in the space L∞(0, T ;L∞(Ω0)) can be taken out of the sum, and the stability
estimate of Corollary 3.3 allows us to bound the remaining term. However, we have
kept expression (3.3) to display the structure of the error bound.

We conclude this subsection with the following improved stability estimate.
Corollary 3.5 (stability in �∞(H2(Ωt))). Under the conditions of Theorem 3.4,

suppose additionally that the right-hand side of (3.3) is bounded, that u ∈ L∞(0, T ;
H2(Ωt)), and that the domain Ωt is such that Δu ∈ L2(Ωt) implies u ∈ H2(Ωt).
Then, U ∈ �∞(H2(Ωt)).

Proof. At each time step we can write the error equation

νΔ(un+1 − u(tn+1)) = (a−wn+1) · ∇(un+1 − u(tn+1))

+ (w(tn+1) −wn+1) · ∇u(tn+1) +
1

δt
(un+1 − un) − ∂u

∂t

∣∣∣∣
tn+1

.

By virtue of Theorem 3.4, all the terms in the right-hand side are bounded in L2(Ωtn+1)
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for n = 0, . . . , N − 1. Since

‖Δun+1‖L2(Ωtn+1 ) ≤ ‖Δun+1 − Δu(tn+1)‖L2(Ωtn+1 ) + ‖Δu(tn+1)‖L2(Ωtn+1 ),

it follows that {Δun+1}N−1
n=0 ∈ �∞(L2(Ωt)). The assumption on the domain Ωt implies

that {un+1}N−1
n=0 ∈ �∞(H2(Ωt)).

This justifies our strategy of first analyzing the problem semidiscretized in time
and then the fully discrete problem. When we will require U ∈ �2(Hp+1(Ωt)) to
obtain optimal order of convergence in space, we know that at least for p = 1 this
holds under the same condition on the domain Ωt as for the sequence of solutions of
the continuous problem, Uex. It is well known that this condition on Ωt holds, for
example, if it is convex and polyhedral (see, for example, [19]).

3.2. Analysis of BDF2-BDF2δt. For the second order method we follow the
same procedure used above. In this case the problem that we analyze can be written
using (2.9) together with the bilinear form (2.13) and the right-hand side linear form
(2.14), and we denote by U = {u0, u1, u2, . . . , uN} the sequence of solutions of this
problem.

We start by again proving that the corresponding bilinear form is coercive.
Theorem 3.6 (coercivity). There exists δt2cr such that for 0 < δt < δt2cr the

bilinear form B(·, ·) defined in (2.12) is coercive; that is, for every sequence V =
{vn}Nn=0, with vn ∈ V(Ωtn),

B(V, V ) ≥ β2|||V |||2

for a certain constant β2 > 0.
Proof. We know, from the definition of the bilinear form, that

B(V, V ) =
N−1∑
n=0

[
δt
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
+ δt

(
(a−wn+1) · ∇vn+1, vn+1

)
Ωtn+1

]

+
N−1∑
n=1

1

2T

(
3vn+1 − 4vn + vn−1, vn+1

)
Ωtn+1

+
1

T

(
v1 − v0, v1

)
Ωt1

+
1

2T

∥∥v0
∥∥2

L2(Ω0)
.(3.7)

Integrating (2.7) from tn to tn+1 for the functions vn and 2vn − vn−1, we can express
the term corresponding to the discrete time derivative as follows:

1

2T
(3vn+1 − 4vn + vn−1, 4vn+1)Ωtn+1

=
1

T

(∥∥vn+1
∥∥2

L2(Ωtn+1 )
− ‖vn‖2

L2(Ωtn ) +
∥∥2vn+1 − vn

∥∥2

L2(Ωtn+1 )

−
∥∥2vn − vn−1

∥∥2

L2(Ωtn )
+
∥∥δ2vn+1

∥∥2

L2(Ωtn+1 )

)

+

∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(vn)2 dΩ ds

+

∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(2vn − vn−1)2 dΩ ds.(3.8)
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The mesh velocity terms are bounded as follows:

(3.9)∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(vn)2 dΩ ds +

∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(2vn − vn−1)2 dΩ ds

≤ δt sup
s∈(tn,tn+1)

∥∥∥JAtn+1,s
∇ ·wn+1(s)

∥∥∥
L∞(Ωtn+1 )

×
(
‖vn‖2

L2(Ωtn+1 ) +
∥∥2vn − vn−1

∥∥2

L2(Ωtn+1 )

)
.

On the other hand, we can exploit the fact that the convective velocity a is divergence-
free, obtaining for the convective term that

(
(a−wn+1) · ∇vn+1, 4vn+1

)
Ωtn+1

= −2δt

∫
Ωtn+1

wn+1 · ∇(vn+1)2 dΩ

= 2δt

∫
Ωtn+1

(∇ ·wn+1)(vn+1)2 dΩ

≤ 2
∥∥∇ ·wn+1

∥∥
L∞(Ωtn+1 )

∥∥un+1
h

∥∥2

L2(Ωtn+1 )
.(3.10)

We use inequalities (3.9) and (3.10) in (3.7) and invoke again the Gronwall lemma.
This leads to the desired bound for a time step size:

δt <
1

sup
n∈[0,N ]

(γn
1 + 2γn

2 )
=: δt2cr,

slightly different from the one obtained for the first order method.
The previous theorem and Lemma 3.2 allow us to obtain the same stability result

as for the previous case, stated in the next corollary.
Corollary 3.7 (stability). There exists δt2cr such that for 0 < δt < δt2cr the

sequence U solution of problem (2.9), (2.13), (2.14) is bounded as follows:

|||U |||2 ≤ C

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
.

Furthermore, we can obtain optimal error estimates under some regularity as-
sumptions. For the sake of clearness we assume that the initialization is calculated
exactly. It can be easily checked from Theorem 3.4 that the error introduced by the
initialization is optimal.

Theorem 3.8 (convergence). There exist δt2cr such that for 0 < δt < δt2cr the
sequence of errors E = Uex − U satisfies the following error estimate:

|||E|||2 ≤ C
δt4

T

N−1∑
n=0

δt

⎛
⎝∥∥∥∥∥ ∂3u

∂t3

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂3As

∂t3

∣∣∣∣2
∥∥∥∥∥
L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )

⎞
⎠ .
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Proof. We start by taking the exact solution sequence Uex in the bilinear form.
We get

B(Uex, V ) = L(V ) +

N−1∑
n=0

1

2T

(
3u(tn+1) − 4u(tn) + u(tn−1)− δt

∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

−
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.

Now we subtract the equation for the semidiscrete sequence of solutions to the previous
equations and arrive at

B(U − Uex, V ) = −
N−1∑
n=0

1

T

(
3u(tn+1) − 4u(tn) + u(tn−1) − δt

∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

+

N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.

We test the previous equation with V = U − Uex = E, obtaining

B(E,E) = −
N−1∑
n=0

1

T

(
3u(tn+1) − 4u(tn) + u(tn−1) − δt

∂u

∂t

∣∣∣∣
tn+1

, en+1

)
Ωtn+1

+

N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), en+1

)
Ωtn+1

.

The truncation error introduced by the time integration scheme BDF2 is evaluated
using the following Taylor formula:

(3.11)

3u(x0, t
n+1) − 4u(x0, t

n) + u(x0, t
n−1)

Tδt
− 1

T

∂u

∂t

∣∣∣∣
x0

(tn+1)

= − 1

Tδt

∫ tn+1

tn−1

(s− tn)2
∂3u

∂t3

∣∣∣∣
x0

(s) ds− 1

Tδt

∫ tn+1

tn
(s− tn)2

∂3u

∂t3

∣∣∣∣
x0

(s) ds.

The evaluation of the mesh velocity (2.6) requires a time derivative. Its numerical ap-
proximation using the second order BDF2 scheme can be written again as a truncation
error:

wn+1 −w(tn+1)

= − 1

Tδt

(∫ tn+1

tn−1

(s− tn)2
∂3As

∂t3
ds +

∫ tn+1

tn
(s− tn)2

∂3As

∂t3
ds

)
◦ A−1

tn+1 ,(3.12)

which holds for all x ∈ Ωt. Recall that wn+1 stands for the mesh velocity evaluated
at tn+1.
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The error related to the time derivative of u can be bounded using the following
inequality:

∫
Ωtn+1

en+1 ·
(∫ tn+1

tn−1

(s− tn)2
∂3u

∂t3

∣∣∣∣
x0

(s) ds

− 1

Tδt

∫ tn+1

tn
(s− tn)2

∂3u

∂t3

∣∣∣∣
x0

(s) ds

)
◦ A−1

tn+1 dΩ

≤ β2δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt5

∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

,(3.13)

where β2 is the coercivity constant introduced in Theorem 3.6.
We obtain the following inequality in order to bound the error introduced by the

evaluation of the mesh velocity,

(3.14)

−
∫

Ωtn+1

en+1

(∫ tn+1

tn−1

(s− tn)2
∂3As

∂t3
ds

+

∫ tn+1

tn
(s− tn)2

∂3As

∂t3
ds

)
◦ A−1

tn+1 · ∇un+1 dΩ

≤ β2δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ δt5 sup

s∈(tn−1,tn+1)

∥∥∥∥∥
∣∣∣∣∂3As

∂t3

∣∣∣∣2
∥∥∥∥∥
L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
.

Using the error expressions (3.11) and (3.12) and bounds (3.13) and (3.14), we
get

B(E,E) ≤ 1

T

N−1∑
n=0

δtβ2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ C

δt4

T

N−1∑
n=0

δt

∥∥∥∥∥ ∂3u

∂t3

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ C
δt4

T

N−1∑
n=0

δt sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂3As

∂t3

∣∣∣∣2
∥∥∥∥∥
L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
.

Again, we can apply the Gronwall lemma without any extra condition over the time
step size.

4. The fully discrete problem. In this section we analyze the fully discrete
problems BDF1-BDF1-OSSδt,h and BDF2-BDF2-OSSδt,h. In both cases, stability and
error estimates are obtained.

Observe from (2.20) that τn has been taken constant in space. Further, we assume
Θt

h quasi-uniform. In this case, the following inverse estimate holds (see [5]):

‖∇vh‖L2(Ωt)
≤ Cinv

h
‖vh‖L2(Ωt)

.(4.1)

In order to obtain optimal convergence results, we assume that un+1 ∈ Hp+1(Ωt)
for n = 0, . . . , N−1, where p is the degree of the polynomial defining the finite element



2178 SANTIAGO BADIA AND RAMON CODINA

space Vh. We also assume that for any function v ∈ Hp+1(Ωt) there exists a finite
element interpolation πh(v) such that

‖v − πh(v)‖Hm(Ωt) ≤ Chh
p+1−m‖v‖Hp+1(Ωt).

We need to prove that the L2-projection onto the finite element space is an optimal
interpolation in the L2(Ωt)-norm and the seminorm ‖∇(·)‖L2(Ωt)

. We show this in
the following lemma.

Lemma 4.1. Given a function v ∈ Hp+1(Ωt) with p ≥ 1, its L2-projection onto
the finite element space Πh (v) satisfies

‖v − Πh (v)‖L2(Ωt)
≤ Chh

p+1‖v‖Hp+1(Ωt)(4.2)

and also

h2 ‖Δv − Πh (Δv)‖L2(Ωt)
≤ Chp+1‖v‖Hp+1(Ωt).(4.3)

If the inverse estimate (4.1) holds true,

‖∇ (v − Πh (v))‖L2(Ωt)
≤ Chp‖v‖Hp+1(Ωt)(4.4)

is satisfied.
The proof of this lemma is straightforward and relies on classical interpolation

inequalities.
As in the previous section, C is a positive constant, possibly with different values

at different appearances.

4.1. Analysis of BDF1-BDF1-OSSδt,h. In this subsection we analyze the
fully discrete problem (2.17) with the bilinear form Bh(·, ·) defined in (2.18) and right-
hand side (2.14). We denote by U = {u0, u1, u2, . . . , uN} the sequence of solutions of
the semidiscrete problem (in time) (2.9)–(2.11) and by Uh = {u0

h, u
1
h, u

2
h, . . . , u

N
h } its

fully discrete counterpart, solution of (2.17), (2.18), (2.14).
We start by proving the coercivity of the bilinear form for the weak norm ||| · |||w.

This result will be used in the convergence analysis.
Theorem 4.2 (coercivity). There exists δt1cr such that for 0 < δt < δt1cr the

bilinear form Bh(·, ·) defined in (2.18) is coercive. That is, for every sequence V =
{vn}Nn=0, with vn ∈ V(Ωtn),

Bh (V, V ) ≥ β1|||V |||2w
for a certain constant β1 > 0 independent of h.

Proof. The bilinear form analyzed in this theorem is equal to the one for which
coercivity is proved in Theorem 3.1 plus the stabilization term. We can easily get

(4.5)

Bh(V, V ) =
1

2T

∥∥vN∥∥2

L2(ΩN )
+

1

2T

N−1∑
n=0

∥∥δvn+1
∥∥2

L2(Ωtn+1 )

+

N−1∑
n=0

[
δtν

∥∥∇vn+1
∥∥2

L2(Ωtn+1 )
+ δtτn+1

∥∥Π⊥
h

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

]

+
1

2

N−1∑
n=0

δt
(
∇ ·wn+1, (vn+1)2

)
Ωtn+1

+
1

2

N−1∑
n=0

∫ tn+1

tn

∫
Ωt

(∇ ·wn+1)(vn+1)2 dΩ.
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Due to the fact that the stabilization term does not affect the treatment of the
mesh velocity terms in Theorem 3.1, we refer to this theorem for the remainder of the
proof.

Let us define the Λ-coercivity property associated to a bilinear form that will be
used in the following analysis.

Definition 4.3 (Λ-coercivity). Let V be a functional space and ζ : V ×V −→ R

a bilinear form. We say that ζ is Λ-coercive with respect to the norm ||| · ||| and the
linear operator Λ : V −→ V if there exists a constant β > 0 such that

ζ(v,Λ(v)) ≥ β|||v|||2 ∀v ∈ V.(4.6)

The bilinear form ζ(·, ·) also satisfies an inf-sup condition under the conditions of
the following lemma.

Lemma 4.4. If Λ is continuous with respect to the norm ||| · ||| and ζ(·, ·) is
Λ-coercive, then there exists γ > 0 such that

inf
u∈V

sup
v∈V

ζ(u, v)

|||u||| |||v||| ≥ γ.

The proof of the previous lemma is straightforward from Definition 4.3 and the
continuity of the operator Λ(·).

We now show that the bilinear form Bh(·, ·) of our problem is Λ-coercive for the
strong norm ||| · |||s.

Theorem 4.5 (Λ-coercivity). Let V = {vn}Nn=0 be a sequence of functions such
that vn ∈ V(Ωtn) and consider the operator

Λ(V ) = V +

{
0,

1

2

{
τn+1Πh

(
(a−wn+1) · ∇vn+1

)}N−1

0

}
.

Then, there exists δt1cr such that, for 0 < δt < δt1cr, the bilinear form Bh(·, ·) is
Λ-coercive:

Bh (V,Λ(V )) ≥ β1|||V |||2s
for a certain constant β1 > 0 independent of h.

Proof. Testing (2.18) with the sequence of functions that belong to the finite
element space

Π0(τ, V ) := {0, {τn+1Π0(v
n+1)}}N−1

n=0 := {0, {τn+1Πh

(
(a−wn+1) · ∇vn+1

)
}N−1
n=0 },

we have

Bh(V,Π0(τ, V )) ≥
N−1∑
n=0

φn+1δtτn+1
∥∥Πh

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

−
N−1∑
n=0

[
1

T

∥∥δvn+1
∥∥2

L2(Ωtn+1 )
+ δtν

∥∥∇vn+1
∥∥2

L2(Ωtn+1 )

+ δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

]
,(4.7)

where

φn+1 := 1 − 1

4

τn+1

Tδt
− 1

4
τn+1 νC

2
inv

h2
− 1

4
(τn+1)2

∥∥a−wn+1
∥∥2

L∞(Ωtn+1 )
C2

inv

h2
.(4.8)
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To obtain (4.7) we have made use of Young’s inequality and the inverse estimate
(4.1). Assuming now that the constants c1 and c2 in (2.20) are such that c1 ≤ C2

inv

and c2 ≤ Cinv and the constant C in (2.21) is C ≤ 1, it follows that φn+1 ≥ 1/4.
The combination of (4.7) and (4.5) leads to

Bh(V, 2V + Π0(τ, V )) ≥ 1

T

∥∥vN∥∥2

L2(ΩN )
+

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+ C

N−1∑
n=0

δtτn+1
∥∥(a−wn+1) · ∇vn+1

∥∥2

L2(Ωtn+1 )

+

N−1∑
n=0

δt
(
∇ ·wn+1, (vn+1)2

)
Ωtn+1

+

N−1∑
n=0

∫ tn+1

tn

∫
Ωs

(∇ ·wn+1)(vn+1)2 dΩ ds

≥ 1

T

∥∥vN∥∥2

L2(ΩN )
+

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+ C

N−1∑
n=0

δtτn+1
∥∥Πh

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

−
N−1∑
n=0

δtγn+1

∥∥vn+1
∥∥2

L2(Ωtn+1 )
,

with γn+1 := γn+1
1 + γn+1

2 and γn+1
1 , γn+1

2 defined in (3.1) and (3.2). Using the
Gronwall lemma, we finally get the coercivity stated in the theorem. We point out
that the critical time step δt1cr in this case is identical to the one obtained for the
semidiscrete problem.

In order to satisfy the continuity of Λ(·) needed to obtain the inf-sup condition in
Lemma 4.4, we have to restrict the situation to the discrete finite element space Vh.

Lemma 4.6 (continuity). Let Vh = {vnh}Nn=0 be a finite element sequence such
that vnh ∈ Vh(Ωtn), and consider the operator Λ introduced in Theorem 4.5. Then, Λ(·)
is continuous with respect to the norm ||| · |||s for every finite element sequence Vh:

|||Λ(Vh)|||s ≤ ρ|||Vh|||s(4.9)

for a certain constant ρ > 0 independent of h.
Proof. Defining Π0(τ, Vh) as in the proof of the previous theorem, we have from

the definition of the norm that

|||Π0(τ, Vh)|||2s =
1

T
sup

n∈[0,N−1]

∥∥τn+1Π0(v
n+1
h )

∥∥2

L2(Ωtn+1 )

+

N−1∑
n=0

δtν
∥∥τn+1∇Π0(v

n+1
h )

∥∥2

L2(Ωtn+1 )

+

N−1∑
n=0

δtτn+1
∥∥τn+1(a−wn+1) · ∇Π0(v

n+1
h )

∥∥2

L2(Ωtn+1 )
.(4.10)

Invoking the expression for τn+1 and the inverse estimate (4.1), we can easily bound
every term by |||V |||2s.
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Remark 4.1. The fact that we need to use the inverse estimate (4.1) in order to
bound the first term in (4.10) restricts the continuity of Λ(·) to finite element sequences
(for the rest of the terms the inverse estimate is applied to derivatives of Πh((a −
wn+1) · ∇vn+1), a finite element function even if vn+1 is not in the finite element
space). However, this restriction does not complicate the convergence analysis, where
only the Λ-coercivity is invoked.

From Lemmas 4.4 and 4.6 we obtain the discrete inf-sup condition.
Corollary 4.7 (discrete inf-sup condition). Let Uh = {un

h}Nn=0 and Vh =
{vnh}Nn=0 be sequences of finite element functions such that un, vn ∈ V(Ωtn). There
exists δt1cr such that, for 0 < δt < δt1cr, the bilinear form Bh(·, ·) satisfies the following
condition:

inf
Uh∈Vh

sup
Vh∈Vh

Bh (Uh, Vh)

|||Uh|||s |||Vh|||s
≥ β̃1

for a certain constant β̃1 > 0 independent of h.
At this point, the only other ingredient needed for a stability result is the conti-

nuity of the force term, provided by Lemma 3.2. The stability result is stated in the
next corollary.

Corollary 4.8 (stability). There exists δt1cr such that, for 0 < δt < δt1cr, the
sequence Uh, solution of problem (2.17), (2.18), (2.11), is bounded as follows:

|||Uh|||2s ≤ C

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
.

For the convergence analysis, let us define the difference between the solution of
(2.8) and (2.16) as en+1

d := un+1
h −un+1, and the sequence of these errors by Ed. From

Theorem 4.5, which proves the Λ-coercivity of the bilinear form Bh for Λ defined in
this theorem, we know that

Bh (Ed,Λ(Ed)) ≥ β1|||Ed|||2s.(4.11)

We subtract the discrete bilinear form (2.18) from its semidiscrete counterpart
(2.10) tested with finite element sequences in order to get

Bh (Ed, Vh) = εc(Vh)

:= −
N−1∑
n=0

δtτn+1
(
Π⊥

h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇vn+1

h

)
Ωtn+1

,

where εc(Vh) accounts for the consistency error. After some manipulations, we can
write

Bh (Ed,Λ(Ed)) = Bh (Ed, Ed) +
1

2
Bh (Ed,Π0(τ, Ed))

= Bh (Ed,Πh(U) − U) + εc(Uh − Πh(U)) +
1

2
εc(Π0(τ, Ed)),

where Πh(U) := {Πh(un)}Nn=0.
We distinguish between interpolation error, the first term of the right-hand side,

and the consistency error associated to the second and third terms. In the following
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two lemmas we bound these error terms. We start with the interpolation error,
obtaining the result stated in the following lemma.

Lemma 4.9 (interpolation error). The error sequence Ed = Uh − U satisfies the
following inequality:

Bh (Ed,Πh(U) − U) ≤ C|||Ed|||w

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

(4.12)

Proof. Let us expand the expression of the interpolation error, making use of the
definition of the bilinear form associated to the problem we are analyzing:

Bh (Ed,Πh(U) − U)

=
N−1∑
n=0

[
1

T

(
en+1
d − end ,Πh

(
un+1

)
− un+1

)
Ωtn+1

+ δtν
(
∇en+1

d ,∇(Πh

(
un+1

)
− un+1)

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇en+1

d ,Πh

(
un+1

)
− un+1

)
Ωtn+1

+ δtτn+1
(
Π⊥

h

(
(a−wn+1) · ∇en+1

d

)
, (a−wn+1) · ∇

(
Πh

(
un+1

)
− un+1

))
Ωtn+1

]
.

We must control each term separately. Let us start with the discrete time derivative
term. Using assumption (2.21) we have that

N−1∑
n=0

1

T

(
en+1
d − end ,Πh

(
un+1

)
− un+1

)
Ωtn+1

≤ C

(
N−1∑
n=0

1

T

∥∥en+1
d − end

∥∥2

L2(Ωtn+1 )

) 1
2

×
(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

For the viscosity term, using the definition of τn+1 and the inverse estimate (4.5), we
have that

N−1∑
n=0

δtν
(
∇en+1

d ,∇(Πh

(
un+1

)
− un+1)

)
Ωtn+1

≤ C

(
N−1∑
n=0

δtν
∥∥∇en+1

d

∥∥2

L2(Ωtn+1 )

) 1
2

×
(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.
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Similar arguments allow us to obtain a bound for the convective term,

N−1∑
n=0

δt
(
(a−wn+1) · ∇en+1

d ,Πh

(
un+1

)
− un+1

)
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

,(4.13)

and for the stabilization term we obtain

N−1∑
n=0

δtτn+1

×
(
Π⊥

h

(
(a−wn+1) · ∇en+1

d

)
, (a−wn+1) · ∇

(
Πh

(
un+1

)
− un+1

))
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

All the terms have been bounded by the right-hand side of (4.12), and therefore the
proof is finished.

Remark 4.2. Invoking the interpolation error (4.2) in (4.13) has allowed us to
obtain an optimal bound for the interpolation error without the control of the full
convective term in the norm ||| · |||w. This fact will be used for the analysis of the
second order method.

The following lemma is devoted to the control of the consistency error. Since we
are interested in smooth solutions, say u ∈ L2(0, T ;Hp+1(Ωt)) (with the obvious
modifications for u less regular), we assume that f is also smooth, in particular
f ∈ L2(0, T ;Hp−1(Ωt)). Thus, for p ≥ 1, 〈f, vh〉Ωt

= (Πh(f), vh)Ωt
. Therefore,

the finite element solution is not altered if we assume Π⊥
h (f) = 0.

Lemma 4.10 (consistency error). The following inequality holds:

εc

(
Uh − Πh(U) +

1

2
Π0(τ, Ed)

)

≤ C

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

×
(
|||Ed|||2s + h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.(4.14)
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Proof. From the expression of the consistency error we arrive at

(4.15)

− εc(Uh − Πh(U))

=
N−1∑
n=0

δtτn+1
(
Π⊥

h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇(un+1

h − Πh

(
un+1

)
)
)
Ωtn+1

=

N−1∑
n=0

δtτn+1
(
Π⊥

h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇en+1

d

)
Ωtn+1

+

N−1∑
n=0

δtτn+1
(
Π⊥

h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇(un+1 − Πh

(
un+1

)
)
)
Ωtn+1

.

On the other hand, from the equation for the semidiscrete unknown (2.8), we can
easily check that(

Π⊥
h

(
(a−wn+1) · ∇un+1

)
, vn+1

)
Ωtn+1

=

(
Π⊥

h

(
νΔun+1 − 1

Tδt
(un+1 − un)

)
, vn+1

)
Ωtn+1

=:
(
Π⊥

h

(
λ(un+1)

)
, vn+1

)
Ωtn+1

,(4.16)

where λ(·) := νΔ(·) − δ(·)
Tδt . Note that we have not included Π⊥

h (f) in the previous
equation.

Now, using (4.16) in (4.15) we can split the error into two different terms bounded
as follows:

N−1∑
n=0

δtτn+1
(
Π⊥

h

(
λ(un+1)

)
, (a−wn+1) · ∇en+1

d

)
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
λ(un+1)

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(

N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

,

N−1∑
n=0

δtτn+1
(
Π⊥

h

(
λ(un+1)

)
, (a−wn+1) · ∇

(
un+1 − Πh

(
un+1

)))
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
λ(un+1)

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

On the other hand, the term related to the perturbation of the test function Π0(τ, Ed)
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appearing in (4.14) can be bounded using similar arguments, leading to

εc(Π0(τ, Ed))

=
N−1∑
n=0

δtτn+1
(
Π⊥

h

(
λ(un+1)

)
, (a−wn+1) · ∇

(
τn+1Πh

(
(a−wn+1) · ∇en+1

d

)))
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
λ(un+1)

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(

N−1∑
n=0

δtτn+1
∥∥Πh

(
(a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

.

It remains only to prove that

N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
λ(un+1)

)∥∥2

L2(Ωtn+1 )
≤ Ch2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )
.

This inequality can be easily obtained from the expression of τn+1, assumption (2.21),
and the interpolation error estimate (4.3).

We end this section with the following main convergence result, which is a direct
consequence of inequality (4.11) and Lemmas 4.9 and 4.10.

Theorem 4.11 (convergence). There exist δt1cr such that, for 0 < δt < δt1cr, the
sequence of errors Ed = Uh − U satisfies the following error estimate:

|||Ed|||2s ≤ Ch2(p+1)
N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )
.

4.2. Analysis of BDF2-BDF2-OSSδt,h. In this subsection we analyze the
fully discrete problem (2.17) with the bilinear form Bh(·, ·) defined in (2.22) and right-
hand side (2.14). We denote by U = {u0, u1, u2, . . . , uN} the sequence of solutions
of the second order semidiscrete problem (in time) (2.9), (2.13), (2.14) and by Uh =
{u0

h, u
1
h, u

2
h, . . . , u

N
h } its fully discrete counterpart, solution of (2.17), (2.22), (2.14).

We have obtained the results of this section using the weak norm ||| · |||w. Let us
start with a theorem proving coercivity under the weaker norm.

Theorem 4.12 (coercivity). There exists δt2cr such that, for 0 < δt < δt2cr,
the bilinear form Bh(·, ·) defined in (2.22) is coercive. That is, for every sequence
V = {vn}Nn=0 with vn ∈ V (Ωtn)

Bh (V, V ) ≥ β2|||V |||2w
for a certain constant β2 > 0 independent of h.

Proof. It can be easily shown that

Bh (V, 4V ) ≥ 1

T

(∥∥vN∥∥2

L2(ΩN )
+

N−1∑
n=0

∥∥δ2vn+1
∥∥2

L2(Ωtn+1 )

)

+
N−1∑
n=0

4δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
+

N−1∑
n=0

4δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

+

∫ tn+1

tn

∫
Ωs

(∇ ·w(s))(vn)2 dΩ ds +

∫ tn+1

tn

∫
Ωs

(∇ ·w(s))(2vn − vn−1)2 dΩ ds.
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Manipulating the mesh velocity as for the BDF2-BDF2δt formulation (see Theo-
rem 3.6) and applying the Gronwall lemma we obtain the desired result.

Stability is now straightforward from Theorem 4.12 and Lemma 3.2.
Corollary 4.13 (stability). There exists δt2cr such that, for 0 < δt < δt2cr, the

sequence Uh, solution of problem (2.17), (2.22), (2.14), is bounded as follows:

|||Uh|||2w ≤ C

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
.

This stability result can be considered weak. However, we will see that this result
is enough to obtain error estimates that do not blow up for large Péclet numbers, the
original motivation of stabilization methods for convection-diffusion problems.

Let us now obtain error estimates for the BDF2-BDF2-OSSδt,h formulation. We
start with an auxiliary lemma that will be useful in what follows.

Lemma 4.14. Let X = {xn}Nn=0 and V = {vn}Nn=0 be two sequences of functions
such that xn, vn ∈ Hp+1(Ωtn). Then, the bilinear form (2.22) satisfies the following
bound:

Bh

(
X,Π⊥

h (V )
)
≤ C

(
|||X|||2w +

N−1∑
n=−1

δt(τn+1)−1‖Π⊥
h (xn+1)‖2

L2(Ωtn+1 )

) 1
2

×
(
h2(p+1)

N−1∑
n=−1

δt(τn+1)−1
∥∥vn+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

Proof. From (2.22) we have that

Bh

(
X,Π⊥

h (V )
)

=

N−1∑
n=0

bh
(
wn+1;xn+1,Π⊥

h

(
vn+1

))
Ωtn+1

+

N−1∑
n=1

1

2T

(
3xn+1 − 4xn + xn−1,Π⊥

h

(
vn+1

))
Ωtn+1

+
1

T

(
x1 − x0,Π⊥

h

(
v1
))

Ωt1
+

1

T

(
x0,Π⊥

h

(
v0
))

Ω0
,

where
N−1∑
n=0

bh
(
wn+1;xn+1,Π⊥

h

(
vn+1

))
Ωtn+1

=

N−1∑
n=0

δt
[
ν
(
∇xn+1,∇Π⊥

h

(
vn+1

))
Ωtn+1

+
(
(a−wn+1) · ∇xn+1,Π⊥

h

(
vn+1

))
Ωtn+1

+ τn+1
(
Π⊥

h

(
(a−wn+1) · ∇xn+1

)
, (a−wn+1) · ∇Π⊥

h

(
vn+1

))
Ωtn+1

]
.

Now we have to bound every term of the right-hand side in order to complete the
proof. We start with the first term:

N−1∑
n=0

δtν
(
∇xn+1,∇

(
Π⊥

h

(
vn+1

)))
Ωtn+1

≤
(

N−1∑
n=0

δtν
∥∥∇xn+1

∥∥2

L2(Ωtn+1 )

) 1
2
(

N−1∑
n=0

δtν
∥∥∇Π⊥

h

(
vn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

.



ANALYSIS OF A STABILIZED ALE-FEM 2187

The second term in the right-hand side can be bounded as

N−1∑
n=0

δt
(
(a−wn+1) · ∇xn+1,Π⊥

h

(
vn+1

))
Ωtn+1

≤
(

N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇xn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(

N−1∑
n=0

δt(τn+1)−1
∥∥Π⊥

h

(
vn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

,

and the third term as

N−1∑
n=0

δtτn+1
(
Π⊥

h

(
(a−wn+1) · ∇xn+1

)
, (a−wn+1) · ∇Π⊥

h

(
vn+1

))
Ωtn+1

≤
(

N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇xn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(

N−1∑
n=0

δtτn+1
∥∥Π⊥

h

(
(a−wn+1) · ∇Π⊥

h

(
vn+1

))∥∥2

L2(Ωtn+1 )

) 1
2

.

The term related to the time derivative is bounded after recalling assumption (2.21)
for the stabilization parameter τn+1:

N−1∑
n=1

1

2T

(
3xn+1 − 4xn + xn−1,Π⊥

h

(
vn+1

))
Ωtn+1

+
1

T

(
x1 − x0,Π⊥

h

(
v1
))

Ωt1

+
1

T

(
x0,Π⊥

h

(
v0
))

Ω0
≤ C

(
N−1∑
n=−1

δt(τn+1)−1
∥∥Π⊥

h

(
xn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

×
(

N−1∑
n=−1

δt(τn+1)−1
∥∥Π⊥

h

(
vn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

.

We now have to use (4.4) of Lemma 4.1 and the expression (2.20) of the stabilization
parameter τn+1 to conclude the proof.

To obtain the error estimate, we also need to invoke the coercivity of Bh(·, ·),
which leads to

Bh (Ed, Ed) ≥ β2|||Ed|||2w.

Subtracting the equation for the semidiscrete velocity and the discrete velocity, we
get

Bh (Ed, Vh) =: εc(Vh)

= −
N−1∑
n=0

δtτn+1
(
Π⊥

h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇vn+1

h

)
Ωtn+1

.
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Using the previous equation, we can obtain

Bh (Ed, Ed) = Bh (Ed,Πh(U) − U) + εc(Uh − Πh(U)).

The first term is due to the interpolation error, whereas the second is the consistency
error. In the following lemma we obtain a bound for the interpolation error.

Lemma 4.15 (interpolation error). The following inequality holds:

Bh

(
Ed,Π

⊥
h (U)

)
≤ C

(
|||Ed|||2w + h2(p+1)

N−1∑
n=−1

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

×
(
h2(p+1)

N−1∑
n=−1

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

Proof. Invoking Lemma 4.14 and using the fact that Πh (U)−U = −Π⊥
h (U) and

Π⊥
h (Ed) = −Π⊥

h (U), we immediately get the result.
In order to bound the consistency error we again follow the technique developed

in Lemma 4.10. The only difference between these two cases is the term associated
to the time derivative, which does not essentially affect the proof.

Lemma 4.16 (consistency error). The following inequality holds:

εc(Uh − Πh(U)) ≤ C

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

×
(
|||Ed|||2w + h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

Again, we end with the following desired convergence result, which is straight
from Lemma 4.16 for the bound of the consistency error, Lemma 4.15 for the bound
of the interpolation error, and Theorem 4.12, which gives coercivity of the bilinear
form.

Theorem 4.17 (convergence). There exists δt2cr such that, for 0 < δt < δt2cr, the
sequence of errors Ed = Uh − U satisfies the following error estimate:

|||Ed|||2w ≤ Ch2(p+1)
N−1∑
n=−1

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )
.

This error estimate is optimal.
From this analysis, we can easily obtain stability and convergence results when

the domain is fixed, that is, when the mesh velocity vanishes.

4.3. Analysis of BDF2-OSSδt,h. The previous results are new even for fixed
domains. The OSS stabilization method was analyzed in [12] using the backward Euler
time integration. It can be easily seen that for fixed domains, i.e., when wn+1 = 0,
there is no critical time step size, the method becoming unconditionally stable. In
this case, the problem to be solved reads as follows: find a sequence of finite element
functions Uh such that

Bh(Uh, Vh) = L(Vh)(4.17)
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with the bilinear form

Bh (Uh, Vh) =

N−1∑
n=1

[
1

2T

(
3un+1

h − 4un
h + un−1

h , vn+1
h

)
+ bh

(
un+1
h , vn+1

h

)]

+
1

T

(
u1
h − u0

h, v
1
h

)
+ bh

(
u1
h, v

1
h

)
+

1

T

(
u0
h, v

0
h

)
,(4.18)

where now bh(un+1
h , vn+1

h ) denotes bh(0;un+1
h , vn+1

h ), with bh(wn+1;un+1
h , vn+1

h ) de-
fined in (2.19). The right-hand side linear form is given again by (2.14).

In this case two different sets of results are obtained. The first one with the weak
norm ||| · |||w, and the second one with the strong norm ||| · |||s. The main difference
is that in the second norm, Bh (·, ·) loses coercivity. This complicates the analysis.

We state the results with the norm ||| · |||w in the following corollaries. Their
proofs are straightforward from the previous analysis.

Corollary 4.18 (stability). The sequence Uh solution of problem (4.17) is
bounded as follows:

|||Uh|||2w ≤ C

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)

for all δt > 0.
Again, we denote by U = {u0, u1, u2, . . . , uN} the sequence of solutions of the

second order semidiscrete problem (in time) (2.9), (2.13), (2.14), now with Ωt ≡ Ω.
Corollary 4.19 (convergence). The error sequence Ed = Uh − U satisfies the

following error estimate:

|||Ed|||2w ≤ Ch2(p+1)
N−1∑
n=−1

δt(τn+1)−1‖un+1‖2
Hp+1(Ω)

for all δt > 0.
The remainder of this section is devoted to improving these stability and con-

vergence estimates. The improvement consists in obtaining estimates in the stronger
norm ||| · |||s. This is possible for fixed domains, but we have not been able to obtain
estimates similar to those presented next for moving domains. Nevertheless, some
additional assumptions will be required. We will also note the aspects that make the
analysis of the BDF2-OSSδt,h method much more involved than that of the BDF1-
OSSδt,h formulation.

Let us introduce some new notation. We modify the bilinear form as

B∗
h (Uh, Vh) =

N−1∑
n=0

bh
(
un+1
h , vn+1

h

)
+

N−1∑
n=1

1

2T
(3un+1

h − 4un
h + un−1

h , vn+1
h )

+
1

T
(u1

h − u0
h, v

1
h) +

1

T
(u0

h, v
0
h) +

1

Tδt
(u−1

h , v−1
h ),(4.19)

and the right-hand-side linear form as

L∗(Vh) =

N−1∑
n=0

δt〈fn+1, vn+1
h 〉 +

1

T
(u0, v

0
h) +

1

Tδt
(u1,h − Πh (u0) , v

−1
h ),(4.20)
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where u0 is obviously the initial condition and u1,h is the solution at the first time
step obtained with the scheme used to initialize the BDF2 scheme. For example, the
BDF1 scheme can be used, and this is precisely what is assumed in the expression of
B∗

h (·, ·). Note that now the sequences of finite element functions start at n = −1.
It is easily checked that the solution of (2.9) with the bilinear form (2.12) is

equivalent to

B∗
h (Uh, Vh) = L∗(Vh).

Observe that this problem yields u−1
h = u1,h − Πh (u0), u

0
h = Πh (u0), and u1

h = u1,h.
The rest of the terms of the sequence of unknowns U = {u−1

h , u0
h, u

2
h, . . . , u

N
h } are the

same as those in the solution of problem (4.17).
Let us introduce some additional ingredients. Given a sequence

V = {v−1, v0, v1, v2, . . . , vN},

we define

d1,∗(V ) = {0, 0, 0, δv2, δv3, . . . , δvN−1, δvN},

d2,∗(V ) = {0, 0,−δv2,−δ2v2,−δ2v3, . . . ,−δ2vN , δvN}.

These operators on sequences have the following property: for all sequences X =
{xn}Nn=−1 it holds that

B∗
h

(
X, d2,∗(V )

)
=

N−1∑
n=1

bh
(
δxn+1, δvn+1

)
+

N−1∑
n=2

1

2T
(3δxn+1 − 4δxn + δxn−1, δvn+1)

+
3

2T
(δx2 − δx1, δv2)

= B∗
h

(
d1,∗(X), d1,∗(V )

)
+

1

2T
(δx1, δv3 − 3δv2).(4.21)

Remark 4.3. The previous property is not satisfied for moving domains due to
the fact that the convective velocity changes at every time step. It introduces an extra
term bh

(
δwn+1;un, δvn+1

)
Ωtn+1

that cannot be bounded as required in the following

analysis.
In the next theorem we obtain Λ-coercivity for the norm ||| · |||s.
Theorem 4.20 (Λ-coercivity). Let V = {vn}Nn=−1 be a sequence of functions

such that vn ∈ V(Ω), n = 0, 1, . . . , N , and v−1 = v1 − v0, and consider the operator

Λ(V ) = V +

{
0, 0,

1

4
{τn+1Πh

(
a · ∇vn+1

)
}N−1
0

}
+ δt−1d2,∗(V ).

Then, the bilinear form B∗
h (·, ·) is Λ-coercive. In particular, the following inequality

holds:

B∗
h (V,Λ(V )) ≥ β2

(
|||V |||2s + δt−1|||d1,∗(V )|||2w +

1

Tδt
‖v−1‖2

L2(Ω)

)

for a certain constant β2 > 0 independent of h.
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Proof. It can be easily shown that

B∗
h (V, 4V )

=
N−1∑
n=0

4bh
(
vn+1, vn+1

)
+

N−1∑
n=2

4

2T

(
3vn+1 − 4vn + vn−1, vn+1

)

+
4

T

(
v1 − v0, v1

)
+

4

T

(
v0, v0

)
+

4

Tδt

(
v−1, v−1

)

≥
N−1∑
n=0

4
[
δtν

∥∥∇vn+1
∥∥2

L2(Ω)
+ δtτn+1

∥∥Π⊥
h

(
a · ∇vn+1

)∥∥2

L2(Ω)

]

+
1

T

[∥∥vN+1
∥∥2

L2(Ω)
+

N−1∑
n=1

∥∥δ2vn+1
∥∥2

L2(Ω)
+ 2

∥∥v0
∥∥2

L2(Ω)
+

4

δt
‖v−1‖2

L2(Ω)

]
.

In order to obtain stability for the component of the convective term in the finite
element space, we use as test function the sequence {0, 0, {τn+1Πh(a·∇vn+1)}N−1

0 } =:
Π0(τ, V ) which starts with 0 in the components −1 and 0. Exactly as in the proof of
Theorem 4.5, we now obtain

B∗
h (V,Π0(τ, V )) ≥

N−1∑
n=0

φn+1δtτn+1
∥∥Πh

(
a · ∇vn+1

)∥∥2

L2(Ω)

−
N−1∑
n=0

[
δtν

∥∥∇vn+1
∥∥2

L2(Ω)
+ δtτn+1

∥∥Π⊥
h

(
a · ∇vn+1

)∥∥2

L2(Ω)

]

−
N−1∑
n=1

1

4T

∥∥3vn+1 − 4vn + vn−1
∥∥2

L2(Ω)
− 1

T

∥∥v1 − v0
∥∥2

L2(Ω)
,(4.22)

with the expression of φn+1 given in (4.8). We do not have control over the term
related to the time derivative needing a further step. We now use as test function
d2,∗(V ). From the first step in (4.21) it follows that

δt−1B∗
h

(
V, 4d2,∗(V )

)
≥ δt−1|||d1,∗(V )|||2w − 3

Tδt

∥∥δv1
∥∥2

L2(Ω)

= δt−1|||d1,∗(V )|||2w − 3

Tδt

∥∥v−1
∥∥2

L2(Ω)
.(4.23)

Combining the previous inequalities and invoking the Gronwall lemma (without any
assumption over the time step size) we can conclude the proof of the theorem.

Remark 4.4. In (4.22) we do not have control over the term associated to the
time derivative. It makes the analysis for the second order method more intricate
than for the first order method, for which the time derivative term is easily controlled
(see (4.7)). The control of this term has motivated the introduction of d2,∗(V ) in the
test sequence used.

In order to obtain stability it remains to prove some kind of continuity with
respect to the operator Λ. This is what the next theorem states.
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Theorem 4.21 (Λ-continuity). The following inequality holds:

L∗(Λ(V )) ≤
(

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)
+

N−1∑
n=1

δt2

ν

∥∥D1f
n+1

∥∥2

H−1(Ω)

+
1

T
‖u0‖2

L2(Ω) +
δt

T

∥∥∥∥u1,h − Πh (u0)

δt

∥∥∥∥2

L2(Ω)

) 1
2

×
(
|||V |||2s + δt−1|||d1,∗(V )|||2w +

1

T

∥∥v0
∥∥2

L2(Ω)
+

1

Tδt
‖v−1‖2

L2(Ω)

) 1
2

.

Proof. The following inequalities can be easily obtained:

L∗(V ) ≤
(

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)
+

1

T
‖u0‖2

L2(Ω) +
δt

T

∥∥∥∥u1,h − Πh (u0)

δt

∥∥∥∥2

L2(Ω)

) 1
2

×
(

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ω)
+

1

T

∥∥v0
∥∥2

L2(Ω)
+

1

Tδt

∥∥v−1
∥∥2

L2(Ω)

) 1
2

,

L∗(δt−1d2,∗(V )) ≤
(

N−1∑
n=1

δt2

ν

∥∥D1f
n+1

∥∥2

H−1(Ω)

) 1
2
(

N−1∑
n=1

δt2ν
∥∥D1v

n+1
∥∥2

H1(Ω)

) 1
2

,

L∗(Π0(τ, V )) ≤
(

N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)

) 1
2

×
(

N−1∑
n=0

δtν
∥∥τn+1∇(Πh

(
a · ∇vn+1

)
)
∥∥2

L2(Ω)

) 1
2

,

and

ν
∥∥τn+1∇

(
Πh

(
a · ∇vn+1

))∥∥2

L2(Ω)
≤C2

invν

h2
(τn+1)2

∥∥Πh

(
a · ∇vn+1

)∥∥2

L2(Ω)

≤Cτn+1
∥∥a · ∇vn+1

∥∥2

L2(Ω)
.

From all these inequalities the theorem follows easily.
The two previous theorems lead to the following stability result.
Corollary 4.22 (stability II). The sequence Uh, solution of problem (4.17), is

bounded as follows:

|||Uh|||2s + δt−1|||d1,∗Uh|||2w

≤ C

(
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)
+

N−1∑
n=1

δt2

ν

∥∥D1f
n+1

∥∥2

H−1(Ω)

+
1

T

∥∥u0
∥∥2

L2(Ω)
+

δt

T

∥∥∥∥u1,h − Πh (u0)

δt

∥∥∥∥2

L2(Ω)

)

for all δt > 0.
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Obviously, this stability bound makes sense if the initialization is such that the
last term on the right-hand side is bounded. Using, for example, the backward Euler
scheme, it is easy to show that this last term is bounded if hp+1 ≤ CTδt, and this
condition is automatically satisfied thanks to assumption (2.21).

The final result we obtain is an error estimate in the strong norm ||| · |||s. At this
point we introduce the sequence U = {u−1

h , u0, u1, u2, . . . , uN}, which consists of the
sequence of solutions of the semidiscrete problem (2.9)–(2.11) supplemented with u−1

h

at n = −1. It can be easily checked that this sequence satisfies

B∗
h (U, V ) = L∗(V ) − εc(V ).

Thus, Ed := Uh − U = {0, u0
h − u0, u1

h − u1, . . . , uN
h − uN} satisfies

B∗
h (Ed, Vh) = εc(Vh).

We point out that for fixed domains the critical time step size does not appear anymore
due to the fact that w = 0. The method is unconditionally stable, as expected.

We stress the fact that e−1
d �= e1

d − e0
d, and therefore Ed does not verify the

statement of Theorem 4.20. The only place where the fact that v−1 = v1 − v0 is used
is in (4.23). When the test sequence does not satisfy the assumption v−1 = v1 − v0 of
Theorem 4.20, we have to modify the Λ-coercivity proved in this theorem as follows:

4

Tδt

∥∥δe1
d

∥∥2

L2(Ω)
+ B∗

h (Ed,Λ(Ed)) ≥ β2

(
|||Ed|||2s + δt−1|||d1,∗(Ed)|||2w

)
.(4.24)

With the expression of Λ(·) given in Theorem 4.20, we arrive at

B∗
h (Ed,Λ(Ed)) = B∗

h (Ed, Ed) +
1

4
εc(Π0(τ, Ed)) + δt−1B∗

h

(
Ed, d

2,∗Ed

)
= B∗

h (Ed,Πh (U) − U) + εc(Uh − Πh (U)) +
1

4
εc(Π0(τ, Ed))

+ δt−1B∗
h

(
Ed, d

2,∗(Πh (U) − U)
)

+ δt−1εc(d
2,∗(Uh − Πh (U))).(4.25)

Again, we group the different terms as interpolation and consistency errors and
bound them separately in the next lemmas.

Lemma 4.23 (interpolation error). The following inequality holds:

B∗
h

(
Ed,Π

⊥
h (U)

)
+ δt−1B∗

h

(
Ed, d

2,∗(Π⊥
h (U)

)
≤
(
|||Ed|||2w + δt−1|||d1,∗(Ed)|||2w

+ h2(p+1)
N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

×
(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

.

Proof. The bound for the first term of the left-hand side of the inequality is easily
obtained from the proof of Lemma 4.15, since e−1

d = 0. For the second term we use
property (4.21) and again the fact that e−1

d = 0, getting

B∗
h

(
Ed, d

2,∗(Π⊥
h (U))

)
= Bh(d1,∗(Ed), d

1,∗(Π⊥
h (U))) − 1

2T

(
δe1

d, δ
(
Πh

(
u3
)
− 3Πh

(
u2
)))

.
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Note that when we write Bh(d1,∗(Ed), d
1,∗(Π⊥

h (U))) we eliminate the element −1 of
the sequences to apply the bilinear form Bh(·, ·).

Using Lemma 4.14 we get

δt−1Bh(d1,∗(Ed), d
1,∗(Π⊥

h (U)))

≤ C

(
δt−1|||d1,∗Ed|||2w + h2(p+1)

N−1∑
n=1

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

) 1
2

×
(
h2(p+1)

N−1∑
n=1

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

) 1
2

.

Exploiting the fact that Π⊥
h

(
e1
d

)
= Πh

(
u1
)
− u1, we can easily get that

1

2Tδt

(
δe1

d, δ
(
Πh

(
u3
)
− 3Πh

(
u2
)))

≤ Ch2(p+1)
2∑

n=0

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)
.

The proof is concluded.
Lemma 4.24 (consistency error). The following inequality holds:

εc

(
Uh − Πh(U) +

1

4
Π0(τ, Ed) + δt−1d2,∗(Uh − Πh(U))

)

≤ C

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

×
(
|||Ed|||2w + h2(p+1)

N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

.

Proof. Due to the fact that e−1
d = 0, we can profit from the bounds obtained in

Lemmas 4.10 and 4.16. The remaining term associated to d2,∗(·) can be bounded as
follows:

εc(δt
−1d2,∗(Uh − Πh(U))) =

N−1∑
n=1

τn+1
(
Π⊥

h

(
a · ∇δun+1

)
,a · ∇Π⊥

h

(
δun+1

))

=
N−1∑
n=1

τn+1
(
Π⊥

h

(
λ(δun+1)

)
,a · ∇Π⊥

h

(
δun+1

))

≤ C

(
N−1∑
n=1

δtτn+1
∥∥∥Π⊥

h

(√
δtλ(D1u

n+1)
)∥∥∥2

L2(Ω)

) 1
2

×
(
h2(p+1)

N−1∑
n=1

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

) 1
2

,

with λ(·) introduced in Lemma 4.10. The term related to λ(D1u
n+1) can be easily

bounded from the expression of τn+1, assumption (2.19), and the interpolation error
estimate (4.3), as pointed out in Lemma 4.10.
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We end with the convergence result of the method in the norm ||| · |||s.
Theorem 4.25 (convergence II). The sequence of errors Ed = Uh − U satisfies

the following error estimate:

|||Ed|||2s ≤ Ch2(p+1)

[
N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)

+ (τ1)−1
∥∥u1

∥∥
Hp+1(Ω)

+ (τ1)−1
∥∥u0

∥∥
Hp+1(Ω)

]
(4.26)

for all δt > 0.
Proof. Using Lemmas 4.23 and 4.24 in expressions (4.24) and (4.25), we can

easily get the desired bound for |||Ed|||2s in terms of 4
Tδt

∥∥δe1
d

∥∥2

L2(Ω)
. Using as initial-

ization the backward Euler scheme and the convergence result of Theorem 4.11 for
the semidiscrete problem, it follows that

1

Tδt

∥∥δe1
d

∥∥2

L2(Ω)
≤ C

Tδt

(∥∥e1
d

∥∥2

L2(Ω)
+
∥∥u0 − Πh(u0)

∥∥2

L2(Ω)

)
≤ C(τ1)−1h2(p+1)

(∥∥u1
∥∥
Hp+1(Ω)

+
∥∥u0

∥∥
Hp+1(Ω)

)
,

from which we obtain the desired result.
Remark 4.5. From (4.26) it is seen that we need {

√
δtD1u

n+1} bounded in the
norm of �2(Hp+1(Ω)). This can be understood as additional regularity on the data
or as an additional assumption on the asymptotic behavior of the time step size in
terms of h. From the semidiscrete equation, it is immediate to bound ‖D1u

n+1‖Hq(Ω)

in terms of the Hq(Ω)-norm of the rest of the terms of the equation. In particular,
the viscous term implies that the Hq(Ω)-norm of D1u

n+1 can be bounded in terms
of the Hq+2(Ω)-norm of un+1. If only the Hp+1(Ω)-norm of un+1 is bounded, we
have to take q = p − 1, and thus h2(p+1)‖

√
δtD1u

n+1‖2
Hp+1(Ω) has to be replaced by

h2(p−1)‖
√
δtD1u

n+1‖2
Hp−1(Ω), and therefore we need δt ≤ Ch4 in order to maintain

the optimal order of accuracy.

5. Conclusions. In this paper we have analyzed a stabilized FEM to approx-
imate the convection-diffusion equation on moving domains. The OSS formulation
has been used as a stabilization technique, and an ALE framework has been used in
order to deal with moving domains.

In the first part of the paper we have analyzed the semidiscrete problem (in
time). Two methods have been considered: a first order accurate method, where the
time derivatives are computed using the BDF1 scheme, and a second order accurate
method, where the BDF2 scheme has been used. In this analysis it is easy to identify
the error introduced by the ALE formulation. The mesh velocity is computed as the
time derivative of the mesh displacement. The numerical approximation of this time
derivative is the only source of error introduced by the ALE formulation. As a conclu-
sion, in order to keep the accuracy of a kth order (in time) method on fixed domains,
we must compute the mesh velocity using a time integration scheme of at least order
k of accuracy. The only negative aspect is that unconditional stable methods for fixed
domains become conditionally stable.

In the second part of the paper we have analyzed a stabilized transient convection-
diffusion equation in an ALE framework. We have introduced the concept of Λ-
coercivity that has been used for obtaining stability results and error estimates. It has



2196 SANTIAGO BADIA AND RAMON CODINA

been shown that the OSS method can be easily extended to transient problems. For
the BDF1 time integration scheme we have stability of the convective term norm, as is
usual when using stabilization techniques. The analysis of BDF2 is more complicated.
We have control over only the orthogonal projection of the convective term. However,
optimal convergence results with constants that do not depend on the Péclet number
can be proved. Finally, for fixed domains, we have been able to recover stronger
stability and convergence involving the full norm of the convective term, but the
analysis is much more involved and requires more regularity assumptions.
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DISCONTINUOUS GALERKIN APPROXIMATION OF THE
MAXWELL EIGENPROBLEM∗
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Abstract. A theoretical framework for the analysis of discontinuous Galerkin approximations
of the Maxwell eigenproblem with discontinuous coefficients is presented. Necessary and sufficient
conditions for a spurious-free approximation are established, and it is shown that, at least on confor-
mal meshes, basically all the discontinuous Galerkin methods in the literature actually fit into this
framework. Relations with the classical theory for conforming approximations are also discussed.
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1. Introduction. One of the most relevant problems in computational electro-
magnetics is the one of computing eigenfrequencies of the Maxwell equations in a
cavity: find u �= 0 and ω such that

∇× (μ−1∇× u) − ω2εu = 0,(1.1)

with suitable boundary conditions, where μ and ε are the magnetic permeability and
the electric permittivity, respectively.

Finite element techniques are widely used to approximate problem (1.1), and,
in recent years, a complete mathematical theory has been developed for conforming
approximations, identifying the properties that the underlying finite element spaces
need to fulfill in order to guarantee spurious-free approximations. We refer the reader
to the pioneering work [12] and to [33] or [38] and the references therein (we point, in
particular, to the fundamental papers [10], [18], [24], and [16]).

On the other hand, the use of discontinuous Galerkin (DG) methods in electro-
magnetism is attractive thanks to their flexibility in the mesh design and in the choice
of shape functions. A unified presentation and analysis of all the DG methods avail-
able in the literature, in the elliptic context, are contained in [5], whereas the extension
of these methods to the time-domain and frequency-domain Maxwell equations is the
object of ongoing research (see, among others, [43], [34], [30], and [31]).

The main difficulties encountered in the analysis of DG approximations of the
Maxwell equations are related to the lack of ellipticity and underlying compactness
property of the Maxwell operator, which is “amplified” by the use of nonconforming
approximation spaces.

The first studies on DG approximations of the Maxwell eigenproblem are con-
tained in the recent papers [32] and [45]. There, the main goal was to investigate the
role of the penalty parameter appearing in the local discontinuous Galerkin method in
avoiding the pollution of the lowest part of the spectrum by eigenvalues related to the
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nonconformity of the approximation spaces for a fixed mesh size. That analysis ap-
proach and thorough numerical tests have highlighted the links between the spectral
properties of DG and curl-conforming methods. In this paper, we aim at developing
an asymptotic analysis (i.e., for mesh sizes which tend to zero) of DG approximations
of the eigenproblem (1.1) in the spirit of [10], [18], [24], and [16].

The spectral theory for DG methods developed in [3] for elliptic problems (with
associated compact inverse operators) needs to be extended to treat problems with
noncompact inverse operators of the type (1.1). In this case, the lack of compactness
results in the presence of an essential spectrum σess = {0}, the eigenspace associated
with the eigenvalue 0 being infinite dimensional. More precisely, we provide a general
framework with a set of sufficient (and necessary) conditions for a DG method to
provide a spurious-free approximation of problem (1.1), i.e., an approximation with
the following properties (see [18]):

(i) isolation of discrete kernel ; i.e., all discrete eigenvalues approaching the es-
sential spectrum σess = {0} are separated from the other ones (see section 4.1
for a precise definition);

(ii) nonpollution of the spectrum; i.e., there are no discrete spurious eigenvalues;
(iii) completeness of the spectrum; i.e., all continuous eigenvalues smaller than an

arbitrarily large fixed number are approximated for sufficiently fine meshes;
(iv) nonpollution and completeness of the eigenspaces; i.e., there are no spurious

eigenfunctions, and the eigenspace approximations associated with eigenval-
ues which are not approaching σess = {0} have the right dimension.

The analysis presented in this paper is carried out along the lines of [18] and [16],
and it is based on the theory developed in [25] and [26]. It is worth noting that our
general framework applies to both hermitian and non-hermitian DG methods. The
two key assumptions which ensure spurious-free DG approximations are (i) a discrete
Friedrichs inequality (see Assumption 5) and (ii) a gap property (see Assumption 6).
They are the DG analogue of the discrete Friedrichs inequality for discrete, weakly
divergence-free curl-conforming vector fields and of the discrete compactness property
(see, e.g., [37]), respectively, which have been proved to be necessary and sufficient
conditions to have conforming spurious-free approximations to the Maxwell eigen-
problem (1.1) (see [10] and [18]). Like for conforming approximations, we show the
necessity of these assumptions restricting ourselves, for simplicity, to hermitian DG
methods only.

We point out that our theory is able to treat general piecewise smooth material
coefficients. In this respect, the appendix is devoted to the analysis of the approxi-
mation properties of the DG solutions under minimal regularity assumptions on the
solutions of the corresponding continuous problem. This analysis is technical, extends
the results of [42], and is, to our knowledge, new.

As a direct consequence of the spectral theory developed in this paper, we obtain
well-posedness and quasi-optimal error estimates for DG discretizations, for suffi-
ciently fine meshes, of the Maxwell source problem

∇× (μ−1∇× u) − ω2εu = f ,(1.2)

with suitable boundary conditions, where ω is a fixed frequency, away from the eigen-
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frequencies of the continuous problem. Indeed, the fact that a spurious-free finite
element method is also a stable and convergent method for (1.2) is based on a general
reasoning which is, to our knowledge, new.

Finally, applying our theory, we analyze the spectral approximation properties
of several DG methods, such as the methods of the interior penalty family (interior
penalty (IP), nonsymmetric interior penalty (NIP), and incomplete interior penalty
(IIP); see [4], [44], and [23], respectively) and the local discontinuous Galerkin method
(LDG; see [21]). Our theoretical results can be summarized as follows:

1. on conformal tetrahedral/triangular meshes, these methods are spurious-free
when the approximation spaces are made of elementwise polynomials of degree
� in each variable as well as of elementwise Nédélec elements of the first
family [39];

2. on conformal hexahedral/quadrilateral meshes, these methods are spurious-
free when the approximation spaces are made of elementwise Nédélec elements
of the first family, whereas they produce spurious modes when the approxima-
tion spaces are made of elementwise polynomials of degree � in each variable;

3. the convergence rates of the eigenfunction approximations are optimal, i.e.,
for smooth solutions, O(h�) for elements of degree �, whereas the convergence
rates of the eigenvalue approximations are optimal, i.e., for smooth solutions,
O(h2�) for hermitian DG methods, and suboptimal O(h�) for non-hermitian
DG methods.

We point out that all the results obtained here for the DG spectral approximations
of the curl-curl operator carry over to the DG spectral approximations of the grad-div
operator encountered, for instance, in fluid-structure problems (see, e.g., [9] and [8]).

Some questions still remain open and are the object of ongoing research: (i) Can
one use a mesh with hanging nodes? (ii) Can one use approximation spaces made of
elementwise divergence-free polynomial spaces (see [6] and [20])? A partial answer to
the first question has been provided by numerical tests performed while this paper
was undergoing the review process (see [17]).

The paper is organized as follows: in sections 2 and 3 we set the notation and
the definitions for the continuous and the discrete problems, respectively. Section 4
is the core of the paper and contains the analysis of the DG spectral approximation,
under a minimal set of assumptions, which are indeed proved to also be necessary for
spurious-free approximations in section 5. In section 6 we analyze the consequences of
our theory on the Maxwell source problem (1.2), and finally in section 7 we apply our
framework to the most used DG methods applied to the Maxwell equations. Here,
the link between our assumptions and their conforming analogue is made clear for the
interested reader. Finally, in section 8, we summarize our results.

2. Continuous problem. For a bounded domain D in R
d, d = 2, 3, we denote

by Hs(D) the standard Sobolev space of order s ≥ 0 of real or complex functions and
by ‖ · ‖s,D the usual Sobolev norm. For s = 0, we write L2(D) in lieu of H0(D). We
also use ‖ · ‖s,D to denote the norm for the space Hs(D)d.

We denote by Ω the problem domain, which we assume to be a bounded Lipschitz
polygonal or polyhedral domain in R

d, d = 2, 3, and by n the normal unit vector to
its boundary ∂Ω, pointing outside Ω. Whenever ∂Ω is not connected, we denote by
Γi, i = 1, . . . , nΓ, its connected components.

If d = 3, we assume Ω to be occupied by inhomogeneous, anisotropic materials,
i.e., for which the electric permittivity ε = ε(x) and magnetic permeability μ = μ(x)
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are second order, real, symmetric, tensor-valued functions, satisfying

0 < ε�(x) ≤
3∑

i,j=1

εi,jξiξj ≤ ε�(x) a.e. in Ω ∀ξ ∈ R
3, ‖ξ‖ = 1,(2.1)

0 < μ�(x) ≤
3∑

i,j=1

μi,jξiξj ≤ μ�(x) a.e. in Ω ∀ξ ∈ R
3, ‖ξ‖ = 1,(2.2)

where ε�, ε�, μ�, μ� ∈ L∞(Ω). If d = 2, ε = ε(x) is again a second order tensor,
whereas μ = μ(x) is a scalar; therefore, the conditions on ε are analogous to (2.1),
whereas (2.2) becomes 0 < μ�(x) = μ(x) = μ�(x). Finally, we assume that there
exists a partition of Ω into Lipschitz subdomains such that in each of them ε, μ, and
μ−1 are smooth.

We define, as usual, the following spaces of complex functions:

H(curl; Ω) = {v ∈ L2(Ω)d : ∇× v ∈ L2(Ω)2d−3},
H0(curl; Ω) = {v ∈ H(curl; Ω) : n × v = 0 on ∂Ω},
H0(curl0; Ω) = {v ∈ H0(curl; Ω) : ∇× v = 0},

H(div0
ε; Ω) =

{
v ∈ L2(Ω)d : ∇ · (εv) = 0,

∫
Γi

(εv) · n ds = 0, i = 1, . . . , nΓ

}
;

if ∂Ω is connected, then H(div0
ε; Ω) = {v ∈ L2(Ω)d : ∇ · (εv) = 0}. Moreover, we set

V = H0(curl; Ω), V0 = H0(curl0; Ω), W = V ∩H(div0
ε; Ω).

Finally, we denote by (·, ·) the standard inner product in L2(Ω)d given by (u,v) =∫
Ω

u ·v dx and write L2
ε(Ω)d for the space L2(Ω)d endowed with the ε-weighted inner

product (u,v)ε =
∫
Ω
εu · v dx. The L2-norm and the L2

ε-norm are clearly equivalent,
due to the assumptions on ε.

We endow V with the seminorm |v|V = ‖μ−1/2∇ × v‖0,Ω, the inner product
(u,v)V = (μ−1∇ × u,∇ × v) + (u,v)ε, and the norm ‖v‖2

V = ‖μ−1/2∇ × v‖2
0,Ω +

‖ε1/2v‖2
0,Ω.

The following decompositions are L2
ε-orthogonal (see [28]):

L2(Ω)d = H(div0
ε; Ω) ⊕ V0, V = W ⊕ V0.(2.3)

Define the (hermitian) bilinear forms a : V × V → C and b : V × V → C as

a(u,v) = (μ−1∇× u,∇× v),

b(u,v) = a(u,v) + (u,v)ε = (u,v)V.

The variational formulation of the eigenproblem we are interested in is the fol-
lowing: find (0 �= u, ω) ∈ W × C such that

a(u,v) = ω2(u,v)ε ∀v ∈ W.

A standard way to discretize this problem consists in neglecting the constraint u ∈
W and adding a zero frequency eigenspace corresponding to the infinite-dimensional
space V0, leading to the following variational problem.



2202 ANNALISA BUFFA AND ILARIA PERUGIA

Problem 1. Find (0 �= u, ω) ∈ V × C:

a(u,v) = ω2(u,v)ε ∀v ∈ V.

Clearly, ω2 = 0 is an eigenvalue of Problem 1 with associated eigenspace V0.
Moreover, the eigenvalue ω2 = 0 is isolated, all the other eigenvalues are real, posi-
tive, and isolated and form a sequence accumulating only at +∞, and their associ-
ated eigenspaces are finite dimensional. Finally, eigenspaces associated with different
eigenvalues are L2

ε-orthogonal and V-orthogonal (see, e.g., [38, Section 4.7]).
For the purpose of the analysis, following [18], we introduce the following auxiliary

eigenproblem with a positive definite operator.
Problem 2. Find (0 �= u, ω̃) ∈ V × C:

b(u,v) = ω̃2(u,v)ε ∀v ∈ V.

The eigenvalues of Problem 1 and those of Problem 2 are such that ω̃2 = ω2 + 1;
thus, ω̃2 = 1 is an eigenvalue of Problem 2 with infinite multiplicity and associated
eigenspace V0.

Define the solution operator A : L2(Ω)d → V as follows: given f ∈ L2(Ω)d, Af is
the (unique) element of V which satisfies

b(Af ,v) = (f ,v)ε ∀v ∈ V.

We have that A ∈ L(L2(Ω)d,V). Notice that (u, ω) is an eigenpair of Problem 1 if
and only if (u, λ = 1

ω2+1 ) is an eigenpair of A.
Denote by σ(A) and ρ(A) the spectrum and the resolvent set (in the complex

plane), respectively, of the solution operator A. Finally, for any z ∈ ρ(A), we define
the resolvent operator Rz(A) = (z −A)−1 from V to V.

3. Discontinuous Galerkin approximation: Assumptions. Let Th be a
shape-regular, not necessarily conformal, triangular (d = 2) or tetrahedral (d = 3)
mesh aligned with the possible discontinuities of ε and μ. We suppose that there
exists a μ > 0, independent of the mesh size, such that

max
x∈K

μ�(x)

μ�(x)
≤ μ ∀K ∈ Th.(3.1)

We consider a complex vector-valued DG finite element space Vh (i.e., a discon-
tinuous piecewise polynomial space on Th) and define the sum space V(h) = V+Vh.

Given a seminorm | · |V(h) on V(h), we endow both Vh and V(h) with the norm

‖v‖2
V(h) = |v|2V(h) + ‖ε1/2v‖2

0,Ω ∀v ∈ V(h),

which we assume to be Hilbertian; we denote by (·, ·)V(h) the associated inner product.
Let ah : Vh × Vh → C be the DG bilinear form obtained by discretizing a :

V × V → C by a DG method, and define

bh(u,v) = ah(u,v) + (u,v)ε ∀u,v ∈ Vh.

In this section we formulate general assumptions on the space Vh and on the
bilinear form ah(·, ·) under which our theory is developed.

Assumption 1 (norm compatibility). If v ∈ V(h) and |v|V(h) = 0, then v ∈ V0;
moreover, if v ∈ V, then |v|V(h) = |v|V.
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Notice that Assumption 1 implies that |v|V(h) = 0 if and only if v ∈ V0. The
space V(h) is a Hilbert space and the V(h)-norm coincides with the V-norm on V.

For the DG space Vh, we make the following approximation assumption.
Assumption 2 (approximation property of Vh). There holds

lim
h→0

inf
vh∈Vh

‖v − vh‖V(h) = 0 ∀v ∈ W.

We assume the following properties to be satisfied.
Assumption 3 (coercivity in seminorm and continuity). There exist positive

constants α , γ independent of the mesh size such that

Re [ah(v,v)] ≥ α |v|2V(h) ∀v ∈ Vh,

|ah(u,v)| ≤ γ‖u‖V(h)‖v‖V(h) ∀u,v ∈ Vh.

Define the kernel of ah(·, ·) and its V(h)-orthogonal complement as follows:

Kh = {v ∈ Vh : ah(v,w) = 0 ∀w ∈ Vh},
K⊥

h = {v ∈ Vh : (v,w)V(h) = 0 ∀w ∈ Kh}.

If ah(·, ·) is non-hermitian, we also assume that left and right kernels coincide, i.e.,

ah(v,w) = 0 ∀v ∈ Vh,w ∈ Kh.(3.2)

Remark 3.1. From Assumption 3 it follows that

Re [bh(v,v)] ≥ min{α, 1}‖v‖2
V(h) ∀v ∈ Vh(3.3)

and that

|v|V(h) = 0 ∀v ∈ Kh.(3.4)

The coercivity property (3.3) guarantees that, for any given f ∈ L2(Ω)d, there exists
a unique uh ∈ Vh such that bh(uh,v) = (f ,v)ε for all v ∈ Vh, and ‖uh‖V(h) ≤
C‖f‖0,Ω, with C > 0 independent of the mesh size and of the right-hand side f . The
identity (3.4), together with Assumption 1, implies that Kh ⊂ V0; consequently,

K⊥
h = {v ∈ Vh : (v,w)V(h) = (v,w)ε = 0 ∀w ∈ Kh}.

For the following assumption on the DG method, we introduce the broken spaces

Hs(Th)d = {v ∈ L2(Ω)d : v|K ∈ Hs(K)d ∀K ∈ Th} for s ≥ 0,

Hr(curl; Th) = {v ∈ L2(Ω)d : εv|K ∈ Hr(K)d,

μ−1∇× v|K ∈ Hr(K)2d−3 ∀K ∈ Th} for r > 0

and the norms

‖v‖2
Hs(Th)d =

∑
K∈Th

‖v‖2
s,K ,

‖v‖2
Hr(curl;Th) =

∑
K∈Th

(
‖ε1/2v‖2

r,K + ‖μ−1/2∇× v‖2
r,K

)
.
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Assumption 4 (convergence). Let f be in H(div0
ε; Ω); denote by us ∈ V the

solution to the coercive source problem b(us,v) = (f ,v)ε for all v ∈ V and by
uh ∈ Vh its Galerkin projection which satisfies bh(uh,v) = (f ,v)ε for all v ∈ Vh.
Whenever us ∈ Hr(curl; Th), with r > 0, and f ∈ Hs(Th)d, with s ≥ 0, then

∃ t > 0 : ‖us − uh‖V(h) ≤ Cht
(
‖us‖Hr(curl;Th) + ‖f‖Hs(Th)d

)
,(3.5)

where C > 0 is independent of the mesh size. The bound (3.5), together with the
regularity results in [22], implies that

∃σ > 0 : ‖us − uh‖V(h) ≤ Chσ‖f‖0,Ω ∀f ∈ H(div0
ε; Ω),

where C > 0 is independent of the mesh size.
For the most common DG methods, the proof that Assumption 4 holds true makes

use of results proved in the appendix (see Proposition 7.3).
We define the DG solution operator Ah : L2(Ω)d → Vh as follows: given f ∈

L2(Ω)d, Ahf is the (unique) element of Vh which satisfies

bh(Ahf ,v) = (f ,v)ε ∀v ∈ Vh.

The operator Ah is well defined and Ah ∈ L(L2(Ω)d,Vh) (see Remark 3.1).
As in the continuous case, we denote by σ(Ah) and ρ(Ah) the spectrum and the

resolvent set, respectively, of the DG solution operator Ah. Finally, for any z ∈ C, we
formally define the resolvent operator Rz(Ah) = (z −Ah)−1 from Vh to Vh.

The previous assumptions imply the following properties of the discrete eigenval-
ues and eigenfunctions.

Proposition 3.2. If λh ∈ σ(Ah), then 0 < Re [λh] ≤ 1. Moreover, 1 ∈ σ(Ah)
and its associated eigenspace is Kh.

Proof. Let v �= 0 be an eigenfunction associated with λh ∈ σ(Ah). We have

λh‖ε1/2v‖2
0,Ω = (v, λhv)ε = bh(Ahv, λhv) = bh(λhv, λhv)

= ah(λhv, λhv) + |λh|2‖ε1/2v‖2
0,Ω,

and thus Re [λh]‖ε1/2v‖2
0,Ω = Re [ah(λhv, λhv)] + |λh|2‖ε1/2v‖2

0,Ω. Since, owing to
Assumption 3, Re [ah(λhv, λhv)] ≥ 0, we readily have Re [λh] > 0 and Re [λh] ≥
|λh|2, from which Re [λh] ≤ 1. The second part of the statement is obvious.

Clearly, whenever ah(·, ·) is hermitian, then all the discrete eigenvalues are real.
Proposition 3.3. (i) Let v �= 0 be an eigenfunction of Ah associated with an

eigenvalue λh �= 1. Then (v,w)ε = (v,w)V(h) = bh(v,w) = 0 for all w ∈ Kh.
(ii) If ah(·, ·) is hermitian, for all eigenfunctions v1, v2 associated with different

eigenvalues, it holds that (v1,v2)ε = bh(v1,v2) = 0.
Proof. For the proof of (i), let w ∈ Kh. Since ah(v,w) = 0, we can write

(v,w)ε = λhbh(v,w) = λh(v,w)ε;

then, λh �= 1 implies (v,w)ε = 0 and bh(v,w) = 0. Moreover, since |w|V(h) = 0, we
also have (v,w)V(h) = (v,w)ε. The proof of (ii) is trivial.

4. Spurious-free discontinuous Galerkin approximations. In order to
guarantee a spurious-free DG approximation to Problem 1 (see the introduction), in
addition to Assumptions 1–4, we need to make sure that the two additional properties
are verified.
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Property 1 (isolation of discrete kernel). There exists 0 < β < 1 independent
of the mesh size such that if 1 �= λh ∈ σ(Ah), then

Re [λh] ≤ β.

For a linear, continuous operator L : V1 → V2, with V1 and V2 Hilbert spaces, we
define

‖L‖L(V1,V2) = sup
v∈V1

‖v‖V1
=1

‖Lv‖V2
.

Property 2 (convergence in mesh-dependent norm).

lim
h→0

‖A−Ah‖L(Vh,V(h)) = 0.

We remark that Property 2 is the DG analogue of [15, P1, p. 100] and that the
norm ‖ · ‖L(Vh,V(h)) coincides with the mesh-dependent norm ‖ · ‖h of [25].

In the following two sections we formulate key assumptions on the DG spaces and
bilinear forms which guarantee the validity of Properties 1 and 2, respectively.

4.1. Isolation of discrete kernel. We prove that the following assumption
implies Property 1.

Assumption 5 (discrete Friedrichs inequality). There exists C > 0 independent
of the mesh size such that

‖ε1/2v‖2
0,Ω ≤ C Re [ah(v,v)] ∀v ∈ K⊥

h .

Proposition 4.1. Assumption 5 implies Property 1.
Proof. If v is an eigenfunction of Ah associated with an eigenvalue λh �= 1, then

v belongs to K⊥
h (see Proposition 3.3). From Assumption 5 we have

|λh|2
C

‖ε1/2v‖2
0,Ω ≤ Re [ah(λhv, λhv)] = Re [ah(Ahv, λhv)]

= Re [bh(Ahv, λhv) − (Ahv, λhv)ε]

= Re [(v, λhv)ε − (λhv, λhv)ε] = (Re [λh] − |λh|2)‖ε1/2v‖2
0,Ω.

Property 1 readily follows with β = C/(1 + C).
Remark 4.2. The V(h)-ellipticity of ah(·, ·) on K⊥

h follows from Assumptions 3
and 5. In fact, if v ∈ K⊥

h , the definition of ‖ · ‖V(h), Assumptions 3 and 5 give

‖v‖2
V(h) = |v|2V(h) + ‖ε1/2v‖2

0,Ω ≤
(

1

α
+ C

)
Re [ah(v,v)].

4.2. Convergence of solution operators in mesh-dependent norm. First,
we note that Property 2 can be rephrased as follows: for all h small enough,

‖(A−Ah)fh‖V(h) ≤ ξh‖fh‖V(h) ∀fh ∈ Vh,(4.1)

with ξh → 0 as h → 0.
The aim of this section is to prove that the following key assumption implies

Property 2.
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Assumption 6 (gap property). For all h small enough, for any wh ∈ K⊥
h there

exists w = w(h) ∈ H(div0
ε; Ω) such that

‖w − wh‖0,Ω ≤ ηh‖wh‖V(h),

with ηh → 0 as h → 0.
Assumption 6 is related to the approximation properties of K⊥

h and Kh in W
and in V0, respectively (see section 5).

In order to prove Property 2, we state the following lemma.
Lemma 4.3. For all f0

h ∈ Kh, we have (A−Ah)f0
h = 0.

Proof. The condition f0
h ∈ Kh implies that f0

h ∈ Vh ∩ V0 (see Remark 3.1).
Therefore, b(Af0

h ,v) = (f0
h ,v)ε for all v ∈ V implies that Af0

h is solution to b(u,v) =
(f0

h ,v)ε for all v ∈ V. Since f0
h ∈ V0, then u = f0

h is a solution; uniqueness implies
that Af0

h = f0
h . Therefore, we need only prove that Ahf

0
h = f0

h . But ah(f0
h ,v) = 0 for

all v ∈ Vh implies that

bh(Ahf
0
h ,v) = (f0

h ,v)ε = bh(f0
h ,v) ∀v ∈ Vh,

from which Ahf
0
h = f0

h , owing to the well-posedness in Remark 3.1, and the proof is
complete.

Proposition 4.4. Property 2 holds true.
Proof. Decompose fh ∈ Vh as fh = f0

h + f⊥h , with f0
h ∈ Kh and f⊥h ∈ K⊥

h and
‖fh‖2

V(h) = ‖f0
h‖2

V(h) +‖f⊥h ‖2
V(h). Owing to Lemma 4.3, it is enough to prove that, for

all h small enough,

‖(A−Ah)f⊥h ‖V(h) ≤ ξh‖f⊥h ‖V(h) ∀f⊥h ∈ K⊥
h ,(4.2)

with ξh → 0 as h → 0. For h small enough, we can write

‖(A−Ah)f⊥h ‖V(h) ≤ ‖(A−Ah)(f − f⊥h )‖V(h) + ‖(A−Ah)f‖V(h),(4.3)

with f ∈ H(div0
ε; Ω) as in Assumption 6.

For the first term on the right-hand side in (4.3), we have

‖(A−Ah)(f − f⊥h )‖V(h) ≤
(
‖A‖L(L2(Ω)d,V) + ‖Ah‖L(L2(Ω)d,Vh)

)
‖f − f⊥h ‖0,Ω

≤ C ηh ‖f⊥h ‖V(h),

owing to the continuity of Ah (see Remark 3.1) and Assumption 6.
For the second term on the right-hand side in (4.3), since f ∈ H(div0

ε; Ω), from
Assumption 4 we have that there exists a σ > 0 such that

‖(A−Ah)f‖V(h) ≤ Chσ‖f‖0,Ω ≤ Chσ(‖f − f⊥h ‖0,Ω + ‖f⊥h ‖0,Ω)

≤ Chσ(ηh + 1)‖f⊥h ‖V(h),

where we have again used Assumption 6 and the definition of the V(h)-norm.
Therefore, (4.2) holds true with ξh = hσ(ηh + 1).

4.3. Nonpollution of the spectrum. This section is devoted to the proof of
the following theorem.

Theorem 4.5 (nonpollution of the spectrum). Let G ⊂ C be an open set con-
taining σ(A). Then, for h small enough, σ(Ah) ⊂ G.

We proceed by establishing few intermediate results.
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Lemma 4.6. Fix 0 �= z ∈ ρ(A). There exists a positive constant C depending
only upon Ω and |z| such that, for all f ∈ V(h),

‖(z −A)f‖V(h) ≥ C‖f‖V(h).

Proof. The proof is similar to the one of [3, Lemma 4.2]. Let f ∈ V(h) and
g := (z −A)f . By construction, g ∈ V(h) and zf − g ∈ V. Moreover, (zf − g) solves

B−1(zf − g) − 1

z
(zεf − εg) =

1

z
εg,

where B−1 is the operator ∇× (μ−1∇× (·))+ ε(·). Since z ∈ ρ(A), and zf −g verifies
homogeneous Dirichlet boundary condition, well-posedness implies that

‖zf − g‖V ≤ C

|z| ‖ε
1/2g‖0,Ω ≤ C

|z| ‖g‖V(h).

Owing to Assumption 1, it holds that ‖zf − g‖V = ‖zf − g‖V(h). Therefore

‖f‖V(h) ≤
1

|z|
(
‖zf − g‖V + ‖g‖V(h)

)
≤ C(|z|)‖g‖V(h).

Theorem 4.7. Fix 0 �= z ∈ ρ(A). For h small enough, there exists a positive
constant C depending only upon Ω and |z| such that, for all f ∈ Vh,

‖(z −Ah)f‖V(h) ≥ C‖f‖V(h).

Proof. By triangle inequality, we have

‖(z −Ah)f‖V(h) ≥ ‖(z −A)f‖V(h) − ‖(A−Ah)f‖V(h).

Lemma 4.6 and the continuity of the operator A−Ah yield

‖(z −Ah)f‖V(h) ≥ (C − ‖A−Ah‖L(Vh,V(h)))‖f‖V(h),

and Property 2 allows us to conclude.
Theorem 4.7 implies that, for any 0 �= z ∈ ρ(A) and h small enough, (z − Ah) is

an invertible operator and the following result holds true.
Corollary 4.8. Let F ⊂ ρ(A) be closed. Then, there exists a positive constant

C independent of the mesh size such that, for h small enough, we have

‖Rz(Ah)‖L(Vh,Vh) ≤ C

for all z ∈ F , with C > 0 independent of the mesh size.
Proof. We observe that if f ∈ Vh, then (z−Ah)−1f ∈ Vh. In fact, g := (z−Ah)−1f

⇒ (z − Ah)g = f ⇒ zg = f + Ahg ∈ Vh. Theorem 4.7 then says that, for all z ∈ F
and h sufficiently small, the continuous operator (z − Ah) : Vh → Vh is invertible
with continuous inverse and continuity constant independent of the mesh size. The
statement readily follows.

Theorem 4.5 is a direct consequence of Corollary 4.8.
Remark 4.9. For fixed z ∈ ρ(A) and f ∈ V(h), we can write

‖(z −A)f‖V(h) ≤ |z|‖f‖V(h) + ‖Af‖V ≤ |z|‖f‖V(h) + C‖f‖0,Ω ≤ C(|z|)‖f‖V(h),
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owing to the stability estimate of the continuous problem and the definition of the
V(h)-norm. This, together with the result of Lemma 4.6, implies that, for all fixed 0 �=
z ∈ ρ(A), (z −A) : V(h) → V(h) is a continuous invertible operator with continuous
inverse. An immediate consequence of this fact is the analogue of Corollary 4.8: Let
F ⊂ ρ(A) be closed. Then, there exists a positive constant C independent of the mesh
size such that, for all z ∈ F ,

‖Rz(A)‖L(V(h),V(h)) ≤ C.

4.4. Nonpollution and completeness of the eigenspaces, and complete-
ness of the spectrum. Let λ be an eigenvalue of A with algebraic multiplicity m,
and let Γ be a circle in the complex plane centered at λ which lies in ρ(A) and does
not enclose any other point of σ(A). According to [36, p. 178], we define the spectral
projections E and, for h small enough, Eh from Vh into V(h) by

E = Eλ =
1

2πi

∫
Γ

Rz(A) dz, Eh = Eh,λ =
1

2πi

∫
Γ

Rz(Ah) dz,(4.4)

respectively. Theorem 4.5 guarantees that, for h small enough, Eh is well defined.
We have the following uniform convergence result, analogous to [25, Lemma 2].
Theorem 4.10. We have

lim
h→0

‖E − Eh‖L(Vh,V(h)) = 0.

Proof. Since (z −A)−1 − (z −Ah)−1 = (z −A)−1(A−Ah)(z −Ah)−1, we have

Rz(A) −Rz(Ah) = Rz(A)(A−Ah)Rz(Ah).

Therefore, for f ∈ Vh,

‖Rz(A)(A−Ah)Rz(Ah)f‖V(h)

≤ ‖Rz(A)‖L(V(h),V(h))‖A−Ah‖L(Vh,V(h))‖Rz(Ah)‖L(Vh,Vh)‖f‖V(h).

Owing to Remark 4.9, Property 2, and Corollary 4.8, we get the result.
If Y and Z are closed subspaces of V(h), we define

δh(x, Y ) := inf
y∈Y

‖x − y‖V(h), δh(Y,Z) := sup
y∈Y

‖y‖V(h)=1

δh(y, Z),

δ̂h(Y,Z) := max{δh(Y,Z), δh(Z, Y )}.

The following result holds true (compare with [25, Theorem 2]).
Theorem 4.11 (nonpollution of the eigenspaces). We have

lim
h→0

δh(Eh(Vh), E(V)) = 0.

Proof. We start by observing that E(V) = E(L2(Ω)d). Indeed, E(V) is the
projection onto the eigenspace associated with the eigenvalue λ of the operator A :
V → V, and E(L2(Ω)d) is the projection onto the eigenspace associated with the
eigenvalue λ of the operator A : L2(Ω)d → L2(Ω)d (see, e.g., [27, Theorem 5, p. 579]).
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Since all eigenfunctions of A : L2(Ω)d → L2(Ω)d are in V, the two eigenspaces
coincide, i.e., E(V) = E(L2(Ω)d). Therefore,

sup
yh∈Eh(Vh)

‖yh‖V(h)=1

inf
x∈E(V)

‖yh − x‖V(h) = sup
yh∈Eh(Vh)

‖yh‖V(h)=1

inf
x∈E(L2(Ω)d)

‖yh − x‖V(h)

= sup
yh∈Eh(Vh)

‖yh‖V(h)=1

inf
x∈L2(Ω)d

‖Ehyh − Ex‖V(h),

where in the last step we have used that Ehyh = yh for all yh ∈ Eh(Vh). Taking
x = yh, Theorem 4.10 allows us to conclude.

For eigenspaces associated with eigenvalues λ �= 1, we have the following result
(compare with [25, Theorem 3]).

Theorem 4.12 (completeness of the eigenspaces). If E = Eλ is associated with
an eigenvalue λ �= 1, then

lim
h→0

δh(E(V), Eh(Vh)) = 0.

Proof. Since EEy = Ey for all y ∈ V, we can write

δh(E(V), Eh(Vh)) = sup
x∈E(V)

‖x‖V(h)=1

inf
xh∈Vh

‖Ex − Ehxh‖V(h).

Fix x ∈ E(V). Then, Ex = x and x ∈ W. By Assumption 2, there exists x̃h ∈ Vh

such that

lim
h→0

‖x − x̃h‖V(h) = 0.(4.5)

Therefore,

inf
xh∈Vh

‖Ex − Ehxh‖V(h) ≤ ‖Ex − Ehx̃h‖V(h)

≤ ‖E(x − x̃h)‖V(h) + ‖(E − Eh)x̃h‖V(h)

≤ ‖E‖L(V(h),V(h))‖x − x̃h‖V(h) + ‖E − Eh‖L(Vh,V(h))‖x̃h‖V(h).

The first term on the right-hand side tends to zero, as h→ 0, due to (4.5), whereas
the second term tends to zero, as h→ 0, owing to Theorem 4.10. Since E(V) is
the eigenspace associated with λ �= 1, it is finite dimensional; therefore, pointwise
convergence implies uniform convergence in E(V), and the result readily follows.

Finally, we have the following result.
Theorem 4.13 (completeness of the spectrum). For all λ ∈ σ(A),

lim
h→0

δh(λ, σ(Ah)) = 0.

Proof. For λ = 1, since λh = 1 ∈ σ(Ah), the result is obvious. For λ �= 1,
Theorems 4.11 and 4.12 imply that, for E = Eλ,

lim
h→0

δ̂h(E(V), Eh(Vh)) = 0.(4.6)

Now, let m and mh be the (finite) dimensions of E(V) and Eh(Vh), respectively.
Then, (4.6) implies that, for h small enough, mh = m (see [36, p. 200]). In particular,
denoting by DΓ the domain of C bounded by Γ, if DΓ ∩ (σ(A) \ {1}) �= ∅, then, for h
small enough, DΓ ∩ (σ(Ah) \ {1}) �= ∅. The fact that all the eigenvalues are isolated
allows us to conclude.
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4.5. Approximation of eigenvalues and eigenfunctions. In this section
we report the consequences of the results obtained in the previous section on the
approximation of the eigenvalues and the eigenfunctions. The results in this section
are stated without proof, since their proofs are standard and the paper [26] can be
used as a reference; the proof of the eigenvalue estimates is also reported in [3].

Let λ �= 1 be an eigenvalue of A, and let m be its (finite) multiplicity. We
denote by E and Eh the associated continuous and discrete spectral projections,
respectively. At the end of the previous section, we have proved that there exist
exactly m eigenvalues {λ1,h, . . . , λm,h} of Ah (repeated with their multiplicities) which
converge to λ, i.e.,

lim
h→0

sup
1≤i≤m

|λ− λi,h| = 0.

In the following theorem, we analyze the convergence rate of this limit (con-
vergence of eigenvalues) and the one of the limits in Theorem 4.12 (convergence of
eigenfunctions).

Theorem 4.14. Let λ �= 1 be an eigenvalue of A, and let E and Eh be the
associated continuous and discrete spectral projections, respectively. Then, for h small
enough, it holds that

δh(E(V), Eh(Vh)) ≤ Cht,

sup
1≤i≤m

|λ− λi,h| ≤ Cht,

where t is the maximal exponent which can be used in the bound (3.5) of Assumption 4
for all f ∈ E(V), and the constant C depends only on λ (and deteriorates for small
values of λ). Moreover, for hermitian DG methods, we have

sup
1≤i≤m

|λ− λi,h| ≤ Ch2t.

5. Remarks on Assumptions 5 and 6. In this section we make some remarks
on our key assumptions, Assumptions 5 and 6. More precisely, in sections 5.1 and 5.2,
respectively, we show that

(i) Assumptions 5 and 6 are not only sufficient but also necessary for a spurious-
free DG approximation of Problem 1; therefore, provided that Assumptions 1–
4 are satisfied, Assumptions 5 and 6 are necessary and sufficient for a DG
method to provide a spurious-free approximation of Problem 1;

(ii) Assumption 6 implies that K⊥
h and Kh are approximating in W and in V0,

respectively (see (2.3)), provided that Vh is approximating in V.

5.1. Necessity of Assumptions 5 and 6. For simplicity, we restrict our-
selves to hermitian formulations and prove the necessity of Assumptions 5 and 6
for a spurious-free DG approximation of Problem 1.

Proposition 5.1. Any spurious-free hermitian DG method satisfies Assump-
tion 5.

Proof. We proceed as in the proof of [18, Lemma 6.5]. Let v be in K⊥
h , and

consider its spectral decomposition

v =
∑

1 	=λh∈σ(Ah)

vλh
,
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with vλh
being an eigenfunction associated with λh ∈ σ(Ah). Since ah(·, ·) is hermi-

tian, ah(v,v) is real; thus we can write

ah(v,v) =
∑

1 	=λh∈σ(Ah)

∑
1 	=νh∈σ(Ah)

ah(vλh
,vνh

)

=
∑

1 	=λh∈σ(Ah)

∑
1 	=νh∈σ(Ah)

(
1

λh
− 1

)
(vλh

,vνh
)ε ≥

1 − β

β
‖ε1/2v‖2

0,Ω,

due to Property 1; therefore Assumption 5 is satisfied with C = β/(1 − β).
Proposition 5.2. Any spurious-free hermitian DG method satisfies Assump-

tion 6.
Proof. The proof is similar to the one of [18, Lemma 6.3]. Assumption 6 can be

rewritten as follows: for all η > 0, there is h > 0 such that, for all h ∈ (0, h), for any
wh ∈ K⊥

h with ‖wh‖V(h) = 1, there exists w ∈ H(div0
ε; Ω) such that

‖ε1/2(w − wh)‖0,Ω ≤ η

(we have used the equivalence between the L2-norm and the L2
ε-norm).

Let {λj}∞j=1 be the decreasing sequence of all the continuous eigenvalues 1 �=
λj ∈ σ(A), where each distinct λj appears only once in the sequence, independently
of its multiplicity mj . Denoting by nh the dimension of K⊥

h , let {λi,h}nh
i=1 be the

nonincreasing sequence of all the discrete eigenvalues 1 �= λi,h ∈ σ(Ah), repeated
according to their multiplicity.

Fix η > 0. Since λ1 ≤ 1
1+αc

< 1, with αc being the V-ellipticity constant of a(·, ·)
in W, there exists k > 0 such that λk < η2

8γ − 1
4
η2

8γ , where γ is the continuity constant

of the form ah(·, ·) (see Assumption 3); moreover, we can choose mutually disjoint

neighborhoods N(λj) of λj , 1 ≤ j ≤ k, such that N(λj) ⊂ (λj − 1
4
η2

8γ , λj + 1
4
η2

8γ ).

From Theorem 4.5 and Property 1, there is h1 > 0 such that, for all h < h1, N(λj)
contains exactly mj discrete eigenvalues, 1 ≤ j ≤ k; moreover, N(1) can be chosen in

such a way that N(1) ∩ {λi,h}nh
i=1 = ∅. Set m =

∑k
j=1 mj ; obviously, m ≤ nh.

Now, take h < h1, fix wh ∈ K⊥
h , with ‖wh‖V(h) = 1, and consider its spectral

decomposition

wh =

nh∑
i=1

wi,h =

m∑
i=1

wi,h +

nh∑
i=m+1

wi,h =: w1
h + w2

h.

For the term w2
h, we use Proposition 3.3(ii). Denoting by λ�,h the eigenvalue corre-

sponding to w�,h, we can write

‖ε1/2w2
h‖2

0,Ω =

nh∑
i=m+1

‖ε1/2wi,h‖2
0,Ω =

nh∑
i=m+1

bh(Ahwi,h,wi,h)

=

nh∑
i=m+1

λi,hbh(wi,h,wi,h) ≤ λm,h

nh∑
i=m+1

bh(wi,h,wi,h)

= λm,hbh(w2
h,w

2
h) ≤ 2γλm,h‖w2

h‖2
V(h).

Since ‖w2
h‖V(h) ≤ ‖wh‖V(h) = 1 and λm,h < η2

8γ , due to λm,h ∈ N(λk), we obtain

‖ε1/2w2
h‖0,Ω ≤ η

2
.(5.1)
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Let us turn now to the term w1
h, and consider its spectral decomposition

w1
h =

m∑
i=1

wi,h =

k∑
j=1

bj∑
i=aj

wi,h =:

k∑
j=1

w̃j,h,

where aj =
∑j−1

i=1 mi and bj =
∑j

i=1 mi. Owing to Theorem 4.11, in correspondence
with η, there is h2 > 0 such that, for all h < h2, for each 1 ≤ j ≤ k, there exists a
continuous eigenfunction wj associated with λj such that ‖wj − w̃j,h‖V(h) ≤ η

2k . Set

w =
∑k

j=1 wj ; clearly, w ∈ W. Then,

‖ε1/2(w − w1
h)‖0,Ω ≤

k∑
j=1

‖ε1/2(wj − w̃j,h)‖0,Ω ≤ η

2
.(5.2)

Therefore, for all h < h = min{h1, h2}, in correspondence to any wh ∈ K⊥
h with

‖wh‖V(h)=1, we have found w ∈ W ⊂ H(div0
ε; Ω) such that

‖ε1/2(w − wh)‖0,Ω ≤ ‖ε1/2(w − w1
h)‖0,Ω + ‖ε1/2w2

h‖0,Ω ≤ η,

owing to (5.1) and (5.2), which concludes the proof.
Remark 5.3. From the proof of Proposition 5.2 it is clear that a spurious-free

hermitian DG method satisfies Assumption 6 with w ∈ W.

5.2. Gap properties. Let P : L2(Ω)d → H(div0
ε; Ω) and Q = I − P be the

projection operators associated with the first decomposition in (2.3). Notice that, for
all v ∈ V(h), Pv and Qv belong to V(h), and Q ∈ L(L2(Ω)d,V(h)). The restrictions
of P and Q to V are onto W and V0, respectively, and coincide with the projection
operators associated with the second decomposition in (2.3). We will make use of the
following lemma.

Lemma 5.4. Assumption 6 implies that, for all h small enough,

‖wh − Pwh‖V(h) = ‖Qwh‖V(h) ≤ ηh‖wh‖V(h) ∀wh ∈ K⊥
h ,

with ηh → 0 as h → 0.
Proof. Let us rewrite Assumption 6 as follows: for all h small enough, there exists

an operator Πh : K⊥
h → H(div0

ε; Ω) such that Πh ∈ L(V(h), L2(Ω)d) and

‖wh − Πhwh‖0,Ω ≤ ηh‖wh‖V(h),(5.3)

with ηh → 0 as h → 0.
Then, for all h small enough, due to Πhwh ∈ H(div0

ε; Ω) and to (5.3), we have

‖wh − Pwh‖V(h) = ‖Qwh‖V(h) = ‖Q(wh − Πhwh)‖V(h)

≤ ‖Q‖L(L2(Ω)d,V(h))‖wh − Πhwh‖0,Ω ≤ Cηh‖wh‖V(h),

with ηh → 0, as h → 0.
We have the following result.
Proposition 5.5. Assumptions 1, 2, 3, and 6 imply that K⊥

h is approximating
in W, i.e.,

lim
h→0

inf
wh∈K⊥

h

‖w − wh‖V(h) = 0 ∀w ∈ W.
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Moreover, provided that, in addition, Assumption 2 holds true for all v ∈ V, we also
have that Kh ⊂ V0 is approximating in V0, i.e.,

lim
h→0

inf
kh∈Kh

‖k − kh‖0,Ω = 0 ∀k ∈ V0.

Proof. We use similar arguments as in [16, Theorem 3.3]. Let Ph : Vh → K⊥
h and

Qh = I−Ph be the projection operators associated with the V(h)-orthogonal decom-
position Vh = Kh ⊕ K⊥

h , and let Ih : V → Vh be the V(h)-orthogonal projection.
We proceed in two steps.

(i) K⊥
h is approximating in W. We start by observing that if w ∈ W, then

Ihw ∈ K⊥
h ; in fact, for all kh ∈ Kh, since Kh ⊂ V0, we have (Ihw,kh)V(h) =

(w,kh)V(h) = (w,kh)ε, which is equal to zero, due to the L2
ε-orthogonality

between V0 and W. Now, given w ∈ W, we let wh ∈ K⊥
h be defined by

wh = Ihw. Assumption 2 ensures that ‖w − Ihw‖V(h) converges to zero, as
h → 0, and the proof of (i) is complete.

(ii) Kh is approximating in V0. Given k ∈ V0, we let kh ∈ Kh be defined by
kh = QhIhk. Since k − kh = Q(k − Ihk) + (Q−Qh)Ihk, we have

‖k − kh‖0,Ω ≤ ‖Q(k − Ihk)‖0,Ω + ‖(Q−Qh)Ihk‖0,Ω.

For the first term, we have

‖Q(k − Ihk)‖0,Ω ≤ ‖Q‖L(L2(Ω)d,L2(Ω)d)‖k − Ihk‖0,Ω,

which converges to zero, as h → 0, since we have supposed Assumption 2 to be
satisfied for all functions in V. For the second term, we have

(Q−Qh)Ihk = (Q−Qh)(PhIhk + QhIhk) = QPhIhk,

since, due to Kh ⊂ V0, Q is identity on Kh. Therefore,

‖(Q−Qh)Ihk‖0,Ω = ‖QPhIhk‖0,Ω ≤ ηh‖PhIhk‖0,Ω ≤ Cηh‖k‖0,Ω,

owing to Lemma 5.4 and the fact that Ph and Ih are V(h)-orthogonal projections and
k ∈ V0. This completes the proof.

6. The indefinite Maxwell source problem. Consider the following indefi-
nite Maxwell source problem: given f ∈ L2(Ω)d and ω ∈ R such that ω2 is not an
eigenvalue of Problem 1, find u ∈ V such that

∇× (μ−1∇× u) − ω2εu = f .(6.1)

The theory developed so far guarantees that, for the DG method for (6.1), i.e., find
uh ∈ Vh such that

ah(uh,v) − ω2(uh,v)ε = (f ,v) ∀v ∈ Vh,(6.2)

the following result holds true.
Theorem 6.1. Provided that Assumptions 1– 6 are satisfied, for h small enough,

the DG method (6.2) is well-posed.
Proof. Let gh be the (unique) element of Vh such that

(gh,v)ε = (f ,v) ∀v ∈ Vh.(6.3)
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Then, since ah(uh,v)− ω2(uh,v)ε = bh(uh,v)− (1 + ω2)(uh,v)ε, setting z = 1/(1 +
ω2), we can write (6.2) as

bh(zuh,v) = z(gh,v)ε + (uh,v)ε ∀v ∈ Vh

or, equivalently, using the definition of the solution operator Ah,

bh(Ahuh + zAhgh − zuh,v) = 0 ∀v ∈ Vh.

From this, due to the coercivity of bh(·, ·) (see Assumption 3 and Remark 3.1), it holds
that

(z −Ah)uh = zAhgh.(6.4)

Since ω2 is not an eigenvalue of Problem 1, then 0 �= z ∈ ρ(A); thus Theorem 4.7
applies, and we have that (6.4) admits the unique solution uh = z(z − Ah)−1Ahgh

for h small enough. Moreover, due to Corollary 4.8 and Ah ∈ L(L2(Ω)d,Vh), there
exists C > 0 independent of the mesh size such that

‖uh‖V(h) ≤ C‖gh‖0,Ω ≤ C‖f‖0,Ω,(6.5)

where the second inequality follows from (6.3) and the equivalence between the L2-
norm and the L2

ε-norm.
We end this section by proving the following inf-sup condition.
Proposition 6.2. With the assumptions of Theorem 6.1, for h small enough,

there exists a constant κ > 0 independent of h such that

inf
0 	=uh∈Vh

sup
0 	=vh∈Vh

Re [ah(uh,vh) − ω2(uh,vh)ε]

‖uh‖V(h)‖vh‖V(h)
≥ κ.(6.6)

Proof. Theorem 6.1 implies that, for h small enough, there exists a constant
κ′ > 0 independent of h such that

inf
0 	=vh∈Vh

sup
0 	=uh∈Vh

Re [ah(uh,vh) − ω2(uh,vh)ε]

‖uh‖V(h)‖vh‖V(h)
≥ κ′.(6.7)

In fact, fix vh ∈ Vh and set uh = u1
h + (1 + ω2)u2

h, with u1
h = vh and u2

h solution
to (6.2) with f = εvh; the stability estimate (6.5) and the coercivity in Assumption 3
lead to (6.7).

If ah(·, ·) is hermitian, (6.6) coincides with (6.7), and the proof is complete. Other-
wise, we prove the well-posedness of the adjoint problem as follows: given f ∈ L2(Ω)d

and ω ∈ R such that ω2 is not an eigenvalue of Problem 1, find vh ∈ Vh such that

ah(wh,vh) − ω2(wh,vh)ε = (f ,wh) ∀wh ∈ Vh.(6.8)

Existence and uniqueness of the solution of (6.8), for h small enough, immediately
follow from Theorem 6.1, due to finite dimensionality. For the stability, due to (6.7),
in correspondence to vh, we can find 0 �= wh ∈ Vh such that

κ′‖wh‖V(h)‖vh‖V(h) ≤ Re [ah(wh,vh) − ω2(wh,vh)ε] = Re [(f ,wh)]

≤ ‖f‖L2(Ω)d‖wh‖V(h),

which immediately gives ‖vh‖V(h) ≤ C‖f‖L2(Ω)d , with C > 0 independent of h.
Therefore, the inf-sup condition (6.6) follows from the well-posedness of the ad-

joint problem (6.8), the same way as the inf-sup condition (6.7) follows from the
well-posedness of problem (6.2), and the proof is complete.

Remark 6.3. It is well known that the inf-sup condition (6.6) is a key ingredient
in the proof of error estimates; see Remark 7.11.
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7. Application to some discontinuous Galerkin methods. In this section
we apply the theory developed in the previous sections to some of the DG methods
present in the literature, more precisely, to the methods of the interior penalty family
(interior penalty (IP), nonsymmetric interior penalty (NIP), and incomplete interior
penalty (IIP); see [4], [44], and [23], respectively) and to the local discontinuous
Galerkin method (LDG; see [21]). We point out that everything stated below holds
true also for the variants of the IP and LDG methods introduced in [7] and [14],
respectively. We restrict ourselves to the case of conformal meshes, i.e., with no
hanging nodes.

This section is organized as follows: in sections 7.1 and 7.2 the DG spaces and
bilinear forms are defined and proved to fulfill the assumptions in section 3; in sec-
tion 7.3 we prove that Assumption 5 is satisfied. In section 7.4, Assumption 6 is
proved, and a few remarks aiming at specializing the results of our theory to the ex-
amples presented here are provided. Finally, in section 7.5 we investigate the relation
of Assumption 6 with the discrete compactness property (see Property 3).

7.1. Meshes, trace operators, finite element spaces, and norms. Con-
sider conformal, shape-regular partitions Th of Ω into simplices {K}, where h =
maxK∈Th

hK , with hK = diam(K) for all K ∈ Th. We denote by FI
h the set of all

interior faces (edges if d = 2) of Th and by FB
h the set of all boundary faces of Th,

and we set Fh = FI
h ∪ FB

h . For a piecewise smooth vector-valued function v, we
introduce the following trace operators. Let f ∈ FI

h be an interior face shared by two
neighboring elements K+ and K−; we write n± to denote the outward normal unit
vectors to the boundaries ∂K±, respectively. Denoting by v± the traces of v taken
from within K±, respectively, we define the tangential jumps and averages across f
by

[[v]]T := n+ × v+ + n− × v−, {{v}} := (v+ + v−)/2,

respectively; if d = 2, defining the tangential vectors t± = (−n±
2 , n

±
1 ), we understand

[[v]]T as v+ · t+ + v− · t−.
On a boundary face f ∈ FB

h , we set [[v]]T := n × v and {{v}} := v.
For a given partition Th of Ω and an approximation order � ≥ 1, we define the

complex vector-valued discontinuous finite element space

Vh := {v ∈ L2(Ω)d : v|K ∈ P�(K)d ∀K ∈ Th},(7.1)

where P�(K) is the space of complex polynomials of total degree at most � on K. We
also need to define the complex scalar-valued discontinuous finite element space

Qh = {q ∈ L2(Ω) : v|K ∈ P�+1(K) ∀K ∈ Th}.

We point out that all the results of this section hold true also with the choice of the
local Nédélec elements of the first type [40], instead of the full polynomials of degree
�, in (7.1). For the case of parallelograms or parallelepipeds, see Remark 7.14.

We endow both Vh and V(h) = V + Vh with the seminorm and norm

|v|2V(h) = ‖μ−1/2∇h × v‖2
0,Ω + ‖h−1/2[[v]]T ‖2

0,Fh
,

‖v‖2
V(h) = |v|2V(h) + ‖ε1/2v‖2

0,Ω,

where we have denoted by ∇h the elementwise application of the ∇ operator and used
the notation ‖ϕ‖2

0,Fh
:=

∑
f∈Fh

‖ϕ‖2
0,f . In the following, we will also use the notation∫

Fh
ϕds :=

∑
f∈Fh

∫
f
ϕds.
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The mesh function h ∈ L∞(Fh) is defined by

h(x) := hf m(x), x ∈ f, f ∈ Fh,

with hf denoting the diameter of the face f and the function m ∈ L∞(Fh) being
defined as follows: if μK denotes the extension of μ|K up to ∂K, and |μK(x)| denotes
the spectral norm of the tensor μK(x), then m(x) = min{|μK+(x)|, |μK−(x)|} if x is
in the interior of ∂K+ ∩ ∂K− and m(x) = |μK(x)| if x is in the interior of ∂K ∩ ∂Ω.

The following result is then evident.
Proposition 7.1. Assumptions 1 and 2 are satisfied.

7.2. Discontinuous Galerkin bilinear forms. We recall the expressions of
the DG bilinear forms associated with the IP methods and with the LDG method
applied to the Maxwell equations, pointing for further details to [43], [35] for the IP
method and to [42], [31], [32] for the LDG method.

Define the IP, NIP, and IIP forms a
IP (k)
h : Vh × Vh → C

a
IP (k)
h (u,v) :=(μ−1∇h × u,∇h × v) −

∫
Fh

[[v]]T · {{μ−1∇h × u}} ds

− k

∫
Fh

[[u]]T · {{μ−1∇h × v}} ds +

∫
Fh

a [[u]]T · [[v]]T ds,

where k = 1 for the IP method, k = −1 for the NIP method, and k = 0 for the IIP
method, and the stabilization function a ∈ L∞(Fh) is defined by

a := astab h
−1,(7.2)

with astab > 0 independent of the mesh size and the material coefficients.
The LDG form is defined as follows:

aLDG
h (u,v) := (μ−1(∇h × u − L(u)),∇h × v − L(v)) +

∫
Fh

a [[u]]T · [[v]]T ds,(7.3)

with a again as in (7.2), and L is the lifting operator from V(h) into Vh defined by

(L(v),w) =

∫
FI

h

b[[v]]T · [[w]]T ds +

∫
Fh

[[v]]T · {{w}} ds ∀w ∈ Vh;

here, b ∈ L∞(Fh) is a bounded function independent of the mesh size.
Remark 7.2. The LDG method is usually defined by introducing the auxiliary

variable s := μ−1∇ × u and rewriting the second order problem in mixed form as
a first order system; then an element-by-element integration by parts is performed,
and the traces along the elemental boundaries are replaced by the so-called numerical
fluxes, obtaining an (s,u)-formulation of the method, which is equivalent to the u-
formulation aLDG

h (u,v) = ω(u,v)ε, with aLDG
h (u,v) as in (7.3), after elimination of

the auxiliary variable s in terms of u (see [42] for details). Here, we concentrate on
the u-formulation because we are concerned only with the analysis of the method in
the framework presented in this paper.

We prove that the DG bilinear forms in this section fulfill Assumptions 3 and 4.
Proposition 7.3. Provided that astab in (7.2) is large enough, in the case of the

IP and IIP methods, for all the considered DG bilinear forms Assumptions 3 and 4 are
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satisfied. Moreover, the exponent t in (3.5) can be chosen as t = min{�, r}. Finally,
the condition (3.2) is satisfied.

Proof. The validity of Assumption 3 is standard and the one of (3.2) is straight-
forward. The proof of Assumption 4 is technical, and we postpone it to the appendix.
Note that existent results (see [42], [35], or [34]) apply only when r > 1/2.

7.3. Discrete Friedrichs inequality (Assumption 5). Denote by H1
Γ(Ω) the

subspace of H1(Ω) whose functions have zero trace on Γ1, the outer boundary of
Ω, and constant traces on the other connected components Γi of ∂Ω, i = 2, . . . , nΓ;
notice that if ∂Ω is connected, then H1

Γ(Ω) = H1
0 (Ω). We set Vc

h = Vh ∩ V and
Qc

h = Qh ∩H1
Γ(Ω); notice that Vc

h coincides with the H0(curl; Ω)-conforming Nédélec
elements of the second family of degree � (see [41]), and Qc

h coincides with the space
of continuous nodal elements of degree �+1 with zero trace on Γ1 and constant traces
on Γi, i = 2, . . . , nΓ. Notice that, due to Assumption 1, we have

Kh = Vc
h ∩ V0 = ∇Qc

h,

and we denote by Wc
h its L2

ε-orthogonal complement in Vc
h, i.e.,

Wc
h = {v ∈ Vc

h : (v,∇q)ε = 0 ∀q ∈ Qc
h}.

By definition, the splitting

Vc
h = Wc

h ⊕∇Qc
h(7.4)

is orthogonal in both the L2
ε-norm and the V-norm. Moreover, the discrete Friedrichs

inequality holds in Wc
h (see [38, Corollary 7.22]):

‖ε1/2w‖0,Ω ≤ C|w|V ∀w ∈ Wc
h.(7.5)

We first establish a decomposition of Vh which will be used in order to prove both
Assumptions 5 and 6; the proof is based on the following result (see [34, Proposition 4.5
and the appendix]).

Theorem 7.4. There exists an operator Πc
h : Vh → Vc

h such that

‖v − Πc
hv‖2

0,Ω ≤ C

∫
Fh

h|[[v]]T |2 ds,(7.6)

‖v − Πc
hv‖2

V(h) ≤ C

∫
Fh

h−1|[[v]]T |2 ds(7.7)

for all v ∈ Vh, with a constant C > 0 independent of the mesh size.
The following proposition is a consequence of Theorem 7.4.
Proposition 7.5. There exists a complement V⊥

h of Vc
h := Vh ∩V in Vh such

that the decomposition Vh = Vc
h ⊕ V⊥

h is stable in Vh, i.e.,

vh = vc
h + v⊥

h , ‖vc
h‖V(h) + ‖v⊥

h ‖V(h) ≤ C‖vh‖V(h).(7.8)

Moreover, it holds that

‖v⊥
h ‖0,Ω ≤ Ch|v⊥

h |V(h) ∀v⊥
h ∈ V⊥

h .(7.9)

The constant C > 0 is independent of the mesh size.
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Proof. The operator Πc
h defined in Theorem 7.4 is continuous thanks to (7.7).

Moreover, let vc
h ∈ Vc

h, and using again (7.7), we have Πc
hv

c
h = vc

h, since [[vc
h]]T = 0.

This proves that Πc
h is a projection and that it is surjective. Thus, it defines a stable

decomposition of Vh as Vh = Vc
h ⊕ V⊥

h , with V⊥
h = ker{Πc

h}. In other words, any
vh ∈ Vh is decomposed as vh = vc

h + v⊥
h , vc

h = Πc
hvh and v⊥

h = (I − Πc
h)vh. The

estimate (7.7) provides (7.8), and (7.6) provides (7.9), since

‖v⊥
h ‖2

0,Ω ≤ C

∫
Fh

h|[[vh]]T |2 ds ≤ Ch2

∫
Fh

h−1|[[v⊥
h ]]T |2 ds ≤ Ch2|v⊥

h |2V(h).

We proceed now by proving Assumption 5. For this, we need the following lemma.
Lemma 7.6. We have

‖ε1/2v‖0,Ω ≤ C|v|V(h) ∀v ∈ K⊥
h ,

with a positive constant C independent of the mesh size.
Proof. Fix v ∈ K⊥

h and decompose it, according to the decompositions (7.8)
and (7.4), as v = vc +v⊥ = w+∇p+v⊥, with w ∈ Wc

h, p ∈ Qc
h, and v⊥ = v−Πc

hv,
where Πc

h is the operator defined in Theorem 7.4. Since (w,∇q)ε = 0 for all q ∈ Qc
h,

the condition (v,∇q)ε = 0 for all q ∈ Qc
h becomes

(∇p,∇q)ε = −(v⊥,∇q)ε ∀q ∈ Qc
h.

By taking q = p, we obtain that ‖ε1/2∇p‖0,Ω ≤ ‖ε1/2v⊥‖0,Ω, and thus

‖ε1/2v‖0,Ω ≤ ‖ε1/2w‖0,Ω + 2 ‖ε1/2v⊥‖0,Ω.(7.10)

For the first term on the right-hand side of (7.10), from the discrete Friedrichs in-
equality for the conforming Nédélec elements (7.5), the triangle inequality, and (7.7),
we get

‖ε1/2w‖0,Ω ≤ C ‖μ−1/2∇× w‖0,Ω

≤ C
(
‖μ−1/2∇h × (w + v⊥)‖0,Ω + ‖μ−1/2∇h × v⊥‖0,Ω

)
≤ C

(
‖μ−1/2∇h × v‖0,Ω + ‖h−1/2[[v⊥]]T ‖0,Fh

)
≤ C |v|V(h).

(7.11)

Using again (7.7), we bound the second term on the right-hand side of (7.10) as

‖ε1/2v⊥‖0,Ω ≤ C |v|V(h).(7.12)

Inserting (7.11) and (7.12) into (7.10) proves the lemma.
The following proposition is an immediate consequence of the coercivity in As-

sumption 3 and Lemma 7.6.
Proposition 7.7. Assumption 5 holds true.

7.4. Gap property (Assumption 6). The following proposition concludes the
analysis of the IP methods and the LDG method.

Proposition 7.8. Assumption 6 holds true.
Proof. Due to the discrete compactness property for the conforming Nédélec

elements (we refer the reader to [18] and [19] for the case of varying coefficients; see
also [38, Theorem 7.18]), it can be seen as in [16] that Assumption 6 for the conforming
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Nédélec elements holds true (see also the proof of (i) in Proposition 7.13): for all h
small enough, for any wh ∈ Wc

h there exists w = w(h) ∈ H(div0
ε; Ω) such that

‖ε1/2(w − wh)‖0,Ω ≤ ηh‖wh‖V(h),(7.13)

with ηh → 0 as h → 0 (we have used the equivalence between the L2-norm and the
L2
ε-norm).

Now, fix wh ∈ K⊥
h and decompose it, according to (7.8) and (7.4), as wh =

wc
h +w⊥

h = w0
h +∇ph +w⊥

h , with w0
h ∈ Wc

h, ph ∈ Qc
h, and w⊥

h = wh−Πc
hwh, where

Πc
h is the operator defined in Theorem 7.4. For all h small enough, in correspondence

to w0
h, let w be an element of H(div0

ε; Ω) which satisfies (7.13). The Cauchy–Schwarz
inequality and the L2

ε-orthogonality of ∇Qc
h to both K⊥

h and H(div0
ε; Ω) give

‖ε1/2(w − wh)‖2
0,Ω = (w − wh,w − wh)ε

= (w − wh,w − w0
h)ε − (w − wh,∇ph)ε − (w − wh,w

⊥
h )ε

≤ ‖ε1/2(w − wh)‖0,Ω(‖ε1/2(w − w0
h)‖0,Ω + ‖ε1/2w⊥

h ‖0,Ω).

The bounds (7.13) and (7.9), together with the V(h)-stability of the decomposi-
tions (7.4) and (7.8), give Assumption 6.

Remark 7.9. With our choice of V(h), if σλ is the regularity exponent of the
eigenspace E(V) associated with an eigenvalue λ �= 1 of the operator A, i.e., u ∈
Hσλ(curl; Th) for all u ∈ E(V), the exponent t in the eigenvalue and eigenfunction
estimates of Theorem 4.14 is given by

t = min{�, σλ}.

Remark 7.10. Numerical results reported in [3] for DG spectral approximations
of the Laplace operator have shown that the suboptimal eigenvalue convergence rate
of Theorem 4.14 in the case of non-hermitian DG methods (t instead of 2t) is actually
sharp, at least for even approximation polynomial degrees; for odd degrees, one order
of convergence better than expected has been observed for smooth solutions. The
same behavior has been reported in [29] in the context of error estimation of linear
target functionals of the solutions to advection-diffusion-reaction problems.

Remark 7.11. Well-posedness of the DG discretization, for h small enough, of
the indefinite source problem (6.1), with ω away from the eigenfrequencies of the
continuous problem, has been established in our abstract framework in section 6,
together with an inf-sup condition. The result provided in the appendix, together
with consistency, guarantees the validity of a quasi-optimal error estimate.

7.5. Relations between Assumption 6 and the discrete compactness
property. We conclude this section by establishing directly the relations between
Assumption 6 and the so-called discrete compactness property.

The discrete compactness property plays a crucial role in the theory of conforming
finite element methods for the Maxwell eigenproblem (1) (see, e.g., [37], [10], [24]).
Here we rephrase this property in the context of nonconforming approximations.

Property 3 (discrete compactness property). Let {hn}∞n=1 be a sequence of
decreasing mesh sizes, with hn → 0 as n → ∞, and let {whn

}∞n=1 be a sequence such
that whn

∈ K⊥
hh

and ‖whn
‖V(h) ≤ 1 for all hn. Then, there exists a subsequence, still

denoted {whn
}∞n=1, and an element v ∈ L2(Ω)3 such that

lim
hn→0

‖whn − v‖0,Ω = 0.
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Note that if Vh ⊂ V and ‖ · ‖V(h) = ‖ · ‖V, Property 3 is the standard discrete
compactness property for conforming spaces.

It is known that Property 3, the completeness of the approximation spaces (cf.
Assumption 2), and the discrete Friedrichs inequality (cf. Assumption 5) are neces-
sary and sufficient conditions for spurious-free conforming approximations (see [18,
Theorem 6.8]).

Remark 7.12. If the completeness of the approximation spaces and the discrete
Friedrichs inequality hold true, Propositions 2.18 and 2.21 of [18] apply and guarantee
that, for conforming approximations, the limit in Property 3 actually belongs to W.

In the following proposition we establish directly the relations between Assump-
tion 6 and Property 3.

Proposition 7.13. Let Assumption 1 hold true. Then, Assumption 6 is equiva-
lent to Property 3 with strong limit in W.

Proof. (i) Property 3 ⇒ Assumption 6. We proceed by contradiction. Let As-
sumption 6 be false; then there exists η > 0 such that, for all h̄ > 0, there is h ∈ (0, h̄)
and wh ∈ K⊥

h with ‖wh‖V(h) ≤ 1 such that

‖wh − w‖0,Ω > η ∀w ∈ H(div0
ε; Ω).(7.14)

Now, select a sequence {hn}∞n=1 with hn → 0 as n → ∞. The previous assertion
allows us to construct, in correspondence with {hn}∞n=1, a sequence {whn}∞n=1 with
whn ∈ K⊥

hn
and ‖whn‖V(hn) ≤ 1 for all hn, which does not contain any subsequence

converging to an element w ∈ H(div0
ε; Ω), owing to (7.14). This contradicts Property

3 with strong limit in W.
(ii) Assumption 6 ⇒ Property 3. Let wh be in K⊥

h , and select w ∈ H(div0
ε; Ω) as

w = Pwh, with P being the operator defined at the beginning of section 5.2. Owing
to Lemma 5.4, we know that

‖wh − w‖V(h) ≤ ηh‖wh‖V(h),(7.15)

with ηh → 0, as h → 0.
Now, let {whn}∞n=1 be a sequence in K⊥

hn
, bounded in the V(h)-norm. Decom-

pose whn as whn = wc
hn

+ w⊥
hn

, according to (7.8). The sequence {wn}∞n=1 :=
{Pwc

hn
}∞n=1 ⊂ W also is bounded in the V(h)-norm, owing to (7.15). From the com-

pactness of W, endowed with the V(h)-norm, in L2(Ω)d, there exists a subsequence
still denoted {wn}∞n=1 and an element v ∈ W such that

lim
n→∞

‖wn − v‖0,Ω = 0.(7.16)

If {whn}∞n=1 is such that whn = wc
hn

+ w⊥
hn

, according to (7.8), and Pwc
hn

= wn for
all n, by the triangle inequality we have

‖whn − v‖0,Ω ≤ ‖whn − Pwhn‖0,Ω + ‖wn − v‖0,Ω + ‖Pw⊥
hn

‖0,Ω.

The first two terms on the right-hand side converge to zero, owing to (7.15) and (7.16),
respectively; since the projector P is L2-stable, also the third term converges to zero,
due to (7.9) and the V(h)-stability of the decomposition (7.8). Thus, Property 3
holds true with strong limit in W.

Remark 7.14. On parallelograms or parallelepipeds, all the results in this section
apply to the choice of Vh in (7.1) with the local Nédélec elements of the first type
of degree �, instead of the full polynomials of degree �, allowing us to conclude that
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the obtained approximation of Problem 1 is spurious-free. This is not true for the
full polynomials of degree � in each variable, namely the local Nédélec elements of the
second type of degree �. In fact, let Kc

h be the discrete kernel of the corresponding
conforming approximation, and consider the V-orthogonal decomposition Vc

h = Kc
h⊕

K⊥,c
h . Since Vc

h ⊆ Vh and Kh = Kc
h, then K⊥,c

h ⊆ K⊥
h . Recalling that the conforming

Nédélec elements of the second type do not satisfy the discrete compactness property
(see [11]), Proposition 7.13 says that they do not satisfy Assumption 6; the inclusion

K⊥,c
h ⊆ K⊥

h implies that also for their discontinuous counterpart Assumption 6 is not
satisfied, and then the obtained method cannot be spurious-free.

8. Conclusions. We have presented a theoretical framework for the analysis of
DG approximations of the Maxwell eigenproblem with possibly discontinuous coeffi-
cients. In particular, we have restricted our attention to DG methods satisfying the
usual assumptions for a correct approximation to the coercive Maxwell source prob-
lem ∇×(μ−1∇×u)+εu = f in the domain Ω with suitable boundary conditions. For
these methods, necessary and sufficient conditions for a spurious-free approximation
are (i) a discrete Friedrichs inequality and (ii) a gap property between the orthogonal
complement of the discrete kernel and the space of divergence-free functions. We
have also proved that basically all the DG methods present in the literature actually
fit into this framework, at least on meshes with no hanging nodes (the extension to
meshes with hanging nodes is currently under investigation). It is worth pointing
out that all these methods provide optimal convergence of the eigenfunctions, while
the convergence of the eigenvalues is optimal for hermitian DG methods and subopti-
mal for non-hermitian DG methods. Another consequence of the theory developed in
this paper is that all these methods provide a correct approximation to the indefinite
Maxwell source problem ∇ × (μ−1∇ × u) − ω2εu = f in Ω, with suitable boundary
conditions, also in the case of discontinuous coefficients ε and μ, extending in this
way the results obtained in [34] for smooth coefficients.

Appendix. The aim of this appendix is to prove a continuity estimate for all the
DG bilinear forms ah(·, ·) introduced in section 7.2. More precisely, we prove that,
given r > 0 and σ such that 0 < σ < min{1/2, r}, there exists a mesh-dependent
seminorm | · |+,σ such that the norm

‖ξ‖2
+,σ = ‖ξ‖2

V(h) + |ξ|2+,σ,(8.1)

defined for functions ξ ∈ Hr(curl; Th) with ∇h × (μ−1∇h × ξ) ∈ L2(Ω)d, satisfies

|ah(ξ,vh)| ≤ C‖ξ‖+,σ‖vh‖V(h)(8.2)

for all ξ ∈ Hr(curl; Th) with ∇h × (μ−1∇h × ξ) ∈ L2(Ω)d, and vh ∈ Vh, with a
constant C > 0 independent of the mesh size. Moreover, for any s ≥ 0, there holds
that

(8.3)

inf
vh∈Vh

‖ξ − vh‖+,σ

≤ Chmin{r,�,s+1}

⎛
⎝‖ξ‖Hr(curl;Th) +

( ∑
K∈Th

MK‖∇ × (μ−1∇× ξ)‖2
s,K

)1/2
⎞
⎠ ,

for all ξ ∈ Hr(curl; Th) with ∇h × (μ−1∇h × ξ) ∈ Hs(Th)d, where MK is defined as
MK = maxx∈K |μK(x)|, and the constant C is independent of the mesh size.
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Note that the continuity property (8.2) and the best approximation estimate (8.3)
provide a proof for Proposition 7.3 (indeed, they also prove that DG methods provide
quasi-optimal approximations for the coercive source problem introduced in Assump-
tion 4) and jointly with consistency and the inf-sup condition (6.6) provide quasi-
optimal error estimates for DG solutions to the indefinite problem (6.1).

Proposition 8.1. With the notation introduced here above, (8.2) and (8.3) hold
true with the seminorm in (8.1) defined by

|ξ|2+,σ =
∑

K∈Th

(
h2σ
K MK‖μ−1∇× ξ‖2

σ,K + h2
KMK‖∇ × (μ−1∇× ξ)‖2

0,K

)
,

where we have set MK = maxx∈K |μK(x)|.
We remark that, whenever μ is an elementwise constant tensor, then

|ξ|2+,σ =
∑

K∈Th

(
h2σ
K ‖μ−1/2∇× ξ‖2

σ,K + h2
KMK‖∇ × (μ−1∇× ξ)‖2

0,K

)
.

In order to prove Proposition 8.1, we need the following technical lemma.
Lemma 8.2. With the notation introduced above, for any f ∈ Fh, we have

(8.4)∫
f

[[v]]T · (μ−1∇h × ξ)± ds

≤ C|v|V(h)(h
σ
K±M

1/2
K±‖μ−1∇× ξ‖σ,K + hK±M

1/2
K±‖∇ × (μ−1∇× ξ)‖0,K±),

where K± are the two tetrahedra sharing the face f , and C > 0 is independent of the
mesh size.

Proof. We assume, to fix the ideas, that d = 3. We start by introducing some
notation. Let K be a tetrahedron, f one of its faces, and n the normal at f pointing
outside K. Let η ∈ H1/2(f)3 be such that η · n = 0 and η × n = [[v]]T , and set
φ = μ−1∇× ξ on K; we know that φ ∈ Hσ(K)3 and ∇× φ ∈ L2(K)3.

We decompose η as η = η0 +ηM , with ηM = 1
|f |

∫
f
η ds, and η0 = η−ηM . Note

that η0 has zero mean value on f , and it holds that

‖η‖2
0,f = ‖η0‖2

0,f + ‖ηM‖2
0,f .(8.5)

We can write∫
f

(η × n) · φ ds =

∫
f

(η0 × n) · φ ds +

∫
f

(ηM × n) · φ ds = (I) + (II).(8.6)

Estimate of (I). If we map vector fields onto the reference tetrahedron K̂ by means
of the standard curl-conforming transformation (see [38, p. 77]), we have (with self-
evident notation) ∫

f

(η0 × n) · φ ds = ±
∫
f̂

(η̂0 × n̂) · φ̂ dŝ

(see [38, p. 80]). Notice that
∫
f
η0 ds = 0 implies

∫
f̂
η̂0 ds = 0, and

|η̂0|1/2,f ≤ ‖η̂0‖1/2,f ≤ C|η̂0|1/2,f .(8.7)
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Let R : H1/2−σ(f̂)2 → H1−σ(K̂)3 be a continuous lifting operator from f̂ to K̂ such

that Rη̂0 has zero tangential trace on ∂K̂ \ f̂ (note that this lifting is the standard
one, component by component). By continuity of R, we have

‖Rη̂0‖0,K̂
+ ‖∇̂ × Rη̂0‖−σ,K̂

≤ C(σ)|η̂0|1/2−σ,f̂ ≤ C(σ)|η̂0|1/2,f̂ ,

where ∇̂ × · denotes the curl operator with respect to the reference coordinates. By
integration by parts, since Rη̂0 has zero trace on ∂K̂ \ f̂ , we get∫

K̂

∇̂ × Rη̂0 · ei =

∫
∂K̂

(ei × n̂) · Rη̂0 =

∫
f̂

(ei × n̂) · η̂0 = 0 , i = 1, 2, 3,(8.8)

where ei, i = 1, 2, 3, are the canonical basis vectors in R
3. This means each component

of ∇̂ × Rη̂0 has zero mean value. Thus, it holds that∫
f̂

(η̂0 × n̂) · φ̂ dŝ =

∫
K̂

(∇̂ × φ̂ · Rη̂0 − φ̂ · ∇̂ × Rη̂0) dx̂

≤ C‖∇̂ × φ̂‖
0,K̂

‖Rη̂0‖0,K̂
+ |φ̂|σ,K‖∇ × Rη̂0‖−σ,K̂

≤ C(‖∇̂ × φ̂‖
0,K̂

+ |φ̂|
σ,K̂

)|η̂0|1/2,f̂ ,

where we have used the continuity estimate for R, (8.7), and (8.8). Scaling arguments
can be applied (see [2, Lemma 5.5]), using the shape regularity of the meshes

|η̂0|1/2,f̂ ≤ Ch
1/2
K |η0|1/2,f ,

‖∇̂ × φ̂‖
0,K̂

≤ Ch
1/2
K ‖∇ × φ‖0,K ,

|φ̂|
σ,K̂

≤ Ch
−1/2+σ
K |φ|σ,K ,

and we obtain∫
f

(η0 × n) · φ ds ≤ C(hK‖∇ × φ‖0,K + hσ
K |φ|σ,K)|η0|1/2,f .

Since, by inverse inequality and (8.5), it holds that

|η0|1/2,f ≤ C‖h−1/2
f η0‖0,f ≤ C‖h−1/2

f η‖0,f ,

and the definition of h implies that

‖h−1/2
f η‖0,f = ‖m1/2h

−1/2
f m−1/2η‖0,f ≤ M

1/2
K ‖h−1/2η‖0,f ,(8.9)

we have

(I) ≤ C(hKM
1/2
K ‖∇ × φ‖0,K + hσ

KM
1/2
K |φ|σ,K)‖h−1/2η‖0,f .(8.10)

Estimate of (II). From the “lifting property” proved in [13], we know that, for
any fixed t < 2, there exists a function ϕf ∈ H1(K) such that

ϕf = 1 on f , ϕf = 0 on ∂K \ f,

‖ϕf‖0,K ≤ Ch
3/2
K , ‖∇ϕf‖Lt(K)3 ≤ Ch

3/t−1
K .
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By taking t′ such that 1/t′ + 1/t = 1, it holds that∫
f

(ηM × n) · φ ds =

∫
f

(ϕfηM × n) · φ ds

=

∫
K

∇× φ · (ϕfηM ) dx −
∫
K

φ · ∇ × (ϕfηM ) dx

≤ C(h
3/2
K ‖∇ × φ‖0,K |ηM | + h

3/t−1
K ‖φ‖Lt′ (K)3 |ηM |)

≤ C(hK‖∇ × φ‖0,K + h
3/t−3/2
K ‖φ‖Lt′ (K)3)(h

−1/2
K ‖ηM‖0,f ),

where |ηM | denotes the modulus of the constant vector ηM and where we have used
|ηM | ≤ Ch−1

K ‖ηM‖0,f . Now, let t′ = 6
3−2σ ; by Sobolev embedding theorem (see,

e.g., [1, p. 217]), we have that

‖φ‖Lt′ (K)3 ≤ C‖φ‖σ,K .

The shape regularity of the meshes and (8.5) imply h
−1/2
K ‖ηM‖0,f ≤ C‖h−1/2

f η‖0,f ;
thus, by using (8.9) and simple algebra, we obtain

(II) ≤ C(hKM
1/2
K ‖∇ × φ‖0,K + hσ

KM
1/2
K ‖φ‖σ,K)‖h−1/2η‖0,f .(8.11)

Taking into account the definitions of φ, η and of | · |V(h), the expression (8.6)
and the estimates (8.10) and (8.11) give (8.4), and the proof is complete.

We are now in a position to prove Proposition 8.1.
Proof of Proposition 8.1. For all the DG methods of section 7.2, it is easy to see

that, for all ξ ∈ Hr(curl; Th) with ∇h × (μ−1∇h × ξ) ∈ L2(Ω)3 and v ∈ Vh, it holds
that

ah(ξ,vh) ≤ C‖ξ‖V(h)‖vh‖V(h) + C ′
∫
Fh

[[vh]]T · {{μ−1∇h × ξ}} ds.(8.12)

Summing (8.4) of Lemma 8.2 over all f ∈ Fh gives∫
Fh

[[vh]]T · {{μ−1∇h × ξ}} ds ≤ C|ξ|+,σ‖vh‖V(h).

Inserting this into (8.12) completes the proof of (8.2). The best approximation es-
timate (8.3) is a direct consequence of standard polynomial approximation prop-
erties.
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AN ALGEBRAIC PROCEDURE FOR THE SPECTRAL
CORRECTIONS USING THE MISS-DISTANCE FUNCTIONS IN
REGULAR AND SINGULAR STURM–LIOUVILLE PROBLEMS∗
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Abstract. A general method based on the evaluation of the zeros of a suitable polynomial is
suggested in order to have an estimation of the spectral error in the numerical treatment of Sturm–
Liouville problems. The method is strictly concerned with the miss-distance function arising in
the shooting algorithm for eigenvalues. The error correcting procedure derived from the method is
particularly helpful when difficulties arise in the numerical integration. Two kinds of Sturm–Liouville
problems are considered: the standard regular problems on a closed interval and the problems where
an eigenvalue is nonlinearly involved and embedded in an essential spectrum giving origin to an inner
singularity. Numerical experiments clearly highlight the efficaciousness of the proposed method both
in the regular and singular case.
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1. Introduction. The subject matter of this paper is the numerical computation
of the eigenvalues in a Sturm–Liouville problem (SLP) by the shooting technique and
a corresponding spectral error correcting procedure based on the evaluation of the
zeros of a suitable polynomial. Two classes of problems are considered here. The
first is concerned with the classical SLP in its regular form given by the differential
equation

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x)(1.1)

on a finite interval a < x < b with the boundary conditions (BCs)

a1y(a) − a2p(a)y
′(a) = 0,

b1y(b) − b2p(b)y
′(b) = 0.

(1.2)

In the differential equation the real functions q(x) and w(x) are continuous on the
interval [a, b] with w(x) > 0, while the real function p(x) is strictly positive and almost
once differentiable. In the BCs the constants a1 and a2 are real and not both equal
to zero; similarly for b1 and b2.

In section 4 these conditions will be sharpened and the problem (1.1)–(1.2) mainly
considered in the following equivalent matrix form:

z′ = H(x, λ)z, a < x < b,(1.3)

where

z(x) =

[
y(x)
y′(x)

]
, H(x, λ) =

[
0 1

q−λw
p −p′

p

]
.(1.4)
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The BCs (1.2) will be written as

αTJz(a) = 0, βTJz(b) = 0,(1.5)

with

J =

[
0 −1
1 0

]
, α =

[
a2p(a)
a1

]
, β =

[
b2p(b)
b1

]
.(1.6)

The second kind of SLP which we consider here is given by the differential equation

−y′′(x) = g(x, λ)y(x), a < x < b,(1.7)

with the BCs

a1y(a) − a2y
′(a) = 0,

b1y(b) − b2y
′(b) = 0,

(1.8)

and a1, a2, b1, b2 satisfying the same conditions as in the regular case; however in
sections 3, 4, and 5 we will require more strong conditions.

In this section we assume that

g(x, λ) = λ +
q(x)

u(x) − λ

with λ ∈ R, q(x), u(x) ∈ C1([a, b]) and u(x) strictly monotone increasing. Thus if
λ ∈ [u(a), u(b)], then there is a unique point xλ ∈ [a, b] such that u(xλ) = λ.

In what follows we also require q(x) > 0 for all x ∈ [a, b]. Then it is well known
that the problem (1.7)–(1.8) can be set in the so-called λ-linear block operator problem[

− d2

dx2

√
q(x)√

q(x) u(x)

]
ỹ = λỹ,(1.9)

where ỹ =
[
y,− y

√
q

u−λ

]T
.

Problems of this type, both (1.7) and (1.9), have been investigated recently (see,
for instance, [1, 13, 14]) and play an important role in magnetohydrodynamics such
as Hain–Lüst equations (see, for example, [15]) and also go by the name of λ-rational
SLPs.

For a given λ ∈ [u(a), u(b)] a solution of (1.7) is a function y(x) satisfying (1.7)
for x �= xλ and such that

lim
x→xλ

g(x, λ)y(x) exists.(1.10)

If y(x) satisfies the BCs (1.8), then we say that y(x) is an eigenfunction associated
with the eigenvalue λ embedded in the essential spectrum.

As for the regular case, beside the scalar form (1.7)–(1.8) we consider the matrix
representation

z′ = K(x, λ)z, a < x < b ,(1.11)

with

z(x) =

[
y(x)
y′(x)

]
, K(x, λ) =

[
0 1

−g(x, λ) 0

]
(1.12)
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and the boundary conditions

α̃TJz(a) = 0, β̃TJz(b) = 0,(1.13)

where

α̃ =

[
a2

a1

]
, β̃ =

[
b2
b1

]
,(1.14)

and J as in (1.6).
The key for the shooting is given by the Theorem 4.1 in [1] which we quote here

for completeness in the following simplified form.
Theorem 1.1. For λ ∈ [u(a), u(b)] there is a unique solution y(x) of (1.7)

fulfilling the conditions y(xλ) = 0, y′(xλ) = 1.
Thus, with regard to the matrix formulation (1.11) of the problem, the condition

for z(x) when x = xλ is given by

z(xλ) =

[
0
1

]
.(1.15)

From this we see that an eigenvalue embedded in the essential spectrum represents a
pathological case because its eigenfunction must satisfy not only the BCs (1.13) but
also the inner condition (1.15).

As far as the problem approximating the eigenvalues in a general SLP is concerned,
several papers have been produced (see, for instance, [2, 3, 12, 18, 19]).

In [7, 8] a technique is proposed to obtain a spectral correction based on a partic-
ular discretization parameter. Nevertheless the present paper differs from the other
ones because it is a generalization of a spectral correcting procedure obtained in [9]
starting from a straight computation of the discretization error and an extension to
the parallel shooting.

In the next section we look onto the parallel shooting both for the regular and
singular case and we build up the corresponding miss-distance functions, namely the
functions describing the extent to which some matching conditions fail to be satisfied
at the shooting nodes or at the boundary points.

In section 3 we describe the discretization procedure based on the boundary value
method (BVM) [4]. We state the reason for this choice observing that BVM is a high
order procedure without barriers to the numerical stability. Furthermore the use of a
BVM having symmetric scheme [4, p. 159] leads to an approximate solution analytic
in a discretization parameter (see, for instance, Gragg’s theorem in [10]) allowing
particular facilities in theorem proving.

In that section we also highlight that the BVM experiences a decay of its per-
formances in the presence of the inner singularity rendering the correcting procedure
particularly useful.

In sections 4 and 5 the correcting procedures in the regular and singular cases are
given.

Section 6 is devoted to some numerical experiments underlining the effectiveness
of the methods proposed.

2. Building up the miss-distances. We begin with the regular case splitting
the problem (1.3)–(1.5) into two initial value problems (IVPs)

z′ = H(x, λ)z, z(a) = α,(2.1)

z′ = H(x, λ)z, z(b) = β.(2.2)
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Let c be a point of [a, b]. In order to integrate (2.1) left to right we consider ma + 1
shooting nodes ξi, i = 0, 1, . . . ,ma, such that a = ξ0 < ξ1 < · · · < ξma = c and the
IVPs

U ′
j(x) = H(x, λ)Uj(x), ξj−1 < x ≤ ξj ,

Uj(ξj−1) = I, j = 1, 2, . . . ,ma,
(2.3)

I being the identity matrix of order two. Thus the solution of (2.1) is

zL(x) ≡ zj(x) = Uj(x)sj , j = 1, 2, . . . ,ma,(2.4)

where the vectors s1, s2, . . . , sma are chosen to ensure the continuity of zL(x) across
the interior nodes. Namely the conditions zj(ξj) = zj+1(ξj), j = 1, 2, . . . ,ma − 1 are
equivalent to the conditions Uj(ξj)sj = sj+1, j = 1, 2, . . . ,ma − 1. By recurrence, we
have sma = Uma−1(ξma−1), . . . , U1(ξ1)s1, and from (2.4) zL(ξma) = Uma(ξma)sma =
Uma

(ξma), . . . , U1(ξ1)s1. Because zL(a) = U1(a)s1 = s1 = α, setting

U = Uma(ξma), . . . , U1(ξ1),(2.5)

we can write zL(ξma) = Uα.
We integrate the IVP (2.2) right to left considering the mb +1 shooting nodes θi,

i = 0, 1, . . . ,mb, such that c = θmb
< θmb−1 < · · · < θ0 = b and the IVPs

V ′
j (x) = H(x, λ)Vj(x), θj ≤ x < θj−1,

Vj(θj−1) = I, j = 1, 2, . . . ,mb.
(2.6)

Then the solution of (2.2) is

zR(x) ≡ zj(x) = Vj(x)σj , j = 1, 2, . . . ,mb,

where the vectors σ1, σ2, . . . , σmb
play the same role in the right side of the vectors as

s1, s2, . . . , sma in the left one. Repeating almost verbatim the foregoing considerations,
we find that zR(θmb

) = V β, where

V = Vmb
(θmb

), . . . , V1(θ1).(2.7)

Consider now the Wronskian determinant

det(zR(θmb
), zL(ξma)) = zTL (ξma)JzR(θmb

) = αTUTJV β.(2.8)

The matching condition at ξma = θmb
= c is satisfied if the values of λ are eigenvalues

of the SLP (1.3)–(1.5), namely solutions of the equation

αTUTJV β = 0.

In what follows we no longer mark the left solution as zL(x) and the right one as
zR(x) because it will be clear from the context which is the z(x) to consider.

In practice we integrate the IVPs (2.3) and (2.6) using a numerical method with
a constant stepsize h and starting up with an initial guess μ of λ.

In the left side we consider xn = a + nh, n = 0, 1, . . . , na = c−a
h , assuming, for

the sake of simplicity, c and h such that c−a
h is an integer number. Thus the shooting

nodes can be defined as ξj = xjla , j = 0, 1, . . . ,ma for some integer la with mala = na.
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Let Uj,n be the approximation to Uj(xn) and zn the one to z(xn) obtained using
a numerical method. We assume Uj,n and zn depend on μ and on some discretization
parameter t, that is Uj,n = Uj,n(μ, t) and zn = zn(μ, t), with (j − 1)la ≤ n ≤ jla,
j = 1, 2, . . . ,ma.

Furthermore we assume t to be a function on h, i.e., t = t(h) with the property

t(h) �= 0 if h �= 0, lim
h→0

t(h) = 0.(2.9)

For a classical method of order p we have t(h) = hp.
Analogously in the right side we consider xn = b−nh, n = 0, 1, . . . , nb = b−c

h , with
b−c
h an integer number, and choosing the shooting nodes as θj = xjlb , j = 0, 1, . . . ,mb

for some integer lb such that mblb = nb.
Using the same numerical method we integrate the IVPs in (2.6) with μ instead

of λ obtaining Vj,n(μ, t) � Vj(xn) and zn(μ, t) � z(xn), (j − 1)lb ≤ n ≤ jlb, j =
1, 2, . . . ,mb.

Denoting Uj,jla(μ, t) by Uj(μ, t), j = 1, 2, . . . ,ma, and Vj,jlb(μ, t) by Vj(μ, t),
j = 1, 2, . . . ,mb, (2.5) and (2.7) become, respectively,

U(μ, t) = Uma(μ, t), . . . , U1(μ, t) and V (μ, t) = Vmb
(μ, t), . . . , V1(μ, t).

With these notations the Wronskian determinant (2.8) takes the form

F (μ, t) = αTU(μ, t)TJV (μ, t)β,(2.10)

and goes by the name of miss-distance.
Assuming that

lim
t→0

Uj,n(μ, t) = Uj(xn), lim
t→0

Vj,n(μ, t) = Vj(xn), lim
t→0

zn(μ, t) = z(xn),

then, for a fixed t, μ is an approximation to λ if μ is a zero of the miss-distance F (μ, t).
Thus we admit that μ is dependent on t as well, i.e., μ = μ(t) and limt→0 μ(t) = λ.
By consequence we are allowed to state by definition

U(λ, 0) = U, V (λ, 0) = V, F (λ, 0) = 0.

We remark that if c = b we have the forward parallel shooting, while if c = a we have
the backward parallel shooting. If la = na or lb = nb the corresponding shooting is
simple.

We consider now the λ-rational SLP (1.11)–(1.14).
Owing to (1.10) and Theorem 1.1, the parallel shooting is carried out starting

from the singular point. Let ca, cb be points of [a, xλ) and (xλ, b], respectively. We
split the SLP into two couples of IVPs:

z′(x) = K(x, λ)z(x), a < x ≤ ca, z(a) = α̃,(2.11)

z′(x) = K(x, λ)z(x), ca ≤ x < xλ, z(xλ) = γ,(2.12)

where, according to (1.15), we have indicated that γ = [0, 1]T and

z′(x) = K(x, λ)z(x), xλ < x ≤ cb, z(xλ) = γ,(2.13)

z′(x) = K(x, λ)z(x), cb ≤ x < b, z(b) = β̃.(2.14)
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Let μ be an initial guess of λ somehow estimated and xμ the solution of the equation
u(x)−μ = 0. Following a procedure quite similar to that previously seen, we consider
the leftward problem (2.11) with μ in place of λ setting xn = a+nh, n = 0, 1, . . . , na =
ca−a
h , and assuming as shooting nodes ξj = xjka , j = 0, 1, . . . , ra, with raka = na.

Then we integrate with a numerical method the IVPs

X ′
j(x) = K(x, μ)Xj(x), ξj−1 < x ≤ ξj ,

Xj(ξj−1) = I, j = 1, 2, . . . , ra,
(2.15)

obtaining Xj,n(μ, t) � Xj(xn), (j − 1)ka ≤ n ≤ jka, j = 1, 2, . . . , ra. Then denoting
Xj,jka(μ, t) by Xj(μ, t) we are able to define X(μ, t) = Xra(μ, t), . . . , X1(μ, t).

In the same way we consider the problem (2.12) with μ in place of λ and xμ in

place of xλ setting xn = xμ−nh, n = 0, 1, . . . , nμa =
xμ−ca

h and assuming as shooting
nodes θj = xjkμa

, j = 0, 1, . . . , rμ with rμkμa = nμa . With the same numerical
method we integrate the IVPs

Y ′
j (x) = K(x, μ)Yj(x), θj ≤ x < θj−1,

Yj(θj−1) = I, j = 1, 2, . . . , rμ.
(2.16)

With obvious notations we define Y (μ, t) = Yrμ(μ, t), . . . , Y1(μ, t).
Thus the miss-distance function for the interval [a, xμ] is

Fa(μ, t) = α̃TXT (μ, t)JY (μ, t)γ.(2.17)

Referring to the problem (2.13) with μ and xμ instead of λ and xλ, we consider xn =

xμ+nh, n = 0, 1, . . . , nμb
=

cb−xμ

h and the shooting nodes ξj = xjkμb
, j = 0, 1, . . . , sμ,

with sμkμb
= nμb

. Then, upon numerical integration of the IVPs

R′
j(x) = K(x, μ)Rj(x), ξj−1 < x ≤ ξj ,

Rj(ξj−1) = I, j = 1, 2, . . . , sμ,
(2.18)

it is possible to define R(μ, t) = Rsμ(μ, t), . . . , R1(μ, t).
Finally, denoting by Sj(x), j = 1, 2, . . . , sb, the fundamental solutions associated

to the problem (2.14), where λ is replaced with μ, and following the same procedure
as before, we integrate

S′
j(x) = K(x, μ)Sj(x), θj ≤ x < θj−1,

Sj(θj−1) = I, j = 1, 2, . . . , sb,
(2.19)

where θ0 = b, so that we can define S(μ, t) = Ssb(μ, t), . . . , S1(μ, t).
By consequence the miss-distance in the interval [xμ, b] is

Fb(μ, t) = γTRT (μ, t)JS(μ, t)β̃.(2.20)

Thus μ is an approximation to λ if μ is a zero both for Fa(μ, t) and Fb(μ, t).

3. The discretization method and its behavior in the singular case. We
use a BVM endowed with a symmetric scheme in order to integrate the IVPs (2.3),
(2.6) in the regular case and the IVPs (2.15), (2.16), (2.18), (2.19) in the singular
case. In any event, the general form of these problems in each shooting interval is

Z ′(x) = Γ(Z(x), λ),

Z(x0) = I,



ALGEBRAIC SPECTRAL CORRECTION 2233

where Γ(Z(x), λ) = H(x, λ)Z(x) or Γ(Z(x), λ) = K(x, λ)Z(x) depending on whether
we consider the regular or singular SLP.

Thus the general form of BVM [4] with (k1, k2)-boundary conditions is

r∗∑
i=0

αiνZi = h

r∗∑
i=0

βiνΓi, ν = 1, . . . , k1 − 1,

k∗∑
i=0

αiZν+i−k1 = h

k∗∑
i=0

βiΓν+i−k1
, ν = k1, . . . , N − k2,(3.1)

s∗∑
i=0

αiνZν+i−s∗ = h

s∗∑
i=0

βiνΓν+i−s∗ , ν = N − k2 + 1, . . . , N,

where N is the number of subintervals in the shooting interval considered, r∗, s∗ ≤
k∗ = k1 + k2, Zi � Z(xi), Γi = Γ(Zi, λ), i = 0, 1, . . . , N .

In the case of a λ-rational SLP, if the BVM (3.1) numbers among its nodes the
point xλ, we then need to compute K(x, λ) in the singular point. Thus, in order to
avoid numerical overflow, we introduce an artificial layer δ in width with

0 < δ < h ≤ h∗ < 1(3.2)

and we choose as the starting point for the shooting x0 = xλ − δ or x0 = xλ + δ
according to whether we integrate right to left or left to right.

The layer option partly inhibits the classical order of convergence of a BVM when
applied to the SLP (1.11)–(1.13).

Actually the general solution of the differential equation −v′′ = g(x, λ)v in [a, x0]
or in [x0, b] with the initial conditions v(x0) = 0 and v′(x0) = 1 takes the form
v(x) = Ay(x) + Cw(x), where

w(x) = −1 +
q(xλ)

u′(xλ)
(x− xλ) log |x− xλ| + O(x− xλ)

for x → xλ and A and C depend on λ [1, Theorem 4.2].
Thus the explanation for this behavior of the BVMs is that the “nice” solution

of (1.7) satisfying the conditions of Theorem 1.1 lies, in fact, in C∞([a, b]) whereas
the solution v(x) has singularities in the higher order derivatives inherited from the
function w(x).

A general discussion on this topic is in [9, section 3]. More detailed considerations
show that for a class of BVMs, when applied to the SLP (1.11)–(1.13) using the simple
shooting, the best accuracy is t(h) = h2 log h for a method whose classical order is 2
and t(h) = h2 for a method whose classical order is greater than 2 [8, Theorem 5.2].
In the parallel shooting the starting shooting subinterval bordering on a singular point
is precisely in the aforementioned conditions.

4. The errors polynomial: the regular case. In what follows we consider
the miss-distance F (μ, t) as in (2.10) differentiable with respect to t as we need and
the same for U(μ, t) and V (μ, t) with respect to μ.

Lemma 4.1. Let q0 = 0, qj = i1 + i2 + · · · + ij be for some nonnegative integers
i1, i2, . . . , ij. Denote by Wj(μ, t), j = 1, 2, . . . ,m, second order matrices depending on

μ and t. Let W
(s)
j (μ, t) = (∂s/∂μs)Wj(μ, t) and W (μ, t) = Wm(μ, t), . . . ,W1(μ, t).
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Define the formal product operators

pj(m) =

m−2∏
r=0

j−qr∑
ir+1=0

(
j − qr
ir+1

)
, j ≥ qr,

acting on the matrices

Pj(W,m) = W (j−qm−1)
m (μ, t)

m−2∏
r=0

W
(im−1−r)
m−1−r (μ, t), j ≥ qm−1.

Then

F (k)(μ, t) =
(
∂k/∂μk

)
F (μ, t)

(4.1)

= αT

{
k∑

i=0

(
k
i

)
[pk−i(ma)Pk−i(U,ma)]

T
Jpi(mb)Pi(V,mb)

}
β.

Proof. Using the Newton–Leibnitz binomial expansion we get

F (k)(μ, t) = αT

{
k∑

i=0

(
k
i

)[
U (k−i)(μ, t)

]T
JV (i)(μ, t)

}
β.(4.2)

The term U (k−i)(μ, t) in this equation can be expressed by again using the Newton–
Leibnitz binomial expansion and taking advantage of the associative property for
matrices. That is to say, with s = k − i,

U (s)(μ, t) = (∂s/∂μs) [A2(μ, t)U1(μ, t)] =

s∑
i1=0

(
s
i1

)
A

(s−i1)
2 (μ, t)U

(i1)
1 (μ, t),

where A2(μ, t) = Um(μ, t), . . . , U2(μ, t), then considering

A
(s−i1)
2 (μ, t) =

(
∂s−i1/∂μs−i1

)
[A3(μ, t)U2(μ, t)] ,

where A3(μ, t) =Um(μ, t), . . . , U3(μ, t), and so on as far as the term U (s)(μ, t) = ps(ma)
Ps(U,ma) is obtained. By the same way we get V (i)(μ, t) = pi(mb)Pi(V,mb).

Lemma 4.2. Denote by Uj(x, μ), j = 1, 2, . . . ,ma the solutions of the IVPs (2.3)
with μ in place of λ, namely the IVPs

U ′
j(x, μ) = H(x, μ)Uj(x, μ), ξj−1 < x ≤ ξj ,

Uj(ξj−1, μ) = I, j = 1, 2, . . . ,ma.
(4.3)

Then the terms U
(s)
j (x, μ), s = k − i, j = 1, 2, . . . ,ma, in (4.2) are the numerical

solutions of the IVPs(
U

(s)
j (x, μ)

)′
= H(x, μ)U

(s)
j (x, μ) + sH(1)(x, μ)U

(s−1)
j (x, μ), ξj−1 < x ≤ ξj ,

U
(s)
j (ξj−1, μ) = 0, j = 1, 2, . . . ,ma,

(4.4)

where H(1)(x, μ) = (∂/∂μ)H(x, μ).
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Proof. Consider s ≥ 1, the case s = 0 being trivial. Equation (4.4) is obtained
by taking the s-derivative with respect to μ of the left and right-hand sides of (4.3),
owing to the linearity of H(x, μ) with respect to μ, and using the Schwartz theorem.
Then a numerical integration of (4.4) with a method having t as the discretization

parameter gives rise to U
(s)
j (x, μ).

With obvious changes this lemma can be restated in order to compute the terms

V
(s)
j (μ, t), s = i, j = 1, 2, . . . ,mb.

The following theorem gives an explicit form of the polynomial whose zeros are
reliable evaluations of the error λ− μ.

Theorem 4.3. Let μ be an estimation of λ and t(h) as in (2.9). Let hi, i =
1, 2, . . . , r, be distinct values of the stepsize h with

0 < h1, h2, . . . , hr ≤ h∗

and suppose that

t(hi) �= t(hj), 1 ≤ i �= j ≤ r.

Define the vectors γ(k) = [γ
(k)
1 , γ

(k)
2 , . . . , γ

(k)
r ]T, k = 0, 1, . . . ,m, whose components are

γ
(k)
i = F (k)(μ, t(hi)), i = 1, 2, . . . , r,

F (k)(μ, t) being as in (4.1). Let T be the square matrix whose elements are given by

(T )ij = [t(hi)]
j−1

, 1 ≤ i, j ≤ r.

Then

λ = μ + ε,(4.5)

ε being a solution of

φ̂(ε) + O(εm+1) = 0,(4.6)

where

φ̂(ε) =
m∑

k=0

φ̂kε
k.(4.7)

The coefficients of the polynomial (4.7) are

φ̂k =
1

k!
e(1)T T−1

(
γ(k) + O(trρ)

)
,(4.8)

e(1) being the first column of the identity matrix of order r and tρ such that

tρ = max {|t(h1)|, |t(h2)|, . . . , |t(hr)|} .(4.9)

Proof. With ε = λ− μ and F (k)(μ, 0) = (∂k/∂μk)F (μ, 0) we have

F (λ, 0) =

m∑
k=0

1

k!
F (k)(μ, 0)εk + O(εm+1).(4.10)



2236 LIDIA ACETO, PAOLO GHELARDONI, AND GIOVANNI GHERI

Furthermore

F (k)(μ, t(h)) =

r−1∑
i=0

w
(k)
i [t(h)]

i
+ O ([t(h)]

r
) ,(4.11)

where

w
(k)
i =

1

i!

[
(∂i/∂ti)F (k)(μ, t)

]
t=0

, i = 0, 1, . . . , r − 1.

Then writing (4.11) for t(h) = t(hj), j = 1, 2, . . . , r, and defining the vector w(k) =

(w
(k)
0 , w

(k)
1 , . . . , w

(k)
r−1)

T we have

γ(k) = Tw(k) + O(trρ).(4.12)

Noticing that w
(k)
0 = F (k)(μ, 0) and because T is a nonsingular Vandermonde matrix,

from (4.12) and (4.10) (4.8) is obtained.

We remark that in (4.7) a root of φ̂(ε) going to zero when μ → λ at least exists.

As a matter of fact φ̂0 = F (μ, 0) from (4.8) and F (μ, 0) → F (λ, 0) = 0 by definition
when μ → λ.

In practice, for h∗ sufficiently small we are allowed to leave out the term O(εm+1)
in (4.6) and O(trρ) in (4.8).

Thus (4.5) can be written as

λ � λ(c) = μ + ε,(4.13)

where now ε is a zero of the polynomial

φ(ε) =
m∑

k=0

φkε
k(4.14)

with

φk =
1

k!
e(1)T T−1γ(k).

A very simple and useful case is m = 2, so that it is possible to pick out as correcting
term in (4.13) the root

ε =
−φ1 + φ1

|φ1|
√
φ2

1 − 4φ0φ2

2φ2

which is, for h∗ small, real and goes to zero when μ → λ.
A further correction procedure that is easy to use is obtained with m = 3 because

at least one real zero of (4.14) exists. Going into details, if we set

ω0 =
1

27φ3
3

(2φ3
2 − 9φ1φ2φ3 + 27φ0φ

2
3),

ω1 =
1

φ2
3

(
φ1φ3 −

1

3
φ2

2

)
,

� =

√(ω0

2

)2

+
(ω1

3

)3

− ω0

2
,
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then the roots of (4.14) are (see, for instance, [5, 6])

ε1,2,3 = �1/3 − ω1

3
�−1/3 − 1

3

φ2

φ3
(4.15)

with the same determination for the cubic root. If
(
ω0

2

)2
+

(
ω1

3

)3 ≥ 0 (the reducible

case), a suitable choice in (4.13) for ε is the one in (4.15) with real value for �1/3.

5. The errors polynomial: the singular case. We consider the IVPs (2.11),
(2.12), (2.13), (2.14), and the IVPs giving the corresponding fundamental solutions
in the intervals [a, ca], [ca, xμ], [xμ, cb], [cb, b]. Let F (μ, t) be the left miss-distance
(2.17) or the right one (2.20) as the case may be. At present the matrix K(x, μ)
depends nonlinearly on μ so that the derivatives with respect to μ look very knotty
to be computed. Moreover, the singular point xμ is μ-depending so that the initial
condition in (4.4) represents a doubtful issue. By consequence Lemmas 4.1 and 4.2
are all but useless and Theorem 4.3 can be restated using a different way to compute
γ(k), k = 0, 1, . . . ,m. To this end the following procedure based on the numerical
differentiation using the method of undetermined coefficients (see, for instance, [11,
chap. 6, sec. 5]) provides a simple and helpful alternative to overcome the obstacle.

Consider ν +1 distinct values of μ obtained during the same iterative rootfinding
process and, without loss of generality, take them ordered by μ0 < μ1 < · · · < μν .
Define the functions

gj(μ) = F (μ, t(hj)), j = 1, 2, . . . , r,

where t(h1), t(h2), . . . , t(hr) are as in Theorem 4.3. Denote by pj(μ), j = 1, 2, . . . , r,
the νth degree interpolation polynomials for gj(μ) with respect to the ν + 1 points
μ0, μ1, . . . , μν , namely pj(μl) = gj(μl), l = 0, 1, . . . , ν. We seek a formula of the form

p
(k)
j (μη) =

ν∑
l=0

clgj(μl), j = 1, 2, . . . , r,(5.1)

where p
(k)
j (μ) = (∂k/∂μk)pj(μ) and 0 ≤ η ≤ ν.

For this purpose we choose the cl coefficients in order that (5.1) will be the most

accurate approximations to p
(k)
j (μη) when

gj(μ) = (μ− μη)
l, l = 0, 1, . . . , ν.

Because [
(∂k/∂μk)gj(μ)

]
μ=μη

= k!δlk,

we obtain the linear system

M(μη)c = b(k),(5.2)

where c = (c0, c1, . . . , cν)
T , b(k) = k!(δ0k, δ1k, . . . , δνk)

T and

(M(μ))lr = (μr − μ)l, 0 ≤ l, r ≤ ν.(5.3)

It is clear that the system (5.2) has a unique solution since (5.3) is a nonsingular
Vandermonde matrix. Besides, it is possible to prove [11, chap. 6, sec. 5, Theorem 1]
that

F (k)(μ, t(hj)) = p
(k)
j (μ) + χ

(k)
j (μ), j = 1, 2, . . . , r,(5.4)
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having set

χ
(k)
j (μ) =

ν−k∏
i=0

(μ− τi)
F (ν+1)(ξ, t(hj))

(ν + 1 − k)!
,(5.5)

when the ν + 1 − k distinct points τi are independent of μ and lie in the intervals
(μi, μi+k), i = 0, 1, . . . , ν − k, and ξ = ξ(μ) is some point in the interval containing μ
and τi.

We are now able to restate Theorem 4.3 in the following form suitably modified
for the present case.

Theorem 5.1. Let μ be an estimation of λ and t(hi), i = 1, 2, . . . , r, as in The-
orem 4.3. Let μl, l = 0, 1, . . . , ν, be values of μ obtained during the same rootfinding
process and ordered by μ0 < μ1 < · · · < μν . Define the matrix G whose elements are

(G)jl = gjl = F (μl, t(hj)), 0 ≤ l ≤ ν, 1 ≤ j ≤ r,

and let M(μ) be as in (5.3). Denote again by γ(k) the vector whose components are

γ
(k)
j = F (k)(μ, t(hj)), j = 1, 2, . . . , r, and let T be the Vandermonde matrix as in

Theorem 4.3.
Then

λ = μ + ε,(5.6)

ε being a solution of

ψ̂(ε) + O(εm+1) = 0,(5.7)

where

ψ̂(ε) =

m∑
k=0

ψ̂kε
k.(5.8)

The coefficients in (5.8) are given by

ψ̂k =
1

k!
e(1)T T−1

(
GM−1(μ)b(k) + χ(k) + O(trρ)

)
,(5.9)

where, from (5.5),

χ(k) =
(
χ

(k)
1 (μ), χ

(k)
2 (μ), . . . , χ(k)

r (μ)
)T

and tρ being as in (4.9).
Proof. The proof runs as the proof of Theorem 4.3. We have to use only for

components of γ(k) (5.4) instead of (4.2) and observe that from (5.1) and (5.2) we
obtain

p
(k)
j (μ) =

(
GM−1(μ)b(k)

)
j
, j = 1, 2, . . . , r.

Leaving out the terms O(εm+1) in (5.7), χ(k), and O(trρ) in (5.9), (5.6) can be
written as

λ � λ(c) = μ + ε,



ALGEBRAIC SPECTRAL CORRECTION 2239

where now ε is a zero of the polynomial

ψ(ε) =

m∑
k=0

ψkε
k(5.10)

with

ψk =
1

k!
e(1)T T−1

(
GM−1(μ)b(k)

)
.

As in the regular case a simple but powerful correcting procedure is obtained with
m = 2. If r = 3 and μ0, μ2 are such that |μ0 − μ2| is sufficiently small, define
μ1 = 1

2 (μ0 +μ2) and σ = μ0 −μ1 = μ1 −μ2. Therefore it is not difficult to verify that

γ
(1)
j =

gj0 − gj2
2σ

+ O(σ2), j = 1, 2, 3,

γ
(2)
j =

gj0 − 2gj1 + gj2
σ2

+ O(σ2), j = 1, 2, 3,

where γ
(0)
j , γ

(1)
j , and γ

(2)
j are computed for μ = μ1. Then the correction is given by

λ � λ(c) = μ1 + ε,

where

ε =
−ψ1 + ψ1

|ψ1|
√
ψ2

1 − 4ψ0ψ2

2ψ2
.

With m = 3, since ψk have been computed in (5.10), the correction can be performed
as at the end of section 4.

We remark that the procedure described in this section to compute the vectors
γ(k) can be used in the regular case too. Still it is worth mentioning that the use of
Lemmas 4.1 and 4.2 for the regular case seems to be theoretically more correct. As a
matter of fact the vectors γ(k) depend on the solutions of the differential equations de-
scribing the analytical behavior of the derivatives F (k)(μ, t) of the miss-distance itself.
Consequently, if these solutions are carried out by means of the same discretization
method employed for the “principal” problems (2.1) and (2.2), no additional trunca-
tion error substantially different from the “principal” one is introduced.

Nevertheless, when k is increasing, the bigger computational cost could be dis-
guising for this distinctive feature.

6. Numerical experiments. We apply the techniques exposed in sections 4
and 5 both to a regular and λ-rational SLP.

In the following examples the used BVM is the fourth order extended trapezoidal
rule of second kind (ETR2) coupled with its boundary conditions [4, p. 164]:

1

24
(−17Z0 + 9Z1 + 9Z2 − Z3) =

h

4
(Γ0 + 3Γ1),

1

12
(−Zν−2 − 9Zν−1 + 9Zν + Zν+1) =

h

2
(Γν−1 + Γν), ν = 2, . . . , N − 1,

1

24
(ZN−3 − 9ZN−2 − 9ZN−1 + 17ZN ) =

h

4
(3ΓN−1 + ΓN ).
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Moreover, the approximations to the eigenvalues are obtained by choosing the secant
method as rootfinding process.

Example 1 (see [16, p. 134]). Consider the regular SLP

−y′′(x) + exp(x)y(x) = λy(x), 0 ≤ x ≤ π,

y(0) = 0, y(π) = 0.

We shall denote by
• λk the kth eigenvalue computed with the SLEIGN code (see [17, Appendix

C]) and considered as “exact”;

• μk ≡ μ
(j+1)
k the approximation to λk obtained by using the rootfinding pro-

cess with a constant stepsize h and the stopping criterion given by

| μ(j+1)
k − μ

(j)
k |≤ 10−4;

• λ
(c)
k the corrected eigenvalue derived by fixing hi = h/i, i = 1, 2, . . . , r (see

Theorem 4.3).
In Table 6.1 we get the results choosing h = π/1000, r = 2, 3, the polynomials

(4.14) having degree m = 1, 2, 3. Moreover, we fix 10 shooting intervals and the
matching point c = π/2. It is worth noting that the correction does not depend
on the selected value of c. Although the used stopping criterion leads to a rough

enough approximation μk, the correction technique is able to give a value λ
(c)
k which

emphasizes a remarkable improvement of accuracy. However, as the index k increases,
we observe a loss of precision as a consequence of the rounding off errors in the
computation of the coefficients defining the polynomials (4.14).

Example 2 (see [9, p. 375]). We consider the λ-rational SLP

−y′′(x) =

(
λ +

exp(−x)

exp(−x∗) − exp(−x) − λ

)
y(x), −5 ≤ x ≤ 5,

exp(5)y(−5) − (exp(−x∗) − exp(5))y′(−5) = 0,

exp(−5)y(5) − (exp(−x∗) − exp(−5))y′(5) = 0.

Table 6.1

Example 1.

r = 2 r = 3

k | λk − μk | | λk − λ
(c)
k

| |λ(c)

k
−μk|

|λk−μk|
| λk − λ

(c)
k

| |λ(c)

k
−μk|

|λk−μk|
m

5 3.14 10−5 4.44 10−8 1.0014 2.76 10−8 1.0008 1
4.42 10−8 1.0014 2.73 10−8 1.0008 2
4.42 10−8 1.0014 2.73 10−8 1.0008 3

10 7.42 10−5 1.82 10−8 1.0002 9.27 10−9 1.0001 1
1.67 10−8 1.0002 7.86 10−9 1.0002 2
1.67 10−8 1.0002 7.86 10−9 1.0002 3

30 1.10 10−3 2.58 10−6 0.9976 1.56 10−7 0.9998 1
2.28 10−6 0.9979 1.50 10−7 1.0001 2
2.28 10−6 0.9979 1.47 10−7 1.0001 3

50 2.37 10−2 5.38 10−5 0.9977 3.36 10−6 0.9998 1
8.82 10−5 1.0037 1.39 10−4 1.0058 2
7.84 10−5 1.0033 1.29 10−4 1.0054 3
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Table 6.2

Example 2: Interval [−5, xλ].

r = 2 r = 3

h | λ− λ(c) | |λ(c)−μ|
|λ−μ| | λ− λ(c) | |λ(c)−μ|

|λ−μ| m

0.1 2.39 10−9 0.9974 3.84 10−10 1.0004 1
2.39 10−9 0.9974 3.84 10−10 1.0004 2
2.39 10−9 0.9974 3.84 10−10 1.0004 3

0.05 5.70 10−11 1.0000 1.04 10−11 1.0000 1
5.67 10−11 1.0000 1.01 10−11 1.0000 2
5.67 10−11 1.0000 1.01 10−11 1.0000 3

0.01 9.61 10−13 1.0000 5.85 10−13 1.0000 1
6.78 10−13 1.0000 3.01 10−13 1.0000 2
6.77 10−13 1.0000 3.01 10−13 1.0000 3

This problem has an embedded eigenvalue λ = 0 corresponding to the solution y(x) =
exp(−x∗) − exp(−x) in the interval [−5, 5].

In Table 6.2 we report the results obtained by approximating the eigenvalue λ
on the interval [−5, xλ] with xλ ≡ x∗ = 0 and introducing the artificial layer δ
(see (3.2)) equal to 10−15. The involved differential problems are solved fixing 10
shooting intervals and matching point c = −5. In Table 6.3 the interval [xλ, 5] has
been considered choosing the same parameters as before, except for the matching point
here taken as c = 5. In both tables we have denoted with μ and λ(c) the approximation
and correction to λ, respectively. In accordance with what we have pointed out on
the order of convergence in section 3, we have used t(h) = h2. The approximation μ
is obtained by the same stopping criterion used in the regular case.

Remark 6.1. Despite that this correction technique may be easily used for polyno-
mials (5.10) having any degree, from the shown results we see that the approximation
of the eigenvalue does not noticeably improve as the degree m of (5.10) becomes
greater than two. This behavior can appear fairly surprising. Nevertheless, it is
worth taking into account that the correction is rather strong even if m = 1 or m = 2.
Thus we are allowed to interpret these results as a kind of numerical saturation of
the algorithm as regards the attainable accuracy. Consequently, in the present case,
it seems insignificant to consider m > 2.

Table 6.3

Example 2: Interval [xλ, 5].

r = 2 r = 3

h | λ− λ(c) | |λ(c)−μ|
|λ−μ| | λ− λ(c) | |λ(c)−μ|

|λ−μ| m

0.1 2.07 10−6 1.0086 5.09 10−8 1.0002 1
1.98 10−6 1.0082 4.35 10−8 0.9998 2
1.98 10−6 1.0082 4.35 10−8 0.9998 3

0.05 7.98 10−8 1.0009 2.99 10−8 1.0003 1
6.77 10−8 1.0007 1.79 10−8 1.0002 2
6.77 10−8 1.0007 1.79 10−8 1.0002 3

0.01 4.81 10−9 1.0001 4.39 10−9 1.0001 1
2.62 10−9 1.0000 2.19 10−9 1.0000 2
2.62 10−9 1.0000 2.19 10−9 1.0000 3
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Table 6.4

Example 1: Simple shooting, h = π/500.

r = 2 r = 3

k | λk − μk | | λk − λ
(c)
k

| |λ(c)

k
−μk|

|λk−μk|
| λk − λ

(c)
k

| |λ(c)

k
−μk|

|λk−μk|
m

50 4.03 10−1 1.15 10−1 0.7127 1.15 10−1 0.7127 1
complex – complex – 2

8.28 10−2 0.7943 8.28 10−2 0.7944 3

Table 6.5

Example 1: Multiple shooting, h = π/500.

r = 2 r = 3

k | λk − μk | | λk − λ
(c)
k

| |λ(c)

k
−μk|

|λk−μk|
| λk − λ

(c)
k

| |λ(c)

k
−μk|

|λk−μk|
m

50 1.44 10−1 2.46 10−2 0.8289 1.86 10−2 0.8708 1
3.72 10−3 0.9742 5.09 10−3 1.0352 2
1.27 10−2 0.9115 5.71 10−3 0.9604 3

Table 6.6

Example 1: Simple shooting, h = π/600.

r = 2 r = 3

k | λk − μk | | λk − λ
(c)
k

| |λ(c)

k
−μk|

|λk−μk|
| λk − λ

(c)
k

| |λ(c)

k
−μk|

|λk−μk|
m

50 1.94 10−1 3.16 10−2 0.8371 3.16 10−2 0.8372 1
1.63 10−2 1.0842 1.64 10−2 1.0844 2
1.24 10−2 0.9358 1.24 10−2 0.9359 3

Table 6.7

Example 1: Multiple shooting, h = π/600.

r = 2 r = 3

k | λk − μk | | λk − λ
(c)
k

| |λ(c)

k
−μk|

|λk−μk|
| λk − λ

(c)
k

| |λ(c)

k
−μk|

|λk−μk|
m

50 6.79 10−2 7.08 10−3 0.8956 3.98 10−3 0.9413 1
2.70 10−3 0.9601 9.04 10−4 1.0133 2
3.60 10−3 0.9469 1.47 10−4 0.9978 3

Finally, in order to stress that the multiple shooting works better than the simple
one, we have quoted in Table 6.4 the results obtained with Example 1 when the simple
shooting is used, and in Table 6.5 the same example in the case of multiple shooting.
In both cases we have selected h = π

500 and λ50 the eigenvalue to be approximated.
In the multiple shooting we have chosen 50 shooting intervals (and 10 steps in each
interval) and c = π as matching point. We see that in the simple shooting the
second degree polynomial has complex zeroes. Thus, we are compelled to gain the
advantage from the use of first or third degree polynomials where a real zero always
exists. Tables 6.6 and 6.7 are the same as the previous ones but with h = π

600 and 60
shooting intervals in the multiple shooting.
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CFL CONDITION AND BOUNDARY CONDITIONS FOR DGM
APPROXIMATION OF CONVECTION-DIFFUSION∗
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Abstract. We propose a general method for the design of discontinuous Galerkin methods
(DGMs) for nonstationary linear equations. The method is based on a particular splitting of the
bilinear forms that appear in the weak DGM. We prove that an appropriate time splitting gives a
stable linear explicit scheme whatever the order of the polynomial approximation. Numerical results
are presented.
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1. Introduction. The convection-diffusion equation is widely used in real-life
problems such as contaminant transport in porous media [1, 8, 26]. Due to the ge-
ological structure of the problem, the equation is convection-dominant in random
distributed parts of the media. This makes its numerical resolution difficult. While
difference schemes suffer from the complex geometry of the domain, ordinary finite
element methods suffer from their lack of local conservativity [28], and finite volume
methods suffer from their low order of accuracy (due to low order polynomial approx-
imation). The discontinuous Galerkin method (DGM or DG), introduced in 1973 by
Reed and Hill [32], in its development [24] found here a good field of application. In a
computational aspect, the DGM can be used efficiently to handle the advection part
in an operator splitting technique scheme [27]. But this strategy may break apart
at boundary conditions of mixed type, where it is difficult to determine whether the
boundary condition is more in the advection step or in the diffusion step. For real-life
problems [8], the Dirichlet part of the boundary can also be split into inflow and
outflow parts. This boundary condition can astutely be distributed in between the
advection terms and diffusion terms [5, 6]. In a mathematical aspect, it is more conve-
nient to have a unique bilinear form even if the splitting technique is used [20, 37, 33].
This leads to an ordinary differential equation, a different approach is [39]. Assuming
for example that the DGM is used only in space to exploit the block diagonal mass
matrix obtained, most time discretizations are explicit and therefore require a CFL
condition.

In the one-dimensional case, using Von Neumann analysis, Chavent & Cockburn
[11] proved that explicit linear Euler time integration of the DGM is unconditionally
unstable if the ratio Δt

Δx is held constant. To overcome this striking difficulty and
still keep high order accuracy, Cockburn and Shu [19, 20, 21, 22] introduced the
RKDG (Runge–Kutta discontinuous Galerkin method). It uses at each time step an
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explicit Euler scheme, stabilized by a particular slope limiter, which makes the scheme
nonlinear. Due to this nonlinearity, proof of convergence of the fully discrete explicit
DGM is not possible except perhaps in very rare and special cases. We refer the reader
to Cockburn [18] for a presentation of the convergence theory for the DGM. Despite
this lack of theory, numerical experiments show the convergence. For example, in the
one-dimensional case for advection, the convergence is observed if the CFL condition
is of the form 1

2k+1 for polynomials of order k [18]. To the best of our knowledge, the
analysis of the fully discrete explicit DGM scheme remains an open problem.

In this work we propose a way to solve this problem. We propose an abstract
functional formalism. Within this formalism, it is easy to design explicit (only local-in-
the-cell) computations, which are linear and stable under CFL DGMs. Then we apply
this method to our model problem, which is advection diffusion in two dimensions,

∂tc + u.∇c−∇.(K∇c) = 0, x ∈ R2, t > 0.(1.1)

The diffusion coefficient is nonnegative K ≥ 0, and the velocity is divergence-free
∇.u = 0. Boundary conditions are general and are specified in the core of the paper.
Due to the stability (under the CFL condition) and linearity of our explicit DGM
scheme, we are able to prove the convergence by a standard method. For example, we
obtain the estimate of convergence in two dimensions for the advection case (K = 0),

‖c(nΔt) − cnh‖L2 ≤ C1Δt2 + C2h
p + E.

E is an error term due the discretization of the initial condition and can be taken
as small as desired. This estimate is true for the second order in time discretization.
The order in space is p, which is the degree of the polynomial basis. Since the optimal
order in space is p+ 1/2, we think this loss of 1/2 is an artifact of the analysis, which
could be corrected with a more sophisticated technique [13, 14, 15]. To our knowledge,
such an estimate is new and was not possible to get for previous fully discrete explicit
DGM schemes.

At the theoretical level the key idea is to reformulate (1.1) as a weak problem(
∂

∂t
U, V

)
+ A0(U, V ) + A1(U, V ) −A2(U, V ) = 0 ∀V ∈ V,(1.2)

where U is the solution, V is a test function, (., .) is the standard L2 scalar product,
and A0,1,2 are some bilinear forms defined later in this paper. The space is V ⊂∑

k L
2(Ωk), where (Ωk) is a partition of the plane, i.e., is the mesh. Among other

properties, the local bilinear forms A0(U, V ), A1(U, V ), and A2(U, V ) satisfy

A0(U,U) + A1(U,U) −A2(U,U) ≥ 0.(1.3)

The first order time discretization of (1.3) is as follows: Find Un
h , U

n+1
h ∈ Vh such

that for all test functions Vh ∈ Vh,(
Un+1
h − Un

h

Δt
, Vh

)
+ A0(U

n+1
h , Vh) + A1(U

n
h , Vh) −A2(U

n
h , Vh) = 0.(1.4)

When applied to (1.1), the bilinear form A0 is local-in-the-cell, and this is why the
scheme is explicit. The main stability property that we prove is the inequality

||Un+1
h ||L2(R2) ≤ ||Un

h ||L2(R2) ∀n ∈ N,(1.5)
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which is true under a CFL condition that is studied in detail. It guarantees stability
whatever the order of the polynomial approximation. Since A0 is in practice a local-
in-the-cell bilinear form, the scheme is explicit at the price of the resolution of a
local-in-the-cell linear system. At the implementation level, it does not cost more
than inverting the local mass matrix. We also study the second order discretization
in time,

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Vh

)
+

2

3
A0(U

n+1
h , Vh)(1.6)

+
2

3
A1(2U

n
h − Un−1

h , Vh) − 2

3
A2(2U

n
h − Un−1

h , Vh) = 0.

The CFL condition is twice as stringent for (1.6) than for (1.4). It is possible to define
all the parameters of the method in order to optimize the CFL condition. We will
apply this method for our convection-diffusion problem.

The paper is organized as follows. In section 2 we consider a general setting.
We present the properties which the bilinear forms should satisfy in this framework.
Assuming these properties, we discuss some time schemes and derive the abstract
CFL condition that guarantees their stability. In section 3 we address the convection-
diffusion equation within the discontinuous Galerkin approximation and show how
to cast the bilinear form to fit within the abstract formalism. We show how to
introduce commonly used boundary conditions. In section 4 we analyze the abstract
CFL condition in the case of a uniform grid and give values to all constants. We
give the bilinear forms in particular cases of pure advection and pure diffusion. We
conclude that the totally discrete schemes introduced for the convection-diffusion
equation make up a continuous interpolation between the scheme for pure advection
and the scheme for pure diffusion. In section 5 we analyze the convergence of the
second order schemes in the case of the pure advection equation. Finally, in section
6 we present numerical results for advection and diffusion and compare them with
other DGMs.

2. The abstract discontinuous Galerkin formalism. We first consider an
abstract formalism in a more general setting and derive some time discretization,
which will be stable under an abstract CFL condition.

2.1. Abstract formalism. Let us define the spaces

V ⊂ H.(2.1)

H is endowed with a scalar product, namely (., .) . In practice H = L2(Ω).
Definition 2.1. A sequence (Up)p ∈ V will be said to be L2 stable if there exists

a constant C ∈ R such that (Up, Up) ≤ C for all p ∈ N.
Let Ai, i = 0, 1, 2, be three bilinear forms on V satisfying the following properties:

⎧⎪⎪⎨
⎪⎪⎩
A1 is symmetric nonnegative.

There exist a bilinear form A3 also defined on V such that

A0(U,U) ≥ 1
2 (−A1(U,U) + A3(U,U)) and A2(U, V ) ≤ 1

2
(A1(U,U) + A3(V, V )) .

(2.2)

A consequence of (2.2) is

A0(U,U) + A1(U,U) −A2(U,U) ≥ 0 ∀U ∈ V.
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We now consider the problem (2.3):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Given U0 ∈ V,
find U ∈ C1(0, T ;V) such that ∀V ∈ V,(

∂

∂t
U, V

)
+ A0(U, V ) + A1(U, V ) −A2(U, V ) = 0,

U = U0 at t = 0.

(2.3)

In what follows we will assume that it has a unique solution.
Lemma 2.2. Assume that the bilinear forms Ai, i = 0, 1, 2, satisfy (2.2). Then

the solution to (2.3) is L2 stable.
Proof. Choosing V = U and using the property of (2.2) one gets directly that

dt
[
1
2 (U,U)(t)

]
≤ 0. Therefore the energy t 	→ (U,U)(t) decreases.

2.2. Time and space discretizations and abstract CFL conditions. Let
Vh ⊂ V be a finite-dimensional vectorial subspace of V. The unknown at time step n
is Un

h ∈ Vh. The test function is denoted by V n
h ∈ Vh. Under assumptions (2.2) on

bilinear forms Ai, i = 0, 1, 2, we can now derive some fully discrete schemes, which
are stable under abstract CFL conditions.

2.2.1. First order scheme. The first order scheme reads(
Un+1
h − Un

h

Δt
, Vh

)
+ A0(U

n+1
h , Vh) + A1(U

n
h , Vh) −A2(U

n
h , Vh) = 0 ∀Vh.(2.4)

We have the following result.
Theorem 2.3. Assuming that the bilinear forms Ai, i = 0, 1, 2, satisfy the prop-

erties (2.2), we assume that the time step satisfies the abstract CFL requirement

ΔtA1(Uh, Uh) ≤ (Uh, Uh) ∀Uh ∈ Vh.(2.5)

Then scheme (2.4) is L2 stable and(
Un+1
h , Un+1

h

)
≤ (Un

h , U
n
h ) .(2.6)

Δt > 0 exists because the dimension of Vh is finite.
Proof. The proof explicitly uses the inequalities of (2.2). The scalar product of

(2.4) with Un+1
h gives (

Un+1
h , Un+1

h

)
=

(
Un
h , U

n+1
h

)
− ΔtA0(U

n+1
h , Un+1

h ) − ΔtA1(U
n
h , U

n+1
h ) + ΔtA2(U

n
h , U

n+1
h )

≤
(
Un
h , U

n+1
h

)
− ΔtA0(U

n+1
h , Un+1

h ) − ΔtA1(U
n
h , U

n+1
h )

+
Δt

2

(
A1(U

n
h , U

n
h ) + A3(U

n+1
h , Un+1

h )
)

≤
(
Un
h , U

n+1
h

)
+

Δt

2

(
A1(U

n
h , U

n
h ) − 2A1(U

n
h , U

n+1
h ) + A1(U

n+1
h , Un+1

h )
)
.

Using the symmetry of bilinear form A1 and the scalar product, we rewrite the pre-
vious inequality as (

Un+1
h , Un+1

h

)
≤

(
Un+1
h , Un+1

h

)
−
((
Un+1
h − Un

h , U
n+1
h − Un

h

)
− ΔtA1

(
Un+1
h − Un

h , U
n+1
h − Un

h

))
.

Assuming the abstract CFL-like condition (2.5), the result is proved.
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2.2.2. Second order scheme. Extending to second order time discretization
the abstract DGM already mentioned is not easy. After numerous attempts, we
focused on the following approach, which is based on the theory of A-stable time
integration for stiff equations; see [25]. First, we begin with the retrograde second
order time integration,

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Vh

)
+

2

3
(A0 + A1 −A2) (Un+1

h , Vh) = 0 ∀Vh.(2.7)

Its stability can be proved, by taking Vh = Un+1
h in (2.7). The scheme is fully implicit

in the sense that it requires the inversion of a global linear system to get the new
value. Let us now define a semi-implicit second order time scheme. The idea is to
get rid of the cell-to-cell coupling that appears in (2.7). For this we use the relation
U((n+ 1)Δt) = 2U(nΔt)−U((n− 1)Δt) +O(Δt2), which is true provided that U is
smooth. Then we eliminate some occurrences of Un+1

h in (2.7) using transformation
Un+1
h ← 2Un

h − Un−1
h . It gives the scheme

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Vh

)
+

2

3
A0(U

n+1
h , Vh)(2.8)

+
2

3
A1(2U

n
h − Un−1

h , Vh) − 2

3
A2(2U

n
h − Un−1

h , Vh) = 0 ∀Vh.

We will see that in practice, A0 is of local-in-the-cell bilinear form. In this case,
scheme (2.8) is only locally implicit, and we need only inverse local linear systems to
get the new solution. Hence scheme (2.8) is in practice an explicit one.

Theorem 2.4. Assume the bilinear forms Ai, i = 0, 1, 2, satisfy the properties
(2.2), and assume the time step satisfies the abstract CFL requirement

2ΔtA1(Uh, Uh) ≤ (Uh, Uh) ∀Uh ∈ Vh.(2.9)

Then scheme (2.8) is L2 stable and(
Un+1
h , Un+1

h

)
+
(
2Un+1

h − Un
h , 2U

n+1
h − Un

h

)
(2.10)

≤ (Un
h , U

n
h ) +

(
2Un

h − Un−1
h , 2Un

h − Un−1
h

)
.

Proof. Let us take Vh = Un+1
h in (2.8). We get

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)
+

2

3
A0(U

n+1
h , Un+1

h )

+
2

3
A1(2U

n
h − Un−1

h , Un+1
h ) − 2

3
A2(2U

n
h − Un−1

h , Un+1
h ) = 0.

We can give a lower bound to A0(U
n+1
h , Un+1

h ) and −A2(2U
n
h − Un−1

h , Un+1
h ) using

(2.2). Therefore

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)
+

1

3
(A3 −A1)(U

n+1
h , Un+1

h )

+
2

3
A1(2U

n
h −Un−1

h , Un+1
h )− 1

3
A1(2U

n
h −Un−1

h , 2Un
h −Un−1

h )− 1

3
A3(U

n+1
h , Un+1

h ) ≤ 0,
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that is,

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)

− 1

3
A1(U

n+1
h − 2Un

h +Un−1
h , Un+1

h − 2Un
h +Un−1

h ) ≤ 0.

Let us define the energy

E(n + 1) =
(
Un+1
h , Un+1

h

)
+
(
2Un+1

h − Un
h , 2U

n+1
h − Un

h

)
.

One has the equality

E(n + 1) − E(n) = 6

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)
−
(
Un+1
h − 2Un

h + Un−1
h , Un+1

h − 2Un
h + Un−1

h

)
.

Plugging in the previous inequality, we obtain

E(n + 1) ≤ E(n) −
(
Un+1
h − 2Un

h + Un−1
h , Un+1

h − 2Un
h + Un−1

h

)
+ 2ΔtA1(U

n+1
h − 2Un

h + Un−1
h , Un+1

h − 2Un
h + Un−1

h ).

Under the abstract CFL condition (2.9), the result is proved.

2.2.3. Implicit scheme. The implicit scheme is(
Un+1
h − Un

h

Δt
, Vh

)
+ A0(U

n+1
h , Vh) + A1(U

n+1
h , Vh) −A2(U

n+1
h , Vh) = 0.(2.11)

Lemma 2.5. The implicit scheme (2.11) is L2 stable unconditionally.
Proof. The proof is left to the reader.

2.3. Optimization of numerical parameters. It is well known that the DGM
applied to convection-diffusion needs the definition of some arbitrary numerical pa-
rameters in order to completely define the bilinear forms at interfaces. We refer to
[30, 12], where the dependence between the convergence of the DGM for stationary
problems and the numerical parameters is analyzed. In what follows, we analyze the
influence of the numerical parameters on the CFL condition (for nonstationary prob-
lems, of course). An open problem is to show that the parameter which is optimal
with respect to the CFL condition is also optimal for convergence.

By inspection of the bilinear forms defined in the following section for convection-
diffusion, it is enough to consider the abstract problem(

∂

∂t
U, V

)
+ A0(U, V ) + Aα

1 (U, V ) −Aα
2 (U, V ) = 0 ∀V ∈ V.(2.12)

The bilinear forms A0,Aα
1 ,Aα

2 satisfy (2.2). The dependence to the arbitrary param-
eters is represented by α. The CFL condition takes the form(

max
Uh∈Vh, Uh �=0

Aα
1 (Uh, Uh)

(Uh, Uh)

)
Δt ≤ C,(2.13)



CFL FOR DGM 2251

where C = 1 for the first order scheme (2.5) and C = 1
2 for the second order scheme

(2.9). So the best α, denoted as αopt, is the one that minimizes the constant in this
inequality. We obtain the min-max problem for αopt,(

max
Uh∈Vh, Uh �=0

Aαopt

1 (Uh, Uh)

(Uh, Uh)

)
≤

(
max

Uh∈Vh, Uh �=0

Aα
1 (Uh, Uh)

(Uh, Uh)

)
∀α.

We will apply this method in order to define optimized coefficients for DGM dis-
cretization for convection-diffusion in section 3.

3. Advection-diffusion with discontinuous coefficients and boundary
conditions. In what follows, we describe the introduction of mixed-type boundary
conditions in an advection-diffusion problem. We show that physically correct bound-
ary conditions fit into the framework. So the stability of the scheme is guaranteed for
all boundary conditions described below. Let us recall the model equation

∂tc + u.∇c−∇.(K∇c) = 0, x ∈ Ω ⊂ R2, t > 0.(3.1)

Ω is a bounded smooth open set of R2.

3.1. Abstract discontinuous Galerkin formalism of problem (3.1). We
are now going to show how to cast the discontinuous Galerkin formulation of problem
(3.1) so that the bilinear forms fit with properties (2.2).

3.1.1. Notation. We begin with some notation. Let (Ωk) be a mesh of the
plane. The cells Ωk do not overlap. They cover the plane. The boundary of cell
Ωk is ∂Ωk. The intersection of the boundary of cell Ωj and cell Ωk is referred to as
Σjk = Σkj . The outgoing normal from Ωk is nk.

The velocity field u is not necessarily constant but is divergence-free. Therefore
the degrees of freedom of u are naturally described in terms of its fluxes (ukj ,nk)
across Σjk. The diffusion coefficient is assumed to be positive and lower bounded,
but not necessarily constant. Let Kk denote the value of the diffusion coefficient in
cell Ωk. For simplicity, Kk is considered constant in the cell, but there is no real
issue if it is not, except at the implementation level. We will describe the boundary
conditions later on. If necessary we will assumed that the outgoing unit normal is
split into two parts{

if (u,nk) ≥ 0, then n+
k = nk and n−

k = 0,
if (u,nk) < 0, then n+

k = 0 and n−
k = nk.

(3.2)

Let us define the spaces

V = ⊕kH
2(Ωk) ⊂ H = ⊕kL

2(Ωk).(3.3)

H is endowed with a scalar product (U, V ) =
∑

k

∫
Ωk

uk(x)vk(x)dx.

3.1.2. Construction of the bilinear forms. Next we assume that c is smooth.
Let us define U = (uk) with uk = c|Ωk

. The test function is V = (vk). Let us define
the local bilinear form

A0(U, V ) =
∑
k

∫
Ωk

(−uk(t, x)u.∇vk(x) + uk∇.(Kk∇vk) + 2Kk∇uk.∇vk) dx.(3.4)
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We also need to define A1 and A2. So let us compute

(∂tU, V ) + A0(U, V ) =
∑
k

∫
Ωk

(−u.∇uk + ∇.(Kk∇uk)) vk

+
∑
k

∫
Ωk

(−uk(t, x)u.∇vk(x) + uk∇.(Kk∇vk) + 2Kk∇uk.∇vk) dx

=
∑
k

∫
∂Ωk

(
−ukvk(ukj ,nk) + ukKk

∂

∂nk
vk + vkKk

∂

∂nk
uk.

)
dσ = R.H.S.

Next we need to transform the right-hand side (R.H.S.) in order to be able to define
A1 and A2. For this task we define{

w+
k = Kk

∂
∂nk

uk − 1
2 (ukj ,nk)uk + αjkuk,

w−
k = −Kk

∂
∂nk

uk + 1
2 (ukj ,nk)uk + αjkuk

and {
z+
k = Kk

∂
∂nk

vk − 1
2 (ukj ,nk)vk + αjkvk,

z−k = −Kk
∂

∂nk
vk + 1

2 (ukj ,nk)vk + αjkvk.

The value of the positive parameter αjk = αkj will be specified later on. Then the
R.H.S. is also

R.H.S. =
∑
k

∫
∂Ωk

[
uk

(
Kk

∂

∂nk
vk −

1

2
(ukj ,nk)vk

)
+ vk

(
Kk

∂

∂nk
uk −

1

2
(ukj ,nk)uk

)]
dσ,

R.H.S. =
∑
k

∫
∂Ωk

1

2αjk
(w+

k z
+
k − w−

k z
−
k )dσ.

The nonnegative symmetric bilinear form is given by the w−z− part of the integral.
Therefore we define

A1(U, V ) =
∑
k

∫
∂Ωk

1

2αjk

(
−Kk

∂

∂nk
uk +

1

2
(ukj ,nk)uk + αjkuk

)
(3.5)

×
(
−Kk

∂

∂nk
vk +

1

2
(ukj ,nk)vk + αjkvk

)
dσ

so that we now have the relation

(∂tU, V ) + A0(U, V ) + A1(U, V ) −
∑
k

∫
∂Ωk

1

2αjk
w+

k z
+
k dσ = 0.(3.6)

It is the place into which boundary conditions must be plugged. Let us start with
some notation. The boundary between two cells Ωk and Ωj is still referred to as Σjk.
The exterior boundary of cell Ωk is Γk,

Γk = ∂Ωk ∩ ∂Ω, ∂Ωk = (∪jΣjk) ∪ Γk.(3.7)

To transform the residual in (3.6) we use the continuity equation

w+
k = w−

j on Σjk(3.8)

⇐⇒ Kk
∂

∂nk
uk − 1

2
(ukj ,nk)uk + αjkuk = −Kk

∂

∂nj
uj +

1

2
(ukj ,nj)uj + αjkuj .
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For mathematical convenience we consider that all boundary conditions may be rewrit-
ten as

w+
k = Rα

kw
−
k on Γk,(3.9)

where Rα
k ∈ R characterizes the boundary condition. This coefficient Rα

k is very
similar to a reflexion coefficient in time-harmonic wave equations. It will be more
obvious later on that physically correct boundary conditions are such that |Rα

k | ≤ 1.
αkk stands for the value of the artificial parameter on Γk, and (ukj ,nk) stands for the
value of the velocity flux on the boundary. We now define

A2(U, V ) =
∑
kj

∫
Σkj

1

2αjk

(
−Kj

∂

∂nj
uj +

1

2
(ukj ,nj)uj + αjkuj

)
(3.10)

×
(
Kk

∂

∂nk
vk − 1

2
(ukj ,nk)vk + αjkvk

)
dσ

+
∑
k

∫
Γk

Rα
k

2αkk

(
−Kk

∂

∂nk
uk +

1

2
(ukk,nk)uk + αkkuk

)

×
(
Kk

∂

∂nk
vk − 1

2
(ukk,nk)vk + αkkvk

)
dσ.

The bilinear form A3 is

A3(U, V ) =
∑
k

∫
∂Ωk

1

2αjk

(
Kk

∂

∂nk
uk − 1

2
(ukj ,nk)uk + αjkuk

)
(3.11)

×
(
Kk

∂

∂nk
vk − 1

2
(ukj ,nk)vk + αjkvk

)
dσ.

Now that we have defined all the bilinear forms, let us show that they satisfy the
required properties.

Lemma 3.1. Consider the bilinear forms (3.4), (3.5), (3.10), (3.11). Assume that
|Rα

k | ≤ 1. Then properties (2.2) are satisfied.
Proof. One has

A0(U,U) =
∑
k

∫
Ωk

(−uk(t, x)u.∇uk(x) + uk∇.(Kk∇uk) + 2Kk∇uk.∇uk) dx

≥
∑
k

∫
∂Ωk

(
−1

2
(u,nk)u

2
k + ukK

∂

∂nk
uk

)
dσ =

1

2
(−A1(U,U) + A3(U,U)) ,

which proves the first part of (2.2). Then using the Cauchy–Schwarz inequality and
property |Rα

k | ≤ 1, one gets A2(U, V ) ≤ 1
2 (A1(U,U) +A3(V, V )), which is the second

part of (2.2). A1 is obviously symmetric nonnegative.

3.1.3. Boundary conditions. One major particularity of this formalism is the
way boundary conditions are introduced. They are all defined by giving different
values to parameter Rα

k . Equation (3.9) shows how to introduce homogeneous bound-
ary conditions. The expressions of Rα

k for commonly used boundary conditions are
given in Table 3.1. For the Robin-type boundary condition, we need to restrict the
admissible boundary conditions to 1

2 (u,n) + σ ≥ 0 so that |Rα
k | ≤ 1.

Lemma 3.2. All Rα
k given in Table 3.1 satisfy the inequality |Rα

k | ≤ 1.
Proof. The proof is obtained by straightforward computation.
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Table 3.1

Values of Rα
k for commonly used boundary conditions in the convection-diffusion equation.

Outgoing Kk = 0, (u,n) > 0 Rα
k =

−(u,n)+α
(u,n)+α

Ingoing Dirichlet Kk = 0, (u,n) < 0 Rα
k = 0

Dirichlet Kk > 0, (u,n) = 0 Rα
k = −1

Neumann Kk > 0, (u,n) = 0 Rα
k = 1

Mixed or Robin Kk
∂
∂n

c + σc = 0 Rα
k =

α− 1
2
(u,n)−σ

α+ 1
2
(u,n)+σ

3.2. Fully discrete DGM. Now we need to choose the space Vh. The standard
choice for DGMs is Vh = Vp ⊂ V with

Vp = ⊕kPp(Ωk),(3.12)

where Pp(Ωk) is the space of all polynomial functions of degree p ∈ N or less on
cell Ωk. Applying the time discretization defined in section 2.2, we obtain the fully
discrete DGM. By construction, this DGM is L2 stable for all p and without the need
of any limiter. Therefore this method is different from the standard RKDG approach.
The bilinear form A0 is local-to-one-cell so that both the first (2.4) and the second
(2.7) order schemes are semi-implicit. In fact, one needs only inverse local linear
systems to get the new solutions. Let us now analyze the abstract CFL condition in
the case of uniform meshes.

4. CFL analysis. In this section we show that the abstract CFL condition (2.5)
is equivalent to standard CFL requirements for the convection-diffusion equation,
which is a kind of interpolation between pure convection and pure diffusion.

Lemma 4.1. Consider (for simplicity) a sequence of triangular and conformal
meshes. Assume the sequence of meshes is uniformly regular. Denote by h a charac-
teristic length of the mesh. Consider the first order scheme (2.4) with bilinear forms
(3.4), (3.5), (3.10).

For all p ∈ N, there exists two constants C1
p > 0, C2

p > 0 such that if

3

2
Δtmax

k

(
αkj

C1
ph

+
|u|2

4αkjC1
ph

+
K2

k

αkjC2
ph

3

)
≤ 1,(4.1)

then the abstract CFL condition (2.5) holds, and (2.4) is L2 stable. Assuming that K
is constant for simplicity, the optimal value of α corresponding to the least stringent
CFL constraint is

αopt =

√
|u|2
4

+
K2C1

p

C2
ph

2
.(4.2)

Proof. First, the abstract CFL condition (2.5) is

Δtmax
k

(
max

degree(uk)≤p

1

2αkj

∫
∂Ωk

(αkjuk + 1
2 (u,nk)uk −K ∂

∂nk
uk)

2∫
Ωk

u2
k

)
≤ 1.

This is true once the following inequality is satisfied:

Δtmax
k

(T k
1 + T k

2 + T k
3 ) ≤ 1,
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where T k
1 , T

k
2 , T

k
3 are given by

T k
1 = 3 max

degree(uk)≤p

1

2αkj

∫
∂Ωk

(αkjuk)
2∫

Ωk
u2
k

,

T k
2 = 3 max

degree(uk)≤p

1

2αkj

∫
∂Ωk

( 1
2 (u,nk)uk)

2∫
Ωk

u2
k

,

T k
3 = 3 max

degree(uk)≤p

1

2αkj

∫
∂Ωk

(K ∂
∂nk

uk)
2∫

Ωk
u2
k

.

Let us introduce the linear transformation Fk that maps the triangular cell Ωk onto
the reference cell T̂ . Using the regularity of the mesh,

T k
1 ≤ 3

αkj

2hck

(
max

degree(ûk)≤p

∫
∂T̂

û2
k∫

T̂
û2
k

)
,

where ck depends on transformation Fk. Since the mesh is assumed to be uniformly
regular, ck is uniformly bounded from below. Let us define

cp = max
degree(ûk)≤p

∫
∂T̂

û2
k∫

T̂
û2
k

and C1
p =

mink c
k

cp
. Then T k

1 ≤ 3

2

αkj

h

1

C1
p

.

Also, one has

T k
2 ≤ 3

2

|u|2
4h

1

αkjC1
p

.

Using again the regularity of the mesh, we have

T k
3 ≤ 3

2

K2
k

αkj

dk
h3

(
max

degree(uk)≤p

∫
∂T̂

( ∂
∂n̂k

uk)
2∫

T̂
û2
k

)
,

where dk depends on Fk. Since the mesh is assumed to be uniformly regular, dk is
uniformly upper bounded. Let us define

ep = max
degree(ûk)≤p

∫
∂T̂

∂
∂n̂u

2
k∫

T̂
û2
k

and C2
p =

1

ep max
k

dk
. Then T k

3 ≤ 3

2

K2
k

αkj

dk
h3

1

C2
p

.

Putting this all together, we have

Δtmax
k

(T k
1 + T k

2 + T k
3 ) ≤ 3

2
Δtmax

k

(
αkj

C1
ph

+
|u|2

4αkjC1
ph

+
K2

k

αkjC3
ph

3

)
.

The abstract CFL condition is thus satisfied once we have

3

2
Δtmax

k

(
αkj

C1
ph

+
|u|2

4αkjC1
ph

+
K2

k

αkjC3
ph

3

)
≤ 1.

Assuming K is constant, the optimal value of parameter α is the one that minimizes
the multiplicative constant in front of Δt. Since the constant is aα + 1

αb , where
a > 0 and b > 0 are constants, then the optimal value is the solution of the equation
d
dα

(
aα + b

α

)
= 0, that is, α =

√
b
a . Expanding with the definition of a and b, it gives

(4.2).
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4.1. Particular cases. This section discusses the particular cases of the pure
advection equation (i.e., K ≡ 0,u constant) and pure diffusion equation (i.e., u ≡ 0
but K > 0).

4.1.1. Pure advection. In this particular case we have (K ≡ 0,u constant).
Notation is still the same as in section 3.1.1. A consequence of Lemma 4.1 is the
following.

Lemma 4.2. Consider a sequence of triangular and conformal meshes. Assume
the sequence of meshes is uniformly regular. Denote by h a characteristic length of
the mesh. For all p ∈ N, there exists a C1

p > 0 such that if

|u|Δt ≤ C1
ph,(4.3)

then the abstract CFL condition is true.

4.1.2. Pure diffusion. In this particular case we have (K > 0 but u ≡ 0). The
equation is

∂tc−∇.(K∇c) = 0.(4.4)

We consider αkj ≡ α > 0 for simplicity of notation. Asfwe s in Lemma 4.1 we have
the following.

Lemma 4.3. Consider a sequence of triangular and conformal meshes. Assume
the sequence of meshes is uniformly regular. Denote by h a characteristic length of
the mesh. For all p ∈ N, there exists a C2

p > 0 such that if

Δt ≤ 1
α

C1
ph

+ K2

αC2
ph

3

,(4.5)

then the abstract CFL condition is true. Both constants C1
p , C

2
p depend only on the

mesh and the degree of the polynomials, and not on the parameters of the equations
or on α.

For an optimal value for parameter α, we also have the following.
Lemma 4.4. Consider the CFL inequality (4.5), with parameter α set to

α =
K

h
.(4.6)

Then inequality (4.5) is equivalent to the more standard CFL inequality

KΔt ≤ C3
ph

2,
1

C3
p

=
1

C1
p

+
1

C2
p

.(4.7)

The proof is left to the reader.
The value (4.6) is optimal, since we recover the classical time step CFL constraint

for explicit discretization of diffusion.
Remark. Formula (4.2) is a kind of continuous interpolation between (4.3) and

(4.7). More importantly, if K ≡ 0, then α = |u|
2 and the scheme defined by (3.4),

(3.5), (3.10) is equal to the standard DGM for the pure advection case. On the other
hand, if u ≡ 0, then the method is equal to the DGM defined above for the pure
diffusion case. Therefore (4.2) ensures that the scheme for advection-diffusion is a
continuous interpolation between the scheme for pure advection and the scheme for
pure diffusion.
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5. Convergence analysis for the advection case. Let us now state the
convergence result. We restrict the analysis to the DGM for advection and leave
convergence analysis of diffusion for future studies. Let us define an L2 projection
πh : H → Vp,

πh(u) = (uk) ⇐⇒
∫

Ωk

uk(x)vk(x)dx =

∫
Ωk

u(x)vk(x)dx ∀vk, ∀k.(5.1)

The scheme that we analyze in this section is defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U0
h = πh(u0), where u0 is the initial condition,

U1
h is the solution of the first order time scheme (2.4),

Un+1
h is the solution of the second order time scheme (2.8),

the bilinear forms are A0, A1, A2, A3,

as defined in section 3.1.2 in the case K ≡ 0.

(5.2)

We will use the following approximation property of the projection πh.
Lemma 5.1. Let E be an element (a triangle or a tetrahedron) in R

n(n = 2, 3)
of diameter hE. Then for any u ∈ Hk+1(E),

‖u− πhu‖Hr(E) ≤ Chk+1−r
E ‖u‖Hk+1(E) r = 0, 1,

where C is independent of hE. See [2].
Lemma 5.2 (trace inequality). Let E be an element in R

n(n = 2, 3) of diameter
hE. Let ek be an edge or a face of E. Then for any f in Hs(E) and for s ≥ 2,

‖f‖L2(ek) ≤ Ĉ|ek|
1
2 |E|− 1

2 (‖f‖L2(E) + hE‖∇f‖L2(E)).

If f is a polynomial of degree p > 0 on E,

‖f‖L2(ek) ≤ Ĉp2|ek|
1
2 |E|− 1

2 (‖f‖L2(E)).

Here Ĉ is a constant independent of hE and p. See [33].
Lemma 5.3. Let c ∈ V be the solution of the advection equation and Un

h ∈ Vp be
the solution of (5.2). Then

θ2
l+1 − θ2

l ≤ 6Δtrl+1,(5.3)

where

θ2
l = (ξl, ξl) + (2ξl − ξl−1, 2ξl − ξl−1) ∀ l ≥ 1,

ξl = πhu(lΔt) − U l
h,

6χl = πhu(lΔt) − u(lΔt) and

rl+1 =
1

3

(
3χl+1 − 4χl + χl−1

Δt
, ξl+1

)
+

2

3
A0(χ

l+1, ξl+1)

+
2

3
A1(2χ

l − χl−1, ξl+1) − 2

3
A2(2χ

l − χl−1, ξl+1)

+
1

3

(
3ul+1 − 4ul + ul−1

Δt
− 2∂tu((l + 1)Δt), ξl+1

)
+

2

3
A1(2u

l − ul−1 − ul+1, ξl+1)r

− 2

3
A2(2u

l − ul−1 − ul+1, ξl+1).
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Proof. Taking Vh = ξl+1 in (2.8) with U l
h replaced by πhu(lΔt), and subtracting

the resulting equation in which Vh = ξl+1, from (2.8), gives

1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
+

2

3
A0(ξ

l+1, ξl+1)

+
2

3
A1(2ξ

l − ξl−1, ξl+1) − 2

3
A2(2ξ

l − ξl−1, ξl+1) = rl+1.

Using the lower bounds of A0 and A2 given by (2.2) and the symmetry of the bilinear
form A1, we have

1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
+

1

3
A1(ξ

l+1 − 2ξl + ξl−1, ξl+1 − 2ξl + ξl−1) ≤ rl+1.

Now applying the abstract CFL condition (2.9), we further obtain

1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
− 1

6Δt
(ξl+1 − 2ξl + ξl−1, ξl+1 − 2ξl + ξl−1) ≤ rl+1

which, from the equality

(θ2
l+1−θ2

l )/(6Δt) =
1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
− 1

6Δt
(ξl+1−2ξl+ξl−1, ξl+1−2ξl+ξl−1),

reduces to θ2
l+1 − θ2

l ≤ 6Δt rl+1. This ends the proof.
Lemma 5.4. Notation is the same as in Lemma 5.3. Let us assume that the

solution c is sufficiently smooth. Then there exist two constants, C1 and C2 not
depending on l, Δt, and h such that

|rl+1| ≤ (C1(Δt)2 + C2h
μ−1)θl+1.(5.4)

Here μ = min(p + 1, s) and s is the order of regularity of the solution in Sobolev’s
spaces.1

Proof. The velocity u is constant. In this proof we denote its module by cvel = |u|.
The method consists of estimating all the terms in the right hand side in the definition
of rl+1 in lemma 5.3. By the definition of the projection πh, we have

1

3

(
3χl+1 − 4χl + χl−1

Δt
, ξl+1

)
= 0.

Since u.∇ξl+1
k ∈ Vp, we have

∫
Ωk

χl+1
k u.∇ξl+1

k dx = 0. Therefore A0(χ
l+1, ξl+1) = 0.

Let us estimate |A1(2χ
l − χl−1, ξl+1)|.

|A1(2χ
l − χl−1, ξl+1)|≤

∑
k

∫
e∈∂Ωk

cvel|(2χl
k − χl−1

k )||ξl+1
k |

≤
∑
k

cvelh
−1

(
‖(2χl

k − χl−1
k )‖L2(Ωk)(5.5)

+h‖∇(2χl
k − χl−1

k )‖L2(Ωk)

)
‖ξl+1

k ‖L2(Ωk)

≤
∑
k

cvelc1h
μ−1‖ξl+1

k ‖L2(Ωk)

≤ Chμ−1(ξl+1, ξl+1)
1
2 .

1A requirement of which is that u ∈ C1([0, T ];Hs(Ω)), utt ∈ L∞([0, T ];L∞(Ω)), and uttt ∈
L∞([0, T ];L2(Ω)).
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Similarly,

|A2(2χ
l − χl−1, ξl+1)|≤

∑
k,j

∫
e∈∂Ωk∩∂Ωj

cvel|(2χl
j − χl−1

j )||ξl+1
k |

≤
∑
k,j

cvelh
−1

(
‖(2χl

j − χl−1
j )‖L2(Ωj)(5.6)

+h‖∇(2χl
j − χl−1

j )‖L2(Ωj)

)
‖ξl+1

k ‖L2(Ωk)

≤ Chμ−1(ξl+1, ξl+1)
1
2 .

The two other terms are∣∣∣∣
(

3ul+1 − 4ul + ul−1

Δt
− 2(∂tu)l+1, ξl+1

k

)∣∣∣∣≤ (Δt)2
∑
k

∫
Ωk

cvel|∂tttu(t∗, x)||ξl+1
k (x)|

≤ C(Δt)2‖∂tttu‖L∞(0,T ;L2(Ω))(ξ
l+1, ξl+1)

1
2

≤ C(Δt)2(ξl+1, ξl+1)
1
2 .

Also,

|A1(2u
l − ul−1 − ul+1, ξl+1)|≤ (Δt)2

∑
k

∫
e∈∂Ωk

cvel|∂ttu(t∗, x)||ξl+1
k (x)|

≤ (Δt)2
∑
k

cvel‖∂ttu(t∗)‖L∞(Ωk)

∫
e∈∂Ωk

|ξl+1
k (x)|

≤ (Δt)2
∑
k

cvel‖∂ttu(t∗)‖L∞(Ωk)h
1
2h− 1

2 ‖ξl+1
k ‖L2(Ωk)

≤ C(Δt)2‖∂ttu‖L∞(0,T ;L∞(Ω))(ξ
l+1, ξl+1)

1
2

≤ C(Δt)2(ξl+1, ξl+1)
1
2 .

Proceeding as above, we have

|A2(2u
l − ul−1 − ul+1, ξl+1)| ≤ C(Δt)2(ξl+1, ξl+1)

1
2 .

Now observing that (ξl+1, ξl+1)
1
2 ≤ θl+1, we obtain the result by summing all the

above inequalities.
Theorem 5.5 (L2 error estimate for pure advection). Let c ∈ V be the solution

of (1.1) in the advection case (K ≡ 0) with initial condition c0 ∈ Hs(s ≥ 2) and
Uh ∈ Vp the solution of (2.8), with the initial condition given by (5.2). Assume the
CFL condition (2.9). Then there exist two constants C1 and C2 depending only on T
and u such that

‖(u− Uh)(T )‖L2 ≤ 3‖πhu(Δt) − U1
h‖L2 + C1(Δt)2 + C2h

μ−1,

where μ = min(p + 1, s).
Proof. Using the triangular inequality, we have

‖(u− Uh)(T )‖L2 ≤ ‖(u− πhu)(T )‖L2 + ‖(πhu− Uh)(T )‖L2 .

The first term on the R.H.S. is bounded using the classical approximation theory [16]
‖(u− πhu)(T )‖L2 ≤ c(u)hμ. Observe that by

‖(πhu− Uh)(T )‖2
L2 = (ξN , ξN ),
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it is possible to give an upper bound where N is defined by T = NΔt. Therefore
according to Lemma 5.3, we have(

θ2
n+1 − θ2

n

)
/6Δt ≤ rn+1.

From Lemma 5.4 there exist two constants C1 and C2 such that

θ2
n+1 − θ2

n ≤ 6Δt(C1(Δt)2 + C2h
μ−1)θn+1.

We then have θ2
n+1 − 6Δt(C1(Δt)2 + C2h

μ−1)θn+1 ≤ θ2
n, which can be rewritten as(

θn+1 − 3Δt(C1(Δt)2 + C2h
μ−1)

)2 ≤ θ2
n +

(
3Δt(C1(Δt)2 + C2h

μ−1)
)2

.

Therefore θn+1 − θn ≤ 6Δt(C1(Δt)2 + C2h
μ−1). Summing this inequality over all n

from 1 to N − 1 produces

θN ≤ θ0 +

n=N−1∑
n=1

6Δt(C1(Δt)2 + C2h
μ−1).

Since

θ2
0 = (ξ1, ξ1) + (2ξ1 − ξ0, 2ξ1 − ξ0)

≤ ((ξ1, ξ1)
1
2 + (2ξ1 − ξ0, 2ξ1 − ξ0)

1
2 )2

≤ (3(ξ1, ξ1)
1
2 + (ξ0, ξ0)

1
2 )2,

we have θ0 ≤ 3(ξ1, ξ1)
1
2 + (ξ0, ξ0)

1
2 . By definition of the scheme, initials values are

such that

ξ1 = πhu(Δt) − U1
h and ξ0 = 0.

Also one has NΔt = T so that
∑N−1

1 (6Δt) ≤ 6T . Therefore taking Ci = Ci6T, i =
1, 2, ends the proof.

Remark.
• The above theorem shows the convergence of the second order time discretiza-

tion. Note that since it is second order in time, two initial conditions are
needed: U0

h , U
1
h . We have taken U1

h as the solution of a particular iteration
of the first order scheme. So πhu(Δt) − U1

h can be kept as small as we need.
• One can observe that in the demonstration above, except in Lemma 5.4,

we have used only the property of the bilinear forms A0,A1,A2. So by
just giving an analogous lemma for pure diffusion and for mixed convection-
diffusion equations, one obtains the convergence result for those equations.
It is possible to guess that, in general, one has

|rl+1| ≤ (C1(Δt)ν + C2h
μ)(ξl+1, ξl+1)

1
2 ,

where ν = 1, 2 is the order of time discretization and μ is the order of the
approximation error seen by the bilinear forms A0,A1,A2. Note that μ can
be kept optimal by replacing the L2-projection with a well-chosen projection
Rh related to the Gauss quadrature formula; see [17].

6. Numerical results. This section is devoted to the study of the order of
convergence of our method by means of numerical tests and comparison with other
methods. The algorithm presented in this work is denoted by the words “new formal-
ism.”
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6.1. Pure advection. In this example, we consider (1.1) in the case when K ≡
0. The computational domain is (Ω = (−0.5, 0.5)2). The initial condition and the
inflow boundary condition are taken from the exact solution, which is chosen here to
be

c(t, x, y) = exp

(
− (x̂− xc)

2 + (ŷ − yc)
2

2σ2

)
.

The velocity field is u = (−1, 1)T and x̂ = x + t, ŷ = y − t. The parameters are
xc = 0.25, yc = −0.25, 2σ2 = 0.004. The time interval for the simulation is (0, 0.5),
which is the required time to shift the cone from its initial position to the symmetric
position with respect to the center (0, 0). The domain is subdivided into an initial
mesh consisting of 8×8×2 = 138 uniform regular triangles. We then successively refine
the mesh and compute L2 and L∞ errors eh on the mesh of size h and the numerical
convergence rates by the ratio ln(eh/eh/2)/ ln(2). The use of uniform meshes leads
to the following values for the parameters in the CFL analysis. In formula (4.3) the
value of C1

p is

C1
p =

{
1

4+4
√

2
for p = 1,

1
6+6

√
2

for p = 2.

For a second order in time discretization the value of C1
p is divided by 2. In our

computations we divide it by 10, just to stay away from the optimal value. Table 6.1
shows the behavior of our formalism with respect to the order of the polynomial basis
and time discretization. In Table 6.2 we compare the new formalism with RKDG
(without flux limiting), RKDG (with the Cockburn–Shu flux limiting) that we call
TVBMRKDG (total variation bounded modified slope limiter; see [23]), and with a
Crank–Nicholson scheme applied to the stabilized DGM formulation of convection-
equation introduced by Brezzi, Marini, and Süli [10]. The last one is introduced to
compare our results to schemes in which the global matrix is inverted at every time
step. We have done an element renumbering in that Crank–Nicholson scheme in order
to have a thin band global matrix. We factor the global matrix before entering into
loops, which leads to a gain in time compared to a sparse direct resolution of the
global algebraic equation at every time step. The time required to do this operation
is denoted by R in Table 6.2.

Observations. From Table 6.1, the error at the time T is of the form C1(Δt)α +
C2h

β , where α is the order of the time discretization and β is a real whose optimal
value is β = p + 1 (where p is the degree of the polynomials). Even if constants
C1, C2 influence the computed convergence rate, one can still observe that when using
polynomials of order p with second order time discretization, the L2 error is at least
of order p in space. By comparison with other theoretical results [10] it is possible

to conjecture a behavior of the form O(Δt2) + O(hp+ 1
2 ). But for this test problem

the error in time is clearly dominant over the error in space. Therefore it is difficult
to clearly identify the asymptotic order of convergence when using the second order
in time discretization. At a more general level, it shows the interest of the second
order in time discretization. This is seen in Table 6.2, where we observe the same
convergence rate with RKDG without flux limiting, which is of order 2 for polynomials
of order 1. The same convergence rate is observed for the Crank–Nicholson scheme
applied to the formulation of [10]. These three second order formulations produce the
same convergence rate for first order polynomials.
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Table 6.1

Numerical L2 errors, L∞ errors, and convergence rate at time t = 0.5s, for first and second
order in time with first and second order basis polynomials, in the new formalism ((2.4), (2.8))
scheme applied to the pure advection equation.

First order in time Second order in time

h L2 error Rate L∞ error Rate L2 error Rate L∞ error Rate

P1 basis polynomials
1/8 5.47E − 02 − 7.28E − 01 − 5.15E − 02 − 6.42E − 01 −
1/16 4.08E − 02 0.49 6.15E − 01 0.31 3.43E − 02 0.59 5.07E − 01 0.34
1/32 2.11E − 02 1.02 3.54E − 01 0.94 1.31E − 02 1.39 2.16E − 01 1.23
1/64 9.72E − 03 1.16 1.63E − 01 1.17 3.08E − 03 2.09 5.65E − 02 1.93
1/128 4.78E − 03 1.02 7.55E − 02 1.11 5.87E − 04 2.40 1.13E − 02 2.32

P2 basis polynomials
1/8 4.23E − 02 − 6.39E − 01 − 3.14E − 02 − 4.83E − 01 −
1/16 2.05E − 02 1.05 3.21E − 01 0.99 6.99E − 03 2.17 1.10E − 01 1.80
1/32 1.09E − 02 0.91 1.59E − 01 1.01 5.44E − 04 3.68 1.17E − 02 3.23
1/64 5.90E − 03 0.89 8.49E − 02 0.91 4.37E − 05 3.64 1.87E − 03 2.65
1/128 3.10E − 03 0.93 4.49E − 02 0.92 6.66E − 06 2.73 2.53E − 04 2.88

Table 6.2

Comparison of numerical errors and convergence rates at time t = 0.5s, for second order in
time with first order basis polynomials. R is the time spent renumbering the elements and factoring
the global matrix. Computational times are for the finest mesh, using a Pentium III/1.266 GHZ.

New formalism RKDG TVBMRKDG Crank–Nicholson
h Error Rate Error Rate Error Rate Error Rate

L2 errors
1/8 5.15E − 02 − 5.18E − 02 − 5.23E − 02 − 5.15E − 02 −
1/16 3.43E − 02 0.59 3.44E − 02 0.59 3.83E − 02 0.45 3.43E − 02 0.59
1/32 1.31E − 02 1.39 1.31E − 02 1.39 2.96E − 02 0.37 1.31E − 02 1.39
1/64 3.08E − 03 2.09 3.08E − 03 2.09 1.39E − 02 1.09 3.07E − 03 2.09

L∞ errors
1/8 6.42E − 01 − 6.48E − 01 − 6.57E − 01 − 6.43E − 01 −
1/16 5.07E − 01 0.34 5.08E − 01 0.35 5.58E − 01 0.24 5.05E − 01 0.34
1/32 2.16E − 01 1.23 2.16E − 01 1.23 4.63E − 01 0.27 2.15E − 01 1.23
1/64 5.65E − 02 1.93 5.62E − 02 1.96 2.79E − 01 0.73 5.62E − 02 1.93

CPU time
1/64 81.38 90.34 32400 553.93 + R

6.2. Pure diffusion. In this example we consider the Dirichlet equation (1.1)
with (K ≡ 1, u ≡ 0). The computational domain is Ω = (0, 1)2. The boundary
condition is homogeneous so that the exact solution is

c(t, x, y) = sin(πx) sin(πy) exp(−2π2t).

The initial condition is taken from this exact solution. The time interval is (0, 1.510−2).
This is the required time to reduce the maximum of the exact solution by about 25%.
The domain is meshed into 16 uniform regular triangles. We successively refine this
mesh uniformly. For each mesh of size h we compute the L2 and L∞ errors eh and the
numerical convergence rates given by the ratio ln(eh/eh/2)/ ln(2). The use of uniform

meshes leads to the following values of C2
p in formula (4.5): C2

p = 1
12+6

√
2

for p = 1

and C2
p = 1

120+66
√

2
for p = 2.

In order to enforce a better interelement continuity for small p, one can choose
the parameter α to be of the form α = βK

h , where β ≥ 1 is a user-defined constant.
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The optimal value of β is β =

√
C1

p

C2
p
. Therefore our optimal value for C3

p in formula

(4.7) is in this case C3
p =

√
C1

pC
2
p . In Table 6.4 we compare the new formalism for

first order in time and second order polynomials with computed solutions obtained
by Nonsymmetric Interior Penalty Galerkin (NIPG) and Symmetric Interior Penalty
Galerkin (SIPG) GDMs [7, 35, 36]. For this first order in time, we have used an implicit
scheme to discretize the SIPG and NIPG methods. We intended to do the same
comparison for the second order in time. We tried a θ-scheme (see [34]) to discretize
time in both SIPG and NIPG (note that implicit scheme corresponds to a θ-scheme
with θ = 1, as in [29], while the Crank–Nicholson scheme corresponds to θ = 0 as
described in [34]). But we noticed that using the same time step for the new formalism
and for SIPG and NIPG Galerkin methods with the Crank–Nicholson scheme leads
to instabilities in SIPG and NIPG. So for that time step, θ must stay in the interval
]0, 1], and therefore the θ-scheme is no longer of second order. This is a significant
advantage of our formalism over the two others. We have taken the stabilization
parameter σ = 1 for NIPG and σ = 10 for SIPG; see [35, 36]. The time step has also
been multiplied by 10 in SIPG and NIPG, which are implicit methods (θ = 1).

Observations. Here, as in the pure advection case, the error is of the form
C1(Δt)α + C2h

β . Since we have used the optimal CFL condition while refining the
mesh, Δt ≈ Ch2, the convergence rate obtained numerically should be close to

γ = min(2α, β).

Let us discuss the values of α, β, and γ observed in Tables 6.3 and 6.5. For first order
time discretization, α = 1. Therefore γ = min(2, β). It shows that for first order
or second order polynomials in conjunction with first order time discretization, we
obtain a convergence rate of order 2. This is what we get in Table 6.3. Second order
time discretization with first order polynomials gives also a convergence rate of γ = 2.
Hence β = 2 for first order polynomials, and the convergence in space is optimal in
this case. It is also seen in Table 6.3 that when we use second order polynomials
with second order time discretization, the convergence rate starts from almost 3 and
tends asymptotically to γ = 2. This shows that α = 2 and β = 2 for second order
time discretization with second order polynomials. Hence the convergence in space
is suboptimal in this case. However, this is only a matter of worst behavior for even
order polynomials. To view that, let us try third order polynomials with a sufficiently
small CFL condition so that the error in time is absolutely negligible and we get an
accurate value for β. Table 6.5 shows a convergence rate of order γ = min(2×2, 4) = 4.
By inspection of all these results we deduce that the new formalism presented in this
paper keeps (on pure diffusion) the optimal space convergence rate for polynomials of
odd order. This behavior is similar to other nonsymmetric discretizations like NIPG.

In order to analyze the advantage of our method over NIPG and SIPG for this
kind of test problem, let us analyze the ratio accuracy/CPU time of the computation
(see the last line of Table 6.4). We see that the error is slightly smaller for our method.
But more important is the CPU time required to perform the computation. Due to
well-known stability issues, NIPG and SIPG are implicit, which means a certain CPU
time is needed to factorize and invert the matrix. This CPU time is denoted as R in
the table. It is well known that R can be quite large. In our computations, R is about
the same order as the CPU time needed to perform the whole computation. But here
the matrix is factorized only once because the coefficients of the problem are constant
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Table 6.3

Numerical L2 errors, L∞ errors, and convergence rates for first and second order in time with
first and second order basis polynomials in the new formalism ((2.4), (2.8)) scheme applied to the
pure diffusion equation.

First order in time Second order in time

h L2 error Rate L∞ error Rate L2 error Rate L∞ error Rate

P1 basis polynomials
1/8 1.00E − 02 − 3.10E − 02 − 8.87E − 03 − 3.17E − 02 −
1/16 2.50E − 03 2.00 7.47E − 03 2.05 2.16E − 03 2.04 7.50E − 03 2.08
1/32 6.20E − 04 2.01 1.83E − 03 2.03 5.37E − 04 2.00 1.84E − 03 2.02
1/64 1.55E − 04 2.00 4.56E − 04 2.00 1.34E − 04 2.00 4.57E − 04 2.00
1/128 3.87E − 05 2.00 1.14E − 04 2.00 3.35E − 05 2.00 1.14E − 04 2.00

P2 basis polynomials
1/8 8.95E − 04 − 2.63E − 03 − 7.53E − 04 − 3.02E − 03 −
1/16 2.10E − 04 2.09 4.63E − 04 2.50 1.75E − 04 2.11 4.92E − 04 2.61
1/32 5.16E − 05 2.02 1.15E − 04 2.00 4.27E − 05 2.03 9.64E − 05 2.35
1/64 1.28E − 05 2.01 2.86E − 05 2.00 1.06E − 05 2.01 2.20E − 05 2.13
1/128 3.20E − 06 2.00 7.14E − 06 2.00 2.65E − 06 2.00 5.34E − 06 2.04

Table 6.4

Numerical comparison of L2 errors, L∞ errors, CPU time, and convergence rate, for first order
in time with second order basis polynomials in the new formalism, and implicit scheme for SIPG
and NIPG DGM. R is the time spent renumbering the elements and factoring the global matrix.
Computational times were evaluated on a Pentium III/1.266 GH processor.

New formalism NIPG SIPG

h Error Rate CPU Error Rate CPU Error Rate CPU

L2 error
1/8 8.95E − 04 − 0.94 1.94E − 02 − 0.87 + R 1.89E − 02 − 0.86 + R
1/16 2.10E − 04 2.09 9.29 4.62E − 03 2.07 5.91 + R 4.47E − 03 2.08 6.18 + R
1/32 5.16E − 05 2.02 119.8 1.14E − 03 2.02 71.25 + R 1.10E − 03 2.02 71.21 + R
1/64 1.28E − 05 2.02 1855 2.84E − 04 2.00 1519 + R 2.75E − 04 2.00 1334 + R

L∞ error
1/8 2.63E − 03 − 0.94 3.84E − 02 − 0.87 + R 3.75E − 02 − 0.86 + R
1/16 4.63E − 04 2.50 9.29 9.22E − 03 2.06 5.91 + R 8.93E − 03 2.07 6.18 + R
1/32 1.15E − 04 2.00 119.8 2.28E − 03 2.02 71.25 + R 2.21E − 03 2.01 71.21 + R
1/64 2.86E − 05 2.00 1855 5.69E − 04 2.00 1519 + R 5.50E − 04 2.00 1334 + R

Table 6.5

Numerical L2 errors, L∞ errors, and convergence rates for second order time discretization with
third order basis polynomials in the new formalism scheme (2.8) applied to pure diffusion equation.
Computations are done with a very small CFL condition so as to reduce the time discretization
error.

Second order time scheme with P3 basis polynomials

h L2 error Rate L∞ error Rate

1/2 3.885E − 03 − 4.517E − 02 −
1/4 3.663E − 04 3.41 4.212E − 03 3.42
1/8 2.636E − 05 3.80 2.668E − 04 3.98
1/16 1.757E − 06 3.91 1.769E − 05 3.91
1/32 1.139E − 07 3.95 1.127E − 06 3.97
1/64 7.246E − 09 3.97 7.191E − 08 3.97
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Fig. 6.1. L2 and L∞ convergence errors at different times steps for the pure diffusion equation
with nonhomogeneous boundary conditions. The computation is done using the new formalism with
polynomials of order 2 in space and second order time discretization. The notation P2T2 stands
for polynomials of order 2 in space (P2) with second order (T2) time discretization.

in time. So if ever one desires to apply NIPG and SIPG to problems with variable
coefficients, then R is to be multiplied by the number of iterations. Note that in our
calculations, we have adapted the time step for NIPG and SIPG so that the number
of time steps is already 10 times smaller for NIPG and SIPG. An even much greater
time step is possible for NIPG and SIPG but at the price of a loss of accuracy of the
discretization in time. In this case the new method, which is explicit, is much better
than NIPG and SIPG.

6.3. An example with a nonhomogeneous Dirichlet boundary condi-
tion. Here is an example with a nonhomogeneous boundary Dirichlet condition. In-
stead of simply writing ω+

k = Rα
kω

−
k (see Table 3.1), one uses

ω+
k = Rα

kω
−
k + αk(1 −Rα

k )cd for Dirichlet boundary condition c = cd,

ω+
k = Rα

kω
−
k + (1 + Rα

k )gN for Neumann boundary condition K
∂

∂n
c = gN .

We now take the same test case as above (K ≡ 1, u ≡ 0), with R.H.S. f(t, x, y) = −4,
and a nonhomogeneous Dirichlet boundary condition gD(x, y) = x2 + y2. We know
that the limit of the exact solution as time tends to infinity is the solution of the
stationary problem. That limit solution is in fact the function we have chosen as
the Dirichlet boundary condition. In order to show that the new formalism han-
dles nonhomogeneous boundary conditions, we have computed the solution with the
initial condition taken to be c(t = 0, x, y) = 0 which is not related to the exact
solution. The computational domain is Ω = (−1, 1)2, meshed with nonuniform tri-
angles (with 21 vertices per side ) to show that the behavior of the formalism is
well suited to the nonuniform mesh. Different steps of the solution are shown in
Figure 6.2. Figure 6.1 shows the convergence to the exact solution as L2 and L∞

errors (measured by ||u(∞) − u(tn)||) and relative L2 and L∞ errors (measured by
log(||u(∞) − u(tn)||/||u(∞)||) ) at every time step. Here u(∞) denotes the limit
solution.

Observations. In Figure 6.2 the initial solution is zero, and as the time passes
the convergence to the exact solution is achieved. It shows that boundary conditions
of Dirichlet type are correctly discretized by this method.
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Fig. 6.2. Asymptotic solution of the pure diffusion equation with nonhomogeneous boundary
conditions, on a nonuniform mesh. On the left is the initial solution; on the right is the solution
at t = 1.5s. The computations are done using the new formalism with second order polynomials in
space and second order time discretization.

6.4. A convection-diffusion example. In this section we consider the rotating
pulse problem. The spatial domain is Ω = (−0.5, 0.5) × (−0.5, 0.5), and the rotating
field is imposed as u = (−4y, 4x). The initial condition and Dirichlet boundary
condition are taken from the exact solution

c(t, x, y) =
2σ2

2σ2 + 4Kt
exp(− (x̄− xc)

2 + (ȳ − yc)
2

2σ2 + 4Kt
,

where x̄ = x cos(4t)+ y sin(4t) and ȳ = −x sin(4t)+ y cos(4t). Here K is the constant
diffusion coefficient. The R.H.S. is f = 0. This example was considered in [38], where
only maxima and minima of many methods were listed. It is also used as a model
equation in [4] to compare the L2 error of a higher order DGM with various other
methods on uniform rectangular meshes. Here we consider the same model problem on
uniform triangular meshes, and we evaluate the L2 and L∞ errors and the convergence
rate for the first and second order schemes presented in this paper. We take the same
parameters as in [38, 4]: K = 10−4, xc = 0.25, yc = 0, and 2σ2 = 0.004. The time
interval for the simulation is [0, T ] = [0, π/4], which is the time for a half rotation. We
begin with a uniform mesh of the domain made up of 8×8×2 = 138 uniform triangles.
We then successively refine the mesh and compute the L2 and L∞ errors eh on the
mesh of size h and the numerical convergence rates by the ratio ln(eh/eh/2)/ ln(2).
The time step is chosen so that the ratio Δt/h is kept constant. The constant value
is 1/82 for first order time discretization and 1/164 for the second order time scheme.
The results obtained are recorded in Table 6.6.

Observations. This numerical test [38] is advection dominant in most parts of
the domain and is diffusion dominant in the center of the domain. We solve it with
the formalism presented in this paper with a constant ratio Δt/h. This constant
ratio is obtained when we use the optimal parameter α (4.2) to determine the CFL
condition (4.1). The second order in time scheme gives good results with higher order
polynomials. Table 6.6 shows that using the constant ratio Δt/h, the convergence rate
is greater than 2. Hence in second order time discretization, the time discretization
error is small compared to the space discretization error for this test problem. This is a
good feature when dealing with a coarse mesh. The second order time discretization is
well suited for this kind of problem, where fine meshes are prohibitive due to memory
management.

6.5. Conclusion driven from numerical experiments. The theoretical anal-
ysis is confirmed by numerical experiments. In particular we have L2 stability and
correct treatment of boundary conditions whatever the order of the polynomials is.
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Table 6.6

Numerical L2 errors, L∞ errors, and convergence rates for first and second order time dis-
cretization schemes (2.4), (2.8) applied to constant diffusion but variable velocity convection-diffusion
equation. The convergence rates are obtained by computing the ratio ln(eh/eh/2)/ ln(2) as the mesh
is been refined. The polynomial space is of order 0, 1, 2, and 3, and the ratio Δt/h is kept constant
during the mesh refinement. The experimental order is 1 for first order in time integration and
greater than 2 for second order in time integration.

First order in time Second order in time

h L2 error Rate L∞ error Rate L2 error Rate L∞ error Rate

P0 basis polynomials
1/8 7.28E − 02 − 3.93E − 01 − 7.29E − 02 − 3.93E − 01 −
1/16 6.77E − 02 0.11 6.92E − 01 −0.82 6.78E − 02 0.10 6.93E − 01 −0.82
1/32 6.06E − 02 0.16 7.50E − 01 −0.11 6.09E − 02 0.16 7.52E − 01 −0.12
1/64 5.02E − 02 0.27 6.77E − 01 0.15 5.06E − 02 0.27 6.81E − 01 0.14
1/128 3.71E − 02 0.44 5.36E − 01 0.34 3.76E − 02 0.43 5.41E − 01 0.33

P1 basis polynomials
1/8 4.94E − 02 − 5.89E − 01 − 4.89E − 02 − 5.76E − 01 −
1/16 3.28E − 02 0.59 4.49E − 01 0.39 3.14E − 02 0.64 4.30E − 01 0.42
1/32 1.27E − 02 1.37 1.86E − 01 1.27 1.06E − 02 1.56 1.57E − 01 1.46
1/64 3.89E − 03 1.71 5.64E − 02 1.72 2.27E − 03 2.23 3.26E − 02 2.27
1/128 1.31E − 03 1.57 1.89E − 02 1.58 4.61E − 04 2.30 6.09E − 03 2.42

P2 basis polynomials
1/8 3.39E − 02 − 4.77E − 01 − 3.03E − 02 − 4.29E − 01 −
1/16 1.12E − 02 1.60 1.55E − 01 1.62 5.83E − 03 2.38 7.43E − 02 2.53
1/32 4.49E − 03 1.32 6.55E − 02 1.24 4.91E − 04 3.57 1.30E − 02 2.51
1/64 2.17E − 03 1.05 3.11E − 02 1.07 5.21E − 05 3.24 2.32E − 03 2.49
1/128 1.05E − 03 1.05 1.48E − 02 1.07 7.91E − 06 2.72 3.15E − 04 2.88

P3 basis polynomials
1/8 1.86E − 02 − 2.53E − 01 − 1.05E − 02 − 1.31E − 01 −
1/16 8.02E − 03 1.21 1.26E − 01 1.01 6.11E − 04 4.10 1.99E − 02 2.72
1/32 4.15E − 03 0.95 6.87E − 02 0.87 2.63E − 05 4.54 2.25E − 03 3.14
1/64 2.08E − 03 1.00 3.20E − 02 1.10 3.40E − 06 2.95 1.29E − 04 4.12
1/128 9.81E − 04 1.08 1.49E − 02 1.10 5.97E − 07 2.51 9.24e− 06 3.80
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Abstract. The coarse-grained Monte Carlo (CGMC) algorithm was originally proposed in the
series of works [M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, J. Comput. Phys., 186 (2003), pp.
250–278; M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, Proc. Natl. Acad. Sci. USA, 100 (2003),
pp. 782–787; M. A. Katsoulakis and D. G. Vlachos, J. Chem. Phys., 119 (2003), pp. 9412–9427].
In this paper we further investigate the approximation properties of the coarse-graining procedure
and provide both analytical and numerical evidence that the hierarchy of the coarse models is built
in a systematic way that allows for error control in both transient and long-time simulations. We
demonstrate that the numerical accuracy of the CGMC algorithm as an approximation of stochastic
lattice spin flip dynamics is of order two in terms of the coarse-graining ratio and that the natural
small parameter is the coarse-graining ratio over the range of particle/particle interactions. The
error estimate is shown to hold in the weak convergence sense. We employ the derived analytical
results to guide CGMC algorithms and demonstrate a CPU speed-up in demanding computational
regimes that involve nucleation, phase transitions, and metastability.
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1. Introduction. Microscopic computational models for complex systems such
as molecular dynamics (MD) and Monte Carlo (MC) algorithms are typically formu-
lated in terms of simple rules describing interactions between individual particles or
spin variables. The large number of variables and even larger number of interactions
between them present the principal limitation for efficient simulations. Another re-
stricting factor is illustrated by the essentially sequential nature of approximating the
time evolution in particle systems that yields a substantial slowdown in the resolution
of dynamics, especially in metastable regimes.

In [19, 20, 23] the authors started developing systematic mathematical strategies
for the coarse-graining of microscopic models, focusing on the paradigm of stochastic
lattice dynamics and the corresponding MC simulators. In principle, coarse-grained
models are expected to have fewer observables than the original microscopic system,
making them computationally more efficient than the direct numerical simulations.
In these papers a hierarchy of coarse-grained stochastic models—referred to as coarse-
grained MC (CGMC)—was derived from the microscopic rules through a stochastic
closure argument. The CGMC hierarchy is reminiscent of multiresolution analysis
approaches to the discretization of operators [3], spanning length/time scales from
the microscopic to the mesoscopic. The resulting stochastic coarse-grained processes
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involve Markovian birth-death and generalized exclusion processes and their com-
binations, and as demonstrated in [19, 20, 23], they share the same ergodic prop-
erties with their microscopic counterparts. The full hierarchy of the coarse-grained
stochastic dynamics satisfies detailed balance relations and, as a result, not only yields
self-consistent random fluctuation mechanism, but are consistent with the underlying
microscopic fluctuations and the unresolved degrees of freedom. From the computa-
tional complexity perspective, a comparison of CGMC with conventional MC methods
for the same real time shows [19] that the CPU time can decrease approximately as
O(1/q2) or faster, where q is the number of aggregated lattice sites (referred to as the
level of coarse-graining), as demonstrated for spin-flip lattice dynamics. Thus, while
for macroscopic size systems in the millimeter length scale or larger, microscopic MC
simulations are impractical on a single processor, the computational savings of CGMC
make it a suitable tool capable of capturing large scale features, while retaining mi-
croscopic information on intermolecular forces and particle fluctuations.

In the recent paper [22] the authors rigorously analyzed CGMC models as ap-
proximations of conventional MC in nonequilibrium, by estimating the information
loss between microscopic and coarse-grained adsorption/desorption lattice dynamics.
In analogy to the numerical analysis for PDEs, an error analysis was carried out
between the exact microscopic process {σt}t≥0 and the approximating coarse-grained
process {ηt}t≥0. The key step in this direction was to use, as a quantitative mea-
sure for the loss of information in the coarse-graining from finer to coarser scales, the
information-theoretic concept of the relative entropy between probability measures,
[9]. Such relative entropy estimates give a first mathematical reasoning for the pa-
rameter regimes, i.e., the degree of coarse-graining versus the interaction range, for
which CGMC is expected to give errors within a given tolerance. In this paper using
the rigorous results in [22] as a starting point, we focus on carrying out a detailed
numerical analysis of the error propagation for spin-flip lattice dynamics. Due to the
numerical intractability of the relative entropy for a large particle system, we employ
in the numerical error calculations targeted coarse observables. The latter point of
view necessitates in the use of a weak convergence framework for the study of the
error between CGMC and direct numerical simulations of the stochastic lattice dy-
namics. We demonstrate that the numerical accuracy of the CGMC algorithm is of
order two in terms of the ratio of the coarse-graining over the range of particle/particle
interactions. We also refer to recent work in [21] on weak error estimates between
microscopic MC algorithms and therein derived SDE approximations. Further de-
tails about a priori estimates for weak convergence of approximations to SDEs can be
found in [2, 34, 26]. Related a posteriori estimates are discussed in [33]. We further
employ the derived analytical results to guide CGMC algorithms and we demonstrate
a CPU speed-up in demanding computational regimes that involve nucleation, phase
transitions, and metastability. We demonstrate computationally that CGMC probes
efficiently the energy landscape, yielding spatial pathwise agreement with the under-
lying microscopic lattice dynamics, at least for fairly long but still finite interactions.

The mathematical difficulty in carrying out our error estimates primarily rests
with the fact that the projection of the exact microscopic process {σt}t≥0 on the
coarse grid denoted by {Tσt}t≥0 needs to be compared with the derived approxi-
mating process {ηt}t≥0. However, Tσt does not necessarily define a Markov process,
while the approximating process {ηt}t≥0 is constructed as a Markov process defined
by (3.5). To circumvent this technical difficulty the authors in [22] suggested con-
structing an auxiliary Markov process {γt}t≥0 as an intermediate step in the esti-
mation of the relative entropy between {Tσt}t≥0 and {ηt}t≥0. We adopt the same
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strategy here in order to make a comparison between observables which depend on
Markovian processes {σt}t≥0 and {γt}t≥0. The reconstructed microscopic Markov
process {γt}t≥0 can be directly synthesized from the coarse-grained process {ηt}t≥0,
and these two processes induce the same probability measure on the coarse-grained
path space. Such reconstruction is an inverse procedure to the projection from fine
to coarse configuration space and a simple choice of a reconstruction is to distribute
particles uniformly on the coarse cells. This action enforces a local equilibrium in
each coarse cell, parametrized by the coarse variables. From the technical point of
view the reconstruction allows for explicit calculations of averaged quantities in each
coarse cell and is crucial in obtaining the second order accuracy of our methods. It is
conceivable that the synthetic process {γt}t≥0 can be used not only as a technical tool
but also as a systematic procedure for reconstructing the microscopic process {σt}t≥0

for the purpose of model refinement or adaptivity since, as shown in Theorem 4.7, the
reconstruction is done under rigorous error estimates.

The CGMC algorithms discussed here are related to a number of methods involv-
ing coarse-graining at various levels; for instance, fast summation techniques, compu-
tational renormalization and simulation, and multiscale computational methods for
stochastic systems. One of the sources of the computational complexity of molecular
simulations arises in the calculation of particle/particle interactions, especially in the
case where long range forces are relevant. The evaluation cost of such pairwise interac-
tions can be significantly reduced by applying well-controlled approximation schemes
and/or a hierarchical decomposition of the computation. Typically, once the interac-
tion terms are computed with one of these fast summation methods, they are entered
in the microscopic algorithm where a simulation with a large number of individually
tracked particles still has to be carried out. The point of view adopted by CGMC
is related to these methods in the sense that the interaction potential or operator is
approximated in terms of a truncated multiresolution decomposition within a given
tolerance. The CGMC is subsequently defined at the coarse level specified by the
truncation of the decomposition. However, a notable difference is that CGMC models
track much fewer coarse observables instead of simulating every individual particle.
The equilibrium setup of CGMC is essentially given by the renormalized Hamiltonian
after a single iteration in the renormalization group flow. It is not surprising that
such an approach, when applied to near critical temperature simulations, has many
limitations. For example, in the nearest-neighbor Ising-type models this fact is mani-
fested in the aforementioned error estimates and the comparative simulations in [19].
On the other hand the focus of CGMC is dynamic simulations usually coupled to a
macroscopic system (see, for instance, the hybrid systems in [35, 18]), where criti-
cality may not be as important due to the presence of a time-varying external field.
Nevertheless, further corrections to the CGMC dynamics from the renormalization
group flow given by RGMC and multigrid MC methods [4, 6, 12] can improve the
order of convergence of the CGMC. We refer to [17] for higher order accurate CGMC
methods based on cluster expansions, where the coarse-graining procedure described
here is the model around which a cluster expansion is carried out with controlled
errors. As explained in section 4, in the sense that the CGMC method is of order two
accurate in terms of the small parameter q/L, where L is the radius of interaction.

As is the case with most asymptotic results, from a practical point of view a small
parameter q/L does not need to be “very small” in order for the asymptotics to work.
The case here is no exception even in the phase transitions regime. This observation
is further amplified by the higher order estimate (q/L)2 in Theorem 4.7. A typical
example of long range interactions is the electrostatic potential; however, the methods
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proposed here cannot (yet) handle the singular part of the potential which is close to
the origin. However, they can easily handle, with error estimates, the slowly decaying
part of the potential (away from the origin), which is a primary computational hurdle
for direct numerical simulations with standard MC methods. On the other hand
the proposed methods are expected to work well when local averaging gives a good
error control in the potentials, as in Lemma 3.2. Such examples include Morse-
type potentials as well as oscillating indirect exchange potentials of RKKY type [30]
arising in magnetic materials. Furthermore some intermediate-range potentials can
be obtained from detailed experiments. Such an example arising in surface processes
is described in [31], where a potential with 36 neighbors is obtained. In such a setup
the CGMC method would be expected to apply.

In recent years there has been a growing interest in developing and analyzing
coarse-graining methods for the purpose of modelling and simulation across scales.
Such systems arise in a broad spectrum of scientific disciplines ranging from materi-
als science to macromolecular dynamics, to epidemiology, and to atmosphere/ocean
science. Various coarse-graining approaches may yield explicitly derived stochastic
coarse models using different coarse approximations, e.g., [13, 15, 28, 32, 8, 36], or
can be statistics-based [29] or may rely on on-fly simulations, e.g., the equation-free
method [24], the heterogeneous multiscale method [11], or multiscale finite-element
methods [14]. A systematic approach to the upscaling of stochastic systems has
also been proposed from the multilevel perspective in [7, 1, 5], where the authors
proposed algorithms for efficient multiscale simulations using MC methods. Other
coarse-graining techniques in the polymer science literature include the bond fluctu-
ation model and its variants [27]. Such coarse-graining methodologies often rely on
parametrization, hence at different conditions (e.g., temperature, density, composi-
tion) coarse potentials need to be re-parametrized [29].

2. Microscopic lattice models. The presented analysis applies to the class
of Ising-type lattice systems. For the sake of simplicity we assume that the com-
putational domain is defined as the discrete periodic lattice ΛN = 1

nZ
d ∩ T which

represents discretion of the d-dimensional torus T = [0, 1)d and d denotes the spa-
tial dimension. We restrict presentation of the results to d = 1; nevertheless higher
dimensional cases are obtained without significant changes. However, the algorithms
can also be implemented on bounded domains with usual boundary conditions. The
number of lattice sites N = nd is fixed. The microscopic degrees of freedom or the
microscopic order parameter is given by the spin-like variable σ(x) defined at each
site x ∈ ΛN . In this paper we discuss only the case of discrete spin variables, i.e.,
σ(x) ∈ Σ with Σ = {−1, 1}, Σ = {0, 1} (Ising model), or Σ = {0, 1, . . . s} (Potts mod-
els). The case of the spin variable belonging to a compact Riemannien manifold, e.g.,
Σ = S

2 (Heisenberg model), Σ = SU(2) (matrix model), will be studied elsewhere.
We denote by σ = {σ(x) |x ∈ ΛN} a configuration of spins on the lattice, i.e., an
element of the configuration space SN = ΣΛN . The interactions between spins at a
given configuration σ are defined by the microscopic Hamiltonian

H(σ) = −1

2

∑
x∈ΛN

∑
y �=x

J(x− y)σ(x)σ(y) +
∑

x∈ΛN

h(x)σ(x) ,(2.1)

where h(x) denotes the external field at the site x. The two-body interparticle po-
tential J accounts for interactions between individual spins. We consider the class of
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potentials with a finite range interaction length L

J(x− y) =
1

Ld
V
(n

L
|x− y|

)
, x, y ∈ ΛN ,(2.2)

V : R → R , V (r) = V (−r) , V (r) = 0 , if |r| ≥ 1.(2.3)

We impose additional assumptions on V which allow us to derive explicit error esti-
mates:

V is smooth on R \ {0},(2.4) ∫
R

|V (r)| dr < ∞ , and

∫
R

|∂rV (r)| dr < ∞ .(2.5)

Note that the summability condition for V guarantees that the potential J is also
summable due to the scaling factor. Hence the Hamiltonian is well defined even for
N,L → ∞. The canonical equilibrium state is given in terms of the Gibbs measure

μN,β(dσ) =
1

ZN,β
e−βH(σ)PN (dσ) , ZN,β =

∫
SN

e−βH(σ)PN (dσ) ,(2.6)

where PN (dσ) =
∏

x∈ΛN
ρ(dσ(x)) is the product measure on SN and the spins σ(x)

are independent identically distributed (i.i.d.) random variables with the common
distribution ρ. For example, in the Ising model the prior distribution on Σ = {0, 1}
would typically be ρ(0) = ρ(1) = 1/2.

The microscopic dynamics are defined as a continuous-time jump Markov process
that defines a change of the spin σ(x) with the probability c(x, σ; ξ)Δt over the time
interval [t, t+ Δt]. The function c : ΛN ×SN ×Σ → R is called a rate of the process.
The jump process {σt}t≥0 is constructed in the following way: suppose that at the
time t the configuration is σt, then the probability of changing the spin at the site
x ∈ ΛN spontaneously from σt(x) to a new value ξ ∈ Σ over the time interval [t, t+Δt]
is c(x, σ; ξ)Δt + O(Δt2). We denote the resulting configuration by σx,ξ. In the case
of the Ising-type state space and spin-flip dynamics we omit ξ in this notation. The
generator L : L∞(SN ) → L∞(SN ) of the Markov process acting on a bounded test
function φ ∈ L∞(SN ) defined on the space of configurations is given by

(Lφ)(σ) =
∑

x∈ΛN

∫
Σ

c(x, σ; ξ)
(
φ(σx,ξ) − φ(σ)

)
dξ .(2.7)

The evolution of an observable (a test function) φ is given by

d

dt
E [φ(σt)] = E [Lφ(σt)] ,(2.8)

where the expectation operator E [.] is, with respect to a measure, conditioned to the
initial configuration σt=0 = σ0. We require that the dynamics are of a relaxation type
such that the invariant measure of this Markov process is the Gibbs measure (2.6).
The sufficient condition is known as detailed balance (DB) and it imposes a condition
on the form of the rate

c(x, σ; ξ)e−βH(σ) = c(x, σx,ξ;σ(x))e−βH(σx,ξ) .(2.9)

This condition has a simple interpretation: c(x, σ; ξ) is the rate of converting σ(x) to
the value ξ while c(x, σx,ξ;σ(x)) is the rate of changing the spin with the value ξ at
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the site x back to σ(x). The widely used class of Metropolis-type dynamics satisfies
(2.9) and has the rate given by

c(x, σ; ξ) = G(βΔx,ξH(σ)) , where Δx,ξH(σ) = H(σx,ξ) −H(σ),(2.10)

where G is a continuous function satisfying: G(r) = G(−r)e−r for all r ∈ R. The most
common choices in physics simulations are G(r) = 1

1+er (Glauber dynamics), G(r) =

e−[r]+ (Metropolis dynamics), with [r]+ = r if r ≥ 0 and = 0 otherwise, or G(r) =
e−r/2. Such dynamics are often used as samplers from the canonical equilibrium
Gibbs measure. However, the kinetic MC method is also used for simulations of
nonequilibrium processes. The dynamics in such a case are known as Arrhenius
dynamics, whose rates are usually derived from transition state theory or obtained
from molecular dynamics simulations.

To avoid unnecessary generality we restrict the description to the Ising-type model
with Σ = {0, 1} used for modeling adsorption/desorption processes. We also omit ξ
in the notation. The Arrhenius rate is defined as follows:

c(x, σ) =

{
d0 if σ(x) = 0,

d0e
−βU(x,σ) if σ(x) = 1,

(2.11)

where

U(x, σ) =
∑

y∈ΛN ,y �=x

J(x− y)σ(y) − h(x) .(2.12)

Furthermore, the spin-flip rule is given by

σx(y) =

{
1 − σ(x) if y = x,
σ(y) if y �= x.

With the introduced notation the coarse-graining algorithm can be described as an
approximation of the microscopic dynamics, i.e., of the process {σt}t≥0 by a coarse-
grained process {ηt}t≥0, where the approximation is done in a controlled way. We
are interested not only in the approximation of the invariant measure μN,β(dσ) (see
(2.6)), but also in the approximation of the measure on the path space.

3. Approximation of the coarse-grained process. The coarse-graining is
defined in a geometric way by introducing the coarse-grained observables as block-
spin variables. This approach follows the standard procedure of real-space renormal-
ization; see, for example, [16]. We remark that although we introduce block-spins
our aim is not to approximate the renormalization group flow (either on the space of
Gibbs measures or on the path space), but rather to find an approximation that is
constructed with low computational cost and with controlled and computable error
estimates.

In general terms we define the coarse-graining operator T : SN → Sc
M,q, where

the coarse configuration space Sc
M,q is defined on the coarse lattice Λc

M , and with the

new state space Σc, i.e., Sc
M,q = (Σc)

Λc
M . The coarse configuration η = Tσ ∈ Sc

M,q is
defined on a smaller lattice with M lattice sites and with the coarse state space Σc

for the new lattice spins η(k). The parameter q defines the coarse-graining ratio. The
operator T induces an operator T∗ on the space of probability measures

T∗ : P(SN ) → P(Sc
M,q) , μ(σ) �→ μc(η) := μ{σ ∈ SN |Tσ = η} .
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Ising-type spins. To be more specific we analyze the following case of Ising spin-flip
dynamics SN = {0, 1}ΛN . Each coarse lattice site k ∈ Λc

M represents a cube Ck that
contains q sites of the microscopic lattice ΛN . The projection operator defines the
block-spin at the coarse site k to be

(Tσ)(k) :=
∑
x∈Ck

σ(x) .(3.1)

If the dimension d of the lattice is greater than one, we understand k and x as multi-
indices k = (k1, . . . , kd), and we index the corresponding lattice sites in the natural
order. Choosing the projection operator in this way defines the coarse state space as
Σc = {0, 1, . . . , q}. Given the Markov process ({σt}t≥0,L) with the generator L we
obtain a coarse-grained process {Tσt}t≥0 which is not, in general, a Markov process.
From the computational point of view this may cause significant difficulties should
sampling of such a process be implemented on the computer. Therefore we derive an
approximating Markov process ({ηt}t≥0, L̄c) which can be easily implemented once
its generator is given explicitly.

For the model Ising system the projected generator of the coarse-grained process
{ηt}t≥0 can be evaluated explicitly by rearranging the summations on the lattice ΛN ;
given the microscopic state σ and corresponding coarse state η = Tσ,

Lψ(Tσ) =
∑

k∈Λc
M

[ ∑
x∈Ck

c(x, σ)(1 − σ(x))

]
[ψ(η + δk) − ψ(η)]

+
∑

k∈Λc
M

[ ∑
x∈Ck

c(x, σ)σ(x)

]
[ψ(η − δk) − ψ(η)] .(3.2)

The configuration δk defined on the coarse state space is equal to zero at all sites
except the site k ∈ Λc

M where it is equal 1, i.e., δk(j) = 1 for j = k and = 0 otherwise.
We see from the formula (3.2) that the exact generator for the coarse process can be
written in the form

Lcψ(η) =
∑

k∈Λc
M

ca(k) [ψ(η + δk) − ψ(η)] +
∑

k∈Λc
M

cd(k) [ψ(η − δk) − ψ(η)] ,(3.3)

where the new rates

ca(k) =
∑
x∈Ck

c(x, σ)(1 − σ(x)) , cd(k) =
∑
x∈Ck

c(x, σ)σ(x)(3.4)

correspond to the adsorption and desorption processes. In this form the rates depend
on the microscopic configuration σ and not on the coarse random variable Tσ. There-
fore, it is reasonable to propose an approximating Markov process, which for the case
of desorption/adsorption is a birth-death process {ηt}t≥0 defined on the state space
Σc = {0, 1, . . . q}. This process is defined by the generator L̄c of the form (3.3) where
the rates ca and cd are replaced by approximate rates

c̄a(k, η) = d0(q − η(k)) , c̄d(k, η) = d0η(k)e−βŪ(k,η) .(3.5)

For details we refer to [19]. The new rates have a simple interpretation in terms of
fluctuations on each cell: c̄a(k, η) describes the rate with which the coarse variable
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η(k) is increased by one (i.e., adsorption of a single particle in the coarse cell Ck) and
c̄d(k, η) defines the rate with which it is decreased by one (desorption in Ck). The
new interaction potential Ū(η) represents the approximation of the original interaction
U(σ).

Definition 3.1. We define the approximation Ū(k, η) of the potential U(x, σ),
(2.12), at the coarse level

Ū(k, η) =
∑
l∈Λc

M
l �=k

J̄(k, l)η(l) + J̄(0, 0)(η(k) − 1) − h̄(k) .(3.6)

The coarse-grained interaction potential J̄ is computed as the average of the pairwise
interactions between microscopic spins between the coarse cells Ck and Cl,

J̄(k, l) =
1

q2

∑
x∈Ck

∑
y∈Cl

J(x− y) for all k, l ∈ Λc
M , such that k �= l, and(3.7)

J̄(k, k) ≡ J(0, 0) =
1

q(q − 1)

∑
x∈Ck

∑
y∈Ck
y �=x

J(x− y) .(3.8)

The error estimate for the projection follows directly from the assumptions on
the regularity of J (or V ) (2.4)–(2.5). We state it as a separate lemma without the
proof, which is obtained by applying the Taylor expansion of the potential J .

Lemma 3.2. Assume that J satisfies (2.4)–(2.5); then the coarse-grained inter-
action potential J̄ at the coarse-graining level q approximates the potential J with the
error

|J(x− y) − J̄(k, l)| ≤ 1

L
cd sup

x′∈Ck

y′∈Cl

||∇V (x′ − y′)|| ≤ O
( q

L2

)
,(3.9)

|J(x− y) − J̄(0, 0)| ≤ 1

L
cd sup

x′,y′∈Ck

y′ �=x′

||∇V (x′ − y′)|| ≤ O
( q

L2

)
,(3.10)

where cd = maxk∈Λc
M
{diam (Ck)}.

From Lemma 3.2 we derive the error bound for the approximation of the coarse-
grained potential Ū . Note that in the definition of U the principle contribution to the
summation involves interactions within the interaction range L and thus we have the
following estimate.

Corollary 3.3. The microscopic potential U(x, σ) is approximated by Ū(k, η),
with the error

Δq,N (Ū , U) ≡ |Ū(k,Tσ) − U(x, σ)| = O
( q

L

)
for all x ∈ Ck.(3.11)

Note that this approximation represents the direct projection of the interaction
kernel J on the coarse space and the contribution from fine scales are neglected.
This procedure differs from the renormalization group approach where fluctuations
from the fine scales contribute to the transformed Hamiltonian. However, in the
case of finite-range interaction kernels J treated here, the above projection yields
approximation of the order O(q/L)2 as we discuss in the next section. The coarse
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interaction Hamiltonian is then given explicitly in terms of J̄ and h̄ as

H̄(η) = −1

2

∑
l∈Λc

M

∑
k �=l

J̄(k, l)η(k)η(l) − 1

2
J̄(0, 0)

∑
l∈Λc

M

η(l)(η(l) − 1) +
∑
l∈Λc

M

h̄(l)η(l) .

(3.12)

A direct calculation by verifying the condition of detailed balance [19],

c̄a(k, η)μM,q,β(η) = c̄d(k, η + δk)μM,q,β(η + δk) ,

c̄d(k, η)μM,q,β(η) = c̄a(k, η − δk)μM,q,β(η − δk) ,

shows that the invariant measure of the Markov process {ηt}t≥0 generated by L̄c is
again a canonical Gibbs measure,

μc
M,q,β(dη) =

1

ZM,q,β
e−βH̄(η)PM,q(dη) ,(3.13)

where the product measure PM,q(dη) is the coarse-grained prior distribution. Note
that the prior distribution is altered by the coarse-graining procedure and different
projection operators T may yield prior distributions that are computationally in-
tractable. For example, the coarse-grained prior arising from the uniform microscopic
prior (ρ(0) = ρ(1) = 1/2) is the binomial distribution corresponding to q independent
sites:

PM,q(dη) =
∏

k∈Λc
M

ρcq(dη(k)) , ρcq(η(k) = p) =
q!

p!(q − p)!

(
1

2

)q

.

The coarse-graining procedure described here satisfies basic criteria imposed on
an approximating process:

(i) Error control on a finite-time interval [0, T ]. In particular, the derived coarse-
grained stochastic process {ηt}t≥0 approximates a prespecified observable on a
finite-time interval [0, T ], e.g., (3.1). In particular, time-dependent error esti-
mates such as (4.2) can rigorously demonstrate that the process {ηt}t≥0 keeps
track of fluctuations from the microscopic level. Consequently expected val-
ues of certain path-dependent (global) quantities can be properly estimated.
We characterize approximation properties of {Tσt}t≥0 by {ηt}t≥0 using a
suitable probability metric on the path space.

(ii) Approximation of the invariant (equilibrium) measure. The invariant measure
μc
M,q,β(dη) for the process {ηt}t≥0 defined on Sc

M,q is close, in a suitable proba-
bility metric, to the projection of the microscopic measure T∗(μN,β(dσ)). In
particular the error estimates in (4.1) demonstrate that the coarse-grained
process can preserve the ergodicity properties of the microscopic process
within a prescribed tolerance. We also note that the coarse-graining modifies
the microscopic prior PN (dσ) in (2.6), yielding the coarse prior PM,q(dη).

If the approximating process follows the basic principles (i) and (ii), then we observe
as a result of the error estimates presented here and in [22] that both the transient, as
well as the long time dynamics, are expected to be captured accurately by the coarse-
graining. Although this is not a complete proof of a controlled error for infinite time,
it constitutes a first rigorous step in this direction. The approximation properties are
also supported by the numerics presented here and in the references.
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4. Error analysis and a priori estimates for coarse-grained processes.
As described in the previous section we construct a new process which only approx-
imates the projected process {Tσt}t≥0. We do not attempt to capture the effect of
fine scales exactly and incorporate them into the coarse model through the renormal-
ization group transformation. Instead we construct an approximate process {ηt}t≥0,
with the invariant measure μc

M,q,β . The approximation properties of such construction
are quantified in this section.

4.1. Information theory estimates. The first question which needs to be ad-
dressed is comparison and an error estimate for the exactly coarse-grained equilibrium
measure, i.e., T∗μN,β , and its approximation μc

M,q,β . We recall that T∗ is the pro-
jection operator induced by the fine-to-coarse projection of spin variables. For the
comparison of the nonequilibrium processes {Tσt}t≥0 and {ηt}t≥0, we need to carry
out a similar a priori analysis on the coarse path space D(Sc

M,q), i.e., on the space
of all right-continuous paths ηt : [0,∞) → Sc

M,q. We denote by Qσ0,[0,T ] the measure
on D(SN ) for the process {σt}t∈[0,T ] on the interval [0, T ] with the initial distribution
σ0. Similarly Qc

η0,[0,T ] denotes the measure on the coarse path space D(Sc
M,q). With

a slight abuse of notation we also use T∗Q to denote the projection of the measure Q
on the coarse path space, i.e., the exact coarsening of the measure Q.

The principal idea proposed in [22, 23] is to control the specific loss of information
quantified by the relative entropy.

Proposition 4.1. (i) see [23]: Let μc
M,q,β be the approximating measure defined

by (3.13) and T∗μN,β be the exact projection of the microscopic equilibrium measure,
then the specific relative entropy is estimated by

1

N
R

(
μc
M,q,β |T∗μN,β

)
(4.1)

:=
1

N

∑
η∈Sc

M,q

log

(
μc
M,q,β(η)

μN,β({σ ∈ SN
ΛN |Tσ = η})

)
μc
M,q,β(η) = O

( q

L

)
.

(ii) see [22]: Suppose the process {ηt}t∈[0,T ], given by the coarse generator L̄c,
defines the coarse approximation of the microscopic process {σt}t∈[0,T ] then for any
q < L and N , Mq = N , the information loss as q/L → 0 is

1

N
R

(
Qc

η0,[0,T ] |T∗QT∗σ0,[0,T ]

)
= T O

( q

L

)
.(4.2)

We recall that the relative entropy for two probability measures π1(σ) and π2(σ)
on the countable state space S is defined as

R (π1 |π2) =
∑
σ∈S

π1(σ) log
π1(σ)

π2(σ)
.(4.3)

We refer to [9] for a detailed discussion of relative entropy, its properties, and connec-
tions to information theory.

Remark. Although the previous estimate is for finite times [0, T ] only, and grows
with T , in many cases the system nucleates a new phase at the initial stage of its
evolution and thus the estimate ensures good approximation of the nucleation phase.
It is worth noticing that the relative entropy estimate clearly demonstrates limitations
of the coarse-graining method since it gives the error of order one for short-range
interactions (the nearest neighbor interaction corresponds to L = 1). On the other
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hand the analysis using the relative entropy (information) distance identifies the small
parameter in the asymptotic expansion of the blocking error, the ratio q/L.

In the next estimate we derive a lower bound for the loss of information in terms
of coarser observables.

Proposition 4.2 (lower bound). Suppose the process ({ηt}t∈[0,T ], L̄c), defined
by the coarse-graining operator T with coarse-graining parameters Mq = N , is the
coarse approximation of the microscopic process {σt}t∈[0,T ]. Let TM ′,q′ be another
coarse-graining operator, such that M ′ ≤ M , M ′q′ = Mq = N . Then the following
estimate for the invariant microscopic measure μN,β and the coarse approximation
μc
M,q,β holds:

R
(
μc
M,q,β |T∗μN,β

)
≥ R

(
TM ′,q′

∗ μc
M,q,β |TM ′,q′

∗ μN,β

)
.(4.4)

Moreover, on any finite-time interval [0, T ],

R
(
T∗QTσ0,[0,T ] |Qc

η0,[0,T ]

)
≥ R

(
TM ′,q′

∗ QTσ0,[0,T ] |TM ′,q′

∗ Qc
η0,[0,T ]

)
.(4.5)

Proof. We first recall the variational formulation for the relative entropy

R (μ | ν) = sup
f

{∫
f dμ− log

∫
ef dν

}
,(4.6)

where the supremum is over all bounded functions in the space where the measures
are defined. This inequality now readily implies the result since

R (μ | ν) ≥ sup
f◦T

{∫
f ◦ T dμ− log

∫
efoT dν

}
= R (T∗μ |T∗ν) ,(4.7)

where T is the projection operator (superscripts omitted) in the statement of the
proposition.

Remark. This estimate provides a lower bound for the loss of information in
terms of coarser observables, hence the condition M ′ ≤ M where M ′q′ = Mq = N .

For instance if M ′ = 1, q′ = N , then the measures TM ′,q′

∗ μc
M,q,β and TM ′,q′

∗ μN,β are
the PDFs of the total coverage with respect to the coarse-grained (essentially mean
field with a noise) and the microscopic Gibbs states, respectively. At first glance it
may appear that such an estimate is hard to implement since it depends on the exact
microscopic MC; however, when M ′ is small, i.e., M ′ = 1, 2, 3 . . . , the PDFs can be
calculated as a histogram by MC and subsequently the relative entropy in the lower
bound is straightforward to compute.

4.2. Microscopic reconstruction and weak convergence estimates. In
many practical MC simulations the main goal is to estimate averages (expected val-
ues) of specific observables. Therefore it is natural to analyze the weak approximation
properties of the coarse-graining procedure. The weak error is defined as the quan-
tity ew ≡ |ES [ψ(Tσt)] − ES [ψ(ηt)]|, where the expectation ES [·] is defined for the
path conditioned on the initial configuration η0 = Tσ0 = S. Alternatively we can
compare the microscopic process {σt}t≥0 with its synthetic process {γt}t≥0, which
is reconstructed from the coarse process {ηt}t≥0. The weak error is then defined as
ew ≡ |ES [φ(σt)]−ES [φ(γt)]|, where the expectation ES [·] is now defined for the path
conditioned on the initial configuration σ0 = S. Here and in what follows φ denotes
a test function (observable) on the fine level while ψ is used for a test function on the
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coarse level. Theorem 4.7 and Corollary 4.8 quantify the rate of convergence for the
weak error on both levels as q/L → 0. We refer to [21] for error estimates in the weak
topology between microscopic MC algorithms and therein derived approximations by
stochastic differential equations.

Before we formulate the proposition and proceed with the proof it is worth clarify-
ing the difficulty of comparing the projected process {Tσt}t≥0 with the approximating
process {ηt}t≥0. The projection Tσt of the microscopic process on the coarse grid
does not necessarily define a Markov process. On the other hand the approximating
process {ηt}t≥0 is constructed as a Markov process ({ηt}t≥0, L̄c) with the genera-
tor L̄c defined by (3.5). To circumvent the technical difficulty the authors in [22]
suggested constructing an auxiliary process {γt}t≥0 as an intermediate step in the
estimation of the relative entropy between the processes {σt}t≥0 and {ηt}t≥0. We
adopt the same strategy in order to make a comparison between observables which
depend on Markovian processes {σt}t≥0 and {γt}t≥0. The process {γt}t≥0 can be
directly reconstructed from the coarse-grained process {ηt}t≥0. Thus we are led to
the definition of the synthetic microscopic (Markov) process {γt}t≥0 associated with
the process {σt}t≥0.

Definition 4.3 (synthetic microscopic process). The auxiliary process {γt}t≥0 is
defined on the microscopic configuration space SN by the generator Lγ : L∞(SN ) → R

(Lγφ)(σ) =
∑

x∈ΛN

cγ(x, σ)(φ(σx) − φ(σ)) ,(4.8)

where the rate function cγ(x, σ) is defined in terms of the coarse-grained interaction
potential

cγ(x, σ) = d0(1 − σ(x)) + d0σ(x)e−βŪ(k(x),Tσ) .

The coarse-grained interaction potential Ū(k, η) has been defined in (3.6). The piece-
wise constant interpolation is used to extend the function Ū(., .) from the coarse lattice
to the fine lattice. We denote k(x) to be the cell index of the cell to which the site x
belongs, i.e., x ∈ Ck(x).

The properties of {γt}t≥0 were studied in [22] and the following was proved:
(i) The coarse-grained projection {Tγt}t≥0 of the Markov process ({γt}t≥0,Lγ)

is still a Markov process.
(ii) The processes {Tγt}t≥0 and {ηt}t≥0 have the same transition rates. Hence,

whenever the processes have the same initial distribution they induce the same
probability measure on the coarse-grained path space D(Sc

M,q). If we define
Qc

η0
(η, t) and Qγ0(γ, t) to be the probability measures of the Markov processes

{ηt}t≥0 and {γt}t≥0, respectively (conditioned on the initial condition η0 =
Tγ0), then for all t > 0 we have the projection

Qc
η0

(η, t) = T∗Qγ0(γ, t) ≡
∑

{γ |Tγ=ηt}
Qγ0(γ, t) ,

provided this relation is satisfied at t = 0. Hence this property allows us to
compare the processes in a pathwise way.

(iii) The microscopic process {γt}t≥0 can be reconstructed from the approximat-
ing coarse process {ηt}t≥0. Such reconstruction is an inverse procedure to
the projection from fine to coarse configuration space. In such a way we
can compare the original microscopic process with the approximation on the
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coarse configuration space. A simple choice of a reconstruction operator is to
distribute spins γt(x) for x ∈ Ck uniformly so that Tγt|Ck

= ηt(k).
Remark. It is conceivable that the synthetic process {γt}t≥0 can be used not

only as a technical tool but also as a systematic procedure for reconstructing the
microscopic process {σt}t≥0 for the purpose of model refinement or adaptivity since,
as shown in Theorem 4.7, the reconstruction is done under rigorous error estimates. In
the estimates derived below we deal with a specific class of test functions φ ∈ L∞(SN )
which depend only on the coarse variable η = Tσ. In other words we impose the
assumption

(A1) φ(σ) = ψ(Tσ) , where ψ ∈ L∞(Sc
M,q), and∑

x∈ΛN

|∂xφ(σ)| ≤ C , where C is a constant independent of N .

Remark. Observables, such as the total coverage used in the numerical simula-
tions, satisfy this assumption.

The principal tool for analyzing the weak error is its representation in terms of
solutions to the final value problem on SN ,

∂tv(t, σ) + Lv(t, σ) = 0 v(T, .) = φ(.) for t < T ,

where L is a generator of the Markov semigroup that defines the lattice dynamics.
Before we state the main estimate of the weak error and its proof we need several
preliminary lemmata that characterize properties of the semigroup generated by the
operator L defined by (2.7). The specific calculations are better presented by intro-
ducing an alternative notation for the generator L. We define an operator of discrete
differentiation for functions f ∈ L∞(SN )

∂xf(σ) ≡ f(σx) − f(σ) for all x ∈ ΛN ,(4.9)

and we introduce two vectors indexed by the lattice sites x ∈ ΛN

∇σf(σ) ≡ (∂xf(σ))x∈ΛN
, c(σ) ≡ (c(x, σ))x∈ΛN

.

The scalar product is defined in the natural way as c(σ)·∇σf(σ) ≡
∑

x∈ΛN
c(x, σ)∂xf(σ).

Using this notation we write

Lf(σ) = c(σ) · ∇σf(σ) for all σ ∈ SN .(4.10)

The space of functions defined on the configuration space SN is equipped with the
strong L∞ topology given by the norm ||f ||∞ ≡ supσ{f(σ)}.

To prove the estimate in Theorem 4.7 we need an estimate for the difference
operator ∇σ stated here as a separate lemma.

Lemma 4.4. Let v(t, σ) be the solution of

∂tv + Lv = 0 , v(T, σ) = φ(σ) for t < T ,(4.11)

on a given interval t ≤ T ; then∑
x∈ΛN

||∂xv(t, .)||∞ ≤ CT

∑
x∈ΛN

||∂xφ||∞ .(4.12)
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Moreover, the constant CT depends exponentially on the final time T .
Proof. Using the notation introduced above and the definition of L we recast

the evolution equation (4.11) into a familiar form of a transport equation on the
configuration space

∂tv + c(σ) · ∇σv = 0 , σ ∈ SN , t > 0 .(4.13)

Subtracting (4.13) for v(t, σx) and v(t, σ) we have

∂t(v(t, σ
x) − v(t, σ)) + c(σ) · (∇σv(t, σ

x) −∇σv(t, σ)) + (c(σx) − c(σ)) · ∇σv(t, σ
x) = 0 ,

which we write as

∂t (∂xv(t, σ)) + c(σ) · ∇σ (∂xv(t, σ)) + ∂xc(σ) · ∇σv(t, σ
x) = 0 .(4.14)

Next we derive L∞-bounds for the discrete derivatives ∂xc(σ) using the explicit defi-
nition of the rates c(x, σ) in (2.11). For each component, indexed by z ∈ ΛN , of the
vector c(σ) we have

∂xc(z, σ) = c(z, σx) − c(z, σ) = (1 − σx(z)) + σx(z)e−U(z,σx) − (1 − σ(z)) + σ(z)e−U(z,σ) .

For the spin-flip dynamics, i.e., σx(y) = 1−σ(y) if x = y and σx(y) = σ(y) otherwise, a
straightforward calculation gives ∂xU(z, σ) ≡ U(z, σx)−U(z, σ) = J(z−x)(1−2σ(x))
if z �= x and it is equal to zero otherwise. Thus the discrete derivate ∂xc(σ) is

∂xc(z, σ) =

{
(2σ(x) − 1)(1 − e−U(x,σ)) for z = x,
σ(z)e−U(z,σ)

(
1 − eJ(x−z)(1−2σ(x))

)
if z �= x.

Recalling the definition (2.3) of the interaction potential J we have that J(z−x) ∼ 1/L
for |z − x| ≤ L and J = 0 otherwise. Hence we derived L∞-bounds for the discrete
derivative of the rates

∂xc(z, σ) ∼

⎧⎨
⎩

O(1) for z = x,
O(1/L) for |z − x| < L,
0 otherwise.

(4.15)

Going back to (4.14), we have for all x ∈ ΛN

∂t (∂xv(t, σ)) + L∂xv(t, σ) +
∑
z∈ΛN

∂xc(z, σ)∂zv(t, σ
x) = 0 .(4.16)

The estimates in (4.15) imply that

∂t∂xv(t, σ) + L∂xv(t, σ) + O(1)∂xv(t, σ
x) + O

(
1

L

) ∑
z∈ΛN

|z−x|≤L

∂zv(t, σ
x) = 0 ,(4.17)

and we have for all σ ∈ SN the solution formula

∂xv(t, σ) = etL[∂xv(0, σ)] +

∫ T

t

e(s−t)L
[
O(1)∂xv(s, σ

x) + O(1/L)
∑

|z−x|≤L

∂zv(s, σ
x)

]
ds .
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By the contractive property of the semigroup etL we have the estimate

||∂xv(t, ·)||∞ ≤ ||∂xv(0, ·)||∞ +

∫ T

t

O(1)||∂xv(s, ·)||∞ ds

+

∫ T

t

O(1/L)
∑

|z−x|≤L

||∂zv(s, ·)||∞ ds

for all x ∈ ΛN . Thus summing over all x ∈ ΛN , we obtain∑
x∈ΛN

||∂xv(t, ·)||∞ ≤
∑

x∈ΛN

||∂xv(0, ·)||∞

+

∫ T

t

(
O(1)

∑
x∈ΛN

||∂xv(s, ·)||∞ + O(1/L)
∑

x∈ΛN

∑
|z−x|≤L

||∂zv(s, ·)||∞
)
ds ,

where the last double sum in the integrand is bounded by 2L
∑

x ||∂xv(s, ·)||∞. Hence
by setting θ(t) =

∑
x ||∂xv(t, ·)||∞ we have

θ(t) ≤ θ(0) +

∫ T

t

O(1)θ(s) ds ,

from which, by using Gronwall’s inequality, we obtain the bound

θ(t) ≤ ec(T−t)θ(T ) ,

which concludes the proof of (4.4).
Next we establish an L∞-bound for discrete derivatives of solutions generated by

semigroups etL and etL
γ

.
Lemma 4.5. Let u(t, σ) be the solution of

∂tu + Lu = 0, u(T, .) = φ for t < T ,

and let v(t, σ) solve

∂tv + Lγv = 0, v(T, .) = ψ for t < T ,;

then for any t ≤ T the following estimate holds:∑
x∈ΛN

||∂xu(t, ·) − ∂xv(t, ·)||∞ ≤ C1(T )
∑

x∈ΛN

||∂xφ− ∂xψ||∞ + C2(T )
( q

L

)
.(4.18)

The constants C1 and C2 are independent of q and L but depend exponentially on the
final time T .

Proof. We use the same approach and notation as in the proof of Lemma 4.4.
Subtracting the evolution equations and defining wx(t, σ) ≡ ∂xu(t, σ) − ∂xv(t, σ),
w(t, σ) ≡ (wx(t, σ))x∈ΛN

, we have

∂twx(t, σ) + Lwx(t, σ)(4.19)

+ (cγ(σ) − c(σ)) · ∇σv(t, σ
x)(4.20)

+ ∂xc(σ) · w(t, σx)(4.21)

+ (∂xc(σ) − ∂xcγ(σ)) · ∇σv(t, σ
x) = 0 .(4.22)
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From Lemma 4.4 we have estimates for the terms involving ∇σv(t, .) (notice that
the lemma essentially gives the estimate of ||∇σv(t, .)||∞). Furthermore, from the
definition of rates c(x, σ) and cγ(x, σ) direct calculation (similar to that used in the
proof of Lemma 4.4) yields the estimate

||c − cγ ||∞ = O
( q

L

)
,(4.23)

which allows us to control (4.20) and (4.22). Term (4.21) is treated in the same way
as a similar term in the proof of Lemma 4.4. Hence for all x ∈ ΛN we obtain

∂twx(t, σ) + Lwx(t, σ) + O(1/L)
∑

|z−x|≤L

wx(z, σx) ≤ O(q/L)||∂xv(t, .)||∞ .

Similarly, as in the proof of Lemma 4.4, we complete the proof by summing over
x ∈ ΛN and applying Gronwall’s inequality.

Since we are comparing the process {σt}t≥0 with the process {γt}t≥0, which is
defined only up to the equivalence given by the projection operator T, we have to
establish the uniqueness of solutions for initial data satisfying the assumption (A1).

Lemma 4.6. Let φ ∈ L∞(SN ), ψ ∈ L∞(Sc
M,q) be test functions satisfying (A1).

Assume that v(t, γ) is the solution of the final value problem

∂tv + Lγv = 0 , v(T, γ) = φ(γ) = ψ(Tγ);(4.24)

then for all γ, γ′ ∈ SN such that Tγ = Tγ′

v(t, γ) = v(t, γ′) for all t ≤ T .(4.25)

Proof. For convenience we write v(t, γ) = v(t,Tγ). Given a configuration γ ∈
SN we can reconstruct an arbitrary configuration γ′ ∈ SN such that Tγ′ = Tγ by
considering a permutation π : ΛN → ΛN , π = (π1, . . . , πM ) such that

πk : Ck → Ck , k = 1, . . . ,M .

The action of π on the configuration space is defined in a natural way γ′ = γ ◦ π, or
equivalently γ′(x) = γ(πx). Since the permutation does not change the total spin in
the cell we have Tγ ◦ π = Tγ. Hence we write v(t, γ′) = v(t, γ ◦ π) and v(T, γ ◦ π) =
v(T, γ) = ψ(Tγ). It is sufficient to show that the function u(t, γ) ≡ v(t, γ ◦ π) is a
solution of (4.24). From the uniqueness of solutions to (4.24) we conclude immediately
that u(t, γ) = v(t, γ). From the definition of the generator Lγ we have

∂tv(t, γ ◦ π) +
∑

k∈Λc
M

∑
x∈Ck

cγ(x, γ ◦ π)(v(t, (γ ◦ π)x) − v(t, γ ◦ π)) = 0 .(4.26)

Recall the definition of the rate cγ

cγ(x, γ) = d0(1 − γ(x)) + d0γ(x)e−βŪ(k(x),Tγ) ,

and denote cγ(x, γ) by Cγ(γ(x), k,Tγ) to emphasise the dependence on γ(x), k, and
η = Tγ only. Thus the inner summation in (4.26) becomes∑

x∈Ck

Cγ(γ ◦ π, k,Tγ)(v(t, (γ ◦ π)x) − v(t, γ ◦ π)) .(4.27)
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On the other hand the definition of spin-flip dynamics leads to

(γ ◦ π)x(z) =

{
γ(πz), z �= x,
1 − γ(πx), z = x,

while γ(πx)(πz) =

{
γ(πz), z �= x ,
1 − γ(πx), z = x .

(4.28)

Hence we obtain

(γ ◦ π)x(z) = γ(πx)(πz) = (γπx ◦ π) (z) ,(4.29)

and substituting to the expression (4.27) leads to∑
x∈Ck

Cγ(γ(πx), k,Tγ)(v(t, (γ ◦ π)x) − v(t, γ ◦ π))

=
∑
x∈Ck

Cγ(γ(πx), k,Tγ)(v(t, γπx ◦ π) − v(t, γ ◦ π))

=
∑
y∈Ck

Cγ(γ(y), k,Tγ)(v(t, γy ◦ π) − v(t, γ ◦ π))

=
∑
y∈Ck

Cγ(γ(y), k,Tγ)(u(t, γy) − u(t, γ)) .

Thus we have shown that

∂tu(t, γ) +
∑

k∈Λc
M

∑
x∈Ck

cγ(x, γ)(u(t, γx) − u(t, γ)) = 0 .

Recalling the definition of u(t, γ) we obtain that v(t, γ ◦ π) also solves (4.24). The
uniqueness of solutions to (4.24) implies that v(t, γ ◦π) = v(t, γ) for all γ or v(t, γ′) =
v(t, γ) for all γ′ such that Tγ′ = Tγ.

Now we can formulate and prove the weak error estimate that allows us to compare
the microscopic process and its coarse-level approximation. We estimate the weak
error on the microscopic level by comparing the microscopic process and its synthetic
process.

Theorem 4.7 (weak error). Let φ ∈ L∞(SN ) be a test function (observable) on
the microscopic space satisfying (A1) and let ({γt}t≥0,Lγ) be the synthetic Markov
process (in the sense of Definition 4.3) of the microscopic process ({σt}t≥0,L) with
the initial condition σ0 = S; then the weak error satisfies, for 0 < T < ∞,

|ES [φ(σT )] − ES [φ(γT )]| ≤ CT

( q

L

)2

,(4.30)

where the constant CT is independent of q and L but depends on T .
Proof. The two ingredients of the proof, the Feynman–Kac formula and the

martingale property, follow from the standard properties of Markov processes (see,
for example, [25]). If we define, for the microscopic process {σt}t≥0 defined by the
generator L, the function

u(t, S) = E [φ(σT ) |σt = S] ,

then from the Feynman–Kac formula with the zero potential it follows that the func-
tion u(t, S) solves the final value problem

∂tu + Lu = 0 , u(T, .) = φ , t < T .(4.31)
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On the other hand the martingale property implies that for any smooth function
v(t, S) and the process {γt}t≥0 with the generator Lγ we have

ES [v(T, γT )] = ES [v(0, γ0)] +

∫ T

0

ES [(∂s + Lγ)v(s, γs)] ds .

The definition of u(t, S) leads to the representation of the error |ES [φ(σT )]−ES [φ(γT )]|
by ew = |ES [u(0, S)] − ES [u(T, γT )]| and hence

ew =

∣∣∣∣∣
∫ T

0

ES [(∂s + Lγ)u(s, γs)] ds

∣∣∣∣∣ .
The function u(t, S) solves the equation ∂tu = −Lu. Thus we obtain

ES [φ(σT ) − φ(γT )] =

∫ T

0

ES [Lγu(t, γt) − Lu(t, γt)]dt

=

∫ T

0

ES

[ ∑
x∈ΛN

(c(x, γt) − cγ(x, γt)) ∂xu(t, γt)

]
dt .

We split the summation
∑

x∈ΛN
which gives us

ES [φ(σT ) − φ(γT )] =

∫ T

0

ES

⎡
⎣ ∑
k∈Λc

M

∑
x∈Ck

(c(x, γt) − cγ(x, γt))∂xu(t, γt)

⎤
⎦dt

=

∫ T

0

ES

⎡
⎣ ∑
k∈Λc

M

∑
x∈Ck

γt(x)(e−βU(x,γt) − e−βŪ(k(x),Tγt))(∂kv(t,Tγt) + Rq,L
T (x))

⎤
⎦dt .

Here we need to replace ∂xu by ∂xv, where v solves the final value problem (4.31) with

L replaced by Lγ . From Lemma 4.5 we know that the error term Rq,L
T (x) = ∂xu(t, γ)−

∂xv(t, γ) is controlled by O(q/L) in ||·||∞. Furthermore, Lemma 4.6 guarantees that
with the final condition φ which satisfies assumption (A1) the solution depends only on
Tγ and hence we can replace the discrete difference ∂xv by the difference ∂kv(t, η) ≡
v(t, η + δk) − v(t, η), where η = Tγ. Next we expand the exponentials to obtain

Γ(k, γ) ≡
∑
x∈Ck

βγ(x)e−βŪ(k(x),Tγ)

(
Δ(Ū , U) +

1

2
β2Δ2(Ū , U) + O

(
β3Δ3(Ū , U)

))
,

and we recast the error representation into

ES [φ(σT ) − φ(γT )]

=

∫ T

0

ES

⎡
⎣ ∑
k∈Λc

M

Γ(k, γt)∂kv(t,Tγt) +
∑

x∈ΛN

(c(x, γt) − cγ(x, γt))R
q,L
T (x)

⎤
⎦ dt

=

∫ T

0

ES

⎡
⎣q ∑

k∈Λc
M

∂kv(t, ηt) E
[
Γ(k, γ)

∣∣Tγ = ηt
]⎤⎦ dt(4.32)

+

∫ T

0

ES

[ ∑
x∈ΛN

(c(x, γt) − cγ(x, γt))R
q,L
T (x)

]
dt .(4.33)
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Assumption (A1) and Lemma 4.4 imply that the term q
∑

k∈Λc
M
∂kv(t, ηt) is bounded.

To estimate the conditional expectation we use the property of the reconstruction
operator for the process {γt}t≥0, in particular on each cell γt(x) is reconstructed from
ηt(k) by assuming a “local” equilibrium and distributing γt(x) uniformly in the cell
Ck(x). Using this property we can compute the conditional expectation explicitly and
obtain for l �= k

E

[ ∑
x∈Ck

γ(x)Δ(Ū , U)
∣∣Tγ = η

]
= ηkηl

∑
x∈Ck
y∈Cl

(
J(x− y) − J̄kl

)
= 0 .

Similarly we handle the case l = k and conclude that, after averaging, the first-order
term Δ(Ū , U) in Γ(k, γ) vanishes. We recall (see (3.3)) that

Δ(Ū , U) ≡ Ū(k(x),Tγ) − U(x, γ) = O
( q

L

)
,

and hence we can estimate (4.32) by O(q2/L2). For the term (4.33) we use the

estimate
∑

x∈ΛN
|Rq,L

T (x)| ∼ O(q/L) from Lemma 4.5 and the Hölder inequality

ES

[ ∑
x∈ΛN

(c(x, γt) − cγ(x, γt))R
q,L
T (x)

]
≤ ||c − cγ ||∞ES

[ ∑
x∈ΛN

|Rq,L
T (x)|

]
.

The first term on the right-hand side is estimated from (4.23) by C(q/L) and hence
the left-hand side behaves as O(q2/L2). Combining the estimates of (4.32) and (4.33)
we conclude the proof.

Using the estimate for the synthetic process and its reconstruction from the coarse-
grained process {ηt}t≥0 we can compare the projected process {Tσt}t≥0 and the
coarse-grained process {ηt}t≥0 also on the coarse level. The weak error for observables
on the coarse space is also natural in simulations where we usually project finer
simulations on the coarse level and use estimators for the coarse processes.

Corollary 4.8. Let ψ ∈ L∞(Sc
M,q) be a test function on the coarse level

such that there exists a test function φ ∈ L∞(SN ) satisfying (A1) with the property
ψ(Tσ) = φ(σ). Given the initial configuration σ0 we define the coarse configura-
tion η0 = Tσ0. Assume the microscopic process ({σt}t≥0,L) with the initial condi-
tion σ0 and the approximating coarse process ({ηt}t≥0, L̄c) with the initial condition
η0 = Tσ0; then the weak error satisfies, for 0 < T < ∞,

|ES [ψ(TσT )] − ES [ψ(ηT )]| ≤ CT

( q

L

)2

,(4.34)

where the constant CT is independent of q and L but depends on T .
We conclude this section with a brief remark on regimes of applicability and

limitations of the derived coarse-grained approximation. In the introduction we men-
tioned a few examples of physically relevant problems where the CGMC method is
applicable. However, a closer inspection of the estimate in Theorem 4.7 reveals fur-
ther regimes of validity for the approximation beyond the smallness of the ratio q/L.
More specifically, we note that at high temperatures, i.e., β � 1, the error terms are
small. Thus CGMC provides a good approximation even if the involved potentials
are of a short range. Furthermore, in the presence of a strong external field, |h| � 1,
the CGMC dynamics also provide a good approximation even for short-range interac-
tions. In such a case we have (almost uniform) clusters of 0’s or 1’s, hence with large
probability σ(·) ≈ η(·)/q ≈ 0, or 1; therefore, EΔ(Ū , U) � 1, and hence the error in
Theorem 4.7 is small.
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5. Numerical simulations. We use the CGMC described and analyzed in the
previous sections for efficient simulations in the spin systems that undergo phase
transitions; for the implementation details we refer to [19]. Within the context of
spin-flip dynamics a typical example is nucleation of spatial regions of a new phase or
a transition from one phase (all spins equal to zero) to another (all spins equal to one).
In such simulations the emphasis is on the pathwise properties of the coarse-grained
process so that the switching mechanism is simulated efficiently while approximation
errors are controlled. We compare simulations on the microscopic level q = 1 with
those performed on different levels of coarse-graining hierarchy parametrized by q.

The qualitative behavior of the Ising model with a long-range potential can be
understood from the mean-field approximation of the equilibrium total coverage c(σ).
Below the critical temperature the Gibbs measure is not unique (in the thermody-
namic limit N → ∞) and two phases can coexist. When the energy landscape is
probed by changing the external field h we observe nonuniqueness of the equilibrium
coverage. The fluctuations allow for transitions between the equilibrium which leads
to nucleation of regions with a different phase. Changing the external field h makes
the original phase unstable and a switching occurs—the system transforms into the
other equilibrium configuration.

The parameters in the simulations have been chosen as follows: We use a uniform
finite range potential for all examples presented. We simulate a finite lattice with a
total of N = 1000 microscopic nodes and allow a potential interaction range of 2L+1
for L = 100. We choose the constant d0 = 1 so that ca = 1 and cd = 1. Hence in this
case the critical value βc is given by βcJ0 = 4. If βJ0 > βcJ0 = 4, then the system
is in the phase transition regime and the two phases can coexist. In this region we
typically observe a transition from one phase (e.g., zero (low) coverage) to the other
phase (e.g., full coverage). For the phase transition examples we fix βJ0 = 6 > βcJ0.
The simulations become difficult when β � βc and there is no external field h applied.
We note that the coarse-graining algorithm will not perform well close to the critical
point βc when h = 0. In the numerical studies we first investigate approximation
properties of the CGMC algorithms for certain global quantities.

Coverage: We define the coverage ct to be the process computed as the spatial
mean

ct(σt) =
1

N

∑
x∈ΛN

σt(x) , cqt (ηt) =
1

qM

∑
l∈Λc

M

ηt(k) .

First we present, in Figure 5.1, a simulation for the coverage in the absence of
phase transitions where we see a remarkable pathwise agreement. Time evolution
of the coverage at the phase transition regime, βJ0 = 6, is depicted in Figure 5.2
for different values of q. Note that the case q = 1000, m = 1 which corresponds to
the mean-field approximation (“over coarse-grained” interactions) does not follow the
phase transition path of the other simulations. On the other hand the agreement in the
results is extremely good for the remaining values of q. Furthermore, these numerical
results indicate pathwise (strong) approximation of the microscopic process by the
coarse-grained process. This observation suggests a stronger error control than the
relative entropy estimate provided by Proposition 4.1.

To quantify the error behavior we calculate two errors between the exact stochastic
process ct and its coarse approximation cqt at the level of coarse-graining q. We define
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Fig. 5.1. Relaxation dynamics. Comparison of microscopic (q = 1) and coarse-grained (q = 10)
simulations. The plot depicts a short time simulation in order to calibrate the code and compare to
Figure 4 from [19].

Fig. 5.2. Time series of the coverage cqt . Simulations for different coarse-graining ratios are
shown in the phase transition regime. The case q = 1000, m = 1 (mean-field approximation)
shows significant discrepancy. Parameters used: potential radius length L = 100, βJ0 = 6, d0 = 1,
c0 = .072.

the weak error ew[c] and the strong error es[c], respectively:

ew[c] =

∫ T

0

|E [ct] − E [cqt ]| dt , es[c] =

∫ T

0

E [|Tct − cqt |]dt .

The expected values are estimated by empirical means and the integral in time by the
piecewise constant quadrature.

The simulations allow us to estimate the convergence rate for both errors. The
rates in the case of fixed parameters L = 100, d0 = 1.0, c0 = 0.07, and βJ0 = 6
on the lattice of the size N = 1000 are depicted in Figure 5.3. Note that we need
to eliminate the statistical error, arising from approximation of expected values by
empirical means. However, as seen in Figure 5.3 the estimator of the rate converges
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Fig. 5.3. Estimated weak ew[c] and strong es[c] errors. We compare the exact process ct, q = 1
with coarse approximations cqt , q = 10, 25, 50, and 100. The simulation parameters were fixed at
L = 100, d0 = 1, c0 = .07, βJ0 = 6 > βcJ0, and the lattice size N = 1000. The convergence
rates depicted are estimated by the linear best fit on the logarithmic scale. The statistical error or
dependence of the estimates on the number of realizations is depicted in the right figure.

Table 5.1

Relative strong error es[c] in the presence of an external field defined by c0. Comparisons are
made for different values of the interaction radius L and different coarse-graining levels q. Size of
the lattice fixed at N = 1000.

c0 L q = 5 q = 10 q = 20
100 .0591 .0733 .1134

.07 40 .0820 .0880 .1113
20 .1508 .2214 .1832
100 .0186 .0563 .0480

.09 40 .0678 .0749 .1064
20 .1760 .1767 .1812
100 .0010 .0010 .0025

1 40 .0036 .0040 .0054
20 .0016 .0043 .0065

as the number of realizations tends to infinity.
Since the coarse-grained Hamiltonian neglects higher order corrections arising

from the fluctuations on fine scales, one may expect that the approximation is poor if
q/L is not very small. This is certainly true at the critical point (i.e., β = βc and h = 0)
but further from the critical point the approximation properties are improved. This
is demonstrated in Table 5.1, where the simulations were performed in the presence
of different (large) external fields. The relative error becomes small even for fairly
crude coarse-graining q = 20 in the case of shorter interaction radii L.

Mean time to reach phase transition: One quantity of interest that is calculated
from the simulations is the mean time τ̄T = E [τT ] until the coverage reaches C+

in its phase transition regime (see Figure 5.2). The random exit time is defined as
τT = inf{t > 0 | ct ≥ C+}. We estimate the probability distributions ρτ and ρqτ
from the simulations. We record a phase transition at the time τ̄T when the coverage
exceeds the threshold value C+ = 0.9. The relative error for the estimated mean
time τ̄T at different levels q is tabulated in Table 5.2 together with estimated relative
entropy for the random variable τT . In Figure 5.4 we plot approximations of the
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Table 5.2

Approximation of τ̄T , R
(
ρqτ |T∗ρτ

)
and relative error. Measurements based on averaging over

10000 realizations for each q.

L q τ̄T R
(
ρqτ |T∗ρτ

)
Rel. Err. CPU [s]

100 1 532 0.0 0 309647
100 2 532 0.003 0.01% 132143
100 4 530 0.001 0.22% 86449
100 5 534 0.003 0.38% 58412
100 10 536 0.004 0.82% 38344
100 20 550 0.007 3.42% 16215
100 25 558 0.010 4.91% 7574
100 50 626 0.009 17.69% 4577
100 100 945 0.087 77.73% 345
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x 10
−3

Non−dim time

PDFs for q=1, 10, 20, 50

q=1, mean  =537
q=10, mean  =543
q=20 mean  =555
q=50 mean  =630
Cont. PDF

Fig. 5.4. Probability density function (PDFs) comparisons between different coarse-graining
levels q. The estimated mean times for each PDF are shown in the figures. All PDFs comprised of
10000 samples and the histogram is approximated by 100 bins.

probability density functions (PDFs) of τT and compare them for different values
of q.

Nucleation: The nucleation of a new phase is a typical phenomenon in the regime
where β > βc. Essentially, there exist two equilibria (phases). Random fluctuations
will induce transitions from one state to another by overcoming energy barriers that
separate the equilibria. We investigate approximation of the pathwise behavior on the
configuration space for nucleation of a new phase. Two different initial configurations
are used.

Test case I: The initial state is at the metastable equilibrium where the coverage is
zero. The fluctuations will cause the transition to the full coverage equilibrium which
is stable due to the external applied field. We present only qualitative comparison in
the series of snapshots (Figure 5.5) of the phase transition from the uniform (zero)
initial coverage to the full coverage. We observe a striking pathwise agreement on the
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Fig. 5.5. Snapshots of the transition from zero initial spatial distribution. Comparisons between
the microscopic q = 1 and two coarse-grained simulations q = 10 and q = 50. The interaction radius
is set to L = 200 while total nodes are N = 10000.

configuration space for relatively large values of q compared to the interaction radius
L. However, as the ratio q/L increases the corresponding coarse-grained process
lags behind, which is also demonstrated in the expected values of transition times.
Such behavior suggests that fluctuations at regions with uniform states are well-
approximated by a highly coarse-grained process while finer resolution is necessary
for resolving nucleation of new phases through islands.

Test case II: We have already documented the pathwise agreement of the ap-
proximating dynamics under both transition and relaxation cases. In this example
we examine the spinodal decomposition phenomenon at the phase transition regime,
βJ0 = 6. We chose the initial state to be at a saddle point of the energy surface,
i.e., the mean coverage is set to 0.5. Snapshots of the spatial distribution of spins are
presented in Figure 5.6. Under all four dynamics examined, q = 1, 5, 10, and 20, we
observe complete spatial pathwise agreement. Over time the total coverage may fall
towards zero or rise towards one in which case it will remain there since we are at
the phase transition regime where these represent stable equilibria. The application
of Theorem 4.7 for this case is not immediately obvious as the constant in the error
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Fig. 5.6. Snapshots of the transition from the initial state with the mean coverage at 0.5.
Comparisons between the microscopic q = 1 and coarse-grained simulations q = 5, 10 and q = 20.
The interaction radius is set to L = 100, the external field c0 = 0.0492, d0 = 1, and the total number
of lattice sites N = 1000.

estimate depends exponentially on the final time. On the other hand it was shown in
[10] that in the case of Kac potentials the phases appear at length scales of the order
logL as L → ∞. Thus the error at spinodal decomposition times is controlled by a
term of the order O(q2/L).
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LOCKING-FREE OPTIMAL DISCONTINUOUS GALERKIN
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Abstract. In this paper, we consider the so-called hp-version of discontinuous Galerkin methods
for Timoshenko beams. We prove that, when the numerical traces are properly chosen, the methods
display optimal convergence uniformly with respect to the thickness of the beam. These methods
are thus free from shear locking. We also prove that, when polynomials of degree p are used, all the
numerical traces superconverge with a rate of order h2p+1/p2p+1. Numerical experiments verifying
the above-mentioned theoretical results are shown.
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1. Introduction. In this paper, we present the first rigorous analysis of discon-
tinuous Galerkin (DG) methods for the Timoshenko beam model [24]

dw̄(x̄)

dx̄
= θ̄(x̄) − T̄ (x̄)

(ḠĀ)(x̄)
,

dθ̄(x̄)

dx̄
=

M̄(x̄)

(ĒĪ)(x̄)
,

dM̄(x̄)

dx̄
= T̄ (x̄),

dT̄ (x̄)

dx̄
= q̄(x̄)

for all x̄ ∈ Ω̄ := (0, L). Here, the unknowns are the transverse displacement w̄, the
rotation of the transverse cross-section of the beam θ̄, the bending moment M̄ , and the
shear force T̄ . The material and geometrical properties of the beam are characterized
by the shear modulus Ḡ, the cross-section area Ā, the Young modulus Ē, and the
moment of inertia Ī. The remaining data of the problem are the transverse load, q̄,
and the boundary conditions which we take to be

w̄(0) = w̄0, θ̄(0) = θ̄0, w̄(L) = w̄L, and θ̄(L) = θ̄L.

The main motivation for considering this simple, one-dimensional model is that it
constitutes a stepping stone towards the more challenging goal of devising DG methods
for shells. The construction of numerical methods for shells is delicate because, as
the thickness of the shell decreases to zero, the numerical method can exhibit what is
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known in the engineering literature as shear and membrane locking. Mathematically,
this is reflected in the deterioration of the convergence properties of the method as
the thickness becomes small. Since some numerical methods for the Timoshenko
beam model exhibit (shear) locking (as the thickness of the beam goes to zero), it is
instructive to devise locking-free DG methods for this model before considering shells.

A considerable amount of effort has been devoted to the understanding and res-
olution of shear and membrane locking in structures. Considering the nature of the
problem, it is understandable that such effort originated in engineering applications
and was first documented in the engineering literature. The seminal publication in
the area, by Zienkiewicz, Taylor, and Too [28], documents the difficulty related to
shear effects and uses the so-called “reduced integration” technique to mitigate the
problem. The physical understanding of the problem was critical to devise a remedy,
and the resulting technique (reduced integration) is to this day widely used in vari-
ous commercial software. The term “shear locking” appears to have been coined by
Hughes, Taylor, and Kanoknukulchai [13] in the context of plate analysis.

In parallel with developments related to shear locking, researchers struggled with
similar difficulties caused by membrane effects, manifesting themselves in curved
structures, such as arches and shells; see, for example, Ashwell and Sabir [4], Lee
and Pian [14], and Parisch [17]. A more thorough explanation of those effects was
provided by Stolarski and Belytschko [21], who also introduced the term “membrane
locking.” They subsequently showed that in some models of curved structures there
is a delicate interaction between shear and membrane effects [22].

Over the last two decades or so, there has been a flurry of research activities
dealing with shear and membrane locking, and a large number of publications have
appeared. Several variations of the known approaches and a number of new ones were
developed and described in literature within that time. While related to this work,
those approaches address the problem of locking somewhat differently from what we
describe here; the interested reader is therefore referred to [23] for a review of many
of them. For a locking-free finite element method for shells we refer to Arnold and
Brezzi [2], and to Arnold, Brezzi, and Marini [3] for a recently uncovered family of
locking-free DG methods for the Reissner–Mindlin plates.

While deeply rooted in physical attributes of the analyzed phenomena, locking is
essentially a mathematical problem and its challenge was undertaken by mathemati-
cians early on. Arnold [1] proved that shear locking continuous finite element methods
can become locking-free if they are modified by the reduced integration technique. His
method of proving error estimates independent of the thickness follows from an equiv-
alence between certain mixed methods and the reduced integration technique; for a
discussion of this equivalence in a more general setting we refer to [16]. In [15], Li ana-
lyzed the p- and hp-versions of the continuous finite element method and proved error
estimates independent of the thickness of the beam. These versions of the method
take advantage of the extra degrees of freedom gained by increasing the polynomial
degree of the approximation. In [25], [26], and [27], Zhang considered circular arch
problems. Here shear locking (and also membrane locking) is again an issue when the
arch is thin. Indeed, if the primal form of the method is used where the only unknowns
are the displacement and the rotation, both p- and hp-versions exhibit locking. On
the other hand, if the shear force is introduced as an additional unknown, along with
the membrane forces, and a mixed formulation is employed, then both versions can be
made free from locking. Following an approach similar to that of Arnold’s, Zhang [25],
[26], [27] was able to prove error estimates independent of the thickness of the arch.
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In [10], the DG methods for the Timoshenko beams were introduced and sufficient
conditions that ensure the existence and uniqueness of their approximate solutions
were proved. Moreover, preliminary numerical experiments were obtained which indi-
cated that, when polynomials of degree p are used, the optimal order of convergence
of p + 1 is achieved for the h-version; exponential convergence for the p-version of a
DG method was also obtained numerically. Later, in [8], the fact that all the numer-
ical traces of the h-version of the DG method superconverge with order 2 p + 1 was
uncovered, and a local postprocessing resulting in a uniformly accurate solution of
order 2 p + 1 was devised and numerically tested. These results hold uniformly with
respect to the thickness of the beam. In this paper, we put all the above-mentioned
numerical results on firm mathematical ground.

The rest of the paper is organized as follows. In section 2, we describe a large class
of DG methods and briefly discuss the existence and uniqueness of their approximate
solution. Then, we pick a particular DG method for which we state and discuss the
main results of our a priori error analysis. This DG method is particularly difficult to
analyze due to that fact that it has practically no jump-stabilization terms associated
to the interelement boundaries. Section 3 is devoted to the proof of those results
and section 4 to some extensions of the main results. Numerical results verifying
the theoretical results are presented in section 5. We end in section 6 with some
concluding remarks.

2. Main results.

2.1. The dimensionless form of the model. To carry out our analysis, we
nondimensionalize the equations of the model. We set x = x̄/L, Ω = (0, 1), w(x) =
w̄(x̄)/L, w0 = w̄0/L, w1 = w̄L/L, θ0 = θ̄0, θ1 = θ̄L. Suppose that there exist four
constants a∗, b∗, E∗, and G∗ such that

C1 ≤ a∗

ā(x̄)
,

b∗

b̄(x̄)
,

E∗

Ē(x̄)
,

G∗

Ḡ(x̄)
≤ C2 ∀ x̄ ∈ Ω̄,(2.1)

where ā(x̄) and b̄(x̄) are the depth and thickness of the beam at the point x̄, respec-
tively. We further introduce A∗ := a∗b∗ and I∗ := a∗(b∗)3/12 and then set M(x) =
M̄(x̄)L/(E∗I∗), T (x) = T̄ (x̄)L2/(E∗I∗), (EI)(x) = (ĒĪ)(x̄)/(E∗I∗), (GA)(x) =
(ḠĀ)(x̄)/(G∗A∗), and q(x) = q̄(x̄)L3/(E∗I∗). We then rewrite the equations as

dw

dx
= θ − d2 T

GA
,

dθ

dx
=

M

EI
,

dM

dx
= T,

dT

dx
= q in Ω,(2.2)

where

w(0) = w0, w(1) = w1, θ(0) = θ0, and θ(1) = θ1.(2.3)

Here,

d2 :=
E∗I∗

G∗A∗L2
=

E∗

12G∗

(
b∗

L

)2

.(2.4)

Thus the parameter d is proportional to the thickness of the beam to its length, and
for small d the equations (2.2) model a thin beam; if the numerical method is not
properly devised, shear locking might occur when the parameter d goes to zero. For
further discussion of the locking effects in the finite element method, we refer the
reader to Babuška and Suri [5].
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2.2. General DG methods. To define the DG methods, we follow [10]. We
begin by partitioning the computational domain into intervals. Given the set of nodes
Eh := {xi}Ni=0, where 0 = x0 < x1 < · · · < xN−1 < xN = 1, we set Ii := (xi−1, xi),
hi := xi − xi−1 and h := max1≤i≤N hi.

The approximate solution (Th,Mh, θh, wh) given by the DG method is sought in
the finite dimensional space V p1

h × V p2

h × V p3

h × V p4

h , where

V p
h := {v : Ωh �→ R : v|Ij ∈ P p(Ij), j = 1, . . . , N}

and P p(K) is the set of all polynomials on K of degree not exceeding p. It is deter-
mined by requiring that

− (wh, v
′
1)Ωh

+ 〈ŵh, [[v1 n]]〉Eh
= (θh, v1)Ωh

− d2 (Th/GA, v1)Ωh
,(2.5a)

− (θh, v
′
2)Ωh

+ 〈θ̂h, [[v2 n]]〉Eh
= (Mh/EI, v2)Ωh

,(2.5b)

− (Mh, v
′
3)Ωh

+ 〈M̂h, [[v3 n]]〉Eh
= (Th, v3)Ωh

,(2.5c)

− (Th, v
′
4)Ωh

+ 〈T̂h, [[v4 n]]〉Eh
= (q, v4)Ωh

(2.5d)

hold for all vi ∈ V pi

h for i = 1, 2, 3, 4. Here, Ωh = ∪j=1,...,NIj and

(u, v)Ωh
:=

N∑
j=1

(u, v)Ij , where (u, v)Ij :=

∫
Ij

u(x)v(x) dx.

Moreover, we introduce

〈R, [[un]]〉Eh
:=

N∑
j=0

R(xj) [[un]](xj),

where R is any function defined on the set of nodes Eh and [[un]] is the jump of
function u across nodes which is defined as follows:

[[un]](xj) =

⎧⎪⎨
⎪⎩
−u(0+) for j = 0,

−u(x+
j ) + u(x−

j ) for 0 < j < N,

+u(1−) for j = N.

Here, u(x±
j ) := limε↓0 u(xj ± ε).

To complete the definition of the method, we have to define the numerical traces
(T̂h, M̂h, θ̂h, ŵh) at the nodes. We assume that the general form of these traces is as
follows. For xi ∈ E ◦

h := {x1, x2, . . . , xN−1}, we take

ŵh = {{wh }} + C11[[wh n]] + C12[[θh n]] + C13[[Mh n]] + C14[[Th n]],

θ̂h = {{ θh }} + C21[[wh n]] + C22[[θh n]] + C23[[Mh n]] + C24[[Th n]],

M̂h = {{Mh}} + C31[[wh n]] + C32[[θh n]] + C33[[Mh n]] + C34[[Th n]],

T̂h = {{ Th }} + C41[[wh n]] + C42[[θh n]] + C43[[Mh n]] + C44[[Th n]],

(2.6)

where {{ϕ}}(xi) := 1
2 (ϕ(x+

i ) + ϕ(x−
i )). At x = 0, we take

ŵh(0) = w0,

θ̂h(0) = θ0,

M̂h(0) = Mh(0+) + C31(0)(w0 − wh(0+)) + C32(0)(θ0 − θh(0+)),

T̂h(0) = Th(0+) + C41(0)(w0 − wh(0+)) + C42(0)(θ0 − θh(0+)).

(2.7)
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And at x = 1,

ŵh(1) = w1,

θ̂h(1) = θ1,

M̂h(1) = Mh(1−) + C31(1)(wh(1−) − w1) + C32(1)(θh(1−) − θ1),

T̂h(1) = Th(1−) + C41(1)(wh(1−) − w1) + C42(1)(θh(1−) − θ1).

(2.8)

The definition of the DG method is now complete.
This method has a unique solution provided the parameters Cij , i, j = 1, 2, 3, 4,

and the polynomial degrees pi, i = 1, 2, 3, 4, are suitably chosen. The following
theorem proven in [10] gives sufficient conditions for this to happen.

Theorem 2.1 (existence and uniqueness of the DG approximation). Consider
the DG method defined by the weak formulation (2.5) and the numerical traces (2.6),
(2.7), and (2.8). Assume that

C21 = C43, −C22 = C33, C24 = C13, C31 = C42, C34 = C12, −C11 = C44,(2.9)

and that

C14, −C23, −C32, C41 ≥ 0.(2.10)

Then the method has a unique solution in the following cases:
Case 1: C41,−C32 > 0 on Eh, p2 ≥ p3 − 1, and p1 ≥ p4 − 1.
Case 2: Cij = 0 on E ◦

h , except C11 = C22 = −C33 = −C44 = 1/2, C41(1) >
0, −C32(1) > 0, p2 ≥ p3, and p1 ≥ p4.
Case 3: p2 ≥ p3 + 1 and p1 ≥ p4 + 1.

Note that thanks to equations (2.9), only 10 of the 16 coefficients Cij are inde-
pendent. Moreover, the condition (2.10) states that four of those must have a specific
sign. This last condition can be better understood thanks to the so-called discrete
energy equality.

Proposition 2.2 (discrete energy identity [10]). Assume that the hypotheses of
Theorem 2.1 hold. Then

(Mh/EI,Mh)Ωh
+ d2 (Th/GA, Th)Ωh

+ Θjumps = (q, wh)Ωh
+ bc + Θbc,h,(2.11)

where

bc = w0 Th(0+) − w1 Th(1−) − θ0 Mh(0+) + θ1 Mh(1−),

Θbc,h = w0

[
C41(0)wh(0+) − C31(0)θh(0+)] + θ0[C42(0)wh(0+) − C32(0)θh(0+)

]
+ w1

[
C41(1)wh(1−) − C31(1)θh(1−)] + θ1[C42(1)wh(1−) − C32(1)θh(1−)

]
,

Θjumps =
∑

xi∈Eh

(
C14[[Th n]]2 − C23[[Mh n]]2 − C32[[θh n]]2 + C41[[wh n]]2

)
(xi),

where we set C14 = C23 = 0 at the boundary nodes.
We can thus see that the four coefficients that appear in the condition (2.10)

are precisely those associated with the energy produced by the jumps of the approx-
imations; they can also be thought of as penalizing the corresponding jumps. As a
consequence, if we penalize the jumps “too much,” the DG method might behave
like a typical continuous method and might lock: It would produce very bad approx-
imations for small values of d. On the contrary, if these penalization parameters are
chosen appropriately, the DG method will produce a very good approximation.
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We illustrate this phenomenon in Figure 1. Therein, we display the exact solution
corresponding to q(x) = ex, (EI)(x) = ex, (GA)(x) = e−x, together with homoge-
neous boundary conditions w0 = w1 = θ0 = θ1 = 0. We also show approximations by
two of the DG methods just described. Both methods take

C11(x) = C22(x) = −C33(x) = −C44(x) = 1/2,

at all interior nodes x ∈ E ◦
h , and all the remaining coefficients equal to zero, except

for C32 and C41. The first DG method strongly penalizes the jumps of the vertical
displacement w and the rotation θ, since it takes

−C32(x) = C41(x) = 106

for all nodes. We can see in Figure 1, left column, that, as expected, it locks. The
second method, however, does not penalize those jumps at all since it takes

C32(x) = C41(x) = 0

at all the nodes except at x = 1. At x = 1, it takes

−C32(1) = C41(1) = 16/h

to enforce the Dirichlet boundary condition there. In Figure 1, right column, we can
see that the method produces an excellent approximation of the exact solution. In
this paper, we study this method in detail; other shear-locking-free DG methods are
briefly discussed in section 4.

2.3. A priori error estimates. In this section, we present and briefly discuss
a priori error estimates for the DG method obtained by setting

C11 = C22 = −C33 = −C44 = 1/2

at all interior nodes,

−C32(1) = C41(1) = c
p

hN
,

and all of the remaining coefficients to zero. Here c is a positive real number and
p := max{1, p}. We also assume that (Th,Mh, θh, wh) ∈ [V p

h ]4, where p ≥ 0. A simple
computation gives that, for an interior node xj ∈ E ◦

h ,

ŵh(xj) = wh(x−
j ), M̂h(xj) = Mh(x+

j ),

θ̂h(xj) = θh(x−
j ), T̂h(xj) = Th(x+

j ),
(2.12)

that, at x = 0,

ŵh(0) = w0, M̂h(0) = Mh(0+),

θ̂h(0) = θ0, T̂h(0) = Th(0+),
(2.13)

and that, at x = 1,

ŵh(1) = w1, M̂h(1) = Mh(1−) − c
p

hN
(θh(1−) − θ1),

θ̂h(1) = θ1, T̂h(1) = Th(1−) + c
p

hN
(wh(1−) − w1).

(2.14)
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Fig. 1. The case d = 10−3 and h = 1/8: Exact (dashed line) and DG approximation (solid line
and, for the numerical traces, +). Left column: −C32 = C41 = 106 on all the nodes. Right column:
C32 = C41 = 0 on all the nodes except at x = 1, and −C32(1) = C41(1) = 16/h = 128.
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A similar DG method for convection-diffusion problems was introduced in [11]; its
hp-version was analyzed first in [6] and its superconvergence properties proved later
in [9].

We have chosen to analyze this method for two main reasons. The first is that
it gives better error estimates in the energy seminorm (see section 4.3), the second is
that it is more difficult to analyze. To give a brief idea why it is so, we note that for
this DG method the discrete energy associated with the jumps is

Θjumps = c
p

hN

(
[[θh n]]2(1) + [[wh n]]2(1)

)
.

We thus see that the DG method penalizes the jumps of wh and θh only at x = 1.
This penalization weakly enforces the boundary conditions at x = 1 and ensures
existence and uniqueness of the approximate solution; see Case 2 of Theorem 2.1.
Note, however, that no such penalization is enforced at any other node of the mesh,
and in particular at the border x = 0. This lack of extra stabilization is what renders
the analysis of this method more challenging and interesting than that of the other
DG methods. Technical details of how the analysis differs and becomes simpler when
stabilization is present at all nodes of the mesh are given in Celiker [7].

To state our main results we need to introduce some notation. We begin by
setting

|(u1, u2, u3, u4)|2Ah
:= (u2/EI, u2)Ωh

+ d2 (u1/GA, u1)Ωh

+ c
p

hN

(
[[u3 n]]2(1) + [[u4 n]]2(1)

)(2.15)

for all (u1, u2, u3, u4) ∈ [H1(Ωh)]4. Since we can rewrite the discrete energy identity
of Proposition 2.2 as

|(Th,Mh, θh, wh)|2Ah
= (q, wh)Ωh

+ bc + Θbc,h,

we call this seminorm, the energy seminorm. The estimate of the approximation
error in this seminorm plays a fundamental role in our error analysis.

Next, we define Green’s functions for the problem under consideration. For any
superindex � = T,M, θ or w, and any point y ∈ (0, 1), we define (ϕ�

T,y, ϕ
�
M,y, ϕ

�
θ,y, ϕ

�
w,y)

as the solution of

−
dϕ�

w,y

dx
= ϕ�

θ,y − d2
ϕ�
T,y

GA
, −

dϕ�
θ,y

dx
=

ϕ�
M,y

EI
, −

dϕ�
M,y

dx
= ϕ�

T,y, −
dϕ�

T,y

dx
= 0

(2.16)

in (0, y) ∪ (y, 1) that satisfies the boundary conditions

ϕ�
w,y(0) = ϕ�

w,y(1) = ϕ�
θ,y(0) = ϕ�

θ,y(1) = 0(2.17)

and the jump conditions

[[ϕ�
w,y n]](y) = δ� T , [[ϕ�

θ,y n]](y) = δ�M , [[ϕ�
M,y n]](y) = δ� θ, [[ϕ�

T,y n]](y) = δ�w.
(2.18)

Here, δab = 1 if a = b and δab = 0 otherwise. We also define, for z ∈ {0, 1},

(ϕ�
T,z, ϕ

�
M,z, ϕ

�
θ,z, ϕ

�
w,z) := lim

y→z
(ϕ�

T,y, ϕ
�
M,y, ϕ

�
θ,y, ϕ

�
w,y).
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Note that this implies that the function (ϕ�
T,z, ϕ

�
M,z, ϕ

�
θ,z, ϕ

�
w,z) is identically equal to

zero for z ∈ {0, 1} and � = θ, w.
We denote by ‖ · ‖s,Ωh

and | · |s,Ωh
the usual norm and seminorm in Hs(Ωh),

respectively. We set

| (T,M, θ, w) |s,p,Ωh
:= |T |min(p,s)+1,Ωh

+ |M |min(p,s+1)+1,Ωh

+ | θ |min(p,s+2)+1,Ωh
+ |w |min(p,s+1)+1,Ωh

.

The use of this seminorm is motivated by the fact that if the load q is assumed to
belong to Hs(Ωh) and the functions EI and GA are very smooth in Ωh, then (2.2),
(2.3), and (2.4) indicate that the solution (T,M, θ, w) belongs to the Sobolev space
Hs+1(Ωh) ×Hs+2(Ωh) ×Hs+3(Ωh) ×Hs+2(Ωh).

Finally, for any real number k ≥ 0, we define

|ϕ�
xi
|k,Ωh

:= max{|ϕ�
T,xi

|k,Ωh
, |ϕ�

M,xi
|k,Ωh

, |ϕ�
θ,xi

|k,Ωh
, |ϕ�

w,xi
|k,Ωh

},

where � = T, M, θ or w.
We are ready to state and discuss our main results.
Theorem 2.3. Assume that, for some s ≥ 0, (T,M, θ, w) belong to Hs+1(Ωh)×

Hs+2(Ωh) ×Hs+3(Ωh) ×Hs+2(Ωh). Set

e := (eT , eM , eθ, ew) = (T − Th,M −Mh, θ − θh, w − wh),

where (Th,Mh, θh, wh) is the approximation given by the DG method (2.5), (2.12),
(2.13), and (2.14) with p ≥ 1. Then, for small enough h or big enough p, we have
that

|e|Ah
≤ Cs

hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

,

and that

‖eT ‖0,Ωh
≤ Cs

hmin(p,s)+1

pmin(p,s)+1
(1 + |ϕT

xN
|p+1,Ωh

) | (T,M, θ, w) |s,p,Ωh
,

‖eM‖0,Ωh
+ ‖eθ‖0,Ωh

+ ‖ew‖0,Ωh
≤ Cs

hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

,

for some constant Cs independent of p, h, and d.
Our second result estimates the errors at each of the nodes.
Theorem 2.4. With the same hypotheses as those of Theorem 2.3, we have that

| êu(xi) | ≤ Cs
hmin(p,s)+p+1

pmin(p,s)+p+1
|ϕu

xi
|p+1,Ωh

| (T,M, θ, w) |s,p,Ωh

for u = T,M, θ or w and all the nodes xi.
Let us emphasize that (not reported) numerical experiments indicate that the

condition “small enough h or big enough p” in the results above seems to be un-
necessary. It stems from a technicality in our proof and, most probably, could be
removed.

Note that all of the estimates appearing in the above theorems show that, for
p ≥ 1, the DG method under consideration is locking-free because the constants
appearing on the right-hand side of all the estimates do not depend on the parameter
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d and because the seminorms appearing on the right-hand side of the estimates can
be bounded uniformly with respect to d. Similar results holds for p = 0; see section 4.

To see that the seminorms of the exact solution can be uniformly bounded with
respect to d, we note that the exact solution is given by

T (x) =

∫ x

0

q(r) dr + c1,

M(x) =

∫ x

0

∫ r

0

q(s) ds dr + c1x + c2,

θ(x) =

∫ x

0

1

EI(r)

[∫ r

0

∫ s

0

q(t) dt ds + c1r + c2

]
dr + c3,

w(x) =

∫ x

0

[∫ r

0

1

EI(s)

(∫ s

0

∫ t

0

q(u) du dt + c1s + c2

)
ds + c3

]
dr

− d2

[∫ x

0

1

GA(r)

(∫ r

0

q(s) ds + c1

)
dr

]
+ c4,

where c1, c2, c3, and c4 are integration constants to be determined by the bound-
ary conditions (2.3). Since EI and GA are piecewise very smooth functions of order
one, and d2 appears only as a factor in w(x), it is easy to see that the seminorms
|T |min(p,s)+1,Ωh

, |M |min(p,s+1)+1,Ωh
, | θ |min(p,s+2)+1,Ωh

, and |w |min(p,s+1)+1,Ωh
re-

main bounded as d → 0. A similar remark is valid for the seminorm |ϕu
xi
|p+1,Ωh

.
Note also that the above results imply that the h-version of the DG method

converges with the optimal order of p + 1 in the energy norm and in the L2-norm
for all variables. They also imply that all the numerical traces superconverge with
order 2 p + 1 at each node. This puts on firm mathematical ground the assumption
of superconvergence taken in [8].

In the p-version of the DG method, we have spectral convergence with a rate of
order p−s−1 for all the unknowns. In the case of a piecewise analytic function, by
using the approach used in, for example, [20], [18], [19], it is possible to prove that
the p-version of the DG method actually achieves exponential rates of convergence,

|(eT , eM , eθ, ew)|Ah
≤ Ce−bp,

and

‖eu‖0,Ωh
+ ‖êu‖L∞(Eh) ≤ Ce−bp

for u = T,M, θ or w, for some constants C and b independent of p and d.
Finally, let us point out that if the data E,G,A, and I are constants, then, for

p ≥ 3, Theorem 2.4 implies that, for any node xi,

êu(xi) = 0,

for u = T,M, θ or w. Indeed, in this case the Green’s functions are piecewise polyno-
mials of degree at most 3 and hence |ϕu

xi
|p+1,Ωh

= 0.

2.4. Sketch of the proofs. Next, we give a brief outline of the main steps of
our proofs. We proceed in three steps.

We begin by estimating the errors in the L2-norm in terms of the error in the
energy seminorm and the error in the numerical traces.
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Lemma 2.5. We have

‖ew‖0,Ωh
≤ Cs

(
|e|Ah

+ ‖eθ‖0,Ωh
+

hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

)
,

‖eθ‖0,Ωh
≤ Cs

(
|e|Ah

+
hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

)
,

‖eM‖0,Ωh
≤ Cs |e|Ah

,

‖eT ‖0,Ωh
≤ |êT (1)| + Cs

hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

.

Here Cs is a constant independent of p, h, and d.
Next, we show that the error in the numerical traces can be estimated in terms

of the error in the energy seminorm.
Lemma 2.6. For sufficiently small mesh-size h or sufficiently big polynomial

degree p, we have

| êu(xi) | ≤ Cs

(
|e|Ah

+
hmin(s,p)

pmin(s,p)
| (T,M, θ, w) |s,p,Ωh

)
hp+1

pp+1
|ϕu

xi
|p+1,Ωh

for u = T,M, θ or w and for all nodes xi. Here Cs is a constant independent of p, h,
and d.

Finally, we obtain an estimate of the error estimate in the energy seminorm.
Lemma 2.7. With the same notation as in Theorem 2.3, we have that

|e|Ah
≤ Cs

hmin(s,p)+1

pmin(s,p)+1
| (T,M, θ, w) |s,p,Ωh

.

Here Cs is a constant independent of p, h, and d.
It is now easy to see that Theorems 2.3 and 2.4 follow from the three above

lemmas.

3. Proofs. To prove the lemmas in the previous subsection, we rely, as expected,
on the error equations, namely,

− (ew, v
′
1)Ωh

+ 〈êw, [[v1 n]]〉Eh
= (eθ, v1)Ωh

− d2(eT /GA, v1)Ωh
,(3.1a)

− (eθ, v
′
2)Ωh

+ 〈êθ, [[v2 n]]〉Eh
= (eM/EI, v2)Ωh

,(3.1b)

− (eM , v′3)Ωh
+ 〈êM , [[v3 n]]〉Eh

= (eT , v3)Ωh
,(3.1c)

− (eT , v
′
4)Ωh

+ 〈êT , [[v4 n]]〉Eh
= 0(3.1d)

for any vi ∈ V p
h , i = 1, 2, 3, 4. They are easily obtained by noting that the exact

solution (T,M, θ, w) also satisfies the DG formulation (2.5).
We also rely on interpolation operators naturally associated with the numerical

traces of the method. For any u ∈ H1(Ωh), the function π±u ∈ V p
h is defined on the

element Ij by

(u− π±u, v)Ij = 0 ∀v ∈ P p−1(Ij) if p > 0,(3.2a)

(π−u)(x−
j ) = u(x−

j ), (π+u)(x+
j−1) = u(x+

j−1).(3.2b)

Finally, we use the following notation:

πe := (π+eT , π
+eM , π−eθ, π

−ew),(3.3a)

ξ := e − πe = (ξ+
T , ξ

+
M , ξ−θ , ξ−w ).(3.3b)
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3.1. Proof of Lemma 2.5. To prove Lemma 2.5, we begin by obtaining the
following representation formulas.

Lemma 3.1. Let ψ ∈ L2(Ωh) and define Ψ(x) :=
∫ x

0
ψ(s)ds. Then the following

expressions hold:

(ew, ψ)Ωh
= −

(
(ξ+

w )′, ξ+
Ψ

)
Ωh

+ ew(1−)ξ+
Ψ(1−) −

(
eθ − d2 eT

GA
, π+Ψ

)
Ωh

,(3.4a)

(eθ, ψ)Ωh
= −

(
(ξ+

θ )′, ξ+
Ψ

)
Ωh

+ eθ(1
−)ξ+

Ψ(1−) −
(eM
EI

, π+Ψ
)

Ωh

,(3.4b)

(eT , ψ)Ωh
= −

(
(ξ−T )′, ξ−Ψ

)
Ωh

+ êT (1)Ψ(1).(3.4c)

Proof. We only prove (3.4a) since the proofs of the other identities are similar.
We begin by using the trivial identity

(ew, ψ)Ωh
= (ew,Ψ

′)Ωh
= (ew, (ξ

+
Ψ)′)Ωh

+ (ew, (π
+Ψ)′)Ωh

.

Next, we obtain an expression for (ew, (π
+Ψ)′)Ωh

. Taking v1 = π+Ψ in the first error
equation (3.1), we get

(ew, ψ)Ωh
=(ew, (ξ

+
Ψ)′)Ωh

+ 〈êw, [[(π+Ψ)n]]〉Eh
−
(
eθ − d2 eT

GA
, π+Ψ

)
Ωh

= −
(
(ξ+

w )′, ξ+
Ψ

)
Ωh

+ ew(1−)ξ+
Ψ(1−) −

(
eθ − d2 eT

GA
, π+Ψ

)
Ωh

+ Θh,

where

Θh := (ew, (ξ
+
Ψ)′)Ωh

+ 〈êw, [[(π+Ψ)n]]〉Eh
+
(
(ξ+

w )′, ξ+
Ψ

)
Ωh

− ew(1−)ξ+
Ψ(1−).

It remains to be proven that Θh = 0. Integrating by parts the first term of the
right-hand side, we get

Θh = − ((ew)′, ξ+
Ψ)Ωh

+ 〈1, [[ew (ξ+
Ψ)n]]〉Eh

+ 〈êw, [[(π+Ψ)n]]〉Eh

+ ((ξ+
w )′, ξ+

Ψ)Ωh
− ew(1−)ξ+

Ψ(1−)

= − ((ew − ξ+
w )′, ξ+

Ψ)Ωh
− ew(0+)ξ+

Ψ(0+) + 〈1, [[ew (ξ+
Ψ)n]]〉E◦

h
+ 〈êw, [[(π+Ψ)n]]〉E◦

h
,

where

〈η, ζ〉E◦
h

:=

N−1∑
j=1

η(xj)ζ(xj).

Hence, by the definition of π±, (3.2),

Θh = 〈1, [[ew (ξ+
Ψ)n]]〉E◦

h
+ 〈êw, [[(π+Ψ)n]]〉E◦

h

= 〈1, [[ew (Ψ − π+Ψ)n]]〉E◦
h

+ 〈êw, [[(π+Ψ)n]]〉E◦
h

by definition of ξ+
Ψ ,

= 〈1, [[ew (Ψ − π+Ψ)n]]〉E◦
h

+ 〈êw, [[(π+Ψ − Ψ)n]]〉E◦
h

by the continuity of Ψ,

= 〈1, [[(ew − êw) (Ψ − π+Ψ)n]]〉E◦
h

= 0.

Indeed, for any interior node xj ,

[[(ew − êw) (Ψ − π+Ψ)n]](xj) = (ew(x−
j ) − êw(xj)) (Ψ(xj) − π+Ψ(x−

j ))

− (ew(x+
j ) − êw(xj)) (Ψ(xj) − π+Ψ(x+

j )) = 0,

since êw(xj) = ew(x−
j ) and π+Ψ(x+

j ) = Ψ(xj). This completes the proof.
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The proof of Lemma 2.5 now follows from Lemma 3.1 and the following proposi-
tion which contains the approximation results of the projection operators π±; see [20]
and, for example, [6] or [12].

Lemma 3.2. Let Ij ⊂ Ωh be an arbitrary element, and suppose that u ∈ Ht+1(Ij)
for some nonnegative real number t. Then

∥∥u− π±u
∥∥

0,Ij
+

hj

p

∥∥(u− π±u)′
∥∥

0,Ij
≤ Ct

hσ+1
j

pσ+1
|u|σ+1,Ij ,

|(u− π−u)(x+
j−1)| + |(u− π+u)(x−

j )| ≤ Ct

h
σ+1/2
j

pσ+1/2
|u|σ+1,Ij ,

where 0 ≤ σ ≤ min(p, t) for some constant Ct depending solely on t.
Proof of Lemma 2.5. Since all the estimates are obtained in a similar way, we

prove only the second. To do this, we take ψ = eθ in (3.4b) to obtain

‖eθ‖2
0,Ωh

= − ((θ − π+θ)′,Ψ − π+Ψ)Ωh
+ eθ(1

−)(Ψ − π+Ψ)(1−) − (eM/EI, π+Ψ)Ωh
,

where Ψ(x) =
∫ x

0
eθ(s)ds. Then

‖eθ‖2
0,Ωh

≤
∥∥(θ − π+θ)′

∥∥
0,Ωh

∥∥Ψ − π+Ψ
∥∥

0,Ωh
+ | eθ(1−) | | (Ψ − π+Ψ)(1−) |

+ ‖eM/EI‖0,Ωh

(
‖Ψ‖0,Ωh

+
∥∥Ψ − π+Ψ

∥∥
0,Ωh

)
.

By the approximation results in Lemma 3.2,

∥∥(θ − π+θ)′
∥∥

0,Ωh
≤ Ct

hσ

pσ
|θ|σ+1,Ωh

,
∥∥Ψ − π+Ψ

∥∥
0,Ωh

≤ Ct
h

p
|Ψ|1,Ωh

,

|(Ψ − π+Ψ)(1−)| ≤ Ct
h1/2

p1/2
|Ψ|1,Ωh

, ‖Ψ‖0,Ωh
≤ C|Ψ|1,Ωh

,

where 0 ≤ σ ≤ min(p, t), and by the definition of the seminorm |·|Ah
, (2.15),

|eθ(1−)| ≤ Ct
h1/2

p1/2
|e|Ah

, ‖eM/EI‖0,Ωh
≤ C |e|Ah

.

Hence, we get

‖eθ‖2
0,Ωh

≤Ct

(
|e|Ah

+
hσ+1

pσ+1
|θ|σ+1,Ωh

)
|Ψ|1,Ωh

,

and since |Ψ|1,Ωh
= ‖eθ‖0,Ωh

,

‖eθ‖0,Ωh
≤ Ct

(
|e|Ah

+
hσ+1

pσ+1
|θ|σ+1,Ωh

)

≤ Cs

(
|e|Ah

+
hmin(p,s+2)+1

pmin(p,s+2)+1
|θ|min(p,s+2)+1,Ωh

)
for σ = min(p, s + 2),

≤ Cs

(
|e|Ah

+
hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

)
,

and the estimate follows. This completes the proof of Lemma 2.5.
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3.2. Proof of Lemma 2.6. To prove this lemma we proceed in two steps. In
the first, we establish representation formulas for the errors in the numerical traces.
In the second, we use approximation results to estimate them.

Step 1. The error representation formulas. We begin by expressing the numerical
traces in terms of certain integrals involving the Green’s functions.

Lemma 3.3 (error representation formulas). Let xi be an arbitrary node and let
ϕu
w,xi

, ϕu
θ,xi

, ϕu
M,xi

, ϕu
T,xi

, for u = T,M, θ or w, be the functions defined by (2.16),
(2.17), and (2.18). Then

êu(xi) = ((θ − π−θ)′, π+ϕu
M,xi

− ϕu
M,xi

)Ωh
+ eθ(1

−) (π+ϕu
M,xi

− ϕu
M,xi

)(1−)

+ ((M − π−M)′, π+ϕu
θ,xi

− ϕu
θ,xi

)Ωh
+ ((T − π−T )′, π+ϕu

w,xi
− ϕu

w,xi
)Ωh

+ (eM/EI, π+ϕu
M,xi

− ϕu
M,xi

)Ωh
+ (eT , π

−ϕu
θ,xi

− ϕu
θ,xi

)Ωh
.

To prove this lemma we need a couple of auxiliary results. The first establishes a
relation between the errors in the numerical traces and the Green’s functions.

Lemma 3.4. Set

Θu
i := 〈êw, [[ϕu

T,xi
n]]〉Eh

+ 〈êθ, [[ϕu
M,xi

n]]〉Eh
+ 〈êM , [[ϕu

θ,xi
n]]〉Eh

+ 〈êT , [[ϕu
w,xi

n]]〉Eh
.

Then, we have

Θu
i = (ew, (v1 − ϕu

T,xi
)′)Ωh

+ 〈êw, [[(ϕu
T,xi

− v1)n]]〉Eh

+ (eθ, (v2 − ϕu
M,xi

)′)Ωh
+ 〈êθ, [[(ϕu

M,xi
− v2)n]]〉Eh

+ (eM , (v3 − ϕu
θ,xi

)′)Ωh
+ 〈êM , [[(ϕu

θ,xi
− v3)n]]〉Eh

+ (eT , (v4 − ϕu
w,xi

)′)Ωh
,+〈êT , [[(ϕu

w,xi
− v4)n]]〉Eh

+ (eθ, v1 − ϕu
T,xi

)Ωh
+ (eM/EI, v2 − ϕu

M,xi
)Ωh

+ (eT , v3 − ϕu
θ,xi

)Ωh
− d2(eT /GA, v1 − ϕu

T,xi
)Ωh

for any vi ∈ V p
h , i = 1, 2, 3, 4.

Proof. Since we can write Θu
i = Υu

i + Δu
i , where

Υu
i := 〈êw, [[v1 n]]〉Eh

+ 〈êθ, [[v2 n]]〉Eh
+ 〈êM , [[v3 n]]〉Eh

+ 〈êT , [[v4 n]]〉Eh
,

Δu
i := 〈êw, [[(ϕu

T,xi
− v1)n]]〉Eh

+ 〈êθ, [[(ϕu
M,xi

− v2)n]]〉Eh

+ 〈êM , [[(ϕu
θ,xi

− v3)n]]〉Eh
+ 〈êT , [[(ϕu

w,xi
− v4)n]]〉Eh

,

we only have to find an expression for Υu
i .

To do that, we proceed as follows. First, note that by the definition of Green’s
functions, we have

− (ew, (ϕ
u
T,xi

)′)Ωh
= 0,

− (eθ, (ϕ
u
M,xi

)′)Ωh
= (eθ, ϕ

u
T,xi

)Ωh
,

− (eM , (ϕu
θ,xi

)′)Ωh
= (eM/IE, ϕu

M,xi
)Ωh

,

− (eT , (ϕ
u
w,xi

)′)Ωh
= (eT , ϕ

u
θ,xi

− d2 ϕu
T,xi

/GA)Ωh
.

We add these equations and then subtract the result from the addition of all the error
equations (3.1). After rearranging terms, we obtain the expression for Υu

i we were
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seeking, namely,

Υu
i = 〈êw, [[v1 n]]〉Eh

+ 〈êθ, [[v2 n]]〉Eh
+ 〈êM , [[v3 n]]〉Eh

+ 〈êT , [[v4 n]]〉Eh

= (ew, (v1 − ϕu
T,xi

)′)Ωh
+ (eθ, (v2 − ϕu

M,xi
)′)Ωh

+ (eM , (v3 − ϕu
θ,xi

)′)Ωh
+ (eT , (v4 − ϕu

w,xi
)′)Ωh

+ (eθ, v1 − ϕu
T,xi

)Ωh
+ (eM/EI, v2 − ϕu

M,xi
)Ωh

+ (eT , v3 − ϕu
θ,xi

)Ωh
− d2(eT,xi

/GA, v1 − ϕu
T,xi

)Ωh
.

The expression for Θu
i immediately follows. This completes the proof.

The second result is needed to evaluate the expression for Θu
i .

Lemma 3.5. For any functions e, ϕ in H1(Ωh), set

R = (e, (π±ϕ− ϕ)′)Ωh
+ 〈ê∓, [[(ϕ− π±ϕ)n]]〉Eh

,

where ê∓(xj) = e(x∓
j ) for j = 1, . . . , N − 1. Then

R = ((e− π∓e)′, π±ϕ− ϕ)Ωh
− 〈(e− ê∓), (π±ϕ− ϕ)n〉∂Ω± ,

where

〈(e− ê−), (π+ϕ− ϕ)n〉∂Ω+ = (e(1−) − ê−(1)) (π+ϕ− ϕ)(1−),

〈(e− ê+), (π−ϕ− ϕ)n〉∂Ω− = −(e(0+) − ê∓(0)) (π−ϕ− ϕ)(0+).

Proof. After a simple integration by parts, we get

R = − (e′, π±ϕ− ϕ)Ωh
+ 〈1, [[(e− ê∓)(π±ϕ− ϕ)n]]〉Eh

=((e− π∓e)′, π±ϕ− ϕ)Ωh
− 〈1, [[(e− ê∓)(π±ϕ− ϕ)n]]〉Eh

,

by the orthogonality properties of the operators π±, (3.2a).
Now, by the definition of the operators π± at the borders of the intervals, (3.2b),

and by the definition of the numerical trace ê∓, we have

−〈1, [[(e− ê∓)(π±ϕ− ϕ)n]]〉Eh
= −〈(e− ê∓), (π±ϕ− ϕ)n〉∂Ω± ,

and the result follows. This completes the proof.
We are now ready to prove our representation result.
Proof of Lemma 3.3. We begin by noting that, by the definition of the Green’s

functions, (2.17) and (2.18), we have

Θu
i = êu(xi).

On the other hand, setting (v1, v2, v3, v4) = (π+ϕu
T,xi

, π+ϕu
M,xi

, π−ϕu
θ,xi

, π−ϕu
w,xi

) in
Lemma 3.4 ,we get

êu(xi) = (ew, (π
+ϕu

T,xi
− ϕu

T,xi
)′)Ωh

+ 〈êw, [[(ϕu
T,xi

− π+ϕu
T,xi

)n]]〉Eh

+ (eθ, (π
+ϕu

M,xi
− ϕu

M,xi
)′)Ωh

+ 〈êθ, [[(ϕu
M,xi

− π+ϕu
M,xi

)n]]〉Eh

+ (eM , (π−ϕu
θ,xi

− ϕu
θ,xi

)′)Ωh
+ 〈êM , [[(ϕu

θ,xi
− π−ϕu

θ,xi
)n]]〉Eh

+ (eT , (π
−ϕu

w,xi
− ϕu

w,xi
)′)Ωh

,+〈êT , [[(ϕu
w,xi

− π−ϕu
w,xi

)n]]〉Eh

+ (eθ, π
+ϕu

T,xi
− ϕu

T,xi
)Ωh

+ (eM/EI, π+ϕu
M,xi

− ϕu
M,xi

)Ωh

+ (eT , π
−ϕu

θ,xi
− ϕu

θ,xi
)Ωh

− d2(eT /GA, π+ϕu
T,xi

− ϕu
T,xi

)Ωh
.
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Now, by Lemma 3.5,

êu(xi) = ((ew − π−ew)′, π+ϕu
T,xi

− ϕu
T,xi

)Ωh
− 〈(ew − êw), (π+ϕu

T,xi
− ϕu

T,xi
)n〉∂Ω+

((eθ − π−eθ)
′, π+ϕu

M,xi
− ϕu

M,xi
)Ωh

− 〈(eθ − êθ), (π
+ϕu

M,xi
− ϕu

M,xi
)n〉∂Ω+

((eM − π+eM )′, π+ϕu
θ,xi

− ϕu
θ,xi

)Ωh
− 〈(eM − êM ), (π+ϕu

θ,xi
− ϕu

θ,xi
)n〉∂Ω−

((eT − π+eT )′, π+ϕu
w,xi

− ϕu
w,xi

)Ωh
− 〈(eT − êT ), (π+ϕu

w,xi
− ϕu

w,xi
)n〉∂Ω−

+ (eθ, π
+ϕu

T,xi
− ϕu

T,xi
)Ωh

+ (eM/EI, π+ϕu
M,xi

− ϕu
M,xi

)Ωh

+ (eT , π
−ϕu

θ,xi
− ϕu

θ,xi
)Ωh

− d2(eT /GA, π+ϕu
T,xi

− ϕu
T,xi

)Ωh
.

Since the operators π± reproduce polynomials of degree p (see (3.2)) and since
π+ϕu

T,xi
= ϕu

T,xi
(notice that ϕu

T,xi
is a constant function), we obtain

êu(xi) = ((θ − π−θ)′, π+ϕu
M,xi

− ϕu
M,xi

)Ωh
− 〈(eθ − êθ), (π

+ϕu
M,xi

− ϕu
M,xi

)n〉∂Ω+

((M − π+M)′, π+ϕu
θ,xi

− ϕu
θ,xi

)Ωh
− 〈(eM − êM ), (π+ϕu

θ,xi
− ϕu

θ,xi
)n〉∂Ω−

((T − π+T )′, π+ϕu
w,xi

− ϕu
w,xi

)Ωh
− 〈(eT − êT ), (π+ϕu

w,xi
− ϕu

w,xi
)n〉∂Ω−

+ (eM/EI, π+ϕu
M,xi

− ϕu
M,xi

)Ωh
+ (eT , π

−ϕu
θ,xi

− ϕu
θ,xi

)Ωh
.

Finally, by the definition of the numerical traces at ∂Ω, (2.13) and (2.14), we have
that

〈(eθ − êθ), (π
+ϕu

M,xi
− ϕu

M,xi
)n〉∂Ω+ = eθ(1

−) (π+ϕu
M,xi

− ϕu
M,xi

)(1−),

〈(eM − êM ), (π+ϕu
θ,xi

− ϕu
θ,xi

)n〉∂Ω− = 0,

〈(eT − êT ), (π+ϕu
w,xi

− ϕu
w,xi

)n〉∂Ω− = 0,

and hence,

êu(xi) = ((θ − π−θ)′, π+ϕu
M,xi

− ϕu
M,xi

)Ωh
+ eθ(1

−) (π+ϕu
M,xi

− ϕu
M,xi

)(1−)

+ ((M − π−M)′, π+ϕu
θ,xi

− ϕu
θ,xi

)Ωh
+ ((T − π−T )′, π+ϕu

w,xi
− ϕu

w,xi
)Ωh

+ (eM/EI, π+ϕu
M,xi

− ϕu
M,xi

)Ωh
+ (eT , π

−ϕu
θ,xi

− ϕu
θ,xi

)Ωh
.

This completes the proof.
Step 2. Estimating the errors in the numerical traces. Here, we apply the approx-

imation results of Lemma 3.2 to the representation formulas of Lemma 3.3 to prove
Lemma 2.6.

Proof of Lemma 2.6. From the representation formulas in Lemma 3.3, we get

|êu(xi)| ≤ H1 + H2 + H3,

where

H1 = |((π−θ − θ)′, π+ϕu
M,xi

− ϕu
M,xi

)Ωh
| + |((π+M −M)′, π−ϕu

θ,xi
− ϕu

θ,xi
)Ωh

|
+ |((π+T − T )′, π−ϕu

w,xi
− ϕu

w,xi
)Ωh

|,
H2 = |(eM/EI, π+ϕu

M,xi
− ϕu

M,xi
)Ωh

+ |eθ(1−)(π+ϕu
M,xi

− ϕu
M,xi

)(1−)|,
H3 = |(eT , π−ϕu

θ,xi
− ϕu

θ,xi
)Ωh

|.

Let us estimate H1. By using the approximation inequalities of Lemma 3.2, we
immediately obtain that

H1 ≤ Cs
hmin(s,p)

pmin(s,p)
| (T,M, θ, w) |s,p,Ωh

hp+1

pp+1
|ϕu

xi
|p+1,Ωh

.
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To estimate H2, we use the fact that, from the definition of the seminorm |·|Ah
, (2.15),

‖eM/EI‖0,Ωh
≤ C |e|Ah

, |eθ(1−)| ≤ C(h/p)1/2 |e|Ah

to get

H2 ≤ Cs |e|Ah

hp+1

pp+1
|ϕu

xi
|p+1,Ωh

.

Here, we have used once again the approximation results of Lemma 3.2.
The estimate of H3 term is more delicate. To estimate it, we proceed as follows.

We begin by noting that, by (3.4c) of Lemma 3.1, we have that

(eT , ψ)Ωh
= −

(
(ξ−T )′, ξ−Ψ

)
Ωh

+ êT (1)Ψ(1)

for any ψ ∈ L2(Ωh). Taking ψ = π−ϕu
θ,xi

−ϕu
θ,xi

and using the approximation results
in Lemma 3.2 we obtain

H3 ≤ Cs
hσ

pσ
|T |σ+1,Ωh

h

p
|Ψ|1,Ωh

+ |êT (1)|
∥∥π−ϕu

θ,xi
− ϕu

θ,xi

∥∥
0,Ωh

,

and since

|Ψ|1,Ωh
= |Ψ′|0,Ωh

=
∥∥π−ϕu

θ,xi
− ϕu

θ,xi

∥∥
0,Ωh

≤ C
hp+1

pp+1
|ϕu

θ,xi
|p+1,Ωh

for some constant C independent of p, h, and d, we get

H3 ≤ Cs

(
hmin(p,s)+1

pmin(p,s)+1
|T |min(p,s)+1,Ωh

+ |êT (1)|
)

hp+1

pp+1
|ϕu

θ,xi
|p+1,Ωh

with σ = min(p, s) in Lemma 3.2.
Thus, we get

| êu(xi) | ≤ Cs

(
|e|Ah

+ |êT (1)| + hmin(s,p)

pmin(s,p)
| (T,M, θ, w) |s,p,Ωh

)
hp+1

pp+1
|ϕu

xi
|p+1,Ωh

.

We clearly see that the estimates for u = M, θ,w follow from that of u = T . Such an
estimate immediately follows if we assume that

Cs
hp+1

pp+1
sup

y∈(0,1)

|ϕT
y |p+1,Ωh

≤ κ < 1,

that is, if h is sufficiently small or p sufficiently big. This completes the proof.

3.3. Proof of Lemma 2.7. Lemma 2.7 follows immediately from the following
auxiliary results.

Lemma 3.6. We have e = ξ + πe and |πe|2Ah
= J1 + J2 + J3, where

J1 = −
(
ξ+
M/EI, π+eM

)
Ωh

− d2
(
ξ+
T /GA, π+eT

)
Ωh

,

J2 = ξ+
M (1−)(π−eθ)(1

−) − ξ+
T (1−)(π−ew)(1−),

J3 =
(
ξ−θ , π+eT

)
Ωh

−
(
ξ+
T , π

−eθ
)
Ωh

.
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Lemma 3.7. We have

|ξ|Ah
≤Cs

hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

,

|J1 | ≤Cs
hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

|πe|Ah
,

|J2 | ≤Cs
hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

|πe|Ah
,

|J3 | ≤Cs
h2 min(p,s)+3

p2 min(p,s)+3
| (T,M, θ, w) |2s,p,Ωh

+ Cs |πe|Ah

hmin(p,s)+2

pmin(p,s)+3/2
| (T,M, θ, w) |s,p,Ωh

.

We prove these results in several steps.
Step 1. Preliminaries. We begin by rewriting the method in its classical mixed

formulation. Thus, if we add (2.5a) to (2.5d) and subtract (2.5b) and (2.5c) from the
resulting expression, we obtain, after rearranging terms,

(Mh/EI, v2)Ωh
+ d2 (Th/GA, v1)Ωh

− (wh, v
′
1)Ωh

+ 〈ŵh, [[v1 n]]〉Eh
− (Th, v

′
4)Ωh

+ 〈T̂h, [[v4 n]]〉Eh

+ (θh, v
′
2)Ωh

− 〈θ̂h, [[v2 n]]〉Eh
+ (Mh, v

′
3)Ωh

− 〈M̂h, [[v3 n]]〉Eh

− (θh, v1)Ωh
+ (Th, v3)Ωh

= (q, v4)Ωh
.

Inserting the definition of the numerical traces, (2.12), (2.13), and (2.14), and moving
to the right-hand side all the terms containing boundary data, we obtain

Ah(Th,Mh, θh, wh; v1, v2, v3, v4) = bh(v1, v2, v3, v4) ∀vi ∈ V p
h , i = 1, 2, 3, 4,

where, writing Ah for Ah(u1, u2, u3, u4; v1, v2, v3, v4),

Ah := (u2/EI, v2)Ωh
+ d2(u1/GA, v1)Ωh

+ c
p

hN

[
u4(1

−) v4(1
−) + u3(1

−) v3(1
−)

]
+ Sh(u1, u2, u3, u4; v1, v2, v3, v4),

(3.5)

and, writing Sh for Sh(u1, u2, u3, u4; v1, v2, v3, v4),

Sh := −(u4, v
′
1)Ωh

− (u1, v
′
4)Ωh

+

N−1∑
j=1

(
u−

4 [[v1 n]] + u+
1 [[v4 n]]

)
(xj)

− u1(0
+) v4(0

+) + u1(1
−) v4(1

−)

+ (u3, v
′
2)Ωh

+ (u2, v
′
3)Ωh

−
N−1∑
j=1

(
u−

3 [[v2 n]] + u+
2 [[v3 n]]

)
(xj)

− u2(0
+) v3(0

+) + u2(1
−) v3(1

−)

− (u3, v1)Ωh
+ (u1, v3)Ωh

.
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Finally,

bh(v1, v2, v3, v4) := (q, v4)Ωh
+ c

p

hN

[
w1 v4(1

−) − θ1 v3(1
−)

]
+ w0 v1(0

+) − w1 v1(1
−) − θ0 v2(0

+) + θ1 v2(1
−).

The first property we are going to use is the so-called Galerkin orthogonality,
namely,

Ah(eT , eM , eθ, ew; v1, v2, v3, v4) = 0 ∀vi ∈ V p
h ,(3.6)

and it follows directly from the error equations (3.1). The second property is that

|v|Ah
= Ah(v,v)1/2 for any v ∈ [V p

h ]4.(3.7)

Indeed, a simple calculation shows that Sh(v1, v2, v3, v4; v1, v2, v3, v4) ≡ 0.
Step 2. Proof of the auxiliary Lemma 3.6. We have

|πe|2Ah
= Ah(πe; πe) by (3.7),

= Ah(e − ξ; πe) by (3.3b),

= −Ah(ξ; πe) by (3.6),

= −
(
ξ+
M/EI, π+eM

)
Ωh

− d2
(
ξ+
T /GA, π+eT

)
Ωh

+ ξ+
M (1−)(π−eθ)(1

−) − ξ+
T (1−)(π−ew)(1−)

+
(
ξ−θ , π+eT

)
Ωh

−
(
ξ+
T , π

−eθ
)
Ωh

by (3.2),

= J1 + J2 + J3,

as claimed. This completes the proof of Lemma 3.6.
Step 3. Estimate of |ξ|Ah

. We have

|ξ|2Ah
=
(
ξ+
M/EI, ξ+

M

)
Ωh

+ d2
(
ξ+
T /GA, ξ+

T

)
Ωh

+ c
p

hN

(
[[ξ−θ n]]2(1) + [[ξ−w n]]2(1)

)
=
(
ξ+
M/EI, ξ+

M

)
Ωh

+ d2
(
ξ+
T /GA, ξ+

T

)
Ωh

,

by definition of π−, (3.2). Hence,

|ξ|Ah
≤ Cs

(∥∥ξ+
M

∥∥
0,Ωh

+
∥∥ξ+

T

∥∥
0,Ωh

)
≤ Cs

hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

for some constant Cs depending solely on s, by the approximation results of Lemma 3.2
with σ = min(p, s) for T and σ = min(p, s + 1) for M . This completes the proof of
the estimate.

Step 4. Estimate of J1. To estimate J1, we proceed as follows:

|J1 | ≤ |
(
ξ+
M/EI, π+eM

)
Ωh

| + d2|
(
ξ+
T /GA, π+eT

)
Ωh

|
≤ C

∥∥ξ+
M

∥∥
0,Ωh

|πe|Ah
+ Cd

∥∥ξ+
T

∥∥
0,Ωh

|πe|Ah

≤ Cs
hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

|πe|Ah
,

by the approximation results of Lemma 3.2 with σ = min(p, s) for T and σ =
min(p, s + 1) for M .
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Step 5. Estimate of J2. The estimate of J2 is obtained in a similar way. We have

|J2 | ≤ | ξ+
M (1−)(π−eθ)(1

−) | + | ξ+
T (1−)(π−ew)(1−) |

≤
(
| ξ+

M (1−) |2 + | ξ+
T (1−) |2

)1/2 (| (π−eθ)(1
−) |2 + | (π−ew)(1−) |2

)1/2
=

h
1/2
N

p1/2

(
| ξ+

M (1−) |2 + | ξ+
T (1−) |2

)1/2 |πe|Ah
by definition of |·|Ah

, (2.15),

≤ Cs
hmin(p,s)+1

pmin(p,s)+1
| (T,M, θ, w) |s,p,Ωh

|πe|Ah
,

by the approximation results of Lemma 3.2 with σ = min(p, s) for T and σ =
min(p, s + 1) for M .

Step 6. Estimate of J3. The estimate of this term requires a very delicate analysis
captured in the following auxiliary result.

Lemma 3.8. Assume that in the interval I = (a, b), we have, for all v ∈ P p(I),

(i) − (e, v′)I + ê(b) v(b) − ê(a) v(a) = (f, v)I ,

(ii) (ξ, v′)I = 0,

(iii) πe ∈ P p(I).

Then,

| (ξ, πe)I | ≤ C
h1/2

p1/2

(
h

p
‖ f ‖L∞(I) + min

c∈{a,b}
| ê(c) − πe(c) |

)
‖ ξ ‖0,I ,

where h = b− a and C is independent of h, p, and e.
Proof. By (iii), we can write πe = Pp−1e + α�p, where Pp−1 is the L2-projection

into P p−1(I), and �n(x) = Pn

(
x−(a+b)/2

h/2

)
, where Pn is the Legendre polynomial of

degree n. By (ii), this implies that

(ξ, πe)I = (ξ,Pp−1e + α�p)I = α (ξ, �p)I ,

and, since ‖ �p ‖2
0,I = h/(2 p + 1), we get

| (ξ, πe)I | ≤ |α |
(

h

2 p + 1

)1/2

‖ ξ ‖0,I ≤ |α | h
1/2

p1/2
‖ ξ ‖0,I .

It remains to estimate |α |.
Since | �p(c) | = 1, we immediately get that

α = �p(c)(−Pp−1e(c) + πe(c)).

This implies that to estimate α, we need to obtain an expression for Pp−1e(c). We
claim that, for c ∈ {a, b},

Pp−1e(x) = ê(c) − Pp−1gc(x) for x ∈ I,

where gc(x) =
∫ c

x
f(s) ds. Assuming that this is true, we obtain

|α | ≤ |Pp−1gc(c) | + |πe(c) − ê(c) |
≤ |Pp−1gc(c) − gc(c) | + |πe(c) − ê(c) |

≤ C
h

p
‖ f ‖L∞(I) + |πe(c) − ê(c) |,

and the result follows.
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It remains to prove the claim. Let us begin with the case c = a. Since, by (i),

−(e, v′)I + (ê(b) − ê(a)) v(b) + ê(a) (v(b) − v(a)) = (f, v)I ,

we get

(−e + ê(a), v′)I = (f, v)I − (ê(b) − ê(a)) v(b).

Setting v = 1 in (i), we obtain that

ê(b) − ê(a) = (f, 1)I ,

and so

(−e + ê(a), v′)I = (f, v − v(b))I = (ga, v
′)I ,

and the claim follows. The case c = b is proven in a similar way.
This completes the proof.
We are now ready to estimate J3 = (ξ−θ , π+eT )Ωh

− (ξ+
T , π

−eθ)Ωh
. Let us begin

by noting that

(ξ−θ , π+eT )Ωh
= 0.

To see this, notice that the previous lemma is satisfied with e = eT , ξ = ξ−θ , π = π+,
and f = 0, thanks to the error equation (3.1d), and that, by the definition of the
numerical trace êT we have that êT (xj) = eT (x+

j ) = π+eT (xj) for j = 0, . . . , N − 1.
This implies that

|J3 | ≤
N∑
j=1

| (ξ+
T , π

−eθ)Ij |.

To estimate each of the terms of the right-hand side, we use Lemma 3.8 once more.
By the error equation (3.1b), the result holds with e = eθ, ξ = ξ+

T , π = π− and
f = eM/EI. Hence,

| (ξ+
T , π

−eθ)Ij | ≤ C
h

1/2
j

p1/2

(
hj

p
‖ eM/EI ‖L∞(Ij) + Ξj

)
‖ ξ+

T ‖0,Ij ,

where Ξj := minc∈{xj−1,xj} | êθ(c) − π−eθ(c) |. Since Ξj = 0 for j = 1, . . . , N − 1, and
ΞN = eθ(1

−) = π−eθ(1
−), and since

‖ eM/EI ‖L∞(Ij) ≤ ‖ (M − π+M)/EI ‖L∞(Ij) + ‖π+eM/EI ‖L∞(Ij)

≤ Cs

h
min(p,s)+1/2
j

pmin(p,s)+1/2
|M |min(p,s+1)+1,Ij

+ Cs
p

h
1/2
j

‖π+eM ‖0,Ij ,

by the approximation result of Lemma 3.2 with σ = min(p, s + 1), we get

|J3 | ≤ Cs
hmin(p,s)+2

pmin(p,s)+2
|M |min(p,s+1)+1,Ωh

‖ ξ+
T ‖0,Ωh

+ Cs

(
h

p1/2
‖π+eM/EI ‖0,Ωh

+
h1/2

p1/2
|π−eθ(1

−) |
)

‖ ξ+
T ‖0,Ωh

≤ Cs

(
hmin(p,s)+2

pmin(p,s)+2
|M |min(p,s+1)+1,Ωh

+
h

p1/2
|πe|Ah

)
‖ ξ+

T ‖0,Ωh
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by the definition of the energy seminorm | · |Ah
, (2.15). Finally, using the approxima-

tion results of Lemma 3.2, we get

|J3 | ≤Cs
h2 min(p,s)+3

p2 min(p,s)+3
| (T,M, θ, w) |2s,p,Ωh

+ Cs |πe|Ah

hmin(p,s)+2

pmin(p,s)+3/2
| (T,M, θ, w) |s,p,Ωh

.

This completes the proof of Lemma 3.6 and hence that of our main results.

4. Extensions.

4.1. Uniform convergence for piecewise-constant approximations. In
the case of piecewise-constant approximation, p = 0, we obtain the following result.

Theorem 4.1. Assume that, for some s ≥ 0, (T,M, θ, w) belongs to Hs+1(Ωh)×
Hs+2(Ωh) ×Hs+3(Ωh) ×Hs+2(Ωh). Assume also that q ∈ L∞(Ωh). Set

e := (eT , eM , eθ, ew) = (T − Th,M −Mh, θ − θh, w − wh),

where (Th,Mh, θh, wh) is the approximation given by the DG method (2.5), (2.12),
(2.13), and (2.14) with p = 0. Then, for small enough h, we have that, for u = T,M, θ,
or w,

‖ eu ‖L∞(Ωh) +
c

h

(
| eθ(1−) | + | ew(1−) |

)
≤ Cs h

(
‖ q ‖L∞(Ωh) + | (T,M, θ, w) |s,0,Ωh

)
for some constant Cs independent of h and d.

This result implies that the DG method in its specific form, which we discussed
here, does not suffer from shear locking, even if it uses piecewise-constant approxi-
mation for all the unknowns. It also implies the unexpected superconvergence of the
approximations to w and θ superconverge at the border x = 1.

Proof. To prove this result, we only have to slightly modify the proof of our main
results. Indeed, we only have to modify the estimate of the terms J3 in Lemma 3.7.
We proceed in several steps.

Step 1. Estimate of J3. We estimate such a term as follows:

J3 = (ξ−θ , π+eT )Ωh
− (ξ+

T , π
−eθ)Ωh

=

N∑
j=1

(
(ξ−θ , eT (x+

j−1))Ij − (ξ+
T , eθ(x

−
j ))Ij

)
by definition of π±, (3.2),

=

N∑
j=1

(ξ−θ , 1)Ij êT (xj) −
N−1∑
j=1

(ξ+
T , 1)Ij êθ(xj) − (ξ+

T , 1)IN eθ(1
−),

by the definition of the numerical traces T̂h and θ̂h, (2.12)–(2.14). Hence

|J3 | ≤ Cs

(
‖êT ‖L∞(Eh) + ‖êθ‖L∞(Eh) + |πe|Ah

)
h (| θ |1,Ωh

+ |T |1,Ωh
)

≤ Cs

(
‖êT ‖L∞(Eh) + ‖êθ‖L∞(Eh) + |πe|Ah

)
h | (T,M, θ, w) |s,0,Ωh

,

by the definition of |·|Ah
, (2.15), and the approximation results of Lemma 3.2.
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Step 2. Estimate of | êu(xi) |. Combining the above estimate with the results of
Lemmas 3.6 and 3.7, we easily get

|e|Ah
≤ Cs h

(
‖êT ‖L∞(Eh) + ‖êθ‖L∞(Eh) + | (T,M, θ, w) |s,0,Ωh

)
.

Inserting this estimate into the estimate of Lemma 2.6, we get

| êu(xi) | ≤ Cs h
(
‖êT ‖L∞(Eh) + ‖êθ‖L∞(Eh) + | (T,M, θ, w) |s,0,Ωh

)
,

which implies that, for small enough h,

| êu(xi) | ≤ Cs h| (T,M, θ, w) |s,0,Ωh
.

Step 3. Estimate of ‖ eT ‖L∞(Ωh) and ‖ ew ‖L∞(Ωh). Let us begin by estimating
the error in T . For x ∈ Ij , we have

| eT (x) | = |T (x) − T (xj−1) + eT (x+
j−1) |

= |T (x) − T (xj−1) + êT (xj−1) |
≤ C h ‖T ′ ‖L∞(Ij) + | êT (xj−1) |,

and, since T ′ = q,

‖ eT ‖L∞(Ωh) ≤ C h
(
‖ q ‖L∞(Ωh) + | (T,M, θ, w) |s,0,Ωh

)
.

Now, let us estimate the error in w. For x ∈ Ij , j = 1, . . . , N − 1,

| ew(x) | = |w(x) − w(xj) + ew(x−
j ) |

= |w(x) − w(xj) + êw(xj) |
≤ C h ‖w′ ‖L∞(Ij) + | êT (xj−1) |,

and, since w′ = θ − d2 T/GA,

‖ ew ‖L∞(Ij) ≤ C h | (T,M, θ, w) |s,0,Ωh
.

It remains to consider the interval IN . It enough to show that ew(1−) is of order

h2. To do that, we note that, by the definition of T̂h(1),

ew(1−) =
h

c
(êT (1) − eT (1−)),

and hence,

| ew(1−) | ≤ C
h2

c

(
‖ q ‖L∞(Ωh) + | (T,M, θ, w) |s,0,Ωh

)
.

This implies that

‖ ew ‖L∞(IN ) ≤ C h ‖w′ ‖L∞(Ij) + | ew(1−) |,

and since w′ = θ − d2 T/GA,

‖ ew ‖L∞(IN ) ≤ C h | (T,M, θ, w) |s,0,Ωh
.

Step 4. Conclusion. The estimates of ‖ eM ‖L∞(Ωh), ‖ eθ ‖L∞(Ωh), and | eθ(1−) |
can be obtained in a similar way. This completes the proof.
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4.2. The hp-version of the method. It is straightforward to extend the
error analysis we have presented to the DG method that takes the approximation
(Th,Mh, θh, wh) on the interval Ij in the space P pj (Ij)×P pj (Ij)×P pj (Ij)×P pj (Ij).
It is also possible to choose different polynomial degrees for different variables in each
interval according to Theorem 2.1; see [10].

4.3. Two other families of locking-free DG methods. In this paper we have
analyzed a specific DG method, namely, the method which corresponds to Case 2
of Theorem 2.1. Reasons for concentrating on this particular case were given in
section 2.3. In this subsection we briefly mention theoretical results for DG methods
corresponding to Cases 1 and 3 of Theorem 2.1.

Given a polynomial degree p ≥ 0, let

C14(x) = −C23(x) = −C32(x) = C41(x) = c ∀x ∈ Eh

for some arbitrary positive number c independent of the mesh-size h or the polynomial
degree p. Suppose further that

(Cii(x) − 1/2)2 ≤ c for i = 1, 2, 3, 4,

C2
12(x), C2

13(x), C2
21(x), C2

24(x), C2
31(x), C2

34(x), C2
42(x), C2

43 ≤ c

for all x ∈ Eh.
Suppose that the polynomial degrees defining the DG method are such that pi = p

for i = 1, 2, 3, 4. Then, the method defines a unique approximate solution by Case 1 of
Theorem 2.1. Moreover, the method is free from shear locking. For these DG methods,
the order of convergence of the error in the energy seminorm is now smaller by 1/2,
both in h and in p; this is, however, a sharp estimate. The orders of convergence of
the errors in the L2-norm and those of the errors in the numerical traces remain the
same.

If we take p1 = p2 = p + 1 and p3 = p4 = p, then the existence and uniqueness
of the DG approximation is guaranteed by Case 3 of Theorem 2.1. These methods as
well are free from shear locking. On the other hand, although they have more degrees
of freedom, the orders of convergence remain the same as ones for the methods with
pi = p for i = 1, 2, 3, 4. This is simply due to the fact that θh and wh are still
being approximated by polynomials of degree p, even though Th and Mh are being
approximated by those of degree p+1. Once again, however, these estimates are sharp;
see [7].

5. Numerical results. In this section, we display numerical results verifying our
theoretical findings. For a set of numerical experiments verifying the superconvergence
predicted by Theorem 2.4 we refer to [8]. Therein, it was also shown how to post-
process the original DG solution in an element-by-element fashion to obtain a better
approximation which converges to the exact solution with order 2 p + 1 uniformly
throughout the domain, rather than just at the nodes of the mesh.

We solve the equations (2.2) with q(x) = ex, (EI)(x) = ex, (GA)(x) = e−x

together with the boundary conditions w0 = w1 = θ0 = θ1 = 0. To verify that the
DG method is locking-free, the thickness of the beam, d, is taken to be 10−2 and then
decreased to 10−16.

We consider two DG methods. The first is the one analyzed in full detail in this
paper; it is defined by the numerical traces (2.12)–(2.14). The second is a particular
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example of a class of DG methods analyzed in [7]. Its numerical fluxes are obtained
by setting

C14(x) = −C23(x) = −C32(x) = C41(x) = 1 ∀x ∈ Eh

and Cij = 0 at all nodes for all the remaining coefficients.
We display our results in Tables 1 through 4. Therein, p indicates the polynomial

degree we used to define the DG method, and “mesh = i” means we employed a
uniform mesh with 2i elements. We also display numerical rates of convergence which
are computed as follows. Let eu(i) denote the error where a mesh with 2i elements
has been employed to obtain the DG solution. Then the order of convergence, ri, at
level i is defined as

ri :=
log

( eu(i−1)
eu(i)

)
log 2

.

In Tables 1 and 2, we display the numerical results for the first DG method, for
d = 10−2 and d = 10−16, respectively. We see that the optimal rates of convergence
predicted by the error estimates given in section 2 are indeed achieved. As predicted
by our error estimates the DG method is completely robust with respect to this
parameter. In Tables 3 and 4, we display the numerical results for the second DG
method. We also see that the predicted orders of convergence are actually achieved.
Notice, in particular, that the energy seminorm converges with an order which is
smaller by 1/2, as expected.

Table 1

History of convergence for d = 10−2 for the first DG method.

|e|Ah
‖eT ‖0,Ωh

‖eM‖0,Ωh
‖eθ‖0,Ωh

‖ew‖0,Ωh

p mesh error order error order error order error order error order

3 1.21E-01 1.38 8.67E-02 0.81 2.35E-02 1.70 4.48E-03 2.15 1.43E-02 2.42
0 4 4.47E-02 1.44 5.40E-02 0.68 1.01E-02 1.22 1.27E-03 1.82 2.58E-03 2.44

5 1.63E-02 1.46 2.90E-02 0.90 4.95E-03 1.03 6.47E-04 0.97 4.93E-04 2.38
6 5.96E-03 1.45 1.48E-02 0.97 2.47E-03 1.00 3.40E-04 0.93 1.25E-04 1.97

3 3.50E-03 2.36 1.74E-03 2.09 1.66E-03 1.95 2.87E-04 2.54 1.84E-04 3.30
1 4 6.76E-04 2.37 4.27E-04 2.03 4.20E-04 1.98 7.05E-05 2.03 2.00E-05 3.20

5 1.33E-04 2.34 1.06E-04 2.01 1.06E-04 1.99 1.79E-05 1.98 2.88E-06 2.80
6 2.74E-05 2.28 2.65E-05 2.00 2.65E-05 2.00 4.51E-06 1.99 5.90E-07 2.29

3 4.31E-05 3.38 1.69E-05 2.99 1.68E-05 2.98 1.15E-05 3.01 3.62E-06 3.70
2 4 4.08E-06 3.40 2.12E-06 3.00 2.12E-06 2.99 1.44E-06 2.99 3.79E-07 3.25

5 3.91E-07 3.38 2.66E-07 3.00 2.65E-07 3.00 1.81E-07 2.99 4.56E-08 3.06
6 3.88E-08 3.33 3.32E-08 3.00 3.32E-08 3.00 2.27E-08 3.00 5.67E-09 3.01

3 3.81E-07 4.38 1.30E-07 3.99 1.30E-07 3.98 1.68E-07 4.04 8.95E-08 4.08
3 4 1.79E-08 4.41 8.16E-09 4.00 8.14E-09 3.99 1.05E-08 4.01 5.56E-09 4.01

5 8.45E-10 4.40 5.11E-10 4.00 5.10E-10 4.00 6.53E-10 4.00 3.48E-10 4.00
6 4.11E-11 4.36 3.19E-11 4.00 3.19E-11 4.00 4.08E-11 4.00 2.18E-11 4.00

3 2.63E-09 5.39 8.07E-10 4.99 8.04E-10 4.99 1.50E-09 4.97 1.02E-09 4.96
4 4 6.15E-11 5.42 2.53E-11 5.00 2.52E-11 4.99 4.73E-11 4.99 3.22E-11 4.98

5 1.44E-12 5.42 7.91E-13 5.00 7.90E-13 5.00 1.48E-12 5.00 1.01E-12 4.99
6 3.45E-14 5.38 2.47E-14 5.00 2.47E-14 5.00 4.64E-14 5.00 3.16E-14 5.00
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Table 2

History of convergence for d = 10−16 for the first DG method.

|e|Ah
‖eT ‖0,Ωh

‖eM‖0,Ωh
‖eθ‖0,Ωh

‖ew‖0,Ωh

p mesh error order error order error order error order error order

3 1.21E-01 1.38 8.67E-02 0.81 2.35E-02 1.70 4.48E-03 2.15 1.43E-02 2.42
0 4 4.47E-02 1.44 5.40E-02 0.68 1.01E-02 1.22 1.27E-03 1.82 2.58E-03 2.44

5 1.63E-02 1.46 2.90E-02 0.90 4.95E-03 1.03 6.47E-04 0.97 4.93E-04 2.38
6 5.96E-03 1.45 1.48E-02 0.97 2.47E-03 1.00 3.40E-04 0.93 1.25E-04 1.97

3 3.50E-03 2.36 1.74E-03 2.09 1.66E-03 1.95 2.87E-04 2.54 1.85E-04 3.30
1 4 6.76E-04 2.37 4.27E-04 2.03 4.20E-04 1.98 7.04E-05 2.03 2.01E-05 3.20

5 1.33E-04 2.34 1.06E-04 2.01 1.06E-04 1.99 1.79E-05 1.98 2.89E-06 2.80
6 2.74E-05 2.28 2.65E-05 2.00 2.65E-05 2.00 4.51E-06 1.99 5.91E-07 2.29

3 4.31E-05 3.38 1.69E-05 2.99 1.68E-05 2.98 1.15E-05 3.01 3.62E-06 3.70
2 4 4.08E-06 3.40 2.12E-06 3.00 2.12E-06 2.99 1.44E-06 2.99 3.80E-07 3.25

5 3.91E-07 3.38 2.66E-07 3.00 2.65E-07 3.00 1.81E-07 2.99 4.56E-08 3.06
6 3.88E-08 3.33 3.32E-08 3.00 3.32E-08 3.00 2.27E-08 3.00 5.67E-09 3.01

3 3.81E-07 4.38 1.30E-07 3.99 1.30E-07 3.98 1.68E-07 4.04 8.95E-08 4.08
3 4 1.79E-08 4.41 8.16E-09 4.00 8.14E-09 3.99 1.04E-08 4.01 5.57E-09 4.01

5 8.45E-10 4.40 5.11E-10 4.00 5.10E-10 4.00 6.53E-10 4.00 3.49E-10 4.00
6 4.11E-11 4.36 3.19E-11 4.00 3.19E-11 4.00 4.08E-11 4.00 2.18E-11 4.00

3 2.63E-09 5.39 8.07E-10 4.99 8.04E-10 4.99 1.50E-09 4.97 1.02E-09 4.96
4 4 6.15E-11 5.42 2.53E-11 5.00 2.52E-11 4.99 4.73E-11 4.99 3.21E-11 4.98

5 1.44E-12 5.42 7.91E-13 5.00 7.90E-13 5.00 1.48E-12 5.00 1.01E-12 4.99
6 3.45E-14 5.38 2.47E-14 5.00 2.47E-14 5.00 4.64E-14 5.00 3.15E-14 5.00

Table 3

History of convergence for d = 10−2 for the second DG method.

|e|Ah
‖eT ‖0,Ωh

‖eM‖0,Ωh
‖eθ‖0,Ωh

‖ew‖0,Ωh

p mesh error order error order error order error order error order

3 6.11E-01 0.40 9.65E-02 0.82 2.87E-02 0.74 4.03E-02 0.28 2.11E-01 0.80
0 4 4.48E-01 0.45 5.92E-02 0.71 1.72E-02 0.74 2.56E-02 0.66 1.13E-01 0.90

5 3.22E-01 0.47 3.67E-02 0.69 1.07E-02 0.68 1.42E-02 0.84 5.83E-02 0.95
6 2.30E-01 0.49 2.17E-02 0.76 6.39E-03 0.74 7.49E-03 0.93 2.96E-02 0.98

3 9.96E-03 1.57 1.06E-03 2.02 1.05E-03 2.00 7.95E-04 2.15 7.77E-04 2.15
1 4 3.42E-03 1.54 2.63E-04 2.01 2.63E-04 2.00 1.87E-04 2.09 1.82E-04 2.10

5 1.19E-03 1.52 6.54E-05 2.01 6.56E-05 2.00 4.51E-05 2.05 4.38E-05 2.05
6 4.18E-04 1.51 1.63E-05 2.00 1.64E-05 2.00 1.11E-05 2.03 1.07E-05 2.03

3 2.43E-04 2.41 1.13E-05 2.99 1.73E-05 2.83 2.60E-05 2.89 2.39E-05 2.85
2 4 4.44E-05 2.45 1.44E-06 2.97 2.36E-06 2.87 3.33E-06 2.97 3.13E-06 2.94

5 7.99E-06 2.48 1.82E-07 2.98 3.10E-07 2.93 4.20E-07 2.99 3.99E-07 2.97
6 1.42E-06 2.49 2.30E-08 2.99 3.98E-08 2.96 5.27E-08 2.99 5.04E-08 2.99

3 1.58E-06 3.57 9.46E-08 4.01 1.12E-07 4.04 1.27E-07 4.07 8.38E-08 4.10
3 4 1.36E-07 3.54 5.86E-09 4.01 6.86E-09 4.03 7.77E-09 4.03 5.03E-09 4.06

5 1.18E-08 3.52 3.65E-10 4.01 4.23E-10 4.02 4.79E-10 4.02 3.08E-10 4.03
6 1.04E-09 3.51 2.27E-11 4.00 2.63E-11 4.01 2.98E-11 4.01 1.90E-11 4.02

3 2.55E-08 4.40 1.40E-09 4.82 1.97E-09 4.80 1.61E-09 4.96 1.39E-09 4.93
4 4 1.16E-09 4.45 4.70E-11 4.89 6.67E-11 4.89 5.03E-11 5.01 4.37E-11 4.99

5 5.24E-11 4.47 1.53E-12 4.94 2.17E-12 4.94 1.56E-12 5.01 1.36E-12 5.00
6 2.34E-12 4.49 4.88E-14 4.97 6.93E-14 4.97 4.84E-14 5.01 4.25E-14 5.00
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Table 4

History of convergence for d = 10−16 for the second DG method.

|e|Ah
‖eT ‖0,Ωh

‖eM‖0,Ωh
‖eθ‖0,Ωh

‖ew‖0,Ωh

p mesh error order error order error order error order error order

3 6.11E-01 0.40 9.69E-02 0.81 2.88E-02 0.73 4.03E-02 0.28 2.11E-01 0.80
0 4 4.48E-01 0.45 5.96E-02 0.70 1.73E-02 0.74 2.56E-02 0.66 1.13E-01 0.90

5 3.22E-01 0.47 3.70E-02 0.69 1.08E-02 0.68 1.42E-02 0.84 5.83E-02 0.95
6 2.30E-01 0.49 2.19E-02 0.76 6.46E-03 0.74 7.49E-03 0.93 2.96E-02 0.98

3 9.96E-03 1.57 1.06E-03 2.02 1.05E-03 2.00 7.95E-04 2.15 7.77E-04 2.15
1 4 3.42E-03 1.54 2.63E-04 2.01 2.63E-04 2.00 1.87E-04 2.09 1.82E-04 2.10

5 1.19E-03 1.52 6.54E-05 2.01 6.56E-05 2.00 4.51E-05 2.05 4.38E-05 2.05
6 4.18E-04 1.51 1.63E-05 2.00 1.64E-05 2.00 1.11E-05 2.03 1.07E-05 2.03

3 2.43E-04 2.40 1.13E-05 2.99 1.73E-05 2.83 2.60E-05 2.89 2.39E-05 2.85
2 4 4.44E-05 2.45 1.44E-06 2.97 2.36E-06 2.87 3.33E-06 2.97 3.13E-06 2.94

5 7.99E-06 2.48 1.82E-07 2.98 3.10E-07 2.93 4.20E-07 2.99 3.99E-07 2.97
6 1.42E-06 2.49 2.30E-08 2.99 3.98E-08 2.96 5.27E-08 2.99 5.04E-08 2.99

3 1.58E-06 3.57 9.46E-08 4.01 1.12E-07 4.04 1.27E-07 4.07 8.38E-08 4.10
3 4 1.36E-07 3.54 5.86E-09 4.01 6.85E-09 4.03 7.77E-09 4.03 5.03E-09 4.06

5 1.18E-08 3.52 3.65E-10 4.01 4.23E-10 4.02 4.79E-10 4.02 3.08E-10 4.03
6 1.04E-09 3.51 2.27E-11 4.00 2.63E-11 4.01 2.97E-11 4.01 1.90E-11 4.02

3 2.54E-08 4.40 1.39E-09 4.83 1.97E-09 4.80 1.61E-09 4.99 1.39E-09 4.93
4 4 1.16E-09 4.45 4.69E-11 4.89 6.67E-11 4.89 5.02E-11 5.01 4.37E-11 4.99

5 5.23E-11 4.47 1.53E-12 4.94 2.17E-12 4.94 1.56E-12 5.01 1.36E-12 5.00
6 2.33E-12 4.49 4.87E-14 4.97 6.93E-14 4.97 4.84E-14 5.01 4.25E-14 5.00
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Fig. 2. Robust exponential convergence for ‖ew‖0,Ωh
(solid line) and

∥∥êw∥∥
L∞(Eh)

(dotted line).

First DG method (left) and second DG method (right).
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In Figure 2, we display the performance of the p-version of both DG methods.
On the left we display the semilogarithmic plot of ‖ew‖0,Ωh

and that of ‖êw‖L∞(Eh)

versus the polynomial degree. The DG solution is computed on a uniform mesh with
2 elements, and the polynomial degree is increased from 0 to 12, while the mesh is
kept fixed. We display four different plots on the same figure, namely d = 10−2, d =
10−6, d = 10−10, and d = 10−16. Notice that the curves are practically on top of each
other and that the order of convergence of the maximum error in the numerical trace
of the displacement is twice as fast as that of the L2(Ωh)-norm of its error. Similar
results are obtained for the other three variables.

6. Concluding remarks. We have shown that DG methods can be devised
which are free from shear locking. We achieved this by a careful study of the relation
between the definition of the numerical traces and the corresponding convergence
properties of the methods. This provides a powerful approach for devising locking-
free DG methods for the much more challenging problems of thin plates and shells
which constitutes the subject of ongoing work.

We have not addressed the issue of the actual implementation of the DG methods.
In particular, we have not identified DG methods that could be considered extensions
of the LDG methods [11] for second-order elliptic problems. This constitutes the
subject of ongoing work.

Finally, we note that even though we have carried out our error analysis for the
hp-version of the methods, we only displayed numerical results for either their h- or
p-versions. The study of hp-adaptive algorithms for these methods constitutes the
subject of ongoing work.
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Abstract. This paper is concerned with proving the existence of solutions to an underdetermined
system of equations and with the application to existence of spherical t-designs with (t + 1)2 points
on the unit sphere S2 in R3. We show that the construction of spherical designs is equivalent to
solution of underdetermined equations. A new verification method for underdetermined equations is
derived using Brouwer’s fixed point theorem. Application of the method provides spherical t-designs
which are close to extremal (maximum determinant) points and have the optimal order O(t2) for the
number of points. An error bound for the computed spherical designs is provided.

Key words. verification, underdetermined system, spherical designs, extremal points, interpo-
lation, numerical integration
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1. Introduction. Let c : Rn → Rm be a continuously differentiable function
with m < n. Suppose that x̂ is an approximate solution of the underdetermined
system of nonlinear equations

c(x) = 0(1.1)

and the Jacobian c′(x) of c at x̂ has full row rank. We are interested in the existence
of a solution of (1.1) in a neighborhood of x̂.

Underdetermined systems of equations arise in constrained optimization prob-
lems, continuation methods for underdetermined equations, etc. [3, 12, 14, 21]. This
paper gives a verification method for solutions of the underdetermined equations (1.1).
The main difficulty in proving the existence of solutions of an underdetermined sys-
tem of equations is that the Jacobian c′(x) is an m × n matrix with m < n. Let
c′(x̂)+ be the Moore–Penrose pseudoinverse of c′(x̂). A popular method for verifying
the existence of solutions of nonlinear equations is to use a Krawczyk-type interval
operator [1]. Replacing the inverse by a Moore–Penrose pseudoinverse, we can get a
Krawczyk-type interval operator

K(X) = x̂− c′(x̂)+c(x̂) + (I − c′(x̂)+C ′(X))(X − x̂),(1.2)

where X is an interval in Rn defined by

X = [x̂− h, x̂ + h], h ∈ Rn, h ≥ 0,

and C ′(X) is an interval arithmetic evaluation satisfying

c′(x) ∈ C ′(X) for x ∈ X.
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It can be shown [1] that there is a solution of (1.1) in X if

K(X) ⊆ X(1.3)

and c′(x̂) has full row rank. However, the enclosure (1.3) rarely holds due to the
equality [8]

‖I − c′(x̂)+c′(x̂)‖2 = min{1, n−m}

and the fact that

K(X) ⊆ X ⇒ ‖I − c′(x̂)+c′(x)‖∞ ≤ 1 ∀x ∈ X.

In section 2 we present a new verification method for underdetermined systems of
(1.1) which does not need the generalized inverse c′(x̂)+.

A cubature (numerical integration) rule for the unit sphere S2 = {y ∈ R3 :
‖y‖2 = 1} is a set of N points y� ∈ S2 and weights w� for � = 1, . . . , N such that

∫
S2

f(y)dy ≈
N∑
�=1

w�f(y�).

Let Pt ≡ Pt(S
2) be the linear space of restrictions of polynomials of degree ≤ t in 3

variables to S2. The dimension of the space Pt is dt := (t + 1)2. Spherical t-designs,
introduced in [5], are sets of N points {y1, y2, . . . , yN} ⊂ S2 such that the equally
weighted (w� = |S2|/N = 4π/N , � = 1, . . . , N) cubature rule is exact for all spherical
polynomials of degree at most t, that is,

∫
S2

p(y)dy =
4π

N

N∑
�=1

p(y�) ∀p ∈ Pt.

For t ≥ 1, the existence of a spherical t-design was proved in [19]. Commonly, the
interest is in the smallest number N∗

t of points required to give a spherical t-design.
Lower bounds on N∗

t given in [5] are

N∗
t ≥ (t + 1)(t + 3)

4
if t is odd,

N∗
t ≥ (t + 2)2

4
if t is even.

A spherical t-design which achieves the lower bounds is called a tight spherical t-
design. However, for t ≥ 2, it is known that tight spherical t-designs do not exist [5].
Hardin and Sloane [7] have extensively investigated spherical designs on S2 and sug-
gested a sequence of putative spherical t-designs with 1

2 t
2 + o(t2) points. A 7-design

with 24 points was first found by McLaren in 1963 [13]. Korevaar and Meyers [10] con-
sidered the construction for spherical t-designs with O(t3) points on S2. An approach
for the numerical calculation of spherical designs using multiobjective optimization
was studied by Maier [11], and computational proof of the existence of spherical de-
signs using interval methods [9] was investigated by Hardin and Sloane [7].

Extremal (or maximum determinant) points [20] are sets of (t+ 1)2 points on S2

which maximize the determinant of a basis matrix for an arbitrary basis of Pt. Sloan
and Womersley [20, 22] showed that extremal systems have very nice geometrical
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properties as the points are well separated and the computed interpolatory cubature
weights are positive (w� > |S2|/(2N) for � = 1, . . . , N for degrees up to t = 150).
Also the condition number of the basis matrix grows slowly, giving confidence in the
calculated cubature weights. Proving the positivity of the cubature weights for all
degrees t for the extremal points is still an open question. Other systems of points,
such as minimum energy points, often have basis matrices with such high condition
numbers that no confidence can be placed in the calculated cubature weights.

Equal weight cubature rules, or spherical designs, are simpler to implement and
there is no question about the positivity of the weights. There are many different
characterizations of spherical t-designs [6]. However, these can be very ill conditioned.
Extremal points provide excellent starting points for numerically finding solutions to
an underdetermined, but highly nonlinear, system of equations which characterize
spherical t-designs with (t + 1)2 points. Application of the verification method to
the system of equations then proves the existence of spherical t-designs which are
close to the calculated points and have the optimal order O(t2) for the number of
points. Moreover, spherical designs with (t+1)2 points which also have a basis matrix
with a determinant close to the maximum are simultaneously good for cubature and
interpolation. Computed spherical t-designs with (t + 1)2 points for degrees up to
t = 50 are available from http://www.maths.unsw.edu.au/∼rsw/Sphere.

The focus here is not on finding a spherical t-design with the minimal number of
points, but rather proving the existence of spherical t-designs with (t+1)2 points close
to an extremal system. Once existence of a spherical design with (t + 1)2 points is
established one can then look for extremal spherical designs, that is, systems of (t+1)2

points which maximize the determinant of a basis matrix subject to the constraints
that they are spherical t-designs.

In section 3 we reformulate the calculation of a spherical t-design with (t + 1)2

points as an underdetermined system of nonlinear equations (1.1) with m = (t+1)2−1
equations and n = 2(t + 1)2 − 3 variables. We show that a sufficient and necessary
condition for the existence of solutions to the system of equations is existence of a
spherical t-design with (t+ 1)2 points. In section 4, we apply the verification method
to find new spherical t-designs. The computed spherical designs Ŷ = {ŷ1, . . . , ŷdt

} are
compared with the extremal (maximum determinant) points, and error bounds of Ŷ
to exact spherical designs are given.

For a given m × n matrix A, let AI be the submatrix of A whose entries lie in
the columns of A indexed by I. For a given vector x ∈ Rn, let xI be the subvector
of x whose entries of x are indexed by I.

2. A verification method. Let x̂ be a computed solution of (1.1). Let B be
an index set {k1, k2, . . . , km} such that c′B(x̂) ∈ Rm×m is nonsingular. Define the
function H : Rn → Rn by

HB(x) = xB − c′B(x̂)−1c(x),(2.1)

HN (x) = xN − α(xN − x̂N ),(2.2)

where N = {1, 2, . . . , n}/B and α ∈ (0, 1) is a constant. Obviously, if x∗ ∈ Rn is a
fixed point of H, that is, H(x∗) = x∗, then we have c(x∗) = 0 with x∗

N = x̂N . Choose
two nonnegative numbers r1 and r2 and define the convex set

X = {x ∈ Rn : ‖xB − x̂B‖ ≤ r1, ‖xN − x̂N ‖ ≤ r2} .
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Theorem 2.1. Suppose that c : Rn → Rm is continuously differentiable, c′ has
full row rank at x̂, and

‖c′B(x) − c′B(x̂)‖ ≤ K‖x− x̂‖ for x ∈ X.(2.3)

(1) There is a solution of (1.1) in X if

‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
≤ r1.(2.4)

(2) There is no solution of (1.1) in X if

‖c′B(x̂)−1c(x̂)‖ − ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
> r1.(2.5)

Proof. (1) By the continuity of c′(x) and the mean value theorem, we find

HB(x) = x̂B − c′B(x̂)−1c(x̂) + xB − x̂B − c′B(x̂)−1(c(x) − c(x̂))

= x̂B − c′B(x̂)−1c(x̂) + xB − x̂B − c′B(x̂)−1

∫ 1

0

c′(x + t(x̂− x))(x− x̂)dt

= x̂B − c′B(x̂)−1c(x̂) + xB − x̂B − c′B(x̂)−1

∫ 1

0

c′B(x + t(x̂− x))(xB − x̂B)dt

−c′B(x̂)−1

∫ 1

0

c′N (x + t(x̂− x))(xN − x̂N )dt

= x̂B − c′B(x̂)−1

[
c(x̂) +

∫ 1

0

(c′B(x̂) − c′B(x + t(x̂− x)))(xB − x̂B)dt

+

∫ 1

0

c′N (x + t(x̂− x))(xN − x̂N )dt

]
.

Therefore, for any x ∈ X, we have

‖HB(x) − x̂B‖

≤ ‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
∫ 1

0

‖c′B(x̂) − c′B(x + t(x̂− x))‖‖xB − x̂B‖dt

+ ‖c′B(x̂)−1‖
∫ 1

0

‖c′N (x + t(x̂− x))‖‖xN − x̂N ‖dt

≤ ‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(∫ 1

0

(1 − t)K‖x̂− x‖r1dt +

∫ 1

0

max
x∈X

‖c′N (x)‖r2dt
)

≤ ‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
.

Here we use the facts that x + t(x̂ − x) ∈ X, ‖xB − x̂B‖ ≤ r1, and ‖xN − x̂N ‖ ≤ r2
for all x ∈ X and t ∈ [0, 1].

This implies that if (2.4) holds, then for any x ∈ X we have

‖HB(x) − x̂B‖ ≤ r1.

Moreover, by the definition of H, we always have

‖HN (x) − x̂N ‖ = (1 − α)‖xN − x̂N ‖ ≤ r2.



2330 XIAOJUN CHEN AND ROBERT S. WOMERSLEY

Therefore, (2.4) implies that H maps X into itself; that is,

H(x) ∈ X for any x ∈ X.(2.6)

Using Brouwer’s fixed point theorem, (2.6) implies that there is a fixed point x∗ of H
in X. From the definition of H, x∗ is a solution of (1.1).

(2) Assume that (2.5) holds and there is a solution x∗ in X. Following the proof
for part (1), we have

r1 ≥ ‖x∗
B − x̂B‖

= ‖HB(x∗) − x̂B‖

≥ ‖c′B(x̂)−1c(x̂)‖ − ‖c′B(x̂)−1‖
∫ 1

0

‖c′B(x̂) − c′B(x∗ + t(x̂− x∗))‖‖xB − x̂B‖dt

−‖c′B(x̂)−1‖
∫ 1

0

‖c′N (x∗ + t(x̂− x∗))‖‖xN − x̂N ‖dt

≥ ‖c′B(x̂)−1c(x̂)‖ − ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
> r1.

This is a contradiction, which completes the proof.

Without loss of generality, we assume that r1 �= 0. Let τ ∈ (0, 1
2 ). Define a subset

of X:

Xτ = {x | ‖xB − x̂B‖ ≤ τr1, ‖xN − x̂N ‖ ≤ τr2}.

Then we have the following corollary.

Corollary 2.2. Under the assumptions of Theorem 2.1, inequality (2.4) implies
that c′B(x) is nonsingular for all x ∈ Xτ and the solution x∗ of (1.1) with x∗

N = x̂N
is unique in Xτ .

Proof. For any x ∈ Xτ (x �= x̂), inequality (2.4) implies that

r1 ≥ ‖c′B(x̂)−1‖1

2
K(r1 + r2)r1

≥ ‖c′B(x̂)−1‖ 1

2τ
K‖x− x̂‖r1

> ‖c′B(x̂)−1‖K‖x− x̂‖r1
≥ r1‖c′B(x̂)−1‖‖c′B(x̂) − c′B(x)‖
≥ r1‖I − c′B(x̂)−1c′B(x)‖.

Dividing r1 in both sides, we find

‖I − c′B(x̂)−1c′B(x)‖ < 1.

Hence c′B(x) is nonsingular. By the implicit function theorem [16], the solution x∗ of
(1.1) with x∗

N = x̂N is unique in Xτ .

Remark 2.1. For the case m = n, we have x = xB, c′B(x) = c′(x), and (2.4)
reduces to

‖c′(x̂)−1c(x̂)‖ +
1

2
K‖c′(x̂)−1‖r2 ≤ r.(2.7)
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This is a quadratic inequality in r. If

ρ := K‖c′(x̂)−1c(x̂)‖‖c′(x̂)−1‖ ≤ 1

2
,(2.8)

then (2.7) holds for all r satisfying

1 −
√

1 − 2ρ

K‖c′(x̂)−1‖ ≤ r ≤ 1 +
√

1 − 2ρ

K‖c′(x̂)−1‖ .

By Theorem 2.1, there is a solution in X = {x ∈ Rn : ‖x− x̂‖ ≤ r}. Therefore, The-
orem 2.1 is a generalization of the Kantorovich theorem [16] for the existence of the
solution.

3. Spherical designs. In this section we describe a method of reformulating
construction of spherical t-designs as an underdetermined system of nonlinear equa-
tions.

For a given positive integer t, a set of points Y = {y1, . . . , ydt
} ⊂ S2 is called a

fundamental system if the zero polynomial is the only member of Pt that vanishes at
each point yj , j = 1, 2, . . . , dt. The requirement

dt = (t + 1)2 = dim Pt

ensures that the basis matrix is square.

Y is called an extremal system if these points maximize the determinant of the
interpolation matrix with respect to an arbitrary basis of Pt. An extremal system is
obviously a fundamental system. Sloan and Womersley [20] showed that the extremal
fundamental systems have excellent geometrical properties and surprisingly good per-
formance for numerical integration. However, it is unknown whether there is always
a spherical t-design in a neighborhood of an extremal fundamental system. Our aim
is to verify its existence.

Let L� : [−1, 1] → R be the usual Legendre polynomial [2]. The Rodrigues
representation yields

L�(z) =
1

2�

[�/2]∑
k=0

(−1)k(2�− 2k)!

k!(�− k)!(�− 2k)!
z�−2k,(3.1)

where [�/2] is the floor function. Let

Jt(z) =
1

4π

t∑
�=0

(2� + 1)L�(z), z ∈ [−1, 1],

which is a normalized Jacobi polynomial. The Gram matrix G ≡ G(Y ) is a symmetric
positive semidefinite dt × dt matrix with elements

Gi,j = Jt(y
T
i yj).

The functions

gi(y) = Jt(y
T
i y), i = 1, . . . , dt, y ∈ S2,
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belong to Pt. If G is nonsingular, {g1, . . . , gdt
} is a basis for Pt. For a given arbitrary

function f ∈ C(S2), the unique polynomial interpolant Λf for the set Y is

(Λf)(y) =

dt∑
i=1

vigi(y).

Here the vector of weights v = (v1, . . . , vdt
) is the solution of the linear system of

equations

Gv = b,(3.2)

where bi = f(yi), i = 1, 2 . . . , dt.
The cubature rule

Qdt(f) =

dt∑
i=1

wif(yi) ≈
∫
S2

f(y)dy

is exact for all polynomials p of degree ≤ t if w satisfies the system of linear equations

Gw = e,(3.3)

where e = (1, 1, . . . , 1)T ∈ Rdt . In particular, the cubature rule is exact for the
constant polynomial 1 ∈ Pt. Thus

∫
S2

1 dy = |S2| = 4π =

dt∑
i=1

wi.

Hence the average cubature weight is

wavg =
4π

dt
.

Numerical results given in [22] show that the weights defined by (3.3) with the
coefficient matrix G(Ȳ ), where

log det G(Ȳ ) = max
Y⊂S2

log det G(Y ),(3.4)

are all positive and the scaled weights wi/wavg lie in [1/2, 3/2].
The set of points Ȳ = {ȳ1, . . . , ȳdt} defined by (3.4) is an extremal fundamental

system. It is conjectured that there is a spherical t-design which is very close to an
extremal fundamental system; that is, there is a set of points Y ∗ = {y∗1 , y∗2 , . . . , y∗dt

}
in a neighborhood of Ȳ = {ȳ1, . . . , ȳdt

} such that

∫
S2

p(y)dy =

dt∑
i=1

wip(y
∗
i ) ∀p ∈ Pt

and equal weights

wi =
4π

dt
, i = 1, 2, . . . , dt.(3.5)
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To explore this conjecture, we reformulate the problem as an underdetermined
system of nonlinear equations. The matrix G is rotationally invariant, so the set of
points can be normalized so that the first point is at the north pole and the second is
on the prime meridian. Hence a spherical parametrization θj ∈ [0, π] and φj ∈ [0, 2π)
of the points yj , j = 1, 2, . . . , dt, has φ1 = 0, θ1 = 0, and φ2 = 0, giving a total of
2dt − 3 variables.

Let

n = 2dt − 3, m = dt − 1,

and let

xi−1 = θi, i = 2, 3, . . . , dt,
xdt+i−3 = φi, i = 3, 4, . . . , dt.

The set of points Y = {y1, . . . , ydt
} and the vector of variables x ∈ Rn are uniquely

related by

y1 =

⎡
⎣ 0

0
1

⎤
⎦ , y2 =

⎡
⎣ sinx1

0
cosx1

⎤
⎦ , yi =

⎡
⎣ sin θi cosφi

sin θi sinφi

cos θi

⎤
⎦ =

⎡
⎣ sinxi−1 cosxdt+i−3

sinxi−1 sinxdt+i−3

cosxi−1

⎤
⎦ .

The simple bounds on θi and φi can be ignored due to the periodicity of the sin and
cos functions. Hence the matrix G can be regarded as a function of x whose elements
are defined by

Gi,j(x) = Jt(y
T
i yj).

Define the function c : Rn → Rm by

c(x) = EG(x)e,(3.6)

where E is the m× dt matrix

E =

⎛
⎜⎜⎜⎜⎝

1 −1 0 . . . 0

1 0 −1
. . .

...
...

...
. . .

. . . 0
1 0 . . . 0 −1

⎞
⎟⎟⎟⎟⎠ .

This is motivated by the simple, but critical, observation that any cubature rule
which is exact for constants has

∑dt

i=1 wi = 4π, so one only requires that w1 = wi for
i = 2, . . . , dt to get (3.5). In fact the system of dt equations G(x)e−wavge = 0 has a
Jacobian with only rank dt − 1.

The following theorem states the relation between a spherical t-design and a zero
of the function c defined by (3.6).

Theorem 3.1. Suppose that G(x∗) is nonsingular. Then x∗ corresponds to a
spherical t-design with (t + 1)2 points if and only if c(x∗) = 0.

Proof. Let x∗ be a solution of c(x) = 0, and let {y∗1 , y∗2 , . . . , y∗dt
} be the set of

points defined by x∗. First it is shown that {y∗1 , y∗2 , . . . , y∗dt
} is a spherical t-design.

Since G(x∗) is nonsingular, {y∗1 , y∗2 , . . . , y∗dt
} is a fundamental system and the

functions

gj(y) = G(y∗j
T y), j = 1, 2, . . . , dt,
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form a basis of Pt. Hence for any p ∈ Pt there are scalars αj , j = 1, . . . , dt, such that

p(y) =

dt∑
j=1

αjgj(y).

Note that (see [17] for an example)∫
S2

gj(y)dy = 1 ∀ j = 1, . . . , dt.(3.7)

Moreover, c(x∗) = 0 implies that all components of G(x∗)e are equal. Hence we can
write

G(x∗)e = μe,

where μ is a scalar. Because of the nonsingularity of G(x∗), μ �= 0. This yields

∫
S2

gj(y)dy = 1 =
1

μ

dt∑
k=1

Gj,k(x
∗), j = 1, 2, . . . , dt.

We calculate the integral

∫
S2

p(y)dy =

dt∑
j=1

αj

∫
S2

gj(y)dy

=
1

μ

dt∑
j=1

αj

dt∑
k=1

Gj,k(x
∗)

=
1

μ

dt∑
k=1

dt∑
j=1

αjGj,k(x
∗)

=
1

μ

dt∑
k=1

dt∑
j=1

αjgj(y
∗
k)

=
1

μ

dt∑
k=1

p(y∗k).

In particular, for p(y) ≡ 1, the area of the sphere is

|S2| = 4π =

∫
S2

p(y)dy =
1

μ

dt∑
k=1

p(y∗k) =
dt
μ
.

Thus μ = dt/4π, and therefore {y∗1 , y∗2 , . . . , y∗dt
} is a spherical t-design.

Now we prove that c(x∗) = 0 if x∗ corresponds to a spherical t-design with (t+1)2

points. By the definition of a spherical t-design, for any p ∈ Pt,

∫
S2

p(y)dy =
4π

dt

dt∑
k=1

p(y∗k).
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In particular, as gj ∈ Pt,∫
S2

gj(y)dy =
4π

dt

dt∑
k=1

gj(y
∗
k), j = 1, 2, . . . , dt.

Hence, from the definition of gj and (3.7), we find

4π

dt

dt∑
k=1

Gj,k(x
∗) =

4π

dt

dt∑
k=1

gj(y
∗
k) = 1.

This implies

G(x∗)e =
dt
4π

e,

and thus

c(x∗) = EG(x∗)e =
dt
4π

Ee = 0.

Let x̂ ∈ Rn correspond to the set of points Ŷ = {ŷ1, . . . , ŷdt
} on the sphere. The

condition for the cubature rule

Qdt(f) =

dt∑
i=1

wif(ŷi)

to be exact for all polynomials in Pt is that w = (w1, . . . , wdt)
T is the solution of

G(x̂)w = e.

From Theorem 3.1, we know that w = G(x̂)−1e = (4π/dt)e if and only if c(x̂) = 0.
The following theorem gives a result of the weights for the case c(x̂) �= 0.

Theorem 3.2. Suppose that G(x̂) is nonsingular. Let w = G(x̂)−1e. Then

max
1≤i≤dt

|w1 − wi| ≤
4

‖G(x̂)e‖∞
‖G(x̂)−1‖∞‖c(x̂)‖∞.(3.8)

Proof. Let ‖ · ‖ = ‖ · ‖∞ and let |(G(x̂)e)i0 | = ‖G(x̂)e‖. Then μ := (G(x̂)e)i0 �= 0
and

‖μe−G(x̂)e‖ ≤ ‖μe− (G(x̂)e)1e‖ + ‖(G(x̂)e)1e−G(x̂)e‖
≤ 2‖c(x̂)‖.

Now, by the definition of the matrix E, we have

max
1≤i≤dt

|w1 − wi| = ‖EG(x̂)−1e‖

= ‖EG(x̂)−1e− 1

μ
Ee‖

=
1

|μ| ‖μEG(x̂)−1e− EG(x̂)−1G(x̂)e‖

=
1

|μ| ‖EG(x̂)−1(μe−G(x̂)e)‖

≤ 2

|μ| ‖E‖‖G(x̂)−1‖‖c(x̂)‖

=
4

|μ| ‖G(x̂)−1‖‖c(x̂)‖.
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4. Numerical verification of spherical t-designs. In this section, we use
Theorems 2.1 and 3.1 to verify the existence of spherical t-designs. In particular, we
use (2.4) to verify the existence of solutions to the system

c(x) := EG(x)e = 0.(4.1)

Note that the highly nonlinear function c(·) is in C∞(Rn) as long as the points are
not at the south pole, which can easily be checked. (The first point is always the north
pole and is not allowed to vary.) To save computational cost, let xB = (x1, . . . , xdt−1)

T

and set r2 = 0. Hence c′B(x) is the first (dt − 1) columns of c′(x) for x ∈ X, where

X = {x | ‖xB − x̂B‖ ≤ r1, xN = x̂N }.

The expansion (3.1) is used to calculate the derivatives of ci(x). Moreover, we
can give an upper bound for the second derivatives. Since for i, j = 1, . . . , dt, Gij(x)
are polynomials of degree t, the function

ci(x) = (G(x)e)1 − (G(x)e)i+1 =
1

4π

dt∑
j=1

t∑
�=0

(2� + 1)
(
L�(y

T
1 yj) − L�(y

T
i+1yj)

)
is polynomial of degree ≤ t. The first derivative of ci is

∂ci(x)

∂xk
=

1

4π

dt∑
j=1

t∑
�=0

(2� + 1)

(
L′
�(y

T
1 yj)

∂(yT1 yj)

∂xk
− L′

�(y
T
i+1yj)

∂(yTi+1yj)

∂xk

)
,

and the second derivative of ci is

∂2ci(x)

∂xk∂xν
=

1

4π

dt∑
j=1

t∑
�=0

(2� + 1)

(
L′′
� (yT1 yj)

∂(yT1 yj)

∂xk

∂(yT1 yj)

∂xν
+ L′

�(y
T
1 yj)

∂2(yT1 yj)

∂xk∂xν

−L′′
� (yTi+1yj)

∂(yTi+1yj)

∂xk

∂(yTi+1yj)

∂xν
− L′

�(y
T
i+1yj)

∂2(yTi+1yj)

∂xk∂xν

)
.

Note that we consider only the first (dt − 1) columns of c′(x) with respect to xB. Let

∇y2 =

⎡
⎣ cosx1

0
− sinx1

⎤
⎦ , ∇yi =

⎡
⎣ cosxi−1 cosxdt+i−3

cosxi−1 sinxdt+i−3

− sinxi−1

⎤
⎦ .

For k, ν ≤ dt − 1, we have

∂(yT1 yj)

∂xk
=

{
yT1 ∇yj if k = j − 1,
0 otherwise;

∂2(yT1 yj)

∂xk∂xν
=

{
−yT1 yj if k = ν = j − 1,
0 otherwise;

∂(yTi+1yj)

∂xk
=

⎧⎨
⎩

yTi+1∇yj if k = j − 1,
yTj ∇yi+1 if k = i,
0 otherwise;

∂2(yTi+1yj)

∂xk∂xν
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−yTi+1yj if k = ν = j − 1
or k = ν = i,

∇yTi ∇yj if k = j − 1, ν = i
or k = i, ν = j − 1,

0 otherwise.
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We use the relations |yTi yj | ≤ 1 and |∇yTi yj | ≤ 1 to give an upper bound K for the
second derivatives of c(·) with respect to the first dt−1 variables. This, together with
xN = x̂N , implies

‖c′B(x) − c′B(x̂)‖ ≤ K‖x− x̂‖.

The infinity norm was used in the numerical implementation, so in the rest of this
section ‖ · ‖ denotes ‖ · ‖∞.

The procedure for verifying the existence of a spherical t-designs is as follows:
1. Find an approximate solution x̂ of c(x) = 0 starting from x̄ corresponding to

an extremal fundamental system Ȳ .
2. Calculate c′B(x̂) and K.
3. Calculate

ρ = K‖c′B(x̂)−1c(x̂)‖ ‖c′B(x̂)−1‖.(4.2)

If ρ ≤ 1
2 , then there is a solution of (4.1) in the set

X = {x ∈ Rn : ‖xB − x̂B‖ ≤ r1, xN = x̂N },

where

r1 =
1 −

√
1 − 2ρ

K‖c′B(x̂)−1‖ .

If ρ > 1
2 , then (4.1) has no solution in

X = {x ∈ Rn : ‖xB − x̂B‖ ≤ γ1, xN = x̂N },

where

γ1 =

√
1 + 2ρ− 1

K‖c′B(x̂)−1‖ .

Note that the natural residual ‖c(x)‖2 has many local minimizers. To find a
good approximate solution of c(x) = 0, we choose several starting points around the
extremal system and use the Gauss–Newton method with line search. The interest in
starting from an extremal system stems from Figure 2 in [20] and Theorem 3.1. The
cubature weights for the computed extremal system of [20] are very close to 4π/dt
and they maximize the determinant G(x). Extremal systems can be downloaded from
http://www.maths.unsw.edu.au/∼rsw/Sphere.

Numerical results are given in Table 1, where x̄ is the vector corresponding to an
extremal fundamental system Ȳ , x̂ is an approximate solution of c(x) = 0,

ŵ = G(x̂)−1e

is the weight for the cubature rule, and Ŷ = {ŷ1, . . . , ŷdt
} is the set of points corre-

sponding to x̂.
As the cubature rule is exact for the constant polynomial 1 ∈ Pt, the average

weight is ŵavg = 4π/dt. From the last column of Table 1, we see that all weights are
positive and ∣∣∣∣ŵi −

4π

dt

∣∣∣∣ ≤ wmax − wmin ≈ 0.
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Table 1

Extremal points x̄, computed spherical designs x̂, exact spherical design x∗, ‖x̂ − x∗‖ ≤ r1,

x ∈ R2(t+1)2−3.

t dt ‖c(x̄)‖ ‖c(x̂)‖ log detG(x̄) log detG(x̂) r1 ‖x̄− x̂‖ ŵmax − ŵmin

2 9 0.0245 4.44e-16 -3.2134 -3.2157 1.01e-15 0.0255 1.55e-15
3 16 0.4299 2.66e-15 3.3867 2.5779 2.36e-15 0.2742 1.88e-15
4 25 0.3898 7.32e-15 16.1396 15.9337 1.80e-14 0.1002 3.33e-15
5 36 0.6318 7.54e-15 36.1736 35.4829 1.34e-14 0.2595 2.10e-14
6 49 1.1376 2.62e-14 64.0948 62.6443 3.45e-14 0.1918 3.88e-15
7 64 0.9189 6.03e-14 100.6942 100.4167 5.07e-14 0.1277 4.10e-15
8 81 1.3713 1.92e-13 146.1926 144.3611 1.15e-13 0.2974 8.54e-15
9 100 1.4023 4.52e-13 201.5589 186.2265 1.84e-13 0.2526 7.88e-13
10 121 3.7879 8.07e-13 266.3178 265.5019 6.14e-11 0.0358 2.40e-14

Hence the set Ŷ can be considered as computed spherical t-designs. These designs
are new. Moreover, from Theorem 2.1 and ‖x̂ − x∗‖ ≤ r1, an error bound for the
computed spherical t-designs to an exact spherical design {y∗1 , . . . , y∗dt

} corresponding
to the exact solution x∗ of c(x) = 0 is

max
1≤i≤dt

‖y∗i − ŷi‖ ≤ 2‖x̂− x∗‖ ≤ 2r1,

where the first inequality uses the relation between x and y.
The numerical results also give an error bound for the extremal system

max
1≤i≤dt

‖y∗i − ȳi‖ ≤ 2‖x∗ − x̄‖

≤ 2(‖x∗ − x̂‖ + ‖x̂− x̄‖)
≤ 2(r1 + ‖x̄− x̂‖).

The interpolatory cubature rule

Et(f) =
4π

dt

dt∑
j=1

f(ŷj)

associated with Ŷ provides high-order numerical integration on the sphere. In par-
ticular, by Theorem 4.1 in [20], the worst-case error in a particular Sobolev space
is ∣∣∣∣

∫
S2

f(y)d(y) − Et(f)

∣∣∣∣ = 4πD(Ŷ ) =: e(Et),

where D(Ŷ ) is the Cui–Freeden generalized discrepancy [4]

D(Ŷ ) =
1

2
√
πdt

⎡
⎣ dt∑
j=1

dt∑
i=1

(
1 − 2log

(
1 +

√
(1 − ŷTi ŷj)/2

))⎤⎦1/2

.

Table 2 gives the values D(Ŷ ) and e(Et). These values are better than the values
reported by Sloan and Womersley [20]. The values given in [20] use extremal points
and are better than the values reported by Cui and Freeden [4].

The computed spherical t-designs with (t + 1)2 points are available from http://
www.st.hirosaki-u.ac.jp/∼chen/index.html. Computations for these low degrees were



UNDERDETERMINED EQUATIONS AND SPHERICAL DESIGNS 2339

Table 2

Worst case for the equal weight rule Et and generalized discrepancy for computed spherical
designs.

t dt e(Et) D(Ŷ )
2 9 0.349478 0.027811
3 16 0.229009 0.018239
4 25 0.162440 0.012927
5 36 0.123579 0.009834
6 49 0.098188 0.007814
7 64 0.079817 0.006352
8 81 0.067223 0.005349
9 100 0.058809 0.004680
10 121 0.049576 0.003945

performed by using MATLAB 6.1 on an IBM PC with 128MB memory and 500
MHz [15,18].

Remark 4.1. This paper presents a new verification method for underdetermined
systems of equations and uses this method to verify computed spherical t-designs. In
comparison the Krawczyk-type interval operator method (1.3) failed for these under-
determined equations. This can be explained as follows.

Consider K(X) on an interval X which has an interior point x̂. For any x ∈ X,
c′(x) is singular, and there is an xb on the boundary of X such that c′(x)(xb− x̂) = 0.
This implies that

xb − c′(x̂)+c(x̂) = x̂− c′(x̂)+c(x̂) + (I − c′(x̂)+c′(x))(xb − x̂) ∈ K(X).

It is almost impossible to have xb − c′(x̂)+c(x̂) ∈ X for all such boundary points xb

of X with c′(x̂)+c(x̂) �= 0. Hence K(X) ⊆ X always fails. On the other hand, the
new verification method has no problems with the null space of c′(x). The following
example shows the advantage of the new method. Let

c(x) = 1 + x1 + x2 + x1x2, X =
1

4

(
[−5,−1]

[1 + h, 3 − h]

)
, x̂ =

1

4

(
−3

2

)
,

where h ∈ [0, 1]. Let B = {1} and N = {2}. Straightforward calculation gives

c(x̂) =
3

8
, c′(x) = (1 + x2, 1 + x1), c′(x̂) =

1

4
(6, 1), c′B(x̂)−1c(x̂) =

1

4
.

It is easy to show that a Lipschitz constant for c′B(x) is K = 1, and that

max
x∈N

‖c′N (x)‖ =
3

4
.

Hence statement (1) of Theorem 2.1 holds with

‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈N
‖c′N (x)‖r2

)
=

1

2
− h

6
≤ r1 =

1

2

for all h ∈ [0, 1]. Now we show that K(X) ⊆ X fails for all h ∈ [0, 1]. Interval
calculation gives

c′(x̂)+C ′(X) =
4

37

(
6
1

)(
1 +

1

4
[1 + h, 3 − h], 1 +

1

4
[−5,−1]

)
,
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(I − c′(x̂)+C ′(X))(X − x̂) =
1

37 × 4

(
[−80 + 30h, 80 − 30h]
[−52 + 40h, 52 − 40h]

)
,

and the radii of X and K(X) satisfy

R(X) −R(K(X)) =
1

4

(
2

1 − h

)
− 1

148

(
80 − 30h
52 − 40h

)
=

1

148

(
−6 + 30h
−15 + 3h

)
.

Since the second component of the radii R2(X) −R2(K(X)) < 0 for all h ∈ [0, 1], we
find that K(X) �⊆ X for all h ∈ [0, 1].

Acknowledgment. We thank Prof. Andreas Frommer for his encouraging com-
ments on Remark 4.1.
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OPTIMIZING TALBOT’S CONTOURS FOR THE INVERSION OF
THE LAPLACE TRANSFORM∗

J. A. C. WEIDEMAN†

Abstract. Talbot’s method for the numerical inversion of the Laplace transform consists of
numerically integrating the Bromwich integral on a special contour by means of the trapezoidal or
midpoint rules. In this paper we address the issue of parameter selection in the method, for the
particular situation when parabolic PDEs are solved. In the process the well-known subgeometric
convergence rate O(exp(−c

√
N)) of this method is improved to the geometric rate O(exp(−cN)),

with N the number of nodes in the integration rule. The value of the maximum decay rate c is
explicitly determined. Numerical results for two versions of the heat equation are presented. With
the choice of parameters derived here, the rule of thumb is that to achieve an accuracy of 10−� at
any given time, the associated elliptic problem has to be solved no more than � times.

Key words. Laplace transform, Talbot’s method, trapezoidal rule, fractional differential equa-
tion

AMS subject classifications. 65D30, 65M70, 65R10

DOI. 10.1137/050625837

1. Introduction. The Laplace transform is a classical technique for solving lin-
ear differential equations. For computational work, however, this approach never
really became popular, as for many years numerical analysts tended to focus on dis-
cretization methods such as finite differences and finite elements, possibly combined
with linear multistep or Runge–Kutta formulas for integration in time. We conjec-
ture that this lack of interest shown by numerical analysts in the Laplace transform
is partly due to the following two factors.

First, the Laplace transform restricts one to linear differential equations and in
many applications one ultimately aims to solve nonlinear problems. Second, the
Laplace transform, particularly its numerical inversion, has a reputation for being a
computational challenge. This has to do with the fact that the inverse problem is
by nature ill-conditioned when the transform is known only as a real-valued function.
When the transform can be sampled in the complex plane the conditioning seems
better, but then complex arithmetic is required.

Despite these apparent drawbacks of the Laplace transform, there has been a
recent resurgence of the technique, as evidenced by the number of papers on this
topic that have appeared since the year 2000; see, for example, [4, 8, 12, 14, 17, 18].
This renewed activity is in part due to recent interest in linear parabolic PDEs of
fractional type, which are naturally posed in a transform setting. (These fractional
PDEs model phenomena such as anomalous diffusion in several financial and biological
applications.) In addition, MATLAB and other modern computational environments
make complex arithmetic as easy to work with as real arithmetic and therefore complex
inversion formulas become feasible.
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To introduce the problem, consider the linear system of ODEs

df

dt
= Af , f(0) = f0,(1.1)

where A is an M × M real matrix, f(t) an M × 1 real vector, and f0 the initial
condition. We are primarily interested in the case where A is the result of semi-
discretization of a parabolic PDE (examples are given in section 5). We assume,
therefore, that the eigenvalues of A are real and negative.

The formal solution to (1.1) is

f(t) = exp(At) f0,

and this reduces the problem to that of computing the matrix exponential of a (typi-
cally) large matrix. To be more precise, we need to compute the product of the matrix
exponential and a vector, which can be done without actually computing the matrix
exponential itself [15].

The authors of [4, 8, 12, 14, 17, 18] all compute this product by numerically
approximating the inverse Laplace transform

f(t) =
1

2πi

∫
Γ

eztF (z) dz, F (z) ≡ (zI −A)−1f0.(1.2)

In this formula, known as the Bromwich integral, I is the M ×M identity matrix and
Γ is the contour of integration. At least initially, Γ is the Bromwich line Re z = σ,
where the parameter σ should be large enough that all eigenvalues of A lie in the
half-plane Re z < σ.

The typical approach is to deform the Bromwich line into a curve that begins
and ends in the left half-plane, such that Re z → −∞ on the contour; see Figure 1.1.
Owing to the exponential factor ezt, the integrand decays rapidly on such a contour,
and if the contour is smooth this turns the problem into one of the classic situations
where the trapezoidal rule converges extraordinarily rapidly [5, 10, 22, 23].

The articles [4, 8, 12, 14, 17, 18] differ with respect to the choice of the integration
contour Γ, and how this contour is parameterized. A short summary of contours and
convergence rates is given in section 6.

Suprisingly, none of the above references seriously considers Talbot’s contour [19],
rated in some circles as one of the best methods for inverting the Laplace transform;
see [6]. (The method is mentioned in [12, 18], but is neither implemented nor analyzed
there.) This contour may not be suitable when part of the spectrum of A is located off
the negative real axis, but for pure parabolic problems the method is very accurate,
as the numerical results of this paper will testify.

Talbot’s contour is parameterized by

Γ : z(θ) = σ + μ (θ cot θ + ν i θ), −π ≤ θ ≤ π,(1.3)

where σ, μ, and ν are real parameters that determine the geometry of the curve. Both
μ and ν are positive. For the eigenvalues of A to be enclosed by the contour one needs
z(0) > λ, where λ is the largest eigenvalue of A, i.e.,

σ + μ > λ.(1.4)

A typical Talbot contour is shown in Figure 1.1.
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A related contour is obtained by replacing the function θ cot θ in (1.3) with the
first two terms in its partial fraction expansion,

Γ : z(θ) = σ + μ
(
1 +

2θ2

θ2 − π2
+ ν i θ

)
, −π ≤ θ ≤ π.(1.5)

This contour is equivalent to one mentioned in Talbot’s original paper [19], from
which we quote: “. . . and indeed such functions can give good results, though their
potentialities have not yet been explored.”

It will turn out that the contour (1.5) is easier to analyze than (1.3), so for much
of the paper we shall focus on the second contour. We shall also show, however, that
the first Talbot contour yields superior accuracy.

Using either (1.3) or (1.5), the Bromwich integral (1.2) can be expressed as

f(t) =
1

2πi

∫ π

−π

ez(θ)tF
(
z(θ)

)
z′(θ) dθ,(1.6)

where, respectively,

z′(θ) = μ (cot θ − θ csc2 θ + ν i) or z′(θ) = μ
(
− 4π2θ

(θ2 − π2)2
+ ν i

)
.

The integral (1.6) is typically approximated by the trapezoidal rule on a uniform
partition of [−π, π]. Instead, we prefer to use the equally accurate midpoint rule
with an even number of intervals, say 2N . This is a practical choice that avoids
sampling the integrand at the removable singularity at θ = 0, as well as at the
essential singularities at θ = ±π.

We hence define the grid

θk = (2k + 1)
π

2N
, k = −N, . . . , N − 1,(1.7)

and denote the approximation to (1.6) by

fN (t) =
1

2Ni

N−1∑
k=−N

ez(θk)t z′(θk) F k,

or

fN (t) =
1

N
Im

{
N−1∑
k=0

ez(θk)t z′(θk) F k

}
,(1.8)

if symmetry is used. Here the vectors F k ≡ F (z(θk)) are solved from(
z(θk) I −A

)
F k = f0, k = 0, . . . , N − 1.(1.9)

Unless A is sparse, the solution of the N linear systems (1.9) represents the bulk of the
computational cost of the algorithm. It should, however, be noted that the systems
(1.9) can be solved independently and in parallel [10, 17]. In addition, it is possible to
solve all N systems (1.9) efficiently using a single Hessenberg or Schur decomposition
of A; see Problem P7.4.2 in [9, p. 350].
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Fig. 1.1. Talbot’s contour (1.3) with parameter values σ = 0, μ = 2, ν = 0.5. The dots are the
images in the z-plane of the midpoint abscissas (1.7).

In this paper, we shall aim to optimize the convergence rate fN (t) → f(t) as
N → ∞, keeping t fixed, by selecting the parameters (σ, μ, ν) in (1.3) and (1.5) to
be asymptotically optimal. This is achieved by making σ and μ both proportional
to the ratio N/t. By doing so, a geometric convergence rate, O(e−cN ) as N → ∞,
can be obtained. It is well known that Talbot’s method with fixed (and therefore

suboptimal) parameters converges at a subgeometric rate of O(e−c
√
N ); see [19].

To conclude this introduction, we offer Figure 1.1 as a summary of the role of the
parameters (σ, μ, ν) in the contour (1.3). The parameter σ represents a shift to the left
or right. The parameter μ controls the distance that the two extreme nodes extend
into the left half-plane. The parameter ν determines the width of the contour in the
sense that the contour approaches two horizontal asymptotes at distance proportional
to μν from the real axis as Re z → −∞. The factor μν also determines the spacing
of the nodes near the real axis.

The outline of the paper is as follows. In section 2, we indicate how the well-

known O(e−c
√
N ) convergence rate can be rederived by analyzing the scalar model

problem

f(t) = eλt, F (z) = (z − λ)−1.(1.10)

This analysis suggests the reparameterization that we alluded to above, namely to
make σ and μ both proportional to N/t. A saddle point method is used in section 3
to demonstrate that this rescaling of parameters leads to an improved convergence
rate O(e−cN ). In section 4, we determine the value of ν and the proportionality
constants in σ ∝ N/t, μ ∝ N/t that will maximize the decay rate, c. We hence
obtain the attractive convergence rates O(e−1.90N ) and O(e−1.73N ), respectively, for
the two versions of the Talbot contour (1.3) and (1.5). A further improvement, which
involves omitting those outlying nodes on the Talbot contour that make a negligible
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contribution to the midpoint sum, improves these two convergence rates to effectively
O(e−2.41N ) and O(e−2.56N ). The theory of sections 3 and 4 is tested on two parabolic
PDEs in section 5. In section 6, we discuss a few alternate contours, and we also
contrast the parameter suggestions of this paper with those made by Talbot in [19].

2. Analysis of the scalar problem. We suppose the matrix A, which may
or may not be symmetric, has real and negative eigenvalues, λj , corresponding to a
complete set of eigenvectors, vj , j = 1, . . . ,M . If one expands the initial condition as
a linear combination of eigenvectors,

f0 = c1v1 + · · · + cMvM ,

then (1.2) can be expressed as

f(t) =
c1
2πi

(∫
Γ

ezt

z − λ1
dz

)
v1 + · · · + cM

2πi

(∫
Γ

ezt

z − λM
dz

)
vM .

Applying Talbot’s method to the right-hand side is therefore equivalent to applying it
to the scalar problem (1.10), where λ represents a real and negative eigenvalue of A.
For any fixed t, we shall restrict attention to λ in the range |λt| = O(1) as M → ∞.
We consider this sufficient because in the actual solution,

f(t) = c1e
λ1tv1 + · · · + cMeλM tvM ,

modes that satisfy |λt| � 1 are negligible.
Our task is therefore to estimate the error when approximating the integral

f(t) =
1

2πi

∫ π

−π

ez(θ)t

z(θ) − λ
z′(θ) dθ(2.1)

with the midpoint rule, with z(θ) defined by (1.3) or (1.5), and λ < 0. To start, we
recall an error formula for the midpoint rule.

Consider an integral on [−π, π] and its midpoint rule approximation

I(g) =

∫ π

−π

g(θ) dθ, MN (g) =
π

N

N−1∑
k=−N

g(θk),(2.2)

where the nodes θk are defined by (1.7). Suppose that the function g(θ) has an
absolutely convergent Fourier series expansion

g(θ) =
∞∑

k=−∞
cke

ikθ, with ck =
1

2π

∫ π

−π

g(θ)e−ikθ dθ.

Then it is possible to insert these formulas into (2.2), followed by termwise integration
and summation, to obtain

I(g) = 2πc0, MN (g) = 2πc0 + 2π

∞∑
�=−∞
� �=0

(−1)�c2�N .

The error is therefore given by

I(g) −MN (g) = −2π

∞∑
�=−∞
� �=0

(−1)�c2�N .(2.3)
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(The trapezoidal rule error would be similar, except for the absence of the (−1)�

factor; see [23].)
When the periodic extension of g(θ) is infinitely differentiable on [−π, π], the

Fourier coefficients ck decay rapidly. In fact, repeated integration by parts can then
be used to establish ck = O(|k|−m) for each positive integer m. In such cases a good
error estimate can be obtained by retaining only the leading two terms in (2.3), as
follows:

I(g) −MN (g) ∼ 2π
(
c−2N + c2N

)
=

∫ π

−π

g(θ)e−2Niθ dθ +

∫ π

−π

g(θ)e+2Niθ dθ.

One may apply this estimate to the special integral (2.1). The factor ez(θ)t de-
cays sufficiently rapidly as θ → ±π to ensure infinite differentiability of the periodic
extension of the integrand. We therefore propose to analyze the error estimate,

f(t) − fN (t) ∼ E−
N (t) + E+

N (t), N → ∞,

where, using symmetry,

E±
N (t) =

1

π
Im

{∫ 0

−π

ez(θ)t±2iNθ

z(θ) − λ
z′(θ) dθ

}
.(2.4)

We shall keep both t > 0 and λ < 0 fixed, as well as the parameters σ, μ, and ν in
the contours (1.3) or (1.5); our interest is the behavior of (2.4) as N → ∞.

We digress for a moment to point out that error estimates such as (2.4) were used
to good effect by Lin, to numerically predict optimal parameters for Talbot’s contour
[11]. A wide range of transforms was considered there, not just the F (z) = 1/(z − λ)
considered here.

Rather than using numerical optimization, we shall instead use the saddle point
method to estimate analytically the two integrals (2.4). Since this analysis is primarily
used to justify the form of the rescaling of parameters in section 3, and not in the
determination of the actual optimal numbers itself, we omit the details. (A sketch of
the derivation can be found in [24].) The result is that, with EN (t) ≡ E−

N (t)+E+
N (t),

EN (t) = O
(
e(σ+μ)t−2

√
πμtN

)
, N → ∞,(2.5)

in the case of contour (1.3), and

EN (t) = O
(
e(σ+ 5

2μ)t−2
√
πμtN

)
, N → ∞,(2.6)

in the case of (1.5). Results similar to these were obtained by Talbot [19, eq. (15)],
who used a different method to prove that

EN (t) = O
(
N2e(σ+aμ)t−b

√
tN

)
.

The constants a and b depend on the transform and the contour.
The factor 5/2 that appears in (2.6) indicates that the error constant associated

with the modified contour (1.5) is larger than that of the original contour (1.3). This
was confirmed by the numerical experiments in [24].

The estimates (2.5)–(2.6) suggest the strategy of choosing σ, μ ∝ N/t. This

should improve the subgeometric convergence rate, O(e−c
√
N ), to pure geometric con-

vergence, O(e−cN ). We consider this next.
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3. New parameters for the contour. Consider the rescaling

σ = −s
N

t
, μ = m

N

t
, ν = n,(3.1)

where s, m, and n are real parameters to be determined. Both m and n are positive,
and in accordance with (1.4) we require that

s < m− λt

N
.(3.2)

The constant λ is defined in (1.10), which we continue to use as the model problem.
Because the parameters become dependent on t, so does the contour and hence

also the integration nodes. This means that the N linear systems (1.9) have to be
solved for each value of t, which may be inefficient. We therefore intend this rescaling
to be used when the solution is required at only a few values of t.

Using the new parameters (3.1) we define ζ(θ) = (t/N) z(θ); i.e.,

ζ(θ) = −s + m
(
θ cot θ + i n θ

)
(3.3)

in the case of the contour (1.3), and

ζ(θ) = −s + m
(
1 +

2θ2

θ2 − π2
+ i n θ

)
(3.4)

in the case of (1.5). The two error integrals (2.4) therefore become

E±
N (t) =

1

π
Im

{∫ 0

−π

eNg±(θ)

ζ(θ) − λt/N
ζ ′(θ) dθ

}
,(3.5)

where

g±(θ) = ζ(θ) ± 2 i θ.

We apply the saddle point method to (3.5). (For details of this method, we
refer the reader to [1, sect. 6.4; 3, sect. 6.6].) The idea is to deform the interval of
integration, [−π, 0], to a special contour in the complex θ-plane on which the integral
can be estimated accurately. By Cauchy’s theorem such a deformed contour will be
permissible as long as it starts at θ = −π, terminates at θ = 0, and does not cross
any singularities of the integrand in between. Suitable contours are steepest descent
curves, defined by Im

{
g±(θ)

}
= constant, for these remove the oscillations from the

integrands in (3.5). The constants are chosen such that the contours pass through
the saddle points, θ = θ+ and θ = θ−, respectively, defined by

g′+(θ) = 0, g′−(θ) = 0.(3.6)

To ensure analyticity of the integrand, one needs to take into consideration the
singularities associated with the vanishing of the denominator in (3.5), i.e., the zeros
of ζ(θ) = λt/N . In view of the discussion in the first paragraph of section 2, we shall
assume |λt| 	 N and ignore the right-hand side of this equation. We therefore define
the critical points, θ = θ∗, as the zeros of

ζ(θ) = 0.(3.7)
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This is the same as setting λ = 0, and in accordance with (3.2) we shall therefore
consider only m > s.

To apply the saddle point method, we have to know where the critical points
and saddle points are. We restrict ourselves to the modified contour (1.5); i.e., we
assume ζ(θ) is defined by (3.4). For this contour (3.6) and (3.7) reduce to polynomial
equations of degrees 4 and 3, respectively, which can in principle be solved explicitly.
The results are unwieldy, however, and we follow a more elementary approach.

In order to work with equations with real coefficients, we introduce the variable
φ by θ = iφ. After denominators have been cleared, (3.6) can be factored into(

mn± 2
)(
φ2 + π2

)2
= 4mπ2φ,(3.8)

and (3.7) into (
mnφ + s−m

)(
φ2 + π2

)
= 2mφ2.(3.9)

Assuming m > s ≥ 0 and working with these two representations, we were able to
establish the following properties of the roots of (3.6)–(3.7).

Starting with the cubic equation (3.9), it is readily established that it always has
a positive real root. The remaining two roots may either be real as well or occur as
a conjugate pair. In the latter case the real part of these roots is positive, and the
imaginary part is bounded in absolute value by π. Transplanting this information
from the φ variable to θ, we deduce that the three critical points θ∗ defined by (3.7)
are all in the upper half-plane, with real parts in the interval (−π, π). At least one
root lies on the positive imaginary axis. The other two roots may be pure imaginary
as well, or they may be located symmetrically with respect to the imaginary axis. (In
the next section, we shall conjecture that the optimal configuration occurs when this
pair of roots coalesces into a double root on the imaginary axis.)

Turning to (3.8), one notices that it is a quartic equation with real coefficients
that is missing its cubic term. The typical configuration of roots is therefore one in
each quadrant of the complex θ-plane, at equal distances from the real axis. The
exception is when (3.8) admits four real roots, which would mean saddle points on
the imaginary θ-axis. Considering the minus sign in (3.8) we see this cannot happen
when mn < 2, and because of (3.10) below, we disregard this possibility.

Figure 3.1 shows a typical configuration of critical and saddle points. The roots
of (3.6) are represented by +’s and ×’s (corresponding to the + and − signs, respec-
tively), and the roots of (3.7) are plotted as the ∗’s.

We propose a saddle point analysis based on the contours shown in the figure.
The Γ± are the curves of steepest descent Im

{
g±(θ)

}
= constant. Writing θ = x+yi,

they can be expressed as

Γ± :
4mπ2xy

(x2 − y2 − π2)2 + 4x2y2
− (mn± 2)x = c±.

The constants c± are determined by the requirement that each Γ± passes through its
corresponding saddle point, θ+ or θ−, as defined by (3.6).

In the lower half-plane, Γ− starts at θ = −π, passes through θ−, and continues
to θ = −i∞. This is valid since the integrand in (3.5), with minus sign, approaches
zero as θ → −i∞, provided that

mn < 2.(3.10)
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Fig. 3.1. Saddle points, θ− and θ+, critical points θ∗, and steepest descent contours used in
deriving the error estimates (3.11)–(3.13).

(The corresponding restriction for the contour (1.3) is m(1 + n) < 2.) The contour
is then closed at −i∞ and returns to the origin via the negative imaginary θ-axis.
On this axis the contribution can be ignored, since the integrand is real. The error
E−

N (t) is therefore solely determined by the saddle point contribution, which can be
computed in the usual manner as [1, sect. 6.4; 3, sect. 6.6]

E−
N (t) = O

(
ed−N

)
, d− = Re

{
g−(θ−)

}
.(3.11)

In the upper half-plane a similar approach is used, except for the fact that the
critical points θ∗ have to be taken into account. The contour Γ+ is not continued
to θ = +i∞, as it will not be possible to return to the origin without crossing the
singular points θ = θ∗. To maintain analyticity of the integrand, we introduce a
third contour, Γ∗, that branches off from Γ+ and has a constant imaginary part, say
Im

{
Γ∗

}
= b. Typically, the value of b would be determined by the critical point θ∗

nearest to the real axis. By letting Γ∗ approach such a limiting θ∗ from below, it is
possible to establish

E+
N (t) = O

(
ed∗N

)
, d∗ = Re

{
g+(θ∗)

}
.(3.12)

If θ+ lies below Γ∗, a saddle point contribution similar to (3.11),

E+
N (t) = O

(
ed+N

)
, d+ = Re

{
g+(θ+)

}
,(3.13)

is to be added to (3.12).
In our numerical experiments, the total error was dominated either by (3.11) or

by (3.12). We have not found a set of parameters (s,m, n) for which (3.13) dominates,
but neither have we tried to prove that this is impossible.
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Fig. 3.2. Convergence curves for Talbot’s method applied to the model problem (1.10), with
λ = −1, t = 1, and using contour (1.5). The solid curves represent the actual errors, and the dash-
dot lines (virtually indistinguishable in (a) and (c)) their theoretical estimates. The plots (a)–(c)
correspond to three different choices of (s, m, n), as summarized in the appendix.

In Figure 3.2, we offer numerical verification of these error estimates. In the
appendix, the corresponding values of saddle points, critical points, and expected
convergence rates are summarized. We have picked sets of parameter values (s,m, n)
for which (a) the saddle point contribution (3.11) dominates, (b) the critical point
contribution (3.12) dominates, and (c) these two contributions are equal (the con-
jectured optimal situation). Also shown, as the dash-dot curves, are the predicted
convergence rates, i.e., the maximum of (3.11) and (3.12). Here we should point out
that these estimates are asymptotic, and much information is suppressed by the order
notation of (3.11)–(3.13). Therefore, in some cases N has to be large for the estimate
to become valid. This can be seen in part (b) of Figure 3.2, for example, where N
has to be greater than 70, roughly, before (3.12) becomes evident.

In Figure 3.2, and elsewhere in the paper where multiprecision arithmetic was
required, we computed in Maple and exported the numbers to MATLAB for plotting.

4. Computing the optimal parameters. A first attempt at finding optimal
parameters (s,m, n) was based on a numerical optimization strategy, involving the
objective function

F (s,m, n) ≡ max
{
d+, d−, d∗

}
= minimum.(4.1)

Here d+, d−, d∗ are the decay constants in the error estimates (3.13), (3.11), and
(3.12). For each set of parameters (s,m, n), the value of F can be computed by first
solving (3.6) and (3.7) to obtain θ+, θ−, and θ∗. These values are then substituted
into g±(θ), to compute d+, d−, d∗ as defined by (3.11)–(3.13).

In the case of contour (1.5), (3.6) and (3.7) can be solved with polynomial rootfind-
ing routines, and in this case MATLAB’s function roots was used. In the case of
contour (1.3) a complex Newton process was used. When solving (3.7), one should
take care to select the correct root θ∗.

The problem (4.1) was solved using MATLAB’s function fminsearch, a rou-
tine suitable for nonsmooth, unconstrained optimization. Aside from some mild ill-
conditioning that will be explained below, this approach worked well.
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In the case of contour (1.5), this yielded the parameters presented as case (c) in
Figure 3.2, namely

s = 0.7556, m = 0.8597, n = 0.3029.(4.2)

The corresponding saddle and critical points are summarized in the appendix. The
predicted optimal convergence rate is

EN (t) = O
(
e−1.7303N

)
, N → ∞.(4.3)

Applying the same algorithm to the original Talbot contour (1.3), we obtained a
better convergence rate, namely

EN (t) = O
(
e−1.8975N

)
, N → ∞.(4.4)

This corresponds to parameter values

s = 0.4814, m = 0.6443, n = 0.5653,(4.5)

with saddle points and critical point given by

θ+ = −2.5293 + 0.7435 i, θ− = −2.4158 − 0.9487 i, θ∗ = 0.9487 i,(4.6)

and decay rates

d+ = −2.5048, d− = −1.8975, d∗ = −1.8975.

In Figure 4.1, we show the θ+, θ−, and θ∗ defined by (4.6) in the top figure, and
their images in the z-plane in the bottom figure. Also shown are the nodes of the
midpoint approximation, with N = 16.

Examining the numerical results (4.5)–(4.6), we conjecture that in the optimal
configuration,

(a) θ∗ is on the positive imaginary axis,
(b) ζ ′(θ∗) = 0,
(c) Im(θ∗) = −Im(θ−), and
(d) d+ < d− = d∗

for both contours (1.3) and (1.5). All of these properties seem plausible, but we have
not pursued rigorous proofs.

Property (b) indicates that θ∗ is a double root of (3.7), which is the source of
the ill-conditioning mentioned at the beginning of the section. Fortunately, assuming
properties (a)–(d) to be true, the problem can be reformulated such that it becomes
explicitly solvable. The details are as follows.

Using properties (a) and (c) above, we write

θ∗ = y i, θ− = x− y i,

where x < 0 and y > 0. Because of property (d), we shall ignore θ+ and try to solve
for x, y, s, m, and n from the following five (real) equations: the right-hand equality
in (3.6) (two real equations), (3.7), property (b), and the equality in (d).

Using a straightforward but tedious hand calculation this 5×5 system was reduced
to a 2 × 2 system involving x and y. In the case of contour (1.5) this system is

x(P 2 −Q2) + 2yPQ = 0,

(5y2 + π2)(P 2 + Q2) + P (y2 + π2)2 = 0,(4.7)
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where

P = x2 − y2 − π2, Q = 2xy.

For further simplification we turned to Maple, which produced an explicit solution

y = π
√
v,

where v ≈ 0.07584 is the smallest positive root of

41v4 − 308v3 − 98v2 − 4v + 1 = 0.

With this value of v, x is given by

x = − π

4
√

2

√
41 − 209v − 1581v2 + 205v3.
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These formulas yield the values y ≈ 0.8652 and x ≈ −2.2315, as obtained above. The
values of s, m, and n given in (4.2) follow from

n =
4π2y

(y2 + π2)2
, m =

2(R2 + S2)

4π2(yR− xS) + n(R2 + S2)
, s = m

(
3y4 + π4

(y2 + π2)2

)
,

where

R = P 2 −Q2, S = 2PQ.

In the case of contour (1.3) the analogue of the system (4.7) is

A− x
(
A2 −B2 + 1

)
− 2yAB = 0,

xA + yB + y
(
coth y − 2 y csch2y

)
= 0,

where we have defined A = Re
{

cot θ−
}
, B = Im

{
cot θ−

}
, i.e.,

A =
sinx cosx

sin2 x + sinh2 y
, B =

sinh y cosh y

sin2 x + sinh2 y
.

A numerical solution of this system yields the value of θ− = x− iy reported in (4.6).
The values of the other parameters can be computed via

n = coth y − y csch2y, m =
2

B + y(A2 −B2 + 1) − 2xAB + n
, s = my2 csch2y.

As verification that the parameters derived here are indeed close to optimal, we
offer Figure 4.2. There we show, as the thicker curve, the numerically computed error
EN (t) as a function of N , corresponding to parameters (4.5). Virtually on top of
this curve and shown as a dash-dot line is the theoretical error estimate (4.4). To
show the near-optimality of these curves, we have computed errors using a uniform
sampling of parameter space (s,m, n) ∈ (0, 1) × (0, 1) × (0, 1), with step-size 0.05 in
each direction. (That is, 193 = 6859 different parameter sets were used for each value
of N .) The vertical line segments in the figure represent the range of these computed
errors, with the minima and maxima indicated by the tiny horizontal bars.

We should not neglect to point out that if our sampling of parameter space were
finer, some of the lower error bars in this figure could extend further down to 0.
This will happen when the two error components, E+

N (t) and E−
N (t) in (2.4), are

approximately of equal magnitude but of opposite sign. Such instances of fortuitous
cancellation will, however, be rare when the matrix as opposed to the scalar problem
is solved. We believe that Figure 4.2 represents solid evidence that the suggested
parameter values in (4.5) and (4.2) are indeed asymptotically optimal.

To conclude this section, we point out a redundancy in the Talbot contour as
noted by Trefethen [21]. Recall Figure 4.1, where the optimal Talbot contour was
shown for the case N = 16, and recall also that four pairs of nodes were located
outside the frame of the figure, towards Re z = −∞. In fact, the contribution of
each of these outlying nodes is negligible, as |ez(θk)t| ≤ e−1.90N when |k| ≥ 3N/4. It
appears that practically no accuracy is lost by including only the middle 75% of nodes
and discarding the outlying 25%. A more careful calculation shows that the actual
fraction of nodes retained should be about 0.7409. Since 1.8975/0.7409 ≈ 2.5611, the
effective convergence rate improves from about O(e−1.90N ) to O(e−2.56N ). In the case
of the modified Talbot contour (1.5) about 28% of the nodes can be discarded, which
increases the effective rate from O(e−1.73N ) to roughly O(e−2.41N ).

In the next section we solve two parabolic problems to test some of these conver-
gence estimates.
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Fig. 4.2. Absolute errors when Talbot’s method is applied to the model function (1.10), with
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5. Application to PDEs. The prototype parabolic PDE is the heat equation

ut = uxx, 0 ≤ x ≤ π,(5.1)

and here we consider boundary conditions

u(0, t) = 0, u(π, t) = 1, t > 0,(5.2)

and an initial condition

u(x, 0) = 0, 0 ≤ x ≤ π.(5.3)

The exact solution can be represented either as a Fourier series [2, p. 91], or an
infinite series involving the complementary error function [2, p. 93] (efficient for large
and small t, respectively).

For numerical work, we let v(x, t) = u(x, t) − x/π and rewrite the PDE as

vt = vxx,(5.4)

now with homogeneous boundary conditions

v(0, t) = 0, v(π, t) = 0, t > 0,(5.5)

but inhomogeneous initial condition

v(x, 0) = −x/π, 0 ≤ x ≤ π.

To semidiscretize (5.4), a suitable partition {xj}Mj=1 of [0, π] is introduced, along

with an M × M matrix D that represents the approximation to d2/dx2 and which
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incorporates the boundary conditions (5.5). The approximation to (5.1) is then given
by the linear system of ODEs

vt = Dv, v(0) = v0.(5.6)

Here v = v(t) is the M × 1 column vector [v1(t), v2(t), . . . , vM (t)]T , with vj(t) repre-
senting the approximation to v(xj , t). Likewise v0 is the vector consisting of samples
of v(x, 0) at the grid-points xj .

Traditionally, the system (5.6) is integrated by a Runge–Kutta or multistep for-
mula (the method of lines). Here we use the transform approach instead. That is, we
compute the midpoint sum

vN (t) =
1

N
Im

{
N−1∑
k=0

ez(θk)t z′(θk) F k

}
,(5.7)

where z(θ) is given by (1.3) and θk by (1.7). The vectors F k are solved from(
z(θk) I −D

)
F k = v0, k = 0, . . . , N − 1.(5.8)

The details of our particular implementation are as follows. Since we have es-
tablished that the Talbot contour (1.3) is superior to the contour (1.5), we consider
only the former. As for the choice of {xj}Mj=1 and D, we use the Chebyshev spectral
collocation method; i.e., the nodes are the Chebyshev points of the second kind, and
D is the corresponding spectral second derivative matrix incorporating the boundary
conditions (5.2). The canonical interval for the Chebyshev points is [−1, 1], which we
transform to [0, π] with x �→ (π/2)(x+ 1). (Codes for computing {xj}Mj=1 and D and
further details of the spectral method can be found in [7, 20, 25].)

We shall report errors in the L2-norm, as approximated by the Clenshaw–Curtis
rule (the natural quadrature rule for the Chebyshev method). That is, we define as
error norm

EN (t) =

√√√√π

2

M∑
j=1

wj

(
v(xj , t) − vj(t)

)2

,(5.9)

where the wj are the weights defined in [20, p. 128], and the factor π/2 comes from
the transformation of [−1, 1] to [0, π]. The exact solution, v(x, t), was computed by
the series expansions mentioned below (5.3).

Our first aim is to demonstrate that the convergence estimate (4.4), derived for
the model problem (2.1), is also valid for the solution of a PDE. In the latter case,
there is of course a spectrum of λ’s present, not only the single λ that was assumed in
sections 2 and 3. For this reason we chose the side conditions (5.2)–(5.3) to represent
a discontinuous solution at t = 0. Our interest will therefore be in the regime t → 0,
when high frequency modes are relevant.

In Figure 5.1 we show solutions of (5.1)–(5.3) at various values of t. We also show
the error, EN (t), as a function of N , for the corresponding values of t. We have chosen
the M ×M Chebyshev matrices D sufficiently large to fully resolve the solution; i.e.,
the errors reported in the figure are solely due to the Laplace transform quadrature
error and not due to inadequate spatial resolution. Owing to the smoothing property
of the heat equation the order of D can of course be reduced as t increases, and
suitably large values of M were determined by trial and error.
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Fig. 5.1. The left column shows the actual solution of (5.1)–(5.3) at various times. The right
column shows convergence curves when the solution on the left is approximated with a Chebyshev
spectral differentiation matrix of order M ×M and Talbot’s quadrature rule (5.7) using the contour
(1.3) with optimal parameters (4.5). The thinner, dotted curves show the computed errors, and the
thicker, dash-dot lines the error model exp(−1.90N); cf. (4.4). The error EN (t) is defined by (5.9).

Assessing these figures, it is clear that the error estimate (4.4) is valid for this prob-
lem, even for small t. In addition, one should keep in mind that these results can be
achieved by solving effectively only 0.74N linear systems (recall the discussion at the
end of section 4). This allows us to formulate the rule of thumb stated in the abstract.
Suppose an accuracy of 10−� is required at a particular value of t. By considering

e−2.56N = 10−� =⇒ N ≈ 0.9	

one concludes that this should require no more than 	 solutions of the system (5.8).
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We remark that discretization in space is, strictly speaking, not necessary for
(5.1)–(5.3), as the Laplace transform can be obtained explicitly, as follows [2, p. 89]:

F (z) =
sinh(x

√
z)

z sinh(π
√
z)

.

Talbot’s method (or any other inversion algorithm) may be applied to this transform
for any x in [0, π]. For problems with nonconstant coefficients or with complicated
boundary conditions, however, such explicit representations may not exist.

As a second example, we consider the fractional heat equation

Dα
t u = uxx,(5.10)

subject to boundary conditions (5.5) and initial condition

u(x, 0) = sin x, 0 ≤ x ≤ π.(5.11)

Here Dα
t is the Caputo fractional derivative, defined by [16, p. 79]

Dα
t f(t) =

1

Γ(1 − α)

∫ t

0

f ′(s)

(t− s)α
ds (0 < α < 1).

It can be shown [16, p. 79] that if f(t) is twice continuously differentiable, then in
the limit α → 1 this formula reproduces the ordinary derivative, in which case (5.10)
reduces to the standard heat equation (5.1).

The analytical solution to (5.10)–(5.11) can be written as

u(x, t) = M(t) sinx,

where M(t) can be expressed in terms of the Mittag–Leffler function. In the case
α → 1, it reduces to M(t) = e−t. In the case α = 1/2, the function can be expressed
in terms of the complementary error function, namely

M(t) = eterfc(
√
t).

The qualitative properties of this α = 1/2 solution are similar to those of the ordinary
heat equation, but steady-state is approached on a longer time scale (subdiffusion).

For the numerical solution of (5.10)–(5.11), one takes a Laplace transform of
(5.10), which yields

F (z) =
(
zI − z1/2D

)−1
u0.

We shall continue to let D be the Chebyshev second derivative matrix that incorpo-
rates the boundary conditions (5.5). The modification to the Talbot method (5.7)–
(5.8) is obvious: the scalar z(θk)

1/2 should be inserted to multiply D in (5.8).
Finding optimal parameters for Talbot’s method for the problem (5.10)–(5.11)

would mean analyzing F (z) = 1/(z − z1/2λ) as a test function. Note that the sin-
gularities are no longer isolated, but a branch cut on the negative real axis. Instead
of performing such an analysis, we merely demonstrate numerically that Talbot’s
method with the parameter choices of section 3 is very accurate for this problem as
well. The error curves shown in Figure 5.2 confirm that the convergence rate is, to a
good approximation, again given by O(e−1.90N ).
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Fig. 5.2. Same as Figure 5.1, but the problem is the fractional PDE (5.10)–(5.11), with α = 1/2.

6. Comparisons. Using a combination of asymptotics and heuristics, Talbot
made some suggestions for parameter selection in the original paper [19]. In the case
of singularities on the real negative axis, the suggested values are

σ = 0, μ =
ω

t
, ν = 1.

The recommended value of ω is 6 (resp., 11) for single (resp., double) precision. In our
notation ω = mN , and using m = 0.6443 we find that ω = 6 (resp., 11) corresponds to
N ≈ 9 (resp., 17). This is commensurate with our results, as exp(−1.90×9) ≈ 3.7 10−8

(approx. single precision) and exp(−1.90×17) ≈ 9.4 10−15 (approx. double precision).
The recommended values σ = 0 and ν = 1, however, are suboptimal. Indeed, in the
abstract of [19] it is stated that “The required number of points depends on t. . . and
for moderate t is typically 11 for orders of 10−6, 18 for order 10−10, 35 for order
10−20.” Fitting a model EN = const. × e−cN to these data yields c ≈ 1.35, which is
not as good as the c ≈ 1.90 and c ≈ 2.56 obtained here.

To be fair to Talbot, the aims of the paper [19] were more ambitious than those
of the present paper. To begin with, all singularity distributions were taken into ac-
count, not just poles on the negative imaginary axis. In addition, Talbot considered
finite precision tolerances, and therefore had to deal with the locations of the singu-
larities. By contrast, we let N → ∞, thereby making the errors independent of the
singularities, and trusted in the power of asymptotics to make the parameters thus
found relevant for finite (indeed, relatively small) values of N as well.

More recently, hyperbolic and parabolic contours have been considered as al-
ternatives to Talbot’s contours. Published convergence rates are all subgeometric,

namely O(e−cN1/2

) for the hyperbola of [14], O(e−cN2/3

) for the parabola of [8], and
O(e−cN/ logN ) for the hyperbola of [12]. The hyperbola has the advantage that it can
handle singularities that lie in a sectorial region about the negative real axis; see [12].

Using a rescaling similar to (3.1), the above convergence rates were subsequently
improved to the geometric O(e−cN ); see [13, 26]. In fact, the optimal decay constant c
is marginally better for parabolas and hyperbolas than for Talbot contours. With the
modification introduced at the end of section 4, however, the Talbot contours regain
their superiority.

Appendix. Table A.1 lists saddle points, critical points, and estimated conver-
gence rates corresponding to cases (a)–(c) in Figure 3.2.
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DISCONTINUOUS GALERKIN METHODS FOR FRIEDRICHS’
SYSTEMS. PART II. SECOND-ORDER ELLIPTIC PDES∗

ALEXANDRE ERN† AND JEAN-LUC GUERMOND‡

Abstract. This paper is the second part of a work attempting to give a unified analysis of
discontinuous Galerkin methods. The setting under scrutiny is that of Friedrichs’ systems endowed
with a particular 2×2 structure in which one unknown can be eliminated to yield a system of second-
order elliptic-like PDEs for the remaining unknown. A general discontinuous Galerkin method for
approximating such systems is proposed and analyzed. The key feature is that the unknown that can
be eliminated at the continuous level can also be eliminated at the discrete level by solving local prob-
lems. All the design constraints on the boundary operators that weakly enforce boundary conditions
and on the interface operators that penalize interface jumps are fully stated. Examples are given for
advection-diffusion-reaction, linear continuum mechanics, and a simplified version of the magneto-
hydrodynamics equations. Comparisons with well-known discontinuous Galerkin approximations for
the Poisson equation are presented.

Key words. Friedrichs’ systems, finite elements, partial differential equations, discontinuous
Galerkin method

AMS subject classifications. 65N30, 65M60, 35F15

DOI. 10.1137/05063831X

1. Introduction. Friedrichs’ systems [10] are systems of first-order PDEs en-
dowed with a symmetry and a positivity property. Such systems embrace both el-
liptic and hyperbolic PDEs; i.e., they include advection-reaction, advection-diffusion-
reaction, linear continuum mechanics, and Maxwell’s equations in the elliptic regime,
to cite a few examples. The analysis of this class of problems and its approximation
by means of discontinuous Galerkin (DG) methods has been initiated by Lesaint [13],
Lesaint and Raviart [12], and Johnson, Nävert, and Pitkäranta [11]. A thorough sys-
tematic analysis generalizing [13, 12, 11] has been undertaken in the first part of this
work [9].

In this second part, we specialize the setting to two-field Friedrichs’ systems such
that (i) the dependent variable z can be partitioned into the form z = (zσ, zu), and (ii)
the σ-component, zσ, can be eliminated to yield a system of second-order PDEs for
the u-component, zu, which is of elliptic type. To efficiently approximate the above
Friedrichs’ systems using DG methods, it is desirable to reproduce at the discrete
level the possibility of eliminating the σ-component of the discrete unknown locally
on each mesh element. This feature induces a nontrivial modification of the analysis
presented in [9] that constitutes the scope of the present work. In particular, the design
of boundary and interface operators has to be revised. The analysis presented herein
shows that to recover stability while allowing for the local elimination in question
requires an enhanced penalty on the boundary conditions and on the interface jumps
of the discrete u-component.
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This paper is organized as follows. Section 2 briefly restates the main theoret-
ical results of [9] on the well-posedness of Friedrichs’ systems and introduces the
above-mentioned two-field structure. Section 3 presents three important examples of
two-field Friedrichs’ systems, namely advection-diffusion-reaction equations written
in mixed form, linear continuum mechanics equations written in the stress-pressure-
displacement form, and a simplified form of the magnetohydrodynamics (MHD) equa-
tions. Section 4 formulates a general DG method for two-field Friedrichs’ systems and
describes the technique to locally eliminate the σ-component of the discrete solution.
The convergence analysis constitutes the scope of section 5. All the design assump-
tions on the boundary operators which weakly enforce boundary conditions and on
the interface operators which penalize interface jumps are stated. The key results
are Theorem 5.8, which contains the main estimate for the σ- and u-component of
the approximation error, and Theorem 5.14, which contains an improved estimate
for the u-component of the error in the L2-norm obtained using a duality argument.
Finally, section 6 applies the DG method to the PDE systems presented in section
3; in particular, the link with the unified analysis of Arnold et al. [1] for the Poisson
equation is explicated to illustrate the fact that various DG methods presented in the
literature, e.g., the local discontinuous Galerkin (LDG) method of Cockburn and Shu
[7], the interior penalty (IP) method of Baker [3] and Arnold [2], the method of Brezzi
et al. [6], and the methods of Bassi and Rebay [5] and Bassi et al. [4], fit into the
present framework.

2. Two-field Friedrichs’ systems. Section 2.1 is meant to recall well-posedness
results proved in part I, [9]. The reader familiar with this material can jump to section
2.2, where the notion of two-field Friedrichs’ systems is introduced.

2.1. Main results on one-field Friedrichs’ systems. Let Ω be a bounded,
open, connected, Lipschitz domain in R

d. Let m be a positive integer and set L =
[L2(Ω)]m equipped with the canonical L2-induced inner product (·, ·)L. Let K and
{Ak}1≤k≤d be (d + 1) functions on Ω with values in R

m,m such that

K ∈ [L∞(Ω)]m,m,(a1)

∀k ∈ {1, . . . , d}, Ak ∈ [L∞(Ω)]m,m and

d∑
k=1

∂kAk ∈ [L∞(Ω)]m,m,(a2)

∀k ∈ {1, . . . , d}, Ak = (Ak)t a.e. in Ω,(a3)

∃μ0 > 0, K + Kt −
d∑

k=1

∂kAk ≥ 2μ0Im a.e. on Ω,(a4)

where Im is the identity matrix in R
m,m. To alleviate notation we define the operator

K ∈ L(L;L) by K : L � z �−→ Kz ∈ L and it adjoint K∗ ∈ L(L;L) by K∗ : L �
z �−→ Ktz ∈ L.

Let D(Ω) be the space of C∞ functions that are compactly supported in Ω. A
function z in L is said to have an A-weak derivative in L if the linear form

(2.1) [D(Ω)]m � φ �−→ −
∫

Ω

d∑
k=1

zt∂k(Akφ) ∈ R

is bounded on L. In this case, the function in L that can be associated with the
above linear form by means of the Riesz representation theorem is denoted by Az.
Define the so-called graph space W = {z ∈ L; Az ∈ L} equipped with the graph
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norm ‖z‖W = ‖Az‖L +‖z‖L. The space W is endowed with a Hilbert structure when
equipped with the scalar product (z, y)L + (Az,Ay)L. For z ∈ W , the function in L

that can be associated with the linear form [D(Ω)]m � φ �−→
∫
Ω

∑d
k=1 z

tAk∂kφ ∈ R

is denoted by Ãz. Clearly, A ∈ L(W ;L) and Ã ∈ L(W ;L) and if z is smooth, e.g.,
z ∈ [C1(Ω)]m,

(2.2) Az =

d∑
k=1

Ak∂kz, Ãz = −
d∑

k=1

∂k(Akz).

Furthermore, we set T = K + A, T̃ = K∗ + Ã. Note that Ã and T̃ are the formal
adjoints of A and T , respectively, owing to (a3). Assumption (a4) implies

(2.3) ∀z ∈ W, (Tz, z)L + (z, T̃ z)L ≥ 2μ0‖z‖2
L.

Let D ∈ L(W ;W ′) be the operator defined by

(2.4) ∀(z, y) ∈ W ×W, 〈Dz, y〉W ′,W = (Az, y)L − (z, Ãy)L.

Observe that D is self-adjoint by construction; moreover, it is a boundary operator
in the sense that Ker(D) is the closure of [D(Ω)]m in W ; see [8] for further results.

Consider the following problem: For f ∈ L, seek z ∈ W such that Tz = f . In
general, boundary conditions must be enforced for this problem to be well-posed. In
other words, one must find a closed subspace V of W such that the restricted operator
T : V → L is an isomorphism. To achieve this goal, a simple approach inspired from
Friedrichs’ work [9, 10] consists of introducing an operator M ∈ L(W ;W ′) such that

M is positive, i.e., 〈Mz, z〉W ′,W ≥ 0 ∀z in W,(m1)

W = Ker(D −M) + Ker(D + M).(m2)

Then by setting

(2.5) V = Ker(D −M) and V ∗ = Ker(D + M∗),

where M∗ ∈ L(W ;W ′) is the adjoint of M and V and V ∗ are equipped with the
graph norm, the following theorem can be proved (see [8, 9] for a proof).

Theorem 2.1. Assume (a1)–(a4) and (m1)–(m2). Then, the restricted operators
T : V → L and T̃ : V ∗ → L are isomorphisms.

As a result, for f in L, the following two problems are well-posed:

Seek z ∈ V such that Tz = f ,(2.6)

Seek z∗ ∈ V ∗ such that T̃ z∗ = f .(2.7)

A key observation at this point is that the boundary conditions enforced in (2.6) and
(2.7) are essential; i.e., they are enforced strongly by seeking the solutions in V and
V ∗, respectively. The key reason that led us to focus on the theory of Friedrichs’
systems is that it yields a way to enforce boundary conditions naturally, thus leading
to a suitable framework for developing a DG theory. To see this, we introduce the
following bilinear forms on W ×W :

a(z, y) = (Tz, y)L + 1
2 〈(M −D)z, y〉W ′,W ,(2.8)

a∗(z, y) = (T̃ z, y)L + 1
2 〈(M

∗ + D)z, y〉W ′,W .(2.9)
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It is clear that a and a∗ are in L(W ×W ; R). Equipped with these two new bilinear
forms, we now consider the following problems: For f ∈ L,

Seek z ∈ W such that a(z, y) = (f, y)L ∀y ∈ W ,(2.10)

Seek z∗ ∈ W such that a∗(z∗, y) = (f, y)L ∀y ∈ W .(2.11)

The key result of this section is the following
Theorem 2.2. Assume (a1)–(a4) and (m1)–(m2). Then,

(i) there is a unique solution to (2.10) and this solution solves (2.6);
(ii) there is a unique solution to (2.11) and this solution solves (2.7).

Theorem 2.2 is proven in [9]. Contrary to (2.6) and (2.7), the boundary conditions
in (2.10) and (2.11) are natural; i.e., they are weakly enforced. For this reason, prob-
lem (2.10) will constitute our working basis for designing DG methods; see section 4.

2.2. The two-field structure. We now particularize the above setting by as-
suming that the (d + 1) R

m,m-valued fields K and {Ak}1≤k≤d have a 2 × 2 block
structure; i.e., there are two positive integers mσ and mu such that m = mσ + mu

and

(2.12) K =

[
Kσσ Kσu

Kuσ Kuu

]
, Ak =

[
0 Bk

[Bk]t Ck

]
,

with obvious notation for the blocks of K and where for all k ∈ {1, . . . , d}, Bk is
an mσ ×mu matrix field and Ck is a symmetric mu ×mu matrix field. To simplify
the notation, define the operators B =

∑d
k=1 Bk∂k, B† =

∑d
k=1[Bk]t∂k, ∇·B =∑d

k=1 ∂kBk, C =
∑d

k=1 Ck∂k, C
† =

∑d
k=1[Ck]t∂k, and ∇·C =

∑d
k=1 ∂kCk. Set Lσ =

[L2(Ω)]mσ and Lu = [L2(Ω)]mu .
The two key hypotheses on which the present work is based are the following:

∃k0 > 0 ∀ξ ∈ R
mσ , ξtKσσξ ≥ k0‖ξ‖2

Rmσ a.e. on Ω,(a5)

∀k ∈ {1, . . . , d}, the mσ ×mσ upper-left block of Ak is zero.(a6)

Assumption (a5), which means that Kσσ is uniformly positive definite, implies that
the matrix Kσσ is invertible.

Assumptions (a5) and (a6) allow for the elimination of zσ from the PDE sys-
tem Tz = f . With obvious notation, partition z and f into (zσ, zu) and (fσ, fu),
respectively. Then, zσ is given by

(2.13) zσ = [Kσσ]−1
(
fσ −Kσuzu −Bzu

)
,

and zu solves the following second-order PDE:

(2.14) −B†[Kσσ]−1Bzu + (C −B†[Kσσ]−1Kσu −Kuσ[Kσσ]−1B)zu

+ (Kuu −Kuσ[Kσσ]−1Kσu)zu = fu − (Kuσ + B†)[Kσσ]−1fσ.

The objective of the present work is to design DG methods for approximating (2.14).
The strategy we are going to follow consists of constructing a DG approximation
to (2.10), but at variance with what has been done in [9], the construction is now
specialized to the above 2 × 2 block structure so that the approximate unknown
corresponding to zσ can be eliminated locally on each mesh element by solving local
problems.
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Remark 2.1. The present study does not cover the DG approximation of the whole
realm of second-order PDEs. Indeed, it is clear from (2.14) that the leading-order term
in the PDE, namely B†[Kσσ]−1Bzu (up to first-order terms), has a very particular
structure since the matrices (Bk)t[Kσσ]−1Bk are positive semidefinite. Hence, the
PDEs covered by this work are elliptic-like; see section 3 for various examples.

Remark 2.2. In some applications, K has no local representation; i.e., there is
no local field K to represent K. This is indeed the case for the neutron transport
equation, where K is a scattering operator. Everything that is said hereafter is also
valid in this case, provided the matrix block representation of K is replaced by the
operator block representation of K and provided Kσσ has a local representation, i.e.,
(Kσσzσ, yσ)Lσ =

∫
Ω
(yσ)tKσσzσ.

2.3. Integral representation of boundary operators. Let n = (n1, . . . , nd)
t

be the unit outward normal to ∂Ω. Henceforth, we assume that the fields {Ak}1≤k≤d

are sufficiently smooth for the matrix D =
∑d

k=1 nkAk to be meaningful at the bound-
ary. Hence, the following representation holds:

(2.15) 〈Dz, y〉W ′,W =

∫
∂Ω

ytDz

whenever z and y are smooth functions. Owing to (2.12), D has a 2×2 block structure

with Dσu =
∑d

k=1 nkBk, Duσ = [Dσu]t, Duu =
∑d

k=1 nkCk, and

(2.16) Dσσ = 0.

Likewise, we assume that the boundary operator M has an integral representation;
i.e., there exists a matrix-valued field M : ∂Ω −→ R

m,m such that

(2.17) 〈Mz, y〉W ′,W =

∫
∂Ω

ytMz

whenever z and y and smooth functions. We denote by Mσu, Muσ, and Muu the
top-right, bottom-left, and bottom-right blocks of M, respectively. Henceforth, we
assume that

(2.18) Mσσ = 0.

This assumption holds for all the two-field Friedrichs’ systems presented in section
3. For instance, the Dirichlet-like boundary condition Dσuzu = 0 can be enforced by
taking

(2.19) M =

[
0 −Dσu

Duσ Muu

]
,

where Muu is a positive matrix in R
mu,mu (this means that for all ζ ∈ R

mu , ζtMuuζ ≥
0) and is constructed so that Ker(Dσu) ⊂ Ker(Muu−Duu) (for instance take Muu =

Duu + c (DuσDσu)
1
2 with c large enough for Muu to be positive). Similarly, taking

(2.20) M =

[
0 Dσu

−Duσ Muu

]
,

where Muu is a positive matrix in R
mu,mu , yields the Robin boundary condition

2Duσzσ + (Duu − Muu)zu = 0. The homogeneous Neumann boundary condition is
obtained by setting Muu = Duu whenever Duu is positive. See (3.7) and (6.3) for
examples.
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3. Examples. This section presents three examples of Friedrichs’ systems en-
dowed with the 2 × 2 block structure introduced in section 2.2.

3.1. Advection-diffusion-reaction. Consider the PDE

(3.1) −∇·(κ∇u) + β·∇u + μu = f,

with β ∈ [L∞(Ω)]d, ∇·β ∈ L∞(Ω), μ ∈ L∞(Ω), f ∈ L2(Ω), and where κ =
(κkl)1≤k,l≤d is a symmetric positive definite tensor-valued field defined on Ω whose
lowest eigenvalue is uniformly bounded away from zero. Assume also that

(3.2) μ− 1
2∇·β ≥ μ0 > 0 a.e. in Ω.

The PDE (3.1) can be written as a system of first-order PDEs in the form

(3.3)

{
κ−1σ + ∇u = 0,

μu + ∇·σ + β·∇u = f.

Set m = d + 1, mσ = d, and mu = 1. Then, the mixed formulation (3.3) can be cast
into the form of a two-field Friedrichs’ system by introducing (d + 1) functions with
values in R

m,m, namely K and {Ak}1≤k≤d such that

(3.4) K =

[
κ−1 0
0 μ

]
, Ak =

[
0 ek

(ek)t βk

]
,

where ek is the kth vector in the canonical basis of R
d and βk is the kth component

of β in this basis. It is clear that hypotheses (a1)–(a6) hold. The graph space is
W = H(div; Ω) ×H1(Ω) and for all (σ, u), (τ, v) ∈ W ,

(3.5) 〈D(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 ,

1
2

+ 〈τ ·n, u〉− 1
2 ,

1
2

+

∫
∂Ω

(β·n)uv,

where 〈, 〉− 1
2 ,

1
2

denotes the duality pairing between H− 1
2 (∂Ω) and H

1
2 (∂Ω). Note that

(3.5) makes sense since functions in H1(Ω) have traces in H
1
2 (∂Ω) and vector fields

in H(div; Ω) have normal traces in H− 1
2 (∂Ω).

Homogeneous Dirichlet boundary conditions can be enforced by setting

(3.6) 〈M(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 ,

1
2
− 〈τ ·n, u〉− 1

2 ,
1
2
.

With this choice V = V ∗ = H(div; Ω)×H1
0 (Ω). Let 
 ∈ L∞(∂Ω) be such that

2
 + β·n ≥ 0 a.e. in ∂Ω. Then, setting

(3.7) 〈M(σ, u), (τ, v)〉W ′,W = −〈σ·n, v〉− 1
2 ,

1
2

+ 〈τ ·n, u〉− 1
2 ,

1
2

+

∫
∂Ω

(2
 + β·n)uv,

the spaces V and V ∗ are defined by V = {(σ, u) ∈ W ; (−σ·n + 
u)|∂Ω = 0} and
V ∗ = {(σ, u) ∈ W ; (σ·n + (
 + β·n)u)|∂Ω = 0}; i.e., a Robin boundary condition is
enforced. A Neumann condition corresponds to 
 = 0. We refer the reader to [9] for
more details.

Remark 3.1. When κ is not invertible, Friedrichs’ formalism can be extended as
detailed in [8].
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3.2. Linear continuum mechanics. Let α and γ be two positive functions in
L∞(Ω) uniformly bounded away from zero by α0 and γ0, respectively. Consider the
following set of PDEs:

(3.8)

⎧⎪⎨
⎪⎩

σ + pId − 1
2 (∇u + (∇u)t) = 0,

tr(σ) + (d + γ)p = 0,

− 1
2∇·(σ + σt) + αu = f,

where σ is R
d,d-valued, p is scalar-valued, u is R

d-valued, and f ∈ [L2(Ω)]d. The
first and second equations in (3.8) imply p = −γ−1∇·u and σ = 1

2 (∇u + (∇u)t) +
γ−1(∇·u)Id; γ is a compressibility coefficient, σ is the stress tensor, 1

2 (∇u+(∇u)t) is
the strain tensor, and u represents the displacement field in solid mechanics and the
velocity field in fluid mechanics. In the usual solid mechanics equations, the function
α vanishes identically. The function α has been introduced in (3.8) to ensure that the
positivity property (a4) holds; see (3.10). In a forthcoming work, it will be shown
that provided mild additional assumptions are made, the positivity property (a4) can
be replaced by the weaker assumption (7.1), thus allowing α to vanish identically.

Set m = d2 + 1 + d. The tensor σ in R
d,d is identified with the vector σ ∈ R

d2

by setting σ[ij] = σij with 1 ≤ i, j ≤ d and [ij] = d(j − 1) + i. Then, the mixed
formulation (3.8) can be cast into the form of a Friedrichs’ system by introducing the
(d + 1) R

m,m-valued fields with the following 3 × 3 block structure

(3.9) K =

⎡
⎢⎣ Id2 Z 0

(Z)t (d+γ) 0

0 0 αId

⎤
⎥⎦ , Ak =

⎡
⎢⎣ 0 0 Ek

0 0 0

(Ek)t 0 0

⎤
⎥⎦ ,

where Z ∈ R
d2

has components given by Z[ij] = δij with 1 ≤ i, j ≤ d, and for all

k ∈ {1, . . . , d}, Ek ∈ R
d2,d has components given by Ek

[ij],l = − 1
2 (δikδjl + δilδjk) with

1 ≤ i, j, l ≤ d; here, the δ’s denote Kronecker symbols.
To recover the 2 × 2 structure introduced in section 2.2, set mσ = d2 + 1 and

mu = d; i.e., the σ-component corresponds to the pair (σ, p). Then, hypotheses (a1)–
(a6) hold. In particular, (a4)–(a5) result from the fact that for all z = (σ, p, u) ∈ R

m,
(3.10)

ztKz ≥
(

1 − d

d+
γ0

2

)
σ2 + γ0

2 p2 + d
d+

γ0
2

(
σ +

d+
γ0
2

d pZ
)2

+ α0u
2 ≥ c(σ2 + p2 + u2),

where c depends only on d, α0, and γ0. Using the second Korn inequality for the
variable u, it is readily seen that the graph space is W = Hσ×L2(Ω)×[H1(Ω)]d with

Hσ = {σ ∈ [L2(Ω)]d
2

; ∇·(σ + σt) ∈ [L2(Ω)]d}. The boundary operator D takes the
following form: For all (σ, p, u), (τ , q, v) ∈ W ,

(3.11) 〈D(σ, p, u), (τ , q, v)〉W ′,W = −〈 1
2 (τ + τ t)·n, u〉− 1

2 ,
1
2
− 〈 1

2 (σ + σt)·n, v〉− 1
2 ,

1
2
,

where 〈, 〉− 1
2 ,

1
2

denotes the duality pairing between [H− 1
2 (∂Ω)]d and [H

1
2 (∂Ω)]d.

To enforce boundary conditions for (3.8), one possibility consists of setting for all
(σ, p, u), (τ , q, v) ∈ W ,

(3.12) 〈M(σ, p, u), (τ , q, v)〉W ′,W = 〈 1
2 (τ + τ t)·n, u〉− 1

2 ,
1
2
− 〈 1

2 (σ + σt)·n, v〉− 1
2 ,

1
2
.



2370 ALEXANDRE ERN AND JEAN-LUC GUERMOND

With this choice, the u-component is set to zero at ∂Ω (i.e., a homogeneous Dirichlet
boundary condition on the displacement (in solid mechanics) or on the velocity (in
fluid mechanics) is enforced) as shown in the following

Lemma 3.1. Let M be given by (3.12). Then, V = V ∗ = Hσ×L2(Ω)×[H1
0 (Ω)]d.

Proof. It is clear that V = V ∗ since M + M∗ = 0. Observe that

(3.13) 〈(D −M)(σ, p, u), (τ , q, v)〉W ′,W = −〈(τ + τ t)·n, u〉− 1
2 ,

1
2
.

Hence, it is clear that Hσ×L2(Ω)×[H1
0 (Ω)]d ⊂ Ker(D − M) = V . Conversely, let

(σ, p, u) ∈ Ker(D −M). Let θ ∈ [H− 1
2 (∂Ω)]d. Consider the following problem: Seek

vθ ∈ [H1(Ω)]d such that for all w ∈ [H1(Ω)]d,

(vθ, w)[L2(Ω)]d + (∇vθ + (∇vθ)
t,∇w + (∇w)t)[L2(Ω)]d,d = 〈θ, w〉− 1

2 ,
1
2
.

This problem is well-posed owing to the second Korn inequality and the Lax–Milgram
lemma. Set τθ = ∇vθ + (∇vθ)

t. Since τθ ∈ Hσ, one can take (τ , q, v) = (τθ, 0, 0)

in (3.13) yielding 〈θ, u〉− 1
2 ,

1
2

= 0. Since θ is arbitrary in [H− 1
2 (∂Ω)]d, it is inferred

that u ∈ [H1
0 (Ω)]d.

3.3. Simplified MHD. For the sake of simplicity we assume that the space
dimension is three, i.e., d = 3. Let ν, μ, and σ be three functions in L∞(Ω), and let
β ∈ [L∞(Ω)]3 be a vector field. A simplified (time-discretized) version of the MHD
equations consists of seeking the electric field E and the magnetic field H such that

(3.14)

{
νH + ∇×E = 0,

σ(E + β×(μH)) −∇×H = j,

where j ∈ [L2(Ω)]3 is a given source term. The separation of the electromagnetic field
(H,E) into magnetic and electric fields induces a natural partitioning of [L2(Ω)]6 into
[L2(Ω)]3 × [L2(Ω)]3. The PDEs (3.14) are recast into the form of a Friedrichs’ system
by introducing the following block structured matrices in R

6,6:

(3.15) K =

[
νI3 0
σμV σI3

]
, Ak =

[
0 Rk

(Rk)t 0

]
,

where Rk
ij = εikj is the Levi-Civita permutation tensor, 1 ≤ i, j, k ≤ 3, and Vij =∑d

k=1 εikjβ
k. Assume that ν and σ are positive functions on Ω uniformly bounded

away from zero and that there is α0 > 0 such that a.e. in Ω, 2
(
ν
σ

) 1
2 −μ‖β‖[L∞(Ω)]d ≥

α0. In the above framework, one readily verifies that (a1)–(a6) hold with m = 6,
mσ = 3, and mu = 3. In the full MHD equations, the off-diagonal term induced by
β is compensated by a term originating from the conservation of momentum in the
Navier–Stokes equations so that the condition for (a4) to hold is simply that ν and
σ be uniformly bounded away from zero.

The graph space is W = H(curl; Ω)×H(curl; Ω) and for all (H,E), (h, e) ∈ W ,

(3.16)
〈D(H,E), (h, e)〉W ′,W = (∇×E, h)[L2(Ω)]3 − (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .

When (H,E) and (h, e) are smooth, the above duality product can be interpreted as
the boundary integral

∫
∂Ω

[(n×E)·h + (n×e)·H].
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An admissible boundary condition for (3.14) consists of setting

(3.17)
〈M(H,E), (h, e)〉W ′,W = − (∇×E, h)[L2(Ω)]3 + (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3

for all (H,E), (h, e) ∈ W . Assuming [H1(Ω)]3 is dense in H(curl; Ω), this choice yields
V = V ∗ = H(curl; Ω)×H0(curl; Ω); i.e., the tangential component of the electric field
is set to zero; see [8] for the analysis.

4. Two-field DG approximation. In this section we design a DG method
to approximate the two-field Friedrichs’ systems introduced in section 2.2. The key
feature is that the discrete σ-component can be eliminated locally.

4.1. The discrete setting. Let {Th}h>0 be a family of meshes of Ω. The meshes
are assumed to be affine to avoid unnecessary technicalities; i.e., Ω is assumed to be
a polyhedron. For K ∈ Th, hK denotes its diameter and we set h = maxK∈Th

hK .
Henceforth, the notation ξ � ζ means that there is a positive c, independent of h,
such that ξ ≤ cζ. For any measurable subset E of Ω, we denote by (·, ·)L,E the usual
scalar product in [L2(E)]m. We define similarly (·, ·)Lu,E and (·, ·)Lσ,E .

We denote by F i
h the set of interfaces; i.e., F ∈ F i

h if F is a (d-1)-dimensional
manifold and there are K1(F ) and K2(F ) ∈ Th such that F = K1(F ) ∩K2(F ). For
F ∈ F i

h, we set T (F ) = K1(F ) ∪K2(F ). We denote by F∂
h the set of the faces that

separate the mesh from the exterior of Ω; i.e., F ∈ F∂
h if F is a (d-1)-dimensional

manifold and there is K(F ) ∈ Th such that F = K(F ) ∩ ∂Ω. For F ∈ F∂
h , we set

T (F ) = K(F ). For all F ∈ F i
h, we denote by nF the unit normal vector on F pointing

from K1(F ) to K2(F ). For all F ∈ F∂
h , we denote by nF the unit normal vector on F

pointing outside Ω. Finally, we set Fh = F i
h ∪F∂

h . For all F ∈ Fh, it is assumed that

(4.1) hT (F ) � hF ,

where hT (F ) denotes the diameter of T (F ) and hF that of F . No other assumption
than (4.1) is made on the matching of element faces.

For a nonnegative integer p, consider the finite element space of scalar-valued
functions

(4.2) Ph,p = {vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ Pp},

where Pp denotes the vector space of polynomials with real coefficients and with
total degree less than or equal to p. The mesh family {Th}h>0 is assumed to be
regular enough for the following inverse and trace inverse inequalities to hold: For all
vh ∈ Ph,p,

∀K ∈ Th, ‖∇vh‖[L2(K)]d � h−1
K ‖vh‖L2(K),(4.3)

∀F ∈ Fh, ‖vh‖L2(F ) � h
− 1

2

F ‖vh‖L2(T (F )).(4.4)

Let pu and pσ be two integers such that

(4.5) 1 ≤ pu and pu − 1 ≤ pσ.

Define the following vector spaces:

(4.6) Uh = [Ph,pu
]mu , Σh = [Ph,pσ

]mσ , Wh = Uh×Σh,
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and set U(h) = [H1(Ω)]mu+Uh, Σ(h) = [H1(Ω)]mσ+Σh, and W (h) = [H1(Ω)]m+Wh.
Obviously, inequalities (4.3) and (4.4) can be applied componentwise to all functions
in Uh and in Σh. Moreover, since every function v in U(h) has a (possibly two-valued)
trace a.e. on F ∈ F i

h, we set

(4.7) [[v]] = v1 − v2, {v} = 1
2 (v1 + v2),

where for a.e. x ∈ F , vν(x) = limy→x v(y)|Kν(F ), ν ∈ {1, 2}. We define τ1, τ2, and
[[τ ]] similarly for all τ in Σ(h). The arbitrariness in the choice of K1(F ) and K2(F )
could be avoided by choosing intrinsic notations that would, however, unnecessarily
complicate the presentation; nothing that is said hereafter depends on this choice.
The above mean and jump operators are extended to boundary faces F ∈ F∂

h by
taking the value of the function on that face.

4.2. Boundary and interface operators. For all F ∈ Fh, we define the
matrix-valued field DF : F → R

m,m by

(4.8) DF (x) =

d∑
k=1

nF,kAk(x) a.e. on F ,

where nF = (nF,1, . . . , nF,d)
t. Owing to (2.12), DF has a 2 × 2 block structure with

Dσu
F =

∑d
k=1 nF,kBk, Duσ

F = [Dσu
F ]t, Duu

F = (Duu
F )t =

∑d
k=1 nF,kCk, and

(4.9) Dσσ
F = 0.

The definition (4.8) is clearly compatible with that of D; i.e., if F ∈ F∂
h , DF = D.

Moreover, observe that for all z, y in W (h) and for all K ∈ Th,

(4.10)
∑

F⊂∂K

nF ·nK(DF z, y)L,F = (Az, y)L,K − (z, Ãy)L,K .

We now extend the matrix-valued field D to interfaces as follows. For all F ∈ F i
h,

D|F is two-valued, the two values being nF ·nK1(F )DF and nF ·nK2(F )DF . Note that

{D} = 0 a.e. on F i
h since

∑d
k=1 ∂kAk is bounded owing to (a2).

To weakly enforce boundary conditions, we introduce for all F ∈ F∂
h a linear

operator

(4.11) MF =

[
Mσσ

F Mσu
F

Muσ
F Muu

F

]
∈ L([L2(F )]m; [L2(F )]m).

Note that MF is not necessarily the restriction of M to functions defined on F ; see
Remark 5.2 below. Similarly, to penalize interface jumps, we introduce for all F ∈ F i

h

a linear operator

(4.12) SF =

[
Sσσ
F Sσu

F

Suσ
F Suu

F

]
∈ L([L2(F )]m; [L2(F )]m).

Star superscripts denote the L2-adjoint of MF , SF , or any block thereof. For in-
stance, (Muσ

F )∗ ∈ L([L2(F )]mu ; [L2(F )]mσ ) is defined such that ((Muσ
F )∗(v), τ)Lσ,F

= (Muσ
F (τ), v)Lu,F for all v ∈ [L2(F )]mu and for all τ ∈ [L2(F )]mσ . Finally, we

introduce for all F ∈ Fh a linear operator

(4.13) RF ∈ L([L2(Fh)]mu ; [L2(F )]mu).
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The purpose of this operator is to reduce computational costs when solving the discrete
problem for the u-component once the discrete σ-component has been eliminated
locally; see section 4.4 and, in particular, (4.31). A simple choice consists of setting
RF ≡ 0 for all F ∈ Fh; an example with nonzero RF ’s is the IP method discussed in
section 6.1.2.

The operators MF , SF , and RF satisfy various design criteria which are collected
in section 5.1. For the time being, we solely mention the important assumption

(4.14) Mσσ
F = 0 and Sσσ

F = 0.

Hence, the jumps across interfaces of the σ-component of the unknown are not con-
trolled. This is the key property that allows for the local elimination of the σ-
component of the discrete solution zh; see section 4.4. This is the most important
difference with respect to the DG method analyzed in [9].

4.3. The discrete problem and the notion of fluxes. Drawing inspiration
from (2.10), we introduce the bilinear form ah such that for all z, y in W (h),

ah(z, y) =
∑

K∈Th

(Tz, y)L,K +
∑

F∈F∂
h

1
2 (MF (z) −Dz, y)L,F −

∑
F∈F i

h

2({Dz} , {y})L,F

+
∑

F∈F i
h

(SF ([[z]]), [[y]])L,F +
∑

F∈Fh

(RF ([[zu]]), [[yu]])Lu,F .(4.15)

The first and second term in the right-hand side come directly from (2.8). The third
term is meant to ensure that ah satisfies a coercivity property on Wh (see Lemma 5.4)
in a manner consistent with the continuous setting (this term is zero whenever z is
smooth). The fourth term is used to control the jump of the discrete solution across
interfaces. The last term is a perturbation (possibly RF ≡ 0) which allows for some
modifications of the second and third terms to alleviate computational costs; see the
end of section 4.4 and the IP method discussed in section 6.1.2.

The discrete counterpart of (2.10) is the following: For f = (fσ, fu) ∈ L,

(4.16)

{
Seek zh = (zσh , z

u
h) ∈ Wh such that

ah(zh, yh) = (f, yh)L ∀yh = (yσh , y
u
h) ∈ Wh.

As in [9], the discrete problem (4.16) can be localized by using the notion of flux. Let
K be a mesh element in Th and let z ∈ W (h). The element flux of z on ∂K, say
φ∂K(z) ∈ [L2(∂K)]m, is defined by its restriction to the faces F of ∂K as follows:

φ∂K(z)|F =

{
1
2 (Dz + MF (z) + 2R′

F (zu)) if F ∈ F∂
h ,

nF ·nK(DF {z} + SF ([[z]]) + R′
F ([[zu]])) if F ∈ F i

h,
(4.17)

where R′
F (zu) = (0, RF (zu)) ∈ [L2(F )]m.

The discrete problem (4.16) is equivalently reformulated in terms of the following
local problems posed for all K ∈ Th:

(4.18){
Seek zh ∈ Wh such that ∀q = (qσ, qu) ∈ [Ppσ

(K)]mσ × [Ppu
(K)]mu ,

(Kzh, q)L,K + (Azh, q)L,K + (φ∂K(zh) − nF ·nKDF zh|K , q)L,∂K = (f, q)L,K ,
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or equivalently using the local integration by parts formula (4.10),

(4.19)

{
Seek zh ∈ Wh such that ∀q = (qσ, qu) ∈ [Ppσ (K)]mσ × [Ppu(K)]mu ,

(Kzh, q)L,K + (zh, Ãq)L,K + (φ∂K(zh), q)L,∂K = (f, q)L,K .

4.4. Eliminating the σ-component. We now rewrite (4.18) using the 2 × 2
block structure, and we show how the unknown zσh can be locally eliminated. To
simplify, we assume that fσ ≡ 0 (this is a natural assumption to define zσ in physical
models). Recall that the σ-component of the element flux is

φσ
∂K(zu)|F =

{
1
2 (Dσu + Mσu

F )zu if F ∈ F∂
h ,

nF ·nK(Dσu
F {zu} + Sσu

F ([[zu]])) if F ∈ F i
h,

(4.20)

where we stress that φσ
∂K solely depends on zu owing to (4.14). Then, (4.18) implies

that zσh solves the following local problems: For all qσ ∈ Pσ(K) := [Ppσ (K)]mσ ,

(4.21) (Kσσzσh + Kσuzuh + Bzuh , q
σ)Lσ,K + (φσ

∂K(zuh) −Dσu
∂Kzuh |K , qσ)Lσ,∂K = 0.

For all K ∈ Th, let θ1
K be the L2-orthogonal projection from [L2(K)]mσ onto Pσ(K)

and let θ2
K : Pσ(K) → Pσ(K) be the mapping such that for all qσ ∈ Pσ(K),

(θ2
K(qσ), rσ)Lσ,K = (Kσσqσ, rσ)Lσ,K for all rσ ∈ Pσ(K) (note that θ2

K is the identity
whenever Kσσ is the identity matrix in R

mσ,mσ ). Let F ∈ Fh. Define the mapping
rF : [L2(F )]mσ −→ Σh so that for all zσ ∈ [L2(F )]mσ , rF (zσ) solves

(4.22) (rF (zσ), yσh)Lσ
= (zσ, {yσh})Lσ,F ∀yσh ∈ Σh.

Observe that the support of rF (zσ) is contained in T (F ). Then, (4.21) yields the
local reconstruction formula for the discrete σ-component in the form

(4.23) ∀K ∈ Th, zσh |K = RK(zuh) + RΔK
([[zuh ]]),

where

(4.24) RK(zuh) = −(θ2
K)−1θ1

K(Kσuzuh + Bzuh |K)

is supported on K, and where

(4.25) RΔK
([[zuh ]]) = −(θ2

K)−1
∑

F⊂∂K

rF (ψF,K([[zuh ]]))

is supported on ΔK = {K ′ ∈ Th; ∃F ∈ F i
h; F = K ∩K ′}. Here,

(4.26) ψF,K(v) =

{
1
2 (Mσu

F −Dσu)v if F ∈ F∂
h ,

(2nF ·nKSσu
F −Dσu

F )v if F ∈ F i
h.

Then, using (4.23) in (4.19) shows that zuh solves the following problems: For all
K ∈ Th and for all qu ∈ Pu(K) := [Ppu(K)]mu ,

(4.27)

((Kuσ−(∇·B)∗)(RK(zuh)+RΔK
([[zuh ]])) + (Kuu−∇·C)zuh − fu, qu)Lu,K

− (zuh , C
†qu)Lu,K − (RK(zuh) + RΔK

([[zuh ]]), B†qu)Lu,K + (φu
∂K(zuh), qu)Lu,∂K = 0,

where for F ∈ F∂
h ,
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(4.28) φu
∂K(zuh)|F = 1

2 (Muσ
F + Duσ)(RK(zuh) + RΔK

([[zuh ]]))

+ 1
2 (Muu

F + Duu)zuh + RF ([[zuh ]]),

and for F ∈ F i
h,

(4.29) φu
∂K(zuh)|F = nF ·nK(Duσ

F {RK(zuh) + RΔK
([[zuh ]])} + Duu

F {zuh}
+ Suσ

F ([[RK(zuh) + RΔK
([[zuh ]])]]) + Suu

F ([[zuh ]]) + RF ([[zuh ]])).

This readily yields the following.
Proposition 4.1. If the pair (zσh , z

u
h) solves (4.16), then (4.23) holds and zuh

solves (4.27). Conversely, if zuh solves (4.27) and if zσh is defined by (4.23), then the
pair (zσh , z

u
h) solves (4.16).

At this point, it is important to observe that owing to the presence of the nonlocal
term RΔK

in the flux φu
∂K , the problem (4.27) couples the degrees of freedom for zuh

in a given element to those in the neighboring elements and also to those in the
neighbors of the neighbors. Let us assume that Suσ

F ≡ 0 and, for simplicity, that
Dirichlet boundary conditions are enforced so that Mσu

F = −Dσu and Muσ
F = Duσ

(Neumann/Robin boundary conditions can be treated as well). Then, if RF is defined
so that for all F ⊂ ∂K,

(4.30) RF ([[zuh ]]) + Duσ
F {RΔK

([[zuh ]])} = 0,

the terms involving RΔK
([[zuh ]]) are eliminated from (4.28)–(4.29). Owing to this

elimination, problem (4.27) couples the degrees of freedom for zuh in a given element
only to those in the neighboring elements. Using (4.25), it is readily verified that (4.30)
holds if RF is designed such that

(4.31) RF ([[zuh ]]) = 1
2D

uσ
F

2∑
i=1

(θ2
Ki(F ))

−1
∑

F ′∈∂Ki(F )

rF ′(ψF ′,Ki(F )([[z
u
h ]]))|F .

Finally, a further simplification occurs whenever Kuσ − (∇·B)∗ ≡ 0 since, in this
case, the term RΔK

([[zuh ]]) needs not be evaluated to solve (4.27) for zuh ; i.e., the
reconstruction of zσh from (4.23) can be performed as a postprocessing step.

5. Convergence analysis. In this section, we present the design criteria for the
above DG method and perform the error analysis. The main results are Theorem 5.8,
which estimates the error in the norm (5.10), and Theorem 5.14, which improves
the Lu-estimate of the u-component of the error by means of a duality argument.
Throughout this section, we assume the following:

• For all k ∈ {1, . . . , d} and for all K ∈ Th, Bk ∈ [C0,1(K)]mσ,mu .
• The mesh family {Th}h>0 is such that (4.1), (4.3), and (4.4) hold.
• The approximation spaces are defined according to (4.2), (4.5), and (4.6).
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5.1. The design criteria for the boundary and interface operators. For
all F ∈ F∂

h , for all v, w ∈ [L2(F )]mu , and for all τ ∈ [L2(F )]mσ , we assume that

Mσσ
F = 0,(dg1)

Mσu
F + (Muσ

F )∗ = 0,(dg2)

(Muu
F (v), v)Lu,F ≥ 0,(dg3)

|(Mσu
F (v) −Dσuv, τ)Lσ,F | � h

1
2

F |v|M,F ‖τ‖Lσ,F ,(dg4)

|(Muu
F (v) + Duuv, w)Lu,F | � h

− 1
2

F ‖v‖Lu,F |w|M,F ,(dg5)

|(Muu
F (v) −Duuv, w)Lu,F | � h

− 1
2

F |v|M,F ‖w‖Lu,F ,(dg6)

Ker(M−D) ⊂ Ker(MF −D),(dg7)

Ker(Mt + D) ⊂ Ker(M∗
F + D),(dg8)

where we have introduced the following seminorms:

(5.1) ∀v ∈ U(h), |v|2M =
∑

F∈F∂
h

|v|2M,F with |v|2M,F = (Muu
F (v), v)Lu,F .

For all F ∈ F i
h, for all v, w ∈ [L2(F )]mu , and for all τ ∈ [L2(F )]mσ , we assume that

Sσσ
F = 0,(dg9)

Sσu
F + (Suσ

F )∗ = 0,(dg10)

(Suu
F (v), v)Lu,F ≥ 0,(dg11)

|(Suu
F (v), w)Lu,F | � h

− 1
2

F ‖v‖Lu,F |w|S,F ,(dg12)

|(Suu
F (v), w)Lu,F | � h

− 1
2

F |v|S,F ‖w‖Lu,F ,(dg13)

|(Sσu
F (v), τ)Lσ,F | � h

1
2

F |v|S,F ‖τ‖Lσ,F ,(dg14)

|(Dσuv, τ)Lσ,F | � h
1
2

F |v|S,F ‖τ‖Lσ,F ,(dg15)

|(Duuv, w)Lu,F | � h
− 1

2

F |v|S,F ‖w‖Lu,F ,(dg16)

where we have introduced the following seminorms:

(5.2) ∀v ∈ U(h), |v|2S =
∑

F∈F i
h

|v|2S,F with |v|2S,F = (Suu
F (v), v)Lu,F .

Finally, the design of the operators RF is based on the following assumptions:

∀zh ∈ Wh, ρh([[zuh ]], [[zuh ]]) ≥ − 1
4 (|zuh |2J + |zuh |2M ),(dg17)

∀(z, yh) ∈ W (h) ×Wh, ρh([[zu]], [[yuh ]]) � (|zu|J + |zu|M )(|yuh |J + |yuh |M ),(dg18)

where ρh([[zu]], [[yu]]) :=
∑

F∈Fh
(RF ([[zu]]), [[yu]])Lu,F and where for all zu ∈ U(h),

(5.3) |zu|2J =
∑

F∈F i
h

|zu|2J,F with |zu|J,F = |[[zu]]|S,F .

Theorem 5.8 relies only on assumptions (dg1)–(dg5), (dg7), (dg9)–(dg12), (dg14)–
(dg15), and (dg17)–(dg18), collectively referred to as (dg

�
). The additional as-

sumptions (dg6), (dg8), (dg13), and (dg16) are needed to prove Theorem 5.14.
Assumptions (dg1)–(dg18) are collectively referred to as (dg

�).
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Remark 5.1. Assumptions (dg1)–(dg6) imply that for all (τ, v) ∈ [L2(F )]m,

|v|M,F � h
− 1

2

F ‖v‖Lu,F ,(5.4)

|(Mσu
F (v), τ)Lσ,F | � ‖v‖Lu,F ‖τ‖Lσ,F ,(5.5)

|(Muσ
F (τ) + Duστ, v)Lu,F | � h

1
2

F |v|M,F ‖τ‖Lσ,F .(5.6)

For instance, taking v = w in (dg6) and using the fact that Duu is bounded yields

|v|2M,F � ‖v‖2
Lu,F

+h
− 1

2

F |v|M,F ‖v‖Lu,F , whence (5.4) readily follows. Properties (5.4)–
(5.6) will be used in what follows.

Remark 5.2. Assumptions (dg7) and (dg8) are consistency hypotheses which
trivially hold if MF (z) = Mz|F . However, it is not always possible to make this
simple choice because it is sometimes necessary to penalize the boundary values of the
u-component of the unknown. For instance, when Dirichlet-like boundary conditions
are enforced, i.e., Mσu = −Dσu, it may happen that Muu = 0 (see the examples
discussed in section 3). In this circumstance, assumptions (dg4)–(dg6) cannot be
satisfied if we set Muu

F (v) = Muuv|F = 0, since |v|M,F = 0 for all v ∈ [L2(F )]mu .
Instead, it is necessary that Muu

F scale like h−1
F . The consistency hypotheses (dg7)

and (dg8) then mean that the extra control required by (dg4)–(dg6) is compatible
with the way boundary conditions are enforced (see also Remark 6.2 and section 6.1.1,
section 6.2, and section 6.3 for examples).

While assumptions (dg
�) are just what it takes to prove Theorems 5.8 and 5.14, it

is simpler in practice to work with a simplified set of assumptions. These are summa-
rized in the following lemmas. Lemma 5.1 is tailored for the case when Dirichlet-like
boundary conditions are enforced, while Lemma 5.2 is tailored for the case when
Neumann or Robin boundary conditions are enforced. For brevity, only the proof of
Lemma 5.1 is detailed, the other two proofs being similar.

Lemma 5.1 (Dirichlet-like BCs). Assume Mσσ
F = 0, Mσu

F (v) = −Dσuv for all
v ∈ [L2(F )]mu , Muσ

F = −(Mσu
F )∗, Muu

F is self-adjoint, and

(5.7) hF |Duu| + h−1
F (DuσDσu)

1
2 � Muu

F � h−1
F Imu ,

where Imu is the identity matrix in R
mu,mu . Then, (dg1)–(dg6) hold.

Proof. Assumptions (dg1)–(dg3) are evident. To prove (dg4), observe that for
every positive semidefinite matrix Z ∈ R

mu,mu and for all x ∈ R
mu , (Zx, x) ≤

‖Z1/2‖(Z1/2x, x). Let v ∈ [L2(F )]mu ; upon observing that DuσDσu is positive
semidefinite, we apply the above result to derive

‖Dσuv‖Lσ,F = (Dσuv,Dσuv)
1
2

Lσ,F
= (DuσDσuv, v)

1
2

Lu,F

� ((DuσDσu)
1
2 v, v)

1
2

Lu,F
� h

1
2

F |v|M,F ,

whence (dg4) is readily inferred. To prove (dg5)–(dg6), let v, w ∈ [L2(F )]mu . Then,
|(Muu

F (v), w)Lu,F | � |v|M,F |w|M,F and since (Duu)2 is positive semidefinite,

‖Duuv‖Lu,F � (|Duu|v, v)
1
2

Lu,F
� h

− 1
2

F |v|M,F ,

whence (dg5)–(dg6) are readily deduced.
Lemma 5.2 (Neumann–Robin BCs). Assume Mσσ

F = 0, Mσu
F (v) = Dσuv for all

v ∈ [L2(F )]mu , Muσ
F = −(Mσu

F )∗, Muu
F is self-adjoint, and

(5.8) hF |Duu| � Muu
F � h−1

F Imu .

Then, (dg1)–(dg6) hold.
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Lemma 5.3 (interface operator). Assume Sσσ
F = 0, Suσ

F = 0, Sσu
F = 0, Suu

F is
self-adjoint, and

(5.9) hF |Duu| + h−1
F (DuσDσu)

1
2 � Suu

F � h−1
F Imu

.

Then, (dg9)–(dg16) hold.
Remark 5.3. Conditions (5.7) and (5.9) generally imply that Suu

F and Muu
F are

of order h−1
F ; this differs from the condition derived in [9], where SF and MF are of

order 1. Roughly speaking, to be able to eliminate the discrete σ-component, it is
necessary to have a stronger control of the interface jumps and of the boundary values
of the discrete u-component.

5.2. The direct argument. To perform the error analysis we introduce the
following two discrete norms on W (h):

‖z‖2
h,A = ‖zσ‖2

Lσ
+ ‖zu‖2

Lu
+ |zu|2J + |zu|2M +

∑
K∈Th

‖Bzu‖2
Lσ,K ,(5.10)

‖z‖2
h,1 = ‖z‖2

h,A +
∑

K∈Th

[h−2
K ‖zu‖2

Lu,K + h−1
K ‖zu‖2

Lu,∂K + hK‖zσ‖2
Lσ,∂K ].(5.11)

The norm ‖ · ‖h,A is used to measure the approximation error, and the norm ‖ · ‖h,1
serves to measure the interpolation properties of the discrete space Wh. In this section,
it is implicitly assumed that (dg

�
) holds.

Lemma 5.4 (L-coercivity). For all h and for all zh = (zσh , z
u
h) in Wh,

(5.12) ‖zσh‖2
Lσ

+ ‖zuh‖2
Lu

+ |zuh |2J + |zuh |2M � ah(zh, zh).

Proof. Proceeding as in the proof of Lemma 4.1 in [9] and using the skew-
symmetry assumptions (dg2) and (dg10) yields for all zh ∈ Wh,

‖zσh‖2
Lσ

+ ‖zuh‖2
Lu

+ |zuh |2J + 1
2 |z

u
h |2M + ρh([[zuh ]], [[zuh ]]) � ah(zh, zh).

Then, the desired result follows from (dg17).
Lemma 5.5 (stability). The following holds:

(5.13) ∀zh ∈ Wh, ‖zh‖h,A � sup
yh∈Wh\{0}

ah(zh, yh)

‖yh‖h,A
.

Proof. Let zh = (zσh , z
u
h) ∈ Wh\{0} and set S = supyh∈Wh\{0}

ah(zh,yh)
‖yh‖h,A

.

(1) Owing to Lemma 5.4, it is inferred that

‖zσ‖2
Lσ

+ ‖zu‖2
Lu

+ |zu|2J + |zu|2M � ah(zh, zh) ≤ S ‖zh‖h,A.

(2) Control of Bzuh . Let K ∈ Th. Denote by Bk
K the mean-value of Bk over K;

then,

(5.14) ‖Bk − Bk
K‖[L∞(K)]mσ,mu ≤ hK‖Bk‖[C0,1(K)]mσ,mu .

Define the field πh such that πh|K =
∑d

k=1 Bk
K∂kz

u
h . Set �h = (πh, 0). It is clear that

πh ∈ Σh since pu − 1 ≤ pσ; hence, �h ∈ Wh. Using (5.14), together with the inverse
inequalities (4.3) and (4.4), leads, for all F ⊂ ∂K, to⎧⎨

⎩ ‖πh‖Lσ,F � h
− 1

2

F ‖πh‖Lσ,T (F ), if F ∈ F∂
h ,

‖{πh}‖Lσ,F + ‖[[πh]]‖Lσ,F � h
− 1

2

F ‖πh‖Lσ,T (F ) if F ∈ F i
h,

(5.15)

‖πh‖Lσ,K � ‖Bzuh‖Lσ,K + ‖zuh‖Lu,K ,(5.16)
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whence it is readily inferred that

‖�h‖h,A = ‖πh‖Lσ � ‖zh‖h,A.

Furthermore, from the definition of ah it follows that∑
K∈Th

‖Bzuh‖2
Lσ,K = ah(zh, �h) +

∑
K∈Th

(Bzuh , Bzuh − πh)Lσ,K

− (Kσσzσh + Kσuzuh , πh)Lσ
−

∑
F∈F∂

h

1
2 (Mσu

F (zuh) −Dσuzuh , πh)Lσ,F

+
∑

F∈F i
h

2({Dσuzuh} , {πh})Lσ,F −
∑

F∈F i
h

(Sσu
F ([[zuh ]]), [[πh]])Lσ,F

= ah(zh, �h) + R1 + R2 + R3 + R4 + R5,

where R1 to R5 denote the second to sixth terms in the right-hand side. Proceeding as
in the proof of Lemma 4.3 in [9] and using (dg4), (dg14), (dg15), the terms R1–R5

are bounded from above as follows:

5∑
i=1

|Ri| � (‖zσh‖2
Lσ

+ ‖zuh‖2
Lu

+ |zuh |2M + |zuh |2J) + γ
∑

K∈Th

‖Bzuh‖2
Lσ,K ,

where γ > 0 can be chosen as small as needed. Hence,∑
K∈Th

‖Bzuh‖2
Lσ,K � ah(zh, �h) + ah(zh, zh) � S ‖zh‖h,A.

(3) Collecting the above bounds yields ‖zh‖2
h,A � S ‖zh‖h,A, thereby completing

the proof.
Lemma 5.6 (continuity). The following holds:

(5.17) ∀(z, yh) ∈ W (h) ×Wh, ah(z, yh) � ‖z‖h,1‖yh‖h,A.

Proof. The main idea is to integrate by parts ah(z, yh) by using the formal adjoint
Ã. Proceeding as in the proof of Lemma 4.4 in [9] leads to

ah(z, yh) =
∑

K∈Th

[(Kz, z)L,K + (z, Ãyh)L,K ] +
∑

F∈F∂
h

1
2 (MF (z) + Dz, yh)L,F

+
∑

F∈F i
h

1
2 ([[Dz]], [[yh]])L,F + ρh([[zu]], [[yuh ]]) +

∑
F∈F i

h

(SF ([[z]]), [[yh]])L,F .(5.18)

Let R1 to R5 be the five terms in the right-hand side.
(1) Using the Cauchy–Schwarz inequality and inverse inequalities, we obtain

|R1| �
∑

K∈Th

‖z‖L,K‖yh‖L,K + ‖zσ‖Lσ,K‖Byuh‖Lσ,K + h−1
K ‖zu‖Lu,K‖yh‖L,K .

Hence, |R1| � ‖z‖h,1‖yh‖h,A.
(2) For the second term, we have

|R2| ≤ 1
2

∑
F∈F∂

h

|(Mσu
F (zu) + Dσuzu, yσh)Lσ,F + (Muu

F (zu) + Duuzu, yuh)Lu,F

+ (Muσ
F (zσ) + Duσzσ, yuh)Lu,F |.
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Using (5.5), (dg5), the boundedness of D, (5.6), and the inverse inequality (4.4), each
term in the above equality is bounded as follows:

|(Mσu
F (zu) + Dσuzu, yσh)Lσ,F | � ‖zu‖Lu,F ‖yσh‖Lσ,F � h

− 1
2

F ‖zu‖Lu,F ‖yσh‖Lσ,T (F ),

|(Muu
F (zu) + Duuzu, yuh)Lu,F | � h

− 1
2

F ‖zu‖Lu,F |yuh |M,F ,

|(Muσ
F (zσ) + Duσzσ, yuh)Lu,F | � h

1
2

F ‖zσ‖Lσ,F |yuh |M,F .

As a result, |R2| � ‖z‖h,1‖yh‖h,A.
(3) For the third term, we have

|R3| ≤ 1
2

∑
F∈F i

h

|([[Dσuzu]], [[yσh ]])Lσ,F + ([[Duuzu]], [[yuh ]])Lu,F + ([[Duσzσ]], [[yuh ]])Lu,F |.

Using the boundedness of D, the inverse inequality (4.4), and (dg15), each term in
the above equality is bounded as follows:

|([[Dσuzu]], [[yσh ]])Lσ,F | � ‖{zu}‖Lu,F ‖[[yσh ]]‖Lσ,F � h
− 1

2

F ‖{zu}‖Lu,F ‖yσh‖Lσ,T (F ),

|([[Duuzu]], [[yuh ]])Lu,F | � ‖{zu}‖Lu,F ‖[[yuh ]]‖Lu,F � h
− 1

2

F ‖{zu}‖Lu,F ‖yuh‖Lu,T (F ),

|([[Duσzσ]], [[yuh ]])Lu,F | = |({zσ} ,Dσu
F [[yuh ]])Lσ,F | � h

1
2

F ‖{zσ}‖Lσ,F |yuh |J,F .

As a result, |R3| � ‖z‖h,1‖yh‖h,A.
(4) The fourth term is controlled using (dg18).
(5) For the fifth term, we have

|R5| ≤
∑

F∈F i
h

|(Sσu
F ([[zu]]), [[yσh ]])Lσ,F + (Suu

F ([[zu]]), [[yuh ]])Lu,F + (Suσ
F ([[zσ]]), [[yuh ]])Lu,F |.

Using (dg12) and (dg14), together with the inverse inequality (4.4), each term in
the above equality is bounded as follows:

|(Sσu
F ([[zu]]), [[yσh ]])Lσ,F | � h

1
2

F |zu|J,F ‖[[yσh ]]‖Lσ,F � |zu|J,F ‖yσh‖Lσ,T (F ),

|(Suu
F ([[zu]]), [[yuh ]])Lu,F | � h

− 1
2

F ‖[[zu]]‖Lu,F |yuh |J,F ,

|(Suσ
F ([[zσ]]), [[yuh ]])Lu,F | � h

1
2

F ‖[[zσ]]‖Lσ,F |yuh |J,F .

As a result, |R5| � ‖z‖h,1‖yh‖h,A. The proof is complete.
Lemma 5.7 (consistency). Let z ∈ V ∩ [H1(Ω)]m solve (2.6) and let zh solve

(4.16). Then,

(5.19) ∀yh ∈ Wh, ah(z − zh, yh) = 0.

Proof. Let yh ∈ Wh and use (4.15) to evaluate ah(z, yh). Since z solves (2.6),
the first term in the right-hand side of (4.15) is equal to (f, yh)L. Owing to the
consistency assumption (dg7), the second term in the right-hand side of (4.15) van-
ishes. Furthermore, since for all F ∈ F i

h, {Dz} = DF [[z]] = 0 and [[z]] = 0 because
z ∈ [H1(Ω)]m, the third, fourth, and fifth terms in (4.15) are also zero. As a result,
ah(z, yh) = (f, yh)L = ah(zh, yh), completing the proof.
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Theorem 5.8 (convergence). Let z ∈ V ∩ [H1(Ω)]m solve (2.6) and let zh solve
(4.16). Then,

(5.20) ‖z − zh‖h,A � inf
yh∈Wh

‖z − yh‖h,1.

Proof. The proof follows from the second Strang lemma.
Owing to the regularity of the mesh family {Th}h>0, the following interpolation

property holds: For all z ∈ [Hpσ+1(Ω)]mσ×[Hpu+1(Ω)]mu , there is yh ∈ Wh satisfying

(5.21) ‖z − yh‖h,1 � (hpσ+1 + hpu)
(
‖zσ‖[Hpσ+1(Ω)]mσ + ‖zu‖[Hpu+1(Ω)]mu

)
.

Since pu − 1 ≤ pσ, the above interpolation error is of order hpu .
Corollary 5.9. Let z ∈ [Hpσ+1(Ω)]mσ×[Hpu+1(Ω)]mu solve (2.6) and let zh

solve (4.16). Then,

(5.22) ‖z − zh‖h,A � hpu
(
‖zσ‖[Hpσ+1(Ω)]mσ + ‖zu‖[Hpu+1(Ω)]mu

)
.

Remark 5.4. For both the σ- and the u-component of the solution, the error
estimate in the L2-norm is O(hpu). If pσ = pu := p, this result is suboptimal when
compared with that obtained using the DG method analyzed in [9], which yields

O(hp+ 1
2 ) error estimates. The reason for this slight optimality loss is that in the

present method the interface jumps of the σ-component are not controlled to allow
for this component to be locally eliminated, the consequence being that the jumps
on the u-component must be penalized with an O(h−1) weight. If pσ = pu − 1,
(5.22) is still suboptimal for the u-component but is optimal in the L2-norm for the
σ-component.

Finally, when the exact solution z is only in the graph space W , i.e., when z is
not in [H1(Ω)]m so that ah(z, ·) may not be meaningful, we use a density argument
to infer the convergence of the DG approximation. For z ∈ W +Wh, define the norm

(5.23) ‖z‖W− = ‖z‖L +

( ∑
K∈Th

‖Bzu‖2
Lσ,K

) 1
2

.

Observe that ‖z‖W− ≤ ‖z‖h,A.
Corollary 5.10. Assume that there is γ > 0 such that [Hγ+1(Ω)]m∩V is dense

in V . Let z solve (2.6) and let zh solve (4.16). Then,

(5.24) lim
h→0

‖z − zh‖W− = 0.

Proof. Let ε > 0. There is zε ∈ [Hγ+1(Ω)]m∩V such that ‖z−zε‖W ≤ ε
2 . Let zεh

be the unique solution in Wh such that ah(zεh, yh) = (Tzε, yh)L for all yh ∈ Wh. From
the regularity of zε together with Theorem 5.8 and Corollary 5.9, it is inferred that
limh→0 ‖zεh − zε‖h,A = 0. Furthermore, using the discrete inf-sup condition (5.13)
yields

‖zεh − zh‖W− � sup
yh∈Wh\{0}

ah(zεh, yh) − ah(zh, yh)

‖yh‖h,A
= sup

yh∈Wh\{0}

(T (zε − z), yh)L
‖yh‖h,A

≤ ‖T (zε − z)‖L sup
yh∈Wh\{0}

‖yh‖L
‖yh‖h,A

≤ ‖z − zε‖W ≤ ε

2
,

where we have used the fact that for all yh ∈ Wh, ah(zh, yh) = (Tz, yh)L. Finally,
using the triangle inequality ‖z−zh‖W− ≤ ‖z−zε‖W− +‖zε−zεh‖W− +‖zεh−zh‖W− ,
we deduce that lim suph→0 ‖z − zh‖W− ≤ ε.
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5.3. The duality argument. We now improve the error estimate on the L2-
norm of the u-component of the solution by using a duality argument. In this section,
it is implicitly assumed that (dg

�) holds.
Let z solve (2.6) and let zh solve (4.16). Let ψ := (ψσ, ψu) ∈ V ∗ solve

(5.25) T̃ψ = (0, zu − zuh).

We assume that the above problem yields (elliptic) regularity; i.e., ψu is in [H2(Ω)]mu ,
ψσ is in [H1(Ω)]mσ , and the following uniform bound holds:

(5.26) ‖ψu‖[H2(Ω)]mu + ‖ψσ‖[H1(Ω)]mσ � ‖zu − zuh‖Lu .

Lemma 5.11. Under the above hypotheses, the following holds:

(5.27) ah(y, ψ) = (yu, zu − zuh)Lu ∀y ∈ W (h).

Proof. Let y ∈ W (h). By integrating by parts (i.e., using (5.18)) and using the
fact that ψ is continuous across interfaces, we obtain

ah(y, ψ) =
∑

K∈Th

(y, T̃ψ)L,K +
∑

F∈F∂
h

1
2 (MF (y) + Dy, ψ)L,F .

Since ψ ∈ V ∗∩ [H1(Ω)]m, (dg8) implies (MF (y)+Dy, ψ)L,F = 0 for all F ∈ F∂
h . The

conclusion is straightforward since ψ solves (5.25).
To avoid lengthy technicalities, we introduce the following norms:

‖yσ‖h,1̃ =

( ∑
K∈Th

[h2
K‖yσ‖2

[H1(K)]mσ + hK‖yσ‖2
Lσ,∂K ]

) 1
2

,(5.28)

‖y‖h,A+ = ‖y‖h,A + ‖yσ‖h,1̃,(5.29)

‖y‖h,1+ = ‖y‖h,1 + ‖yσ‖h,1̃.(5.30)

The DG method converges optimally in the ‖ · ‖h,A+-norm as stated in the following.
Corollary 5.12. Let z ∈ V ∩[H1(Ω)]m solve (2.6) and let zh solve (4.16). Then,

(5.31) ‖z − zh‖h,A+ � inf
yh∈Wh

‖z − yh‖h,1+ .

Proof. Let yh be an arbitrary element in Wh. Using inverse inequalities yields

‖zσ − zσh‖h,1̃ ≤ ‖zσ − yσh‖h,1̃ + ‖yσh − zσh‖h,1̃ � ‖zσ − yσh‖h,1̃ + ‖yσh − zσh‖Lσ

≤ ‖zσ − yσh‖h,1̃ + ‖yσh − zσ‖Lσ + ‖zσ − zσh‖Lσ

≤ ‖zσ − yσh‖h,1̃ + ‖z − yh‖h,A + ‖z − zh‖h,A
� ‖z − yh‖h,A+ + ‖z − zh‖h,A.

Hence, using the above inequality along with (5.20) leads to

‖z − zh‖h,A+ � ‖z − yh‖h,A+ + ‖z − yh‖h,1 � ‖z − yh‖h,1+ .

That concludes the proof since yh is arbitrary in Wh.
Lemma 5.13 (continuity). Assume that for all K ∈ Th and for all y ∈ W (h),

(5.32) ‖Cyu‖Lu,K � ‖Byu‖Lσ,K + ‖yu‖Lu,K .
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Then, the following holds:

(5.33) ∀(r, y) ∈ W (h)×W (h), ah(r, y) � ‖r‖h,A+‖y‖h,1.

Proof. Let us bound all the terms in the right-hand side of (4.15).
(1) For the first term, say R1, we proceed as follows:

|(Tr,y)L,K | ≤ |(Kr, y)L,K | + |(Bru, yσ)Lσ,K | + |(B†rσ + Cru, yu)Lu,K |
� ‖r‖L,K‖y‖L,K + ‖Bru‖Lσ,K‖y‖L,K + ‖rσ‖[H1(K)]mσ ‖yu‖Lu,K

� (‖r‖2
L,K + ‖Bru‖2

Lσ,K + h2
K‖rσ‖2

[H1(K)]mσ )
1
2 (‖y‖2

L,K + h−2
K ‖yu‖2

Lu,K)
1
2 ,

where (5.32) has been used to bound ‖Cru‖. Hence, |R1| � ‖r‖h,A+‖y‖h,1.
(2) To bound the second term, say R2, use (dg4), (dg6), (5.5), and the bound-

edness of D to infer

|(Mσu
F (ru) −Dσuru, yσ)Lσ,F | � |ru|M,F h

1
2

F ‖yσ‖Lσ,F ,

|(Muu
F (ru) −Duuru, yu)Lu,F | � |ru|M,F h

− 1
2

F ‖yu‖Lu,F ,

|(Muσ
F (rσ) −Duσrσ, yu)Lu,F | � ‖rσ‖Lσ,F ‖yu‖Lu,F � h

1
2

F ‖rσ‖Lσ,F h
− 1

2

F ‖yu‖Lu,F .

As a result, |R2| � ‖r‖h,A+‖y‖h,1.
(3) To bound the third term, say R3, use (dg15), (dg16), and the boundedness

of D to infer

|({Dσuru} , {yσ})Lσ,F | = |2(Dσu
∂K1(F )[[r

u]], {yσ})Lσ,F | � |ru|J,F h
1
2

F ‖{yσ}‖Lσ,F ,

|({Duuru} , {yu})Lu,F | = |2(Duu
∂K1(F )[[r

u]], {yu})Lu,F | � |ru|J,F h
− 1

2

F ‖{yu}‖Lu,F ,

|({Duσrσ} , {yu})Lu,F | � ‖[[rσ]]‖Lσ,F ‖{yu}‖Lu,F � h
1
2

F ‖[[rσ]]‖Lσ,F h
− 1

2

F ‖{yu}‖Lu,F .

These bounds yield |R3| � ‖r‖h,A+‖y‖h,1.
(4) To bound the fourth term, use (dg18).
(5) To bound the fifth term, say R5, use (dg10), (dg13), and (dg14) to infer

|(Sσu
F ([[ru]]), [[yσ]])Lσ,F | � |ru|J,F h

1
2

F ‖[[yσ]]‖Lσ,F ,

|(Suu
F ([[ru]]), [[yu]])Lu,F | � |ru|J,F h

− 1
2

F ‖[[yu]]‖Lu,F ,

|(Suσ
F ([[rσ]]), [[yu]])Lu,F | � h

1
2

F ‖[[rσ]]‖Lσ,F |yu|J,F .

Hence, |R5| � ‖r‖h,A+‖y‖h,1. The proof is complete.
Theorem 5.14 (convergence). Let z ∈ V ∩[H1(Ω)]m solve (2.6) and let zh solve

(4.16). Assume elliptic regularity, i.e., (5.26), and that (5.32) holds. Then,

(5.34) ‖zu − zuh‖Lu � h inf
yh∈Wh

‖z − yh‖h,1+ .

Proof. Using z−zh as test function in (5.27) we infer ah(z−zh, ψ) = ‖zu−zuh‖2
Lu

.
Then, using the consistency property stated in Lemma 5.7, this yields for all ψh ∈ Wh,
ah(z − zh, ψ − ψh) = ‖zu − zuh‖2

Lu
. Lemma 5.13 in turn implies

‖zu − zuh‖2
Lu

� ‖z − zh‖h,A+‖ψ − ψh‖h,1 ∀ψh ∈ Wh.
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Then, using the elliptic regularity (5.26) and the fact that pu ≥ 1 leads to

‖zu − zuh‖2
Lu

� ‖z − zh‖h,A+ inf
ψh∈Wh

‖ψ − ψh‖h,1

� h‖z − zh‖h,A+(‖ψu‖[H2(Ω)]mu + ‖ψσ‖[H1(Ω)]mσ )

� h‖z − zh‖h,A+‖zu − zuh‖Lu .

The conclusion follows readily using Corollary 5.12.
Remark 5.5. Stability and convergence in the ‖ · ‖h,A+-norm could have been

proved directly by adding the quantity (
∑

K∈Th
h2
K‖B†yσ + Cyu‖2

Lu,K
)

1
2 in the def-

inition of the ‖ · ‖h,A-norm, but this significantly lengthens the proof of Lemma 5.5.
With this modification of the ‖ · ‖h,A-norm, hypothesis (5.32) can be removed. How-
ever, this appears to be a minor issue since (5.32) holds for all the two-field Friedrichs’
systems presented in section 3.

6. Applications. In this section we apply the DG method designed in section
4 and analyzed in section 5 to the Friedrichs’ systems presented in section 3.

6.1. Advection-diffusion-reaction. We describe various DG methods that
can be used to approximate the advection-diffusion-reaction equation introduced in
section 3.1 and in which the σ-component of the unknown can be eliminated locally.
Comparisons with the unified approached developed by Arnold et al. [1] are presented
to illustrate the fact that the present DG method generalizes some of the DG methods
that have been previously developed in the literature for the Poisson equation.

6.1.1. A first example: The LDG method. Consider first Dirichlet bound-
ary conditions. Owing to (3.5) and (3.6), the integral representations (2.15) and (2.17)
hold with the R

d+1,d+1-valued boundary fields

(6.1) D =

[
0 n

nt β·n

]
and M =

[
0 −n

nt 0

]
,

where n is the unit outward normal to ∂Ω. Let ς > 0 and η > 0 (these design
parameters can vary from face to face). For all F ∈ Fh, set RF ≡ 0 and

(6.2) MF =

[
0 −nF

nt
F ςh−1

F

]
, SF =

[
0 0

0 ηh−1
F

]
,

and define for all y ∈ [L2(F )]d+1, MF (y) = MF y and SF (y) = SF y.
Lemma 6.1. Let MF , SF , and RF be defined as above. Then, properties (dg

�)
hold.

Proof. The consistency properties (dg7) and (dg8) are readily verified. Proper-
ties (dg17)–(dg18) are evident. The remaining properties are direct consequences of
Lemmata 5.1 and 5.3.

Remark 6.1. Let δ ∈ R
d. A slightly more general choice for the interface operator

consists of setting for all F ∈ F i
h, Sσu

F = (δ·nF )nF , where nF is any of the two unit
normal vectors to F . This choice leads to the so-called LDG method of Cockburn
and Shu [7] as considered in the unified approach of [1] for the Poisson equation.

When Neumann and Robin boundary conditions are enforced, the integral repre-
sentation (2.17) holds for the R

d+1,d+1-valued boundary field

(6.3) M =

[
0 n

−nt 2
 + β·n

]
.
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Assume that 
 ≥ (β·n)−, the negative part of β·n (this is not restrictive in practice
since the usual Robin condition at an inflow boundary uses 
 = −β·n ≥ 0). For all
F ∈ Fh, set RF ≡ 0 and

(6.4) MF =

[
0 nF

−nt
F 2
 + β·nF

]
, SF =

[
0 0

0 ηh−1
F

]
,

and for all y ∈ [L2(F )]d+1, define MF (y) = MF y and SF (y) = SF y. Then, it is easily
verified that (5.8) holds. Hence, Lemma 5.2 implies that assumptions (dg1)–(dg6)
hold. Moreover, the consistency assumptions (dg7) and (dg8) trivially hold. Of
course, (dg9)–(dg16) hold since the definition of SF is independent of the type of
boundary condition. Finally, (dg17)–(dg18) are evident since RF ≡ 0.

Remark 6.2. Observe that the scalings of the block Muu
F are radically different

whether Dirichlet or Robin/Neumann boundary conditions are enforced.

6.1.2. Comparison with other methods. In this section we restrict the set-
ting to the equation u− Δu = f and to homogeneous Dirichlet boundary conditions
so as to make comparisons with the unified approach developed in [1], where it is
shown that most of the DG methods amount to solving the following problem:

(6.5)

{
Seek zh = (σh, uh) ∈ Wh such that ∀yh ∈ [Ppσ

(K)]d×Ppu
(K),

(zh, T̃ yh)L,K + (φ̂∂K(zh), yh)L,∂K = (f, yh)L,K ,

where the so-called numerical fluxes φ̂∂K(zh) depend on the method under consid-
eration. In view of (4.17) and (4.19), the link between the present formalism and

that of [1] is based on the identification φ̂∂K(zh)|F = φ∂K(zh)|F . For the purpose of
comparison, we restrict ourselves to boundary and interface operators such that for
all F ∈ Fh, for all v ∈ L2(F ), and for all τ ∈ [L2(F )]d,

Mσu
F (v) = −nF v, Muσ

F (τ) = τ ·nF ,(6.6)

Sσu
F (v) = 0, Suσ

F (τ) = 0.(6.7)

Therefore, the methods that can be constructed from this set of assumptions differ
only in the design of Muu

F , Suu
F , and RF . We set φ̂∂K(zh) = (ûKnK , σ̂K ·nK) (note

that ûK is R-valued, σ̂K is R
d-valued, and the sign convention we use herein for σh

and σ̂K is opposite to that in [1]). Then, the above identification of the fluxes is
possible if the DG method under consideration is such that

(6.8) φ̂∂K(zh)=

{
(0, σh·nF + 1

2M
uu
F (uh) + RF (uh)) if F ∈ F∂

h ,

({uh}nK , {σh} ·nK + nF ·nK(Suu
F ([[uh]])+RF ([[uh]]))) if F ∈ F i

h.

The DG methods that belong to this class are those from [3, 5, 4, 6] together with
that of [7] already discussed above. Observe that in this setting, the local flux recon-
struction formula (4.23) takes the form

(6.9) ∀K ∈ Th, zσh |K = −∇zuh |K +
∑

F⊂∂K

rF ([[zuh ]]nF ).

Comparison with the method of Brezzi et al. The method described by Brezzi et
al. [6] (see also [1]) is such that

φ̂∂K(zh) =

{
(0, σh·nF + 1

2 ςrF (uhnF )·nF ) if F ∈ F∂
h ,

({uh}nK , {σh} ·nK + η {rF ([[uh]]nF )} ·nK) if F ∈ F i
h,

(6.10)
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where ς and η are positive constants. This amounts to specifying Muu
F , Suu

F , and RF

such that for all v ∈ L2(F ),

(6.11) Muu
F (v) = ςrF (vnF )·nF , Suu

F (v) = η {rF (vnF )} ·nF , RF (v) ≡ 0.

The operator rF is endowed with the following property.
Lemma 6.2. For all F ∈ Fh and for all τh ∈ [Ppσ (F )]d,

(6.12) h
− 1

2

F ‖τh‖Lσ,F � ‖rF (τh)‖Lσ,T (F ) � h
− 1

2

F ‖τh‖Lσ,F .

This lemma and the definition of rF imply that for all F ∈ Fh and for all vh ∈ Ppu
(F ),

h−1
F ‖vh‖2

Lu,F � ({rF (vhnF )} ·nF , vh)Lu,F � h−1
F ‖vh‖2

Lu,F .(6.13)

These inequalities are just what is takes to prove that if the boundary and interface
operators are defined using (6.6), (6.7), and (6.11), properties (dg

�) hold. Therefore,
the conclusions of Theorems 5.8 and 5.14 hold.

Comparison with the IP method. Let ς and η be two positive constants. The IP
method of Baker [3] (see also Arnold [2]) is such that the flux is defined by

(6.14) φ̂∂K(zh)=

{
(0, σh·nF + 1

2
ς
hF

uh + ρF ([[uh]])·nF ) if F ∈ F∂
h ,

({uh}nK , {σh} ·nK + η
hF

[[uh]]nF ·nK + ρF ([[uh]])·nK) if F ∈ F i
h,

where the operator ρF : L2(ΔF ) −→ L2(F ) is defined by

(6.15) ρF (v) = −
∑

F ′∈ΔF

{rF ′(vnF ′)} ,

and ΔF = {F ′ ∈ Fh; ∃K ′ ∈ Th, F ∪ F ′ ⊂ ∂K ′}. This method fits the present
framework if we set

(6.16) Muu
F (v) = ςh−1

F v, Suu
F (v) = ηh−1

F v, RF (v) = ρF (v)·nF .

Using Lemma 6.2, it is readily seen that (dg18) holds and that (dg17) holds if the de-
sign parameters ς and η are large enough. Therefore, the conclusions of Theorems 5.8
and 5.14 hold for the IP method. Note that the expression (4.31) derived for RF in
the general setting of two-field Friedrichs’ systems reduces to (6.16) for the Poisson
problem with Dirichlet boundary conditions.

Comparison with the methods of Bassi et al. The method proposed by Bassi and
Rebay [5] corresponds to the choice of Muu

F ≡ 0, Suu
F ≡ 0, and RF ≡ 0. Our analysis

needs to be revised to account for this situation. Obviously, the L2-coercivity still
holds in the form ‖y‖2

L � ah(y, y) for all y ∈ W (h). Moreover, one easily derives the
following continuity estimate: For all (y, yh) ∈ W (h) ×Wh,

(6.17) |ah(y, yh)| �
( ∑

K∈Th

[‖Ty‖2
L,K + h−1

K ‖y‖2
L,∂K ]

) 1
2

‖yh‖L.

Then, provided pσ = pu := p, the second Strang lemma implies ‖z − zh‖L �
hp‖z‖[Hp+1(Ω)]m . Although this estimate is not optimal, it shows that the method
of Bassi and Rebay is (possibly nonoptimally) convergent. Finally, the method pro-
posed by Bassi et al. [4] fits the present framework by defining the operators

(6.18) Muu
F (v)=ςrF (vnF )·nF , Suu

F (v)=η {rF (vnF )} ·nF ,

and the operator RF as in the IP method, i.e., (6.16). By using what has been shown
above for the method of Brezzi et al. and the IP method, it is clear that the conclusions
of Theorems 5.8 and 5.14 hold in this case also, provided ς and η are large enough.



DG FOR ELLIPTIC PDEs 2387

6.2. Linear continuum mechanics. Consider the linear continuum mechanics
equations introduced in section 3.2 and let us describe a DG method where the (σ, p)-
component of the unknown can be eliminated locally. Owing to (3.11) and (3.12), the
integral representations (2.15) and (2.17) hold with the R

m,m-valued boundary fields
(recall that m = d2 + 1 + d)

(6.19) D =

[
0 H
Ht 0

]
and M =

[
0 −H
Ht 0

]
,

where H =
∑d

k=1 nk(Ek, 0)t ∈ R
d2+1,d. Observe that for all ξ ∈ R

d, Hξ = (− 1
2 (n⊗ξ+

ξ⊗n), 0). Let ς > 0 and η > 0 (these design parameters can vary from face to face).
For all F ∈ Fh, set RF ≡ 0 and

(6.20) MF =

[
0 −HF

Ht
F ςh−1

F Id

]
, SF =

[
0 0

0 ηh−1
F Id

]
,

where HF is defined as H with nF substituting for n. Define, for all y ∈ [L2(F )]m,
MF (y) = MF y and SF (y) = SF y. Then, using Lemmata 5.1 and 5.3, one readily
verifies that properties (dg

�) hold. An IP-like method can be derived as well.

6.3. Simplified MHD. Consider the simplified MHD equations introduced in
section 3.3 and let us describe a DG method where the H-component of the unknown
can be eliminated locally (the derivation of a DG method where the E-component of
the unknown can be eliminated locally is similar). To recover the notation of section 5,
set σ ≡ H and u ≡ E. Owing to (3.16) and (3.17), the integral representations (2.15)
and (2.17) hold with the R

6,6-valued boundary fields

(6.21) D =

[
0 N
N t 0

]
and M =

[
0 −N
N t 0

]
,

where N =
∑3

k=1 nkRk, and the R
3,3-valued fields R1, R2, and R3 are defined in

section 3.3. Observe that for all ξ ∈ R
3, N ξ = n×ξ. Let ς > 0 and η > 0 (these

design parameters can vary from face to face). For all F ∈ Fh, set RF ≡ 0 and

(6.22) MF =

[
0 −NF

N t
F ςh−1

F N t
FNF

]
, SF =

[
0 0

0 ηh−1
F N t

FNF

]
,

where NF is defined as N by using nF instead of n. For all y ∈ [L2(F )]6, let MF (y) =
MF y and SF (y) = SF y. Then, using Lemmata 5.1 and 5.3, one readily verifies that
properties (dg

�) hold. An IP-like method can be derived as well.
Remark 6.3. As opposed to advection-diffusion-reaction equations, the upper

bounds in (5.7) and (5.9) are not sharp for the simplified MHD equations since the
operators MF and SF do not need to control the whole L2-norm of the electric field.

7. Conclusions. It happens sometimes that (a4) does not hold; instead, the
following weaker inequality holds:

(7.1) ∃μ0 > 0 ∀z ∈ W, (Tz, z)L + (z, T̃ z)L ≥ 2μ0‖πzσ‖2
Lσ

,

where π ∈ L(Lσ;Lσ) may not be injective. In other words, coercivity no longer holds
on the u-component of the unknown but holds only on a piece of the σ-component,
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namely πzσ. The equation −Δu = f corresponds to this situation with π equal to
the identity. The linear continuum mechanics equations in the incompressible limit,
e.g., the Stokes equations, also fall in this framework with a nontrivial noninjective
operator π. It will be shown in a forthcoming third part that, provided additional
mild assumptions are made on the differential operators and on the DG setting, all
that has been said herein in the fully L-coercive case remains valid in the situation
with partial coercivity.
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ON THE LOCAL LINEAR INDEPENDENCE OF GENERALIZED
SUBDIVISION FUNCTIONS∗

JÖRG PETERS† AND XIAOBIN WU†

Abstract. Characterizing the linear and local linear independence of the functions that span a
linear space is a key task if the space is to be used computationally. Given a control net, the spanning
functions of one spatial coordinate of a generalized subdivision surface are called nodal functions.
They are the limit, under subdivision, of associating the value one with one control net node and
zero with all others. No characterization of independence of nodal functions has been published to
date, even for the two most popular generalized subdivision algorithms, Catmull–Clark subdivision
and Loop’s subdivision. This paper provides a road map for the verification of linear and local linear
independence of generalized subdivision functions. It proves the conjectured global independence
of the nodal functions of both algorithms, disproves local linear independence (for higher valences),
and establishes linear independence on every surface region corresponding to a facet of the control
net. Subtle exceptions, even to global independence, underscore the need for a detailed analysis to
provide a sound basis for a number of recently developed computational approaches.

Key words. linear independence, nodal functions, subdivision surfaces, basis, Loop’s scheme,
Catmull–Clark scheme, local linear independence, condition number
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1. Introduction. Subdivision algorithms create an ever-tighter approximation
of a smooth free-form surface by recursively refining and smoothing a polyhedral
input mesh, known as control net, or mesh (see Figure 1.1). The two most popular
subdivision algorithms, Catmull–Clark and Loop, replace at each step one facet with
four. Catmull–Clark subdivision meshes consist of four-sided facets [3] and Loop
meshes consist of triangles [11]. The two refinement methods are very popular in
graphics, and, although the resulting surfaces are not “fair” enough for high-end
industrial styling purposes [14], they are increasingly considered for computational
purposes [9, 4]. It is therefore important to know whether the functions, associated
with each control node of the mesh, are linearly independent, or what dependence
exists. Locally, on a fixed domain Ω, the pieces of the subdivision surfaces have the
form

∑
i aiνi, ai ∈ R

3, i.e., they are a linear combination of nodal functions νi.
A number of publications have tacitly assumed that the nodal functions νi are

linearly independent. Without proof, [9, 8, 4] call the nodal functions subdivision
basis functions, [12] uses the nodal functions as scaling functions to form a “basis”
of the coarsest level of a multiresolution hierarchy, [13] fits subdivision surfaces by
allowing one interpolation condition for each mesh node, and [17, 16, 19] call certain
eigenfunctions (a set closely related to the set of nodal functions) an “eigenbasis”;
and the analysis via universal surfaces, e.g., [19], is error prone unless the eigenfunc-
tions form a basis. In fact, while generically true, for Catmull–Clark subdivision the
assumption of linear independence of the nodal functions is false in some cases. The
eight nodal functions of the simplest quadrilateral control mesh, a cube, are globally

∗Received by the editors March 24, 2005; accepted for publication (in revised form) February 22,
2006; published electronically December 1, 2006. This work was supported in part by NSF grants
DMI-0400214 and CCF-0430891.

http://www.siam.org/journals/sinum/44-6/62749.html
†Department of Computer and Information Science and Engineering, University of Florida,

Gainesville, FL 32611 (jorg@cise.ufl.edu, xwu@cise.ufl.edu).

2389



2390 JÖRG PETERS AND XIAOBIN WU

1
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1
8

3
8

3
8

1 − α

α
N

Fig. 1.1. Modeling with Loop’s subdivision. Top: A triangulated cat sculpture refined by Loop
subdivision. Two stencils give the weights for averaging new nodes from old ones. The “vertex rule”
(above the arrow) is centrally symmetric with 64α := 40 − (3 + 2 cos(2π/N))2 and preserves the
number N of neighbors, i.e., the node’s valence. The “edge rule” creates nodes of valence six for
each edge. Bottom, solid lines: Sequence of submeshes defining one of N = 7 triangular surface
pieces that surround the limit point of the sequence of extraordinary nodes •.

linearly dependent (see Lemma 4.1); in general, we cannot fit eight arbitrary data

points by adjusting the coefficients ai of the corresponding surface
∑8

i=1 aiνi.

For the well-known tensor-product spline functions, (global) linear independence
may be interpreted as linear independence over the checkerboard grid of the union of
domain rectangles delineated by the knot lines and joined by identifying edges of the
rectangles in the natural fashion. generalizes to subdivision surfaces This definition as
follows. Let Ω be a unit square if the kth facet of the control mesh has four vertices;
let Ω be a unit triangle if it has three vertices. Let Γ be the union of all domains
(Ω, k), indexed by their control mesh facet index, with edges topologically identified
if the facets share edges. This gives Γ the structure of a 2-manifold homeomorphic to
the control mesh. Global linear independence is linear independence with respect to
Γ.

Definition 1.1 (global linear independence). A set of nodal functions are glob-
ally linearly independent if they are independent over the domain manifold Γ. That
is, if ∀u ∈ Γ :

∑
i aiνi(u) = 0, then ai = 0.

While some numerical methods require only standard (global) linear indepen-
dence, others, such as local Hermite interpolation and localized multiresolution, rely
on stronger notions of independence. We need to analyze independence on certain
ring-shaped annuli A and on subsets Ωi of Ω. A stronger, subtle notion of indepen-
dence is local linear independence.

Definition 1.2 (local linear independence). A set of nodal functions are locally
linearly independent if for any bounded open G ⊆ Γ, all the nodal functions having
some support in G are linearly independent on G.

Remarkably, for box-splines and B–splines, the standard notion of (global) linear
independence is equivalent to local linear independence [6, (II.57) Theorem, p. 51].
That is, if all coefficients ai have to vanish in order that

∑
i aiνi ≡ 0 (global linear
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∀N
(Lemma 2.2)

N ≤ 6
(Lemma 3.2)

N ≤ 7
(Conjecture 1)

∀N
(Theorem 3.6)

Fig. 1.2. Summary of findings for Loop subdivision. Domains G (shaded) and valence N for
which the nodal functions with support on G are linearly independent.

independence) then the coefficients of all nodal functions that are nonzero on any
open set G have to vanish if

∑
i aiνi vanishes on G (local linear independence). Since

G can be arbitrarily small, local linear independence is a stricter requirement on
the nodal functions than global linear independence. By contrast, local and global
independence are not equivalent for subdivision nodal functions. This observation
provides rare insight into the structural difference between subdivision and spline
surfaces. Specifically, we show that for Catmull–Clark and Loop subdivision,

(i) the nodal functions are globally linearly independent1;

(ii) the nodal functions are linearly independent over an annulus1 such as in Figure
1.2, see Lemma 2.2;

(iii) for valence N higher than the “regular” valence, the nodal functions are not
locally linearly independent;

(iv) the nodal functions are linearly independent on each domain Ω naturally associ-
ated with one facet of the control net1.

Points (i)–(iv) have direct implications on interpolation (to be compared with the
Schoenberg–Whitney theorem of spline interpolation). Consider interpolation with
Loop subdivision surfaces. If all three vertices of a facet have valence six, interpolating
12 data points on a domain Ω, by adjusting 12 control points, is a well-posed problem
with a unique solution. However, if one of the vertices has valence N < 6, then
matching 12 data points represents too many constraints; if N > 6, then the fitting
problem is underconstrained. If we choose the number of interpolation conditions to
equal the number of nodal functions that are nonzero on Ω, i.e., if we specify N + 6
interpolation points, we find that, if the points belong to a subregion Ω1 the problem
is overconstrained for N > 6. (Ω1 is the shaded area in Figure 1.2, labeled Conjecture
1.) Interpolation with Catmull–Clark subdivision follows a similar pattern with an
additional complication for N = 3.

The analysis is made easier by the fact that the component functions of most
popular subdivision schemes, and in particular of both Catmull–Clark and Loop sub-
division, are variations of the well-understood box-spline subdivision [6]; much of the
subdivision limit surfaces, corresponding to quads with 4-valent vertices, respectively,
triangles with 6-valent vertices are “regular,” i.e., are spline surfaces generated by
box-splines. This box-spline connection should make us cautious since the shifts of
box-splines are, in general, not linearly independent. For example, the four-direction

1There is one exception: Catmull–Clark subdivision applied to nodes with valence N = 3; see
Lemma 4.1.
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(quincunx) subdivision, which gives rise to 4–8 subdivision [18], has dependent nodal
functions. Catmull–Clark subdivision rules generalize the two-direction box-spline
rules, i.e., the rules of the bicubic tensor-product spline; and Loop subdivision gener-
alizes a three-direction box-spline, the convolution of the linear “hat” function with
itself. For both splines we know [6] that the nodal functions form a basis and therefore
are independent. This means we can focus on submeshes that define the neighbor-
hood of extraordinary nodes, where the connectivity of the control mesh differs from
the regular connectivity of the box-spline, namely submeshes surrounding nodes of
valence N �= 4 for Catmull–Clark meshes and of valence N �= 6 for Loop meshes. We
do not assume that all direct neighbors of these extraordinary nodes are of regular
valence.

We first discuss Loop’s subdivision, proposed for computational purposes in [9,
8, 4], then Catmull–Clark subdivision, and then generalize the key results.

2. Loop subdivision. A subdivision algorithm states how a new node is com-
puted from a (small local) submesh of old nodes, and how this new node is to be
connected to other new nodes. In particular, for Loop subdivision, there are only two
rules: to compute new nodes, corresponding to edges of the old mesh, and to compute
new nodes, corresponding to old nodes. These rules are expressed by the two stencils
(weighted neighborhood graphs) in Figure 1.1, above and below the arrow. A node
of a Loop mesh is extraordinary if it does not have six neighbors.

Due to the small footprint of the rules, a submesh consisting of one triangle and
all triangles attached to it defines, by going to the limit, a triangular piece of the
surface adjacent to the limit of the extraordinary node. If all nodes of the central
triangle are of valence six, the surface is a polynomial piece of a three-direction box-
spline and its properties are well understood. Since new edge nodes have valence six,
extraordinary nodes are more isolated under refinement, and we can focus on triangles
with one extraordinary node of valence N �= 6. In the following, the subscript 0 refers
to a mesh where any two extraordinary nodes are separated by at least one node of
valence six. This may be the result of one subdivision applied to the original mesh.

While the typical application of Loop subdivision creates a parametrized surface in
R

3, for the analysis it is sufficient to look at one spatial coordinate since the coordinates
do not interact. The nodal function νi may then be defined by choosing an association
of the control points aj with the domain, setting one scalar control point ai to 1 and
all others to 0 and applying subdivision. The relevant submesh defining the triangular
surface piece consists of K := N + 6 nodes that can be labeled as in Figure 2.1 (top
left). We store the submesh as a vector

c0 := (c0,1, . . . c0,K) ∈ R
K .

Subdivision generates a new set of M := K+6 control vertices as shown in Figure
2.1 (top right). We store those control vertices in a new vector

c1 := (c1,1, . . . , c1,K , c1,K+1, . . . c1,M ).

If we represent the averaging rules as rows of a M ×K matrix A (with row sum
one), then the subdivision rules to compute the vector c1 from c0 are

c1 = Ac0, where A :=

⎛
⎝A11 0

A21 A22

A31 A32

⎞
⎠ .
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Fig. 2.1. Top left: Labeling of the submesh that defines a triangular surface piece (schematically
represented by the shaded area) near an extraordinary node (label 1). Top right: Refined submesh,
Ac0. Bottom left: Refined submesh, A◦c0, used to evaluate the next spline ring. Bottom right: The
domain Ω of the composite triangular surface piece consists of an infinite sequence of quadrilateral
(chopped triangle) subdomains. The first three such subdomains, Ω1, Ω2, Ω3, are shaded.

Here A11 is an (N + 1) × (N + 1)-matrix that computes the new extraordinary
node and the vertices adjacent to it (note that this also holds for an optional initial
refinement to generate c0 from a mesh that has neighboring extraordinary nodes);
A21 and A22 determine the five vertices with indices N +4, N +3, N +2, N +5, N +6
of the next layer; and A31 and A32 define the six outermost nodes. The sizes of A22

and A32 are 5 × 5 and 6 × 5, respectively. Leaving out the direct neighbors of the
extraordinary node, c1,4, c1,5, . . . , c1,N−1, the remaining control points

cbox
1 := (c1,1, c1,2, c1,3, c1,N , . . . c1,M )

define three triangular polynomial pieces shown as shaded in Figure 2.1 (top right).
To compute the nodes of the next subdivision step, we need only the first K

control points of c1 (see Figure 2.1 bottom left),

(c1,1, c1,2, . . . , c1,K) = A◦c0 :=

(
A11 0
A21 A22

)
c0.

By repeating the process, an infinite sequence of piecewise polynomial rings is gen-
erated. We can choose their domains Ω� so that their union fills out the triangular
domain Ω:

Ω := {(u, v)|u + v + w = 1, u, v, w ≥ 0} = ∪∞
�=1Ω� Ω1 := Ω\1

2
Ω, Ω�+1 :=

1

2
Ω�.
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The control vertices cn after n subdivision steps that determine the function on Ωn

are

cn = A(A◦)n−1c0, n ≥ 1.(2.1)

From the recursion in 2.1, it is evident that the eigenstructure of A◦ plays a crucial
rule in determining the properties of the subdivision surfaces such as the computation
of the limit position, tangent plane, and shape analysis [7, 1, 15, 14, 10].

Using Fourier transform, it is easy to derive the vector of eigenvalues Λ11 of A11,

Λ11 :=

[
1,

5

8
− α(N), f(1), . . . , f(N − 1)

]
,

where

f(k) :=
3 + 2cos(2πk/N)

8
, α(N) :=

5

8
− f(1)f(1),

and Λ22 of A22,

Λ22 :=

[
1

8
,
1

8
,
1

8
,

1

16
,

1

16

]
.

Except for the case N = 3, A◦ can be diagonalized by the matrix V of its
eigenvectors (details of the eigenanalysis of A◦ can be found, e.g., in [16]):

A◦ = VΛV−1, Λ = diag(Λ11,Λ22),V =

(
U0 0
U1 W1

)
,(2.2)

where the submatrices U0 and W1 are the eigenvectors of A11 and A22, respectively.
For N > 3, the columns of V are linearly independent vectors in R

K .
Now let the initial submesh c0 := vi be an eigenvector associated with eigenvalue

λi and ϕi the corresponding linear combination of nodal functions. Then, after n
steps of subdivision,

cn|c0=vi = A(A◦)n−1vi = Aλn−1
i vi = λn−1

i Avi = λn−1
i c1|c0=vi

.

Therefore ϕi(Ωn+1) is a scaled multiple of ϕi(Ω1). Precisely,

∀(u, v) ∈ Ω and ∀n ≥ 1, ϕi

( u

2n
,
v

2n

)
= λn

i ϕi(u, v).(2.3)

In [16] these K functions ϕi are called eigenbasis. However, adjacent to an ex-
traordinary node, each ϕi consists of an infinite union of polynomial pieces. The subtle
but important point to be settled here is that, even if the columns of V are indepen-
dent, the corresponding functions can be dependent. We therefore call the functions
ϕi eigenfunctions. We note that, to be scalable, the control net of an eigenfunction
are only well defined if the extraordinary node is surrounded by regular nodes. For
the proofs of independence of nodal functions, we will be allowed to assume that the
extraordinary node is isolated. An extraordinary node is isolated if it is surrounded
by regular nodes. For, if c0 is isolated as the result of one refinement, and we show
that c0 is zero, then the values associated with the unrefined nodes must also be
zero since the matrix A11 that maps the original nodes to the refined nodes is of full
rank for all valences. To see that A11 is of full rank also for N = 3, we need only
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observe that Λ11 = [1, f(1)f(1), f(1), f(1)], f(1) = 1/4 and the eigenvectors of f(1)
are independent.

Lemma 2.1. A11 is of full rank for all valences.
To show that subdivision near extraordinary nodes is similar to but different from

spline representations, we will show that the eigenfunctions are linearly independent
over Ω, but linearly dependent on certain subsets of Ω.

To show that the nodal functions of Loop subdivision are (globally) linearly inde-
pendent, we focus on subdomains that form an annulus surrounding the preimage of a
sequence of extraordinary nodes. With the natural topological identification of edges
to induce the structure of a 2-manifold with two boundaries, we define an annulus as
N copies of Ω1,

A := {1, . . . , N} × Ω1.

Note that this requires that the extraordinary node is isolated.
Lemma 2.2. The nodal functions of Loop subdivision with support on A are

linearly independent over A.
Proof. For A to be well defined, the extraordinary node must be isolated. Let

f :=
∑

i c0,iνi be zero on all of A. Then the subset of nodes cbox
1 can be interpreted

as a regular three-direction box-spline control net defining three polynomial pieces
near the extraordinary node. Since the box-splines are locally linearly independent
[6], all box-spline control points defining f on A are zero. Since all eigenvalues of A◦

are positive for N > 3, A◦ is of full rank and for N = 3, Lemma 3.5 shows that the
matrix M is of full rank. Therefore all c0,i must be zero.

Now consider all nodal functions of a once-refined control net. Lemma 2.2 proves
linear independence of these nodal functions on the union of all annuli A. By Lemma
2.1, the original control nodes must also be zero if the function vanishes on all annuli.

Corollary 2.3. The nodal functions of Loop subdivision are globally linearly
independent.

3. Local linear independence of Loop subdivision. In this section, we char-
acterize the local linear independence of Loop subdivision nodal functions.

Lemma 3.1. For general N , the nodal functions of Loop subdivision are not
locally linearly independent. Specifically, for any k there exists a valence N so that
the nodal functions of Loop subdivision with support on Ωk, νi, i = 1 . . . N + 6, are
locally linearly dependent on Ωk and even on ∪k

�=1Ω�.
Proof. All nodal functions corresponding to c0 have support (are nonzero) on each

subdomain Ωk. Each vector cbox
k corresponding to Ωk has 16 entries. For sufficiently

large valence, the nodal functions on Ωk must therefore be dependent. By the same
reasoning, for sufficiently large valence, the nodal functions on ∪k

�=1Ω�, for finite k,
must be dependent.

As could be hoped by the failure of the above counting argument, nodal functions
are locally linearly independent for sufficiently low valence N .

Lemma 3.2. For N ≤ 6 the nodal functions νi, i = 1 . . . N +6, are locally linearly
independent.

Proof. Denote by Pi, i = 1, 2, 3 the three 12 × (N + 12) picking matrices that
select the box-spline coefficients of each of the three triangular domain parts. Since
PiA, i = 1, 2, 3 is of full rank c0 must be zero if the 12 box-spline control points
are zero. Then local linear independence of the three-direction box-spline implies the
claim on Ω1. Since the control points on Ω� are computed from c0 by applying

PiA(A◦)�−1
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local linear independence on Ω1 implies local linear independence on Ω� for N > 3.
For N = 3, the claim follows from Lemma 3.5.

For N = 7, the nodal functions are independent on Ω1 and hence on ∪k
�=1Ω�,

but, due to the dimension of the three polynomial pieces corresponding to Ω1, they
are not linearly independent on subsets of Ω1 that do not straddle all three piecewise
polynomial domains. As the valence N increases, a subtle pattern emerges.

Conjecture 1. For k := 
(N − 6)/2� + 1 > 1, the nodal functions of Loop sub-
division νi, i = 1 . . . N + 6 are linearly independent on ∪k

i=1Ωi and linearly dependent
on ∪k−1

i=1 Ωi.
We verified the conjecture for isolated extraordinary nodes by symbolic calculation

up to N = 30, which should cover most cases of practical interest.
To investigate linear independence on the natural domains corresponding to con-

trol facets, namely on Ω = ∪∞
�=1Ω�, we need a better strategy. We use the eigen-

property of the eigenfunctions, that additional layers are scaled copies of the earlier
layers.

Lemma 3.3. For valence N > 3, the eigenfunctions ϕi, i = 1, . . . N + 6, of Loop
subdivision are linearly independent on Ω.

Proof. The proof is by contradiction. All eigenvalues λi of A◦ are positive. We
sort the eigenfunctions ϕi (i = 1, . . . N + 6) so that their associated eigenvalues λi

descend from the largest to the smallest. Suppose there exist scalars a1, a2, . . . aN+6,
not all zero, such that

N+6∑
i=1

aiϕi = 0.

Let λj be the largest eigenvalue such that aj �= 0. Then with wi := −ai/aj , we write

ϕj =

N+6∑
i=j+1

wiϕi.

For ∀(u, v) ∈ Ω and ∀n ≥ 1, ( u
2n ,

v
2n ) ∈ Ω, with the above equation and (2.3), we have

ϕj

( u

2n
,
v

2n

)
=

N+6∑
i=j+1

wiϕi

( u

2n
,
v

2n

)
,

⇒ λn
j ϕj(u, v) =

N+6∑
i=j+1

wiλ
n
i ϕi(u, v),

⇒ ϕj(u, v) =

N+6∑
i=j+1

wi

(
λi

λj

)n

ϕi(u, v).

Since ( λi

λj
)n → 0 as n → ∞ unless λi = λj ,

ϕj(u, v) =
∑

i∈{i|λi=λj}
wiϕi(u, v)

must hold. Therefore the eigenfunctions associated with λj must be linearly depen-
dent. In the remainder of the proof, we show this to be false. In other words, the
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c1,3 c1,2

Ck
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00 0

0
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111

c0 = uk c0 = y1 c0 = z1

c1,N+8c1,N+9

c1,N+10

c1,N+8

c1,N+10

Fig. 3.1. The box-spline control points c1,i (solid dots) used to certify that pairs and triples of
eigenfunctions are independent.

problem of proving the linear independence of all eigenfunctions has been reduced to
the independence of the eigenfunctions with the same eigenvalue.

Because of the eigenstructure of A◦, the multiplicities of its eigenvalues are small
(at most four) and do not increase with N . Recall that the eigenvalues of A◦ are[

1,
5

8
− α(N), f(1), . . . , f(N − 1),

1

8
,
1

8
,
1

8
,

1

16
,

1

16

]
,

where

α(N) :=
5

8
− (3 + 2cos(2π/N))2

64
, f(k) :=

3 + 2cos(2πk/N)

8
.

To find the repeated eigenvalues, we observe that for k ∈ {1 . . . N − 1},
1. f(k) = f(N − k),
2. if N is even and k = N/2, f(k) = 1

8 ; otherwise f(k) �∈ { 1
8 ,

1
16},

3. f(k) �= 1 and f(k) �= 5
8 − α(N).

That is, if λ is an eigenvalue of A with multiplicity greater than one, then λ = f(k) �=
1
8 , or λ = 1

8 , or λ = 1
16 . In particular, all relevant eigenvalues are nonzero. We look

at each case individually.
• Case 1. λ = f(k) �= 1

8
In this case λ has multiplicity 2 and the associated eigenvectors uk and wk

are given in [16]:

uT
k = (0, 1, Ck, C2k, . . . C(N−1)k, . . . ) and

wT
k = (0, 0, Sk, S2k, . . . S(N−1)k, . . . ),

where Ck := cos(2πk/N) and Sk := sin(2πk/N). To show the two eigenfunc-
tions defined by uk and wk are linearly independent, we consider the two
box-spline entries of c1,2 and c1,3 (solid dots in Figure 3.1, left) after one
step of subdivision applied to the mesh c0 := uk and one step applied with
c0 := wk. The two corresponding eigenfunctions are independent because

det

(
c1,2|c0=uk

c1,3|c0=uk

c1,2|c0=wk
c1,3|c0=wk

)
= λ2 det

(
1 Ck

0 Sk

)
�= 0,

since S(k) �= 0 because f(k) �= 1
8 and hence k �= N

2 .
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• Case 2. λ = 1
8

In this case λ can have multiplicity of 3 or 4. We first show that the eigen-
functions corresponding to the first three columns y1,y2,y3 of ( 0

W1
) are

independent. The eigendecomposition (2.2) of A22 is (see [16])

W1 =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
1 0 1 0 1
1 0 0 0 0
0 1 1 1 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The independence of the eigenfunctions follows from the independence of the
three box-spline control points c1,N+8, c1,N+9, c1,N+10 (solid dots in Figure
3.1, middle) after one subdivision:

det

⎛
⎝c1,N+8|c0=y1

c1,N+9|c0=y1
c1,N+10|c0=y1

c1,N+8|c0=y2 c1,N+9|c0=y2
c1,N+10|c0=y2

c1,N+8|c0=y3 c1,N+9|c0=y3
c1,N+10|c0=y3

⎞
⎠ =

1

83
det

⎛
⎝4 4 0

0 0 1
1 4 4

⎞
⎠ �= 0.

If the multiplicity of 1
8 is three, then we are done. Otherwise, λ = f(N/2)

for N is even and we have one additional eigenvector uk from ( U0

U1
). After

one subdivision, the box-spline control point c1,3 is zero for y1,y2,y3 and
nonzero for uk. This proves independence of all four eigenfunctions.

• Case 3. λ = 1
16

The eigenvectors of the two eigenfunctions associated with 1
16 correspond to

the last two columns z1 and z2 of ( 0
W1

). Pairwise independence follows from
the independence of the two box-spline control points c1,N+8, c1,N+10 (solid
dots in Figure 3.1, right)

det

(
c1,N+8|c0=z1

c1,N+10|c0=z1

c1,N+8|c0=z2
c1,N+10|c0=z2

)
=

1

82
det

(
0 3
3 0

)
�= 0.

This completes the proof of Lemma 3.3.
We can now address our original goal of showing that the nodal functions νi are

linearly independent.
Corollary 3.4. For N > 3, the nodal functions of Loop subdivision, νi, i =

1 . . . N + 6, are linearly independent on Ω.
Proof. Each nodal function νi is generated by subdivision when setting control

point i to 1 and all others to 0. If the extraordinary node is surrounded by regular
nodes,

[ϕ1, . . . , ϕK ] = V[ν1, . . . , νK ], K = N + 6,

and independence follows since, for N > 3, the matrix V of eigenvectors is an invert-
ible matrix. The general case follows by one step of subdivision and the full rank of
A11.

For the special case N = 3, the matrix A◦ has a nontrivial Jordan block and
cannot be diagonalized. However, since the number of nodal functions is small, namely
nine, we need not decompose into the eigenspace.

Lemma 3.5. For N = 3, the nodal functions of Loop subdivision, νi, i = 1 . . . N +
6, are linearly independent on Ω.
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Proof. If the extraordinary node is isolated, we explicitly determine the (N +
12) × 9 matrix M that maps c0 to the box-spline control points cbox

1 .

1

16

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 3 3 3 0 0 0 0 0
6 6 2 2 0 0 0 0 0
6 2 6 2 0 0 0 0 0
6 2 2 6 0 0 0 0 0
2 6 0 6 2 0 0 0 0
1 10 1 1 1 1 1 0 0
2 6 6 0 0 0 2 0 0
1 1 1 10 1 0 0 1 1
2 0 6 6 0 0 0 0 2
0 6 0 2 6 2 0 0 0
0 6 0 0 2 6 2 0 0
0 6 2 0 0 2 6 0 0
0 2 0 6 6 0 0 2 0
0 0 0 6 2 0 0 6 2
0 0 2 6 0 0 0 2 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since M has full rank and since the box-splines associated with each of c1,1, c1,2 . . .
c1,N+12 are linearly independent, the νi, i = 1 . . . 9 are also linearly independent. The
general case follows by one step of subdivision and the full rank of A11.

Together, Corollary 3.4 and Lemma 3.5 prove the main Theorem 3.6.
Theorem 3.6. The nodal functions of Loop subdivision, νi, i = 1 . . . N + 6, are

linearly independent over Ω.
The theorem sharply characterizes the locality of linear independence. On any

finite union of Ω� the nodal functions are linearly dependent for sufficiently high
valence. Only once we take the union to the limit Ω, do we obtain linear independence
of the nodal functions for all possible valences.

Lemmas 3.3 and 3.5 imply the analogous result for eigenfunctions.
Corollary 3.7. For all N , the eigenfunctions ϕi, i = 1, . . . N + 6, of Loop sub-

division are linearly independent and form a basis for the Loop subdivision functions
over Ω.

In particular, we can now call the Loop eigenfunctions an eigenbasis.

4. Catmull–Clark subdivision. In this section, we investigate another widely
used subdivision scheme, Catmull–Clark subdivision. The Catmull–Clark algorithm
[3] accepts input meshes that have m-sided facets and vertices with N neighbors.
However, all m-sided facets are split into m quadrilaterals in the first step as follows.
A new face node is computed as the average of the facet vertices, a new edge node as
the average of the edge endpoints and the two new face nodes of the faces joined by
the edge, and a new vertex node of valence N is computed as

(Q + 2R + (N − 3)S)/N,

where Q is the average of the new face nodes of all faces adjacent to the old vertex, R
is the average of the midpoints of all old edges incident on the old vertex point, and
S is the old vertex point. A new quadrilateral facet then consists of consecutive edge
node, vertex node, edge node, and the face node. The rules are consistent with the
Catmull–Clark stencils for quadrilateral meshes listed in Figure 4.1. The standard
Catmull–Clark choices for α, β, and γ are

α := 1 − 7

4N
, β :=

3

2N2
, γ :=

1

4N2
.

If each node of a quadrilateral mesh facet has valence N = 4, Catmull–Clark
subdivision amounts to tensor product bicubic spline subdivision. In this case, the
nodal functions are the standard tensor product uniform B-spline basis functions
whose independence is well documented. Since the extraordinary nodes (with valence
N �= 4) are always isolated after two subdivision steps, i.e., any two extraordinary
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Fig. 4.1. Refinement stencils of generalized Catmull–Clark subdivision.
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Fig. 4.2. Left. Indices of Catmull–Clark nodes near a facet with one extraordinary node
(N = 5). Middle. The indices of the new control points after one subdivision. Three quarters of the
domain now have well-defined tensor product B-spline structure. Right. The complete rectangular
domain is composed of an infinite number of L shaped regions Ω�.

nodes are separated by at least one node of valence four, we can focus our local analysis
on surface parts adjacent to a single extraordinary node. That is, the subscript 0 refers
to a mesh with isolated extraordinary nodes.

The indices of the K := 2N + 8 adjacent control points are stored in c0 as in
Figure 4.2, left:

c0 := (c0,1, . . . c0,K).

After subdivision, the new set of M := K +9 control vertices is ordered as shown
in Figure 4.2, middle and stored in the vector

c1 := (c1,1, . . . , c1,K , c1,K+1, . . . c1,M ).

The subdivision rules are again denoted by

c1 = Ac0, where A :=

⎛
⎝A11 0

A21 A22

A31 A32

⎞
⎠ .

Here A11 is an (2N + 1) × (2N + 1)-matrix that computes the new extraordinary
node and the vertices adjacent to it; A21 and A22 determine the seven vertices with
indices 2N + 2, . . . , 2N + 8, in the middle vertex ring; and A31 and A32 compute the
last nine vertices with indices 2N + 9, . . . , 2N + 17. We have enough control points
in c1 to evaluate three regular patches (see shaded area in Figure 4.2, middle). The
first K control points of c1,

(c1,1, c1,2, . . . , c1,K) = A◦c0 :=

(
A11 0
A21 A22

)
c0,
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Fig. 4.3. Global linear dependence of Catmull–Clark subdivision. Left: An alternative rep-
resentation of the zero function with + indication any nonzero number and - its negative value.
Right: Two control nets with the connectivity of a cube but different node positions. They generate
the same Catmull–Clark surface!

1

−1 1

1 −1

−5

5

−5

1

−1

−5

5 −5 25

00 0

0 0 0

000

0 0 0

0

0

0

1 0 0 4

0

0

1

0

A

Fig. 4.4. Nonzero input coefficients of the eigenfunction corresponding to the eigenvalue zero
generating the zero function on ∪∞

i=2Ωi (shaded area).

are used as the control points for the next subdivision step. A◦ can always be diago-
nalized by its eigenvectors V,

A◦ = VΛV−1.

All eigenvalues are nonzero, except for N = 3 when one eigenvalue is zero. (The
second eigenvalue of the zero Fourier block.) For N > 3, the linear independence of
the nodal functions on A follows, just as in the case of Loop subdivision, from the
local linear independence of tensor-product splines and the full rank of A◦. The full
rank of A11 implies global linear independence for N > 3.

The case N = 3 merits closer scrutiny.

Lemma 4.1. The nodal functions of Catmull–Clark subdivision corresponding to
the graph in Figure 4.3 are (globally) linearly dependent.

Proof. Given the displayed choice of nonzero values at the vertices, all new face
nodes have value 0 and all averages of two old nodes connected by an edge have value
0. Therefore all new edge nodes have value zero and so do the new vertex nodes:
(Q + 2R + (N − 3)S)/N = (0 + 0 + 0S)/3 = 0.

Figure 4.3, right, illustrates dependence as the nonuniqueness of the control net
for a given surface. Interestingly, an early version of the Catmull–Clark subdivision
algorithm, quoted by Doo and Sabin [7], can be shown to be locally linearly indepen-
dent for N = 3. Here a new vertex node of valence N is computed as (Q+R+2S)/4.

In general, on ∪∞
i=2Ωi, the nodal functions associated with the mesh for N = 3

are locally linearly dependent as illustrated in Figure 4.4. On Ω1, if at least one node
involved has valence N �= 3, then A has full rank and the nodal functions are linearly
independent. This implies global linear independence.

Therefore we have:

Lemma 4.2. The nodal functions of Catmull–Clark subdivision with support on
A are linearly independent over A unless their nodes all have valence N = 3.
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5. Local linear independence of Catmull–Clark subdivision. Since the
valence N can be arbitrary but each layer of the subdivision function corresponding to
a region Ω� is defined by a finite number of B-spline control points, the nodal functions
of Catmull–Clark subdivision cannot in general be locally linearly independent over
any subset of Ω.

Lemma 5.1. The nodal functions of Catmull–Clark subdivision are locally linearly
independent if and only if N = 4.

Proof. For N = 3, the nodal functions are not linearly independent over ∪∞
i=2Ωi

due to the example given in Figure 4.4.

If N = 4, the local linearly independence follows from the local linearly indepen-
dence of tensor product B-splines.

For N = 5, the nodal functions are independent on Ω1, (which implies linear in-
dependence on ∪k

�=1Ω� since all eigenvalues are positive) and on any subset of Ω1 that
straddles at least two of the three quad subdomains of Ω1 on which the subdivision
surface is a single polynomial. However, due to the dimension of a polynomial piece
(16), on any single one of the subdomains, the 2N+8 nodal functions must be linearly
dependent.

For N > 5, the nodal functions are linearly dependent on Ω1.

Just as for Loop subdivision, for any k there exists a valence N so that the nodal
functions νi of Catmull–Clark subdivision with support on Ωk are locally linearly
dependent on Ωk and even on ∪k

�=1Ω�. The pattern, verified by symbolic calculation
for isolated extraordinary nodes up to N = 20, is as follows.

Conjecture 2. For k := N − 4 > 0, the nodal functions of Catmull–Clark sub-
division νi, i = 1 . . . 2N +8 are linearly independent on ∪k

i=1Ωi but linearly dependent
on ∪k−1

i=1 Ωi.

Next, we show that this characterization of the localness of linear independence is
sharp: once we take the union of regions to the limit Ω, the nodal functions are linearly
independent regardless of valence. As before, we first prove independence over Ω of the
eigenfunctions defined by the column vectors in V. Then we conclude independence of
the nodal functions for Catmull–Clark subdivision over Ω. As always, to be scalable,
the control net of an eigenfunction is only well defined if the extraordinary node is
isolated.

Lemma 5.2. The eigenfunctions of Catmull–Clark subdivision are linearly inde-
pendent over Ω.

Proof. For N > 3, analogous to the proof of Lemma 3.3, we can reduce the prob-
lem to the independence of the eigenfunctions associated with the same eigenvalue.

According to [1, 2, 10], the eigenvalues of A11,

λk :=
1

16
(Ck + 5 ±

√
(Ck + 9)(Ck + 1)), k = 1, . . . N − 1,

each have a multiplicity of two. We have λk �= 0 since (Ck + 5)2 �= (Ck + 9)(Ck + 1).
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0 Sk1 + Ck4λk − 1

c1,2 c1,3 c1,2 c1,3

c0 = uk c0 = wk

Fig. 5.1. The B-spline control points c1,2, c1,3 (red points) used to certify that the eigenfunc-
tions associated with uk and wk are independent.

When k �= N/2, the associated eigenvectors uk and wk are (see [17])

uk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
4λk − 1
1 + Ck

(4λk − 1)Ck

Ck + C2k

...
(4λk − 1)C(N−1)k

C(N−1)k + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and wk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
Sk

(4λk − 1)Sk

Sk + S2k

...
(4λk − 1)S(N−1)k

S(N−1)k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ck := cos(2πk/N) and Sk := sin(2πk/N). To show that the two eigenfunctions
defined by uk and wk are linearly independent, we consider the tensor-product B-
spline entries c1,2 and c1,3 of c1|c0=uk

and c1|c0=wk
(solid dots in Figure 5.1). The

two eigenfunctions are linearly independent over the shaded region if they generate
independent B-spline control points c1,2 and c1,3, i.e., if

det

(
c1,2|c0=uk

c1,3|c0=uk

c1,2|c0=wk
c1,3|c0=wk

)
= λ2

k det

(
4λk − 1 1 + Ck

0 Sk

)
�= 0.

In fact,

4λk − 1 �= 0

⇐⇒ 1

4
(Ck + 5 ±

√
(Ck + 9)(Ck + 1)) �= 1,

⇐⇒ (Ck + 5) ±
√

(Ck + 9)(Ck + 1)) �= 4,

⇐⇒ (±
√

(Ck + 9)(Ck + 1)) �= −1 − Ck,

⇐⇒ (Ck + 9)(Ck + 1) �= (−1 − Ck)
2,

⇐⇒ 8Ck + 8 �= 0,

⇐⇒ Ck �= −1.

Ck �= −1 and Sk �= 0 follows from k �= N/2.
When k = N/2, the eigenvectors of λk = 1

4 are

uT
k = (0, 1, 0,−1, 0, 1, 0, . . . ,−1, 0, . . . ) and

wT
k = (0, 0, 1, 0,−1, 0, 1, . . . , 0,−1, . . . ),
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∀N N ≤ 4 N ≤ 5 ∀N
(Lemma 4.2) (Lemma 5.1) (Conjecture 2) (Theorem 5.3)

Fig. 5.2. Summary of findings for Catmull–Clark subdivision. Domains G (shaded) and valence
N for which the nodal functions with support on G are linearly independent.

then

det

(
c1,2|c0=uk

c1,3|c0=uk

c1,2|c0=wk
c1,3|c0=wk

)
= λ2

k det

(
1 0
0 1

)
�= 0.

For the eigenvalues of A22, { 1
8 ,

1
8 ,

1
16 ,

1
16 ,

1
32 ,

1
32 ,

1
64}, the eigenfunctions are the

tensor-product power basis functions [17]

{u3, v3, u3v, uv3, u3v2, u2v3, u3v3}

whose pairwise independence is well known.
For the special case N = 3, there is a zero eigenvalue and, as illustrated in

Figure 4.4, the associated eigenfunction has zero values on ∪∞
i=2Ωi. But the remaining

eigenfunctions are linearly independent on ∪∞
i=2Ωi and, if at least one neighbor of the

central node has valence N �= 3, the zero eigenfunction has nonzero values on Ω1.
Since the transformation between the eigenfunctions and nodal functions are in-

vertible, provided the extraordinary node is surrounded by regular nodes, all such
nodal functions are linearly independent and form a basis when the eigenfunctions
do. If the nodal functions were the result of one refinement, then full rank of A11

(unless all relevant nodes have valence N = 3) establishes the main result.
Theorem 5.3. The nodal functions of Catmull–Clark subdivision that have sup-

port on Ω are linearly independent over Ω unless their nodes all have valence N = 3.
The findings are summarized in Figure 5.2.

6. Primal schemes. We now collect the key ideas of the preceding analyses. An
extraordinary node is a control net node of valence different from the “regular” major-
ity. A subdivision scheme is called primal if there exists a sequence of extraordinary
nodes converging towards each extraordinary point. While the typical application of
subdivision creates a parametrized surface in R

3, for the analysis, it is sufficient to
look at one spatial coordinate since the coordinates do not interact.

Near extraordinary points, subdivision surfaces can be understood as an infinite
union of nested surface rings [15]. An extraordinary node is isolated if at least one
surface ring separates it from any other extraordinary node. If the extraordinary node
is isolated, then A := {1, . . . , N} × Ω1, the domain of the first surface ring, is well
defined. We denote by {gi} the nodal functions corresponding to regular nodes that
generate the first subdivision surface ring. For Loop’s subdivision, the gi are three-
direction box-splines. For Catmull–Clark subdivision, they are tensor-product bicubic
B-splines. Denote by A∗ the refinement matrix from the input control net to a control
net with isolated extraordinary node. This may be the identity if all extraordinary
nodes are already isolated. To show that the nodal functions of a subdivision scheme
are (globally) linearly independent, we focus on A.
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Lemma 6.1 (global linear independence). If the functions gi are linearly indepen-
dent and the matrix A∗ is of full rank, then the nodal functions νj of the subdivision
are globally linearly independent.

Proof. By assumption, the nodal functions gi of the once-refined control net are
linearly independent on the union of all local domain rings A. Since A∗ is of full rank
and, as a refinement matrix, its rank is less than the number of gi, the coefficients of
the input control net are zero.

For example, if the functions gi are four-direction box-splines, then the nodal func-
tions are not globally independent since this space of splines has dependent generating
gi [6]. The example of Figure 4.3 underscores the need for the assumption on A∗—a
counting argument shows that typical schemes are not locally linearly independent.

Lemma 6.2 (local dependence for high valence). Let ν0 be the nodal function
associated with an extraordinary node of valence N and ν�, 	 = 1, . . . , N the nodal
functions of its direct neighbor nodes. Denote by xm

i the ith segment of the mth
surface ring and assume that xm

i belongs to a space of fixed finite dimension that is
independent of N . If each νj has support on Ωk ∀ k ≥ k0, then there exists m ∈ Z so
that ν�, 	 = 0, . . . , n are locally linearly dependent on Ωm.

Proof. For sufficiently large valence N , the number of νj with support on the
domain of xm

i exceeds the fixed dimension of the space from which xm
i is drawn.

The assumptions of the lemma hold in particular for symmetric C1 subdivision
schemes derived from box-splines since each xm

i is finitely generated and the νj must
all interact at the extraordinary point to guarantee smoothness and partition of unity.
For such schemes, nodal functions contribute to the whole spline ring xm of high
valence only after a number of subdivision steps k0.

As the example in Figure 4.4 shows, failure of the counting argument for low
valences does not imply that the nodal functions are locally linearly independent. To
establish local linear independence and also to find the m in Lemma 6.2 beyond which
the nodal functions are locally linearly dependent, requires an analysis specific to each
scheme.

To investigate linear independence on the domains Ω, corresponding to control
facets surrounding an extraordinary node, we use eigenfunctions.

Lemma 6.3 (linear independence of eigenfunctions). The eigenfunctions ϕi, i =
1, . . . , k are linearly independent on Ω if the eigenfunctions corresponding to each
eigenvalue, separately, are independent.

Proof. Let λi be sorted by absolute value and λ0 = 1. Suppose there exist scalars
a1, a2, . . . ak, not all zero, such that

∑k
i=1 aiϕi = 0. Let λj be an absolute largest

eigenvalue such that aj �= 0. If λj = 0, then the eigenfunctions to the eigenvalue 0
are dependent contradicting the assumptions. If λj �= 0, then, with wi := −ai/aj , we

can write ϕj =
∑k

i=j+1 wiϕi. and, by the defining property of eigenfunctions, for any
(u, v) ∈ A,

ϕj

( u

2m
,
v

2m

)
=

k∑
i=j+1

wiϕi

( u

2m
,
v

2m

)
⇒ ϕj(u, v) =

k∑
i=j+1

wi

(
λi

λj

)m

ϕi(u, v).

Since the equality has to hold for all m and ( λi

λj
)m goes to zero or repeatedly changes

sign, this implies ϕj =
∑

i:λi=λj
wiϕi. That is, the eigenfunctions associated with the

same eigenvalue λj must be linearly dependent in contradiction to the assumption.
While the, possibly generalized, eigenvectors of an eigenvalue are independent,

checking that the corresponding eigenfunctions are independent requires an analysis
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specific to each scheme.
We can now characterize when the nodal functions νi are linearly independent.
Corollary 6.4. If the refinement matrix A∗ from the input mesh to a mesh

with isolated extraordinary nodes is of full rank and the scheme has only effective and
nonzero eigenvalues and the eigenfunctions corresponding to each eigenvalue, sepa-
rately, are independent, then the nodal functions νi, i = 1 . . .K are linearly indepen-
dent on Ω.

Proof. If the extraordinary node is isolated, then nodal functions and eigenfunc-
tions are related by the invertible matrix V of the generalized eigenvectors of the
Jordan decomposition of the subdivision matrix:

[ϕ1, . . . , ϕk] = V [ν1, . . . , νk].

The general case follows by subdivision and the full rank of A∗.
Corollary 6.4 and Lemma 6.2 characterize the locality of linear independence of

subdivision schemes. On any finite union of Ω�, the nodal functions are linearly
dependent for sufficiently high valence. On the infinite union Ω, the nodal functions
are typically linearly independent provided the underlying regular spline functions gi
are. Subtle exceptions, illustrated by the examples in Figures 4.3 and 4.4, underscore
the need for the assumption on A∗.

7. Summary and related open issues. The characterization of linear inde-
pendence is a vital part of the foundations of generalized subdivision and illuminates
the numerical properties of the nodal functions. It implies a cautionary note for com-
putational use: near vertices of high valence, the nodal functions may not be linearly
independent.

If the nodal functions are linearly independent, hence form a basis, we can ad-
ditionally analyze the condition of the basis. The condition number of a nodal basis
can be defined analogous to the condition of the B-spline basis (see, e.g., [5]). This
concept is not to be confused with the condition number of the subdivision matrix but
quantifies linear independence of the basis. At present, the notion of condition has
not been explored in the context of subdivision surfaces although some implications
are familiar: the poor condition of the Loop nodal basis for low valences explains, for
example, why designers need to strongly exaggerate some features in the Loop control
net.

Acknowledgments. The presentation benefited from the kind suggestions of
the reviewers and the editor.
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DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR
THE WAVE EQUATION∗

MARCUS J. GROTE† , ANNA SCHNEEBELI† , AND DOMINIK SCHÖTZAU‡

Abstract. The symmetric interior penalty discontinuous Galerkin finite element method is
presented for the numerical discretization of the second-order wave equation. The resulting stiffness
matrix is symmetric positive definite, and the mass matrix is essentially diagonal; hence, the method
is inherently parallel and leads to fully explicit time integration when coupled with an explicit time-
stepping scheme. Optimal a priori error bounds are derived in the energy norm and the L2-norm for
the semidiscrete formulation. In particular, the error in the energy norm is shown to converge with
the optimal order O(hmin{s,�}) with respect to the mesh size h, the polynomial degree �, and the
regularity exponent s of the continuous solution. Under additional regularity assumptions, the L2-
error is shown to converge with the optimal order O(h�+1). Numerical results confirm the expected
convergence rates and illustrate the versatility of the method.

Key words. discontinuous Galerkin finite element methods, wave equation, acoustic waves,
second-order hyperbolic problems, a priori error analysis, explicit time integration
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1. Introduction. The numerical solution of the wave equation is of fundamental
importance to the simulation of time dependent acoustic, electromagnetic, or elastic
waves. For such wave phenomena the scalar second-order wave equation often serves
as a model problem. Finite element methods (FEMs) can easily handle inhomoge-
nous media or complex geometry. However, if explicit time-stepping is subsequently
employed, the mass matrix arising from the spatial discretization by standard con-
tinuous finite elements must be inverted at each time step: a major drawback in
terms of efficiency. For low-order Lagrange (P1) elements, so-called mass lumping
overcomes this problem [6, 15], but for higher-order elements this procedure can lead
to unstable schemes unless particular finite elements and quadrature rules are used
[11]. In addition, continuous Galerkin methods impose significant restrictions on the
underlying mesh and discretization; in particular, they do not easily accommodate
hanging nodes.

To avoid these difficulties, we consider instead discontinuous Galerkin (DG) meth-
ods. Based on discontinuous finite element spaces, these methods easily handle el-
ements of various types and shapes, irregular nonmatching grids, and even locally
varying polynomial order; thus, they are ideally suited for hp-adaptivity. Here con-
tinuity is weakly enforced across mesh interfaces by adding suitable bilinear forms,
so-called numerical fluxes, to standard variational formulations. These fluxes are
easily included within an existing conforming finite element code.
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Because individual elements decouple, DGFEMs are also inherently parallel; see
[8, 9, 10, 7] for further details and recent reviews. Moreover, the mass matrix aris-
ing from the spatial DG discretization is block-diagonal, with block size equal to the
number of degrees of freedom per element; it can therefore be inverted at very low
computational cost. In fact, for a judicious choice of (locally orthogonal) shape func-
tions, the mass matrix is diagonal. When combined with explicit time integration,
the resulting time marching scheme will be fully explicit.

The origins of DG methods can be traced back to the 1970s, when they were pro-
posed for the numerical solution of hyperbolic neutron transport equations, as well as
for the weak enforcement of continuity in Galerkin methods for elliptic and parabolic
problems; see Cockburn, Karniadakis, and Shu [8] for a review of the development of
DG methods. When applied to second-order hyperbolic problems, most DG methods
first require the problem to be reformulated as a first-order hyperbolic system, for
which various DG methods are available. In [9], for instance, Cockburn and Shu used
a DGFEM in space combined with a Runge–Kutta scheme in time to discretize hy-
perbolic conservation laws. Hesthaven and Warburton [13] used the same approach to
implement high-order methods for Maxwell’s equations in first-order hyperbolic form.
Space-time DG methods for linear symmetric first-order hyperbolic systems were pre-
sented by Falk and Richter in [12] and later generalized by Monk and Richter in [17]
and by Houston, Jensen, and Süli in [14]. A first DG method for the acoustic wave
equation in its original second-order formulation was recently proposed by Rivière and
Wheeler [21]; it is based on a nonsymmetric interior penalty formulation and requires
additional stabilization terms for optimal convergence in the L2-norm [20].

Here we propose and analyze the symmetric interior penalty DG method for the
spatial discretization of the second-order scalar wave equation. In particular, we
shall derive optimal a priori error bounds in the energy norm and the L2-norm for
the semidiscrete formulation. Besides the well-known advantages of DG methods
mentioned above, a symmetric discretization of the wave equation in its second-order
form offers an additional advantage, which also pertains to the classical continuous
Galerkin formulation: since the stiffness matrix is positive definite, the semidiscrete
formulation conserves (a discrete version of) the energy for all time; thus, it is free
of any (unnecessary) damping. The dispersive properties of the symmetric interior
penalty DG method were recently analyzed by Ainsworth, Monk, and Muniz [1].

The outline of our paper is as follows. In section 2 we describe the setting of
our model problem. Next, we present in section 3 the symmetric interior penalty DG
method for the wave equation. Our two main results, optimal error bounds in the
energy norm and the L2-norm for the semidiscrete scheme, are stated at the beginning
of section 4 and proved subsequently. The analysis relies on an idea suggested by
Arnold et al. [2] together with the approach presented by Perugia and Schötzau in
[18] to extend the DG bilinear forms by suitable lifting operators. In section 5, we
demonstrate the sharpness of our theoretical error estimates by a series of numerical
experiments. By combining our DG method with the second-order Newmark scheme,
we obtain a fully discrete method. To illustrate the versatility of our method, we
also propagate a wave across an inhomogenous medium with discontinuity, where
the underlying finite element mesh contains hanging nodes. Finally, we conclude with
some remarks on possible extensions of our DG method to electromagnetic and elastic
waves.

2. Model problem. We consider the (second-order) scalar wave equation
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utt −∇ · ( c∇u) = f in J × Ω,(2.1)

u = 0 on J × ∂Ω,(2.2)

u|t=0 = u0 in Ω,(2.3)

ut|t=0 = v0 in Ω,(2.4)

where J = (0, T ) is a finite time interval and Ω is a bounded domain in R
d, d = 2, 3.

For simplicity, we assume that Ω is a polygon (d = 2) or a polyhedron (d = 3). The
(known) source term f lies in L2(J ;L2(Ω)), while u0 ∈ H1

0 (Ω) and v0 ∈ L2(Ω) are

prescribed initial conditions. We assume that the speed of propagation,
√
c(x), is

piecewise smooth and satisfies the bounds

0 < c� ≤ c(x) ≤ c� < ∞, x ∈ Ω.(2.5)

The standard variational form of (2.1)–(2.4) is to find u ∈ L2(J ;H1
0 (Ω)), with

ut ∈ L2(J ;L2(Ω)) and utt ∈ L2(J ;H−1(Ω)), such that u|t=0 = u0, ut|t=0 = v0, and

〈utt, v〉 + a(u, v) = (f, v) ∀v ∈ H1
0 (Ω) a.e. in J.(2.6)

Here, the time derivatives are understood in a distributional sense, 〈·, ·〉 denotes the
duality pairing between H−1(Ω) and H1

0 (Ω), (·, ·) is the inner product in L2(Ω), and
a(·, ·) is the elliptic bilinear form given by

a(u, v) = (c∇u,∇v).(2.7)

It is well known that problem (2.6) is well posed [16]. Moreover, the weak solution u
can be shown to be continuous in time; that is,

u ∈ C0(J ;H1
0 (Ω)), ut ∈ C0(J ;L2(Ω));(2.8)

see [16, Chapter III, Theorems 8.1 and 8.2] for details. In particular, this result implies
that the initial conditions in (2.3) and (2.4) are well defined.

3. Discontinuous Galerkin discretization. We shall now discretize the wave
equation (2.1)–(2.4) by using the interior penalty discontinuous Galerkin finite element
method in space, while leaving the time dependence continuous.

3.1. Preliminaries. We consider shape-regular meshes Th that partition the
domain Ω into disjoint elements {K} such that Ω = ∪K∈Th

K. For simplicity, we
assume that the elements are triangles or parallelograms in two space dimensions,
and tetrahedra or parallelepipeds in three dimensions, respectively. The diameter of
element K is denoted by hK , and the mesh size h is given by h = maxK∈Th

hK . We
assume that the partition is aligned with the discontinuities of the wave speed

√
c.

Generally, we allow for irregular meshes with hanging nodes. However, we assume that
the local mesh sizes are of bounded variation; that is, there is a positive constant κ,
depending only on the shape-regularity of the mesh, such that

κhK ≤ hK′ ≤ κ−1hK(3.1)

for all neighboring elements K and K ′.
An interior face of Th is the (nonempty) interior of ∂K+∩∂K−, where K+ and K−

are two adjacent elements of Th. Similarly, a boundary face of Th is the (nonempty)
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interior of ∂K ∩ ∂Ω, which consists of entire faces of ∂K. We denote by FI
h the set of

all interior faces of Th and by FB
h the set of all boundary faces and set Fh = FI

h ∪FB
h .

Here we generically refer to any element of Fh as a “face,” in both two and three
dimensions.

For any piecewise smooth function v we now introduce the following trace oper-
ators. Let F ∈ FI

h be an interior face shared by two neighboring elements K+ and
K− and let x ∈ F ; we write n± to denote the unit outward normal vectors on the
boundaries ∂K±. Denoting by v± the trace of v taken from within K±, we define the
jump and average of v at x ∈ F by

[[v]] := v+n+ + v−n−, {{v}} := (v+ + v−)/2,

respectively. On every boundary face F ∈ FB
h , we set [[v]] := vn and {{v}} := v. Here,

n is the unit outward normal vector on ∂Ω.
For a piecewise smooth vector-valued function q, we analogously define the av-

erage across interior faces by {{q}} := (q+ + q−)/2, and on boundary faces we set
{{q}} := q. The jump of a vector-valued function will not be used. For a vector-valued
function q with continuous normal components across a face f , the trace identity

v+(n+ · q+) + v−(n− · q−) = [[v]] · {{q}} on f

immediately follows from the definitions.

3.2. Discretization in space. For a given partition Th of Ω and an approxi-
mation order � ≥ 1, we wish to approximate the solution u(t, ·) of (2.1)–(2.4) in the
finite element space

V h := {v ∈ L2(Ω) : v|K ∈ S�(K) ∀K ∈ Th},(3.2)

where S�(K) is the space P�(K) of polynomials of total degree at most � on K if K
is a triangle or a tetrahedra, or the space Q�(K) of polynomials of degree at most �
in each variable on K if K is a parallelogram or a parallelepiped.

Then, we consider the following (semidiscrete) DG approximation of (2.1)–(2.4):
find uh : J × V h → R such that

(uh
tt, v) + ah(uh, v) = (f, v) ∀v ∈ V h, t ∈ J,(3.3)

uh|t=0 = Πhu0,(3.4)

uh
t |t=0 = Πhv0.(3.5)

Here, Πh denotes the L2-projection onto V h, and the discrete bilinear form ah on
V h × V h is given by

ah(u, v) :=
∑

K∈Th

∫
K

c∇u · ∇v dx−
∑

F∈Fh

∫
F

[[u]] · {{c∇v}} dA

−
∑

F∈Fh

∫
F

[[v]] · {{c∇u}} dA +
∑

F∈Fh

∫
F

a [[u]] · [[v]] dA.

(3.6)

The last three terms in (3.6) correspond to jump and flux terms at element boundaries;
they vanish when u, v ∈ H1

0 (Ω) ∩H1+σ(Ω) for σ > 1
2 . Hence the above semidiscrete

DG formulation (3.3) is consistent with the original continuous problem (2.6).
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In (3.6) the function a penalizes the jumps of u and v over the faces of Th. It is
referred to as the interior penalty stabilization function and is defined as follows. We
first introduce the function h by

h|F =

{
min{hK , hK′}, F ∈ FI

h , F = ∂K ∩ ∂K ′,

hK , F ∈ FB
h , F = ∂K ∩ ∂Ω.

For x ∈ F , we further define c by

c|F (x) =

{
max{c|K(x), c|K′(x)}, F ∈ FI

h , F = ∂K ∩ ∂K ′,

c|K(x), F ∈ FB
h , F = ∂K ∩ ∂Ω.

Then, on each F ∈ Fh, we set

a|F := α ch−1,(3.7)

where α is a positive parameter independent of the local mesh sizes and the coeffi-
cient c.

To conclude this section we recall the following stability result for the DG form ah.

Lemma 3.1. There exists a threshold value αmin > 0 which depends only on the
shape-regularity of the mesh, the approximation order �, the dimension d, and the
bounds in (2.5), such that for α ≥ αmin

ah(v, v) ≥ Ccoer

( ∑
K∈Th

‖c 1
2∇v‖2

0,K +
∑

F∈Fh

‖a 1
2 [[v]]‖2

0,F

)
, v ∈ V h,

where the constant Ccoer is independent of c and h.

The proof of this lemma follows readily from the arguments in [2]. However, to
make explicit the dependence of αmin on the bounds in (2.5), we present the proof
of a slightly more general stability result in Lemma 4.4 below. Throughout the rest
of the paper we shall assume that α ≥ αmin, so that by Lemma 3.1 the semidiscrete
problem (3.3)–(3.5) has a unique solution.

We remark that the condition α ≥ αmin can be omitted by using other symmetric
DG discretizations of the div-grad operator, such as the local discontinuous Galerkin
(LDG) method; see, e.g., [2] for details. It can also be avoided by using the nonsym-
metric interior penalty method proposed in [20]. However, since the symmetry of ah
is crucial in the analysis below, our error estimates (section 4) do not hold for the
nonsymmetric DG method in [20].

Remark 3.2. Because the bilinear form ah is symmetric and coercive, for α ≥
αmin, the semidiscrete DG formulation (3.3)–(3.5) with f = 0 conserves the (discrete)
energy

Eh(t) :=
1

2
‖uh

t (t)‖2
0 +

1

2
ah(uh(t), uh(t)).

4. A priori error estimates. We shall now derive optimal a priori error bounds
for the DG method (3.3)–(3.5), first with respect to the DG energy norm and then
with respect to the L2-norm. These two key results are stated immediately below,
while their proofs are postponed to subsequent sections.



DISCONTINUOUS GALERKIN FEM FOR THE WAVE EQUATION 2413

4.1. Main results. To state our a priori error bounds, we define the space

V (h) = H1
0 (Ω) + V h.

On V (h), we define the DG energy norm

‖v‖2
h :=

∑
K∈Th

‖c 1
2∇v‖2

0,K +
∑

F∈Fh

‖a 1
2 [[v]]‖2

0,F .

Furthermore, for 1 ≤ p ≤ ∞ we will make use of the Bochner space Lp(J ;V (h)),
endowed with the norm

‖v‖Lp(J;V (h)) =

{( ∫
J
‖v‖ph dt

)1/p
, 1 ≤ p < ∞,

ess supt∈J‖v‖h, p = ∞.

Our first main result establishes an optimal error estimate of the energy norm ‖ · ‖h
of the error. It also gives a bound in the L2(Ω)-norm on the error in the first time
derivative.

Theorem 4.1. Let the analytical solution u of (2.1)–(2.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), ut ∈ L∞(J ;H1+σ(Ω)), utt ∈ L1(J ;Hσ(Ω))

for a regularity exponent σ > 1
2 , and let uh be the semidiscrete discontinuous Galerkin

approximation obtained by (3.3)–(3.5), with α ≥ αmin. Then, the error e = u − uh

satisfies the estimate

‖et‖L∞(J;L2(Ω)) + ‖e‖L∞(J;V (h)) ≤ C
[
‖et(0)‖0 + ‖e(0)‖h

]
+ Chmin{σ,�}

[
‖u‖L∞(J;H1+σ(Ω)) + T‖ut‖L∞(J;H1+σ(Ω)) + ‖utt‖L1(J;Hσ(Ω))

]
,

with a constant C that is independent of T and h.
We remark that the fact that ut ∈ L∞(J ;H1+σ(Ω)) implies that u is continuous

in time on J with values in H1+σ(Ω). Similarly, utt ∈ L1(J ;Hσ(Ω)) implies the
continuity of ut on J with values in Hσ(Ω). In Theorem 4.1 we thus implicitly
assume that the initial conditions satisfy u0 ∈ H1+σ(Ω) and v0 ∈ Hσ(Ω). Hence,
standard approximation properties imply that

‖et(0)‖0 = ‖v0 − Πhv0‖0 ≤ C hmin{σ,�+1}‖v0‖σ,

‖e(0)‖h = ‖u0 − Πhu0‖h ≤ C hmin{σ,�}‖u0‖1+σ;

see also Lemma 4.6 below. As a consequence, Theorem 4.1 yields optimal convergence
in the (DG) energy norm

‖et‖L∞(J;L2(Ω)) + ‖e‖L∞(J;V (h)) ≤ Chmin{σ,�},

with a constant C = C(T ) that is independent of h.
Next, we state an optimal error estimate with respect to the L2-norm (in space).

To do so, we need to assume elliptic regularity; that is, we assume that there is a
stability constant CS such that for any λ ∈ L2(Ω) the solution of the problem

−∇ · (c∇z) = λ in Ω, z = 0 on Γ,(4.1)
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belongs to H2(Ω) and satisfies the stability bound

‖z‖2 ≤ CS‖λ‖0.(4.2)

This condition is certainly satisfied for convex domains and smooth coefficients. Then,
the following L2-error bound holds.

Theorem 4.2. Assume elliptic regularity as in (4.1)–(4.2), and let the analytical
solution u of (2.1)–(2.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), ut ∈ L∞(J ;H1+σ(Ω)), utt ∈ L1(J ;Hσ(Ω))

for a regularity exponent σ > 1
2 . Let uh be the semidiscrete DG approximation ob-

tained by (3.3)–(3.5) with α ≥ αmin. Then, the error e = u−uh satisfies the estimate

‖e‖L∞(J;L2(Ω)) ≤ Chmin{σ,�}+1
[
‖u0‖1+σ + ‖u‖L∞(J;H1+σ(Ω)) + T‖ut‖L∞(J;H1+σ(Ω))

]
,

with a constant C that is independent of T and the mesh size.
For smooth solutions, Theorem 4.2 thus yields optimal convergence rates in the

L2-norm:

‖e‖L∞(J;L2(Ω)) ≤ Ch�+1,

with a constant C that is independent of h.
The rest of this section is devoted to the proofs of Theorems 4.1 and 4.2. We

shall first collect preliminary results in section 4.2. In section 4.3, we present the proof
of Theorem 4.1. Following an argument by Baker [3] for conforming finite element
approximations, we shall then derive the estimate of Theorem 4.2 in section 4.4.

4.2. Preliminaries.

Extension of the DG form ah. The DG form ah in (3.6) does not extend in
a standard way to a continuous form on the (larger) space V (h) × V (h). Indeed the
average {{c∇v}} on a face F ∈ Fh is not well defined in general for v ∈ H1(Ω). To
circumvent this difficulty, we shall extend the form ah in a nonstandard and noncon-
sistent way to the space V (h) × V (h) by using the lifting operators from [2] and the

approach in [18]. Thus, for v ∈ V (h) we define the lifted function, Lc(v) ∈
(
V h

)d
,

d = 2, 3, by requiring that∫
Ω

Lc(v) · w dx =
∑

F∈Fh

∫
F

[[v]] · {{cw}} dA, w ∈
(
V h

)d
,

where c is the material coefficient from (2.1). We shall now show that the lifting
operator Lc is stable in the DG norm; see [18] for a similar result for the LDG
method.

Lemma 4.3. There exists a constant Cinv which depends only on the shape-
regularity of the mesh, the approximation order �, and the dimension d such that

‖Lc(v)‖2
0 ≤ α−1c� C2

inv

∑
F∈Fh

‖a 1
2 [[v]]‖2

0,F

for any v ∈ V (h).
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Moreover, if the speed of propagation c
1
2 is piecewise constant, with discontinuities

aligned with the finite element mesh Th, then

‖c− 1
2Lc(v)‖2

0 ≤ α−1C2
inv

∑
F∈Fh

‖a 1
2 [[v]]‖2

0,F .

Proof. We have

‖Lc(v)‖0 = max
w∈(V h)d

∑
F∈Fh

∫
F

[[v]] · {{cw}} dA
‖w‖0

≤ max
w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2
(∑

F∈Fh

∫
F
a−1|{{cw}}|2 dA

) 1
2

‖w‖0

≤ α− 1
2 max

w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2
(∑

F∈Fh

∫
F
hc−1|{{cw}}|2 dA

) 1
2

‖w‖0

≤ α− 1
2 (c�)

1
2 max

w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2
(∑

K∈Th
hK

∫
∂K

|w|2 dA
) 1

2

‖w‖0
.

Here, we have used the Cauchy–Schwarz inequality, the definition of a in (3.7), and
the upper bound for c in (2.5). We recall the inverse inequality

‖w‖2
0,∂K ≤ C2

invh
−1
K ‖w‖2

0,K , w ∈
(
S�(K)

)d
,(4.3)

with a constant Cinv that depends only on the shape-regularity of the mesh, the
approximation order �, and the dimension d. Using this bound, we obtain( ∑

K∈Th

hK

∫
∂K

|w|2 dA
) 1

2

≤ Cinv‖w‖0,

which shows the first statement.
With c

1
2 piecewise constant, we have c−

1
2 z ∈

(
V h

)d
for all z ∈

(
V h

)d
. Hence, we

obtain as before

‖c− 1
2Lc(v)‖0 = max

w∈(V h)d

∑
F∈Fh

∫
F

[[v]] · {{c 1
2 w}} dA

‖w‖0

≤ α−1C2
inv

∑
F∈Fh

‖a 1
2 [[v]]‖2

0,F ,

which completes the proof.
Next, we introduce the auxiliary bilinear form

ãh(u, v) :=
∑

K∈Th

∫
K

c∇u · ∇v dx−
∑

K∈Th

∫
K

Lc(u) · ∇v dx

−
∑

K∈Th

∫
K

Lc(v) · ∇u dx +
∑

F∈Fh

∫
F

a [[u]] · [[v]] dA.

(4.4)

The following result establishes that ãh is continuous and coercive on the entire space
V (h) × V (h); hence it is well defined. Furthermore, since

ãh = ah on V h × V h, ãh = a on H1
0 (Ω) ×H1

0 (Ω),(4.5)
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the form ãh can be viewed as an extension of the two forms ah and a to the space
V (h) × V (h).

Lemma 4.4. Let the interior penalty parameter a be defined as in (3.7), and set

αmin = 4 c−1
� c� C2

inv

for a general piecewise smooth c, and

αmin = 4C2
inv

for a piecewise constant c, with discontinuities aligned with the finite element mesh
Th. Cinv is the constant from Lemma 4.3.

Setting Ccont = 2 and Ccoer = 1/2, we have for α ≥ αmin

|ãh(u, v)| ≤ Ccont‖u‖h‖v‖h, u, v ∈ V (h),

ãh(u, u) ≥ Ccoer‖u‖2
h, u ∈ V (h).

In particular, the coercivity bound implies the result in Lemma 3.1.
Proof. By taking into account the bounds in (2.5) and Lemma 4.3, application of

the Cauchy–Schwarz inequality readily gives in the general case

|ãh(u, v)| ≤ max{2, α−1c−1
� c� C2

inv + 1}‖u‖h‖v‖h.

For α ≥ αmin, the continuity of ãh immediately follows. The case of piecewise constant
c follows analogously.

To show the coercivity of the form ãh, we note that

ãh(u, u) =
∑

K∈Th

‖c 1
2∇u‖2

0,K − 2
∑

K∈Th

∫
K

Lc(u) · ∇u dx +
∑

F∈Fh

‖a 1
2 [[u]]‖2

0,F .

By using the weighted Cauchy–Schwarz inequality, the geometric-arithmetic inequal-

ity ab ≤ εa2

2 + b2

2ε , valid for any ε > 0, the bounds in (2.5), and the stability bound
for the lifting operator in Lemma 4.3, we obtain for general c

2
∑

K∈Th

∫
K

Lc(u) · ∇u dx = 2
∑

K∈Th

∫
K

c−
1
2Lc(u) · c 1

2∇u dx

≤ 2
∑

K∈Th

‖c− 1
2Lc(u)‖0,K‖c 1

2∇u‖0,K

≤ ε
∑

K∈Th

‖c 1
2∇u‖2

0,K + ε−1c−1
�

∑
K∈Th

‖Lc(u)‖2
0,K

≤ ε
∑

K∈Th

‖c 1
2∇u‖2

0,K + ε−1α−1c−1
� c� C2

inv

∑
F∈Fh

‖a 1
2 [[u]]‖2

0,F

for a parameter ε > 0 still at our disposal. We conclude that

ãh(u, u) ≥ (1 − ε)
∑

K∈Th

‖c 1
2∇u‖2

0,K +
(
1 − ε−1α−1c−1

� c� C2
inv

) ∑
F∈Fh

‖a 1
2 [[u]]‖2

0,F .

For ε = 1
2 and α ≥ αmin, we obtain the desired coercivity bound.

For a piecewise constant c we use the bound for ‖c− 1
2Lc(u)‖2

0 from Lemma 4.4
and proceed analogously.
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Error equation. Because ãh coincides with ah on V h × V h, the semidiscrete
scheme in (3.3)–(3.5) is equivalent to the following:

Find uh : J × V h → R such that uh|t=0 = Πhu0, u
h
t |t=0 = Πhv0, and

(uh
tt, v) + ãh(uh, v) = (f, v) ∀v ∈ V h.(4.6)

We shall use the formulation in (4.6) as the basis of our error analysis.
To derive an error equation, we first define for u ∈ H1+σ(Ω) with σ > 1/2

rh(u; v) =
∑

F∈Fh

∫
F

[[v]] · {{c∇u− cΠh(∇u)}} dA, v ∈ V (h).(4.7)

Here Πh denotes the L2-projection onto (V h)d. The assumption u ∈ H1+σ(Ω) ensures
that rh(u; v) is well defined. From the definition in (4.7) it is immediate that rh(u; v) =
0 when v ∈ H1

0 (Ω).
Lemma 4.5. Let the analytical solution u of (2.1)–(2.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), utt ∈ L1(J ;L2(Ω)).

Let uh be the semidiscrete DG approximation obtained by (4.6). Then, the error e =
u− uh satisfies

(ett, v) + ãh(e, v) = rh(u; v) ∀v ∈ V h a.e. in J,

with rh(u; v) given in (4.7).
Proof. Let v ∈ V h. Since utt ∈ L1(J ;L2(Ω)), we have 〈utt, v〉 = (utt, v) almost

everywhere in J . Hence, using the discrete formulation in (3.3)–(3.5), we obtain that

(ett, v) + ãh(e, v) = (utt, v) + ãh(u, v) − (f, v) a.e. in J.

Now, by definition of ãh, the fact that Lc(u) = 0 and that [[u]] = 0 on all faces,
the defining properties of the L2-projection Πh, and the definition of the lifted ele-
ment Lc(v), we obtain

ãh(u, v) =
∑

K∈Th

∫
K

c∇u · ∇v dx−
∑

F∈Fh

∫
F

[[v]] · {{cΠh(∇u)}} dA.

Since utt ∈ L1(J ;L2(Ω)) and f ∈ L2(J ;L2(Ω)), we have that ∇ · (c∇u) ∈ L2(Ω)
almost everywhere in J , which implies that c∇u has continuous normal components
across all interior faces. Therefore, elementwise integration by parts combined with
the trace operators defined in section 3.1 yields

ãh(u, v) = −
∑

K∈Th

∫
K

∇ · (c∇u) v dx +
∑

F∈Fh

∫
F

[[v]] · {{c∇u}} dA

−
∑

F∈Fh

∫
F

[[v]] · {{cΠh(∇u)}} dA.

From the definition of rh(u, v) in (4.7), we therefore conclude that

(utt, v) + ãh(u, v) = (utt −∇ · (c∇u), v) + rh(u; v)

and obtain

(ett, v) + ãh(e, v) = (utt −∇ · (c∇u) − f, v) + rh(u; v) = rh(u; v),

where we have used the differential equation (2.1).
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Approximation properties. Let Πh and Πh denote the L2-projections onto V h

and (V h)d, respectively. We recall the following approximation properties; see [6].
Lemma 4.6. Let K ∈ Th. Then the following hold:
(i) For v ∈ Ht(K), t ≥ 0, we have

‖v − Πhv‖0,K ≤ Ch
min{t,�+1}
K ‖v‖t,K ,

with a constant C that is independent of the local mesh size hK and depends
only on the shape-regularity of the mesh, the approximation order �, the di-
mension d, and the regularity exponent t.

(ii) For v ∈ H1+σ(K), σ > 1
2 , we have

‖∇v −∇(Πhv)‖0,K ≤ Ch
min{σ,�}
K ‖v‖1+σ,K ,

‖v − Πhv‖0,∂K ≤ Ch
min{σ,�}+ 1

2

K ‖v‖1+σ,K ,

‖∇v − Πh(∇v)‖0,∂K ≤ Ch
min{σ,�+1}− 1

2

K ‖v‖1+σ,K ,

with a constant C that is independent of the local mesh size hK and depends
only on the shape-regularity of the mesh, the approximation order �, the di-
mension d, and the regularity exponent σ.

As a consequence of the approximation properties in Lemma 4.6, we obtain the
following results.

Lemma 4.7. Let u ∈ H1+σ(Ω), σ > 1
2 . Then the following hold:

(i) We have

‖u− Πhu‖h ≤ CAh
min{σ,�}‖u‖1+σ,

with a constant CA that is independent of the mesh size and depends only
on α, the constant κ in (3.1), the bounds in (2.5), and the constants in
Lemma 4.6.

(ii) For v ∈ V (h), the form rh(u; v) in (4.7) can be bounded by

|rh(u; v)| ≤ CRh
min{σ,�}

( ∑
F∈Fh

‖a 1
2 [[v]]‖2

0,F

) 1
2

‖u‖1+σ,

with a constant CR independent of h, which depends only on α, the bounds
in (2.5), and the constants in Lemma 4.6.

Proof. The estimate in (i) is an immediate consequence of Lemma 4.6, the defi-
nition of a, and the bounded variation property (3.1). To show the bound in (ii), we
apply the Cauchy–Schwarz inequality and obtain

|rh(u; v)| ≤
( ∑

F∈Fh

∫
F

a[[v]]2 ds

) 1
2
( ∑

F∈Fh

∫
F

a−1|{{c∇u− cΠh(∇u)}}|2 ds
) 1

2

≤ α− 1
2 c

− 1
2

� c�

( ∑
F∈Fh

‖a 1
2 [[v]]‖2

0,F

) 1
2
( ∑

K∈Th

hK‖∇u− Πh(∇u)‖2
0,∂K

) 1
2

.

Applying the approximation properties in Lemma 4.6 completes the proof.
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4.3. Proof of Theorem 4.1. We are now ready to complete the proof of The-
orem 4.1. We begin by proving the following auxiliary result.

Lemma 4.8. Let the analytical solution u of (2.1)–(2.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), ut ∈ L∞(J ;H1+σ(Ω))

for σ > 1
2 . Let v ∈ C0(J ;V (h)) and vt ∈ L1(J ;V (h)). Then we have∫

J

|rh(u; vt)| dt ≤ CR hmin{σ,�} ‖v‖L∞(J;V (h))

·
[
2 ‖u‖L∞(J;H1+σ(Ω)) + T ‖ut‖L∞(J;H1+σ(Ω))

]
,

where CR is the constant from the bound (ii) in Lemma 4.7.
Proof. From the definition of rh in (4.7) and integration by parts, we obtain∫

J

rh(u; vt) dt =

∫
J

∑
F∈Fh

∫
F

[[vt]] · {{c∇u− cΠh(∇u)}} dAdt

= −
∫
J

∑
F∈Fh

∫
F

[[v]] · {{c∇ut − cΠh(∇ut)}} dAdt

+

[ ∑
F∈Fh

∫
F

[[v]] · {{c∇u− cΠh(∇u)}} dA
]t=T

t=0

= −
∫
J

rh(ut; v) dt +
[
rh(u; v)

]t=T

t=0
.

Lemma 4.7 then implies the two estimates∣∣∣∣
∫
J

rh(ut; v) dt

∣∣∣∣ ≤ CRh
min{σ,�} T ‖v‖L∞(J;V (h))‖ut‖L∞(J;H1+σ(Ω))

and ∣∣∣∣[rh(u; v)
]t=T

t=0

∣∣∣∣ ≤ 2CRh
min{σ,�}‖v‖L∞(J;V (h))‖u‖L∞(J;H1+σ(Ω)),

which concludes the proof of the lemma.
To complete the proof of Theorem 4.1, we now set e = u− uh and recall that Πh

is the L2-projection onto V h. Because of (2.8), we have

e ∈ C0(J ;V (h)) ∩ C1(J ;L2(Ω)).

Next, we use the symmetry of ãh and the error equation in Lemma 4.5 to obtain

1

2

d

dt

[
‖et‖2

0 + ãh(e, e)
]

= (ett, et) + ãh(e, et)

= (ett, (u− Πhu)t) + ãh(e, (u− Πhu)t)

+ rh(u; (Πhu− uh)t).

(4.8)

We fix s ∈ J and integrate (4.8) over the time interval (0, s). This yields

1

2
‖et(s)‖2

0 +
1

2
ãh(e(s), e(s)) =

1

2
‖et(0)‖2

0 +
1

2
ãh(e(0), e(0))

+

∫ s

0

(ett, (u− Πhu)t) dt +

∫ s

0

ãh(e, (u− Πhu)t) dt

+

∫ s

0

rh(u; (Πhu− uh)t) dt.
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Integration by parts of the third term on the right-hand side yields∫ s

0

(ett, (u− Πhu)t) dt = −
∫ s

0

(et, (u− Πhu)tt) dt +
[
(et, (u− Πhu)t)

]t=s

t=0
.

From the stability properties of ãh in Lemma 4.4 and standard Hölder’s inequalities,
we conclude that

1

2
‖et(s)‖2

0 +
1

2
Ccoer‖e(s)‖2

h ≤ 1

2
‖et(0)‖2

0 +
1

2
Ccont‖e(0)‖2

h

+ ‖et‖L∞(J;L2(Ω))

(
‖(u− Πhu)tt‖L1(J;L2(Ω)) + 2‖(u− Πhu)t‖L∞(J;L2(Ω))

)
+ CcontT‖e‖L∞(J;V (h)) ‖(u− Πhu)t‖L∞(J;V (h))

+

∣∣∣∣
∫
J

rh(u; (Πhu− uh)t) dt

∣∣∣∣ .
Since this inequality holds for any s ∈ J , it also holds for the maximum over J , that
is

‖et‖2
L∞(J;L2(Ω)) + Ccoer‖e‖2

L∞(J;V (h)) ≤ ‖et(0)‖2
0 + Ccont‖e(0)‖2

h + T1 + T2 + T3,

with

T1 = 2‖et‖L∞(J;L2(Ω))

(
‖(u− Πhu)tt‖L1(J;L2(Ω)) + 2‖(u− Πhu)t‖L∞(J;L2(Ω))

)
,

T2 = 2CcontT‖e‖L∞(J;V (h)) ‖(u− Πhu)t‖L∞(J;V (h)),

T3 = 2

∣∣∣∣
∫
J

rh(u; (Πhu− uh)t) dt

∣∣∣∣ .
Using the geometric-arithmetic mean inequality |ab| ≤ 1

2εa
2+ ε

2b
2, valid for any ε > 0,

and the approximation results in Lemma 4.6, we conclude that

T1 ≤ 1

2
‖et‖2

L∞(J;L2(Ω)) + 2
(
‖(u− Πhu)tt‖L1(J;L2(Ω)) + 2‖(u− Πhu)t‖L∞(J;L2(Ω))

)2

≤ 1

2
‖et‖2

L∞(J;L2(Ω)) + 4‖(u− Πhu)tt‖2
L1(J;L2(Ω)) + 16‖(u− Πhu)t‖2

L∞(J;L2(Ω)),

≤ 1

2
‖et‖2

L∞(J;L2(Ω)) + Ch2 min{σ,�}
(
‖utt‖2

L1(J;Hσ(Ω)) + h2 ‖ut‖2
L∞(J;H1+σ(Ω))

)
,

with a constant C that depends only on the constants in Lemma 4.6. Similarly,

T2 ≤ 1

4
Ccoer‖e‖2

L∞(J;V (h)) + 4
C2

cont

Ccoer
T 2‖(u− Πhu)t‖2

L∞(J;V (h))

≤ 1

4
Ccoer‖e‖2

L∞(J;V (h)) + T 2Ch2 min{σ,�}‖ut‖2
L∞(J;H1+σ(Ω)),

where the constant C depends on Ccoer, Ccont, and the constant CA in Lemma 4.7.
It remains to bound the term T3. To do so, we use Lemma 4.8 to obtain

T3 ≤ 2CRRhmin{σ,�}‖Πhu− uh‖L∞(J;V (h)),

with

R :=
[
2‖u‖L∞(J;H1+σ(Ω)) + T‖ut‖L∞(J;H1+σ(Ω))

]
.
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The triangle inequality, the geometric-arithmetic mean, and the approximation prop-
erties of Πh in Lemma 4.7 then yield

T3 ≤ 2CRRhmin{σ,�}
[
‖e‖L∞(J;V (h)) + ‖u− Πhu‖L∞(J;V (h))

]
≤ 1

4
Ccoer‖e‖2

L∞(J;V (h)) + Ch2 min{σ,�}
[
‖u‖2

L∞(J;H1+σ(Ω)) + R2
]
,

with a constant C that depends only on Ccoer, CR, and CA. Combining the above
estimates for T1, T2, and T3 then shows that

1

2
‖et‖2

L∞(J;L2(Ω)) +
1

2
Ccoer‖e‖2

L∞(J;V (h)) ≤ ‖et(0)‖2
0 + Ccont‖e(0)‖2

h

+ Ch2 min{σ,�}[‖utt‖2
L1(J;Hσ(Ω)) + T 2‖ut‖2

L∞(J;H1+σ(Ω)) + ‖u‖2
L∞(J;H1+σ(Ω))

]
,

with a constant that is independent of T and the mesh size. This concludes the proof
of Theorem 4.1.

4.4. Proof of Theorem 4.2. To prove the error estimate in Theorem 4.2, we
first establish the following variant of [3, Lemma 2.1].

Lemma 4.9. For u ∈ H1+σ(Ω) with σ > 1
2 , let wh ∈ V h be the solution of

ãh(wh, v) = ãh(u, v) − rh(u; v) ∀v ∈ V h.

Then, we have

‖u− wh‖h ≤ CE hmin{σ,�}‖u‖1+σ,

with a constant CE that is independent of h and depends only on Ccoer, Ccont in
Lemma 4.4 and CA, CR in Lemma 4.7.

Moreover, if the elliptic regularity defined in (4.1) and (4.2) holds, we have the
L2-bound

‖u− wh‖0 ≤ CL hmin{σ,�}+1‖u‖1+σ,

with a constant CL that is independent of h and depends only on the stability constant
CS in (4.2); Ccoer, Ccont in Lemma 4.4; and CA, CR in Lemma 4.7.

Proof. We first remark that the approximation wh is well defined because of the
stability properties in Lemma 4.4 and the estimates in Lemma 4.7. To prove the
estimate for ‖u− wh‖h, we first use the triangle inequality,

‖u− wh‖h ≤ ‖u− Πhu‖h + ‖Πhu− wh‖h.(4.9)

From the approximation properties of Πh in Lemma 4.7, we immediately infer that

‖u− Πhu‖h ≤ CAh
min{σ,�}‖u‖1+σ.

It remains to bound ‖Πhu − wh‖h. From the coercivity and continuity of ãh in
Lemma 4.4, the definition of wh, and the bound in Lemma 4.7, we conclude that

Ccoer‖Πhu− wh‖2
h ≤ ãh(Πhu− wh,Πhu− wh)

= ãh(Πhu− u,Πhu− wh) + ãh(u− wh,Πhu− wh)

= ãh(Πhu− u,Πhu− wh) + rh(u; Πhu− wh)

≤ Ccont‖Πhu− u‖h‖Πhu− wh‖h + CRh
min{σ,�}‖u‖1+σ‖Πhu− wh‖h.
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Thus,

‖Πhu− wh‖h ≤
(
CcontCA + CR

Ccoer

)
hmin{σ,�}‖u‖1+σ,

which proves the bound for ‖u− wh‖h.
We shall now prove the L2-bound. To do so, let z ∈ H1

0 (Ω) be the solution of

−∇ · (c∇z) = u− wh in Ω, z = 0 on Γ.(4.10)

Then, the elliptic regularity assumption in (4.1) and (4.2) implies that

z ∈ H2(Ω), ‖z‖2 ≤ CS‖u− wh‖0.(4.11)

Next, we multiply (4.10) by u − wh and integrate the resulting expression by parts.
Since c∇z has continuous normal components across all interior faces, we have

‖u− wh‖2
0 =

∑
K∈Th

[ ∫
K

c∇z · ∇(u− wh) dx−
∫
∂K

c∇z · nK(u− wh) dA

]

=
∑

K∈Th

∫
K

c∇z · ∇(u− wh) dx−
∑

F∈Fh

∫
F

{{c∇z}} · [[u− wh]] dA,

with nK denoting the unit outward normal on ∂K. By definition of ãh and rh, we
immediately find that

‖u− wh‖2
0 = ãh(z, u− wh) − rh(z;u− wh).

From the symmetry of ãh, the definition of wh, and the fact that [[z]] = 0 on all faces,
we conclude that

‖u− wh‖2
0 = ãh(u− wh, z − Πhz) − rh(u; z − Πhz) − rh(z;u− wh)

=: T1 + T2 + T3.
(4.12)

We shall now derive upper bounds for each individual term T1, T2, and T3 in (4.12).
To estimate the term T1, we use the continuity of ãh, the approximation result in

Lemma 4.7 with σ = 1, and the bound in (4.11). Thus,

T1 ≤ Ccont‖u− wh‖h‖z − Πhz‖h
≤ CcontCAh‖u− wh‖h‖z‖2

≤ CcontCACSh‖u− wh‖h‖u− wh‖0.

By using Lemma 4.7 and the stability bound in (4.11), we can estimate T2 by

T2 ≤ CRh
min{σ,�}‖z − Πhz‖h‖u‖1+σ

≤ CRCAh
min{σ,�}+1‖z‖2‖u‖1+σ

≤ CRCACSh
min{σ,�}+1‖u− wh‖0‖u‖1+σ.

Similarly,

T3 ≤ CRh‖z‖2‖u− wh‖h ≤ CRCSh‖u− wh‖0‖u− wh‖h.
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The use of these bounds for T1, T2, and T3 in (4.12) then leads to

‖u− wh‖0 ≤ Ch‖u− wh‖h + Chmin{σ,�}+1‖u‖1+σ,

which completes the proof of the lemma, since ‖u−wh‖h ≤ Chmin{σ,�}‖u‖1+σ.
Now, let u be defined by the exact solution of (2.1)–(2.4). We may define wh(t, ·) ∈

V h almost everywhere in J by

ãh(wh(t, ·), v) = ãh(u(t, ·), v) − rh(u(t, ·); v) ∀v ∈ V h.(4.13)

If u ∈ L∞(J ;H1+σ(Ω)), it can be readily seen that wh ∈ L∞(J ;V (h)). Moreover, if
we also have ut ∈ L∞(J ;H1+σ(Ω)), then wh

t ∈ L∞(J ;V (h)) and

ãh(wh
t , v) = ãh(ut, v) − rh(ut; v), v ∈ V h a.e. in J,

as well as

ãh(wh(0), v) = ãh(u0, v) − rh(u0; v), v ∈ V h.

Therefore Lemma 4.9 immediately implies the following estimates.
Lemma 4.10. Let wh be defined by (4.13). Under the regularity assumptions of

Theorem 4.2, we have

‖(u− wh)t‖L∞(J;V (h)) ≤ CE hmin{σ,�}‖ut‖L∞(J;H1+σ(Ω)),

‖(u− wh)(0)‖h ≤ CE hmin{σ,�}‖u0‖1+σ.

Moreover, if elliptic regularity as defined in (4.1) and (4.2) holds, we have the L2-
bounds

‖(u− wh)t‖L∞(J;L2(Ω)) ≤ CL hmin{σ,�}+1‖ut‖L∞(J;H1+σ(Ω)),

‖(u− wh)(0)‖0 ≤ CL hmin{σ,�}+1‖u0‖1+σ.

The constants CE and CL are as in Lemma 4.9.
To complete the proof of Theorem 4.2, let wh ∈ L∞(J ;V (h)) be defined by (4.13)

and consider

‖e‖2
L∞(J;L2(Ω)) ≤ 2‖u− wh‖2

L∞(J;L2(Ω)) + 2‖wh − uh‖2
L∞(J;L2(Ω)).(4.14)

The first term can be estimated from the L2-bounds in Lemma 4.9. We shall now
derive an estimate for the second term. First, we fix v ∈ L∞(J ;V h) and assume
that vt ∈ L∞(J ;V h). From the definition of wh in (4.13) and the error equation in
Lemma 4.5, we have

((uh − wh)tt, v) + ãh(uh − wh, v) = (uh
tt, v) + ãh(uh, v) − ãh(wh, v) − (wh

tt, v)

= (uh
tt, v) + ãh(uh − u, v) + rh(u; v) − (wh

tt, v)

= (utt, v) − (wh
tt, v).

We rewrite this identity as

d

dt
((uh−wh)t, v)−((uh−wh)t, vt)+ ãh(uh−wh, v) =

d

dt
((u−wh)t, v)−((u−wh)t, vt),
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which yields

−((uh − wh)t, vt) + ãh(uh − wh, v) =
d

dt
((u− uh)t, v) − ((u− wh)t, vt).(4.15)

Let τ ∈ (0, T ] be fixed, and consider the function

v̂(t, ·) =

∫ τ

t

(uh − wh)(s, ·) ds, t ∈ J.

Note that

v̂(τ, ·) = 0, v̂t(t, ·) = −(uh − wh)(t, ·) a.e. t ∈ J.

Next, choose v = v̂ in (4.15) which yields

((uh − wh)t, u
h − wh) − ãh(v̂t, v̂) =

d

dt
((u− uh)t, v̂) + ((u− wh)t, u

h − wh).

Since the DG form ãh(·, ·) is symmetric, we obtain

1

2

d

dt
‖uh − wh‖2

0 −
1

2

d

dt
ãh(v̂, v̂) =

d

dt
((u− uh)t, v̂) + ((u− wh)t, u

h − wh).

Integration over (0, τ) and using that v̂(τ, ·) = 0 then yield

‖(uh − wh)(τ)‖2
0 − ‖(uh − wh)(0)‖2

0 + ãh(v̂(0), v̂(0))

= −2((u− uh)t(0), v̂(0)) + 2

∫ τ

0

((u− wh)t, u
h − wh) dt.

(4.16)

Since ut(0) = v0, u
h
t (0) = Πhv0, and v̂(0) belongs to V h, we conclude that

((u− uh)t(0), v̂(0)) = (v0 − Πhv0, v̂(0)) = 0.

Hence, the first term on the right-hand side of (4.16) vanishes. Moreover, the coer-
civity of the form ãh in Lemma 4.4 ensures that ãh(v̂(0), v̂(0)) ≥ 0. This leads to the
inequality

‖(uh − wh)(τ)‖2
0 ≤ ‖(uh − wh)(0)‖2

0 + 2

∫ τ

0

‖(u− wh)t‖0‖uh − wh‖0 dt.(4.17)

By using the Cauchy–Schwarz inequality and the geometric-arithmetic mean inequal-
ity, we obtain

2

∫ τ

0

‖(u− wh)t‖0‖uh − wh‖0 dt ≤ 2T ‖(u− wh)t‖L∞(J;L2(Ω))‖uh − wh‖L∞(J;L2(Ω))

≤ 1

2
‖uh − wh‖2

L∞(J;L2(Ω)) + 2T 2 ‖(u− wh)t‖2
L∞(J;L2(Ω)).

Because this upper bound is independent of τ , it also holds for the supremum over
τ ∈ J , which yields the estimate

1

2
‖uh − wh‖2

L∞(J;L2(Ω)) ≤ ‖(uh − wh)(0)‖2
0 + 2T 2‖(u− wh)t‖2

L∞(J;L2(Ω))

≤ 2 ‖(uh − u)(0)‖2
0 + 2‖(u− wh)(0)‖2

0 + 2T 2‖(u− wh)t‖2
L∞(J;L2(Ω)).
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Next, we use this estimate in (4.14) to obtain

‖e‖2
L∞(J;L2(Ω)) ≤ 2‖u− wh‖2

L∞(J;L2(Ω))

+ 8 ‖u0 − Πhu0‖2
0 + 8‖u0 − wh(0)‖2

0 + 8T 2‖(u− wh)t‖2
L∞(J;L2(Ω)).

From the L2-approximation properties in Lemma 4.6, Lemma 4.9, and Lemma 4.10,
we finally conclude that

‖e‖2
L∞(J;L2(Ω)) ≤ h2 min{σ,�}+2

[
max{8C, 8C2

L}‖u0‖2
1+σ

+ 2C2
L‖u‖2

L∞(J;H1+σ(Ω)) + 8CLT
2‖ut‖2

L∞(J;H1+σ(Ω))

]
.

Here, C is the constant from Lemma 4.6. This completes the proof of Theorem 4.2.

5. Numerical results. We shall now present a series of numerical experiments
which verify the sharpness of the theoretical error bounds stated in Theorems 4.1
and 4.2. Furthermore, we shall demonstrate the robustness and flexibility of our DG
method by propagating a pulse through an inhomogeneous medium with discontinuity
on a finite element mesh with hanging nodes.

To obtain a fully discrete discretization of the wave equation, we choose to aug-
ment our DG spatial discretization with the second-order Newmark scheme in time;
see, e.g., [19, sections 8.5–8.7]. The resulting scheme has been implemented using the
general purpose finite element library deal.II,1 which provides powerful C++ classes
to handle the finite element mesh and the degrees of freedom, and to solve the linear
system of equations; see [5, 4]. In all our examples, the DG stabilization parameter
is set to α = 20.

5.1. Time discretization. The discretization of (2.1)–(2.4) in space by the DG
method (3.3)–(3.5) leads to the linear second-order system of ordinary differential
equations

Müh(t) + Auh(t) = fh(t), t ∈ J,(5.1)

with initial conditions

Muh(0) = uh
0 , Mu̇h(0) = vh

0 .(5.2)

Here, M denotes the mass matrix and A the stiffness matrix. To discretize (5.1) in
time, we employ the Newmark time-stepping scheme; see, e.g., [19]. We let k denote
the time step and set tn = n · k. Then the Newmark method consists in finding
approximations {uh

n}n to uh(tn) such that

(M + k2βA)uh
1 =

[
M − k2

(
1

2
− β

)
A

]
uh

0 + kMvh
0 + k2

[
βfh1 +

(
1

2
− β

)
fh0

](5.3)

and

(M + k2βA)uh
n+1 =

[
2M − k2

(
1

2
− 2β + γ

)
A

]
uh
n −

[
M + k2

(
1

2
+ β − γ

)
A

]
uh
n−1

+ k2

[
βfhn+1 +

(
1

2
− 2β + γ

)
fn +

(
1

2
+ β − γ

)
fn−1

]
(5.4)

1See www.dealii.org.
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for n = 1, . . . , N − 1. Here, fn := f(tn), while β ≥ 0 and γ ≥ 1/2 are free parameters
that still can be chosen. We recall that for γ = 1/2 the Newmark scheme is second-
order accurate in time, whereas it is only first-order accurate for γ > 1/2. For β = 0,
the Newmark scheme (5.3)–(5.4) requires at each time step the solution of a linear
system with the mass matrix M. However, because individual elements decouple,
M is block-diagonal with a block size equal to the number of degrees of freedom
per element. It can be inverted at very low computational cost, and the scheme is
essentially fully explicit. In fact, if the basis functions are chosen mutually orthogonal,
M reduces to the identity; see [8] and the references therein. Then, with γ = 1/2, the
explicit Newmark method corresponds to the standard leap-frog scheme.

For β > 0, the resulting scheme is implicit and involves the solution of a linear
system with the symmetric positive definite stiffness matrix A at each time step. We
finally note that the second-order Newmark scheme with γ = 1/2 is unconditionally
stable for β ≥ 1/4, whereas for 1/4 > β ≥ 0 the time step k has to be restricted by a
CFL condition. In the case β = 0, that condition is k2λmax(A) ≤ 4(1− ε), ε ∈ (0, 1),
where λmax(A) is the maximal eigenvalue of the DG stiffness matrix A (which is of
the order O(h−2) and also depends on α).

In all our tests, we will employ the explicit second-order Newmark scheme, setting
γ = 1/2 and β = 0 in (5.3)–(5.4).

5.2. Example 1: Smooth solution. First, we consider the two-dimensional
wave equation (2.1)–(2.4) in J × Ω = (0, 1) × (0, 1)2, with c ≡ 1 and data f, u0, and
v0 chosen such that the analytical solution is given by

u(x1, x2, t) = t2 sin(πx1) sin(πx2).(5.5)

This solution is arbitrarily smooth so that all our theoretical regularity assumptions
are satisfied. We discretize this problem using the polynomial spaces Q�(K), � =
1, 2, 3, on a sequence {Th}i≥1 of square meshes of size hi = 2−i. With increasing
polynomial degree � and decreasing mesh size hi, smaller time steps ki are necessary
to ensure stability. We found that the choice ki = hi/20 provides a stable time
discretization on every mesh. Because our numerical scheme is second-order accurate
in time, the time integration of (5.5) is exact so that the spatial error is the only error
component in the discrete solution.

In Figure 5.1 we show the relative errors at time T = 1 in the energy norm and
in the L2-norm, as we decrease the mesh size hi. The numerical results corroborate
with the expected theoretical rates of O(h�) for the energy norm and of O(h�+1) for
the L2-norm; see Theorems 4.1 and 4.2.

Next, we modify the data so that the analytical solution u is given by

u(x1, x2, t) = sin(t2) sin(πx1) sin(πx2).(5.6)

Although u remains arbitrarily smooth, it is no longer integrated exactly in time by
(5.3)–(5.4). Since the Newmark scheme is only second-order accurate, we repeat the
above experiment only for the lowest order spatial discretization, � = 1. Again, we
set ki = hi/20. In Figure 5.2, the relative errors for the fully discrete approximation
of (5.6) show convergence rates of order h in the energy norm and order h2 in the
L2-norm, thereby confirming the theoretical estimates of Theorems 4.1 and 4.2.

5.3. Example 2: Singular solution. Here, we consider the two-dimensional
wave equation (2.1)–(2.4) on the L-shaped domain Ω = (−1, 1)2\[0, 1)2. We set c = 1
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Fig. 5.1. Example 1: Convergence of the error at time T = 1 in the energy norm and the
L2-norm for � = 1, 2, 3.
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Fig. 5.2. Example 1: Convergence of the error at time T = 1 in the energy norm and the
L2-norm for � = 1.

everywhere and choose the data f, u0, and v0 such that the analytical solution u is
given by

u(r, φ, t) = t2 r2/3 sin(2/3φ)(5.7)

in polar coordinates (r, φ). Although u is smooth in time (and can even be inte-
grated exactly in time), it has a spatial singularity at the origin, such that u ∈
C∞(J ;H5/3(Ω)). Hence, this example is well suited to establishing the sharpness of
the regularity assumptions in our theoretical results. Since u is inhomogeneous at
the boundary of Ω, we need to impose inhomogeneous Dirichlet conditions within our
DG discretization. We do so in straightforward fashion by modifying the semidiscrete
formulation as follows: find uh(t, ·) : J → V h such that

(uh
tt, v) + ah(uh, v) = (f, v) +

∑
F∈FB

h

∫
F

g (av − c∇v · n) dA.(5.8)

Here, g is the boundary data and n is the outward unit normal vector on ∂Ω.

We discretize (5.8) by using bilinear polynomials (� = 1) on the same sequence of
meshes as before. Again, we set ki = hi/20 and integrate the problem up to T = 1.
For the analytical solution u in (5.7), the regularity assumptions in Theorem 4.1 hold
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Table 5.1

Example 2: Relative errors at time T = 1 in the energy norm and L2-norm, and corresponding
numerical convergence rates.

i Cells Energy-error L2-error
1 12 1.11e-01 - 1.61e-02 -
2 48 7.18e-02 0.62 5.96e-03 1.43
3 192 4.61e-02 0.64 2.27e-03 1.40
4 768 2.94e-02 0.65 8.72e-04 1.38
5 3072 1.87e-02 0.66 3.38e-04 1.37
6 12288 1.18e-02 0.66 1.32e-04 1.36

with σ = 2/3. Thus, Theorem 4.1 predicts numerical convergence rates of 2/3 in the
energy norm, as confirmed by our numerical results in Table 5.1.

As the elliptic regularity assumptions (4.1)–(4.2) from Theorem 4.2 are violated,
we do not expect L2-error rates of the order 1+σ for this problem. Indeed, in Table 5.1
we observe convergence rates close to 4/3. To explain this behavior, let us consider
the following weaker elliptic regularity assumption: for any λ ∈ L2(Ω) we assume that
the solution of the problem

−∇ · (c∇z) = λ in Ω, z = 0 on ∂Ω,(5.9)

belongs to H1+s(Ω) for a parameter s ∈ (1/2, 1] and satisfies the stability bound

‖z‖1+s ≤ CS‖λ‖0(5.10)

for a stability constant CS . The results from Lemmas 4.9 and 4.10 can be easily
adapted to this case. As a consequence, the L2-bound for e = u−uh from Theorem 4.2
can then be generalized to this weaker setting as

‖e‖L∞(J;L2(Ω)) ≤ Chmin{σ,�}+s
[
‖u0‖1+σ

+ ‖u‖L∞(J;H1+σ(Ω)) + T‖ut‖L∞(J;H1+σ(Ω))

]
.

For the L-shaped domain Ω and c ≡ 1, the (weaker) regularity assumption in (5.9)–
(5.10) holds with s = 2/3, which underpins the rate σ+s = 4/3 observed in Table 5.1.

5.4. Example 3: Inhomogeneous medium. Finally, we consider (2.1)–(2.4)
on the rectangular domain Ω = (−1, 2)×(−1, 1), with homogeneous initial and bound-
ary conditions and the piecewise constant material coefficient

c(x1, x2) =

{
0.1, x1 ≤ 0,
1, else.

The wave is locally excited until t = 0.2 by the source term

f(x1, x2, t) =

{
1, 0.2 < x1 < 0.4 and t < 0.2,
0, else.

We discretize the problem by the DG method (3.3)–(3.5) on a fixed mesh Th
that consists of nonmatching components, which are adapted to the discontinuity c;
see Figure 5.3. The mesh Th is composed of 9312 nonuniform squares, where the
smallest local mesh size is given by hmin ≈ 0.016. The hanging nodes are naturally
incorporated in the DG method without any difficulty. Here, the time step k = 0.002,
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Fig. 5.3. Example 3: Domain Ω with a finite element mesh Th adapted to the values of the
piecewise constant wave speed

√
c = 0.1 (left),

√
c = 1 (right).

Fig. 5.4. Example 3: The approximate DG solutions uh
n shown at times tn = 0.2, 0.6, 1.8, 4

display the behavior of a wave propagating through an inhomogeneous medium with homogeneous
Dirichlet boundary.

that is, k ≈ hmin/8, proved to be sufficiently small to ensure the stability of the
explicit Newmark method (β = 0).

In Figure 5.4, the numerical solution is shown after n = 100, 300, 900, and 2000
time steps. The initial pulse splits into two planar wave fronts propagating in opposite
directions to either side of the domain. After n = 300 time steps, the left-moving wave
hits the much slower medium in the region x1 ≤ 0, resulting in a much steeper and
narrower wave front. Meanwhile, the right-moving wave rapidly reaches the boundary
at x1 = 2, where it is reflected and eventually enters the slow medium, too. The
discontinuous interface at x1 = 0 generates multiple reflections, which interact with
each other at later times.
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6. Conclusion. We have presented and analyzed the symmetric interior penalty
discontinuous Galerkin finite element method (DGFEM) for the numerical solution
of the (second-order) scalar wave equation. Taking advantage of the symmetry of the
method, we have carried out an a priori error analysis of the semidiscrete method and
derived optimal error bounds in the energy norm and, under additional regularity
assumptions, optimal error bounds in the L2-norm. Our numerical results confirm
the expected convergence rates and demonstrate the versatility of the method. The
error analysis of the fully discrete scheme is the subject of ongoing work.

Based on discontinuous finite element spaces, the proposed DG method easily
handles elements of various types and shapes, irregular nonmatching grids, and even
locally varying polynomial order. As continuity is only weakly enforced across mesh
interfaces, domain decomposition techniques immediately apply. Since the resulting
mass matrix is essentially diagonal, the method is inherently parallel and leads to
fully explicit time integration schemes. Moreover, as the stiffness matrix is symmetric
positive definite, the DG method shares the following two important properties with
the classical continuous Galerkin approach. First, the semidiscrete formulation con-
serves (a discrete version of) the energy for all time and therefore is nondissipative.
Second, if implicit time integration is used to overcome CFL constraints, the resulting
linear system to be solved at each time step will also be symmetric positive definite.

The symmetric interior penalty DGFEM, applied here to the scalar wave equation,
can also be utilized for other second-order hyperbolic equations, such as in electro-
magnetics or elasticity. In fact, our error analysis for the semidiscrete (scalar) case
readily extends to the second-order (vector) wave equation for time dependent elastic
waves. The same DG approach also extends to Maxwell’s equations in second-order
form:

εutt + σut + ∇× (μ−1 ∇× u) = f , σ ≥ 0.

Here, DG discretizations with standard discontinuous piecewise polynomials indeed
offer an alternative to edge elements, as typically used in conforming discretizations
of Maxwell’s equations. The corresponding error analysis, however, is more involved
and will be reported elsewhere in the near future.
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Abstract. The purpose of this paper is to extend the balancing domain decomposition by con-
straints (BDDC) algorithm to saddle-point problems that arise when mixed finite element methods
are used to approximate the system of incompressible Stokes equations. The BDDC algorithms are
iterative substructuring methods which form a class of domain decomposition methods based on the
decomposition of the domain of the differential equations into nonoverlapping subdomains. They
are defined in terms of a set of primal continuity constraints which are enforced across the interface
between the subdomains and which provide a coarse space component of the preconditioner. Sets
of such constraints are identified for which bounds on the rate of convergence can be established
that are just as strong as previously known bounds for the elliptic case. In fact, the preconditioned
operator is effectively positive definite, which makes the use of a conjugate gradient method possible.
A close connection is also established between the BDDC and dual-primal finite element tearing and
interconnecting (FETI-DP) algorithms for the Stokes case.
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1. Introduction. The balancing domain decomposition by constraints (BDDC)
algorithms are domain decomposition methods based on nonoverlapping subdomains
into which the domain of a given partial differential equation has been divided. In-
troduced by Dohrmann [4] and analyzed in the elliptic case by Dohrmann, Mandel,
and Tezaur [30, 31], these methods represent an important advance over the bal-
ancing Neumann–Neumann methods that have been used extensively in the past to
solve large finite element problems; cf. [37, section 6.2] where references to earlier
work can also be found. Just as the classical balancing methods have much in com-
mon with the original one-level finite element tearing and interconnecting (FETI)
methods, BDDC is closely related to the more recent dual-primal FETI (FETI-DP)
methods. Each BDDC and FETI-DP method is defined in terms of a set of primal
continuity constraints across the interface Γ formed by the parts of the subdomain
boundaries which are common to at least two subdomains. In addition to, or instead
of, point constraints, it is important to make certain averages over edges or faces of
the interface the same. In some applications, we also should have certain first order
moments, over edges, with common values; see [23, 18] for a discussion of such fully
primal edges for three-dimensional elasticity.

In an important contribution to the theory, Mandel, Dohrmann, and Tezaur [31]
established that the preconditioned operators of a pair of BDDC and FETI-DP algo-
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rithms, with the same primal constraints, have the same nonzero eigenvalues, except
possibly for an eigenvalue equal to 1. We note that this fact was first observed
experimentally by Fragakis and Papadrakakis [11] for pairs of balancing Neumann–
Neumann and one-level FETI methods; these authors also discussed primal iterative
substructuring methods which are close counterparts to various FETI algorithms. An
important consequence of the results in [11, 31] is that these algorithms, which can be
built from the same set of subprograms, have very similar performance. The choice
of algorithm can therefore be based on other considerations. We believe that it is
easier to introduce inexact subdomain and coarse level problem solvers in the BDDC
algorithms than in FETI-DP algorithms; cf. [7, 16, 28, 38, 41].

In a recent paper [29], the authors rederived the BDDC and FETI-DP algorithms
for elliptic problems and also gave a short proof of the main result in [31]. A key to
these simplifications is a change of variables so that, e.g., a primal constraint on the
average over an interface edge or face is represented by a single primal variable in the
new coordinate system. Simultaneously, a complementary set of dual displacement
variables is introduced, for each of which the edge or face averages vanish; an illustra-
tive example of how the change of variables can be carried out is given in [29]. This
leads to a clear separation of the different sets of variables, and the description and
analysis of the algorithm are simplified considerably. This approach has also been the
basis for a successful and highly accurate implementation of FETI-DP algorithms; cf.
[23, 17, 18, 16].

Brenner and Sung [3] have also recently established that any such common eigen-
value of the FETI-DP and BDDC algorithms, not equal to 0 or 1, has the same mul-
tiplicity. In addition, they give an example for which the eigenvalues of the FETI-DP
operator all exceed 1 while the BDDC operator has an eigenvalue equal to 1.

In this paper, a BDDC algorithm is developed for mixed finite element approxi-
mations of the incompressible Stokes equations in a way very similar to [29]. If the
set of primal constraints on the velocity across the interface satisfies a certain as-
sumption, we are then able to show that the preconditioned saddle-point problem is
positive definite when restricted to the subspace that satisfies the primal constraints
and that the iterates stay in this subspace. We are then able to use a preconditioned
conjugate gradient method and we can, if an additional assumption is satisfied, also
prove as strong a bound on the convergence rate as for the standard elliptic case.

We note that the new algorithm has much in common with relatively recent exten-
sions of the classical balancing Neumann–Neumann method to the Stokes equations
and almost incompressible elasticity by Pavarino, Goldfeld, and the second author
(see [33, 13, 12]), and extensions of the FETI-DP methods developed by the first
author in [25, 26, 27]. We note that, in our experience, all these methods converge
quite rapidly. Just as in our earlier work, we will work with benign subspaces, i.e.,
subspaces of the mixed finite element spaces on which the saddle-point problem is
positive definite. (We note that the same space of functions is called balanced in [37,
section 9.4.2].) We are also able to prove that any two BDDC and FETI-DP methods,
with the same set of primal constraints and which satisfy our first assumption, have
the same set of nonzero eigenvalues with the possible exception of 1; this is the same
result as given in [31, 29, 3] for the elliptic case.

We note that Dohrmann [5, 6] has recently developed and tested a BDDC method
for the related problem of almost incompressible elasticity. We will comment further
on his work in section 7. Results for FETI-DP are given by Klawonn, Rheinbach,
and Wohlmuth [20]. Recent results on BDDC algorithms for flow in porous media,
discretized by mixed finite element methods, are given by Tu [42, 39, 40]. The BDDC
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algorithms have also been extended to mortar finite element methods by Kim, Dryja,
and the second author [15]. For older references to domain decomposition algorithms
for mixed finite element approximations, see [37, Chapter 9].

In addition to deriving and analyzing the algorithms, we also report on some
numerical experiments in the final section.

2. Discretization of a saddle-point problem. Let us consider the incom-
pressible Stokes problem on a bounded, polyhedral domain Ω, in two or three dimen-
sions. We denote the boundary of the domain by ∂Ω; for simplicity a homogeneous
Dirichlet boundary condition is enforced. (Generally, in order for a divergence free
extension of the boundary values to exist, the integral of the normal component of the
velocity over the boundary of the region must vanish.) The weak solution satisfies the
following saddle-point problem: find u ∈ (H1

0 (Ω))d = {v ∈ (H1(Ω))d | v = 0 on ∂Ω},
d = 2 or 3, and p ∈ L2

0(Ω) = {q ∈ L2(Ω) |
∫
Ω
q = 0} such that{

a(u,v) + b(v, p) = (f ,v) ∀v ∈
(
H1

0 (Ω)
)d

,

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,

(1)

where b(u, q) = −
∫
Ω
(∇ ·u)q, and a(u,v) =

∫
Ω
∇u : ∇v, or a(u,v) = 2

∫
Ω
ε(u) : ε(v).

Here the strain tensor ε(u) is defined by εij(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, and

∇u : ∇v =
d∑

i,j=1

∂ui

∂xj

∂vi
∂xj

and ε(u) : ε(v) =

d∑
i,j=1

εij(u)εij(v).

The operator form of the Stokes problem with Dirichlet boundary conditions is the
same for either choice of the bilinear form a(·, ·), but we will adopt the second, which
gives rise to a natural boundary condition of the form

2
d∑

j=1

εijnj − pni = gi on ∂Ω, i = 1, . . . , d.(2)

This is the normal component of the stress field. We note that this approach is
consistent with the derivation of a physically relevant interface condition in Batchelor’s
book [1] and also with the discussion in Quarteroni and Valli [35, section 5.3]. There
is the further advantage that we will develop a theory which is equally valid for almost
incompressible elasticity and that we can draw very directly on some recent results on
compressible elasticity by Klawonn and the second author [23]. The following lemma
(see [21, Lemma 4], [12, Lemma 1.3], and [23, Lemma 6.4]) shows the equivalence
between the chosen bilinear form and that of H1. Essentially, it is a variant of Korn’s
second inequality; here ‖ε(u)‖2

L2(Ω) =
∫
Ω
ε(u) : ε(u).

Lemma 2.1. There exists a constant c > 0 such that

c‖∇u‖L2(Ω) ≤ ‖ε(u)‖L2(Ω) ≤ ‖∇u‖L2(Ω) ∀u ∈ (H1(Ω))d, u ⊥ ker(ε),

where ker(ε) is the space of rigid body motions of the elasticity problem.
In our mixed finite element methods for solving the saddle-point problem (1),

the velocity space (or the space of displacements for the elasticity problems) will be

denoted by Ŵ. It consists of vector-valued, low order piecewise polynomial functions
which are continuous across element boundaries. The pressure space Q ⊂ L2

0(Ω)
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will consist of scalar, discontinuous, piecewise polynomial functions. A characteristic
diameter of the elements of the underlying triangulation is denoted by h. The finite
element approximation (u, p) of the variational problem (1) satisfies[

A BT

B 0

] [
u
p

]
=

[
f
0

]
,(3)

where the matrices A and B represent the restrictions of the bilinear forms a(·, ·)
and b(·, ·) to the finite-dimensional space Ŵ ×Q. (We will use the same notation for
vectors of nodal values and the corresponding finite element functions.)

We will always assume that the chosen mixed finite element space Ŵ × Q is
inf-sup stable, i.e., that there exists a positive constant β, independent of h, such that

sup
w∈Ŵ

b(w, q)

‖w‖H1

≥ β‖q‖L2 ∀q ∈ Q.(4)

We note that we will only need this estimate for the subdomains, which we will intro-
duce in the next section. This assumption will guarantee that the local subdomain
problems, as well as the global one, are well posed.

3. Reduced subdomain interface problem. The domain Ω is decomposed
into N nonoverlapping polyhedral subdomains Ωi, i = 1, 2, . . . , N , of characteristic
diameter H. We assume that each of them is a union of a number of shape-regular
tetrahedra (or triangles), that there is a uniform bound on these numbers, and that the
faces of the subdomains are all convex. The nodes on the boundaries of neighboring
subdomains match across the interface Γ = (∪∂Ωi)\∂Ω. The interface of an individual
subdomain Ωi is defined by Γi = ∂Ωi ∩ Γ. We will denote the set of nodes on Γi

by Γi,h, etc. We assume, as is customary in domain decomposition theory, that the
triangulation of each subdomain is quasi-uniform. Our algorithms are also well defined
for more irregular subdomains such as those that result from a mesh partitioner, but
our theory does not fully cover such cases. The requirements on the subdomains in
our full theory are discussed systematically in [37, section 4.2].

We decompose the discrete velocity and pressure spaces Ŵ and Q into

Ŵ = WI

⊕
ŴΓ, Q = QI

⊕
Q0.(5)

WI and QI are products of subdomain interior velocity spaces W
(i)
I and subdomain

interior pressure spaces Q
(i)
I , respectively; i.e.,

WI =

N∏
i=1

W
(i)
I , QI =

N∏
i=1

Q
(i)
I .

The elements of W
(i)
I are supported in the subdomain Ωi and vanish on its interface

Γi, while the elements of Q
(i)
I are restrictions of elements in Q to Ωi which satisfy∫

Ωi
q
(i)
I = 0. ŴΓ is the space of traces on Γ of functions in Ŵ and Q0 is the

subspace of Q with constant values q
(i)
0 in the subdomain Ωi that satisfy

∫
Ω
q0dx =∑N

i=1 q
(i)
0 m(Ωi) = 0, where m(Ωi) is the measure of the subdomain Ωi.

We denote the space of interface velocity variables of the subdomain Ωi by W
(i)
Γ ,

and the associated product space by WΓ =
∏N

i=1 W
(i)
Γ ; generally functions in WΓ are
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discontinuous across the interface. R
(i)
Γ is the restriction operator which maps func-

tions in the continuous interface velocity space ŴΓ to their subdomain components

in the space W
(i)
Γ . The direct sum of the R

(i)
Γ is denoted by RΓ.

With this decomposition of the solution space as in (5), the global saddle-point

problem (3) can be written as follows: find (uI , pI ,uΓ, p0) ∈ (WI , QI ,ŴΓ, Q0) such
that ⎡

⎢⎢⎢⎢⎣
AII BT

II ÂT
ΓI 0

BII 0 B̂IΓ 0

ÂΓI B̂T
IΓ ÂΓΓ B̂T

0Γ

0 0 B̂0Γ 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

uI

pI

uΓ

p0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

fI

0

fΓ

0

⎤
⎥⎥⎥⎦ .(6)

The leading two-by-two block of this matrix can, by a symmetric permutation, be
made into a block diagonal matrix with blocks corresponding to independent subdo-
main problems. The lower left block in (6) is zero since the bilinear form b(vI , q0)
always vanishes for any vI ∈ WI and q0 ∈ Q0. The blocks related to the continu-
ous interface velocity are assembled from the corresponding subdomain submatrices,

e.g., ÂΓΓ =
∑N

i=1 R
(i)T

Γ A
(i)
ΓΓR

(i)
Γ , B̂0Γ =

∑N
i=1 B

(i)
0ΓR

(i)
Γ . Correspondingly, the right-

hand-side vector fI consists of subdomain vectors f
(i)
I , and fΓ is assembled from the

subdomain components f
(i)
Γ . We denote the spaces of right-hand-side vectors fI and

fΓ by FI and FΓ, respectively; we will also use F̃Γ, F̂Γ, F̂Π, F
(i)
Δ , and F0 to represent

different spaces of right-hand-side vectors in this paper without providing much detail.
Eliminating the independent subdomain interior variables (uI , pI) from the global

problem (6), we have the global interface problem[
ŜΓ B̂T

0Γ

B̂0Γ 0

] [
uΓ

p0

]
=

[
gΓ

0

]
,(7)

where the right-hand-side vector gΓ is given by

gΓ =

N∑
i=1

R
(i)T

Γ

⎧⎨
⎩f

(i)
Γ −

[
A

(i)
ΓI B

(i)T

IΓ

] [ A
(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
f
(i)
I

0

]⎫⎬
⎭ .

ŜΓ is assembled from subdomain Stokes–Schur complements S
(i)
Γ , which are defined

by the following: given w
(i)
Γ ∈ W

(i)
Γ , determine S

(i)
Γ w

(i)
Γ ∈ F

(i)
Γ such that⎡

⎢⎢⎣
A

(i)
II B

(i)T

II A
(i)T

ΓI

B
(i)
II 0 B

(i)
IΓ

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ

⎤
⎥⎥⎦
⎡
⎢⎣ w

(i)
I

p
(i)
I

w
(i)
Γ

⎤
⎥⎦ =

⎡
⎢⎣ 0

0

S
(i)
Γ w

(i)
Γ

⎤
⎥⎦ .(8)

The leading two-by-two block of (8) corresponds to a Dirichlet problem on the subdo-
main Ωi and it is always nonsingular; this is a direct consequence of the assumption of

inf-sup stability. We see from (8) that the action of S
(i)
Γ on a vector can be evaluated

at a cost of solving a Dirichlet problem on Ωi and a few matrix-vector multiplies. We

denote the direct sum of the S
(i)
Γ by SΓ. Then ŜΓ is given by

ŜΓ = RT
ΓSΓRΓ =

N∑
i=1

R
(i)T

Γ S
(i)
Γ R

(i)
Γ .(9)
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We denote the operator of the interface problem (7) by Ŝ. Since Ŝ is symmetric
and indefinite, we could use the minimal residual method, possibly with a positive
definite block preconditioner, as in [37, section 9.2], to solve problem (7). We will
instead propose a different type of preconditioner and show that the preconditioned
operator is positive definite, provided that a suitable set of primal constraints are
chosen; cf. Assumption 1. A preconditioned conjugate gradient method can then be
used.

4. A BDDC preconditioner for Stokes equations. When using a BDDC
or FETI-DP method, we relax most, but not all, of the continuity constraints on the
velocity across the interface; we will always retain sufficiently many primal continuity
constraints to assure that we will never encounter a need for solving any singular linear
systems of algebraic equations. In a BDDC algorithm, full continuity is restored, at
the end of each iteration step, by using an averaging operator, while in a FETI-DP
algorithm, continuity will not be fully satisfied until the algorithm has converged.
The primal constraints should also be chosen so that the rate of convergence of the
iterative method is enhanced.

For our purposes, we introduce a partially assembled interface velocity space W̃Γ:

W̃Γ = ŴΠ

⊕
WΔ = ŴΠ

⊕(
N∏
i=1

W
(i)
Δ

)
.

Here, ŴΠ is the continuous, coarse level, primal interface velocity space which is
typically spanned by subdomain vertex nodal basis functions, and/or by interface edge
and/or face basis functions with constant values, or with values of positive weight
functions, on these edges or faces. These basis functions correspond to the primal
interface velocity continuity constraints, which will be discussed in section 7. We will
always assume that the basis has been changed so that each primal basis function
corresponds to an explicit degree of freedom. In other words, we will have explicit
primal unknowns corresponding to the primal continuity constraints on edges or faces
as indicated in section 1, and further described in [29], [23, section 4], and [17]. The
primal, coarse level degrees of freedom are shared by neighboring subdomains. The
complementary space WΔ is the product of the subdomain dual interface velocity

spaces W
(i)
Δ , which correspond to the remaining interface velocity degrees of freedom

and are spanned by basis functions which vanish at the primal degrees of freedom.
Thus, an element in the space W̃Γ has a continuous primal velocity component and
typically a discontinuous dual velocity component.

We need to introduce several restriction, extension, and scaling operators between

a variety of spaces. As in section 3, R
(i)
Γ is the restriction operator which maps a

function in the space ŴΓ to its component in W
(i)
Γ . We define R

(i)
Δ as the operator

which maps functions in the space ŴΓ to its dual component in the space W
(i)
Δ . RΓΠ

is the restriction operator from the space ŴΓ to its subspace ŴΠ; R
(i)
Π is the operator

which maps ŴΠ into its Γi-component. R̃Γ is the direct sum of RΓΠ and the R
(i)
Δ ,

and it is a map from ŴΓ into W̃Γ.
In order to define certain scaling operators, which will be used in the definition of

the BDDC preconditioner, we introduce a positive scaling factor δ†i (x) for the nodes
x on the interface Γi of each subdomain Ωi. For the incompressible Stokes problems,
with Ix the set of indices of the subdomains which have x on their boundaries, we will
only need to use inverse counting functions defined by δ†i (x) = 1/card(Ix), x ∈ Γi,h,
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where card(Ix) is the number of the subdomain boundaries to which x belongs. It

is then easy to see that
∑

j∈Ix
δ†j (x) = 1 for any x ∈ Γi,h. Given the scaling factors

at the subdomain interface nodes, we can define scaled restriction operators R
(i)
D,Δ.

We first note that each row of R
(i)
Δ has only one nonzero entry, which corresponds to

a node x ∈ Γi,h. Multiplying each such element with the scaling factor δ†i (x) gives

us R
(i)
D,Δ. The scaled operator R̃D,Γ is the direct sum of RΓΠ and the R

(i)
D,Δ. (For

elasticity problems, these scaling factors should depend on the first Lamé constant μ,
which can be allowed to change across the interface between neighboring subdomains;
see [37, section 8.5.1] and [23].)

The interface velocity Schur complement S̃Γ is defined on the partially assembled

interface velocity space W̃Γ by the following: given wΓ ∈ W̃Γ, S̃ΓwΓ ∈ F̃Γ satisfies⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1)
II B

(1)T

II A
(1)T

ΔI Ã
(1)T

ΠI

B
(1)
II 0 B

(1)
IΔ B̃

(1)
IΠ

A
(1)
ΔI B

(1)T

IΔ A
(1)
ΔΔ Ã

(1)T

ΠΔ

. . .
...

Ã
(1)
ΠI B̃

(1)T

IΠ Ã
(1)
ΠΔ . . . ÃΠΠ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
I

p
(1)
I

w
(1)
Δ

...

wΠ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

(S̃ΓwΓ)
(1)
Δ

...

(S̃ΓwΓ)Π

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.(10)

Here ÃΠΠ =
∑N

i=1 R
(i)T

Π A
(i)
ΠΠR

(i)
Π , Ã

(i)
ΠI = R

(i)T

Π A
(i)
ΠI , Ã

(i)
ΠΔ = R

(i)T

Π A
(i)
ΠΔ, and B̃

(i)
IΠ =

B
(i)
IΠR

(i)
Π .

From the definition of S̃Γ, we see that it can be obtained from the subdomain

Schur complements S
(i)
Γ by assembling only with respect to the primal interface ve-

locity part, i.e., as

S̃Γ = R
T

ΓSΓRΓ.(11)

Here RΓ is the restriction from the space W̃Γ into the product space WΓ associated
with the set of subdomains. We recall that the global interface Schur operator ŜΓ

is obtained by fully assembling the S
(i)
Γ across the subdomain interface; cf. (9). ŜΓ

can therefore also be obtained from S̃Γ by further assembling with respect to the
dual interface velocity part; i.e., we have ŜΓ = R̃T

Γ S̃ΓR̃Γ. Correspondingly, we define

an operator B̃0Γ, which maps the partially assembled interface velocity space W̃Γ

into F0, the space of right-hand sides corresponding to Q0. B̃0Γ is obtained from the

subdomain operators B
(i)
0Γ by assembling with respect to the primal interface velocity

part. The operator B̂0Γ can then be obtained from B̃0Γ by assembling with respect

to the dual interface velocity part on the subdomain interfaces, i.e., B̂0Γ = B̃0ΓR̃Γ.
We can then write Ŝ, the operator of the global interface problem (7), as

Ŝ =

[
ŜΓ B̂T

0Γ

B̂0Γ 0

]
=

[
R̃T

Γ S̃ΓR̃Γ R̃T
Γ B̃

T
0Γ

B̃0ΓR̃Γ 0

]
= R̃T S̃R̃,(12)

where we use the notation

R̃ =

[
R̃Γ

I

]
, S̃ =

[
S̃Γ B̃T

0Γ

B̃0Γ 0

]
.(13)
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The preconditioner for solving the global interface saddle-point problem (7) is

M−1 = R̃T
DS̃−1R̃D.(14)

Here R̃D is of the same form as R̃ in (13), except that R̃Γ is replaced by the scaled

operator R̃D,Γ. It is easy to see that R̃D,Γ is of full rank and that the preconditioner

is nonsingular. To determine S̃−1g for any given g = (gΓ, g0) ∈ F̃Γ × F0, we need to
solve the linear system [

S̃Γ B̃T
0Γ

B̃0Γ 0

] [
uΓ

p0

]
=

[
gΓ

g0

]
.(15)

Given the definition of S̃Γ in (10), we know that solving (15) is equivalent to solving⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1)
II B

(1)T

II A
(1)T

ΔI Ã
(1)T

ΠI

B
(1)
II 0 B

(1)
IΔ B̃

(1)
IΠ

A
(1)
ΔI B

(1)T

IΔ A
(1)
ΔΔ Ã

(1)T

ΠΔ B
(1)T

0Δ

. . .
...

Ã
(1)
ΠI B̃

(1)T

IΠ Ã
(1)
ΠΔ . . . ÃΠΠ B̃T

0Π

B
(1)
0Δ B̃0Π

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(1)
I

p
(1)
I

u
(1)
Δ

...

uΠ

p0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

g
(1)
Δ

...

gΠ

g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(16)

where B̃0Π =
∑N

i=1 B
(i)
0ΠR

(i)
Π . As in [29], a block factorization can be used to solve (16).

The leading diagonal subdomain matrix blocks are eliminated to form a coarse level
Schur complement problem for (uΠ, p0). After solving the coarse level problem, the

subdomain variables (u
(i)
I , p

(i)
I ,u

(i)
Δ ) are computed by solving independent subdomain

problems.

5. Benign subspaces and quotient spaces. The subdomain Schur comple-

ments S
(i)
Γ are symmetric, positive semidefinite. This is a consequence of a well-known

result on the inertia of Schur complements. We know, e.g., that the number of negative
eigenvalues of a symmetric, two-by-two block matrix equals the sum of the number of
negative eigenvalues of the leading block and those of the Schur complement formed
by eliminating the variables of the leading block. Thus, we have the following lemma.

Lemma 5.1. The subdomain Schur complements S
(i)
Γ , defined in (8), are sym-

metric, positive semidefinite, and singular for any subdomain with a boundary that
does not intersect ∂Ω.

The S
(i)
Γ - and SΓ-seminorms are defined by |w(i)

Γ |2
S

(i)
Γ

=w
(i)T

Γ S
(i)
Γ w

(i)
Γ and |wΓ|2SΓ

=

wT
ΓSΓwΓ =

∑N
i=1 |w

(i)
Γ |2

S
(i)
Γ

. The | · |E(Γi)-seminorm is defined on the space W
(i)
Γ by

|w(i)
Γ |E(Γi) = inf

v(i)∈(H1(Ωi))
d

v(i)|Γi
=w

(i)
Γ

‖ε(v(i))‖L2(Ωi),

and a seminorm on WΓ by |wΓ|2E(Γ) =
∑N

i=1 |w
(i)
Γ |2E(Γi)

.

The following lemma shows the equivalence of the | · |SΓ- and | · |E(Γ)-seminorms.
It can be found essentially in Bramble and Pasciak [2, Theorem 4.1], or Pavarino and
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Widlund [33, Lemma 3.1], for incompressible Stokes problems. This same result is
also valid for the incompressible elasticity problem and with the underlying bilinear
form a(·, ·) given in terms of the strain tensor; cf. Lemma 2.1 and [23].

Lemma 5.2. There exists a positive constant c, which is independent of H and
h, such that

cβ2|w(i)
Γ |2

S
(i)
Γ

≤ |w(i)
Γ |2E(Γi)

≤ |w(i)
Γ |2

S
(i)
Γ

∀w(i)
Γ ∈ W

(i)
Γ ,

where β is the inf-sup stability constant defined in (4).

The operators ŜΓ and S̃Γ, given in (9) and (11), are both symmetric, positive
definite because of the Dirichlet boundary conditions on ∂Ω and the fact that suffi-
ciently many primal continuity constraints are always chosen. We can then define the
ŜΓ- and S̃Γ-norms on the spaces ŴΓ and W̃Γ, respectively, by

‖wΓ‖2
ŜΓ

= wT
ΓR

T
ΓSΓRΓwΓ = |RΓwΓ|2SΓ

∀wΓ ∈ ŴΓ,(17)

‖wΓ‖2
S̃Γ

= wT
ΓR

T

ΓSΓRΓwΓ = |RΓwΓ|2SΓ
∀wΓ ∈ W̃Γ.(18)

Two subspaces of ŴΓ and W̃Γ are defined as follows.
Definition 1.

ŴΓ,B = {wΓ ∈ ŴΓ | B̂0ΓwΓ = 0} and W̃Γ,B = {wΓ ∈ W̃Γ | B̃0ΓwΓ = 0}.

We will call ŴΓ,B × Q0 and W̃Γ,B × Q0 the benign subspaces of ŴΓ × Q0 and

W̃Γ × Q0, respectively. The interface problem operator Ŝ of (7) is indefinite on the

space ŴΓ×Q0. But restricted to the subspace ŴΓ,B×Q0, it is positive semidefinite,

which follows from the fact that, for any w = (wΓ, q0) ∈ ŴΓ,B ×Q0,

wT Ŝw =
[
wT

Γ qT0
] [ ŜΓ B̂T

0Γ

B̂0Γ 0

] [
wΓ

q0

]
= wT

Γ ŜΓwΓ = ‖wΓ‖2
ŜΓ

≥ 0.(19)

The same is also true for the operator S̃ on the space W̃Γ,B × Q0. Thus, Ŝ- and

S̃-seminorms can be defined on the benign subspaces by

|w|2
Ŝ

= wT Ŝw = ‖wΓ‖2
ŜΓ

∀w = (wΓ, q0) ∈ ŴΓ,B ×Q0,(20)

|w|2
S̃

= wT S̃w = ‖wΓ‖2
S̃Γ

∀w = (wΓ, q0) ∈ W̃Γ,B ×Q0.(21)

For elements w = (0, q0) ∈ ŴΓ,B × Q0, wT Ŝw = 0; we denote the space of

such elements by Ŷ and introduce the quotient space (ŴΓ,B × Q0)/Ŷ . An element
of this space, {wΓ, q0}, is the congruence class containing the vector (wΓ, q0). Two

elements of (ŴΓ,B ×Q0)/Ŷ , {vΓ, p0} and {wΓ, q0}, are the same if vΓ = wΓ and the
zero element of the space can be represented by any (0, q0).

We see that even though Ŝ is only positive semidefinite on the space ŴΓ,B×Q0, it

becomes positive definite when considered on the quotient space (ŴΓ,B ×Q0)/Ŷ . In
the next section, we will show that, under an assumption on the choice of the primal
velocity continuity constraints of the BDDC algorithm, the preconditioned BDDC
operator M−1Ŝ is positive definite on the quotient space and that, correspondingly,
a preconditioned conjugate gradient iteration restricted to the quotient space will be
successful.
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6. Condition number bounds. We first define an averaging operator ED =
R̃R̃T

D, which maps W̃Γ ×Q0, with generally discontinuous interface velocities, to ele-
ments with continuous interface velocities in the same space: for any w = (wΓ, q0) ∈
W̃Γ ×Q0,

ED

[
wΓ

q0

]
=

[
R̃Γ

I

] [
R̃T

D,Γ

I

] [
wΓ

q0

]
=

[
ED,ΓwΓ

q0

]
∈ W̃Γ ×Q0,

(22)

where ED,Γ = R̃ΓR̃
T
D,Γ provides the average of the interface velocities across the

interface Γ.

Two assumptions will be needed for the condition number bound of the precondi-
tioned operator; recipes for which these assumptions hold will be provided in section
7. The first assumption is a requirement on the primal velocity continuity constraints
of the BDDC algorithm.

Assumption 1. The primal interface velocity continuity constraints in the BDDC

algorithm are chosen such that
∫
∂Ωi

(R
(i)
Δ wΓ) · ni = 0 ∀wΓ ∈ ŴΓ, with ni the unit

outward normal of ∂Ωi. Equivalently, B
(i)
0Δ(R

(i)
Δ wΓ) = 0.

The following results follow from Assumption 1.

Lemma 6.1. Let Assumption 1 hold. Then all matrices B
(i)
0Δ, i = 1, . . . , N,

vanish.

Proof. Since R
(i)
Δ is a mapping onto the space W

(i)
Δ , on which B

(i)
0Δ is defined, it

follows from Assumption 1 that B
(i)
0Δ must vanish.

Lemma 6.2. Let Assumption 1 hold. Then R̃T
Dw ∈ ŴΓ,B × Q0 for any w ∈

W̃Γ,B ×Q0.

Proof. We need to show that given wΓ = wΠ + wΔ ∈ W̃Γ,B , B̂0ΓR̃
T
D,ΓwΓ =

0. Since B̃0ΓwΓ = 0, we have from Lemma 6.1 that B̃0ΓwΓ = B̃0ΠRΓΠR̃
T
ΓwΓ =

B̃0ΠwΠ = 0. From Lemma 6.1, we also know that B̂0ΓR̃
T
D,ΓwΓ = B̃0ΠRΓΠR̃

T
D,ΓwΓ =

B̃0ΠwΠ. Therefore, B̂0ΓR̃
T
D,ΓwΓ = 0.

Lemma 6.3. Let Assumption 1 hold. Then Ŝ is an isomorphism from the space
ŴΓ,B×Q0 to F̂×{0} and M−1 an isomorphism from the space F̂×{0} to ŴΓ,B×Q0.
For any q0 ∈ Q0,

M−1

[
B̂T

0Γq0
0

]
=

[
0
q0

]
.

Proof. We know from (7) that Ŝ maps the space ŴΓ,B×Q0 into F̂×{0}, and from

(14), (15), and Lemma 6.2 that M−1 maps F̂ × {0} into ŴΓ,B ×Q0. The first part

of the lemma then follows since we have established that Ŝ and M−1 are invertible.

To prove the second part, we observe, using Lemma 6.1, that for any q0 ∈ Q0,
B̂T

0Γq0 = RT
ΓΠB̃

T
0Πq0, and B̃T

0Γq0 = R̃ΓR
T
ΓΠB̃

T
0Πq0, which equals R̃D,ΓR

T
ΓΠB̃

T
0Πq0 since

R̃D,Γ does not change the primal part of any element. We then have, from the
definition of M−1, that

M−1

[
B̂T

0Γq0
0

]
= R̃T

DS̃−1R̃D

[
RT

ΓΠB̃
T
0Πq0

0

]
= R̃T

DS̃−1

[
B̃T

0Γq0
0

]
.
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From the definition of S̃ in (15), we know that the right-hand side equals
(0, q0).

Lemma 6.4. Let Assumption 1 hold. Then any vector of the form u = (0, q0) ∈
ŴΓ,B×Q0 is an eigenvector of the preconditioned operator M−1Ŝ with an eigenvalue
equal to 1.

Proof. Given any vector u = [ 0
q0 ] ∈ ŴΓ,B ×Q0,

Ŝu =

[
B̂T

0Γq0
0

]
.

The lemma then follows from Lemma 6.3.
The eigenvalues of the preconditioned operator M−1Ŝ, when restricted to the

quotient space (ŴΓ,B × Q0)/Ŷ , are determined by the eigenvalues of M−1Ŝ with
eigenvectors with nonzero velocity components. We first prove a lower bound on the
eigenvalues of M−1Ŝ, when restricted to the quotient space.

Lemma 6.5. For any u = (uΓ, p0) ∈ ŴΓ,B ×Q0,

〈u,u〉Ŝ ≤
〈
u,M−1Ŝu

〉
Ŝ
.

Proof. Given u ∈ ŴΓ,B ×Q0, let w = S̃−1R̃DŜu ∈ W̃Γ,B ×Q0. We have, from

the fact that R̃T R̃D = R̃T
DR̃ = I,

〈u,u〉Ŝ = uT ŜR̃T
DR̃u = uT ŜR̃T

DS̃−1S̃R̃u =
〈
w, R̃u

〉
S̃
.(23)

Using the Cauchy–Schwarz inequality and the fact that Ŝ = R̃T S̃R̃, we find that〈
w, R̃u

〉
S̃
≤ 〈w,w〉1/2

S̃

〈
R̃u, R̃u

〉1/2

S̃
= 〈w,w〉1/2

S̃
〈u,u〉1/2

Ŝ
.(24)

Therefore, from (23) and (24), we have 〈u,u〉Ŝ ≤ 〈w,w〉S̃. Since

〈w,w〉S̃ = uT ŜR̃T
DS̃−1S̃S̃−1R̃DŜu =

〈
u, R̃T

DS̃−1R̃DŜu
〉

Ŝ
=
〈
u,M−1Ŝu

〉
Ŝ
,

(25)

we have 〈u,u〉Ŝ ≤
〈
u,M−1Ŝu

〉
Ŝ
.

In order to obtain a scalable upper eigenvalue bound, we need a second assumption
which concerns the stability of the averaging operator ED,Γ on the space W̃Γ; it is
quite similar to those introduced in [32, 24, 23], for standard elliptic problems.

Assumption 2. There exists a positive constant C, which is independent of H, h,
and the number of subdomains, such that

|RΓ (ED,ΓwΓ) |E(Γ) ≤ C

(
1 + log

H

h

)
|RΓwΓ|E(Γ) ∀wΓ ∈ W̃Γ.

The following lemma can be proved by using Assumptions 1 and 2.
Lemma 6.6. Let Assumptions 1 and 2 hold. There then exists a positive constant

C, which is independent of H, h, and the number of subdomains, such that

|EDw|S̃ ≤ C
1

β

(
1 + log

H

h

)
|w|S̃ ∀w = (wΓ, q0) ∈ W̃Γ,B ×Q0,
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where β is the inf-sup stability constant of (4).

Proof. Given any vector w = (wΓ, q0) ∈ W̃Γ,B × Q0, we know, from Lemma

6.2, that R̃T
Dw ∈ ŴΓ,B × Q0. Therefore, EDw = R̃R̃T

Dw ∈ W̃Γ,B × Q0. From the

definition of the S̃-seminorm in (21), we have

|EDw|2
S̃

= ‖ED,ΓwΓ‖2
S̃Γ

= |RΓ (ED,ΓwΓ) |2SΓ
≤ C

1

β2
|RΓ (ED,ΓwΓ) |2E(Γ),(26)

where the last inequality follows from Lemma 5.2.
We have, from Assumption 2, Lemma 5.2, and (18),

|RΓ (ED,ΓwΓ) |2E(Γ) ≤ C

(
1 + log

H

h

)2

|RΓwΓ|2E(Γ)

≤ C

(
1 + log

H

h

)2

|RΓwΓ|2SΓ
= C

(
1 + log

H

h

)2

‖wΓ‖2
S̃Γ
.(27)

Then from (26), (27), and (21), we have

|EDw|2
S̃
≤ C

1

β2

(
1 + log

H

h

)2

‖wΓ‖2
S̃Γ

= C
1

β2

(
1 + log

H

h

)2

|w|2
S̃
.

Theorem 6.7. Let Assumptions 1 and 2 hold. The preconditioned operator
M−1Ŝ is then symmetric, positive definite with respect to the bilinear form 〈·, ·〉Ŝ on

the space (ŴΓ,B × Q0)/Ŷ . Its eigenvalues are bounded from below by 1 and from

above by C 1
β2 (1 + log(H/h))

2
, where C is a constant which is independent of H, h,

and the number of subdomains and β is the inf-sup stability constant defined in (4).

Proof. It is sufficient to prove that, for any u = (uΓ, p0) ∈ ŴΓ,B × Q0, with
uΓ �= 0,

〈u,u〉Ŝ ≤
〈
u,M−1Ŝu

〉
Ŝ
≤ C

1

β2

(
1 + log

H

h

)2

〈u,u〉Ŝ .

The lower bound has already been established in Lemma 6.5. For the upper
bound, given u ∈ ŴΓ,B × Q0, let w = S̃−1R̃DŜu ∈ W̃Γ,B × Q0, the same element

as in the proof of the lower bound in Lemma 6.5. We have R̃T
Dw = M−1Ŝu. Since

Ŝ = R̃T S̃R̃, we have, by using Lemma 6.6,〈
M−1Ŝu,M−1Ŝu

〉
Ŝ

=
〈
R̃T

Dw, R̃T
Dw
〉

Ŝ
=
〈
R̃R̃T

Dw, R̃R̃T
Dw
〉

S̃

= |EDw|2
S̃

≤ C
1

β2

(
1 + log

H

h

)2

|w|2
S̃
.

Therefore, from (25), we have〈
M−1Ŝu,M−1Ŝu

〉
Ŝ
≤ C

1

β2

(
1 + log

H

h

)2 〈
u,M−1Ŝu

〉
Ŝ
.(28)

Using the Cauchy–Schwarz inequality and (28), we have〈
u,M−1Ŝu

〉
Ŝ
≤ 〈u,u〉1/2

Ŝ

〈
M−1Ŝu,M−1Ŝu

〉1/2

Ŝ

≤ C
1

β

(
1 + log

H

h

)
〈u,u〉1/2

Ŝ

〈
u,M−1Ŝu

〉1/2

Ŝ
.
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This gives
〈
u,M−1Ŝu

〉
Ŝ
≤ C 1

β2 (1 + log(H/h))
2 〈u,u〉Ŝ and the upper bound of the

eigenvalues.
The preconditioned conjugate gradient iteration for M−1Ŝ is given in Algorithm

1. It is a preconditioned conjugate gradient iteration restricted to the quotient space
(ŴΓ,B × Q0)/Ŷ . Its convergence will be established in Theorem 6.10, and its con-

vergence rate is determined by the eigenvalue bounds of M−1Ŝ given in Theorem
6.7.

Algorithm 1. (Preconditioned Conjugate Gradient Algorithm For

Solving (7))

1. Initialization: u0 = 0, r0 = b =

[
gΓ

0

] (
=

[
ŜΓuΓ + B̂T

0Γp0

0

])
, k = 1.

2. while
〈
rk−1, rk−1

〉
M−1 ≥ tolerance

zk−1 = M−1rk−1

βk =
〈
zk−1, rk−1

〉 / 〈
zk−2, rk−2

〉
; [ β1 = 0 ]

dk = zk−1 + βkdk−1 ; [ d1 = z0 ]

αk =
〈
zk−1, rk−1

〉 / 〈
dk, dk

〉
Ŝ

uk = uk−1 + αkdk

rk = rk−1 − αkŜdk

k = k + 1

3. u = uk−1 + M−1rk−1

The following lemma will be used in the proof of Theorem 6.10 to show that the
denominators in Algorithm 1 cannot vanish in the iteration.

Lemma 6.8. Let Assumption 1 hold. Then any vector of the form

f = Ŝw =

[
ŜΓwΓ + B̂T

0Γq0
0

]
, where w =

[
wΓ

q0

]
∈ ŴΓ,B ×Q0,(29)

satisfies 〈f , f〉M−1 = 0 if and only if wΓ = 0. If wΓ �= 0 in (29), then the velocity
component of M−1f is also nonzero.

Proof. We know from Lemma 6.3 that if wΓ = 0 in (29), then

fTM−1f =

[
B̂T

0Γq0
0

]T
M−1

[
B̂T

0Γq0
0

]
=

[
B̂T

0Γq0
0

]T [
0
q0

]
= 0.

On the other hand, if 〈f , f〉M−1 = 0, then
〈
w,M−1Ŝw

〉
Ŝ

= 0. By Lemma 6.5
〈w,w〉Ŝ = 0, and by (19) wΓ must vanish.

To prove the second part of this lemma, we know, from Lemma 6.3, that M−1

is a one-to-one map from the space of vectors f with wΓ = 0 in (29) to the space

{0} × Q0. Since for any nonzero wΓ ∈ ŴΓ,B , ŜΓwΓ �∈ range (B̂T
0Γ) (otherwise the

system matrix of (7) would be singular), we know that for any vector f with wΓ �= 0
in (29) the image M−1f cannot be in the space {0} × Q0; therefore, the velocity
component of M−1f must be nonzero.

The following lemma can be found in [14, equation (10.3.4)].
Lemma 6.9. The residuals rk in Algorithm 1 are M−1-orthogonal; i.e., for any

i �= j,
〈
ri, rj

〉
M−1 = 0.
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Theorem 6.10. Let Assumption 1 hold. The preconditioned conjugate gradient
algorithm then converges and at convergence u is the solution of (7).

Proof. We will show that, for any k = 1, 2, . . . , if
〈
rk−1, rk−1

〉
M−1 �= 0, then the

denominator
〈
dk, dk

〉
Ŝ

cannot vanish in the iteration. (It is easy to see that the other

denominator
〈
zk−2, rk−2

〉
=
〈
rk−2, rk−2

〉
M−1 > 0.) We see from Algorithm 1 that

span{r0, r1, . . . , rk−1} = span{r0, ŜM−1r0, . . . , (ŜM−1)k−1r0},
span{d1, d2, . . . , dk} = span{M−1r0, M−1r1, . . . , M−1rk−1}.

The vectors ri, for i = 0, 1, . . . , k − 1, and dk can be written as

ri =

[
ŜΓw

i
Γ + B̂T

0Γq
i
0

0

]
, i = 0, 1, . . . , k − 1,(30)

dk = M−1

[
ŜΓ(wk−1

Γ +
∑k−2

i=0 siw
i
Γ) + B̂T

0Γ(qk−1
0 +

∑k−2
i=0 tiq

i
0)

0

]
,(31)

where wi
Γ ∈ ŴΓ,B , qi0 ∈ Q0, for i = 0, 1, . . . , k − 1, and si and ti are scalar factors.

For k = 1, and if
〈
r0, r0

〉
M−1 > 0, then by Lemma 6.8, w0

Γ �= 0 in the formula for

r0 in (30). We then see from Lemma 6.8 that the velocity component of d1 = M−1r0

must be nonzero; therefore, by (19),
〈
d1, d1

〉
Ŝ
> 0.

For any k > 1, if
〈
rk−1, rk−1

〉
M−1 > 0, then, by Lemma 6.8, wk−1

Γ �= 0 in the

formula for rk−1 in (30). We will show that wk−1
Γ cannot be written as a linear

combination of wi
Γ, i = 0, . . . , k − 2. Assuming wk−1

Γ =
∑k−2

i=0 ciw
i
Γ, we would have

rk−1 =

[
ŜΓw

k−1
Γ + B̂T

0Γq
k−1
0

0

]
=

k−2∑
i=0

cir
i +

[
B̂T

0Γ(qk−1
0 −

∑k−2
i=0 ciq

i
0)

0

]
.

Then, from Lemmas 6.9 and 6.3, we would have

0 =

〈
k−2∑
i=0

cir
i, rk−1

〉
M−1

=

(
k−2∑
i=0

cir
iT

)
M−1

{
k−2∑
i=0

cir
i+

[
B̂T

0Γ(qk−1
0 −

∑k−2
i=0 ciq

i
0)

0

]}

=

〈
k−2∑
i=0

cir
i,

k−2∑
i=0

cir
i

〉
M−1

+

(
k−2∑
i=0

cir
iT

)[
0

qk−1
0 −

∑k−2
i=0 ciq

i
0

]

=

〈
k−2∑
i=0

cir
i,

k−2∑
i=0

cir
i

〉
M−1

=

k−2∑
i=0

|ci|2
〈
ri, ri

〉
M−1 > 0,

which is a contradiction. Therefore, wk−1
Γ +

∑k−2
i=0 siw

i
Γ cannot vanish and by Lemma

6.8,
〈
dk, dk

〉
Ŝ
> 0.

At full convergence (tolerance = 0) of Algorithm 1, we have
〈
rk−1, rk−1

〉
M−1 = 0,

and

b− Ŝu = b− Ŝ
(
uk−1 + M−1rk−1

)
= rk−1 − ŜM−1rk−1.

Since
〈
rk−1, rk−1

〉
M−1 = 0, we know from Lemma 6.8 that rk−1 is of the form

rk−1 =

[
B̂T

0Γq0

0

]
.
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Therefore, from Lemma 6.3,

ŜM−1rk−1 = Ŝ

[
0

q0

]
=

[
B̂T

0Γq0

0

]
= rk−1,

and hence b− Ŝu = 0; i.e., u is the solution of (7).

7. Satisfying the assumptions: Choosing primal constraints. Assump-
tions 1 and 2 can be satisfied with appropriate choices of the primal continuity
constraints on the interface velocity variables. We first describe a recipe for two-
dimensional problems, and then one for the more complicated three-dimensional case.

For two-dimensional problems, it is natural to make all subdomain vertices primal,
i.e., make both components of the velocity continuous at those nodes. The vertex
constraints by themselves are able to control the subdomain rigid body modes. It
is straightforward to modify the concept of fully primal faces, introduced for three-
dimensional elasticity in [23] and outlined later in this section, and to prove that any
edge, with two primal variables at each of its end points, is fully primal. It is then
easy to prove that Assumption 2 holds.

In order to satisfy Assumption 1, additional constraints are necessary. For each
interface edge Γij , which is shared by a pair of subdomains Ωi and Ωj , we enforce∫

Γij

w
(i)
Γ · nij =

∫
Γij

w
(j)
Γ · nij ,(32)

with a fixed selection of the normal nij to Γij . We implement a change of basis

choosing an edge basis element vector with components
∫
Γij ϕ

Γij

k · nij at the interior

nodes k of Γij which vanishes at the end points of the edge. Here ϕΓij

k is the nodal
finite element velocity basis function of the node k. All the other, complementary
velocity element vectors of this edge are chosen to be orthogonal to the special primal
edge basis function just introduced and the integrals of their normal components will

therefore vanish; i.e.,
∫
Γij w

(i)
Δ · nij = 0 for any w

(i)
Δ ∈ W

(i)
Δ . Since ∂Ωi is a union of

edges, Assumption 1 is satisfied. For details on the implementation of the change of
basis, see [29], [23, section 4], and [17].

For three-dimensional problems, the interface Γ is composed of subdomain faces,
denoted by F l, shared by two subdomains, edges Ek, which make up parts of the
boundaries of faces, and are often shared by more than two subdomains, and vertices
which are the end points of the edges. We will use a partition of unity to separate
contributions from the faces, edges, and vertices; cf. [37, section 4.6]. For each face
F l, we denote by θFl the finite element cut-off function which equals 1 at the interior
nodes of the face F l and vanishes at all other nodes on the interface. For each edge
Ek, we denote by θEk the finite element cut-off function which equals 1 at all the
interior nodes of Ek and vanishes at all other nodes. We denote the set of faces which
share the edge Ek by MEk . We also select a normal nl for each face F l.

Our recipe for satisfying Assumption 1 in three dimensions is similar to that of
the two-dimensional case. We will consider each face of the interface separately and
also make all velocity components at all subdomain vertices primal. We can then use
a partition of unity based only on face and edge functions and find that for any dual

velocity element w
(i)
Δ ∈ W

(i)
Δ ,∫

Fl

w
(i)
Δ · nl =

∫
Fl

Ih
(
θFlw

(i)
Δ

)
· nl +

∑
Ek⊂∂Fl

∫
Fl

Ih
(
θEkw

(i)
Δ

)
· nl.(33)
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Here Ih is the interpolation operator into the velocity finite element space.

On the face F l, shared by a pair of subdomains Ωi and Ωj , we enforce∫
Fl

Ih
(
θFlw

(i)
Γ

)
· nl =

∫
Fl

Ih
(
θFlw

(j)
Γ

)
· nl,(34)

in the same way as for the edge constraints in two dimensions. This face average
corresponds to a face average basis element, which is made primal, and the dual

interface velocities w
(i)
Δ always satisfy

∫
Fl I

h(θFlw
(i)
Δ ) · nl = 0.

The discussion of the edge terms is complicated by the fact that the nodal basis
functions associated with an edge node will differ from zero in narrow strips on the
boundaries of all subdomains that share that edge. For an edge Ek and on each face
Fm ∈ MEk which shares this edge, and for all pairs of subdomains Ωi and Ωj which
share this edge, we will enforce∫

Fm

Ih
(
θEkw

(i)
Γ

)
· nm =

∫
Fm

Ih
(
θEkw

(j)
Γ

)
· nm.(35)

The number of faces in the set MEk is denoted by mk; this many primal degrees of
freedom are required to satisfy the constraints (35). The corresponding primal basis
element vectors are determined by the integrals of the normal components of the edge
nodal finite element basis functions over the relevant faces. As in two dimensions, the
dual velocity basis element vectors are made orthogonal to all the primal basis vectors.

Therefore, the dual interface velocities w
(i)
Δ will always satisfy

∫
Fm Ih

(
θEkw

(i)
Δ

)
·nm =

0. By enforcing the constraints (34) and (35), the integral (33) is always zero and
Assumption 1 is satisfied.

It can easily happen that the mk primal basis vectors, for the edge Ek, are lin-
early dependent. This happens, e.g., in the case when the subdomains are cubes and
a uniform mesh is used. In general, we must make sure that the primal basis functions
maintain linear independence for each edge separately. We can use a singular value
decomposition, in a preprocessing step of the algorithm, to single out only those that
are numerically linearly independent and should be retained. This device for elimi-
nating linearly dependent coarse level primal constraints has previously been applied
for both FETI-DPH (a variant for Helmholtz’s equation) and BDDC algorithms; see
[10, 5, 6].

Remark 1. A different BDDC algorithm was introduced in [5, 6] by Dohrmann for
solving nearly incompressible elasticity problems. Zero divergence constraints were
used for the substructure corrections to keep the volume change of each substructure
small for nearly incompressible materials. For two-dimensional problems, our con-
straints (32) are the same as those in [5, 6]; the same type of constraints have also
been used previously in FETI-DP algorithms for Stokes problems; cf. [27]. For three-
dimensional problems, our vertex and face constraints are the same as Dohrmann’s.
But for each edge Ek, Dohrmann requires, on each subdomain Ωi which shares this
edge, that the integrals

∑
Fl⊂∂Ωi

∫
Fl

Ih
(
θEkw

(m)
Γ

)
· nl(36)

be the same for all m ∈ NEk ; here NEk is the set of indices of the subdomains
which have the edge Ek in common. While either set of edge constraints, (35) or
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(36), together with the face and vertex constraints will satisfy Assumption 1, we have
adopted the form (35) to facilitate the analysis.

We also have to make sure that we have a set of constraints which guarantees
a stable ED,Γ operator, as in Assumption 2, for three-dimensional problems. The
continuity constraints (34) and (35), together with the vertex constraints, developed
for Assumption 1, are not always sufficient for Assumption 2 to hold. We will show
that some additional edge tangential continuity constraints are sometimes needed.

Such a constraint is introduced on an edge Ek, by requiring that
∫
Ek I

h(θEkw
(i)
Γ ) · tEk

takes on a common value. Here tEk is the unit vector tangent to Ek. By selecting a
primal degree of freedom corresponding to this tangential edge integral, we can make

the resulting dual interface variables satisfy
∫
Ek I

h(θEkw
(i)
Δ ) · tEk = 0. We note that

only one extra primal variable will be introduced for each such edge.
We recall that the space of rigid body modes on each subdomain Ωi is spanned

by the three translations

r1 :=

⎡
⎣ 1

0
0

⎤
⎦ , r2 :=

⎡
⎣ 0

1
0

⎤
⎦ , r3 :=

⎡
⎣ 0

0
1

⎤
⎦ ,(37)

and the three rotations

r4 :=
1

Hi

⎡
⎣ x2 − x̂2

−x1 + x̂1

0

⎤
⎦ , r5 :=

1

Hi

⎡
⎣ −x3 + x̂3

0
x1 − x̂1

⎤
⎦ , r6 :=

1

Hi

⎡
⎣ 0

x3 − x̂3

−x2 + x̂2

⎤
⎦ .

(38)

Here x̂ ∈ Ωi and Hi denotes the diameter of Ωi. (The shift of the origin makes
the basis for the space of rigid body modes well conditioned, and the scaling and
shift make the L2(Ωi)-norms of these six functions scale similarly with Hi.) For
each subdomain face F l, we represent the primal continuity constraints enforced on
its edges (excluding the vertex constraints) in terms of a set of linear functionals
f l
m(·), m = 1, 2, . . . ,Ml. All the f l

m(·) vanish when applied to the dual velocity
component. We will use the idea of fully primal faces, which has been developed in
[23] for compressible elasticity; see Definition 2 below. We will use our functionals,
which define our edge constraints, to create a basis, {gk}6

1, which, when restricted
to the six-dimensional space of rigid body modes, is a dual basis. Each gk will be a
linear combination of the constraint functionals for the face in question. We will also
require certain bounds for the linear functionals; these bounds enter into the bound
for the condition number of our algorithm. We note that the quality of these bounds
is better than what can be accomplished with vertex constraints. It is in fact known
that the exclusive use of point constraints leads to less satisfactory performance; see,
e.g., [9, 34, 19].

Definition 2. A face F l of subdomain Ωi is fully primal if a set of six continuity
constraints gk(·), k = 1, 2, . . . , 6, are enforced on the edges of F l and satisfy

|gk(w(i))|2 ≤ CH−1

(
1 + log

(
H

h

)){
|w(i)|2H1/2(Fij) +

1

H
‖w(i)‖2

L2(Fij)

}
,(39)

gk(rj) = δkj ∀k, j = 1, . . . , 6.(40)

Essentially the same proof as for [23, Lemma 8.4] can be used to prove the fol-
lowing lemma; establishing the inequalities (39) is a key part in any such proof.
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Lemma 7.1. Assumption 2 is satisfied for the three-dimensional problems if all
the faces F l of the interface Γ are fully primal and all the subdomain vertices are
primal.

We will now consider a set of sufficient conditions for the conditions of Definition
2 to hold. Many details can again be found in [23], e.g., the bounds for the functionals
associated with the tangential components of the velocity. We only indicate how to
bound the functionals associated with the constraints on the normal components and
the edges; the constraint given by (34) will play no role in establishing that faces are
fully primal. We have the following result.

Lemma 7.2. Let the f l
m(·), m = 1, 2, . . . ,Ml, be given by the continuity con-

straints (35) and a tangential edge constraint for each of the edges of a face F l. Then
F l is fully primal.

Proof. Using a normalization as in [23], the constraint (35) associated with an
edge Ek and a normal component is represented by a functional

f l
m(w(i)) =

∫
Ek+ Ih(θEkw(i)) · nl ds∫

Ek+ 1ds
,

where w(i) ∈ W(i), nl is a unit normal to the face F l, and Ek+ represents the strip
of elements next to the edge Ek on F l. By using the Cauchy–Schwarz inequality, we
have |f l

m(w(i))|2 ≤ CH−1‖θEkw(i)‖2
L2(Eij) ≤ CH−1‖w(i)‖2

L2(Eij). Using [23, Lemma

7.4] or [8, Lemma 3.3], we have

|f l
m(w(i))|2 ≤ CH−1

(
1 + log

(
H

h

)){
|w(i)|2H1/2(Fij) +

1

H
‖w(i)‖2

L2(Fij)

}
.(41)

What is now left is to show that among the given edge normal constraints (35) and
tangential edge constraints for the edges of a face F l, we can choose six functionals,
denoted by f l

m(·), m = 1, 2, . . . , 6, such that if f l
m(r) = 0,m = 1, 2, . . . , 6, for a rigid

body mode r, then r must vanish. Once this has been established, the gk of Definition
2 can be chosen as linear combinations of these f l

m.
Let us, without loss of generality, consider a face F l which is part of the x1 − x2

plane and let x̂ = 0. Since we have weighted edge average constraints in (35) for the
third component over all, i.e., at least three edges of the face, we can conclude that the
third component of the rigid body mode r must vanish at three or more points which
are not colinear; we recall that we have assumed that all faces are convex. We denote
the three corresponding edge normal continuity functionals by f l

m(·), m = 3, 5, 6.
Since this third component of r is a linear combination of the third component of the
three basis elements r3, r5, and r6, the rigid body mode r cannot have any component
involving these three basis elements. The remaining part is a linear combination of
r1, r2, and r4, i.e., effectively a rigid body mode in two dimensions. It has the form
of a first order Nédélec element on the face,

r =

⎡
⎣ a1 + bx2

a2 − bx1

0

⎤
⎦ ,(42)

where a1, a2, and b are the three remaining degrees of freedom of the rigid body mode
for this two-dimensional surface.

We will now show that the tangential edge constraints will make it possible to
conclude that a1 = a2 = b = 0. It is known, and easy to show, that the first order
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Nédélec elements have a constant tangential component on each edge. It is then easy
to see that any three edge tangential constraints will make it possible to conclude that
the remaining rigid body components must vanish; these three selected edge tangential
continuity functionals, f l

m(·), m = 1, 2, 4, complete the set of functionals.
We note that one can also check numerically if the normal face and edge con-

straints (34) and (35) will, in themselves, make a face fully primal. What matters
is if a full dual basis can be constructed when these functionals are restricted to the
space of rigid body motions.

We end this section by discussing the need for edge tangential constraints; this
discussion concerns only the final three constraints. By a relatively simple computa-
tion, we can show that only two tangential edge constraints on two adjacent edges
are needed for each face F l to make it fully primal; the third one can be replaced by
an already existing edge normal continuity constraint. One can also show that these
two edge tangential continuity constraints are not always necessary and that one will
suffice at times. To understand why tangential constraints appear to be required in
some cases, we consider a face with three edges only and with constant weights. Then,
by the divergence theorem and the fact that the rigid body modes are divergence free,
we have linear dependence since the integral of the normal component over one edge
equals the negative of the sum over the integrals over the other two. A simple compu-
tation reveals that the rank is also two for a rectangular face. In such a case, at least
one tangential continuity constraint will be needed to make such a face fully primal.

8. Connections with the FETI-DP algorithms. In the FETI-DP algorithms
developed in [27] for incompressible Stokes equations, the subdomain problems are
also assembled only at the coarse level, primal velocity degrees of freedom, which
are shared by neighboring subdomains. Lagrange multipliers are then introduced on
the interface to enforce the continuity of the dual velocity variables, by requiring that

BΔuΔ =
∑N

i=1 B
(i)
Δ u

(i)
Δ = 0. Here, the subdomain matrices B

(i)
Δ have elements chosen

from the set {0, 1,−1}. The original problem is then reduced to a linear system for
the Lagrange multipliers by eliminating the other variables; cf. [27]. The FETI-DP

operator for the Lagrange multipliers is BΔS̃−1
Δ BT

Δ, where the operator S̃Δ is defined

by S̃−1
Δ = RΔS̃−1RT

Δ and RΔ is the restriction map from W̃Γ ×Q0 to WΔ.
The preconditioner used in [27] for the FETI-DP algorithm is BD,ΔSΔBT

D,Δ,

where BD,Δ is constructed from the subdomain operators B
(i)
D,Δ in the same way as

BΔ from the B
(i)
Δ ; a constant scaling factor was used for B

(i)
D,Δ for two-dimensional

problems. In general, B
(i)
D,Δ is defined as follows: each nonzero element of B

(i)
Δ corre-

sponds to a Lagrange multiplier connecting the subdomain Ωi to a neighboring subdo-
main Ωj at a point x ∈ ∂Ωi,h∩∂Ωj,h. Multiplying each such element with the positive

scaling factor δ†j (x) gives us B
(i)
D,Δ. SΔ is the direct sum of subdomain Schur operators

S
(i)
Δ , which are defined on the dual subdomain velocity space W

(i)
Δ as the S

(i)
Γ in (8),

except that the operator is restricted to the dual interface velocity variables; SΔ can
be written as the restriction of the operator S̃ to the space WΔ, i.e., SΔ = RΔS̃RT

Δ.
Therefore, the preconditioned FETI-DP operator can be written as

BD,ΔRΔS̃RT
ΔBT

D,ΔBΔRΔS̃−1RT
ΔBT

Δ.(43)

Since the diagonal blocks corresponding to the dual interface velocity part in WΔ

of the matrices S̃ and S̃−1 are positive definite, both RΔS̃RT
Δ and RΔS̃−1RT

Δ are
positive definite. When nonredundant Lagrange multipliers are used, the matrices BT

Δ
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and BT
D,Δ are of full rank and the FETI-DP operator (43) is therefore a product of

two positive definite matrices; cf. [37, section 6.4]. If redundant Lagrange multipliers
are used, as in [22, 37], then BT

Δ will not be of full rank. But this does not matter;
the Lagrange multiplier is always restricted to range (BΔ), which is orthogonal to
the null space of BT

Δ (cf. [22]).
We now introduce the operator PD = RT

ΔBT
D,ΔBΔRΔ, which maps the space

W̃Γ×Q0 into itself. It computes the jump across the subdomain interface of the dual
interface velocity component, and maps any element in the primal space ŴΠ ×Q0 to
zero; cf. [29]. It can then be verified that ED and PD are complementary projectors
with ED + PD = I and EDPD = PDED = 0; cf. [29, Lemma 1].

Since, for any two matrices Z and T , the nonzero eigenvalues of the two prod-
ucts ZT and TZ—assuming that they both exist—are the same, we know that the
preconditioned FETI-DP operator (43) has the same nonzero eigenvalues as the op-

erator PT
D S̃PDS̃−1, where we have moved the last factor RT

ΔBT
Δ of (43) to the front.

The preconditioned BDDC operator M−1Ŝ, which is R̃T
DS̃−1R̃DR̃T S̃R̃, has the same

nonzero eigenvalues as EDS̃−1ET
DS̃, where we have moved the last factor R̃ to the

front. We can then prove, just as in the elliptic case (see [29]) that PT
D S̃PDS̃−1 and

EDS̃−1ET
DS̃ have the same nonzero eigenvalues with the possible exception of 1. We

obtain the following theorem.
Theorem 8.1. Let Assumption 1 hold. The preconditioned FETI-DP and BDDC

operators, given by (43) and M−1Ŝ, respectively, have the same nonzero eigenvalues
with the possible exception of 1.

This is the same result as for the positive definite elliptic problems; cf. [31, 11,
29, 3].

9. Numerical experiments. We solve a lid-driven-cavity problem on the do-
main Ω = [0, 1] × [0, 1] with the Dirichlet boundary condition, where the velocity is
(1, 0) on the upper side and vanishes on the other three sides. We use a uniform mesh,
as in Figure 1. The mixed finite elements are also indicated in Figure 1; the velocity is
continuous and linear in each element, and the pressure is constant on macroelements
which are unions of four triangles. The inf-sup stability of these mixed finite elements
can easily be proved by using the macroelement technique developed in [36].

Fig. 1. The mesh and the mixed finite elements.

Both the BDDC and FETI-DP algorithms have been tested. The preconditioned
conjugate gradient method is used and the iteration is halted when the L2-norm of
the residual has been reduced by a factor 10−6. In our experiments, we have used
three different sets of primal constraints. The first two satisfy both Assumptions 1
and 2 and we see that both the BDDC and FETI-DP operators are positive definite
and that the results are fully consistent with our theory. Our third choice violates
Assumption 1 and the BDDC operator is then no longer positive definite.
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Table 1

Spectral bounds and iteration counts for a pair of BDDC and FETI-DP algorithms, with dif-
ferent numbers of subdomains, for H/h = 8 and a primal space spanned by both corner and normal
edge basis functions.

Num. of subs BDDC FETI-DP
nx × ny λmin λmax Iter. λmin λmax Iter.
4 × 4 1.00 3.14 11 1.00 3.14 11
8 × 8 1.00 3.88 12 1.00 3.88 12

12 × 12 1.00 4.02 12 1.00 4.02 13
16 × 16 1.00 4.06 12 1.00 4.07 13
20 × 20 1.00 4.08 12 1.00 4.08 13

Table 2

Spectral bounds and iteration counts for a pair of BDDC and FETI-DP algorithms, with dif-
ferent H/h, for 4× 4 subdomains and a primal space spanned by both corner and normal edge basis
functions.

BDDC FETI-DP
H/h λmin λmax Iter. λmin λmax Iter.

4 1.00 2.17 8 1.00 2.17 9
8 1.00 3.14 11 1.00 3.14 11
16 1.00 4.22 13 1.00 4.22 12
32 1.00 5.42 14 1.00 5.42 14

Table 3

Spectral bounds and iteration counts for a pair of BDDC and FETI-DP algorithms, with differ-
ent numbers of subdomains, for H/h = 8 and a primal space spanned by both corner and two edge
basis functions for each edge.

Num. of subs BDDC FETI-DP
nx × ny λmin λmax Iter. λmin λmax Iter.
4 × 4 1.00 2.32 8 1.00 2.32 9
8 × 8 1.00 2.58 9 1.00 2.58 9

12 × 12 1.00 2.63 9 1.00 2.63 10
16 × 16 1.00 2.65 9 1.00 2.65 10
20 × 20 1.00 2.65 9 1.00 2.65 10

In the first case, the primal velocity space is spanned by the subdomain vertex
nodal basis functions for both components and by a constant vector in the direction
normal to the edge for each interface edge as in (32). From Tables 1 and 2, we see
that the preconditioned BDDC and FETI-DP operators are both positive definite and
quite well conditioned as established in Theorems 6.7 and 8.1. We observe that the
extreme eigenvalues and the iteration counts of the BDDC and FETI-DP algorithms
match very well, and that the condition numbers of both algorithms are independent
of the number of subdomains and increase only slowly with the number of elements
across each subdomain, all as predicted by the theory. In our experiments, the extreme
eigenvalues are estimated by using the tridiagonal Lanczos matrix generated by the
preconditioned conjugate gradient method.

In the experiments of Tables 3 and 4, the integrals of both velocity components
are required to have common values across each interface edge. The subdomain cor-
ner degrees of freedom are also chosen as primal variables as in the first case. Both
Assumptions 1 and 2 are again satisfied and we observe similar, slightly faster con-
vergence compared with the first experiments since the primal, coarse level problem
has been enlarged.

In Tables 5 and 6, the primal velocity space is spanned only by the corner basis
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Table 4

Spectral bounds and iteration counts for a pair of BDDC and FETI-DP algorithms, with dif-
ferent H/h, for 4 × 4 subdomains and a primal space spanned by both corner and two edge basis
functions for each edge.

BDDC FETI-DP
H/h λmin λmax Iter. λmin λmax Iter.

4 1.00 1.66 7 1.00 1.65 7
8 1.00 2.32 8 1.00 2.32 9
16 1.00 3.07 10 1.00 3.07 10
32 1.00 3.93 11 1.00 3.93 12

Table 5

Spectral bounds and iteration counts for a pair of BDDC and FETI-DP algorithms, with dif-
ferent numbers of subdomains, for H/h = 8 and a primal space spanned only by the corner basis
functions.

Num. of subs BDDC FETI-DP

nx × ny λmin λmax Iter. λmin λmax Iter.

4 × 4 17 0.49 3.61 16

8 × 8 21 0.37 4.01 21

12 × 12 N/A N/A 21 0.33 4.08 23

16 × 16 21 0.31 4.10 22

20 × 20 22 0.29 4.10 24

Table 6

Spectral bounds and iteration counts for a pair of BDDC and FETI-DP algorithms, with dif-
ferent H/h, for 4×4 subdomains and for a primal space spanned only by the corner basis functions.

BDDC FETI-DP
H/h λmin λmax Iter. λmin λmax Iter.

4 13 0.51 2.34 13
8 N/A N/A 17 0.49 3.61 16
16 19 0.48 5.13 19
32 21 0.48 6.99 21

functions; Assumption 1, then, does not hold. In this case, the preconditioned BDDC
operator is no longer positive definite and the iterates will no longer stay in the
benign space of the saddle-point problem. However, the FETI-DP operator (43) is
still positive definite. The interface problems of both the BDDC and the FETI-DP
algorithms are solved by a preconditioned conjugate gradient method, but the residual
norm of the BDDC methods is no longer strictly decreasing. We see that the iteration
counts of the BDDC and FETI-DP algorithms still match very well, but that for both
algorithms this count will now depend on the number of subdomains as well as on the
number of elements across each subdomain. These results are less satisfactory than
those of the previous two choices of primal constraints.
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Abstract. We give an error estimate for the energy and helicity preserving scheme (EHPS) in
second order finite difference setting on axisymmetric incompressible flows with swirling velocity. This
is accomplished by a weighted energy estimate, along with careful and nonstandard local truncation
error analysis near the geometric singularity and a far field decay estimate for the stream function.
A key ingredient in our a priori estimate is the permutation identities associated with the Jacobians,
which are also a unique feature that distinguishes EHPS from standard finite difference schemes.
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1. Introduction. Axisymmetric flow is an important subject in fluid dynamics
and has become standard textbook material (e.g., [2]) as a starting point of theoretical
study for complicated flow patterns. Although the number of independent spatial
variables is reduced by symmetry, some of the essential features and complexities of
generic three-dimensional (3D) flows remain. For example, when the swirling velocity
is nonzero, there is a vorticity stretching term present. This is widely believed to
account for possible singularity formation for Navier–Stokes and Euler flows. For
general smooth initial data, it is well known that the solution remains smooth for a
short time in Euler [8] and Navier–Stokes flows [9]. A fundamental regularity result
concerning the solution of the Navier–Stokes equation (NSE) is given in the pioneering
work of Caffarelli, Kohn, and Nirenberg [3]: The 1D Hausdorff measure of the singular
set is zero. As a consequence, the only possible singularity for axisymmetric Navier–
Stokes flows would be on the axis of rotation. This result has motivated subsequent
research activities concerning the regularity of axisymmetric solutions of the NSE.
Some regularity and partial regularity results for axisymmetric Euler and Navier–
Stokes flows can be found, for example, in [4] and the references therein. To date,
the regularity of the Navier–Stokes and Euler flows, whether axisymmetric or not,
remains a challenging open problem. For a comprehensive review of the regularity of
the NSE, see [10] and the references therein.

Due to the subtle regularity issue, the numerical simulation of axisymmetric flows
is also a challenging subject for computational fluid dynamicists. The earliest attempt
at a numerical search for potential singularities of axisymmetric flows dates back to
the 90s [5, 6]. In a recent work [11], the authors have developed a class of energy
and helicity preserving schemes (EHPS) for incompressible Navier–Stokes and MHD
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equations. There the authors extended the vorticity-stream formulation of axisym-
metric flows given in [5] and proposed a generalized vorticity-stream formulation for
3D Navier–Stokes and MHD flows with coordinate symmetry. In the case of ax-
isymmetric flows, the major difference between EHPS and the formulation in [5] is
the expression and numerical discretization of the nonlinear terms. It is shown in
[11] that all the nonlinear terms in the Navier–Stokes and MHD equation, including
convection, vorticity stretching, geometric source, Lorentz force, and electro-motive
force, can be written as Jacobians. Associated with the Jacobians is a set of permu-
tation identities which leads naturally to the conservation laws for first and second
moments. The primary feature of the EHPS is the numerical realization of these con-
servation laws. In addition to preserving physically relevant quantities, the discrete
form of conservation laws provides numerical advantages as well. In particular, the
conservation of energy automatically enforces nonlinear stability of EHPS. For 2D
flows, EHPS is equivalent to the energy and enstrophy preserving scheme of Arakawa
[1], who first pointed out the importance of discrete conservation laws in long time
numerical simulations.

Other than the Jacobian approach, most of the energy conserving finite difference
schemes for standard flows (without geometric singularity) are based on discretization
of the fluid equation in primitive variables. A well-known trick that dates back to
the 70s is to take the average of conservative and nonconservative discretizations of
convection term (Piacsek and Williams [16]). In [14], Morinishi et al. further explored
and compared various combinations among conservative, nonconservative, and rota-
tion forms of the convection term. More recently in [18], Verstappen and Veldman
proposed a discretization for the convection term that resulted in a skew-symmetric
difference operator and therefore the conservation of energy could be achieved.

A potential difficulty associated with axisymmetric flows is the appearance of a
1
r factor which becomes infinite at the axis of rotation, and therefore sensitive to
inconsistent or low order numerical treatment near this “pole singularity.” In [11],
the authors proposed a second order finite difference scheme and handled the pole
singularity by shifting the grids a half-grid length away from the origin. Remarkably,
the permutation identities and therefore the energy and helicity identities remain valid
in this case. There are alternative numerical treatments proposed in literatures (e.g.,
[6]) to handle this coordinate singularity. However, rigorous justifications for various
pole conditions are yet to be established.

The purpose of this paper is to give a rigorous error estimate of EHPS for ax-
isymmetric flows. To focus on the pole singularity and avoid complication caused by
physical boundary conditions, we consider here only the whole space problem with the
swirling components of velocity and vorticity decaying fast enough at infinity. The
error analysis of numerical methods for NSE with nonslip physical boundary condi-
tion has been well studied. We refer the works of Hou and Wetton [7] and Wang
and Liu [19] to interested readers. Our proof is based on a weighted energy estimate
along with a careful and detailed pointwise local truncation error analysis. A ma-
jor ingredient in our energy estimate is the permutation identities associated with
the Jacobians (4.17). These identities are key to the energy and helicity preserving
property of EHPS for general symmetric flows. Here the same identities enable us
to obtain a priori estimate even in the presence of the pole singularity; see section 5
for details. To our knowledge, this is the first rigorous convergence proof for finite
difference schemes devised for axisymmetric flows.

In our pointwise local truncation error estimate, a fundamental issue is the iden-
tification of smooth flows in the vicinity of the pole. Using a symmetry argument,
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it can be shown [12] that if the swirling component is even in r (or more precisely,
is the restriction of an even function on r > 0), the vector field is in fact singular.
See Example 1 in section 2 for details. This is an easily overlooked mistake that even
appeared in some research papers targeted at numerical search for potential formation
of finite time singularities. In addition to the regularity issue at the axis of symmetry,
a refined decay estimate for the stream function also plays an important role in our
analysis. In general, the stream function only decays as O((x2 + r2)−1) at infinity.
Accordingly, we have selected an appropriate combination of weight functions that
constitute an r-homogeneous norm. As a result, the slow decay of the stream func-
tion is compensated by the fast decay of velocity and vorticity. Overall, we obtained
a second order error estimate on axisymmetric flows.

The rest of this paper is organized as follows: In section 2, we give a brief review of
the regularity results developed in [12], including the characterization of pole regular-
ity for general axisymmetric solenoidal vector fields and solutions of the axisymmetric
NSE (2.2). In section 3, we formulate a regularity assumption on the solution of NSE
at infinity. We basically assume that the swirling components of velocity and vorticity
decay fast enough at infinity, and use this to analyze the decay rate of the stream
function. In section 4, we briefly review the energy and helicity preserving property
for EHPS and use it to prove our main theorem by energy estimate in section 5. The
proof of some technical lemmas is given in the Appendix.

2. Generalized vorticity-stream formulation for axisymmetric flows. In
this section, we review the generalized vorticity-stream formulation of axisymmetric
NSE

(2.1)
∂tu + (∇× u) × u + ∇p = −ν∇×∇× u
∇ · u = 0

and related regularity issues.
Denoting by the x-axis the axis of symmetry, the axisymmetric NSE in the cylin-

drical coordinate system x = x, y = r cos θ, z = r sin θ can be written as [11]

(2.2)

ut + 1
r2 J (ru, rψ) = ν(∇2 − 1

r2 )u ,

ωt + J
(
ω
r , rψ

)
= ν(∇2 − 1

r2 )ω + J
(
u
r , ru

)
,

ω = −(∇2 − 1
r2 )ψ ,

where J(a, b) = (∂xa)(∂rb) − (∂ra)(∂xb).
In (2.2), u(t;x, r), ω(t;x, r), and ψ(t;x, r) represent the swirling components of

velocity, vorticity, and stream function, respectively. The quantity rψ is also known
as Stokes’ stream function and the formal correspondence between the solutions of
(2.1) and (2.2) is given by

(2.3) u = ueθ + ∇× (ψeθ) =
∂r(rψ)

r
ex − ∂xψer + ueθ,

where ex, er, and eθ are the unit vectors in the x, r, and θ directions, respectively. The
vorticity-stream formulation (2.2) has appeared in [5] with an alternative expression
for the nonlinear terms. In [11], the authors have generalized the vorticity formulation
to general symmetric flows with the nonlinear terms recast in Jacobians as in (2.2)
and proposed a class of EHPS based on discretizing (2.2). In sections 4 and 5, we
will review EHPS for (2.2) and give a rigorous error estimate in second order finite
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difference setting. The error bound certainly depends on the regularity of the solution
to (2.2). Although (2.2) can be derived formally from (2.1), the equivalence between
the two expressions in terms of regularity of solutions is not quite obvious. An essential
prerequisite to our analysis is to characterize the proper meaning of “smoothness” of
solutions to (2.2). This turns out to be a subtle issue.

Example 1. Take

(2.4) u(x, r) = r2e−r, ω = ψ ≡ 0.

It is easy to verify that (2.4) is an exact stationary solution of the Euler equation
(ν = 0 in (2.2)). Note that u = O(r2) near the axis and ∂2

ru(x, 0+) �= 0. Similar
functions can be found in literatures as initial data in numerical search for finite time
singularities. Although u ∈ C∞(R×R+), the following regularity lemma for general
axisymmetric solenoidal vector fields shows that u = ueθ is not even in C2(R3, R3).

Lemma 1 (see [12]). Denote the axisymmetric divergence free subspace of Ck

vector fields by

(2.5) Ck
s

def
= {u ∈ Ck(R3, R3), ∂θux = ∂θur = ∂θuθ = 0, ∇ · u = 0}.

Then
(a) for any u ∈ Ck

s , there exists a unique (u, ψ) such that

(2.6) u = ueθ + ∇× (ψeθ) =
∂r(rψ)

r
ex − ∂xψer + ueθ, r > 0,

with

(2.7) u(x, r) ∈ Ck(R×R+), ∂2�
r u(x, 0+) = 0 for 0 ≤ 2� ≤ k,

and

(2.8) ψ(x, r) ∈ Ck+1(R×R+), ∂2�
r ψ(x, 0+) = 0 for 0 ≤ 2� ≤ k + 1.

(b) If (u, ψ) satisfies (2.7), (2.8) and u is given by (2.6) for r > 0, then u ∈ Ck
s

with a removable singularity at r = 0.
Here in (2.5) and throughout this paper, the subscripts of u are used to denote

components rather than partial derivatives. The proof of Lemma 1 is based on the
observation that eθ changes direction across the axis of symmetry; therefore u = uθ

must admit an odd extension in order to compensate for this discontinuity. The details
can be found in [12].

For simplicity of presentation, we recast Lemma 1 as follows.
Lemma 1′.

(2.9) Ck
s = {ueθ + ∇× (ψeθ) |u ∈ Ck

s (R×R+), ψ ∈ Ck+1
s (R×R+)},

where

(2.10)

Ck
s

(
R×R+

)
def
=

{
f(x, r) ∈ Ck

(
R×R+

)
, ∂2j

r f(x, 0+) = 0, 0 ≤ 2j ≤ k
}
.

From Lemma 1 and Example 1, it is clear that the proper meaning of the smooth
solution to (2.2) should be supplemented by the pole conditions (2.7), (2.8). In the
case of NSE (ν > 0), our main concern in this paper, (2.2) is an elliptic-parabolic
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system on a semibounded region (r > 0). From standard PDE theory, we need to
assign one and only one boundary condition for each of the variables ψ, u, and ω. An
obvious choice is the zeroth order part of the pole conditions (2.7), (2.8):

(2.11) ψ(x, 0) = u(x, 0) = ω(x, 0) = 0.

It is therefore a natural question to ask whether a smooth solution of (2.2), (2.11) in
the class

(2.12)

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1(R×R+)

)
,

u(t;x, r) ∈ C1
(
0, T ;Ck(R×R+)

)
,

ω(t;x, r) ∈ C1
(
0, T ;Ck−1(R×R+)

)
will give rise to a smooth solution of (2.2). In other words, is the pole condition (2.7),
(2.8) automatically satisfied if only the zeroth order part (2.11) is imposed?

The answer to this question is affirmative.
Theorem 1 (see [12]).
(a) If (u, p) is an axisymmetric solution to (2.1) with u ∈ C1(0, T ; Ck

s ), p ∈
C0(0, T ;Ck−1(R3)), and k ≥ 3, then there is a solution (ψ, u, ω) to (2.2) in
the class

(2.13)

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1

s (R×R+)
)
,

u(t;x, r) ∈ C1
(
0, T ;Ck

s (R×R+)
)
,

ω(t;x, r) ∈ C1
(
0, T ;Ck−1

s (R×R+)
)
,

and u = ueθ + ∇× (ψeθ).
(b) If (ψ, u, ω) is a solution to (2.2), (2.11) in the class (2.12) with k ≥ 3, then

(ψ, u, ω) is in the class (2.13), u
def
= ueθ + ∇ × (ψeθ) ∈ C1(0, T ; Ck

s ), and
there is an axisymmetric scalar function p ∈ C0(0, T ;Ck−1(R3)) such that
(u, p) is a solution to (2.1).

The proof of Theorem 1 can be found in [12]. We remark here that Theorem 1
not only establishes the equivalence between (2.1) and (2.2) for classical solutions; the
fact that smooth solutions to (2.2) automatically satisfy the pole condition (2.13) is
also crucial to our local truncation error analysis. See the appendix for details.

3. Regularity assumption on solutions of NSE at infinity. The focus of
this paper is the convergence rate of EHPS in the presence of the pole singularity. To
separate difficulties and avoid complications introduced by physical boundaries, we
only consider the whole space problems with solutions decaying rapidly at infinity.

To be more specific, we restrict our attention to the case where the supports of
the initial data u(x, 0) and ω(x, 0) are essentially compact. Since (2.2) is a transport
diffusion equation for u and ω with initially finite speed of propagation, we expect u
and ω to be essentially compactly supported, at least for short time. In the case of
linear transport diffusion equations, the solution together with its derivatives will then
decay faster than polynomials at infinity for t > 0. Some rigorous results concerning
the spatial decay rate for the solutions of axisymmetric flows can be found in [4]
and the references therein. In particular, it is shown in [4] that both u and ω decay
algebraically at infinity as long as this is the case initially. Here we make a stronger



ANALYSIS OF ENERGY AND HELICITY PRESERVING SCHEME 2461

yet plausible assumption along this direction. The precise form of our assumption is
formulated in terms of weighted norms and is less stringent than the analogy we draw
from linear transport diffusion equations; see Assumption 1 below.

To quantify our assumption, we first introduce a family of r-homogeneous com-
posite norms and corresponding function spaces which turn out to be natural for our
pointwise energy estimate.

Definition 1.

(3.1) ‖a‖�,α,β =
∑

�1+�2=�

‖ (1 + r)α(1 + |x|)β |∂�1
x ∂�2

r

(a
r

)
| ‖

L∞(R×R+)
,

(3.2) |||a|||k,α,β =
∑

0≤�≤k

‖a‖k−�,α−�,β .

Note that the norms (3.1), (3.2) are well defined for functions in Ck
s (R×R+) that

decay properly at infinity. We denote them by

(3.3) Ck,α,β
s =

{
a(x, r) ∈ Ck

s

(
R×R+

)
, |||a|||k,α,β < ∞

}
.

In section 5, we will show that EHPS is second order accurate provided the solution
satisfies

(3.4)

⎧⎨
⎩ (ψ, ω) ∈ C1

(
0, T ;C

4,α+ 7
2 ,β

s ∩ C4,2α+2,2β
s

)
,

u ∈ C1
(
0, T ;C4,2α+2,2β

s ∩ C1,2,0
s

)
,

α >
1

2
, β >

1

4
.

In view of (3.4), we formulate our regularity assumption as follows.
Assumption 1.

(3.5) (ψ, ω) ∈ C1
(
0, T ;C4,γ,δ

s

)
, u ∈ C1

(
0, T ;C4,5,δ

s

)
, γ > 4, δ >

1

2
.

Although we expect u, ω and their derivatives to decay faster than any polynomial
at infinity, the same expectation is not realizable for ψ. As we will see, generically ψ
only decays like O((x2+r2)−1) at infinity. Nevertheless, we will show that Assumption
1 is still realizable if ω decays fast enough.

To analyze the decay rate of ψ, we start with the integral expression for ψ. From
the vorticity-stream relation

∇×∇× ψ = ω

and the identification

ψ(x, r) = ψz(x, y, z)|y=r,z=0, ω(x, r) = ωz(x, y, z)|y=r,z=0,

one can derive the following integral formula for ψ [17]:

(3.6) ψ(x, r) =

∫ ∞

0

∫ ∞

−∞
ω(x′, r′)K(x− x′, r, r′)dx′dr′,

where

(3.7)

K(x− x′, r, r′) = r′ 1
4π

∫ 2π

0
cos θ√

(x−x′)2+(r−r′ cos θ)2+(r′ sin θ)2
dθ

= r′2 2
π

∫ π
2

0
r cos2 θ

ρ+ρ−(ρ++ρ−)dθ
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and

ρ2
± = (x− x′)2 + (r ± r′ cos θ)2 + (r′ sin θ)2.

As a consequence, we have the following far field estimate for K.
Lemma 2.

|∂�
x∂

m
r K(x− x′, r, r′)| ≤ C�,m(x′, r′)

(√
x2 + r2

)−2−�−m

as x2 + r2 → ∞.

Proof. We will derive a far field estimate for the integrand in (3.7). We first
consider a typical term

lim
x2+r2→∞

|∂�
x∂

m
r ρ|

with

ρ2 = (x− x0)
2 + (r − r0)

2 + c20,

where x0, r0, and c0 are some constants.
With the change of variables

r − r0 = σ cosλ,
x− x0 = σ sinλ,

we can rewrite the x and r derivatives by

∂rρ = ∂r
√
σ2 + c20 = (∂rσ)∂σ

√
σ2 + c20 + (∂rλ)∂λ

√
σ2 + c20 = σ

ρ cosλ,

∂xρ = ∂x
√
σ2 + c20 = (∂xσ)∂σ

√
σ2 + c20 + (∂xλ)∂λ

√
σ2 + c20 = σ

ρ sinλ.

Therefore by induction

∂�
x∂

m
r ρ = P �,m(cosλ, sinλ)Q�,m(σ, ρ),

where P �,m(cosλ, sinλ) is a polynomial of degree �+m in its arguments and Q�,m(σ, ρ)
a rational function of σ and ρ of degree 1 − � −m. By degree of a rational function
we mean the degree of the numerator subtracting the degree of the denominator.

Since σ = O(
√
x2 + r2) and ρ = O(

√
x2 + r2), we conclude that

|∂�
x∂

m
r ρ| = O

(√
x2 + r2

1−�−m
)
.

We can now apply the argument above and Leibniz’s rule to get

∂�
x∂

m
r

r

ρ+ρ−(ρ+ + ρ−)
=

J�,m∑
j

P̃ �,m
j (cosλ+, sinλ+, cosλ−, sinλ−)Q̃�,m

j (σ+, ρ+, σ−, ρ−, r),

where J�,m is a finite integer, σ± and ρ± are defined by

r ± r′ cos θ = σ± cosλ±,
x− x0 = σ± sinλ±,

and P̃ �,m
j , Q̃�,m

j are polynomials and rational functions of degrees � + m, −2 − �−m
in their arguments, respectively. The lemma follows by integrating θ over (0, π

2 ) in
(3.7).
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We close this section by noting that ψ exhibits slow decay rate at infinity as
a consequence of (3.6) and Lemma 2. More precisely, ψ(x, r) ∼ O((x2 + r2)−1) in
general. This may seem to raise the question whether Assumption 1 is realizable at
all.

Indeed, using a similar calculation as in the proof of Lemma 2, one can derive the
following.

Proposition 1. If γ + δ < k+ 2 and ω ∈ Ck,γ′,δ′

s for sufficiently large γ′ and δ′,
then ψ ∈ Ck,γ,δ

s .
As a consequence, we see that the range of γ and δ in (3.5) is not void provided

ω decays fast enough at infinity. This justifies Assumption 1.

4. Energy and helicity preserving scheme. In this section, we outline the
derivation of the discrete energy and helicity identities for EHPS. A key ingredient in
the derivation is the reformulation of nonlinear terms into Jacobians. The details can
be found in [11].

We introduce the standard notations:

Dxφ(x, r) =
φ(x + Δx

2 , r) − φ(x− Δx
2 , r)

Δx
, Drφ(x, r) =

φ(x, r + Δr
2 ) − φ(x, r − Δr

2 )

Δr
,

D̃xφ(x, r) =
φ(x + Δx, r) − φ(x− Δx, r)

2Δx
, D̃rφ(x, r) =

φ(x, r + Δr) − φ(x, r − Δr)

2Δr
,

and

∇̃h = (D̃x, D̃r), ∇̃⊥
h = (−D̃r, D̃x).

The finite difference approximation of ∇2 and the Jacobians are given by

∇2
hψ = Dx (Dxψ) +

1

r
(Dr(rDrψ))

and

(4.1) Jh(f, g) =
1

3

{
∇̃⊥

h f · ∇̃hg + ∇̃⊥
h · (f∇̃hg) + ∇̃h · (g∇̃⊥

h f)
}
.

Altogether, the second order finite difference version of EHPS is

(4.2)

∂tuh + 1
r2 Jh (ruh, rψh) = ν(∇2

h − 1
r2 )uh,

∂tωh + Jh
(
ωh

r , rψh

)
= ν(∇2

h − 1
r2 )ωh + Jh

(
uh

r , ruh

)
,

ωh = (−∇2
h + 1

r2 )ψh.

To derive the discrete energy and helicity identity, we first introduce the discrete
analogue of weighted inner products

(4.3) 〈a, b〉h =

∞∑
i=−∞

∞∑
j=1

(rab)i,j ΔxΔr,

(4.4)

[a, b]h =

⎛
⎝ ∞∑

i=−∞

∞∑
j=1

(r(Dxa)(Dxb))i− 1
2 ,j

+

∞∑
i=−∞

∞∑
j=1

′ (r(Dra)(Drb))i,j− 1
2

⎞
⎠ΔxΔr + 〈ar ,

b
r 〉h,
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and the corresponding norms

(4.5) ‖a‖2
0,h = 〈a, a〉h, ‖a‖2

1,h = [a, a]h,

where the grids have been shifted [13] to avoid placing the grid points on the axis of
rotation:

(4.6) xi = iΔx, i = 0,±1,±2, . . . , rj =

(
j − 1

2

)
Δr, j = 1, 2, . . . ,

and

(4.7)
∞∑
j=1

′fj− 1
2

=
1

2
f 1

2
+

∞∑
j=2

fj− 1
2
.

The evaluation of the D̃r and ∇2
h terms in (4.2) at j = 1 involves the dependent

variables uh, ψh, ωh and the stretching factor h3 = |∇θ|−1 = r at the ghost points
j = 0. In view of Lemma 1, we impose the following reflection boundary condition
across the axis of rotation:

(4.8) uh(i, 0) = −uh(i, 1), ψh(i, 0) = −ψh(i, 1), ωh(i, 0) = −ωh(i, 1).

Furthermore, we take even extension for the coordinate stretching factor h3 = |∇θ|−1

= r which appears in the evaluation of the Jacobians at j = 1:

(4.9) h3(i, 0) = h3(i, 1).

We will show in the remaining sections that the extensions (4.8) and (4.9) indeed give
rise to a discrete version of energy and helicity identity and optimal local truncation
error. As a consequence, second order accuracy of EHPS is justified for axisymmetric
flows.

Remark 1. At first glance, the extension (4.9) may seem to contradict (4.6) on
the ghost points j = 0. A less ambiguous restatement of (4.9) is to incorporate it into
(4.2) as
(4.10)

∂tuh + 1
r2 Jh (|r|uh, |r|ψh) = ν(∇2

h − 1
r2 )uh,

∂tωh + Jh

(
ωh

|r| , |r|ψh

)
= ν(∇2

h − 1
r2 )ωh + Jh

(
uh

|r| , |r|uh

)
ωh = (−∇2

h + 1
r2 )ψh.

on (xi, rj), j ≥ 1,

The following identities are essential to the discrete energy and helicity identity
and the error estimate.

Lemma 3. Suppose (a, b, c) satisfies the reflection boundary condition

a(i, 0) = −a(i, 1), b(i, 0) = −b(i, 1), c(i, 0) = −c(i, 1)

and define

(4.11) Th(a, b, c) :=
1

3

∞∑
i=−∞

∞∑
j=1

(
c∇̃⊥

h a · ∇̃hb + a∇̃⊥
h b · ∇̃hc + b∇̃⊥

h c · ∇̃ha
)
i,j

ΔxΔr.
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Then

(4.12)

∞∑
i=−∞

∞∑
j=1

ci,jJh(a, b)i,jΔxΔr = Th(a, b, c),

and

(4.13)

〈
a,

(
−∇2

h +
1

r2

)
b

〉
h

= [a, b]h.

Proof. We first derive (4.12). In view of (4.1) and (4.11), it suffices to show that

(4.14)
∑
j

∑
i

c∇̃⊥
h · (a∇̃hb) = −

∑
i,j

a∇̃⊥
h c · ∇̃hb,

(4.15)
∑
i

∑
j

c∇̃h · (b∇̃⊥
h a) = −

∑
i,j

b∇̃hc · ∇̃⊥
h a

or, since there is no boundary terms in the x direction, simply

(4.16)
∞∑

i=−∞

∞∑
j=1

(fD̃rg)i,j = −
∞∑

i=−∞

∞∑
j=1

(gD̃rf)i,j

with f = c and g = bD̃xa− aD̃xb.
Using the summation-by-parts identity (see, for example, [15] or [11]), it is straight-

forward to verify that

∞∑
i=−∞

∞∑
j=1

(fD̃rg)i,j = −
∞∑

i=−∞

∞∑
j=1

(gD̃rf)i,j −
∞∑

i=−∞
(fi,0gi,1 + gi,0fi,1).

In the derivation of the discrete energy and helicity identities (see (4.18)–(4.20)
below), a typical triplet (a, b, c) is given by, say, a = rψh, b = ruh, and c = uh

r . From
the reflection boundary condition (4.8) and (4.9), we see that

fi,0 = −fi,1, gi,0 = gi,1.

This gives (4.16), and therefore (4.14), (4.15), and (4.12).
Next we derive (4.13). From the identity

∞∑
j=1

fj(gj+ 1
2
− gj− 1

2
) = −

∞∑
j=1

′(fj − fj−1)gj− 1
2
− 1

2
(f1 + f0)g 1

2

and r 1
2

= 0, it is easy to show that

∞∑
i=−∞

∞∑
j=1

ai,jDr(rDrb)i,j = −
∞∑

i=−∞

∞∑
j=1

′(Dra)i,j− 1
2
rj− 1

2
(Drb)i,j− 1

2
.

Therefore (4.13) follows.
From (4.11), we can easily derive the permutation identities

(4.17) Th(a, b, c) = Th(b, c, a) = Th(c, a, b), Th(a, b, c) = −Th(b, a, c) .
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Moreover, from (4.12), (4.13), it follows that

(4.18)

〈υ, ∂tuh〉h + Th(ruh, rψh,
υ
r ) = ν〈υ, (∇2

h − 1
r2 )uh〉h,

[ϕ, ∂tψh]h + Th(ωh

r , rψh, rϕ) = ν〈ϕ, (∇2
h − 1

r2 )ωh〉h + Th(uh

r , ruh, rϕ),

〈ξ, ωh〉h = [ξ, ψh]h

for all υ, ϕ, and ξ satisfying

υ(i, 0) = −υ(i, 1), ϕ(i, 0) = −ϕ(i, 1), ξ(i, 0) = −ξ(i, 1).

As a direct consequence of the permutation identity (4.17), we take (υ, ϕ) =
(uh, ψh) in (4.18) and recover the discrete energy identity

(4.19)
d

dt

1

2
(〈uh, uh〉h + [ψh, ψh]h) + ν([uh, uh]h + 〈ωh, ωh〉h) = 0.

Similarly, the discrete helicity identity

(4.20)
d

dt
〈uh, ωh〉h + ν

(
[uh, ωh]h −

〈
ωh,

(
∇2

h − 1

r2

)
uh

〉
h

)
= 0

follows by taking (υ, ϕ) = (ωh, uh) in (4.18).
Remark 2. In the presence of physical boundaries, the no-slip boundary condition

gives

(4.21) u · n = ∂τ (rψ) = 0, u · τ = ∂n(rψ) = 0, u · eθ = u = 0,

where τ = n × eθ and eθ is the unit vector in θ direction. When the cross section Ω
is simply connected, (4.21) reads as follows:

(4.22) u = 0, ψ = 0, ∂n(rψ) = 0 on ∂Ω .

It can be shown that the energy and helicity identities (4.19), (4.20) remain valid in
the presence of physical boundary conditions [11]. The numerical realization of the
no-slip condition (4.22) introduced in [11] is second order accurate and seems to be
new even for usual 2D flows. The convergence proof for this new boundary condition
will be reported elsewhere.

5. Energy estimate and the main theorem. In this section, we proceed with
the main theorem of the error estimate. We denote by (ψh, uh, ωh) the numerical
solution satisfying

(5.1)

∂tuh + 1
r2 Jh(ruh, rψh) = ν(∇2

h − 1
r2 )uh,

∂tωh + Jh
(
ωh

r , rψh

)
= ν(∇2

h − 1
r2 )ωh + Jh

(
uh

r , ruh

)
,

ωh = (−∇2
h + 1

r2 )ψh,

and (ψ, u, ω) the exact solution to (2.2),

(5.2)

∂tu + 1
r2 Jh(ru, rψ) = ν(∇2

h − 1
r2 )u + E1,

∂tω + Jh
(
ω
r , rψ

)
= ν(∇2

h − 1
r2 )ω + Jh

(
u
r , ru

)
+ E2,

ω = (−∇2
h + 1

r2 )ψ + E3,
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where the local truncation errors Ej can be derived by subtracting (2.2) from (5.2):

(5.3)

E1 = 1
r2 (Jh − J)(ru, rψ) − ν(∇2

h −∇2)u,

E2 = (Jh − J)
(
ω
r , rψ

)
− ν(∇2

h −∇2)ω − (Jh − J)
(
u
r , ru

)
,

E3 = (∇2
h −∇2)ψ.

From (5.1) and (5.2), we see that

(5.4) ∂t(u− uh) +
1

r2
(Jh(ru, rψ) − Jh(ruh, rψh)) = ν

(
∇2

h − 1

r2

)
(u− uh) + E1,

(5.5)
∂t(ω − ωh) +

(
Jh

(
ω
r , rψ

)
− Jh

(
ωh

r , rψh

))
= ν(∇2

h − 1
r2 )(ω − ωh) +

(
Jh

(
u
r , ru

)
− Jh

(
uh

r , ruh

))
+ E2,

(5.6) (ω − ωh) =

(
−∇2

h +
1

r2

)
(ψ − ψh) + E3.

Lemmas 4 and 5 below are key to our error estimate. The permutation identities
(4.17) associated with EHPS result in exact cancellation among the nonlinear terms
and lead to an exact identity (5.7). The estimates for the trilinear form in (5.13),
(5.14) then furnish necessary inequalities for our a priori error estimate. The proof for
Lemma 5 and the local truncation error analysis, Lemma 6, is given in the appendix.

Lemma 4.

(5.7)
1
2∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν(‖u− uh‖2

1,h + ‖ω − ωh‖2
0,h)

= 〈u− uh, E1〉h + 〈ψ − ψh, E2 − ∂tE3〉h + ν〈ω − ωh, E3〉h − Th

(
u−uh

r , r(u− uh), rψ
)

−Th

(
r(ψ − ψh), (ω−ωh)

r , rψ
)

+ Th

(
r(ψ − ψh), u

r , r(u− uh)
)
.

Proof. We take the weighted inner product of u− uh with (5.4) to get

(5.8)

1
2∂t‖u− uh‖2

0,h + 〈u− uh,
1
r2 (Jh(ru, rψ) − Jh(ruh, rψh))〉h

= ν〈u− uh, (∇2
h − 1

r2 )(u− uh)〉h + 〈u− uh, E1〉h .

The second term on the left-hand side of (5.8) can be rewritten as

(5.9)

〈u− uh,
1
r2 (Jh(ru, rψ) − Jh(ruh, rψh))〉h

= Th

(
u−uh

r , ru, rψ
)
− Th

(
u−uh

r , ruh, rψh

)
= −Th

(
u−uh

r , r(u− uh), r(ψ − ψh)
)

+ Th

(
u−uh

r , r(u− uh), rψ
)

+ Th

(
u−uh

r , ru, r(ψ − ψh)
)
.

In addition, from (4.13) we have

ν

〈
u− uh,

(
∇2

h − 1

r2

)
(u− uh)

〉
h

= −ν[u− uh, u− uh]h = −ν‖u− uh‖2
1,h .



2468 JIAN-GUO LIU AND WEI-CHANG WANG

Thus

(5.10)

1
2∂t‖u− uh‖2

0,h − Th

(
u−uh

r , r(u− uh), r(ψ − ψh)
)

+ ν‖u− uh‖2
1,h

= 〈u− uh, E1〉h − Th

(
u−uh

r , r(u− uh), rψ
)
− Th

(
u−uh

r , ru, r(ψ − ψh)
)
.

Similarly, we take the weighted inner product of ψ − ψh with (5.5) and proceed
as (5.9)–(5.10) to get

(5.11)

1
2∂t‖ψ − ψh‖2

1,h + Th

(
r(ψ − ψh), (ω−ωh)

r , rψ
)

= −Th

(
r(ψ − ψh), (u−uh)

r , r(u− uh)
)

+ Th

(
r(ψ − ψh), u

r , r(u− uh)
)

+Th

(
r(ψ − ψh), (u−uh)

r , ru
)

+ 〈ψ − ψh, E2 − ∂tE3〉h
+ν〈(ψ − ψh), (∇2

h − 1
r2 )(ω − ωh)〉h .

Next, we apply (4.13) twice to get

(5.12)

ν

〈
(ψ − ψh),

(
∇2

h − 1

r2

)
(ω − ωh)

〉
h

= ν

〈(
∇2

h − 1

r2

)
(ψ − ψh), ω − ωh

〉
h

= −ν‖ω − ωh‖2
0,h + ν〈ω − ωh, E3〉h,

and (5.7) follows. This completes the proof of this lemma.
We now proceed with the estimate for the trilinear form Th.
Lemma 5. For a, b, and c ∈ C2

s (R×R+), we have

(5.13) |Th

(
ra, rb,

c

r

)
| ≤ C‖a‖1,h‖b‖1,h|||c|||1,2,0

and

(5.14) |Th

(a
r
, rb, rc

)
| ≤ C‖a‖0,h‖b‖1,h|||c|||2,2,0.

Proof. See section A.1.
From Lemmas 4 and 5, we can therefore derive

(5.15)
1
2∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν(‖u− uh‖2

1,h + ‖ω − ωh‖2
0,h)

≤ |〈u− uh, E1〉h| + |〈ψ − ψh, E2 − ∂tE3〉h| + ν|〈ω − ωh, E3〉h|

+C‖u− uh‖0,h‖u− uh‖1,h|||ψ|||2,2,0 + C‖ω − ωh‖0,h‖ψ − ψh‖1,h|||ψ|||2,2,0

+C‖ψ − ψh‖1,h‖u− uh‖1,h|||u|||1,2,0.

Since

‖a
r
‖0,h ≤ ‖a‖1,h,

we can further estimate the first few terms on the right-hand side of (5.15) by

|〈u− uh, E1〉h| = |
〈
u− uh

r
, rE1

〉
h

| ≤ ν

4
‖u− uh‖2

1,h +
1

ν
‖rE1‖2

0,h,

|〈ψ − ψh, E2 − ∂tE3〉h| ≤ ‖ψ − ψh‖2
1,h + ‖r(E2 − ∂tE3)‖2

0,h,
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and

|〈ω − ωh, E3〉h| ≤
1

2
‖ω − ωh‖2

0,h +
1

2
‖E3‖2

0,h.

Applying Hölder’s inequality to the remaining terms of (5.15), we have derived the
following proposition.

Proposition 2.

(5.16)

1
2∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν

4 (‖u− uh‖2
1,h + ‖ω − ωh‖2

0,h)

≤ ‖ψ − ψh‖2
1,h + C

ν ‖rE1‖2
0,h + ‖rE2‖2

0,h + ‖r∂tE3‖2
0,h

+ν‖E3‖2
0,h + C

ν ‖u− uh‖2
0,h|||ψ|||22,2,0

+C
ν ‖ψ − ψh‖2

1,h|||ψ|||22,2,0 + C
ν ‖ψ − ψh‖2

1,h|||u|||21,2,0.

With Proposition 2, it remains to estimate ‖rE1‖0,h, ‖rE2‖0,h, ‖r∂tE3‖0,h, and
‖E3‖0,h. We summarize the results in the following lemma.

Lemma 6. Let (ψ, u, ω) ∈ C1(0, T ;C4
s ) be a solution of the axisymmetric NSE

(2.2) and E1, E2, E3 be defined by (5.2). Then we have the following pointwise local
truncation error estimate for α, β ∈ R:

(5.17) r|E1| ≤ C
Δx2 + Δr2

(1 + r)2α(1 + |x|)2β
(
|||ψ|||4,α+ 7

2 ,β
|||u|||4,α+ 7

2 ,β
+ |||u|||4,2α+2,2β

)
,

(5.18)

r|E2| ≤ C
Δx2 + Δr2

(1 + r)2α(1 + |x|)2β
(
|||ψ|||4,α+ 7

2 ,β
|||ω|||4,α+ 7

2 ,β
+ |||u|||24,α+ 7

2 ,β
+ |||ω|||4,2α+2,2β

)
,

(5.19) r|∂tE3| ≤ C
Δx2 + Δr2

(1 + r)2α(1 + |x|)2β |||∂tψ|||4,2α+2,2β ,

and

(5.20) |E3| ≤ C
Δx2 + Δr2

r(1 + r)2α(1 + |x|)2β |||ψ|||4,2α+2,2β .

Proof. See section A.2.
From Lemma 4 to 6, our main result follows.
Theorem 2. Let (ψ, u, ω) be a solution of the axisymmetric NSE (2.2) satisfying

(5.21) (ψ, ω) ∈ C1
(
0, T ;C4,γ,δ

s

)
, u ∈ C1

(
0, T ;C4,5,δ

s

)
, γ > 4, δ >

1

2
.

Then

(5.22)

sup
[0,T ]

(
‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h

)
+

∫ T

0

(‖u− uh‖2
1,h + ‖ω − ωh‖2

0,h)dt ≤ C(Δx4 + Δr4)| log Δr|,

where C = C(ψ, u, ν, T ).
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Proof. From Lemma 6, we have

‖rE1‖2
0,h + ‖rE2‖2

0,h + ‖r∂tE3‖2
0,h

≤ C(Δx4 + Δr4)

⎛
⎝ ∞∑

i=−∞

∞∑
j=1

rjΔrΔx

(1 + rj)4α(1 + |xi|)4β

⎞
⎠

×
(
|||(ψ, u, ω)|||4

4,α+ 7
2 ,β

+ |||(u, ω, ∂tψ)|||24,2α+2,2β

)
.

Similarly,

‖E3‖2
0,h ≤ C(Δx4 + Δr4)

⎛
⎝ ∞∑

i=−∞

∞∑
j=1

ΔrΔx

rj(1 + rj)4α(1 + |xi|)4β

⎞
⎠ |||ψ|||24,2α+2,2β .

Since

∞∑
i=−∞

∞∑
j=1

rjΔrΔx

(1 + rj)4α(1 + |xi|)4β
≤ C for α >

1

2
, β >

1

4

and

∞∑
i=−∞

∞∑
j=1

ΔrΔx

rj(1 + rj)4α(1 + |xi|)4β
≤ C| log Δr| for α > 0, β >

1

4
,

it follows that
(5.23)
‖rE1‖2

0,h+‖rE2‖2
0,h+‖r∂tE3‖2

0,h ≤ C(Δx4+Δr4)
(
|||(ψ, u, ω)|||44,γ,δ + |||(u, ω, ∂tψ)|||24,γ,δ

)
and

(5.24) ‖E3‖2
0,h ≤ C(Δx4 + Δr4)| log Δr||||ψ|||24,γ,δ

provided γ > 4, δ > 1
2 .

Under assumption (5.21), we have, in particular, ψ ∈ C2,2,0
s , u ∈ C1,2,0

s . It follows
from Proposition 2 and (5.23), (5.24) that

1
2∂t(‖u− uh‖2

0,h + ‖ψ − ψh‖2
1,h) + ν

4 (‖u− uh‖2
1,h + ‖ω − ωh‖2

0,h)

≤ C‖u− uh‖2
0,h + C‖ψ − ψh‖2

1,h + C(Δx4 + Δr4)| log Δr|.

The error estimate (5.22) then follows from Gronwall’s inequality.

6. Conclusion. The importance and subtlety of the pole singularity has been a
major difficulty in theoretical analysis and algorithm design for axisymmetric flows.
The numerical analysis near the pole singularity is much more complicated than that
of standard smooth flows. The principal ingredients of our error analysis are as follows:

(a) The fact that smooth solutions to (2.2) automatically satisfy the pole condi-
tion and thus belong to the class (2.13). This symmetry property plays an
essential role in the local truncation error analysis.
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(b) Proper formulation and discretization of the nonlinear terms. Here the Jaco-
bian formulation along with the distinctive discretization (4.1) result in exact
cancellation among the nonlinear terms in the energy estimate and therefore
lead to conservation identities in discrete setting.

These ingredients may also serve as a guideline of algorithm design for axisymmetric
flows.

In addition, the slow decay of the stream function at infinity poses extra technical
difficulties in analyzing the whole space problem. This difficulty is carefully resolved
by choosing a properly weighted r-homogeneous norm (3.2). On the one hand, (3.2)
takes into account the local behavior of the swirling components near the pole singu-
larity. On the other hand, it incorporates free parameters so that the slow decay of
the stream function can be properly compensated by tuning the parameters through
careful analysis.

Appendix A. Proof of technical lemmas.

A.1. Estimate for the trilinear form Th—proof of Lemma 5. We start
with the following basic identities.

Proposition 3. Define

(Ãxf)i,j =
1

2
(fi+1,j + fi−1,j), (Ãrf)i,j =

1

2
(fi,j+1 + fi,j−1).

Then the following estimates hold for j ≥ 1:

(A.1) |D̃r(ra)| ≤ C|Ãra| + Cr|D̃ra|,

(A.2) |D̃r(
a

r
)| ≤ C

|Ãra|
r2

+ C
|D̃ra|
r

,

(A.3) |Ãr(ra)| ≤ CrÃr|a|,

(A.4) |ΔrD̃ra| ≤ Ãr|a|, |ΔxD̃xa| ≤ Ãx|a|.

Remark 3. As in Remark 1, the stretching factor r in the arguments of the left-
hand side of (A.1)–(A.3) satisfy the even extension (4.9). A more precise statement
for, say, (A.1) is given by

|D̃r(|r|a)|i,j ≤ C|Ãra|i,j + Crj |D̃ra|i,j , j ≥ 1.

For simplicity of presentation, we will adopt the expression as in (A.1)–(A.3) through
the rest of the paper.

Proof of Proposition 3. It is easy to verify that

D̃r(fg) = (Ãrf)(D̃rg) + (Ãrg)(D̃rf), D̃x(fg) = (Ãxf)(D̃xg) + (Ãxg)(D̃xf).

A straightforward calculation shows that

(Ãr|r|)j ≤ Crj , | D̃r|r| |j ≤ C

and

Ãr

(
1

|r|

)
j

≤ C
1

rj
, |D̃r

(
1

|r|

)
|j ≤ C

1

r2
j



2472 JIAN-GUO LIU AND WEI-CHANG WANG

for j ≥ 1. The estimates (A.1)–(A.3) then follow. The proof for (A.4) is also straight-
forward.

Proof of Lemma 5. We begin with the proof of (5.13). We expand the left-hand
side as

Th

(
ra, rb, c

r

)
= 1

3

(
〈 c
r2 , ∇̃⊥

h (ra) · ∇̃h(rb)〉h + 〈a, ∇̃⊥
h (rb) · ∇̃h( c

r )〉h

+〈b, ∇̃⊥
h ( c

r ) · ∇̃h(ra)〉h
)

= 1
3 (I1 + I2 + I3)

and estimate the Ij ’s term by term. First, we have

|I1| = |
〈 c

r2
, ∇̃⊥

h (ra) · ∇̃h(rb)
〉
h
| = |

〈
c,−1

r
D̃r(ra)D̃x(b) + D̃x(a)

1

r
D̃r(rb)

〉
h

|;

therefore the estimate

|I1| ≤ C

〈
|c|,

(
| Ãr(a)

r
| + |D̃r(a)|

)
|D̃x(b)| +

(
| Ãr(b)

r
| + |D̃r(b)|

)
|D̃x(a)|

〉
h

≤ C‖a‖1,h‖b‖1,h‖c‖0,1,0

follows from (A.1), Hölder’s inequality, and the inequality |c| = |r c
r | ≤ ‖c‖0,1,0.

Second, we have

|I2| ≤ C〈|a|, | Ãr(b)
r | + |D̃r(b)||D̃x(c)|〉h + C〈|a|, |D̃r(c)||D̃x(b)|〉h

+C〈 |a|r , |Ar(c)||D̃x(b)|〉h

= C〈 |a|r , | Ãr(b)
r | + |D̃r(b)||rD̃x(c)|〉h + C〈 |a|r , |rD̃r(c)||D̃x(b)|〉h

+C〈 |a|r , |Ar(c)||D̃x(b)|〉h
≤ C‖a‖1,h‖b‖1,h(‖c‖0,1,0 + ‖c‖1,2,0) ≤ C‖a‖1,h‖b‖1,h|||c|||1,2,0.

The estimate for I3 is similar and (5.13) follows.
Next we proceed with (5.14). Since

|Th

(a
r
, rb, rc

)
| = |

〈
a,

1

r2
Jh(rb, rc)

〉
h

| ≤ ‖a‖0,h‖
1

r2
Jh(rb, rc)‖0,h,

it suffices to give a pointwise estimate for the integrand Jh(rb, rc) as follows:
(A.5)

−3Jh(rb, rc) = D̃r(rb)D̃x(rc) − D̃x(rb)D̃r(rc) + D̃r

(
rbD̃x(rc)

)
− D̃x

(
rbD̃r(rc)

)
+D̃x

(
rcD̃r(rb)

)
− D̃r

(
rcD̃x(rb)

)
= D̃r(rb)(I + Ãr)D̃x(rc) − D̃x(rb)(I + Ãx)D̃r(rc)

+(Ãr − Ãx)(rb)D̃rD̃x(rc) + (Ãx − Ãr)(rc)D̃xD̃r(rb)

+D̃x(rc)ÃxD̃r(rb) − D̃r(rc)ÃrD̃x(rb)

= D̃r(rb)(I + Ãr)D̃x(rc) − D̃x(rb)(I + Ãx)D̃r(rc)

+(Ãr − Ãx)(rb)D̃rD̃x(rc)

+ 1
2Δx2D̃rD̃x(rb)D2

x(rc) − 1
2Δr2D̃rD̃x(rb)D2

r(rc)

+D̃x(rc)ÃxD̃r(rb) − D̃r(rc)ÃrD̃x(rb).
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Here I is the identity operator and we have used the identities

Ãx =
1

2
Δx2D2

x + I, Ãr =
1

2
Δr2D2

r + I

in the second equality of (A.5).
From (A.1), the first two terms on the right-hand side of (A.5) can be estimated

by

(A.6) |D̃r(rb)(I + Ãr)D̃x(rc)| ≤ Cr2

(
|D̃rb| +

|Ãrb|
r

)
‖∂xc‖L∞ ,

(A.7)

|D̃x(rb)(I + Ãx)D̃r(rc)| ≤ Cr2|D̃xb|‖∂rc +
c

r
‖L∞ ≤ Cr2|D̃xb|(‖c‖0,0,0 + ‖c‖1,1,0).

From (A.3) and (A.4), we can similarly estimate the remaining terms in (A.5):

(A.8)
|(Ãr − Ãx)(rb)D̃rD̃x(rc)| ≤ Cr2 (Ãr + Ãx)|b|

r
‖∂x∂r(rc)‖L∞

≤ Cr2 (Ãr + Ãx)|b|
r

(‖c‖1,1,0 + ‖c‖2,2,0),

(A.9)

|1
2
Δx2D̃rD̃x(rb)D2

x(rc)| ≤ C
(Δx)2

Δr
|Ãr(rD̃x(b))D2

x(rc)| ≤ Cr2 Δr

r
Ãr|D̃xb|‖c‖2,2,0,

(A.10)

|1
2
Δr2D̃rD̃x(rb)D2

r(rc)| ≤ CΔr|ÃrD̃x(rb)|‖∂2
r (rc)‖L∞ ≤ Cr2 Δr

r
Ãr|D̃xb||||c|||2,2,0,

(A.11)

|ÃxD̃r(rb)D̃x(rc)| ≤ Cr2|Ãx

(
1

r
D̃r(rb)

)
|‖∂xc‖L∞ ≤ Cr2Ãx

(
|D̃rb| +

1

r
Ãr|b|

)
‖c‖1,1,0,

and

(A.12) |ÃrD̃x(rb)D̃r(rc)| ≤ Cr2Ãr|D̃xb||||c|||1,1,0.

From (A.6)–(A.12), we can estimate the weighted L2 norm of 1
r2 Jh(rb, rc) by

‖ 1

r2
Jh(rb, rc)‖0,h ≤ C‖

(
|D̃xb| + |D̃rb| +

|b|
r

)
‖0,h|||c|||2,2,0 ≤ C‖b‖1,h|||c|||2,2,0

and (5.14) follows.

A.2. Local truncation error analysis—proof of Lemma 6. In this sub-
section, we proceed with the local truncation error estimate. All the assertions in
Lemmas 7 to 10 are pointwise estimates on the grid points (xi, rj), j ≥ 1. For brevity,
we omit the indices (i, j) whenever it is obvious.

We start with the estimates of the diffusion terms in (5.3).
Lemma 7. If a ∈ C4

s (R×R+) and α0, β0 ∈ R, we have

(A.13) r|(∇2
h −∇2)a| ≤ C

(
Δx2 + Δr2

) 1

(1 + r)α0(1 + |x|)β0
|||a|||4,α0+2,β0

and

(A.14) |(∇2
h −∇2)a| ≤ C

(
Δx2 + Δr2

) 1

r

1

(1 + r)α0(1 + |x|)β0
|||a|||4,α0+2,β0

.
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Proof. Since a ∈ C4
s (R×R+), the odd extension of a given by

ã(x, r) =

{
a(x, r), if r ≥ 0,

−a(x,−r), if r < 0,

is in C4(R2). It follows that

(A.15)

∇2
ha =

(
D2

x + D2
r +

D̃r

r

)
a

= ∇2a +
1

12
Δx2∂4

xa|(ξ,r) + Δr2

(
1

12
∂4
ra|(x,η1) +

1

6

1

r
(∂3

ra)(x,η2)

)

is valid for all j ≥ 1 with ξ ∈ (x− Δx, x + Δx) and η1, η2 ∈ (r − Δr, r + Δr).
Thus

r|(∇2
h −∇2)a|

≤ C
(
Δx2 + Δr2

) (
r|∂4

x(r a
r )|(ξ,r)| + r|∂4

r (r a
r )|(x,η1)| + |∂3

r (r a
r )|(x,η2)|

)
≤ C

(
Δx2 + Δr2

) ( r‖a‖4,α0+2,β0

(1+r)α0+1(1+|ξ|)β0
+

r(‖a‖4,α0+2,β0
+‖a‖3,α0+1,β0

)

(1+η1)α0+1(1+|x|)β0

+
‖a‖3,α0+1,β0

+‖a‖2,α0,β0

(1+η2)α0 (1+|x|)β0

)
≤ C

(
Δx2 + Δr2

)
1

(1+r)α0 (1+|x|)β0
|||a|||4,α0+2,β0 .

This gives (A.13), together with (A.14) as a direct consequence.
Next we proceed with the estimates for the Jacobians, starting with their typical

factors.
Lemma 8. For a ∈ C4

s (R×R+), α, β ∈ R, we have

(A.16) D̃x

(a
r

)
= ∂x

(a
r

)
+ O(1)Δx2 1

(1 + r)α(1 + |x|)β |||a|||3,α,β ,

(A.17) D̃x(ra) = ∂x(ra) + O(1)r2Δx2 1

(1 + r)α(1 + |x|)β |||a|||3,α,β ,

(A.18) D̃r

(a
r

)
= ∂r

(a
r

)
+ O(1)

Δr2

r3

1

(1 + r)α(1 + |x|)β |||a|||3,α+3,β ,

(A.19) D̃r(ra) = ∂r(ra) + O(1)
Δr2

r

1

(1 + r)α(1 + |x|)β |||a|||3,α+3,β .

Proof. We begin with (A.16) and (A.17).
Since

(D̃x − ∂x)f =
Δx2

6
∂3
xf|(ξ,r), ξ ∈ (x− Δx, x + Δx),

it follows that∣∣∣(D̃x − ∂x)
(a
r

)∣∣∣ =
Δx2

6

∣∣∣∂3
x

(a
r

)∣∣∣
|(ξ,r)

≤ CΔx2 1

(1 + r)α(1 + |x|)β ‖a‖3,α,β
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and

|(D̃x − ∂x)(ra)| =
Δx2

6

∣∣∣∣∂3
x

(
r2 a

r

)
|(ξ,r)

∣∣∣∣ ≤ Cr2Δx2 1

(1 + r)α(1 + |x|)β ‖a‖3,α,β .

For (A.18) and (A.19), the estimate is more complicated due to our reflection
boundary condition (4.8) and (4.9). We estimate for j > 1 and j = 1 separately.

When j > 1, we have

(D̃r − ∂r)f =
1

6
Δr2∂3

rf |(x,η), η ∈ (r − Δr, r + Δr).

Therefore∣∣∣(D̃r − ∂r)
(a
r

)∣∣∣ =
Δr2

6

∣∣∣∂3
r

(a
r

)∣∣∣
(x,η)

≤ C
Δr2

r3

1

(1 + r)α(1 + |x|)β ‖a‖3,α+3,β

and

|(D̃r − ∂r)(ra)| ≤ CΔr2
∣∣∂3

r (r2 a
r )
∣∣
(x,η)

≤ CΔr2

r
1

(1+r)α(1+|x|)β (‖a‖3,α+3,β + ‖a‖2,α+2,β + ‖a‖1,α+1,β).

When j = 1, we have∣∣∣∂r (a
r

)∣∣∣
j=1

= C
Δr2

r3
1

r1

∣∣∣∂r (a
r

)∣∣∣
j=1

≤ C
Δr2

r3
1

1

(1 + r1)α(1 + |x|)β ‖a‖1,α+1,β .

In addition, since r1 = Δr
2 , we apply (4.9) to get∣∣∣D̃r

(a
r

)∣∣∣
j=1

=

∣∣∣∣ a2

r2
+ a1

r1

2Δr

∣∣∣∣ =

∣∣∣∣CΔr2

r3
1

(
a2

r2
+

a1

r1

)∣∣∣∣≤C
Δr2

r3
1

1

(1 + r1)α(1 + |x|)β ‖a‖0,α,β ,

and (A.18) follows.
(A.19) can be proved similarly, as follows:

D̃r(ra)j=1 =
3
2Δra2 + 1

2Δra1

2Δr
=

3

4
a2 +

1

4
a1,

|a1| ≤ C
Δr2

r1

∣∣∣∣a1

r1

∣∣∣∣ ≤ C
Δr2

r1

1

(1 + r1)α(1 + |x|)β ‖a‖0,α,β ,

and

|a2| ≤ C
Δr2

r1

∣∣∣∣a2

r2

∣∣∣∣ ≤ C
Δr2

r1

1

(1 + r1)α(1 + |x|)β ‖a‖0,α,β .

Therefore ∣∣∣D̃r(ra)
∣∣∣
j=1

≤ C
Δr2

r1

1

(1 + r1)α(1 + |x|)β ‖a‖0,α,β .

In addition,

|∂r(ra)|j=1 ≤
(
r2

∣∣∣∂r (a
r

)∣∣∣ + 2r
∣∣∣a
r

∣∣∣)
j=1

≤ C
Δr2

r1

‖a‖1,α+1,β + ‖a‖0,α,β

(1 + r1)α(1 + |x|)β ,

and (A.19) follows.
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We now continue with the pointwise estimate for the Jacobi terms 1
r |Jh(ra, rb)−

J(ra, rb)| and r|Jh
(
a
r , rb

)
− J

(
a
r , rb

)
|. Since

(A.20)
3
r2 Jh(ra, rb) = D̃x(ar )D̃r(rb) − D̃r(ra)D̃x( b

r ) + D̃x

(
a
r D̃r(rb) − b

r D̃r(ra)
)

+ 1
r2 D̃r

(
r2bD̃xa− r2aD̃xb

)
,

(A.21)
3Jh

(
a
r , rb

)
= D̃x(ar )D̃r(rb) − D̃r(

a
r )D̃x(rb) + D̃x

(
a
r D̃r(rb) − rbD̃r(

a
r )
)

+D̃r

(
bD̃xa− aD̃xb

)
,

it suffices to estimate the terms in (A.20) and (A.21) individually. We summarize
them as the following lemma.

Lemma 9. If a, b ∈ C4
s (R×R+) and α1, α2, β1, β2 ∈ R, then

(A.22)
r|D̃r(

a
r )D̃x(rb) − ∂r(

a
r )∂x(rb)| + 1

r |D̃r(rb)D̃x(ra) − ∂r(rb)∂x(ra)|

≤ C(Δx2 + Δr2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+
5
2 ,β1

|||b|||3,α2+
5
2 ,β2

,

(A.23)
r|D̃x(ar D̃r(rb)) − ∂x(ar ∂r(rb))| + r|D̃x(raD̃r(

b
r )) − ∂x(ra∂r(

b
r ))|

≤ C(Δx2 + Δr2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+
5
2 ,β1

|||b|||4,α2+
7
2 ,β2

,

(A.24)
r|D̃r(aD̃xb) − ∂r(a∂xb)| + 1

r |D̃r(r
2aD̃xb) − ∂r(r

2a∂xb)|

≤ C(Δx2 + Δr2) 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||3,α1+
5
2 ,β1

|||b|||4,α2+
7
2 ,β2

.

Proof. Since (A.16)–(A.19) are valid for any α, β ∈ R, we have

(A.25) D̃x

(a
r

)
= ∂x

(a
r

)
+ O(1)Δx2 1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ,β1 ,

(A.26) D̃x(ra) = ∂x(ra) + O(1)r2Δx2 1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ,β2 ,

(A.27) D̃r

(a
r

)
= ∂r

(a
r

)
+ O(1)

Δr2

r3

1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ+3,β1 ,

(A.28) D̃r(ra) = ∂r(ra) + O(1)
Δr2

r

1

(1 + r)α1+λ(1 + |x|)β1
|||a|||3,α1+λ+3,β1

,

and

(A.29) D̃x

(
b

r

)
= ∂x

(
b

r

)
+ O(1)Δx2 1

(1 + r)α2+μ(1 + |x|)β2
|||b|||3,α2+μ,β2

,

(A.30) D̃x(rb) = ∂x(rb) + O(1)r2Δx2 1

(1 + r)α2+μ(1 + |x|)β2
|||b|||3,α2+μ,β2

,

(A.31) D̃r

(
b

r

)
= ∂r

(
b

r

)
+ O(1)

Δr2

r3

1

(1 + r)α2+μ(1 + |x|)β2
|||b|||3,α2+μ+3,β2 ,

(A.32) D̃r(rb) = ∂r(rb) + O(1)
Δr2

r

1

(1 + r)α2+μ(1 + |x|)β2
|||b|||3,α2+μ+3,β2
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for any λ, μ ∈ R. We apply (A.27), (A.30) with λ = − 1
2 , μ = 5

2 to get

r|D̃r(
a
r )D̃x(rb) − ∂r(

a
r )∂x(rb)|

= r|D̃r(
a
r )D̃x(rb) − ∂r(

a
r )D̃x(rb) + ∂r(

a
r )D̃x(rb) − ∂r(

a
r )∂x(rb)|

= O(|D̃x(rb)|)Δr2

r2

|||a|||
3,α1+ 5

2
,β1

(1+r)α1− 1
2 (1+|x|)β1

+ O(|∂r(ar )|)r3Δx2
|||b|||

3,α2+ 5
2
,β2

(1+r)α2+ 5
2 (1+|x|)β2

.

Moreover, since

r3|∂r
(a
r

)
| ≤ 1

(1 + r)α1− 5
2 (1 + |x|)β1

‖a‖1,α1+
1
2 ,β1

and

|D̃x(rb)| = |∂x(rb)(ξ, r)| ≤ r2 1

(1 + r)α2+
1
2 (1 + |x|)β2

‖b‖1,α2+
1
2 ,β2

,

it follows that

(A.33)

r|D̃r(
a
r )D̃x(rb) − ∂r(

a
r )∂x(rb)|

≤ C(Δx2 + Δr2)
|||a|||

3,α1+ 5
2
,β1

‖b‖
1,α2+ 1

2
,β2

+‖a‖
1,α1+ 1

2
,β1

|||b|||
3,α2+ 5

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2

≤ C(Δx2 + Δr2)
|||a|||

3,α1+ 5
2
,β1

|||b|||
3,α2+ 5

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2
.

Similarly, from (A.32) and (A.25), we have

(A.34)

r|D̃x(ar )D̃r(rb) − ∂x(ar )∂r(rb)|

= r|D̃x(ar )D̃r(rb) − D̃x(ar )∂r(rb) + D̃x(ar )∂r(rb) − ∂x(ar )∂r(rb)|

= O(|D̃x(ar )|)Δr2
|||b|||

3,α2+ 5
2
,β2

(1+r)α2− 1
2 (1+|x|)β2

+ O(|∂r(rb)|)rΔx2
|||a|||

3,α1+ 5
2
,β1

(1+r)α1+ 5
2 (1+|x|)β1

≤ CΔr2
|||a|||

1,α1+ 1
2
,β1

|||b|||
3,α2+ 5

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2
+ CΔx2

|||a|||
3,α1+ 5

2
,β1

|||b|||
1,α2+ 1

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2

≤ C(Δx2 + Δr2)
|||a|||

3,α1+ 5
2
,β1

|||b|||
3,α2+ 5

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2
.

The estimate (A.22) then follows from (A.33) and (A.34).
For (A.23), we have

(A.35)

D̃x(fD̃rg) − ∂x(f∂rg)

= D̃x(f(D̃r − ∂r)g) + (D̃x − ∂x)(f∂rg)

= ∂x(f(D̃r − ∂r)g)|(ξ1,r) + 1
6Δx2∂3

x(f∂rg)|(ξ2,η)

= (∂xf)((D̃r − ∂r)g)|(ξ1,r) + f((D̃r − ∂r)∂xg)|(ξ1,r) + 1
6Δx2∂3

x(f∂rg)|(ξ2,η).
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We proceed with individual terms in (A.35), taking f = a
r and g = rb. From (A.30)

with μ = − 1
2 , we have

r
∣∣∣(∂x a

r )(D̃r − ∂r)(rb)
∣∣∣ ≤ C|∂x(ar )|Δr2 1

(1+r)α2− 1
2 (1+|x|)β2

|||b|||3,α2+
5
2 ,β2

≤ CΔr2 1
(1+r)α1+α2 (1+|x|)β1+β2

|||a|||1,α1+
1
2 ,β1

|||b|||3,α2+
5
2 ,β2

.

Similarly, from (A.32)

r
∣∣∣ar (D̃r − ∂r)∂x(rb)

∣∣∣
≤ CΔr2|ar |

1

(1+r)α2+ 1
2 (1+|x|)β2

|||∂xb|||3,α2+
7
2 ,β2

≤ CΔr2 1
(1+r)α1+α2 (1+|x|)β1+β2

‖a‖0,α1− 1
2 ,β1

‖b‖4,α2+
7
2 ,β2

,

r
∣∣Δx2∂3

x(ar ∂r(rb))|(x,η)

∣∣
≤ CΔx2

∣∣r∂3
x

(
a
r

)
∂r(rb) + r

(
a
r

)
∂3
x∂r(rb)

∣∣
≤ CΔx2

‖a‖
3,α1+ 5

2
,β1

‖b‖
1,α2+ 1

2
,β2

+‖a‖
0,α1− 1

2
,β1

‖b‖
3,α2+ 7

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2

≤ CΔx2
|||a|||

3,α1+ 5
2
,β1

|||b|||
4,α2+ 7

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2
.

Therefore

r|D̃x

(a
r
D̃r(rb)

)
− ∂x

(a
r
∂r(rb)

)
| ≤ C(Δx2 + Δr2)

|||a|||3,α1+
5
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2
.

Using the same argument as above, one can derive

r|D̃x

(
raD̃r

(
b

r

))
− ∂x

(
ra∂r

(
b

r

))
| ≤ C(Δx2 + Δr2)

|||a|||3,α1+
5
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2

and therefore (A.23) is proved.
We continue with (A.24). For the first term, we can write

D̃r(aD̃xb) − ∂r(a∂xb) = D̃r(a(D̃x − ∂x)b) + (D̃r − ∂r)(a∂xb).

Since a, b ∈ C4
s (R×R+), by extending a, b to odd functions across r = 0, we see that

the extended aD̃xb is in C4(R2); thus

D̃r(a(D̃x − ∂x)b) = ∂r(a(D̃x − ∂x)b)|(x,η)

=
(
∂ra(D̃x − ∂x)b + a(D̃x − ∂x)(∂rb)

)
|(x,η)

= Δx2

6

(
∂ra|(x,η)∂

3
xb|(ξ1,η) + a|(x,η)∂

3
x∂rb|(ξ2,η)

)
and therefore

(A.36) r|D̃r(a(D̃x − ∂x)b)| ≤ CΔx2
|||a|||1,α1+

1
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2
.
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Similarly, the extended a∂xb is in C3(R2), and thus we have

(A.37) r|(D̃r−∂r)(a∂xb)| = r
Δr2

6
∂3
r (a∂xb)|(x,η) ≤ CΔr2

|||a|||3,α1+
5
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2
.

From (A.36) and (A.37), we have the following estimate for the first term of (A.24):

(A.38) r|D̃r(aD̃xb) − ∂r(a∂xb)| ≤ C(Δx2 + Δr2)
|||a|||3,α1+

5
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2
.

The second term in (A.24) can be treated similarly, as follows:

(A.39)
1

r
D̃r(r

2aD̃xb) −
1

r
∂r(r

2a∂xb) =
1

r
D̃r(r

2a(D̃x − ∂x)b) +
1

r
(D̃r − ∂r)(r

2a∂xb).

Again, since the extensions of r2a(D̃x − ∂x)b and r2a∂xb are both in C3(R2), we can
directly estimate these two terms by
(A.40)

1
r D̃r(r

2a(D̃x − ∂x)b) = 1
r∂r(r

2a(D̃x − ∂x)b)(x,η)

= 1
r

((
∂r(r

2a)(D̃x − ∂x)b
)

(x,η)
+
(
r2a(D̃x − ∂x)(∂rb)

)
(x,η)

)

= CΔx2
((

(r∂ra + 2a)∂3
xb
)
(ξ1,η)

+
(
ra∂3

x(∂rb)
)
(ξ2,η)

)
and

(A.41)
1

r
(D̃r − ∂r)(r

2a∂xb) =
Δr2

r
∂3
r (r2a∂xb)(x,η) =

Δr2

r
∂3
r

(
r4 a

r
∂x(

b

r
)

)
(x,η)

.

From (A.40) and (A.41), we have

(A.42)

| 1r D̃r(r
2a(D̃x − ∂x)b)|

≤ CΔx2
|||a|||

1,α1+ 1
2
,β1

|||b|||
3,α2+ 5

2
,β2

+‖a‖
0,α1− 1

2
,β1

|||b|||
4,α2+ 7

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2

≤ CΔx2
|||a|||

1,α1+ 1
2
,β1

|||b|||
4,α2+ 7

2
,β2

(1+r)α1+α2 (1+|x|)β1+β2

and

(A.43)
1

r

∣∣∣(D̃r − ∂r)(r
2a∂xb)

∣∣∣ ≤ CΔr2
|||a|||3,α1+

5
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2
.

From (A.39), (A.42), and (A.43), we conclude that

(A.44)

∣∣∣∣1r D̃r(r
2aD̃xb) −

1

r
∂r(r

2a∂xb)

∣∣∣∣ ≤ C(Δx2 + Δr2)
|||a|||3,α1+

5
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2
.

The estimates (A.38) and (A.44) imply (A.24). Thus the proof of Lemma 9 is com-
pleted.
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As a direct consequence of Lemma 9, we have the following pointwise estimate
for the Jacobians.

Lemma 10. If a, b ∈ C4
s (R×R+), then

1

r
|Jh(ra, rb) − J(ra, rb)| ≤ C(Δx2 + Δr2)

|||a|||4,α1+
7
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2
,

r|Jh
(a
r
, rb

)
− J

(a
r
, rb

)
| ≤ C(Δx2 + Δr2)

|||a|||4,α1+
7
2 ,β1

|||b|||4,α2+
7
2 ,β2

(1 + r)α1+α2(1 + |x|)β1+β2

for any α1, α2, β1, β2 ∈ R.
From (5.3), Lemma 7, and Lemma 10, we can easily derive (5.17)–(5.20). This

completes the proof of Lemma 6.

Acknowledgments. The authors would like to thank the anonymous referees
and Dr. YinLiang Huang for their valuable suggestions that helped to improve this
paper.

REFERENCES

[1] A. Arakawa, Computational design for long-term numerical integration of the equations of
fluid motion: Two dimensional incompressible flow. Part I, J. Comput. Phys., 1 (1966),
pp. 119–143.

[2] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cam-
bridge, UK, 1999.

[3] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of
the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), pp. 771–831.

[4] D. Chae and J. Lee, On the regularity of axisymmetric solutions of the Navier-Stokes equa-
tions, Math. Z., 239 (2002), pp. 645–671.

[5] R. Grauer and T. C. Sideris, Numerical computation of 3D incompressible ideal fluids with
swirl, Phys. Rev. Lett., 67 (1991), pp. 3511–3514.

[6] R. Grauer and T. C. Sideris, Finite time singularities in ideal fluids with swirl, Phys. D, 88
(1995), pp. 116–132.

[7] T. Y. Hou and B. T. R. Wetton, Convergence of a finite difference scheme for the Navier–
Stokes equations using vorticity boundary conditions, SIAM J. Numer. Anal., 29 (1992),
pp. 615–639.

[8] T. Kato, Nonstationary flows of viscous and ideal fluids in R3, J. Funct. Anal., 9 (1972),
pp. 296–305.

[9] O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and
Breach, New York, 1969.

[10] P. L. Lions, Mathematical Topics in Fluid Mechanics, Volume 1: Incompressible Models,
Oxford Lecture Ser. Math. Appl., Oxford University Press, New York, 1996.

[11] J.-G. Liu and W. C. Wang, Energy and helicity preserving schemes for hydro- and
magnetohydro-dynamics flows with symmetry, J. Comput. Phys., 200 (2004), pp. 8–33.

[12] J.-G. Liu and W. C. Wang, Characterization and Regularity of Axisymmetric Solenoidal
Vector Fields with Application to Navier-Stokes Equation, preprint, 2006.

[13] P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on
a sphere, Atmosphere, 11 (1973), pp. 13–20.

[14] Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, Fully conservative higher order
finite difference schemes for incompressible flow, J. Comput. Phys., 143 (1998), pp. 90–124.

[15] P. Olsson, Summation by parts, projections, and stability. I, Math. Comp., 64 (1995),
pp. 1035–1065.

[16] S. A. Piacsek and G. P. Williams, Conservation properties of convection difference schemes,
J. Comput. Phys., 6 (1970), pp. 392–405.

[17] P. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, UK, 1992.
[18] R. W. C. P. Verstappen and A. E. P. Veldman, Symmetry-preserving discretization of

turbulent flow, J. Comput. Phys., 187 (2003), pp. 343–368.
[19] C. Wang and J.-G. Liu, Analysis of finite difference schemes for unsteady Navier-Stokes

equations in vorticity formulation, Numer. Math., 91 (2002), pp. 543–576.



SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 6, pp. 2481–2504

A RESTARTED KRYLOV SUBSPACE METHOD FOR THE
EVALUATION OF MATRIX FUNCTIONS∗

MICHAEL EIERMANN† AND OLIVER G. ERNST†

Abstract. We show how the Arnoldi algorithm for approximating a function of a matrix times
a vector can be restarted in a manner analogous to restarted Krylov subspace methods for solving
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the results of numerical experiments.
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1. Introduction. The evaluation of

f(A)b, where A ∈ C
n×n, b ∈ C

n,(1.1)

and f : C ⊃ D → C is a function for which f(A) is defined, is a common compu-
tational task. Besides the solution of linear systems of equations, which involves the
reciprocal function f(λ) = 1/λ, by far the most important application is the time
evolution of a system under a linear operator, in which case f(λ) = ft(λ) = etλ and
time acts as a parameter t. Other applications involving differential equations require
the evaluation of (1.1) for the square root and trigonometric functions (see [8, 1]).
Further applications include identification problems for semigroups involving the log-
arithm (see, e.g., [29]) and lattice quantum chromodynamics simulations requiring the
evaluation of the matrix sign function (see [34] and the references therein).

In many of the applications mentioned above the matrix A is large and sparse or
structured, typically resulting from discretization of an infinite-dimensional operator.
In this case evaluating (1.1) by first computing f(A) is usually unfeasible, so that
most of the algorithms for the latter task (see, e.g., [18, 5]) cannot be used. The
standard approach for approximating (1.1) directly is based on a Krylov subspace of
A with initial vector b [8, 9, 28, 14, 17, 4, 19]. The advantage of this approach is
that it requires A only for computing matrix-vector products and that, for smooth
functions such as the exponential, it converges superlinearly [8, 28, 31, 17].

One shortcoming of the Krylov subspace approximation, however, lies in the fact
that computing an approximation of (1.1) from a Krylov subspace Km(A, b) of di-
mension m involves all the basis vectors of Km(A, b), and hence these need to be
stored. Memory constraints therefore often limit the size of the problem that can be
solved, which is an issue especially when A is the discrete representation of a partial
differential operator in three space dimensions. When A is Hermitian, the Hermitian
Lanczos process allows the basis of Km(A, b) to be constructed by a three-term recur-
rence. When solving linear systems of equations, this recurrence for the basis vectors
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immediately translates to efficient update formulas for the approximation. This, how-
ever, is a consequence of the simple form of the reciprocal function and such update
formulas are not available for general (nonrational) functions.

When solving non-Hermitian linear systems of equations by Krylov subspace ap-
proximation, a common remedy is to limit storage requirements by restarting the al-
gorithm each time the Krylov space has reached a certain maximal dimension [26, 10].
The subject of this work is the extension of this restarting approach to general func-
tions. How such a generalization may be accomplished is not immediately obvious,
since the restarting approach for linear systems is based on solving successive residual
equations to obtain corrections to the most recent approximation. The availability of
a residual, however, is another property specific to problems where f(A)b solves an
(algebraic or differential) equation.

The remainder of this paper is organized as follows: Section 2 recalls the defi-
nition and properties of matrix functions and their approximation in Krylov spaces,
emphasizing the role of Hermite interpolation, and closes with an error representation
formula for Krylov subspace approximations. In section 3 we introduce a new restarted
Krylov subspace algorithm for the approximation of (1.1) for general functions f . We
derive two mathematically equivalent formulations of the restarted algorithm, the
second of which, while slightly more expensive, was found to be more stable in the
presence of rounding errors.

In section 4 we show that, for the reciprocal and exponential functions, our
restarted method reduces to the restarted full orthogonalization method (FOM; see
[27]) and is closely related to an algorithm by Celledoni and Moret [4], respectively.
We further establish that, for entire functions of order one (such as the exponential
function), the superlinear convergence property of the Arnoldi/Lanczos approxima-
tion of (1.1) is retained by our restarted method. In section 5 we demonstrate the
performance of the restarted method for several test problems.

2. Matrix functions and their Krylov subspace approximation. In this
section we fix notation, provide some background material on functions of matrices
and their approximation using Krylov subspaces, highlight the connection with Her-
mite interpolation, and derive a new representation formula for the error of Krylov
subspace approximations of f(A)b.

2.1. Functions of matrices. We recall the definition of functions of matrices
(as given, e.g., in Gantmacher [15, Chapter 5]): Let Λ(A) = {λ1, λ2, . . . , λk} denote
the k distinct eigenvalues of A ∈ C

n×n and let the minimal polynomial of A be given
by

mA(λ) =

k∏
j=1

(λ− λj)
nj ∈ PK , where K =

k∑
j=1

nj .

Given a complex-valued function f , the matrix f(A) is defined if f (r)(λj) exists for
r = 0, 1, . . . , nj − 1; j = 1, 2, . . . , k. In this case f(A) := qf,A(A), where qf,A ∈ PK−1

denotes the unique polynomial of degree at most K−1 which satisfies the K Hermite
interpolation conditions

q
(r)
f,A(λj) = f (r)(λj), r = 0, 1, . . . , nj − 1, j = 1, 2, . . . , k.(2.1)

In the remainder of the paper, we denote the unique polynomial q which interpolates
f in the Hermite sense at a set of nodes {ϑj}kj=1 with multiplicities nj by Ipf ∈ PK−1,
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K =
∑

j nj , where p ∈ PK is a (not necessarily monic) nodal polynomial with zeros
ϑj of multiplicities nj . In this notation, (2.1) reads

qf,A = ImA
f.

Our objective is the evaluation of f(A)b rather than f(A), and this can possibly
be achieved with polynomials of lower degree than qf,A. To this end, let the minimal
polynomial of b ∈ C

n with respect to A be given by

mA,b(λ) =

�∏
j=1

(λ− λj)
mj ∈ PL, where L = L(A, b) =

�∑
j=1

mj .(2.2)

Proposition 2.1. Given a function f , a matrix A ∈ C
n×n such that f(A) is

defined, and a vector b ∈ C
n whose minimal polynomial with respect to A is given

by (2.2), there holds f(A)b = qf,A,b(A)b, where qf,A,b := ImA,b
f ∈ PL−1 denotes the

unique Hermite interpolating polynomial determined by the conditions

q
(r)
f,A,b(λj) = f (r)(λj), r = 0, 1, . . . ,mj − 1, j = 1, 2, . . . , �.

2.2. Krylov subspace approximations. We recall the definition of the mth
Krylov subspace of A ∈ C

n×n and 0 �= b ∈ C
n given by

Km(A, b) := span{b, Ab, ..., Am−1b} = {q(A)b : q ∈ Pm−1}.

By Proposition 2.1, f(A)b lies in KL(A, b). The index L = L(A, b) ∈ N (cf. (2.2)) is
the smallest number for which KL(A, b) = KL+1(A, b). Note that for certain functions
such as f(λ) = 1/λ, we have f(A)b ∈ KL(A, b) \ KL−1(A, b); in general, however,
f(A)b may lie in a space Km(A, b) with m < L.1

In what follows, we consider a sequence of approximations ym := q(A)b ∈
Km(A, b) to f(A)b with polynomials q ∈ Pm−1 which in some sense approximate
f . The most popular of these approaches (see [28, 14, 17]), to which we shall refer as
the Arnoldi approximation, is based on the Arnoldi decomposition of Km(A, b),

AVm = Vm+1H̃m = VmHm + ηm+1,mvm+1e
�
m.(2.3)

Here, the columns of Vm = [v1, v2, . . . , vm] form an orthonormal basis of Km(A, b)

with v1 = b/‖b‖, H̃m = [ηj,�] ∈ C
(m+1)×m as well as Hm := [Im,0] H̃m ∈ C

m×m are
unreduced upper Hessenberg matrices, and em ∈ R

m denotes the mth unit coordinate
vector. The Arnoldi approximation to f(A)b is then defined by

fm := βVmf(Hm)e1, where β = ‖b‖.

The rationale behind this approximation is that Hm represents the compression of A
onto Km(A, b) with respect to the basis Vm and that b = βVme1.

The non-Hermitian (or two-sided) Lanczos algorithm is another procedure for
generating a decomposition of the form (2.3). In that case the columns of Vm still
form a basis of Km(A, b), albeit one that is, in general, not orthogonal, and the

upper Hessenberg matrices H̃m are tridiagonal (or block tridiagonal if a look-ahead

1For the exponential function it was shown in [28, Theorem 3.6] that etAb ∈ Km(A, b) for all
t ∈ R if and only if m ≥ L.
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technique is employed). The associated approximation to f(A)b is again defined by
fm := βVmf(Hm)e1 (see, e.g., [14, 28, 17]). Both approximations fm, based either
on the Arnoldi or Lanczos decomposition, result from an interpolation procedure: If
q ∈ Pm−1 denotes the polynomial which interpolates f in the Hermite sense on the
spectrum of Hm (counting multiplicities), then

fm = βVmf(Hm)e1 = βVmq(Hm)e1 = q(A)b, m = 1, 2, . . . , L

(see [28, Theorem 3.3]).
For later applications, next we show that similar results hold true for more general

decompositions of Km(A, b). To this end, we introduce a sequence of ascending (not
necessarily orthonormal) basis vectors {wm}Lm=1 such that

Km(A, b) = span{w1,w2, . . . ,wm}, m = 1, 2, . . . , L.(2.4)

As is well known, there exists a unique unreduced upper Hessenberg matrix H =
[ηj,m] ∈ C

L×L such that, with W := [w1,w2, . . . ,wL] ∈ C
n×L, there holds AW = WH

and, for m = 1, 2, . . . , L− 1, we have

AWm = Wm+1H̃m = WmHm + ηm+1,mwm+1e
�
m,(2.5)

where H̃m is the (m + 1) × m leading submatrix of H, Hm := [Im,0]H̃m, and
Wm = [w1,w2, . . . ,wm]. We shall refer to (2.5) as an Arnoldi-like decomposition2

to distinguish it from a proper Arnoldi decomposition (2.3). We shall require the fol-
lowing lemma, which is a simple generalization of the corresponding result for (proper)
Arnoldi decompositions (cf. [28, 23]).

Lemma 2.2. For any polynomial q(λ) = αmλm + · · ·+α1λ+α0 ∈ Pm, the vector
q(A)b may be represented in terms of the Arnoldi-like decomposition (2.5) as

q(A)b =

{
β
[
Wmq(Hm)e1 + αmγmwm+1

]
, m < L,

βWLq(HL)e1, m ≥ L,
(2.6)

where γm :=
∏m

j=1 ηj+1,j and βw1 = b. In particular, for any q ∈ Pm−1 there holds
q(A)b = βWmq(Hm)e1.

The proof follows by verifying the assertion for monomials, taking account of the
sparsity pattern of powers of a Hessenberg matrix (see, e.g., [12]).

We next introduce polynomial notation to describe Krylov subspaces. To each
vector wm of the nested basis (2.4) there corresponds a unique polynomial wm−1 ∈
Pm−1 such that wm = wm−1(A)b. Via this correspondence, the Arnoldi-like recur-
rence (2.5) becomes

λ[w0(λ), w1(λ), . . . , wm−1(λ)] = [w0(λ), w1(λ), . . . , wm−1(λ)]Hm

+ ηm+1,m[0, 0, . . . , 0, wm(λ)].
(2.7)

From this equation it is evident that each zero of wm is an eigenvalue of Hm. Moreover,
by differentiating (2.7), one observes that zeros of multiplicity � are eigenvalues of Hm

with Jordan blocks of dimension �. Since Hm is an unreduced Hessenberg matrix and

2We mention that the related term Krylov decomposition introduced by Stewart in [32] refers to a
decomposition of the form (2.5) without the restriction that the basis be ascending and, consequently,
to a matrix H which is not necessarily Hessenberg.
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hence nonderogatory, we conclude that the zeros of wm coincide with the eigenvalues
of Hm counting multiplicity.

Lemma 2.3. Let Hm be the unreduced upper Hessenberg matrix in (2.5) and (2.7)
and let f be a function such that f(Hm) is defined. Then a polynomial qm−1 ∈ Pm−1

satisfies

qm−1(Hm) = f(Hm)

if and only if qm−1 = Iwmf , i.e., if qm−1 interpolates f in the Hermite sense at the
eigenvalues of Hm.

Proof. The proof follows directly from the definition of f(Hm) and the fact that
the zeros of wm are the eigenvalues of Hm with multiplicity.

We summarize the contents of Lemmata 2.2 and 2.3 as follows.
Theorem 2.4. Given the Arnoldi-like decomposition (2.5) and a function f such

that f(A) as well as f(Hm) are defined, we denote by q ∈ Pm−1 the unique polynomial
which interpolates f at the eigenvalues of Hm. Then there holds

fm := βVmf(Hm)e1 = βVmq(Hm)e1 = q(A)b.(2.8)

We shall refer to (2.8) as the Krylov subspace approximation of f(A)b associated
with the Arnoldi-like decomposition (2.5). Note that (2.8) is merely a computational
device for generating the Krylov subspace approximation of f(A)b without explicitly
carrying out the interpolation process. This is an advantage whenever f(Hm)e1 for
m � n can be evaluated efficiently.

Remark 2.5. We also point out the following—somewhat academic—detail re-
garding finite termination: While Krylov subspace approximations q(A)b are defined
for polynomials q of any degree, Arnoldi-like decompositions, and hence (2.8), are
only available for 1 ≤ m ≤ L = L(A, b). At index m = L, the characteristic poly-
nomial of HL = H coincides with the minimal polynomial mA,b of b with respect
to A (see (2.2)). In view of (2.8) and Proposition 2.1, we then have fL = f(A)b.
In this sense, Krylov subspace approximations of the form (2.8) respect the spectral
distribution of A relevant for b and, in exact arithmetic, possess the finite termination
property. This is in contrast to other approaches such as those based on Chebyshev
or Faber expansions (see below).

Besides those generated by the Arnoldi or Lanczos processes, any ascending ba-
sis {wm}Lm=1 of KL(A, b) or, equivalently, any sequence of polynomials {wm−1}Lm=1

of exact degree m − 1 may be used in the Arnoldi-like decomposition (2.5) or its

polynomial counterpart (2.7), provided a means for obtaining the matrix H̃L of recur-
rence coefficients is available. One such example is the sequence of kernel/quasi-kernel
polynomials associated with the Arnoldi/Lanczos decomposition (see [13]), where the
corresponding Hessenberg matrix is easily constructed from that of the original de-
composition. Approximations based on quasi-kernel polynomials are discussed in [20].
Yet another approach—one which emphasizes the interpolation aspect of the Krylov
subspace approximation—fixes a sequence of nodes

ϑ
(1)
1

ϑ
(2)
1 ϑ

(2)
2

ϑ
(3)
1 ϑ

(3)
2 ϑ

(3)
3

...
...

. . .
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and chooses the basis vectors wm = wm−1(A)b as the associated nodal polynomials

wm−1(λ) = ωm−1(λ− ϑ
(m)
1 )(λ− ϑ

(m)
2 ) . . . (λ− ϑ(m)

m ), ωm �= 0.

One possible choice of such a node sequence is the zeros of Chebyshev polynomials,
in which case the nested basis vectors correspond to Chebyshev polynomials. Other
choices of node sequences are explored in [19, 22, 20]. Note that, in view of Remark 2.5,
such a basis choice, which is independent of A and b, will generally destroy the finite
termination property.

We also point out that, when f(A) is defined, this need not be so for f(Hm) for
m < L. For the Arnoldi approximation, a sufficient condition ensuring this is that f ,
as a scalar function, be analytic in a neighborhood of the field of values of A. As a
case in point, consider the FOM for solving a nonsingular system of linear equations
Ax = b. The solution is f(A)b with f(λ) = 1/λ and, if the initial approximation is
x0 = 0, the mth FOM iterate is simply the Arnoldi approximation fm = βVmH−1

m e1.
There are well-known examples [3] in which f(A), i.e., A−1, is defined but for which
Hm is singular for one or more of the indices m = 1, . . . , L − 1, a phenomenon
sometimes called a Galerkin breakdown.

2.3. An error representation. We conclude this section with a representation
of the error of the Krylov subspace approximation of f(A)b based on any Arnoldi-like
decomposition or, equivalently, any interpolatory approximation. We shall need the
following notation: Given a function f and a set of nodes ϑ1, . . . , ϑm with associated
nodal polynomial

p(λ) = (λ− ϑ1)(λ− ϑ2) · · · (λ− ϑm),(2.9)

we denote the mth order divided difference of f with respect to the nodes {ϑj}mj=1

by3

Δpf :=
f − Ipf

p
.(2.10)

Theorem 2.6. Given A ∈ C
n×n, b ∈ C

n, and a function f , let (2.5) be an
Arnoldi-like decomposition of Km(A, b) and let wm ∈ Pm−1 be the associated polyno-
mial; cf. (2.7). Then there holds

f(A)b − βWmf(Hm)e1 = βγm[Δwmf ](A)wm+1(2.11)

with γm as in Lemma 2.2.
Proof. We consider first an arbitrary set of nodes ϑ1, . . . , ϑm with associated nodal

polynomial p as in (2.9). From the definition (2.10), there holds f(λ) = [Ipf ](λ) +
[Δpf ](λ)p(λ). Inserting A for λ in this identity and multiplying by b, we obtain

f(A)b = [Ipf ](A)b + [Δpf ](A)p(A)b.

Since Ipf ∈ Pm−1, Lemma 2.2 yields [Ipf ](A)b = βWm[Ipf ](Hm)e1 and, since p ∈ Pm

is monic, p(A)b = βWmp(Hm)e1 + βγmwm+1, giving

f(A)b − βWm[Ipf ](Hm)e1 = β[Δpf ](A)
(
Wmp(Hm)e1 + γmwm+1

)
.

3The source of and justification for this notation can be found in [7].
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Choosing p as the characteristic polynomial wm of Hm, it follows that wm(Hm) = O
by the Cayley–Hamilton theorem and, since Iwmf interpolates f at the eigenvalues
of Hm, there also holds [Iwmf ](Hm) = f(Hm) by Lemma 2.3.

We interpret (2.11) as follows: Further improvement of a Krylov approximation
fm = βVmf(Hm)e1 could be achieved by approximating the error term

f(A)b − fm = f̃(A)b̃

with f̃(λ) := [Δwmf ](λ) and b̃ := βγmwm+1. Note that the modified function f̃ has

the same domain of analyticity as f and the vector b̃ points in the direction of the
last vector in the Arnoldi-like decomposition.

3. A restarted Arnoldi approximation. For the remainder of the paper we
shall restrict the discussion to the Arnoldi approximation of f(A)b. To set this apart
from a general Krylov subspace approximation (2.8) we denote the (orthonormal)
Arnoldi basis vectors by v1, v2, . . . , vL and the Arnoldi decomposition by

AVm = VmHm + ηm+1,mvm+1e
�
m, Vm = [v1, v2, . . . , vm]

(cf. (2.3)). Our results apply to other Krylov subspace approximations with obvious
modifications, some of which we shall point out.

3.1. Short recurrences are not enough. Besides the evaluation of f(Hm),
the computation of the mth Arnoldi approximation fm = βVmf(Hm)e1 requires the
Arnoldi basis Vm, which consists of m vectors of size n. As a consequence, even if
the evaluation of f(Hm) can be accomplished inexpensively, work and storage require-
ments incurred by Vm make this method impractical for moderate to large values of m.
For f(λ) = 1/λ, i.e., when solving linear systems of equations, one can take advantage
of the fact that the Arnoldi process reduces to the Hermitian Lanczos process when
A is Hermitian. In this case the matrices Hm are Hermitian, hence tridiagonal, and
three-term recurrence formulas can be derived for their characteristic polynomials wm.
(The same is true even in the non-Hermitian case when employing the non-Hermitian
Lanczos process, possibly with look-ahead techniques.) If we interpolate f(λ) = 1/λ
at the zeros of the mth basis polynomial wm, the resulting interpolating polynomial
qm−1 = Iwm

f satisfies

qm−1(λ) =
wm(0) − wm(λ)

λwm(0)
,(3.1)

and therefore qm−1 and hence also the approximation fm obey a similar three-term
recurrence. The relation (3.1) between the nodal and the interpolation polynomials
can therefore be viewed as the basis for the efficiency of the conjugate gradient method
and other polynomial acceleration methods such as Chebyshev iteration for solving
linear systems of equations.

A relation analogous to (3.1) fails to hold for more complicated (nonrational) func-
tions f such as the exponential function, and therefore short recurrences for the nodal
polynomials do not translate into short recurrences for the interpolation polynomials.
The computation of fm therefore necessitates storing the full Arnoldi basis Vm also
when A is Hermitian. It is therefore of interest to modify the Arnoldi approximation
in a way that allows the construction of successively better approximations of f(A)b
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based on a sequence of Krylov spaces of small dimension.4 Such restarted Krylov
subspace methods are well known for the solution of linear systems of equations; see
[26, 10].

3.2. Krylov approximation after Arnoldi restart. Consider two Krylov
spaces of order m with Arnoldi decompositions

AV (1)
m = V (1)

m H(1)
m + η

(1)
m+1,mv

(1)
m+1e

�
m,(3.2a)

AV (2)
m = V (2)

m H(2)
m + η

(2)
m+1,mv

(2)
m+1e

�
m,(3.2b)

where v
(1)
1 = b/β and v

(2)
1 = v

(1)
m+1, i.e., obtained from two cycles of the Arnoldi

process applied to A, beginning with initial vector b and restarted after m steps with

the last Arnoldi basis vector v
(1)
m+1 from the first cycle. We note that the columns

of W2m := [V
(1)
m , V

(2)
m ] form a basis of K2m(A, b), albeit not an orthonormal one,

and we may combine the two proper Arnoldi decompositions (3.2) to the Arnoldi-like
decomposition

AW2m = W2mH2m + η
(2)
m+1,mv

(2)
m+1e

�
2m,(3.3)

where H2m is the Hessenberg matrix

H2m :=

[
H

(1)
m O

η
(1)
m+1,me1e

�
m H

(2)
m

]
.(3.4)

Remark 3.1. We restart the Arnoldi process with v
(1)
m+1, which is the most natural

choice. We could, however, restart with any vector of the form

v̂m+1 = V (1)
m y + ym+1v

(1)
m+1 ∈ Km+1(A, b) \ Km(A, b)

with a coefficient vector y = [y1, y2, . . . , ym]� ∈ C
m. In this case we must replace

H
(1)
m in (3.4) by the rank-one modification H

(1)
m − (η

(1)
m+1,m/ym+1)ye

�
m and η

(1)
m+1,m by

η
(1)
m+1,m/ym+1. It is conceivable that this could be used to emphasize certain directions

such as Ritz approximations of certain eigenvectors as is done in popular restarting
techniques for linear systems of equations [21] and eigenvalue calculations [30], but
we shall not pursue this here.

Our objective is to compute the Krylov subspace approximation associated with

(3.3) without reference to V
(1)
m . The former is defined as

f2m = [Iw2mf ](A)b = βW2m[Iw2m
f ](H2m)e1 = βW2mf(H2m)e1,(3.5)

where w2m is the nodal polynomial with zeros Λ(H
(1)
m ) ∪ Λ(H

(2)
m ) with multiplicity.

To evaluate the approximation (3.5), we note that f(H2m) is of the form

f(H2m) =

[
f
(
H

(1)
m

)
O

X2,1 f
(
H

(2)
m

)
]
, X2,1 ∈ C

m×m,(3.6)

4Another remedy, well known from Lanczos-based eigenvalue computations (see [24, Chapter
13]), is to discard the basis vectors no longer needed in the recurrence and either recompute these or
retrieve them from secondary storage when forming the approximation.
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a consequence of the block triangular structure of H2m, whereby (3.5) becomes

f2m = βV (1)
m f(H(1)

m )e1 + βV (2)
m X2,1e1.(3.7)

The first term on the right is the Arnoldi approximation with respect to Km(A, b).

If X2,1e1 were computable, one could discard the basis vectors V
(1)
m and use (3.7) to

update the Arnoldi approximation, thus yielding the basis for a restarting scheme.
One conceivable approach is to observe that X2,1 satisfies the Sylvester equation

H(2)
m X2,1 −X2,1H

(1)
m = η

(1)
m+1,m[f(H(2)

m )e1e
�
m − e1e

�
mf(H(1)

m )],(3.8)

which follows from comparing the (2, 1) blocks of the identity H2mf(H2m) = f(H2m)
H2m, and one could therefore proceed by solving (3.8). This approach, however,
suffers from the shortcoming that the Sylvester equation (3.8) is only well conditioned

if the spectra of H
(1)
m and H

(2)
m are well separated (cf. [16, section 15.3]). Since H

(1)
m

and H
(2)
m are both compressions of the same matrix A, it is to be expected that at

least some of their eigenvalues match very closely.
We shall instead derive a computable expression for X2,1e1 directly by way of

interpolation.

Lemma 3.2. Given two successive Arnoldi decompositions as in (3.2), let w
(1)
m ,

w
(2)
m , and w2m denote the monic nodal polynomials associated with Λ(H

(1)
m ), Λ(H

(2)
m ),

and Λ(H2m) = Λ(H
(1)
m )∪Λ(H

(2)
m ), respectively, with H2m the upper Hessenberg matrix

of the combined Arnoldi-like decomposition (3.3). Then there holds

[Iw2mf ](H2m)e1 =

[
[I

w
(1)
m

f ]
(
H

(1)
m

)
e1

γ
(1)
m [I

w
(2)
m

(Δ
w

(1)
m

f)]
(
H

(2)
m

)
e1

]
,(3.9)

where γ
(1)
m =

∏m
j=1 η

(1)
j+1,j (cf. Lemma 2.2).

Proof. Due to the block triangular structure of H2m as given in (3.6), there holds

[Iw2mf ]

([
H

(1)
m O

η
(1)
m+1,me1e

�
m H

(2)
m

])
=

[
[Iw2m

f ]
(
H

(1)
m

)
O

X2,1 [Iw2m
f ]
(
H

(2)
m

)
]

(3.10)

with X2,1 as in (3.6). Next, we establish the polynomial identity

[Iw2mf ] = I
w

(1)
m

f + I
w

(2)
m

(Δ
w

(1)
m

f)w(1)
m ,(3.11)

which can be seen by noting that both polynomials have the same degree 2m − 1

and interpolate f in the Hermite sense at the nodes Λ(H
(1)
m ) ∪ Λ(H

(1)
m ). For nodes

ϑ ∈ Λ(H
(1)
m ) this is so because w

(1)
m (ϑ) = 0 and therefore

[I
w

(1)
m

f ](ϑ) + [I
w

(2)
m

(Δ
w

(1)
m

f)](ϑ)w(1)
m (ϑ) = [I

w
(1)
m

f ](ϑ) = f(ϑ) = [Iw2mf ](ϑ).

For nodes ϑ ∈ Λ(H
(2)
m ) we have

[I
w

(1)
m

f ](ϑ) + [I
w

(2)
m

(Δ
w

(1)
m

f)](ϑ)w(1)
m (ϑ) = [I

w
(1)
m

f ](ϑ) + [Δ
w

(1)
m

f ](ϑ)w(1)
m (ϑ)

= f(ϑ) = [Iw2mf ](ϑ)

with the second equality following from the definition (2.10), and (3.11) is established.
The assertion on the first block of the vector (3.9) is now verified by inserting the
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matrix H
(1)
m into the polynomials on either side of (3.11), noting that w

(1)
m (H

(1)
m ) = O,

and multiplying both sides of (3.10) by e1.
To verify the second block of (3.9), we use identity (3.11) to write

[Iw2m
f ](H2m) = M (1) + M (2)M (3),

where

M (1) := [I
w

(1)
m

f ](H2m), M (2) := [I
w

(2)
m

(Δ
w

(1)
m

f)](H2m), M (3) := w(1)
m (H2m).

The block lower triangular structure of H2m carries over to functions of H2m, giving

M (i) =

[
M

(i)
1,1 O

M
(i)
2,1 M

(i)
2,2

]
, i = 1, 2, 3,

where in addition M
(3)
1,1 = w

(1)
m (H

(1)
m ) = O. In this notation the second block of (3.9)

is given by

X2,1e1 = M
(1)
2,1e1 + M

(2)
2,2M

(3)
2,1e1.(3.12)

For the first term on the right, we have M
(1)
2,1e1 = 0 because, as the (2, 1)-block of

M (1) = [I
w

(1)
m

f ](H2m), a polynomial of degree m− 1 in the Hessenberg matrix H2m,

M
(1)
2,1 has a zero first column. Next, again by the block lower triangular structure

of H2m, there holds M
(2)
2,2 = [I

w
(2)
m

(Δ
w

(1)
m

f)](H
(2)
m ). Finally, we note that M

(3)
2,1e1 =

γ
(1)
m e1. This follows in a similar way as the evaluation of M

(1)
2,1e1, but here M (3) =

w
(1)
m (H2m) is a polynomial of degree m in the 2m×2m upper Hessenberg matrix H2m.

Again by the sparsity structure of powers of Hessenberg matrices, the first column

of M
(3)
2,1 is a multiple of e1. Comparing coefficients reveals this multiple to be γ

(1)
m .

Inserting these quantities in (3.12) establishes the second block of identity (3.9), and
the proof is complete.

Remark 3.3. We note that the same proof applies when the two Krylov spaces
are of different dimensions m1 and m2.

Comparing coefficients in (3.7) and (3.9) reveals that X2,1e1 = γ
(1)
m [Δ

w
(1)
m

f ]
(
H

(2)
m

)
e1,

and we summarize the resulting basic restart step in the following theorem.
Theorem 3.4. The Krylov subspace approximation (3.5) based on the Arnoldi-

like decomposition (3.3) is given by

f2m = βV (1)
m f

(
H(1)

m

)
e1 + βγ(1)

m V (2)
m [Δ

w
(1)
m

f ]
(
H(2)

m

)
e1.(3.13)

Proof. The proof follows immediately from (3.5) upon inserting the representation
for [Iw2mf ](H2m) given in Lemma 3.2: Starting with (3.5), we obtain

f2m = βW2mf(H2m)e1

= β
(
V (1)
m [I

w
(1)
m

f ]
(
H(1)

m

)
e1 + V (2)

m γ(1)
m [I

w
(2)
m

(Δ
w

(1)
m

f)]
(
H(2)

m

)
e1

)
= βV (1)

m f
(
H(1)

m

)
e1 + βγ(1)

m V (2)
m [Δ

w
(1)
m

f ]
(
H(2)

m

)
e1,

where the last equality follows from the interpolation properties of I
w

(1)
m

and
I
w

(2)
m

.
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3.3. The restarting algorithm. Theorem 3.4 suggests the following scheme for
a Krylov approximation of f(A)b based on the restarted Arnoldi process with cycle
length m: The first approximation f (1) is simply the usual Arnoldi approximation

with respect to the first Krylov space Km(A, b), i.e., f (1) = βV
(1)
m f(H

(1)
m )e1. The

next Krylov space is generated with the initial vector v
(1)
m+1 and, according to (3.13),

the correction to f (1) required to obtain the Krylov subspace approximation of f(A)b
with respect to the Arnoldi-like decomposition (3.3) is given by

f (2) = f (1) + βγ(1)
m V (2)

m [Δ
w

(1)
m

f ]
(
H(2)

m

)
e1.

The effect of restarting is seen to be a modification of the function f to Δ(1)
wm

f and

a replacement of the vector b by βγ
(1)
m v

(1)
m+1. Note that this is in line with the error

representation (2.3) in that, after restarting, we are in fact approximating the error
term and using this approximation as a correction. The computation of this update
requires storing a representation of Δ

w
(1)
m

f as well as the current approximation f (1),

but the Arnoldi basis V
(1)
m can be discarded. Proceeding in this fashion, we arrive at

the restarting scheme given in Algorithm 1.

Algorithm 1: Restarted Arnoldi approximation for f(A)b

Given: A, b, f
f (0) := f , f (0) := 0, b(0) := b, γ(0) := ‖b‖.
for k = 1, 2, . . . until convergence do

Compute the Arnoldi decomposition AV
(k)
m = V

(k)
m H(k) + η

(k)
m+1,mb(k)e�

m of

Km(A, b(k−1)).

Update the approximation f (k) := f (k−1) + γ(k−1)V
(k)
m f (k−1)(H

(k)
m )e1.

γ(k) := γ(k−1)
∏m

j=1 η
(k)
j+1,j

f (k) := Δ
w

(k)
m

f (k−1), where w
(k)
m is the characteristic polynomial of H

(k)
m .

Remark 3.5. Algorithm 1 is formulated for Krylov spaces of constant dimension
m in each restart cycle, but this dimension can vary from cycle to cycle.

Although Algorithm 1 appears very attractive from a computational point of
view, numerical experiments with a MATLAB implementation have revealed it to be
afflicted with severe stability problems. The cause of this seems to be the difficulty
of numerically computing interpolation polynomials of high degree (see also [33]).

We therefore turn to a slightly less efficient variant of our restarting scheme, which
our numerical tests indicate to be free from these stability problems. The generic step
of this second variant of the restarted Arnoldi algorithm proceeds as follows: After
k − 1 cycles of the algorithm, we may collect the entirety of Arnoldi decompositions
in the (k − 1)-fold Arnoldi-like decomposition

AW(k−1)m = W(k−1)mH(k−1)m + η
(k−1)
m+1,mv

(k−1)
m+1 e�

(k−1)m

with W(k−1)m = [V
(1)
m V

(2)
m . . . V

(k−1)
m ]. Combining this with the Arnoldi decomposi-

tion

AV (k)
m = V (k)

m H(k)
m + η

(k)
m+1,mv

(k)
m+1e

�
m

of the next Krylov space Km(A, v
(k−1)
m+1 ), we obtain the next Arnoldi-like decomposi-



2492 MICHAEL EIERMANN AND OLIVER G. ERNST

tion

AWkm = WkmHkm + η
(k)
m+1,mv

(k)
m+1e

�
km

with Wkm = [W(k−1)m, V
(k)
m ] and

Hkm =

[
H(k−1)m O

η
(k−1)
m+1,me1e

�
(k−1)m H

(k)
m

]
.

Denoting by wkm the characteristic polynomial of Hkm, formula (2.11) for the Krylov
subspace approximation with respect to an Arnoldi-like decomposition gives

f (k) = βWkmf(Hkm)e1 = f (k−1) + βV (k)
m [f(Hkm)e1](k−1)m+1:km,(3.14)

where the subscript in the last term is meant to refer to the vector with the last
m components of f(Hkm)e1. (3.14) provides an alternative update formula for the
restarted Arnoldi approximation. It is somewhat less efficient than that given in
Algorithm 1 in that it requires storing Hkm and the evaluation of f(Hkm), but we
have found it to be much stabler than the former. The second variant is summarized
in Algorithm 2.

Algorithm 2: Restarted Arnoldi approximation for f(A)b (variant 2)

Given: A, b, f
f (0) := f , f (0) := 0, b(0) := b, β := ‖b‖.
for k = 1, 2, . . . until convergence do

Compute the Arnoldi decomposition AV
(k)
m = V

(k)
m H

(k)
m + η

(k)
m+1,mb(k)e�

m of

Km(A, b(k−1)).
if k = 1 then

Hkm := H
(1)
m

else

Hkm :=

[
H(k−1)m O

η
(k−1)
m+1,me1e

�
(k−1)m H

(k)
m

]
.

Update the approximation f (k) := f (k−1) + βV
(k)
m [f(Hkm)e1](k−1)m+1:km.

4. Properties of the restarted Arnoldi algorithm.

4.1. Special cases. In this section we recover some known algorithms as special
cases of the restarted Arnoldi approximation.

4.1.1. Linear systems of equations. We begin by showing that for f(λ) = 1/λ
we recover the well-known restarted FOM for solving linear systems of equations [27].
With Iwmf for this case given in (3.1), there results

[Δwmf ](λ) =
1

wm(0)

1

λ
,

so that the representation (2.11) becomes

A−1b = βVmH−1
m e1 +

βγm
wm(0)

A−1vm+1 = fm +
βγm
wm(0)

A−1vm+1,
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where fm denotes the mth FOM iterate. The associated residual is therefore

rm = b −Afm =
βγm
wm(0)

vm+1,(4.1)

which leads to

A−1b = fm + A−1rm.

We conclude that in this case the exact correction c to the Arnoldi approximation
fm is the solution of the residual equation Ac = rm, leading to the problem of
approximating f(A)rm, which in restarted FOM is carried out using a new Krylov
space with initial vector rm. As an aside, we observe that (4.1) implies that the FOM
residual norm can be expressed as

‖rm‖ =
βγm

|wm(0)| =
β
∏m

j=1 ηj+1,j

|detHm| ,

an expression first given in [4].

4.2. Initial value problems. We consider the initial value problem

y ′(t) = Ay(t), y(0) = b(4.2)

with A ∈ C
n×n, b ∈ C

n (independent of t) with solution

y(t) = ft(A)b, ft(λ) = etλ.(4.3)

The Arnoldi approximation of (4.3) with respect to (2.3) is given by

ym(t) = Vmu(t), u(t) = βetHme1, β = ‖b‖.(4.4)

As is easily verified, the associated approximation error dm(t) := y(t) − ym(t) as a
function of t satisfies the initial value problem

(∂t −A)dm(t) = rm(t), dm(0) = 0,(4.5)

in which the forcing term rm(t), which plays the role of a residual, is given by

rm(t) := ηm+1,me�
1 u(t)vm+1 = βηm+1,me�

metHme1vm+1 =: ρm(t)vm+1.(4.6)

In [4] (see also [19]) Celledoni and Moret propose a restarted Krylov subspace scheme
for solving (4.2) based on the variation of constants formula

dm(t) = Ft(A)vm+1, Ft(λ) :=

∫ t

0

e(t−s)λρm(s) ds,(4.7)

for the solution of the residual equation (4.5) using repeated Arnoldi approximations
of Ft(A)vm+1 in a manner similar to Algorithm 1. We note that, in contrast to Al-
gorithm 1, their method requires a time-stepping scheme in addition to the Krylov
approximation. As the approximate solution (4.4) of (4.2) is an Arnoldi approxima-
tion, the error representation (4.7) must coincide with that given in (2.11). To provide
more insight on the restarted Arnoldi approximation for solving initial value prob-
lems, we proceed to show explicitly that the two error representations are the same.
The key is the proper treatment of the parameter t. Denoting the error representation
(2.11) with f = ft by

d̃m(t) = βγm[Δwmft](A)vm+1,(4.8)

we prove the following result.
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Theorem 4.1. The error representation (4.8) for the Arnoldi approximation of
(4.3) as a function of t solves the initial value problem (4.5).

Proof. The initial condition d̃m(0) = 0 follows from the fact that f0 ≡ 1 and,
since this function is interpolated without error, the associated divided difference is
zero.

To verify that d̃m solves the differential equation, note first that differentiating
the interpolant of ft with respect to the parameter t results in

∂t[Iwm
ft] = Iwm

(∂tft).(4.9)

This can be seen by writing the interpolant as

[Iwm
ft](λ) =

k∑
j=1

nj−1∑
�=0

f
(�)
t (ϑj) qj,�(ϑj),

k∑
j=1

nj = m,

in terms of the Hermite basis polynomials qj,� ∈ Pm−1, characterized by

q
(p)
j,� (ϑq) = δj,q δ�,p, j, q = 1, 2, . . . , k, �, p = 0, 1, . . . , nj − 1,

and exchanging the order of differentiation. As a consequence of (4.9) and the fact
that (∂tft)(λ) = λft(λ), we also have

∂t[Δwmft] = Δwm(∂tft) = Δwm(gft), where g(λ) = λ.

The product formula for divided differences (see, e.g., [25, Theorem 1.3.3]) now yields

∂t[Δwmft](λ) = λ[Δwmft](λ) + πm−1(t),(4.10)

where πm−1(t) is the leading coefficient of Iwm
ft. Inserting A for λ in the scalar

equation (4.10) and multiplying by vm+1 now gives us

(∂t −A)d̃m(t) = βγm

(
A[Δwmft](A) + πm−1(t)I −A[Δwmft](A)

)
vm+1

= βγmπm−1(t)vm+1.

A comparison with (4.6) reveals that what remains to be shown is that

γm
ηm+1,m

πm−1(t) = e�
metHme1.

The term on the right is the entry at the (m, 1) position of the matrix etHm =
[Iwmft](Hm). Due to the sparsity pattern of powers of an upper Hessenberg matrix,
this entry is given by

m−1∏
j=1

ηj+1,jπm−1(t) =
γm

ηm+1,m
πm−1(t)

and the proof is complete.
The uniqueness of the solution of (4.5) together with Theorem 4.1 now imply once

more that d̃m(t) = dm(t). We emphasize again that our restarted Arnoldi method
approximates these error terms directly without recourse to a time-stepping scheme.
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4.3. Convergence. The full Arnoldi approximation is known to converge su-
perlinearly for the exponential function, as shown in, e.g., [17, 8]. For the case of
solving linear systems of equations, i.e., the Arnoldi approximation for the function
f(λ) = 1/λ, it is known that restarting the process can degrade or even destroy con-
vergence. In this section we show that, for sufficiently smooth functions, restarting the
Arnoldi approximation preserves its superlinear convergence. We state the following
result for entire functions of order one (cf. [2, section 2.1]), a class which includes the
exponential function, and note that the result generalizes to other orders with minor
modifications.

Theorem 4.2. Given A ∈ C
n×n and an entire function f of order one, let

{ϑ(m)
j }mj=1,m ≥ 1, denote an arbitrary node sequence contained in the field of values

W (A) of A with associated nodal polynomials wm ∈ Pm. Then there exist constants
C and γ which are independent of m such that

‖f(A)b − [Iwm
f ](A)b‖ ≤ C

γm−1

(m− 1)!
‖b‖ for all m.(4.11)

Proof. We recall the well-known Hermite representation theorem for the interpo-
lation error (cf. [6, Theorem 3.6.1]): Let Γ ⊂ C be a contour which contains W (A),
and hence also the interpolation nodes, in its interior, which we denote by Ω. Then
for all λ ∈ Ω we have

f(λ) − [Iwmf ](λ) =
1

2πi

∫
Γ

f(t)

t− λ

wm(λ)

wm(t)
dt.(4.12)

By replacing f with f − p in (4.12), we obtain for arbitrary polynomials p ∈ Pm−1

the identity

f(λ) − [Iwmf ](λ) =
1

2πi

∫
Γ

f(t) − p(t)

t− λ

wm(λ)

wm(t)
dt.

Inserting A for λ on both sides, multiplying with b, and taking norms gives

‖f(A)b − [Iwm
f ](A)b‖ =

1

2π

∥∥∥∥
∫

Γ

[f(t) − p(t)](tI −A)−1wm(A)

wm(t)
dt b

∥∥∥∥ .(4.13)

We now bound each factor of the integrand. For any unit vector u ∈ C
n, we have

uHAu ∈ W (A), and thus, for all t ∈ Γ,

dist(Γ,W (A)) ≤ |t− uHAu | = |uH(tI −A)u | ≤ ‖(tI −A)u‖.
For arbitrary v ∈ C

n, it follows that ‖(tI −A)v‖ ≥ dist(Γ,W (A))‖v‖ and therefore

‖(tI −A)−1‖ ≤ 1

dist(Γ,W (A))
.(4.14)

Similarly, since the nodes ϑ
(m)
j are contained in W (A) by assumption, we have

|wm(t)| = |(t− ϑ
(m)
1 )(t− ϑ

(m)
2 ) · · · (t− ϑ(m)

m )| ≥ dist(Γ,W (A))m, t ∈ Γ.(4.15)

Moreover, with r(A) := max{|λ| : λ ∈ W (A)} denoting the numerical radius of A, we
may bound ‖wm(A)‖ by

‖wm(A)‖ ≤
m∏
j=1

‖A− ϑjI‖ ≤
m∏
j=1

(‖A‖ + ϑj) ≤ [3r(A)]m,(4.16)

which follows from the well-known inequality ‖A‖ ≤ 2r(A) and since ϑ
(m)
j ∈ W (A).
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Thus, from (4.13), (4.14), (4.15), (4.16), and the fact that p ∈ Pm−1 was arbitrary,
we obtain the bound

‖f(A)b − [Iwmf ](A)b‖ ≤ �(Γ)

2π

infp∈Pm−1 ‖f − p‖∞,Ω [3r(A)]m

dist(Γ,W (A))m+1
‖b‖,

where �(Γ) denotes the length of the contour Γ and ‖ · ‖∞,Ω denotes the supremum
norm on Ω. The assertion now follows from the convergence rate of best uniform
approximation of entire functions of order one by polynomials. In particular, it is
known (see [11]) that there exist constants C̃ and γ̃ such that

inf
p∈Pm−1

‖f − p‖∞,Ω ≤ C̃
γ̃m−1

(m− 1)!
.

Corollary 4.3. The restarted Arnoldi approximation converges superlinearly
for entire functions of order one.

Proof. This follows from Theorem 4.2 by noting that, for the Arnoldi approxi-
mation, the set of interpolation nodes for each restart cycle are Ritz values of A and
therefore contained in W (A).

5. Numerical experiments. In this section we demonstrate the behavior of the
restarted Arnoldi approximation for the exponential function using several examples
from the literature. All computations were carried out in MATLAB version 7.0 (R14)
on a 1.6 GHz Power Mac G5 computer with 1.5 GB of RAM.

5.1. Three-dimensional heat equation. Our first numerical experiment is
based on one from [14]: Consider the initial boundary value problem

u̇− Δu = 0 on (0, 1)3 × (0, T ),(5.1a)

u(x, t) = 0 on ∂(0, 1)3 for all t ∈ [0, T ],(5.1b)

u(x, 0) = u0(x), x ∈ (0, 1)3.(5.1c)

When the Laplacian is discretized by the usual seven-point stencil on a uniform grid
involving n interior grid points in each Cartesian direction, problem (5.1) reduces to
the initial value problem

u̇(t) = Au(t), t ∈ (0, T ),

u(0) = u0,

with an N ×N matrix A (N = n3) and an initial vector u0 consisting of the values
u0(x) at the grid points x, the solution of which is given by

u(t) = ft(A)u0 = etAu0.(5.2)

As in [14], we give the initial vector in terms of its expansion in eigenfunctions of the
discrete Laplacian as

u i,j,k
0 =

∑
i′,j′,k′

1

i′ + j′ + k′
sin(ii′πh) sin(jj′πh) sin(kk′πh).

Here h = 1/(n + 1) is the mesh size and the triple indexing is relative to the lexico-
graphic ordering of the mesh points in the unit cube.
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Table 5.1

The full Arnoldi approximation applied to the three-dimensional heat equation with h = 1/36
and t = 0.1 = nstepsΔt. The dimension m of the Krylov spaces is chosen as the smallest to result
in an error ‖e‖2 less than 10−10 at t = 0.1.

Δt nsteps m Time [s] ‖e‖2

1e-1 1 72 12.0 7.76e-11
5e-2 2 51 10.5 8.47e-11
2e-2 5 36 13.7 8.54e-11
1e-2 10 29 18.3 2.09e-11
5e-3 20 22 22.7 5.13e-11
1e-3 100 13 42.4 1.55e-11
5e-4 200 11 62.6 5.36e-12
1e-4 1000 8 172.2 1.20e-12
5e-5 2000 7 299.3 1.72e-12

Table 5.2

The restarted Arnoldi approximation applied to the three-dimensional heat equation with h =
1/36 and t = 0.1. The dimension m of the Krylov spaces is chosen to coincide with the runs in
Table 5.1 and now the number of restarts k is chosen as the smallest to result in an error ‖e‖2 less
than 10−10 at t = 0.1.

Δt k m Time [s] ‖e‖2

1e-1 2 51 10.2 2.22e-17
1e-1 2 36 5.2 3.61e-12
1e-1 3 29 5.0 7.78e-15
1e-1 4 22 4.1 9.54e-15
1e-1 6 13 2.2 4.37e-11
1e-1 7 11 1.8 1.29e-11
1e-1 10 8 1.7 7.01e-11
1e-1 12 7 1.6 3.27e-11

We first consider the case n = 35 and repeat a calculation in [14], where (5.2) is
approximated at t = 0.1 using the unrestarted Arnoldi approximation. Writing the
solution in the form u(t) = (eΔtA)ku0, where kΔt = t, one can compute the solution
using k applications of the Arnoldi approximations involving the matrix ΔtA, which
has a smaller spectral interval than A and hence results in faster convergence. There
is thus a tradeoff between using Krylov spaces of small dimension and having to take a
small number of time steps of length Δt. The results in Table 5.1 show the execution
times which result from fixing the time step Δt and using the smallest Krylov subspace
dimension m which results in a Euclidean norm of less that 10−10 for the error vector
e of the unrestarted Arnoldi approximation. We observe that using smaller time steps
does allow one to use smaller Krylov spaces, but at a higher cost in terms of execution
time.

We next consider the same problem, but instead of taking several time steps with
the full Arnoldi approximation, we reduce the size of the Krylov spaces by restarting
after every m steps. The results are given in Table 5.2. The dimension m of the
Krylov spaces is chosen to coincide with the corresponding runs from Table 5.1, but
now the number of restarts k is chosen as the smallest to result in an error less than
10−10. Again there is a tradeoff between the size of the Krylov space and the number
of restarts required until convergence. In contrast to Table 5.1, however, we note that
the total execution times decrease rather than increase when smaller Krylov spaces
are employed, in spite of the fact that this requires more restart cycles. Moreover,
the longest execution time of the restarted variant is less than half of the shortest
execution time of any of the full Arnoldi approximation runs.
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Fig. 5.1. Error norm histories for the restarted Arnoldi approximation applied to the three-
dimensional heat equation with n = 50, i.e., N = 125 000, for several restart lengths m.

Table 5.3

Execution times for the runs depicted in Figure 5.1: m denotes the restart length and k the
number of restart cycles.

m k Time [s]
∞ 1 1948
20 20 206
10 45 146
6 87 153

Finally, we consider the same problem for a finer discretization with n = 50,
resulting in a matrix of dimension N = 125 000. We apply the restarted Arnoldi
approximation with restart lengths m = 6, 10, and 20 using the full Arnoldi approx-
imation (m = ∞) as a reference. Each iteration is run until the accuracy no longer
improves. The resulting error curves are shown in Figure 5.1, and the corresponding
execution times in Table 5.3. We observe here that the method requires successively
more restart cycles to converge as the restart length is decreased. Convergence, how-
ever, is merely delayed and is maintained down to the smallest restart length m = 6.
In terms of execution time, there appears to be a point of diminishing returns using
shorter and shorter restart lengths, as the shortest execution time was obtained for
m = 10.

5.2. Skew-symmetric problem. Our next example is taken from [17]. We
consider a matrix A with 1001 equidistant eigenvalues in [−20i, 20i]. In contrast to
[17], we choose A to be block diagonal and real (and not diagonal and complex) in
order to avoid complex arithmetic, as follows:

A = blockdiag(B0, B1, . . . , B500) ∈ R
1001×1001,

B0 = 0,

Bj = j
25

[
0 1
−1 0

]
, j = 1, 2, . . . , 500.

(5.3)
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Fig. 5.2. Error norm histories for the skew-symmetric problem of dimension n = 1001.

The vector b is a random vector5 of unit norm. The error curve of the full Arnoldi
approximation (m = ∞) as well as those of the restarted Arnoldi approximation with
restart lengths m = 2, 4, and 6 are shown in Figure 5.2.

We observe that the errors associated with the restarted Arnoldi approximations
initially increase before tending to zero. We also observe that the final accuracy of
the approximation deteriorates with decreasing restart length. This indicates that the
restart length m is too small to “resolve” the spectral interval of A.

For an explanation, recall that the Arnoldi approximations fm of exp(A)b can be
viewed as the result of an interpolation process: fm = qm−1(A)b, where qm−1 is an
interpolating polynomial for the exponential function. For the unrestarted Arnoldi
method, the interpolation nodes are the Ritz values of A with respect to Km(A, b),
which are approximately uniformly distributed over [−20i, 20i] (cf. Figure 5.3, where
the imaginary parts of the Ritz values are shown6.) For the restarted Arnoldi method
(with restart length m), however, the interpolation nodes are the collection of the
Ritz values of A with respect to several Krylov spaces Km

(
A, b(j)

)
, j = 0, 1, . . . , k−1

(after k restarts). These are far from uniformly distributed in [−20i, 20i], but rather
tend to accumulate at m discrete points (see Figure 5.3).

In the extreme case of restart length one, all interpolating nodes equal ϑ = 0 (at

least in exact arithmetic) and the interpolating polynomial qk−1(λ) =
∑k−1

j=0
1
j!λ

j is

simply the truncated Taylor expansion of exp(λ). It is well known that, for |λ| �
0, intermediate partial sums are much larger than the final limit. An analogous
statement holds for Hermite interpolating polynomials of the exponential function at
too few nodes.

The phenomenon described above becomes more pronounced if we increase the
spectral interval of A: Again, we consider the matrix A of (5.3), but now of dimension
10001 with equidistant eigenvalues in [−200i, 200i]. The resulting error curves for the
restart lengths m = 5, 10, 20, and 40 are shown in Figure 5.4.

5Generated by the MATLAB syntax randn(’state’,0); b = randn(1001,1)
6Note that all Ritz values are purely imaginary because A is skew-symmetric and b is real.
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Fig. 5.3. Interpolation nodes for the skew-symmetric problem of dimension n = 1001.

Fig. 5.4. Error norm histories for the skew-symmetric problem of dimension n = 10001.
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Table 5.4

The restarted Arnoldi approximation applied to the skew-symmetric problem of dimension
10001, for several restart lengths m (cf. Figure 5.4).

m Matrix vector
products

Time[s] Final
accuracy

Largest
error

Largest error

Final accuracy
∞ 260 367 2.5e−14 1.4e+01 [1] 1.8e−14
40 280 48 7.8e−14 6.3e+01 [160] 1.2e−14
20 280 26 2.1e−12 2.3e+02 [140] 8.9e−15
10 270 16 2.9e−09 6.8e+05 [140] 4.3e−15
5 275 13 2.1e−01 2.2e+13 [145] 9.7e−15

Table 5.4 shows the number of matrix-vector products and the execution times
which were required to reach a final accuracy for different restart length m. We also
list the largest intermediate error (and after how many matrix-vector multiplications
it is observed). Note that for every m the quotient of this largest error and the final
accuracy approximately equals the machine precision of 2e− 16.

5.3. Convection-diffusion problem. Our final example is taken from [19, Ex-
ample 6.1]: We consider the initial boundary value problem

u̇− Δu + τ1ux1
+ τ2ux2

= 0 on (0, 1)3 × (0, T ),

u(x, t) = 0 on ∂(0, 1)3 for all t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ (0, 1)3.

Discretizing the Laplacian by the usual seven-point stencil and the first-order deriva-
tives, ux1 and ux2 , by central differences on a uniform grid with step size h = 1/(n+1)
leads—as in section 5.1—to an ordinary initial value problem

u̇(t) = Au(t), t ∈ (0, T ),

u(0) = u0

with the matrix

A = In ⊗ [In ⊗ C1] + [B ⊗ In + In ⊗ C2] ⊗ In

of dimension N = n3. Here,

B = 1
h2 tridiag(1,−2, 1), Cj = 1

h2 tridiag(1 + μj ,−2, 1 − μj), j = 1, 2,

where μj = τjh/2. The nonsymmetric matrix A is a popular test matrix because its
eigenvalues are explicitly known: If |μj | > 1 (for at least one j), they are complex;
more precisely (cf. [19]),

Λ(A) ⊂ 1
h2 [−6 − 2 cos(πh) Re(θ), −6 + 2 cos(πh) Re(θ)]

× 1
h2 [−2i cos(πh) Im(θ), 2i cos(πh) Im(θ)]

with θ = 1 +
√

1 − μ2
1 +

√
1 − μ2

2. As in [19], we choose h = 1/16, τ1 = 96, τ2 = 128
(τ1 = τ2 = 320) which leads to μ1 = 3, μ2 = 4 (μ1 = μ2 = 10), and approximate etAb,
where t = h2 and b = [1, 1, . . . , 1]�. The resulting error norm histories are shown
in Figure 5.5. In the second example we again observe transient error growth. We
attribute this, as in the skew-symmetric example, to the sufficiently large imaginary
parts of the eigenvalues of h2A, which lie in

[−8.0,−4.0] × i[−13.1, 13.1] for μ1 = 3, μ2 = 4
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Fig. 5.5. Error norm histories for the restarted Arnoldi approximation applied to the
convection-diffusion problem with n = 15, i.e., N = 3375 for several restart lengths m. As in
[19], we chose μ1 = 3, μ2 = 4 (top), and μ1 = μ2 = 10 (bottom).

and

[−8.0,−4.0] × i[−39.0, 39.0] for μ1 = μ2 = 10,

respectively.

6. Conclusions. We have shown how Krylov subspace methods for approximat-
ing f(A)b may be restarted. This permits the application of schemes like the Arnoldi
approximation to very large matrices using a fixed amount of storage space. For func-
tions f which are entire of order one, the restarted method retains the superlinear
convergence property of the unrestarted method. In addition, we have identified the
relationship of the restarted method to known algorithms in the cases f(λ) = 1/λ and
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ft(tλ) = etλ. Moreover, we have demonstrated that the method performs well on sev-
eral numerical examples from the literature. Related issues such as characterizing the
convergence of the Arnoldi approximation using potential theoretic methods as well
as yet more efficient implementations of the restarted algorithm will be the subject
of future research.
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Abstract. This paper is concerned with numerical approximations for the stochastic partial
differential Zakai equation of nonlinear filtering problems. The approximation scheme is based on
the representation of the solutions as weighted conditional distributions. We first accurately analyze
the error caused by an Euler-type scheme of time discretization. Sharp error bounds are calculated:
we show that the rate of convergence is in general of order

√
δ (δ is the time step), but in the

case when there is no correlation between the signal and the observation for the Zakai equation,
the order of convergence becomes δ. This result is obtained by carefully employing techniques of
Malliavin calculus. In a second step, we propose a simulation of the time discretization Euler scheme
by a quantization approach. Formally, this consists in an approximation of the weighted conditional
distribution by a conditional discrete distribution on finite supports. We provide error bounds and
rate of convergence in terms of the number N of the grids of this support. These errors are minimal
at some optimal grids which are computed by a recursive method based on Monte Carlo simulations.
Finally, we illustrate our results with some numerical experiments arising from a correlated Kalman–
Bucy filter.
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1. Introduction. We are interested in numerical approximation for the measure-
valued process V governed by the following stochastic partial differential equations
(SPDE) written in weak form: for all test functions f ∈ C2

b (Rd),

〈Vt, f〉 = 〈μ0, f〉 +

∫ t

0

〈Vs, Lf〉ds

+

∫ t

0

〈Vs, hf + γᵀ∇f〉.dWs,(1.1)

where μ0 is an initial probability measure. We denote by M(Rd) the set of finite
signed measures on R

d. Here L is the second-order differential operator,

Lf(x) =
1

2

d∑
i,j=1

aij(x)∂2
xixj

f(x) +

d∑
i=1

bi(x)∂xi
f(x),

W is a q-dimensional Brownian motion, a = (aij) is a d × d matrix-valued function,
γ = (γil) is a d× q matrix-valued function, b = (bi) is an R

d-vector-valued function,
and h = (hl) is an R

q-vector-valued function defined on R
d, in the form

a = σσᵀ + γγᵀ,

b = β + γh,
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for some d×d matrix-valued function σ = (σij) and R
d-vector-valued function β = (βi)

on R
d. The transpose and the scalar product are, respectively, denoted by ᵀ and a

dot. The Euclidean norm of a vector is denoted |.|, and one uses the norm |σ| =√
Tr(σσᵀ) for a matrix σ.

When the distribution Vt admits a density v(t, x), one may usually rewrite (1.1)
in the following form:

dv(t, x) =

⎛
⎝1

2

d∑
i,j=1

∂2
xixj

[aij(x)v(t, x)] −
d∑

i=1

∂xi [bi(x)v(t, x)]

⎞
⎠ dt

+ (hᵀ(x)v(t, x) −∇[γ(x)v(t, x)]) dWt.

(1.2)

Under appropriate conditions, it is proved in [21] that the solution V to (1.1) can
be characterized through the following system of diffusions:

Xt = X0 +

∫ t

0

β(Xs)ds +

∫ t

0

σ(Xs)dBs +

∫ t

0

γ(Xs)dWs,(1.3)

X0 � μ0,

ξt = exp(Zt) = exp

(∫ t

0

h(Xs).dWs −
1

2

∫ t

0

|h(Xs)|2ds
)
,(1.4)

〈Vt, f〉 = E
W

[f(Xt)ξt] ,(1.5)

where B is an R
d-Brownian motion independent of W , and E

W
denotes the condi-

tional expectation given W . We also denote by P
W

the corresponding conditional
probability.

Actually, (1.1) is the so-called Zakai equation arising from the nonlinear filtering
problem: here, X given in (1.3) is a d-dimensional signal, and W is a q-dimensional
observation process (with correlated noise when γ �= 0) given by

Wt =

∫ t

0

h(Xs)ds + Ut,

on a probability space (Ω,F , P ) equipped with filtration (Ft) under which B and
U are independent Brownian motions. The nonlinear filtering problem consists in
estimating the conditional distribution of X given W , i.e., we want to compute the
measure-valued process πt characterized by

〈πt, f〉 = EP [f(Xt)|FW
t ],

where FW
t is the filtration generated by the whole observation of W until t. Under

suitable conditions, there exists a reference probability measure Q such that

dP

dQ

∣∣∣∣
Ft

= ξt = exp

(∫ t

0

h(Xs).dWs −
1

2

∫ t

0

|h(Xs)|2ds
)
,

and (B,W ) are two independent Brownian motions under Q. By the Kallianpur–
Striebel formula, we have

〈πt, f〉 =
〈Vt, f〉
〈Vt, 1〉

,
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where

〈Vt, f〉 = EQ
W

[f(Xt)ξt]

satisfies the Zakai equation (1.1). From now on, the symbol E will denote the expec-
tation with respect to the probability Q.

1.1. A short discussion of related literature. Numerical approximations of
the Zakai equation and more generally of SPDEs have been extensively studied in
the literature. We cite the survey paper [17] and the references therein. Roughly
summarizing, one may classify the following approaches:

– Approximations based on the analytic expression (1.2) vary from finite difference
of finite elements methods, splitting up methods, or Galerkin’s approximation. We
cite, for instance, [33], [15], [16] for the finite difference method of the Zakai equation
or SPDEs, and the recent paper [35] for the finite element method of SPDEs. For
the splitting up method of the Zakai equation and SPDEs, see [4], [11], [23], [18].
See also [34] for a time discretization analysis of θ-schemes of parabolic-type SPDEs
driven by a(n infinite-dimensional) Wiener process.

– A first algorithm based on some uniform quantization grids of the state process
is mentioned in [20].

– Another point of view, developed and studied in [24] and [5], is based on the
Wiener chaos decomposition of the solution to the Zakai equation. We mention also
Wong–Zakai-type approximations considered in [19].

– The third approach is based on the probabilistic representation (1.5) of the
solution as a weighted (or unnormalized) conditional distribution. For the Zakai
equation of nonlinear filtering problem, papers [22] and [10] develop approximation
methods by replacing the signal process by a finite state Markov chain on a uniform
grid prescribed a priori. This method is somewhat equivalent to the finite difference
method.

– The so-called particular Monte Carlo method is based on a particle approxima-
tion of the conditional distribution. It has recently given rise to extensive studies; see,
for instance, [8], [6], [7] for the nonlinear filtering problem. We will compare some of
our results to those obtained in [7] (in which the diffusion X does not depend on the
observation process, i.e., γ = 0).

1.2. Contribution and organization of the paper. The first contribution of
our work consists in accurately estimating the error due to time discretization on the
conditional expectation (1.5). Without conditioning, classical results yield an error at
most linear w.r.t. the time step δ (see, for instance, [3]). Here, the situation is unusual
because of the conditional expectation, and our analysis makes clear the role of the
correlation factor between the underlying process X and the observation process W .
As concerns the proof, we use Malliavin calculus techniques, but the fact that we work
conditionally to W induces some specific technicalities.

In a second part, we propose a simulation algorithm for the SPDE (1.1) based on
an optimal quantization approach. Basically, this means a spatial discretization of the
dynamics of the Euler time discretization (Xk, Vk) of (1.3)–(1.5) optimally fitted to
its probabilistic features. To be more specific, we first recall some short background
on optimal quantization of a random vector. Let X : (Ω,F , P ) → R

d be a random
vector and let Γ = {x1, . . . , xN} be a subset (or grid) of R

d having N elements. We

approximate X by one of its Borel closest neighbor projections X̂Γ := ProjΓ(X) on
Γ. Such a projection is canonically associated to a Voronoi tessellation (Ci(Γ))1≤i≤N
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that is a Borel partition of R
d satisfying for any i = 1, . . . , N

Ci(Γ) ⊂
{
ξ ∈ R

d : |ξ − xi| = min
j

|ξ − xj |
}
.

Hence

X̂Γ = ProjΓ(X) :=

N∑
i=1

xi1{X∈Ci(Γ)}.

As soon as X ∈ Lp(Ω, P,Rd) the induced Lp-quantization error is given by

‖X − X̂Γ‖
p

=

(
E min

1≤i≤N
|X − xi|p

) 1
p

< ∞.

The Lp-optimal N -quantization problem for X consists in finding a grid Γ∗ which
achieves the lowest Lp-quantization error among all grids of size at most N . Such
an optimal grid does exist (see [14]), and its size is exactly N if the support of X
is infinite; it is generally not unique (except in 1-dimension, where uniqueness holds
when the distribution P

X
of X has a log-concave density). The rate of convergence of

the lowest Lp-quantization error as N → +∞ is ruled by the so-called Zador theorem
(see [14]). For historical reasons, this theorem is usually stated with the pth power of
the Lp-quantization error, known as the Lp-distortion.

Theorem 1.1. Assume that X ∈ Lp+η(Ω, P,Rd) for some η > 0. Let f denote
the probability density of the absolutely continuous part of its distribution P

X
(f is

possibly 0). Then,

lim
N

(
N

p
d min

|Γ|≤N
‖X − X̂Γ‖p

p

)
= Jp,d‖f‖ d

d+p
.

The constant Jp,d corresponds to the uniform distribution over [0, 1]d and in that case
the above lim

N
also holds as an infimum.

The constant Jp,d is unknown as soon as d ≥ 3 although one knows that Jp,d ∼
(d/(2πe))

p
2 as d → ∞. This theorem says that the lowest Lp-quantization error goes

to 0 at an N− 1
d -rate when N → ∞. For more details about these results, we refer

to [14] and the references therein.
From a computational viewpoint, no closed form is available for optimal quantiza-

tion grids Γ∗ except for some very specific 1-dimensional distributions like the uniform
one. Several algorithms can be implemented to compute these optimal (or at least
some efficient locally optimal) grids. Several of them rely on the differentiability of
the Lp-distortion function as a function of the grid (viewed as an N -tuple of (Rd)N ):
if P

X
is continuous, it is differentiable at any grid of size N and its gradient admits

an integral representation with respect to the distribution of X. Consequently one
may search for optimal grids by implementing a Newton–Raphson procedure (in 1-
dimension) or a stochastic gradient descent (in d-dimension). These numerical aspects
have been extensively investigated in [31] with special attention to the d-dim normal
distribution. Efficient grids for these distributions are now available for many sizes in
dimensions d = 1 up to 10 (which can be downloaded at www.quantification.finance-
mathematique.com); the extension to the quantization of Markov chains, including
its numerical aspects, has already been discussed in several papers for various fields
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of applications, such as American option pricing, nonlinear filtering, or stochastic
control (see, e.g., [1], [28], [30], or [29]).

We now briefly explain in this introduction how to apply the vector-quantization
method to the Zakai SPDE (1.1). The process (Xk) is simply a time discretization
of a diffusion independent of V . In particular, given an observation W , (Xk) can be
easily simulated and the idea is to quantize optimally at each time step k the random
vector Xk by a finite distribution X̂k. This provides in turn an approximation of (Vk)
as the conditional distribution of X̂k, weighted by a Girsanov-like term.

Let us mention that this approach can be applied to a wider family of stochastic
SPDEs, e.g., when the functions h and γ (and possibly β and σ in the diffusion
process) depend upon Vt. This is the case of the stochastic McKean–Vlasov equation,
where h ≡ 0 and γ(x, V ) =

∫
γ̄(x, v)V (dv) (V positive measure). We refer to [13] for

some theoretical and numerical developments on this equation.

Our main results concerning the rate of convergence can be summed up as follows.
First we prove under some regularity assumptions that the error induced by a time
discretization with step δ is in general of order

√
δ, although in the case γ = 0 the order

of convergence is improved to δ. As concerns spatial discretization error, we obtain
n

3
2 /N̄

1
d (where δ = T/n and N̄ = N/n denotes the (average) size of the quantization

grids used at every time step). Finally (when γ �= 0), our global error term has the
form

1√
n

+
n

3
2

N̄
1
d

.

Numerical experiments carried out in section 4 suggest that a significantly better

space order holds true, such as (when d = 1) c1+c2n+o(n)
N̄

, where c2 � c1.

The finite element method applied to (1.2) would provide the same kind of rate
(in [35] the Wiener process W is infinite-dimensional, which induces worst rates for
time and space discretization). However, these methods require an implicit time
integration in order to be stable. This requires us to invert an Nd×Nd linear system
(even if it is sparse) at each time step, which becomes very expensive as the dimension
d grows (say d ≥ 3 or 4).

As concerns Monte Carlo methods based on interacting particles procedures like [8]
or [6], the main difference of our approach in terms of complexity is that most parts
of our computations (the quantization of the d-dimensional process X) can be made
off-line. This compensates the dependency in d of its theoretical rate of convergence,
at least in medium dimensions. Since the algorithm proposed here is similar to the
quantized nonlinear filters developed in [28] from a computational point of view, we
refer to the detailed discussion carried out in it.

The paper is organized as follows. Section 2 is devoted to the time discretization
error of the SPDE (1.1). The above result is established using Malliavin calculus
techniques. We describe precisely in section 3 the optimal quantization algorithm for
the Zakai equation and we analyze the resulting error. Finally, we illustrate our results
in section 4 with several simulations concerning the Zakai equation in the linear case.

2. Time discretization error. In this section, we study the error caused by a
time discretization of the system (1.3)–(1.5) characterizing the solution to the SPDE
(1.1) on a finite time interval [0, T ]. We consider regular discretization times tk = kδ,
k = 0, . . . , n, where δ = T/n is the time step, and we denote φ(t) = sup{tk : tk ≤ t}.
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We then use an Euler scheme as follows:

Xδ
t = X0 +

∫ t

0

β(Xδ
φ(s))ds +

∫ t

0

σ(Xδ
φ(s))dBs +

∫ t

0

γ(Xδ
φ(s))dWs,

Zδ
t =

∫ t

0

h(Xδ
φ(s)).dWs −

1

2

∫ t

0

|h(Xδ
φ(s))|2ds,

〈V δ
t , f〉 = E

W

[
f(Xδ

t ) exp(Zδ
t )
]
.

By denoting X̄k = Xδ
tk

, V̄k = V δ
tk

, ΔB̄k = Btk −Btk−1
, ΔW̄k = Wtk −Wtk−1

, the
Euler scheme reads at the discretization times tk, k = 0, . . . , n,

X̄k+1 = X̄k + β(X̄k)δ + σ(X̄k)ΔB̄k+1 + γ(X̄k)ΔW̄k+1,(2.1)

X̄0 = X0 � μ0,(2.2)

〈V̄k, f〉 = E
W

⎡
⎣f(X̄k) exp

⎛
⎝k−1∑

j=0

g(X̄j ,ΔW̄j+1)

⎞
⎠
⎤
⎦,(2.3)

where

g(x,ΔW̄ ) = h(x).ΔW̄ − 1

2
|h(x)|2δ.

Denote by P̄
k,W

(x, dx′) the conditional probability of X̄k given W and X̄k−1 = x.
From (2.1), we have

P̄
k,W

(x, dx′) � N
(
x + β(x)δ + γ(x)ΔW̄k, δσ(x)σᵀ(x)

)
.

As usual, we set for any f ∈ B(Rd) a set of bounded measurable functions on R
d,

P̄
k,W

f(x) = E
W

[
f(X̄k)

∣∣ X̄k−1 = x
]

=

∫
f(x′)P̄

k,W
(x, dx′),

for any x ∈ R
d. Hence, by the distribution of iterated conditional expectations, we

have the following inductive formula for V̄k, k = 0, . . . , n:

〈V̄k+1, f〉 = 〈V̄k, exp
(
g(.,ΔW̄k+1)

)
P̄

k+1,W
f〉,(2.4)

V̄0 = μ0.(2.5)

We denote by BL1(R
d) the unit ball of bounded Lipschitz functions on R

d,

BL1(R
d) = {f : R

d �→ R satisfying |f(x)| ≤ 1 and |f(x) − f(y)| ≤ |x− y| ∀ x, y},

and we consider the metric

ρ(V1, V2) = sup
{
|〈V1, f〉 − 〈V2, f〉| , f ∈ BL1(R

d)
}

on M(Rd) for any V1, V2 ∈ M(Rd).

2.1. Main results. To simplify the following convergence analysis, we assume
that the coefficients are very smooth and that they satisfy a uniform ellipticity con-
dition.

(H1) (i) The functions β, σ, and γ are of class C∞ with bounded derivatives.
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(ii) The function h is of class C∞ and is bounded, as are its derivatives.
(iii) For some ε0 > 0, one has σσᵀ(x) ≥ ε0 Id uniformly in x.

We recall some notation from [12]. We set Xδ,λ
t = Xδ

t + λ(Xt − Xδ
t ) and

eZ̄
δ
T =

∫ 1

0
eZ

δ
T +λ(ZT−Zδ

T )dλ. In addition, for any smooth function a : R
d �→ R

d′
we

denote its derivative by a′, which is R
d′⊗R

d-valued. Finally, we repeatedly use the no-

tation a′(t) =
∫ 1

0
a′(Xδ,λ

t )dλ. Now, consider the unique solution of the linear equation

Et = Id +
∫ t

0
β′(s)Es ds +

∑d
j=1

∫ t

0
σ′
j(s)Es dBj

s +
∑q

j=1

∫ t

0
γ′
j(s)Es dW j

s (as usual, σj

and γj are the jth column of the matrix σ and γ). Then, Lemma 4.3 in [12] gives

Xt −Xδ
t = Et

∫ t

0

E−1
s

{
[β(Xδ

s ) − β(Xδ
φ(s))]

−
d∑

j=1

σ′
j(s)[σj(X

δ
s ) − σj(X

δ
φ(s))]

−
q∑

j=1

γ′
j(s)[γj(X

δ
s ) − γj(X

δ
φ(s))]

}
ds(2.6)

+

d∑
j=1

Et
∫ t

0

E−1
s [σj(X

δ
s ) − σj(X

δ
φ(s))] dB

j
s

+

q∑
j=1

Et
∫ t

0

E−1
s [γj(X

δ
s ) − γj(X

δ
φ(s))] dW

j
s .

For any f ∈ BL1(R
d), we put fδ(x) = E(f(x + δB̃T )), where B̃ is an extra d-

dimensional Brownian motion independent on B and W . Clearly, fδ is of class C∞
b ,

‖fδ‖∞ + supx�=y
|fδ(x)−fδ(y)|

|x−y| ≤ C, ‖fδ − f‖∞ ≤ Cδ, both estimates being uniform in

BL1(R
d).

The main result of this section is the following.
Theorem 2.1. Assume (H1). For f ∈ BL1(R

d), set

A1(f) = −eZ
δ
T f ′

δ(T )ET

[
q∑

j=1

∫ T

0

(
E−1
s

∫ s

φ(s)

γ′
j(X

δ
r )γ(Xδ

φ(r))dWr

)
dW j

s

]
,

A2(f) = −eZ̄
δ
T f(XT )

(
q∑

i=1

∫ T

0

[ ∫ s

φ(s)

h′
i(X

δ
r )γ(Xδ

φ(r))dWr

]
dW i

s

)
,

A3(f)

= −
q∑

i,j=1

f(XT )eZ̄
δ
T

(∫ T

0

h′
i(s)Es

(∫ s

0

E−1
r

[ ∫ r

φ(r)

γ′
j(X

δ
u)γ(Xδ

φ(u))dWu

]
dW j

r

)
dW i

s

)
,

A4(f)

=
1

2
eZ̄

δ
T f(XT )

∫ T

0

[
(‖h‖2)′(s)Es

(
q∑

j=1

∫ s

0

E−1
r

(∫ r

φ(r)

γ′
j(X

δ
u)γ(Xδ

φ(u))dWu

)
dW j

r

)]
ds.

Then, one has∥∥ρ(VT , V
δ
T )
∥∥

2
≤ Cδ + sup

f∈BL1(Rd)

‖E
W

[A1(f) + A2(f) + A3(f) + A4(f)]‖
2
,



2512 E. GOBET, G. PAGÈS, H. PHAM, AND J. PRINTEMS

with

sup
f∈BL1(Rd)

‖E
W

(A1(f) + A2(f) + A3(f) + A4(f))‖2 ≤ C
√
δ

for some constant C.
Remark 2.1. The fact that

√
δ is an upper bound for the error is clear, if we use

classic Lp-estimates between X and Xδ. But we know that this argument involving
pathwise errors is not optimal when errors on laws are considered [3]. The result
above makes clear the role of the correlation in the error on conditional expectations.

1. When there is no correlation between signal and observation, i.e., γ = 0 (which
is not really relevant in a filtering problem), the four terms Ai(f), i = 1, . . . , 4, vanish
and the rate of convergence for the approximation of VT is of order δ, the time
discretization step.

2. For constant function γ, the three contributions A1(f), A3(f), A4(f) vanish
and there remains A2(f) of order

√
δ coming from the approximation of eZT .

3. In the general case, the error will be inexorably of order
√
δ. Indeed, main

contributions in the error essentially behave like
∑n−1

i=0

∫ ti+1

ti
(Ws−Wti)dWs = 1

2

∑n−1
i=0(

[Wti+1 −Wti ]
2 − [ti+1 − ti]

)
, where the L2-norm equals C

√
δ.

2.2. Proof of Theorem 2.1. The proof relies on Malliavin calculus techniques:
we refer the reader to [26], from which we borrow our notation. For technical reasons,
it will be useful to work with the extended Wiener process

W =

⎛
⎝ B

B̃
W

⎞
⎠ ;

all the further Malliavin calculus computations are made relative to W. Set H =
L2([0, T ],R2d+q) and denote X̃δ,λ

t = Xδ,λ
t + δ√

2
B̃t. For F ∈ D

1,p, we write DF =

(DBF,DB̃F,DWF ) for the components relative to the three Brownian motions
B, B̃, and W ; the partial Malliavin covariance matrix of F is denoted by γF =∫ T

0
[DB

t F,DB̃
t F, 0][DB

t F,DB̃
t F, 0]ᵀdt =

∫ T

0
DB

t F [DB
t F ]ᵀdt+

∫ T

0
DB̃

t F [DB̃
t F ]ᵀdt (see sec-

tion 2.1 in [26]). Following section 1.3 in [26], the Skorokhod integral, i.e., the adjoint
operator of D, is denoted by δ (with a boldface symbol to avoid confusion with the
time step δ). For a process u in the domain of δ, for its Skorokhod integral we write

δ(u) and
∫ T

0
utδWt as well.

As in section 4.5.2 of [12], a localization factor ψδ
T ∈ [0, 1] will be needed in

the control of residual terms to justify integration by parts formulas. It satisfies the
following properties:

(a) For any integers k and p, ψδ
T ∈ D

k,p and supδ ‖ψδ
T ‖Dk,p ≤ C

T q for some
C, q ≥ 0.

(b) For any k ≥ 1, there are C, q ≥ 0 such that P (ψδ
T �= 1) ≤ C

T q δ
k.

(c) {ψδ
T �= 0} ⊂ {∀λ ∈ [0, 1] : det(γX̃δ,λ

T ) ≥ 1
2 det(γXT )}.

We omit the details of its tedious construction and we simply refer to [12] (we mention
that the nondegeneracy condition (H1) (iii) is used to get the above estimates with
1/T q, but it could also be replaced by a hypoellipticity-type assumption). To prepare
the proof, we now state a series of technical results (justified later) which will help to
derive a suitable stochastic analysis conditionally on W .

Lemma 2.1. In the following, Φ(W ) stands for a functional measurable w.r.t.
W , which belongs to D

∞.



DISCRETIZATION AND SIMULATION OF THE ZAKAI EQUATION 2513

(i) For any random variable Y ∈ L2, EW (Y ) is the unique random variable
satisfying the equality E(Y Φ(W )) = E(EW (Y )Φ(W )) for any functional
Φ(W ) ∈ D

∞.
(ii) For any Φ(W ) ∈ D

∞ and F ∈ D
1,2, one has Φ(W )F ∈ D

1,1, with DB(Φ(W )F )

= Φ(W )DBF and DB̃(Φ(W )F ) = Φ(W )DB̃F .
(iii) For Φ(W ) and G in D

∞, g ∈ C∞
b , and any multi-index α, one has⎧⎨

⎩
E (Φ(W )∂αg(XT )G) = E (Φ(W )g(XT )Hα(XT , G)) ,

‖Hα(XT , G)‖2 ≤ C
‖G‖Dk,p

T q

(2.7)

for some integers k, p, q. Furthermore, if G = 0 on {ψδ
T = 0}, then for any

λ ∈ [0, 1], one has⎧⎨
⎩

E(Φ(W )∂αg(X̃δ,λ
T )G) = E(Φ(W )g(X̃δ,λ

T )Hα(X̃δ,λ
T , G)),

‖Hα(X̃δ,λ
T , G)‖2 ≤ C

‖G‖Dk,p

T q

(2.8)

with some constants C, k, p, q uniform in δ, and λ ∈ [0, 1].
The result below is one of the keys of our error analysis. The estimates of order δ

are rather surprising. Indeed, at first glance, each stochastic integral (for fixed r) in
the left-hand side of (2.9) is of order

√
δ, but the mean over r helps in improving this

estimate to get δ, provided that the processes g and h satisfy some suitable controls.
Its proof is postponed until the end of this section.

Proposition 2.1. For g ∈ D
∞(H) and h ∈ D

∞(H), one has∫ T

0

gr

(∫ r

φ(r)

huδWu

)
dr =

∫ T

0

(∫ T

0

grhu1φ(r)≤u≤rdr

)
δWu

+

∫ T

0

(∫ T

0

Dugr · hu1φ(r)≤u≤rdr

)
du,(2.9)

and the above random variable belongs to D
∞. Under extra assumptions, both terms

in the right-hand side (r.h.s.) above are of order δ.

(i) Assume that Nk,p(g) =
∑k

j=0

[
E
( ∫ T

0
‖Djgr‖pLp([0,T ]j)dr

)]1/p
< +∞ and

Nk,p(h) < +∞ for any k and p. Then, the first term in the r.h.s. of (2.9) is
of order δ in D

k,p, for any k ∈ N and p > 1:∥∥∥∥
∫ T

0

(∫ T

0

grhu1φ(r)≤u≤rdr

)
δWu

∥∥∥∥
Dk,p

≤ C Nk+1,q(g)Nk+1,q(h) δ(2.10)

for some constants C and q depending only on k and p.

(ii) Assume that Mk,p(g) =
∑k

j=1 sup0≤r≤T

[
E‖Djgr‖pLp([0,T ]j)

]1/p
< +∞ and

Nk,p(h) < +∞ for any k and p. Then, the second term in the r.h.s. of (2.9)
is of order δ in D

k,p, for any k ∈ N and p ≥ 1:

∥∥∥∥∥
∫ T

0

(∫ T

0

Dugr · hu1φ(r)≤u≤rdr

)
du

∥∥∥∥∥
Dk,p

≤ C Mk+1,q(g) Nk,q(h) δ

(2.11)

for some constants C and q depending only on k and p.
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Let us turn to the proof of Theorem 2.1. It consists in proving

E(Φ(W )[f(Xδ
T )eZ

δ
T − f(XT )eZT ])(2.12)

= E(Φ(W )eZ
δ
T [(f − fδ)(X

δ
T ) − (f − fδ)(XT )])

+E(Φ(W )eZ
δ
T [fδ(X

δ
T ) − fδ(XT )])(2.13)

+E(Φ(W )f(XT )[eZ
δ
T − eZT ])(2.14)

= E(Φ(W )[A1(f) + A2(f) + A3(f) + A4(f) + R])

for any functional Φ(W ) ∈ D
∞, with ‖R‖2 = O(δ) uniformly w.r.t. f ∈ BL1(R

d).
Since ‖f − fδ‖∞ ≤ Cδ for f ∈ BL1(R

d), the term (2.12) can be neglected in our
expansion.

In the following computations, we simply write Φ instead of Φ(W ).

2.2.1. Contribution (2.13). A Taylor’s formula combined with (2.6) and Ito’s
formula between φ(s) and s gives

E(ΦeZ
δ
T [fδ(X

δ
T ) − fδ(XT )])(2.15)

= E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α0,0(u)du

]
ds

)
(2.16)

+E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α0,1(u)dBu

]
ds

)
(2.17)

+E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α0,2(u)dWu

]
ds

)
(2.18)

+E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α1,0(u)du

]
dBs

)
(2.19)

+
d∑

i=1

E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α1,1
i (u)dBu

]
dBi

s

)
(2.20)

+

d∑
i=1

E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α1,2
i (u)dWu

]
dBi

s

)
(2.21)

+E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α2,0(u)du

]
dWs

)
(2.22)

+

q∑
i=1

d∑
j=1

E

(
ΦeZ

δ
T f ′

δ(T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α2,1
i,j (u)dBj

u

]
dW i

s

)
+ E(ΦA1(f)),(2.23)

where coefficients α.
. ∈ D

∞(H) with Nk,p(α
.
.)+Mk,p(α

.

.) < +∞ for any k, p, uniformly
w.r.t. δ (actually, this is a consequence of the stronger estimate supr∈[0,T ] ‖Dk

s1,... ,sk
α.
.

(r)‖p < ∞; see, e.g., [12]). For instance, one can easily check that α2,1
i,j (u) =

−γ′
i(X

δ
φ(u))σj(X

δ
φ(u)).

Terms in the factor of Φ in (2.15), (2.18), (2.21) clearly satisfy ‖R‖2 = O(δ)
(recall that ‖f ′‖∞ ≤ C uniformly in f ∈ BL1(R

d)).
The contributions (2.16) and (2.17) give a contribution of order δ in Lp-norm by

an application of estimates (2.10)–(2.11).
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Terms in (2.19) contain most of the difficulties that we have to face in this error
analysis; here, we give detailed arguments ((2.20) is handled in the same way). Note
that fδ(x) = E(fδ/

√
2(x + δ√

2
B̃T )) as well for the derivatives; thus, each term of the

sum in (2.19) equals∫ 1

0

dλE

(
Φψδ

T e
Zδ

T f ′
δ/

√
2
(X̃δ,λ

T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α1,1
i (u)dBu

]
dBi

s

)
(2.24)

+

∫ 1

0

dλE

(
Φ(1 − ψδ

T )eZ
δ
T f ′

δ/
√

2
(X̃δ,λ

T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α1,1
i (u)dBu

]
dBi

s

)
.(2.25)

Since P (ψδ
T �= 1) ≤ C δ2

T q , (2.25) provides a negligible contribution. Besides, if we
transform the Ito integral w.r.t. Bi into a Lebesgue integral, using the duality rela-
tionship (see section 1.3 in [26]) and property (ii) of Lemma 2.1, we obtain that (2.24)
can be rewritten in the form∫ 1

0

dλE

(
Φ

∫ T

0

DBi

s [ψδ
T e

Zδ
T f ′

δ/
√

2
(X̃δ,λ

T )ET ]E−1
s

[ ∫ s

φ(s)

α1,1
i (u)dBu

]
ds

)

=
∑

κ:|κ|=1,2

∫ 1

0

dλE

(
Φ ∂κ

xfδ/
√

2(X̃
δ,λ
T )

∫ T

0

α1,1
κ,i(s)

[ ∫ s

φ(s)

α1,1
i (u)dBu

]
ds

)
,

where the summation holds on differentiation multi-indices κ with length equal to 1
and 2. In addition, the coefficients α1,1

κ,i and α1,1
κ,i satisfy Nk,p(α

1,1
κ,i)+Mk,p(α

1,1
κ,i) < +∞

for any k and p. If we put G =
∫ T

0
α1,1
κ,i(s)[

∫ s

φ(s)
α1,1
i (u)dBu]ds, we remark that

G ∈ D
∞, that G = 0 if ψδ

T = 0 because of the local property of the derivative
operator (Proposition 1.3.7 in [26]), and that ‖G‖Dk,p ≤ Cδ by applying Proposition
2.1. Thus, Lemma 2.1 completes the estimate, and the factor of Φ in (2.24) is of order
δ in L2-norm, uniformly w.r.t. f ∈ BL1(R

d).
We now consider (2.22). As for (2.19), we introduce ψδ

T ; the term with 1−ψδ
T can

be neglected as before. Using analogous computations as above, it is straightforward
to see that we have to control∫ 1

0

dλE

(
Φψδ

T e
Zδ

T f ′
δ/

√
2
(X̃δ,λ

T )ET
∫ T

0

E−1
s

[ ∫ s

φ(s)

α2,1
i,j (u)dBj

u

]
dW i

s

)

=

∫ 1

0

dλ

∫ T

0

∫ T

0

E
(
DBj

u [DW i

s [Φψδ
T e

Zδ
T f ′

δ/
√

2
(X̃δ,λ

T )ET ]E−1
s ]1φ(s)≤u≤sα

2,1
i,j (u)

)
du ds

=
∑

κ:|κ|=1,2

∫ 1

0

dλE

(
Φ ∂κ

xfδ/
√

2(X̃
δ,λ
T )

∫ T

0

∫ T

0

α̂κ,2,1
i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du ds

)

(2.26)

+
∑

κ:|κ|=1,2

∫ 1

0

dλE

(∫ T

0

DW i

s [Φ ∂κ
xfδ/

√
2(X̃

δ,λ
T )]

(∫ T

0

ακ,2,1
i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du

)
ds

)
.

(2.27)

For (2.26), it is enough to apply (2.8) with G =
∫ T

0

∫ T

0
α̂κ,2,1
i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du ds,

which clearly satisfies ‖G‖Dk,p ≤ Cδ; this proves the expected estimate of order δ. The
same conclusion holds for each term in (2.27): indeed, they can be transformed in
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∫ 1

0
dλE(Φ ∂κ

xfδ/
√

2(X̃
δ,λ
T )

∫ T

0
(
∫ T

0
ακ,2,1
i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du)δW i

s) and we conclude
with Lemma 2.1.

2.2.2. Contribution (2.14). It can be decomposed as E(Φf(XT )[eZ
δ
T −eZT ]) =

E(Φf(XT )eZ̄
δ
T [Zδ

T − ZT ]), that is,

E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

[h(Xδ
φ(s)) − h(Xδ

s )].dWs

))
(2.28)

+E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

[h(Xδ
s ) − h(Xs)].dWs

))
(2.29)

− 1

2
E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

[‖h‖2(Xδ
φ(s)) − ‖h‖2(Xδ

s )]ds

))
(2.30)

− 1

2
E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

[‖h‖2(Xδ
s ) − ‖h‖2(Xs)]ds

))
.(2.31)

In what follows, the main idea is to use Ito’s formula and the stochastic expansion
(2.6) to expand the differences h(Xδ

φ(s)) − h(Xδ
s ), h(Xδ

s ) − h(Xs), and so on. It
will raise iterated stochastic integrals and, as before, the ones for which conditional

expectation w.r.t. W is of order
√
δ are essentially of type

∫ T

0
· · · (

∫ s

φ(s)
· · · dWu)dWs

(and not
∫ T

0
· · · (

∫ s

φ(s)
· · · dBu)dWs or

∫ T

0
· · · (

∫ s

φ(s)
· · · dWu)dBs).

We now go into detail. Since (2.28) can be rewritten as E(Φf(XT )eZ̄
δ
T (
∑q

i=1

∫ T

0

[hi(X
δ
φ(s)) − hi(X

δ
s )]dW i

s)), it equals

−E

(
Φf(XT )eZ̄

δ
T

(
q∑

i=1

∫ T

0

[ ∫ s

φ(s)

h′
i(X

δ
r )β(Xδ

φ(r))dr

]
dW i

s

))
(2.32)

−E

(
Φf(XT )eZ̄

δ
T

(
q∑

i=1

∫ T

0

[ ∫ s

φ(s)

h′
i(X

δ
r )σ(Xδ

φ(r))dBr

]
dW i

s

))
(2.33)

−E

(
Φf(XT )eZ̄

δ
T

(
q∑

i=1

∫ T

0

[ ∫ s

φ(s)

h′
i(X

δ
r )γ(Xδ

φ(r))dWr

]
dW i

s

))
.(2.34)

The factor of Φ in (2.32) clearly satisfies the required estimate and can be ne-
glected. The term (2.33) can also be discarded from the main part of the error using
the same arguments as for (2.22). Finally, the term (2.34) gives A2(f).

Term (2.29). Owing to (2.6),
∑q

i=1 E(Φf(XT )eZ̄
δ
T (
∫ T

0
[hi(X

δ
s ) − hi(Xs)]dW

i
s))

equals

−
q∑

i=1

d∑
j=1

E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

h′
i(s)Es

×
(∫ s

0

E−1
r

[ ∫ r

φ(r)

σ′
j(X

δ
u)σ(Xδ

φ(u))dBu

]
dBj

r

)
dW i

s

))
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−
q∑

i=1

d∑
j=1

E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

h′
i(s)Es

×
(∫ s

0

E−1
r

[ ∫ r

φ(r)

σ′
j(X

δ
u)γ(Xδ

φ(u))dWu

]
dBj

r

)
dW i

s

))

−
q∑

i,j=1

E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

h′
i(s)Es

×
(∫ s

0

E−1
r

[ ∫ r

φ(r)

γ′
j(X

δ
u)σ(Xδ

φ(u))dBu

]
dW j

r

)
dW i

s

))
(2.35)

−
q∑

i,j=1

E

(
Φf(XT )eZ̄

δ
T

(∫ T

0

h′
i(s)Es

×
(∫ s

0

E−1
r

[ ∫ r

φ(r)

γ′
j(X

δ
u)γ(Xδ

φ(u))dWu

]
dW j

r

)
dW i

s

))
+ E(ΦR)(2.36)

with ‖R‖2 = O(δ) by estimates (2.10)–(2.11). The term (2.36) gives A3(f), while
the other contributions can be neglected. To justify this assertion, let us consider,
for instance, (2.35), with techniques being the same for the other ones. First, we
can replace f by fδ since ‖f − fδ‖∞ ≤ Cδ. Then, three applications of the duality
relationship yield

E

(
Φfδ(XT )eZ̄

δ
T

(∫ T

0

h′
i(s)Es

(∫ s

0

E−1
r

[ ∫ r

φ(r)

γ′
j(X

δ
u)σ(Xδ

φ(u))dBu

]
dW j

r

)
dW i

s

))

=

∫ T

0

∫ T

0

∫ T

0

E(DB
u [DW j

r [DW i

s [Φfδ(XT )eZ̄
δ
T ]h′

i(s)Es]E−1
r ]

· γ′
j(X

δ
u)σ(Xδ

φ(u))1φ(r)≤u≤r)du dr ds.

The term inside the expectation can be split into a sum involving the derivative of Φ
and of f . Presumably, the more difficult term to estimate is of the form

∫ T

0

∫ T

0

∫ T

0

E(DW j

r [DW i

s [Φ ∂κ
xfδ(XT )]]α(u, r, s)1φ(r)≤u≤r)du dr ds.

We omit the details for the other ones, which are easier to handle. Two integrations
by parts with fixed W (see (iii) in Lemma 2.1) show that it equals

E

(
Φ ∂κ

xfδ(XT )

∫ T

0

(∫ T

0

(∫ T

0

α(u, r, s)1φ(r)≤u≤rdu

)
δW j

r

)
δW i

s

)
.

Then, we conclude using (2.7) with ‖
∫ T

0
(
∫ T

0
(
∫ T

0
α(u, r, s)1φ(r)≤u≤rdu)δW j

r )δW i
s‖Dk,p

≤ Cδ.

Term (2.30). It yields a contribution of order δ, by an application of Ito’s formula

and inequalities (2.10)–(2.11). At last, the term (2.31) is equal to − 1
2

∫ T

0
E(Φf(XT )eZ̄

δ
T

[‖h‖2(Xδ
s )−‖h‖2(Xs)])ds; in this form, the analysis is analogous to that of (2.13) and

we omit the details. It gives the contribution A4(f) and some residual terms of order δ.
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2.2.3. Proof of Lemma 2.1. The two first statements are straightforward.
Statement (i) immediately follows from the fact that any Φ(W ) ∈ L2 can be approx-
imated in L2 by a sequence of D

∞-r.v. using the chaos expansion (see Theorem 1.1.1

in [26]). Statement (ii) is clear from the definition of D
1,p, DB , and DB̃ .

Statement (iii) is an integration by parts formula that puts the differentiation/
integration only on B and B̃, but not on W . Its proof is an easy adaptation of Propo-
sition 3.2.1 in [27]. The estimate (2.7) is standard using in particular ‖[γXT ]−1‖p ≤ C

T q

under the nondegeneracy condition (H1) (iii) (see Theorem 3.3.1 in [27]). We only
prove (2.8), which is less usual because of the localization factor G. Using (ii), one
obtains the following equalities:

[DB(Φ(W )g(X̃δ,λ
T )),DB̃(Φ(W )g(X̃δ,λ

T ))] = Φ(W )g′(X̃δ,λ
T )[DBX̃δ,λ

T ,DB̃X̃δ,λ
T ],∫ T

0

Dt(Φ(W )g(X̃δ,λ
T ))[DB

t X̃δ,λ
T ,DB̃

t X̃δ,λ
T , 0]ᵀdt = Φ(W )g′(X̃δ,λ

T )γX̃δ,λ
T .

Note that γX̃δ,λ
T ≥ δ2

2 Id and thus γX̃δ,λ
T is invertible (it is the purpose of the small

perturbation of Xδ,λ with δB̃/
√

2). Then, the duality relationship leads to

E(Φ(W )∂xi
g(X̃δ,λ

T )G)

= E

(∫ T

0

Dt(Φ(W )g(X̃δ,λ
T ))[Gei · [γX̃δ,λ

T ]−1DB
t X̃δ,λ

T , Gei · [γX̃δ,λ
T ]−1DB̃

t X̃δ,λ
T , 0]ᵀdt

)

= E

(
Φ(W )g(X̃δ,λ

T )

∫ T

0

[Gei · [γX̃δ,λ
T ]−1DB

t X̃δ,λ
T , Gei · [γX̃δ,λ

T ]−1DB̃
t X̃δ,λ

T , 0]δWt

)
.

For longer multi-index α, we iterate the procedure and construct Hα(X̃δ,λ
T , G) by the

recurrence formula Hα′+[ei]ᵀ(X̃δ,λ
T , G) =

∫ T

0
[Hα′(X̃δ,λ

T , G)ei · [γX̃δ,λ
T ]−1DB

t X̃δ,λ
T , Hα′

(X̃δ,λ
T , G)ei · [γX̃δ,λ

T ]−1DB̃
t X̃δ,λ

T , 0]δWt. Concerning the estimation on ‖Hα(X̃δ,λ
T , G)‖2,

note first that since the derivative operator and the Skorokhod integral are local
(see Propositions 1.3.6 and 1.3.7 in [26]), one has Hα(X̃δ,λ

T , G) = Hα(X̃δ,λ
T , G)1ψδ

T>0

owing to the property on G. Using the standard inequality ‖Hα(X̃δ,λ
T , G)1A‖p ≤

C‖[γX̃δ,λ
T ]−11A‖p1

q1‖X̃
δ,λ
T ‖p2

k2,q2
‖G‖Dk3,q3 (Proposition 2.4 in [3]) combined with

‖[γX̃δ,λ
T ]−11ψδ

T>0‖p ≤ C
T q (take into account property (c) of ψδ

T ; see section 2.2),
we easily complete the expected estimation.

2.2.4. Proof of Proposition 2.1. To prove (2.9), take Ψ ∈ D
∞ and write using

Fubini’s theorem twice and the duality relationship alternatively as follows:

E

(
Ψ

∫ T

0

gr

(∫ r

φ(r)

huδWu

)
dr

)
=

∫ T

0

E

(
Ψgr

(∫ r

φ(r)

huδWu

))
dr

=

∫ T

0

∫ T

0

E
(
Du[Ψgr]1φ(r)≤u≤r · hu

)
du dr

=

∫ T

0

E

(
DuΨ ·

∫ T

0

grhu1φ(r)≤u≤rdr

)
du
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+

∫ T

0

E

(
Ψ

∫ T

0

Dugr · hu1φ(r)≤u≤rdr

)
du

= E

(
Ψ

∫ T

0

(∫ T

0

grhu1φ(r)≤u≤rdr

)
δWu

)

+E

(
Ψ

∫ T

0

(∫ T

0

Dugr · hu1φ(r)≤u≤rdr

)
du

)
.

It is standard to check that
∫ T

0
gr(

∫ r

φ(r)
huδWu)dr belongs to D

∞ (see Lemma 1.3.4

in [26]). The original feature of our result is specifically related to (2.10) and (2.11).
For this, we use the following general estimates, which we prove at the end.

Lemma 2.2. For appropriately defined random variables (gr,s, hu,s, gr,s,u)r,s,u, we
have

(2.37)⎡
⎣E

(∫
[0,T ]j

ds

∫ T

0

du

∣∣∣∣
∫ T

0

gr,shu,s1φ(r)≤u≤rdr

∣∣∣∣2
)p/2

⎤
⎦1/p

≤ Cp,q(T ) δ

[
E

(∫
[0,T ]j+1

|hu,s|q duds

)]1/q [
E

(∫
[0,T ]j+1

|gr,s|q drds

)]1/q

,

⎡
⎣E

(∫
[0,T ]j

ds

∫ T

0

du

∣∣∣∣
∫ T

0

gr,s,uhu,s1φ(r)≤u≤rdr

∣∣∣∣2
)p/2

⎤
⎦1/p

(2.38)

≤ Cp,q(T )δ

[
E

(∫
[0,T ]j+1

|hu,s|q duds

)]1/q

sup
0≤r≤T

[
E

(∫
[0,T ]j+1

|gr,s,u|q dsdu

)]1/q

for q large enough.
We are now in a position to derive (2.10). Consider first k = 0. To control

the Lp-norms of the first term in the r.h.s. of (2.9), we invoke the continuity of the
Skorokhod integral (Proposition 2.4.3 in [27]) to get

(2.39)∥∥∥∥
∫ T

0

(∫ T

0

grhu1φ(r)≤u≤rdr

)
δWu

∥∥∥∥
p

≤ C

(∥∥∥∥
∫ T

0

grh.1φ(r)≤.≤rdr

∥∥∥∥
Lp(Ω,H)

+

∥∥∥∥
∫ T

0

D(grh.)1φ(r)≤.≤rdr

∥∥∥∥
Lp(Ω,H⊗2)

)
.

From (2.37), we easily get that the first term above is bounded by N0,q(h)N0,q(h)δ for
q large enough. With analogous computations, the second term in the r.h.s. of (2.39)
is bounded by CN1,q(h)N1,q(h)δ. Estimates (2.10) have been proved when k = 0.
For k ≥ 1, the successive derivatives of the r.h.s. of (2.9) are standard to compute
and can be expressed in a similar form as before. Then, analogous computations can
be performed and this proves (2.10) for any k. The derivation of (2.11) is analogous,
using in addition (2.38).
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Proof of Lemma 2.2. The Cauchy–Schwarz inequality yields∫ T

0

du

∣∣∣∣
∫ T

0

gr,s,uhu,s1φ(r)≤u≤rdr

∣∣∣∣2

≤
∫ T

0

du|hu,s|2
(∫ φ(u)+δ

u

|gr,s,u| dr
)2

≤
[∫ T

0

du|hu,s|4
]1/2[∫ T

0

du

(∫ φ(u)+δ

u

|gr,s,u| dr
)4]1/2

≤ δ3/2

[∫ T

0

du|hu,s|4
]1/2[∫ T

0

du

∫ φ(u)+δ

u

|gr,s,u|4 dr

]1/2

.

If g does not depend on u, the last term above is bounded by δ1/2[
∫ T

0
|gr,s|4 dr]1/2.

Then, the derivation of (2.37) is easy, using Hölder’s inequalities. To obtain (2.38),
i.e., when g depends on u, the previous computation to get the missing factor δ1/2

does not work directly; first, one has to integrate over s and ω, the other arguments
remaining unchanged.

3. Simulation of the Zakai equation and quantization error.

3.1. The quantization algorithm. In this section, we propose a quantization
approach for the numerical implementation of formulas in (2.1), (2.3), and (2.5). Here,
those formulas are written as

X̄k+1 = X̄k + β(X̄k)δ + σ(X̄k)ΔB̄k+1 + γ(X̄k)ΔW̄k+1

=: Fδ(X̄k,ΔB̄k+1,ΔW̄k+1),(3.1)

〈V̄k+1, f〉 = 〈V̄k, exp
(
g(.,ΔW̄k+1)

)
P̄

k+1,W
f〉(3.2)

for k = 0, . . . , n− 1, with

g(x,ΔW ) = h(x).ΔW − 1

2
|h(x)|2δ,(3.3)

and P̄
k+1,W

(x, dx′) is a normal distribution with mean x + β(x)δ + γ(x)ΔW̄k+1 and
variance σ(x)σᵀ(x)δ.

We construct an approximation of V̄k as follows. At each time tk, k = 0, . . . , n,
we are given the following grid Γk = {x1

k, . . . , x
Nk

k } of Nk points in R
d, associated to

Voronoi tessellations Ci(Γk), i = 1, . . . , Nk:

Ci(Γk) =

{
u ∈ R

d : |u− xi
k| = min

j
|u− xj

k|
}
.

We then approximate the process (X̄k) by the marginal quantized process (X̂k) defined
as

X̂k = ProjΓk
(X̄k) :=

Nk∑
i=1

xi
k1{X̄k∈Ci(Γk)}.

We thus define the conditional probability P̂
k,W

of X̂k given X̂k−1 and W . In other

words, P̂
k,W

is a (random) probability transition matrix {p̂ij
k,W

, i = 1, . . . , Nk−1, j =
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1, . . . , Nk} characterized by

p̂ij
k,W

= P
W

[
X̂k = xj

k

∣∣∣ X̂k−1 = xi
k−1

]
.

Finally, the random measure-valued process (V̄k) is approximated by the discrete
random measure process (V̂k) defined by

V̂0 = law ofX̂0,

〈V̂k+1, f〉 = 〈V̂k, exp
(
g(.,ΔW̄k+1)

)
P̂

k+1,W
f〉.(3.4)

From an algorithmic viewpoint, this reads as

V̂k =

Nk∑
i=1

v̂ikδxi
k

(δx is the Dirac mass at x)

for k = 0, . . . , n, where the weights v̂ik are computed in a forward induction as follows:

v̂i0 = p̂i0 := P [X̂0 = xi
0] = P [X̄0 ∈ Ci(Γ0)], i = 1, . . . , N0,

v̂jk+1 =

Nk∑
i=1

v̂ikp̂
ij
k+1,W

exp
(
g(xi

k,ΔW̄k+1)
)
, j = 1, . . . , Nk+1.

The implementation of the above method requires optimally for each k = 0, . . . , n

• a grid Γk which minimizes the Lp-quantization error

‖Δk‖p = ‖X̄k − X̂k‖p

as well as an estimation of this error, and

• the weights of the joint distribution (X̂k−1, X̂k) and marginal distribution X̂k−1,

r̂ij
k,W

= P
W

[
X̂k = xj

k, X̂k−1 = xi
k−1

]
= P

W

[
X̄k ∈ Cj(Γk), X̄k−1 ∈ Ci(Γk−1)

]
,

q̂i
k−1,W

= P
W

[
X̂k−1 = xi

k

]
= P

W

[
X̄k−1 ∈ Ci(Γk−1)

]
for i = 1, . . . , Nk−1, j = 1, . . . , Nk, so that

p̂ij
k,W

=
r̂ij
k,W

q̂i
k−1,W

.

This program is achieved as follows:

– Monte Carlo simulation of M independent copies (X̄
(m)
0 , . . . , X̄

(m)
n ), m = 1,

2, . . . ,M , distributed according to (X̄0, . . . , X̄n).

– Recursive optimization of the grids Γ0, . . . ,Γn by a competitive learning vector
quantization procedure and computation of the probability weights r̂ij

k,W
and q̂i

k−1,W
,

k = 1, . . . , n. As a byproduct, we also have an estimation of the L2-quantization
errors ‖Δk‖2, k = 0, . . . , n.
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3.2. Analysis of quantization error. The next theorem states an error esti-
mation for the approximation of V̄n under the following condition on the coefficients
of the SDE X:

(H2) (i) The functions β, σ, and γ are Lipschitz.
(ii) The function h is bounded and Lipschitz.
Theorem 3.1. Under (H2), for all p ∈ [1,+∞) and p′ > p, there exists a positive

real constant Cp,p′ such that

∥∥∥ρ(V̄n, V̂n)
∥∥∥

p

≤ Cp,p′
1√
δ

n∑
k=0

‖Δk‖p′ (with δ = T/n).

We first need the following classic result about the Lp-Lipschitz property of Euler
schemes.

Lemma 3.1. Let Gδ be a functional in the form

Gδ(x, ε) = x + δB(x) +
√
δΣ(x)ε,

where B and Σ are Lipschitz functions on R
d, and ε is a Gaussian white noise. Then,

for all p ∈ [1,∞), there exists a constant Cp such that for all x, x′ ∈ R
d,

‖Gδ(x, ε) −Gδ(x
′, ε)‖p ≤ Cp(1 + δ)|x− x′|.

We refer, e.g., to [30] for a detailed proof in a slightly more general setting where
ε is only symmetric and lies in Lp.

One defines for every k = 1, . . . , n the operator H̄k,W by

H̄k,W (f)(x) = exp g(x,ΔW̄k)P̄k,W (f)(x) ∀f ∈ BL1(R
d), ∀x ∈ R

d,

where g is defined by (3.3). One defines

H̄0,W (f) = 〈μ0, f〉.

One easily checks that (with the former notations)

〈V̄k, f〉 = E
W

(H̄k,W (f)(X̄k−1)) = 〈V̄k−1, H̄k,W (f)〉

so that, for every k = 0, . . . , n,

〈V̄k, f〉 = (H̄0,W ◦ H̄1,W ◦ · · · ◦ H̄k,W )(f).

This equality can be written either in forward or backward recursive form. The
backward form will be an important tool for proofs:

Ūn,W f := f,

Ūk−1,W f := H̄k,W (Ūk,W f), k = 1, . . . n.(3.5)

Then, one checks using the Markov property and the iterated conditional expectation
rule that

Ū0,W f = 〈V̄n, f〉.
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For every k = 1, . . . , n, one approximates the operator H̄k,W by its natural quantized

counterpart Ĥk,W defined on the grid Γk−1 = {x1
k−1, . . . , x

i
k−1, . . . , x

Nk−1

k−1 } by

Ĥk,W (f)(xi
k−1) := exp g(xi

k−1,ΔW̄k)
∑
j

f(xj
k)PW

(X̂k = xj
k | X̂k−1 = xi

k−1)

so that

Ĥk,W (f)(X̂k−1) = exp g(X̂k−1,ΔW̄k)EW
(f(X̂k) | X̂k−1).

Then, one sets

Ĥ0,W (f) :=
∑
j

f(xj
0)PW

(X̂0 = xj
0).

We then notice that the approximation of V̄k defined in (3.4) satisfies the following:

〈V̂k, f〉 = (Ĥ0,W ◦ Ĥ1,W ◦ · · · ◦ Ĥk,W )(f), k = 1, . . . , n.(3.6)

Once again, this equality can be read in backward form as follows:

Ûn,W f(xi
n) := f(xi

n), i = 1, . . . , Nn,

Ûk−1,W f(xi
k−1) := Ĥk,W (Ûk,W f)(xi

k−1), i = 1, . . . , Nk−1, k = 1, . . . n,(3.7)

so that

〈V̂n, f〉 = Û0,W f.(3.8)

The proof is designed as follows: we wish to establish a backward induction be-
tween the error terms ‖Ūk,W f(X̄k) − Ûk,W f(X̂k)‖p at successive times k and k + 1

involving the quantization error ‖X̄k+1 − X̂k+1‖p
of the Euler scheme. Unfortunately

a naive approach makes the final error explode because of successive use of the Hölder
inequality. So we are led to introduce a process Ȳk starting at X̄0 but produced by a
biased dynamics Gδ,p (instead of Fδ) which corresponds to a step-by-step discrete Gir-
sanov (implicit) change of probability. Thus we can simultaneously take advantage of
the martingale property of the Doléans exponential and of the independence property
of the increments ΔW̄k; it makes it possible not to use the Hölder inequality at a cru-
cial step (see (3.15) below), which would cause an explosion of the constants. Finally,
we use a revert Girsanov change of probability to come back to the quantization error
of the original dynamics (X̄k).

Proof of Theorem 3.1. We will assume for convenience that δ = T/n ∈ (0, 1]
throughout the proof.

Step 1 (backward induction on the error ‖Ūk,W f(Ȳk) − Ûk,W f(Ŷk)‖p). Set tem-
porarily

Gδ,p(y, v, w) := Fδ(y, v, w + pδh(y))

= y + δ(β(y) + pγ(y)h(y)) + σ(y)v + γ(y)w,

Ȳk := Gδ,p(Ȳk−1,ΔB̄k,ΔW̄k), k ≥ 1,

Ȳ0 = X0,

Ỹk := Fδ(Ȳk−1,ΔB̄k,ΔW̄k), k ≥ 1.
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Let F̄k denote the σ-field σ(ΔB̄	,ΔW̄	, � = 1, . . . , k). Set, for every k = 0, . . . , n,

Ŷk := ProjΓk
(Ȳk) and

̂̃
Y k := ProjΓk

(Ỹk).

With these notations, one checks that for every f ∈ BL1(R
d),

H̄k,W (f)(Ȳk−1) = exp g(Ȳk−1,ΔW̄k)EW (f(Ỹk) | Ȳk−1)(3.9)

and

Ĥk,W (f)(Ŷk−1) = exp g(Ȳk−1,ΔW̄k)EW (f(
̂̃
Y k) | Ŷk−1).(3.10)

Consequently

Ūk−1,W f(Ȳk−1) − Ûk−1,W f(Ŷk−1)

= H̄k,W (Ūk,W f)(Ȳk−1) − Ĥk,W (Ûk,W f)(Ŷk−1)

= (Ūk−1,W f)(Ȳk−1) − E
W

(
(Ūk−1,W f)(Ȳk−1) | Ŷk−1

)
+E

W

(
H̄k,W (Ūk,W f)(Ȳk−1) − Ĥk,W (Ûk,W f)(Ŷk−1) | Ŷk−1

)
.

Let us deal with the above two terms successively. The random vector Ŷk−1 being a

function of Ȳk−1 and conditional expectation E( . |W, Ŷk−1) being an Lp-contraction,
one gets ∥∥Ūk−1,W f(Ȳk−1) − E

W

(
(Ūk−1,W f)(Ȳk−1)|Ŷk−1

)∥∥
p

≤
∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)

∥∥
p

+
∥∥E

W

(
(Ūk−1,W f)(Ŷk−1) − (Ūk−1,W f)(Ȳk−1) | Ŷk−1

)∥∥
p

≤ 2
∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)

∥∥
p
.

Consequently, using the expressions (3.9) and (3.10) and once again the contraction
property and the σ(Ȳk−1)-measurability of Ŷk−1 yields∥∥Ūk−1,W f(Ȳk−1) − Ûk−1,W f(Ŷk−1)

∥∥
p

(3.11)

≤ 2
∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)

∥∥
p

+
∥∥eg(Ȳk−1,ΔW̄k)(Ūk,W f)(Ỹk) − eg(Ŷk−1,ΔW̄k)(Ûk,W f)(

̂̃
Y k)

∥∥
p

(when p = 2, the 2 factor can be deleted). Let us deal now with the second term of
the sum in the r.h.s. First note that∥∥eg(Ȳk−1,ΔW̄k)(Ūk,W f)(Ỹk) − eg(Ŷk−1,ΔW̄k)(Ûk,W f)(

̂̃
Y k)

∥∥
p

=
∥∥ exp g(Ȳk−1,ΔW̄k)

(
Ūk,W f(Ỹk) − exp

(
g(Ŷk−1,ΔW̄k)

− g(Ȳk−1,ΔW̄k)
)
Ûk,W f(

̂̃
Y k)

)∥∥
p
.

Set Lp(δ) := exp ((p− 1)‖h‖2
∞δ/2). A change of variable “à la Girsanov” yields

for every nonnegative Borel function Θ and every p ∈ (1,+∞)∥∥exp (g(Ȳk−1,ΔW̄k))Θ(Ȳk−1,ΔB̄k,ΔW̄k)
∥∥p

p

≤ (Lp(δ))
pE

(
exp (ph(Ȳk−1).ΔW̄k − p2|h(Ȳk−1)|2δ/2)Θp(Ȳk−1,ΔB̄k,ΔW̄k)

)
≤ (Lp(δ))

pE
(
Θp(Ȳk−1,ΔB̄k,ΔW̄k + pδh(Ȳk−1))

)
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so that ∥∥exp (g(Ȳk−1,ΔW̄k))Θ(Ȳk−1,ΔB̄k,ΔW̄k)
∥∥

p
(3.12)

≤ Lp(δ)‖Θ(Ȳk−1,ΔB̄k,ΔW̄k + pδh(Ȳk−1))‖p .

Applying the above inequality with Θ(y, v, w) = (Ūk,W f)(Gδ,p(y, v, w)) leads to∥∥∥eg(Ȳk−1,ΔW̄k)(Ūk,W f)(Ỹk) − eg(Ŷk−1,ΔW̄k)(Ûk,W f)(
̂̃
Y k)

∥∥∥
p

≤ Lp(δ)
∥∥∥(Ūk,W f(Ȳk) − exp

(
g(Ŷk−1,ΔW̄k + pδh(Ȳk−1))

− g(Ȳk−1,ΔW̄k + pδh(Ȳk−1))
)
Ûk,W f(Ŷk)

)∥∥∥
p

≤ Lp(δ)
∥∥∥Ūk,W f(Ȳk) − Ûk,W f(Ŷk)

∥∥∥
p

+Lp(δ)
∥∥∥(1 − exp

(
g(Ŷk−1,ΔW̄k + pδh(Ȳk−1))

− g(Ȳk−1,ΔW̄k + pδh(Ȳk−1))
))
Ûk,W (f)(Ŷk)

∥∥∥
p

≤ Lp(δ)
∥∥∥Ūk,W f(Ȳk) − Ûk,W f(Ŷk)

∥∥∥
p

+Lp(δ)
∥∥∥1 − exp

(
g(Ŷk−1,ΔW̄k + pδh(Ȳk−1))

− g(Ȳk−1,ΔW̄k + pδh(Ȳk−1))
)∥∥∥

rp

∥∥∥Ûk,W f(Ŷk)
∥∥∥

sp

,(3.13)

where r > 1 and s = r
r−1 are conjugate Hölder exponents. Now∥∥∥Ûk,W f(Ŷk)

∥∥∥
sp

=
∥∥∥exp g(Ŷk,ΔW̄k) Ûk+1,W f(Ŷk)

∥∥∥
sp

.

Applying (3.12) (with sp) yields∥∥∥Ûk,W f(Ŷk)
∥∥∥

sp

≤ Lsp(δ)
∥∥∥Ûk+1,W f(Ŷ

(sp)
k+1 )

∥∥∥
sp

for some F̄k+1-measurable random vector Ŷ
(sp)
k+1 which we have no need to specify

(since f is bounded). One derives by induction that∥∥∥Ûk,W f(Ŷk)
∥∥∥

sp

≤ (Lsp(δ))
n−k

∥∥∥Ûn,W f(Ŷ (sp)
n )

∥∥∥
sp

(3.14)

≤ (Lsp(δ))
n−k

∥∥f∥∥
∞

≤ Cp,r,‖h‖∞ ,T

∥∥f∥∥
∞

with Kp,r,‖h‖∞ ,T = exp ((sp− 1)‖h‖2
∞T/2).

Let us deal now with the Lrp-norm of the exponential term. First, temporarily
set Δ̂k(h) := h(Ŷk) − h(Ȳk). Then, standard computations show that∥∥∥1 − exp

(
g(Ŷk−1,ΔW̄k + p δ h(Ȳk−1)) − g(Ȳk−1,ΔW̄k + pδh(Ȳk−1))

)∥∥∥
rp

=
∥∥∥1 − exp

(
(p− 1)δh(Ȳk−1).Δ̂k−1(h) + Δ̂k−1(h)ΔW̄k − |Δ̂k−1(h)|2δ/2

)∥∥∥
rp

.
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Now using the elementary inequality |ex − 1| ≤ |x|ex+ , where x
+

:= max(x, 0), and
the fact that x �→ x

+ is nondecreasing yields∥∥1 − exp
(
g(Ŷk−1,ΔW̄k + p δ h(Ȳk−1)) − g(Ȳk−1,ΔW̄k + pδh(Ȳk−1))

)∥∥
rp

≤
∥∥|Δ̂k−1(h)||(p− 1)δh(Ȳk−1) + ΔW̄k

− (Δ̂k−1(h))δ/2| exp(2(p− 1)δ‖h‖2
∞ + 2‖h‖∞ |ΔW̄k|)

∥∥
rp

≤ L4p−3(δ)
√
δ[h]

Lip

∥∥ |Ȳk−1 − Ŷk−1|((p− 1)
√
δ‖h‖∞ + |Zk| + ‖h‖∞

√
δ)

× exp(2‖h‖∞

√
δ|Zk|)

∥∥
rp
,

where Zk := ΔW̄k√
δ

is an N (0; Id) random vector independent of F̄k−1. Finally,∥∥1 − exp
(
g(Ŷk−1,ΔW̄k + pδh(Ȳk−1)) − g(Ȳk−1,ΔW̄k + pδh(Ȳk−1))

)∥∥
rp

≤ Cp,r,δ,‖h‖∞ ,T

√
δ[h]Lip

∥∥Ŷk−1 − Ȳk−1

∥∥
rp

(3.15)

with

Cp,r,δ,‖h‖∞ ,T = L4p−3(δ)
∥∥((p− 1)

√
δ‖h‖∞ + |Z| +

√
δ‖h‖∞

)
exp

(
2‖h‖∞

√
δ|Z|

)∥∥
rp
.

(Note that this real constant is increasing as a function of δ.) Plugging the estimates
in (3.15) and (3.14) into (3.13) yields for every k = 1, . . . , n∥∥eg(Ȳk−1,ΔW̄k)(Ūk,W f)(Ỹk) − eg(Ŷk−1,ΔW̄k)(Ûk,W f)(

̂̃
Y k)

∥∥
p

≤ Lp(δ)
∥∥Ūk,W f(Ȳk) − Ûk,W f(Ŷk)

∥∥
p

+ B(δ)
∥∥Ȳk−1 − Ŷk−1

∥∥
rp

(3.16)

with B(δ) := Cp,r,‖h‖∞ ,T

√
δ[h]Lip‖f‖∞ (with Cp,r,‖h‖∞ ,T = Cp,r,1,‖h‖∞ ,TKp,r,‖h‖∞ ,T

Lp(1)).

Now let us pass to the first term in the r.h.s. of (3.11). Let (Ȳ k,y
	 )	=k,... ,n be the

sequence obtained by iterating Gp,δ(.,ΔB̄	,ΔW̄	) from y at time � = k, i.e.,

∀ �∈ {k + 1, . . . , n}, Ȳ k,y
	 = Gp,δ(Ȳ

k,y
	−1,ΔB̄	,ΔW̄	), Ȳ k,y

k := y.

The same proof as above shows that, for any couple (Zk−1, Z
′
k−1) of F̄k−1-measurable

Lp-integrable random variables,∥∥(Ūk−1,W f)(Zk−1) − (Ūk−1,W f)(Z ′
k−1)

∥∥
p

≤ Lp(δ)
∥∥Ūk,W (Ȳ

k−1,Zk−1

k ) − Ūk,W (Ȳ
k−1,Z′

k−1

k )
∥∥

p

+B(δ)
∥∥Ȳ k−1,Zk−1

k−1 − Ȳ
k−1,Z′

k−1

k−1

∥∥
rp
,

so that by induction∥∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)
∥∥∥

p

≤ B(δ)

n∑
	=k

(Lp(δ))
	−k

∥∥∥Ȳ k−1,Ȳk−1

	−1 − Ȳ
k−1,Ŷk−1

	−1

∥∥∥
rp

+ (Lp(δ))
n+1−k[f ]Lip

∥∥∥Ȳ k−1,Ȳk−1
n − Ȳ k−1,Ŷk−1

n

∥∥∥
rp

.
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Now, Lemma 3.1 (applied to Gδ,p) implies the existence of a real constant Crp > 0
such that ∥∥∥Ȳ k−1,Ȳk−1

	 − Ȳ
k−1,Ŷk−1

	

∥∥∥
rp

≤ (1 + Crpδ)
	+1−k

∥∥∥Ȳk−1 − Ŷk−1

∥∥∥
rp

.

Setting L′
p,r(δ) = Lp(δ)(1 + Crpδ) finally yields for every k = 1, . . . , n∥∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)

∥∥∥
p

≤ C(δ)
∥∥∥Ȳk−1 − Ŷk−1

∥∥∥
2p

with

C(δ) = Lp(T )eCrp

(
Cp,r,‖h‖∞ ,T

[h]
Lip

‖f‖∞

√
δ

L′
p,r(δ) − 1

+ [f ]Lip

)
(3.17)

≤ Lp(T )eCrp

(
C ′

p,r,‖h‖∞ ,T

[h]Lip‖f‖∞√
δ

+ [f ]Lip

)
.(3.18)

Plugging (3.16) and (3.17) into (3.11) finally yields the induction∥∥∥Ūk−1,W f(Ȳk−1) − Ûk−1,W f(Ŷk−1)
∥∥∥

p

≤ Lp(δ)
∥∥∥Ūk,W f(Ȳk) − Ûk,W f(Ŷk)

∥∥∥
p

+A(δ)
∥∥∥Ȳk−1 − Ŷk−1

∥∥∥
rp

with

A(δ) = B(δ) + 2C(δ) ≤ C ′′
p,r,‖h‖∞ ,T

(
[h]

Lip
‖f‖∞

(√
δ +

1√
δ

)
+ [f ]Lip

)

≤
Cp,r,‖h‖∞ ,[h]

Lip
,‖f‖∞ ,[f ]

Lip
,T

√
δ

since δ∈ (0, 1]. A new induction leads to∥∥〈V̄n, f〉 − 〈V̂n, f〉
∥∥
p

=
∥∥Ū0,W f(X̄0) − Û0,W f(X̂0)

∥∥
p

=
∥∥Ū0,W f(Ȳ0) − Û0,W f(Ŷ0)

∥∥
p

≤ A(δ)

n∑
k=0

(Lp(δ))
k‖Ȳk − (Ûn,W f)(Ŷn)‖rp

+ (Lp(δ))
n‖(Ūn,W f)(Ȳn) − Ŷk‖p

≤
Cp,r,‖h‖∞ ,[h]

Lip
,‖f‖∞ ,[f ]

Lip
,T

√
δ

n∑
k=0

‖Ȳk − Ŷk‖rp

+Lp(T )[f ]
Lip
‖Ȳn − Ŷn‖rp

.(3.19)

Step 2 (global revert Girsanov transform). Now, we aim to come back to X̄k by
introducing a revert Girsanov transform:

‖Ȳk − Ŷk‖rprp = E(Zk(Zk)
−1|Ȳk − Ŷk|rp),

where

Zk = exp

(
−

k∑
	=1

ph(Ȳ	−1).ΔW̄	 − p2|h(Ȳ	−1)|2
δ

2

)
.
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It follows that

E(Zk(Zk)
−1|Ȳk − Ŷk|rp)

= E

(
exp

(
k∑

	=1

ph(X̄	−1).ΔW̄	 − p2|h(X̄	−1)|2
δ

2

)
|X̄k − X̂k|rp

)

so that by the Hölder inequality applied with two conjugate exponents r′, s′ > 1,

‖Ȳk − Ŷk‖rprp ≤
(
E exp

(
k∑

	=1

s′ph(X̄	−1).ΔW̄	 − s′p2|h(X̄	−1)|2δ/2
))1/s′

·
(
E|X̄k − X̂k|rr

′p
)1/r′

≤ exp (k(s′ − 1)p2‖h‖2
∞δ/2)‖X̄k − X̂k‖rp

rr′p
.

Finally,

‖Ȳk − Ŷk‖rp ≤ exp (kp‖h‖2
∞δ/4)‖X̄k − X̂k‖4p ≤ Cp,r,r′,‖h‖∞ ,T ‖X̄k − X̂k‖rr′p .

One completes the proof by setting r = r′ =
√

p′/p > 1 and plugging this last
inequality into (3.19).

3.3. Global error. Combining the results established in the former sections, we
obtain the following result.

Theorem 3.2. Assume (H1)–(H2). Let p′ > 2 and let N ≥ n ≥ 1. Assume that
for every k∈ {0, . . . , n}, Γk is an Lp′

-optimal grid of size [N/(n + 1)] for Xk. There
exists a real constant C (depending on p′ but not n) such that

‖ρ(V
T
, V̂n)‖2 ≤ C

(
1

nθ
+

n
3
2

N̄
1
d

)
(3.20)

with θ = 0 if γ ≡ 0 and θ = 1/2 otherwise, and N̄ = N/n.
Proof. Combining results obtained in Theorems 2.1 and 3.1 yields the following:

‖ρ(V
T
, V̂n)‖2 ≤ C

(
1

nθ
+
√
δ

n∑
k=0

‖Δk‖p′

)
,

where Δk = Xk − X̂k = Xk −ProjΓk
(Xk). It follows from the nonparametric version

of Zador’s theorem, recently established in [25], that for every p, δ > 0 there exists a
universal real constant Cp,δ such that for every N ≥ 1 and every R

d-valued random
vector Y ,

min
Γ⊂Rd,|Γ|≤N

‖Y − Ŷ Γ‖p ≤ Cp,δ‖Y ‖p+δN
− 1

d .

Applying this result to our framework yields (with δ = 1)

n∑
k=0

‖Δ‖p′ ≤ Cp′ sup
n

max
0≤k≤n

‖X̄k‖p′+1(n + 1)(N/(n + 1))
1
d

≤ Cn
3
2 (N/n)−

1
d ,
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where C is a finite real constant since we know that (b and σ, γ having at most linear
growth) the family of Euler schemes ((X̄k)0≤k≤n)n≥1 satisfies supn max0≤k≤n ‖X̄k‖r <
+∞ for any r > 0.

Remark 3.1. • The n
3
2 in the spatial error term of (3.20) is most likely not

optimal (see section 4). It probably comes from the specific technicalities induced by
quantization. It corresponds, e.g., to the rate obtained for the “quenched error” in [7].
As shown by our numerical experiments, the spatial error term most likely behaves
as O(n× (N/n)−

1
d ) or O((N/n)−

1
d ), depending on some stability conditions between

n and N̄ (see section 4 for a detailed explanation).
• As an example, one can compare our error rate with that obtained in [7] (in the

γ ≡ 0 setting) where an error bound is of the form

1

n
+

√
n

M
,

where M denotes the number of Monte Carlo trials obtained under some regularity
assumptions on the diffusion coefficients h and f (regardless of the dimension). In
this case, M can be compared with our N/n, i.e., the mean value of points per time
layers in our algorithm.

4. Numerical simulations and estimation of the rates of convergence.
Since the expression of the global error given by (3.20) does not separate clearly the
time and space parameters, we will try in this section to investigate separately the
rate of convergence in time and in space in the following (linear) case:

β(x) = (A− ΓH)x, h(x) = Hx,

γ(x) = Γ, σ(x) = Σ,

where A, Γ, Σ, and H are constant matrices of appropriate dimensions. We also
suppose that μ0 is a Gaussian law with mean m0 and covariance matrix R0. Then it
is well known that the solution to the Zakai equation (1.1) is explicitly given by

〈Vt, f〉 =

[∫
f(m̂t + R(t)

1
2x)

exp
(
− 1

2 |x|2
)

(2π)
d
2

dx

]
〈Vt, 1〉,(4.1)

where R(t) is the solution to the Riccati equation

dR

dt
= AR + RAᵀ + ΣΣᵀ + ΓΓᵀ − (RHᵀ + Γ)(HR + Γᵀ),(4.2)

R(0) = R0;

m̂t is the solution of

dm̂t = Am̂tdt + (RHᵀ + Γ)(dWt −Hm̂tdt),(4.3)

m̂0 = m0;

and

〈Vt, 1〉 = exp

(∫ t

0

Hm̂s.dWs −
1

2

∫ t

0

|Hm̂s|2ds
)
.(4.4)
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In other words, the normalized measure πt defined by

〈πt, f〉 =
〈Vt, f〉
〈Vt, 1〉

is a Gaussian distribution with mean m̂t and variance R(t).
We now introduce the quantized normalized filter for a given function f ∈ BL1(R)

as

〈π̂δ
k, f〉 :=

〈V̂k, f〉
〈V̂k, 1〉

, k = 0, . . . , n,

where we have emphasized the dependence of the filter in δ = T/n by a superscript.
The unnormalized filters V̂k are computed according to algorithm (3.4).

The exact normalized filter is approximated owing to (4.1) using the following
method. Since R is an explicitly known function (solution of (4.2)), it is sufficient to
approximate m̂t, the solution of the SDE (4.3) with a refined Euler scheme of step, as

δref =
T

1024
� δ.

Indeed, for each path of the observation W , (4.3) and (4.4) are discretized as

m̄l+1 = m̄l + δrefAm̄l + (R(lδref )Hᵀ + Γ)(W(l+1)δref −Wlδref −Hm̄lδref ),(4.5)

Z̄l+1 = Z̄l + Hm̄l.(W(l+1)δref −Wlδref ) − 1

2
|Hm̄l|2δref , ξ̄l = exp(Z̄l),(4.6)

and thus a very close approximation of the exact normalized filter, in the sense that it
can be considered as the exact solution as long as δ remains considerably larger than
δref , is

〈πδref
lδref

, f〉 :=

∫
f(m̄l + R(lδref )

1
2x)

exp
(
− 1

2 |x|2
)

(2π)
d
2

dx,

where R(t) is computed owing to an exact quadrature formula.
We now estimate the rate of convergence of the scheme with respect to the spatial

and time discretization. In order to smooth undesirable time oscillations of the error,
we focus on the following temporal mean of the quadratic quantization error for the
normalized filter, namely

Err(δ, N̄) =
1

n
E

n∑
k=0

∣∣∣〈π̂δ
k, f〉 − 〈πδref

tk
, f〉

∣∣∣2 ,(4.7)

where tk = kδ = l(k)δref and N̄ = N/n denotes the mean number of points per time
layers. Then Err(δ, N̄) is simply an approximation of the squared L2([0, T ], dt)-norm
of the error.

We test the error for the following test functions:

f0(x) = x, f1(x) = exp(−x2), f2(x) = exp(−x).(4.8)
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The expectation in (4.7) is computed by a Monte Carlo method with M = 100
trajectories of the observations W .

The parameters of our simulations are

Σ = 1, B = −0.5, H = 1, T = 1.

Such a choice of parameters is motivated by the fact that it provides values for R(t)
that are not too small. Otherwise, there would not be enough points around m0 = 0
to be able to “capture” the behavior of the signal around its mean 0.

We will also change the model a bit and consider the following equations:⎧⎨
⎩

dXt = BXt dt + Σ dBt + ΓdWt,

dWt = HXtdt + εdUt.
(4.9)

The formulas above need to be changed as follows: Γ � εΓ and H � H/ε. The reason
for introducing this new degree of freedom on the noise level may look paradoxical
since small ε will provide large errors. But precisely, these large errors make it possible
to display the rate of convergence more efficiently than with ε = 1, which produces
smaller errors. Let us take the example of the spatial order. Indeed, we will see
that as the discretization parameters N̄ get larger and larger the error Err(δ, N̄) is
decreasing as a function of N̄ until some threshold, depending a priori on δ and on
the number M of observations (i.e., paths of W ). Beyond this threshold, the error
becomes more or less constant because the difference with the exact solution will be
of the same order of the temporal discretization. Subsequently the sum of the two
errors will become indistinguishable from the temporal one. Therefore, a small ε will
provide bigger errors and so we will have more relevant points before reaching this
threshold.

• Estimation of the spatial discretization rate. We first estimate the spatial rate
of convergence in the case Γ = 0 (no correlation between the signal process X and the
observation process W ). For four values of n = 1/δ ∈ {16, 32, 64, 256}, we estimate
N̄ �→ Err(δ, N̄) with N̄ = 2−	, � = 1, . . . , 7. As a first step, for each value of n and
of N̄ , we compute an optimal quantization (X̂k)k of the Euler scheme (X̄k)k of (4.9)
(which is a version of (3.1)), according to the algorithm described in subsection 3.1.
Then, for each test function f in (4.8) and each observation path of W , we compute
recursively 〈V̂ δ

k , f〉 and 〈V̂ δ
k , 1〉 using (3.4) and then 〈π̂δ

k, f〉. On the other hand,
we compute the exact solutions using (4.5), and finally we compute Err(δ, N̄) as
defined by (4.7) by summing up over the M trajectories sampled from the observation
process W .

Note that since Γ = 0, the quantization optimization procedure of (Xk)k is a
one-shot process which does not depend on the observations W .

The results are summarized in Figures 1 and 2. It seems to have two regimes
of convergence when N̄ becomes larger. On the one hand, Figure 1 displays the
error (4.7) for low values of n. It seems that its square root behaves like O(1/N̄) for
the three values of n before a threshold depending (linearly) on n; after that the error
remains unchanged.

On the other hand, for high values of n (but still below nref = 1024), Figure 2
suggests a slower rate of convergence in O((N̄)−1/2).

This suggests, keeping in mind (3.20) and Remark 3.1, a decomposition of the
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Fig. 1. Error Err(δ, N̄) as a function of N̄ for several time discretizations n. The straight line
depicts N̄ �→ 1/N̄2, and the dashed lines denote the errors computed with the different functions
(4.8). Here ε = 0.1.
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Fig. 2. Rate of convergence of (4.7) with n = 256. Here again ε = 0.1.

global error of the form

C1

n
+

C2(n)

N̄
,

where C1 > 0 and C2(n) = C2 + c2n + o(n) with C2 > 0, c2 > 0, and c2 � C2.
For low values of n, C2 remains constant and hence we get, obviously,

C1

n
≤ C2

N̄
⇐⇒ N̄ ≤ Cn = N̄∗

1 (n),

and thus we get an order O(1/N̄).
For high values of n, the linear part of C2 becomes larger and hence we get,

obviously, in the same manner

C1

n
≤ c2n

N̄
⇐⇒ N̄ ≤ C ′n2 = N̄∗

2 (n),

and hence we have the order O((N̄)−1/2).
In fact, this emphasizes that the scheme needs some stability criterion involving

n and N̄ in order to converge at the true rate O(1/N̄).
The quantization step of the algorithm can also be the cause of this rate. Indeed,

during the quantization optimization of the signal X, we need to simulate at each
time step an Euler increment of X in (4.9). This simulation is used to compute the
weights of the “quantization tree” of X (weight of the Voronoi cells and the transition
probabilities) and to process the optimization. Here the Euler increment of X, namely
Σ
√
δ χ, where χ denotes a real valued normal random variable, becomes very small as

n grows; and so it is when n = 256. This implies that the Euler increment will mainly
“hit” the closest cell in the upper time layer (not to mention the ability of a random
number generator to simulate the tail of distributions). Consequently, the transition



2534 E. GOBET, G. PAGÈS, H. PHAM, AND J. PRINTEMS

probabilities are not computed accurately enough, given the size of the simulation,
and can explain the downgrading of the rate of convergence in time. One can conclude
this experiment by saying that there is a CFL involving the mean spatial unit length
and the time step parameter and a second CFL involving the time discretization
parameter and the size of the simulation (this one has been precisely analyzed in [2]).

These results clarify Remark 3.1 concerning the improvement of Theorem 3.1.
• Estimation of the time discretization rate of convergence. Now we look for the

rate of convergence with respect to δ. For that purpose, we use N̄ = 100 quantization
points in each time layer. The rate of convergence in time will be estimated with

Γ ∈ {0, 0.5}, ε ∈ {0.1, 0.5, 1.0}, δ = 2−m, m = 1, . . . , 8.

Let us see now why we used the normalized filter instead of the unnormalized one.
In Figure 3 are displayed typical examples of graphs k �→ 〈V̂ δ

k , f〉, t �→ 〈Vt, f〉, k �→
〈π̂δ

k, x〉, and t �→ 〈πt, x〉 for Γ = 0, ε = 0.1, δ = 1/256, and N̄ = Nn = 100. The
exact filters are still computed using (4.5) and (4.6). We verify on that example that
the normalized filter seems to be better computed than the unnormalized one. It
explains why we did not use the unnormalized version of the error. Indeed, for such
a level of noise for the observations (ε = 0.1), the unnormalized filter 〈V̂ δ

k , f〉 has
very large values. This is true for all tested functions f and all time discretizations
δ = 1/n. Furthermore, it is also true on all sampled trajectories of W (not all
depicted). Therefore, it is difficult for numerical reasons to compute errors based on
〈V̂ δ

k , f〉 for ε = 0.1.
Let us consider first the uncorrelated case (Γ = 0). Figure 4 shows the error

plotted against the time step in a log-log scale for f given by (4.8). We can see again
that for a given fixed ε, the time error decreases until a threshold and then remains
flat. We also see that this threshold grows as the inverse of the noise level ε. Before
reaching this threshold, for every ε and every function f , the rate seems to be of order
δ = 1/n as established in Theorem 2.1.

Let us emphasize that, once again in this case, the quantization procedure does
not depend on the observations. Therefore, it can be carried out off-line. This is
no longer true in the correlated case. Then (e.g., if Γ = 0.5), we will have to com-
pute M = 100 quantizations (one per observation path) of the signal (Xk)k for every
n ∈ {2, 4, 8, 16, 32, 64, 128, 256}, i.e., 800 optimal grids. The previous study in the
uncorrelated case seems to indicate that we need a small level of noise on the obser-
vations in order to display a rate with a significant number of time steps. This is why
we have chosen ε = 0.1 for the simulations. Figure 5 shows the errors obtained as a
function of n in a log-log scale for the functions (4.8). The rates of convergence are
the same in each case. A linear regression seems to indicate a rate of O(n−3/4) which
is better than the O(n−1/2) stated in Theorem 2.1. An explanation of this unexpected
behavior could be the following one. The constant in the factor of the term n−1/2 is
presumably very small compared to the one associated to n−1; thus, small values of
n make an intermediate rate of convergence appear, while the rate n−1/2 would be
observed for larger n (in the asymptotic regime).



DISCRETIZATION AND SIMULATION OF THE ZAKAI EQUATION 2535

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

Delta t=1/256

MODOU1_CORR_0_MODOBS2_fin1024.1

<V_t,x> par QTF
<pi_t,x>*<V_t,1>=<V_t,x> exact

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

Delta t=1/256

MODOU1_CORR_0_MODOBS2_fin1024.1

<V_t,1> par QTF
<V_t,1> exact

(c)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1

Delta t=1/256

MODOU1_CORR_0_MODOBS2_fin1024.1

<Pi_t,x> QTF
<Pi_t,x> exacte

Fig. 3. Examples of curves (a) k �→ 〈V̂ δ
k , x〉, (b) k �→ 〈V̂ δ

k , 1〉, (c) k �→ 〈π̂δ
k, x〉 with δ = 1/256

and Nn = 100 computed with the same trajectory of observation. Here ε = 0.1 and Γ = 0. The
thick line depicts the exact filter computed according to a time step δref = 1/1024, and the thin line
depicts the quantized filter.
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Fig. 4. Square of the error (4.7) where (a) f(x) = exp(−x2), (b) f(x) = exp(−x), and (c)
f(x) = x as a function of the time step n in a log-log scale. Uncorrelated case.
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three functions Id, f1(x) = exp(−x), and f2(x) = exp(−x2) are depicted.
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[17] I. Gyöngy, Approximations of stochastic partial differential equations, in Stochastic Partial
Differential Equations, Lecture Notes in Pure and Appl. Math. 227, Dekker, New York,
2002, pp. 287–307.
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ON A PARALLEL ROBIN-TYPE NONOVERLAPPING DOMAIN
DECOMPOSITION METHOD∗

LIZHEN QIN† AND XUEJUN XU†

Abstract. In recent years, a nonoverlapping Robin-type domain decomposition method (DDM)
for the finite element discretization systems of the second order elliptic equations, which is based
on using Robin-type boundary conditions as information transmission conditions on the subdomain
interfaces, has been developed and analyzed since it was first proposed by P. L. Lions in [On the
Schwarz alternating method III: A variant for nonoverlapping subdomains, in Proceedings of the
3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations,
SIAM, Philadelphia, PA, 1990, pp. 202–223]. However, the convergence rate of this DDM with many
subdomains remains open when the lower term of equations vanishes. This open problem will be
considered in this paper. The convergence rate is almost 1 − O(h1/2H−1/2) in certain cases—for
example, the case of a small number of subdomains, where h is the mesh size and H is the size of
subdomain. In order to get the desirous convergence results, two mathematics skills are introduced
in this paper; one is complexification of real linear space and the other is the spectral radius formula.

Key words. nonconforming finite elements, nonoverlapping domain decomposition, convergence
rate, geometric convergence
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1. Introduction. The Robin-type nonoverlapping domain decomposition
method (DDM), which is based on using Robin-type boundary conditions as informa-
tion transmission conditions on the subdomain interfaces, has become an increasingly
important tool for solving the following second order elliptic equations:{

−
∑
i,j

∂
∂xi

(aij(x) ∂u
∂xj

) + b(x)u = f in Ω,

u = 0 on ∂Ω.

The idea of employing Robin-type boundary conditions as interface conditions was
first proposed by P. L. Lions in [21]. Recently there have been several theoretical
analyses and applications of this DDM; cf. [1], [2], [8], [9], [13], [14], [15], [19], [23],
[10], [16], [17], [18], [20], and [11] for details. In [17], Gander, Halpern, and Nataf
considered the second elliptic problems in the case of the two subdomains. It is first
pointed out by them that the optimal choice of relaxation parameter was O(h−1/2)
and the convergence rate 1−O(h1/2) can be achieved in this special case. In this paper,
we will discuss the second order elliptic problems in the case of many subdomains.

Compared with other DDMs, this method has several advantages. First, the
iterative procedure is very simple. Second, in contrast to other procedures, it need not
to solve global problems. So the iterative procedure is much more highly parallel than
others. Last, by the results in [22] and in this paper, we know that the convergence
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rate of this method is 1 − O(h1/2H−1/2) in certain cases, where h is the size of the
mesh and H is the size of the subdomain, which is much better than that of the
Schwarz DDMs with small overlapping. Based on the analysis in [12] and [4], we
know that the realistic convergence rate is only 1 − O(hH−1) for the additive and
multiplicative Schwarz DDMs.

In the case of b(x) ≥ b > 0, the lower term is positive strictly. The analysis of
this method has been highly developed. In [6], [7], Deng proved that this method was
convergent. The result in [7] claims that the convergence of this method is geometric
and the convergence rate is 1 − O(h). This result had been improved in [22], which
tells us this convergence rate could be 1−O(h1/2H−1/2). Meanwhile counterexamples
constructed in [22] show that the convergence rate cannot be improved in general.

However, the analysis for convergence is much harder when the lower term van-
ishes, i.e., b(x) = 0. In [6], [7], Deng proved that this method was also convergent in
this case, but he was not able to tell us the convergence rate. In [22], we showed that
the convergence rate was 1 − O(h1/2H−1/2) if at least one face of each subdomain
belongs to the boundary of domain. But for the general domain decomposition with
interior subdomains, the analysis of the convergence rate remains open.

In this paper, we get the convergence rate in general in the case when the lower
term vanishes. We will show that the convergence rate can be 1−O(CNh1/2H−1/2),
where C ∈ (0, 1) and N is a geometric parameter which will be introduced in section
4. The convergence rate will be 1−O(h1/2H−1/2) when N is not large. The numerical
experiments in this paper support our theoretical results. Our proof is based on the
energy method. The energy method was first proposed by P. L. Lions in [21] and has
been developed in [6] and [7]. We will introduce two other techniques for obtaining
the convergence rate in this paper; one is the complexification of real linear space and
the other is the spectral radius formula.

The outline of this paper is as follows. In section 2, we will introduce the model
problem and some basic results of this method. The analysis of this paper is based on
two skills; one is the complexification of real linear space and the other is the spectral
radius formula. We will introduce them in section 3. In section 4, we will introduce
some geometric aspects of domain decomposition. In section 5, we prove our main
result, Theorem 5.1. Finally, in section 6, we will give some numerical results to
support our theory.

2. Model problem and preliminaries. We consider the following model prob-
lem: {

−Δu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where Ω is a bounded polyhedral domain in Rd(d = 2, 3), f ∈ L2(Ω).
Partition Ω into nonoverlapping subdomains Ωi(i = 1, . . . ,K) quasi-uniformly

and regularly. Then the domain decomposition iterative procedure can be written as
follows (cf. [7] for details):⎧⎪⎪⎨

⎪⎪⎩
−Δun

i = f in Ωi,
∂un

i

∂νi
+ λiju

n
i = gnij on γij , j ∈ N(i),

un
i = 0 on Γi,

gn+1
ij = 2λiju

n
j − gnji,

(2.2)

where Γi = ∂Ωi

⋂
∂Ω, γij = ∂Ωi

⋂
∂Ωj , λij = λji > 0 are parameters,

N(i) = {j �= i | |γij | > 0},(2.3)

and |γij | is the measure of γij .



ROBIN-TYPE NONOVERLAPPING DOMAIN DECOMPOSITION 2541

This algorithm was first proposed by P. L. Lions in [21] and then improved by
Deng in [6]. It can be accelerated by using Krylov methods via a substructuring of
this algorithm.

Let Th be a quasi-uniform and regular finite element triangulation of Ω. The
mesh size is h. Let X be a nonconforming Crouzeix–Raviart finite element space over
Th (cf. [5]). The function of X vanishes at every freedom on ∂Ω.

Denote Nh as the set of all interior nodal points, i.e., Nh contains all midpoints
of interior edges (d = 2) or barycenters of interior faces (d = 3) of elements.

Let Xi = X|Ωi . Define X0
i ⊆ Xi whose functions vanish at every freedom on ∂Ωi.

Next we define two spaces Yi and Yij on ∂Ωi and γij , respectively. Define Yi to
be a piecewise constant space on triangulation T∂Ωi , where T∂Ωi is the triangulation
of ∂Ωi \ ∂Ω inherited from Th, i.e., T∂Ωi = Th|∂Ωi\∂Ω. Furthermore let Yij = Yi|γij

.
All above spaces are equipped with the L2 norm denoted by ‖ · ‖0. Denote the L2

inner product by 〈·, ·〉. X can also be equipped with norms | · |1,h and ‖ · ‖1,h, where

|v|21,h =
∑
T∈Th

∫
T

|∇v|2,

‖v‖2
1,h,Ωi

= |v|21,h,Ωi
+ H−2‖v‖2

0,Ωi
,

‖v‖2
1,h =

K∑
i=1

‖v‖2
1,h,Ωi

.

Define πi and πij to be linear operators from Xi to Yi and Yij , respectively.
∀vi ∈ Xi, πivi ∈ Yi and

πivi|τ ≡ vi(p) ∀τ ∈ T∂Ωi ,

where p is the midpoint of τ(d = 2) or the barycenter of τ(d = 3), and πijvi ∈ Yij is
defined to be πivi|γij .

Conversely, we define Si and Sij to be linear operators from Yi and Yij to Xi,
respectively. ∀wi ∈ Yi, let Siwi ∈ Xi and

Siwi =

{
wi freedom on ∂Ωi,

0 other freedom.

∀wij ∈ Yij , we also define Sijwij ∈ Xi and

Sijwij =

{
wij freedom on γij ,

0 other freedom.

Note that πivi �= vi|∂Ωi
, Siwi|∂Ωi

�= wi in general. However,

vi − Siπivi ∈ X0
i ,(2.4)

πiSi = Idi, πijSij = Idij ,(2.5)

where Idi and Idij are identity operators on Yi and Yij , respectively. By (2.5), we
know that both πi and πij are surjective. Furthermore, we have the following lemma.
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Lemma 2.1.

‖πijvi‖0,γij ≤ C‖vi|γij‖0,γij ∀vi ∈ Xi,

‖Sijwij‖0,Ωi
≤ Ch1/2‖wij‖0,

|Sijwij |1,h,Ωi ≤ Ch−1/2‖wij‖0 ∀wij ∈ Yij ,

where C is a constant independent of h.
Proof. The first inequality can be verified by direct computation.
By scaling arguments, we have

‖Sijwij‖0,Ωi
≤ Chd/2(

∑
p∈Ωi

⋂
Nh

(Sijwij)(p)
2)1/2

= Chd/2(
∑

p∈γij
⋂

Nh

wij(p)
2)1/2

≤ Ch1/2‖wij‖0,γij ,

where d = 2, 3 is the dimension of domain Ω. Using the inverse inequality,

|Sijwij |1,h,Ωi ≤ Ch−1‖Sijwij‖0,Ωi ,

we get the last two inequalities.
The discrete finite element approximation of (2.1) is to find û ∈ X such that

a(û, v) = f(v) ∀v ∈ X,(2.6)

where

a(û, v) =
∑
T∈Th

∫
T

∇u · ∇v,

f(v) =

∫
Ω

fv.

Let

ai(·, ·) = a(·, ·)|Xi , fi(·) = f(·)|Xi .

The discrete finite element version of (2.2) can be written as follows:⎧⎨
⎩

ai(u
n
i , v) +

∑
j∈N(i)

λij

∫
γij

πiju
n
i · πijv =

∫
Ωi

fv +
∑

j∈N(i)

∫
γij

gnij · πijv,

gn+1
ij = 2λijπjiu

n
j − gnji.

(2.7)

Remark 2.1. ∀u, v ∈ Xi,∫
γij

πiju · πijv =
∑

p∈γij
⋂

Nh

u(p)v(p)|sp|,

where sp is the element face with p as its barycenter and |sp| is the measure of sp. In
[7],

∫
γij

πiju · πijv is replaced by
∑

p∈γij
⋂

Nh
u(p)v(p)|sp| in (2.7). In fact, these two

iterative procedures are equivalent.
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Definition 2.2. Let û be the finite element solution and un be the solution of
the nth iterative step, respectively. If

‖un − û‖ ≤ CLn‖u0 − û‖,(2.8)

where ‖ · ‖ is the certain norm, L ∈ [0, 1), and C is independent of n, then this is
geometric convergence. L is the convergence rate.

It is well known that û can be approximated by the procedure (2.7). The following
theorem will tell us that û is the fixed point of (2.7). Its proof can be found in [22].

Theorem 2.3. If û is the solution of (2.6) and λij = λji > 0, then there exists
ĝij ∈ Yij such that

ai(û, v) +
∑

j∈N(i)

λij

∫
γij

πij ûi · πijvi = fi(v) +
∑

j∈N(i)

∫
γij

ĝij · πijvi,(2.9)

where ûi = û|Ωi
, v = (v1, . . . , vk) ∈

∏K
i=1 Xi,

ĝij = 2λijπjiûj − ĝji.(2.10)

Define W to be a subspace of
∏K

i=1 Xi×
∏K

i=1 Yi such that (e1, . . . , eK , ε1, . . . , εk) ∈
W if and only if ∀vi ∈ Xi

ai(ei, vi) +
∑

j∈N(i)

λij

∫
γij

πijei · πijvi =
∑

j∈N(i)

∫
γij

εij · πijvi,(2.11)

where εij = εi|γij ∈ Yij .
Define A to be a linear operator of W . ∀(e1, . . . , eK , ε1, . . . , εk),

A(e1, . . . , eK , ε1, . . . , εk) = (ẽ1, . . . , ẽK , ε̃1, . . . , ε̃k),(2.12)

where

ε̃ij = 2λijπjiej − εji.

ẽi is determined by (ε̃1, . . . , ε̃k) and (2.11).
Define

eni = un
i − ûi, ε

n
i = gni − ĝi,

and

εnij = εni |γij = gnij − ĝij .

By Theorem 2.3 and (2.12), we get a corollary immediately.
Corollary 2.4. (en, εn) ∈ W ; i.e., (en, εn) satisfies (2.11). Moreover,

(en+1, εn+1) = A(en, εn).(2.13)

Proof. Subtracting (2.7) by (2.9), we get

ai(e
n
i , vi) +

∑
j∈N(i)

λij

∫
γij

πije
n
i · πijvi =

∑
j∈N(i)

∫
γij

εnij · πijvi,

so (en, εn) ∈ W .



2544 LIZHEN QIN AND XUEJUN XU

By Theorem 2.3, we have

εn+1
ij = gn+1

ij − ĝij = 2λijπjie
n
j − εnji.

Thus we deduce (2.13) from the definition of A.

We need the trace theorem and the Poincaré inequality for nonconforming finite
element space in order to get the convergence rate. First, we introduce the Sarkis’
isomorphism between the Crouzeix–Raviart nonconforming element space and the
Courant conforming element space (see [24, Isomorphism 1, Lemmas 3, 4, and 5, and
Isomorphism 2]).

Lemma 2.5 (Sarkis’ isomorphism). Suppose γij is a face (when d = 2, a face is an
edge) of subdomain Ωi; then ∀u ∈ Xi, there is a piecewise linear function ũ ∈ H1(Ωi)
such that

c|u|1,h,Ωi ≤ |ũ|1,Ωi ≤ C|u|1,h,Ωi ,

c‖u‖1,h,Ωi
≤ ‖ũ‖1,Ωi ≤ C‖u‖1,h,Ωi ,∫
γij

ũ =

∫
γij

u,

and if γik is an arbitrary face of Ωi, then

c‖u|γik
‖ ≤ ‖ũ|γik

‖ ≤ C‖u|γik
‖,

where c and C are constants independent of h and the diameter of Ωi.

Proof. Proofs of the first two inequalities and equality can be found in [24, Lemmas
3, 4, and 5]. The last inequality can be verified by direct computation thanks to
the construction of ũ and the equivalence between the L2 norm and the L2 discrete
norm.

The following theorem is a Poincaré–Friedrichs inequality (cf. [3, (1.1)] and [24,
Lemma 4]. It can be proved by using equivalence norm of quotient spaces (see [5, the
proof of Theorem 3.1.1] and the scaling argument.

Theorem 2.6 (Poincaré–Friedrichs inequality). If the diameter of each subdo-
main Ωi (i = 1, . . . ,K) is O(H), and γij is a face of Ωi, then ∀ũ ∈ H1(Ωi), we
have

‖ũ‖2
0,Ωi

≤ CH2|ũ|21,Ωi
+ CH2−d

(∫
γij

ũ

)2

,

where d = 2, 3 is the dimension of Ωi and C is a constant independent of Ωi.

Furthermore, we can get a special trace theorem of Crouzeix–Raviart element
space.

Lemma 2.7 (special trace theorem). If the diameter of each subdomain Ωi (i =
1, . . . ,K) is O(H), γij, and γik are two faces of Ωi, then ∀vi ∈ Xi we have

‖πikvi‖2
0,γik

≤ CH|vi|21,h,Ωi
+ C‖πijvi‖2

0,γij
,

where C is a constant independent of Ωi.
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Proof. By Lemma 2.5, there is a ṽi ∈ H1(Ωi) such that

c|vi|1,h,Ωi ≤ |ṽi|1,Ωi ≤ C|vi|1,h,Ωi ,

∫
γij

ṽi =

∫
γij

vi,

and

c‖vi|γik
‖ ≤ ‖ṽi|γik

‖ ≤ C‖vi|γik
‖.

As a result, we have

‖πikvi‖2
0,γik

≤ C‖vi|γik
‖2
0,γik

≤ C‖ṽi|γik
‖2
0,γik

≤ CH|ṽi|21,Ωi
+ CH−1‖ṽi‖2

0,Ωi

≤ CH|ṽi|21,Ωi
+ CH1−d

(∫
γij

ṽi

)2

≤ CH|vi|21,h,Ωi
+ CH1−d

(∫
γij

vi

)2

,

where we have used Lemma 2.1, the trace theorem for H1(Ωi), and Theorem 2.6 in
the first, third, and fourth inequalities, respectively. By the definition of πij , we know
that ∫

γij

vi =

∫
γij

πijvi;

then

‖πikvi‖2
0,γik

≤ CH|vi|21,h,Ωi
+ CH1−d

(∫
γij

πijvi

)2

≤ CH|vi|21,h,Ωi
+ C‖πijvi‖2

0,γij
.

3. Some results in linear space. In this section we will introduce some notions
and skills in linear space, such as complexification and the spectral radius formula
which will play important roles in the following analysis.

We will consider ‖An‖ in order to get the convergence rate, where A is the operator
of linear space W defined in (2.12). If V is a complex linear space and T is a complex
linear operator of V , then we have the following well-known spectral radius formula:

lim
n→∞

‖Tn‖1/n = ρ(T ),

where ρ(T ) is the spectral radius of T . So we can estimate ‖Tn‖ in terms of ρ(T ).
Unfortunately, W is a real linear space and A is a real linear operator while the spectral
radius formula does not hold in the real case in general. So the complexification of a
real linear space and a real linear operator is necessary.
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Constructing the complexification of a real linear space is just like constructing a
complex number field by a real number field.

Definition 3.1. Suppose V is a real n dimensional linear space; we call the
tensor product space C⊗V the complexification of V , where C is the complex number
field or one dimensional complex linear space. In other words, C ⊗ V is a complex n
dimensional space such that

C ⊗ V = {x +
√
−1y|x, y ∈ V }.

Then C ⊗ V has the following addition and scalar multiplication properties:

(x1 +
√
−1y1) + (x2 +

√
−1y2) = (x1 + x2) +

√
−1(y1 + y2),

(a +
√
−1b)(x +

√
−1y) = (ax− by) +

√
−1(bx + ay), a +

√
−1b ∈ C.

Lemma 3.2. Suppose V is a real linear space equipped with inner product 〈·, ·〉;
then we can define an inner product of C ⊗ V such that

〈x1 +
√
−1y1, x2 +

√
−1y2〉 = 〈x1, x2〉 + 〈y1, y2〉 −

√
−1〈x1, y2〉 +

√
−1〈y1, x2〉.

If ‖ · ‖ is the norm induced by the inner product, then

‖x +
√
−1y‖2 = ‖x‖2 + ‖y‖2.

The proof of this lemma will be presented in the appendix.
Remark 3.1. As for the semi-innerproduct, i.e., 〈x, x〉 ≥ 0 and may be equal to

0 even when x �= 0, the counterpart conclusion of Lemma 3.2 also holds. In this case
the semi-innerproduct will induce a seminorm. The proof of this conclusion is similar
to that of Lemma 3.2.

Remark 3.2. From now on, all norms and seminorms in this paper can be induced
by innerproducts and semi-innerproducts.

Definition 3.3. If V is a real linear space and T is a real linear operator of V ,
we define a complex linear operator 1 ⊗ T of C ⊗ V such that

1 ⊗ T (x +
√
−1y) = Tx +

√
−1Ty.

We call 1 ⊗ T the complexification of T . For convenience, we also denote 1 ⊗ T by
T̄ .

Lemma 3.4. If V is a real linear space and T1, T2 are real linear operators of V ,
then

(1 ⊗ T1)(1 ⊗ T2) = 1 ⊗ (T1T2).

In particular,

1 ⊗ (Tn) = (1 ⊗ T )n;

we denote 1 ⊗ (Tn) or (1 ⊗ T )n by T̄n.
We will prove this lemma in the appendix.
Lemma 3.5. If V is a finite dimensional real linear space equipped with an in-

nerproduct, and T is a real linear operator of V , then

‖T̄‖ = ‖T‖.
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This lemma will also be proved in the appendix.
Now let us discuss the linear space W and the linear operator A defined in (2.12)

again. Our main skill to deal with ‖An‖ is that ‖An‖ is dominated by ρ(Ā), where
ρ(Ā) is the spectral radius of Ā, the complexification of A. In other words, we use
the following lemma.

Lemma 3.6. If W is equipped with an innerproduct and

ρ(Ā) ≤ 1 −R, R ∈ (0, 1),

then for all positive integer number n, there is a constant C independent of n such
that

‖An‖ ≤ C(1 −R/2)n.

Proof. By Lemmas 3.4 and 3.5, we know that

‖An‖ = ‖Ān‖.

Since Ā is a complex linear operator of the complex linear space C ⊗W , then by the
spectral radius formula,

lim
n→∞

‖Ān‖1/n = ρ(Ā).

So ∀ε > 0, there is an integer N such that when n > N , we have

‖Ān‖1/n ≤ ρ(Ā) + ε,

or

‖Ān‖ ≤ (ρ(Ā) + ε)n.

Choose a constant C > 1 such that

‖Ān‖ ≤ C(ρ(Ā) + ε)n

for n = 1, . . . , N . Then ∀ n,

‖An‖ = ‖Ān‖ ≤ C(ρ(Ā) + ε)n.

Letting ε = R/2, we get the conclusion, where C is independent of n, although it may
depend on R.

Besides the complexification of W and A, we will also use those of other real
linear spaces such as Xi, and Yi, and other real linear operators such as πij .

4. Some geometric aspects of domain decomposition. Our analysis de-
pends on the geometric aspects of subdomain decomposition. Now we introduce some
notions and an assumption.

We define a sequence of sets Di whose elements are subdomains by induction:

D1 = {Ωi|at least one face of Ωi belongs to ∂Ω},

Dr+1 = {Ωi|Ωi /∈ Dr,Ωi share one face with some Ωj ∈ Dr at least}.

Now we define a geometric parameter of subdomain decomposition.
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Fig. 1.

Fig. 2.

Definition 4.1. There is an integer N such that
⋃N

i=1 Di contains all subdo-
mains of Ω and we call N the winding number of domain decomposition.

For example (see Figure 1), the integer i in each subdomain means that this
subdomain is Ωi. So

D1 = {Ωi|i = 1, . . . , 10},

D2 = {Ω11,Ω12},

and winding number N = 2.
See also Figure 2:

D1 = {Ωi|i = 1, . . . , 11},

D2 = {Ωi|i = 12, . . . , 16},

and winding number N is also 2.
For convenience, we denote a subdomain belongs to Dr by Ωir .
Definition 4.2. ∀Ωir ∈ Dr, we call a set

P = {Ωi1 , . . . ,Ωir} ⊆
r⋃

i=1

Dr

a path connecting Ωir with the boundary provided that Ωir ∈ P and P ∩ Dk (k =
1, . . . , r) has exact one element.

Of course, the path connecting Ωir with the boundary may not be unique. For
example (see Figure 1), Ω11 has three paths, {Ω2,Ω11}, {Ω8,Ω11}, and {Ω10,Ω11}.

Now we make an assumption on the domain decomposition.
Assumption 4.1. The domain decomposition satisfies the following two condi-

tions.
(1) For each Ωi, there is a path connecting Ωi with the boundary. Then we assign

this path to Ωi.
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(2) If Ωi,Ωj ∈ Dr and Ωi �= Ωj, then the path assigned to Ωi has no intersection
with that assigned to Ωj.

See Figure 2. We assign {Ω11,Ω12}, {Ω4,Ω13}, {Ω6,Ω14}, {Ω10,Ω15}, and {Ω9,Ω16},
to Ω11, . . . ,Ω15, respectively. Each pair has no intersection.

Remark 4.1. It is necessary to point out that Assumption 4.1 is not strict at all.
It is almost not an assumption because most domain decompositions are satisfied by
it.

Remark 4.2. The relations among N , H, and number of subdomains are delicate.
N must be small provided that H is not small or the number of subdomains is small.
However, N will not be large necessarily when H is small or the number of subdomains
is large. A case in point is that the domain Ω is a strip. For example, decompose a
narrow rectangle domain into 4× 25 small rectangles uniformly. Then the number of
subdomains is 100 while N is 2.

5. Convergence rate. Now we state and prove the main theorem of this paper.
We define

‖(en, εn)‖2 =

K∑
i=1

‖eni ‖2
1,h,Ωi

+

K∑
i=1

‖εni ‖2
0,∂Ωi

.(5.1)

Theorem 5.1. If domain decomposition satisfies Assumption 4.1, choose λij =
λ = O(h−1/2H−1/2) ∀i, j; then

‖(en, εn)‖ ≤ C2(1 − C1(C0)
Nh1/2H−1/2)n‖(e0, ε0)‖,(5.2)

where N is the winding number of the domain decomposition, C0 ∈ (0, 1) and C1 > 0
are constants independent of h, H, N , and n, and C2 is a positive constant indepen-
dent of n.

Remark 5.1. Counterexamples have been constructed in [22] to show that the
convergence rate of this method can never be better than 1 − O(h1/2H−1/2). The
convergence rate, 1 − O(h1/2H−1/2), can only be attained if we choose λij = λ =
O(h−1/2H−1/2) ∀i, j when at least one face of each subdomain belongs to ∂Ω. (See
[22, sections 4 and 5] for details.) So we choose λ = O(h−1/2H−1/2) here.

Remark 5.2. If the winding number N is small, it can be seen from (5.2) that
the convergence rate is 1−O(h1/2H−1/2). But when the winding number N goes up,
the convergence rate of the DDM will deteriorate.

From now on, let λ = O(h−1/2H−1/2). We define a new norm over the space∏k
i=1 Yi, that is, ∀ε ∈

∏k
i=1 Yi,

‖ε‖2
∗ = λ−1‖ε‖2

0, ‖εij‖2
∗ = λ−1‖εij‖2

0.(5.3)

Some lemmas are needed to prove Theorem 5.1.
Lemma 5.2. If (ē, ε̄) ∈ C ⊗W , j, k ∈ N(i), then

‖ε̄ik‖2
∗ ≤ C(h−1/2H1/2|ēi|21,h,Ωi

+ h−1/2H−1/2‖π̄ij ēi‖2
0,γij

),

where π̄ij is the complexification of πij just as in Definition 3.1 and C is independent
of h and H.

Proof. Suppose

(ē, ε̄) = (ẽ, ε̃) +
√
−1(ê, ε̂),
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where (ẽ, ε̃), (ê, ε̂) ∈ W ; then by Lemma 3.2 and Remark 3.1,

‖ε̄ik‖2
∗ = ‖ε̃ik‖2

∗ + ‖ε̂ik‖2
∗,

|ēi|21,h,Ωi
= |ẽi|21,h,Ωi

+ |êi|21,h,Ωi
,

and

‖π̄ij ēi‖2
0,γij

= ‖πij ẽi‖2
0,γij

+ ‖πij êi‖2
0,γij

.

So we need only to verify that ∀(e, ε) ∈ W , we have

‖εik‖2
∗ ≤ C(h−1/2H1/2|ei|21,h,Ωi

+ h−1/2H−1/2‖πijei‖2
0,γij

).

By Lemma 2.7, we know that

‖πikei‖2
0,γik

≤ CH|ei|21,h,Ωi
+ C‖πijei‖2

0,γij
.(5.4)

Since (e, ε) ∈ W , replace Vi in (2.11) by Sijεij , and we have

‖εik‖2
0 =

∫
γik

εik · πikSikεik

= ai(ei, Sikεik) + λ

∫
γik

πikei · εik

≤ |ei|1,h,Ωi
|Sikεik|1,h,Ωi

+ λ‖πikei‖0,γik
‖εik‖0

≤ Ch−1/2|ei|1,h,Ωi
‖εik‖0 + Cλ(H1/2|ei|1,h,Ωi

+ ‖πijei‖0,γij
)‖εik‖0

≤ C(h−1/2 + λH1/2)|ei|1,h,Ωi‖εik‖0 + Cλ‖πijei‖0,γij‖εik‖0.

Here we have used (2.5) in the first and second equalities and Lemma 2.1 and (5.4)
in the second inequality, respectively. Then

‖εik‖2
0 ≤ C(h−1/2 + λH1/2)2|ei|21,h,Ωi

+ Cλ2‖πijei‖2
0,γij

,

or

‖εik‖2
∗ ≤ C(λ−1/2h−1/2 + λ1/2H1/2)2|ei|21,h,Ωi

+ Cλ‖πijei‖2
0,γij

.

Since λ = O(h−1/2H−1/2), we finish the proof.
Lemma 5.3. If (ē, ε̄) ∈ C ⊗W is an eigenvector of Ā such that Ā(ē, ε̄) = σ(ē, ε̄),

then

ε̄ �= 0, |σ| ≤ 1,(5.5)

σε̄ij = 2λπ̄jiēj − ε̄ji,(5.6)

|σ|2‖ε̄‖2
∗ = ‖ε̄‖2

∗ − 4a(ē, ē),(5.7)

where |σ| is modulus of σ.
Proof. By the definition of A, (2.12), and Definition 3.3, we get (5.6) immediately.

We can conclude that ε̄ �= 0. Otherwise, if ε̄ = 0, by (2.11), we know ē = 0,
so (ē, ε̄) = 0. However, since (ē, ε̄) is an eigenvector, then (ē, ε̄) �= 0. This is a
contradiction.
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Suppose

(ē, ε̄) = (ẽ, ε̃) +
√
−1(ê, ε̂),

where (ẽ, ε̃), (ê, ε̂) ∈ W ; then

‖σε̄ij‖2
0 = ‖2λπjiẽj − ε̃ji‖2

0 + ‖2λπjiêj − ε̂ji‖2
0,

or

|σ|2‖ε̄ij‖2
∗ = ‖2λπjiẽj − ε̃ji‖2

∗ + ‖2λπjiêj − ε̂ji‖2
∗,(5.8)

‖2λπjiẽj − ε̃ji‖2
∗ = ‖ε̃ji‖2

∗ − 4〈πjiẽj , ε̃ji − λπjiẽj〉,

∑
1≤i<j≤K

(‖2λπjiẽj − ε̃ji‖2
∗ + ‖2λπij ẽi − ε̃ij‖2

∗)

=
∑

1≤i<j≤K
j∈N(i)

(‖ε̃ij‖2
∗ + ‖ε̃ji‖2

∗ − 4〈πjiẽj , ε̃ji − λπjiẽj〉|γji − 4〈πij ẽi, ε̃ij − λπij ẽi〉|γij )

=
K∑
i=1

∑
j∈N(i)

‖ε̃ij‖2
∗ − 4

K∑
i=1

∑
j∈N(i)

〈πij ẽi, ε̃ij − λπij ẽi〉|γij .

Since (ẽ, ε̃) ∈ W , by (2.11),∑
j∈N(i)

〈πij ẽi, ε̃ij − λπij ẽi〉|γij = ai(ẽi, ẽi).

Then ∑
1≤i<j≤K

(‖2λπjiẽj − ε̃ji‖2
∗ + ‖2λπij ẽi − ε̃ij‖2

∗) = ‖ε̃‖2
∗ − 4a(ẽ, ẽ).

Similarly, we also have∑
1≤i<j≤K

(‖2λπjiêj − ε̂ji‖2
∗ + ‖2λπij êi − ε̂ij‖2

∗) = ‖ε̂‖2
∗ − 4a(ê, ê).

So

|σ|2‖ε̄‖2
∗

=
∑

1≤i<j≤K

(|σ|2‖ε̄ij‖2
∗ + |σ|2‖ε̄ji‖2

∗)

=
∑

1≤i<j≤K

(‖2λπjiẽj − ε̃ji‖2
∗ + ‖2λπij ẽi − ε̃ij‖2

∗)

+
∑

1≤i<j≤K

(‖2λπjiêj − ε̂ji‖2
∗ + ‖2λπij êi − ε̂ij‖2

∗)

= ‖ε̃‖2
∗ − 4a(ẽ, ẽ) + ‖ε̂‖2

∗ − 4a(ê, ê)

= ‖ε̄‖2
∗ − 4a(ē, ē).

Thus we get (5.7).
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We know |σ| ≤ 1 since a(ē, ē) ≥ 0 and ε̄ �= 0.
Remark 5.3. By a similar argument in the proof of Lemma 5.3, we can prove the

following important equality,

‖εn+1‖2
∗ = ‖εn‖2

∗ − 4a(en, en).(5.9)

This equality discloses the convergence behavior of this method explicitly.
Lemma 5.4. If (ē, ε̄) is an eigenvector of Ā such that Ā(ē, ε̄) = σ(ē, ε̄), σ �= 0,

j ∈ N(i), then

‖π̄ij ēi‖2
0 ≤ C|σ|−2h1/2H1/2‖ε̄ji‖2

∗ + C|σ|−2‖π̄jiēj‖2
0,

where C is a constant independent of h and H.
Proof. By (5.6), we have

|σ|2‖ε̄ij‖2
0 ≤ Cλ2‖π̄jiēj‖2

0 + C‖ε̄ji‖2
0

or

‖ε̄ij‖2
∗ ≤ C|σ|−2λ‖π̄jiēj‖2

0 + C|σ|−2‖ε̄ji‖2
∗.(5.10)

On the other hand, also by (5.6), we know

2λπ̄ij ēi = σε̄ji + ε̄ij ;

then

λ2‖π̄ij ēi‖2
0 ≤ C|σ|2‖ε̄ji‖2

0 + C‖ε̄ij‖2
0,

and

λ‖π̄ij ēi‖2
0 ≤ C|σ|2‖ε̄ji‖2

∗ + C‖ε̄ij‖2
∗

≤ C|σ|2‖ε̄ji‖2
∗ + C|σ|−2λ‖π̄jiēj‖2

0 + C|σ|−2‖ε̄ji‖2
∗

≤ C2|σ|−2‖ε̄ji‖2
∗ + C|σ|−2λ‖π̄jiēj‖2

0,

where we have used (5.10) and the fact that |σ| ≤ 1 in the second and third inequali-
ties, respectively. As a result,

‖π̄ij ēi‖2
0 ≤ C|σ|−2λ−1‖ε̄ji‖2

∗ + C|σ|−2‖π̄jiēj‖2
0.

Recall that λ = O(h−1/2H−1/2), and we get the conclusion.
Lemma 5.5. If Ωir ∈ Dr and there is a path {Ωi1 , . . . ,Ωir} connecting Ωir with

boundary, then for all eigenvectors (ē, ε̄) such that Ā(ē, ε̄) = σ(ē, ε̄), σ �= 0,we have

‖ε̄irk‖2
∗

≤ C3h
−1/2H1/2|ēir |21,h,Ωir

+ (C3)
32|σ|−2h−1/2H1/2|ēir−1 |21,h,Ωir−1

+ · · · + (C3)
2r−1(2|σ|−2)r−1h−1/2H1/2|ēi1 |21,h,Ωi1

,

where C3 > 1 is independent of h, H, and the choice of eigenvector (ē, ε̄).
Proof. We verify it by induction on r.
By Lemma 5.2, Lemma 5.4, and (5.4), we know that there is a constant C3 > 1

such that ∀j, k ∈ N(i), the following three inequalities hold:

‖π̄ikēi‖2
0,γik

≤ C3H|ēi|21,h,Ωi
+ C3‖π̄ij ēi‖2

0,γij
,(5.11)
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‖ε̄ik‖2
∗ ≤ C3h

−1/2H1/2|ēi|21,h,Ωi
+ C3h

−1/2H−1/2‖π̄ij ēi‖2
0,γij

,(5.12)

‖π̄ij ēi‖2
0 ≤ C3|σ|−2h1/2H1/2‖ε̄ji‖2

∗ + C3|σ|−2‖π̄jiēj‖2
0.(5.13)

It is necessary to point out that C3 is independent of h, H, and the choice of eigen-
vector (ē, ε̄).

When r = 1, i.e., Ωi1 ∈ D1, there is at least one face of Ωi1 belonging to ∂Ω. Let
this face play the role of γij in (5.11) and (5.12); since π̄ēi1 vanishes on this face, we
have

‖π̄i1kēi1‖2
0 ≤ C3H|ēi1 |21,h,Ωi1

,(5.14)

‖ε̄i1k‖2
∗ ≤ C3h

−1/2H1/2|ēi1 |21,h,Ωi1
.(5.15)

So the conclusion holds in the case of r = 1.

When r = 2, i.e., Ωi2 ∈ D2, there is a path {Ωi1 ,Ωi2}. So on one hand we
can apply (5.11), (5.12), and (5.13) to Ωi2 ; on the other hand we can also use the
hypothesis of induction (5.14) and (5.15) since Ωi1 must belong to D1.

By (5.13), (5.15), and (5.14) we have

‖π̄i2i1 ēi2‖2
0 ≤ C3|σ|−2h1/2H1/2‖ε̄i1i2‖2

∗ + C3|σ|−2‖π̄i1i2 ēi1‖2
0(5.16)

≤ (C3)
2|σ|−2H|ēi1 |21,h,Ωi1

+ (C3)
2|σ|−2H|ēi1 |21,h,Ωi1

= (C3)
22|σ|−2H|ēi1 |21,h,Ωi1

.

By (5.11) and (5.16), we have ∀k ∈ N(i2)

‖π̄i2kēi2‖2
0(5.17)

≤ C3H|ēi2 |21,h,Ωi2
+ C3‖π̄i2i1 ēi2‖2

0

≤ C3H|ēi2 |21,h,Ωi2
+ (C3)

32|σ|−2H|ēi1 |21,h,Ωi1
.

By (5.12) and (5.16), we also get

‖ε̄i2k‖2
∗(5.18)

≤ C3h
−1/2H1/2|ēi2 |21,h,Ωi2

+ C3h
−1/2H−1/2‖π̄i2i1 ēi2‖2

0

≤ C3h
−1/2H1/2|ēi2 |21,h,Ωi2

+ (C3)
32|σ|−2h−1/2H1/2|ēi1 |21,h,Ωi1

.

So the conclusion also holds for r = 2.

In general, if the conclusion holds for r − 1, we consider the case of r. We know
there is a path {Ωi1 , . . . ,Ωir−1 ,Ωir}. We can get the estimation for Ωir by using
(5.11), (5.12), (5.13), and the conclusion for r − 1 since {Ωi1 , . . . ,Ωir−1} is a path
connecting Ωir−1 with the boundary. In other words, we can get ∀k ∈ N(ir)

‖π̄irkēir‖2
0

≤ C3H|ēir |21,h,Ωir
+ (C3)

32|σ|−2H|ēir−1 |21,h,Ωir−1

+ · · · + (C3)
2r−1(2|σ|−2)r−1H|ēi1 |21,h,Ωi1

,
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‖ε̄irk‖2
∗

≤ C3h
−1/2H1/2|ēir |21,h,Ωir

+ (C3)
32|σ|−2h−1/2H1/2|ēir−1 |21,h,Ωir−1

+ · · · + (C3)
2r−1(2|σ|−2)r−1h−1/2H1/2|ēi1 |21,h,Ωi1

.

Thus we get the conclusion in general.

Now we are in a position to prove the main theorem.

Proof of Theorem 5.1. By Corollary 2.4, we know

‖(en, εn)‖ ≤ ‖An‖‖(e0, ε0)‖.(5.19)

In addition, by Lemma 3.6, we need only to estimate ρ(Ā). This is our main task.

Suppose (ē, ε̄) is an eigenvector of Ā and σ �= 0 is certain eigenvalue. By the
condition (1) of Assumption 4.1, ∀Ωir ∈ Dr, Ωir has a path {Ωi1 ,Ωi2 , . . . ,Ωir}. By
Lemma 5.5, ∀k ∈ N(ir),

‖ε̄irk‖2
∗

≤ C3h
−1/2H1/2|ēir |21,h,Ωir

+ (C3)
32|σ|−2h−1/2H1/2|ēir−1 |21,h,Ωir−1

+ · · · + (C3)
2r−1(2|σ|−2)r−1h−1/2H1/2|ēi1 |21,h,Ωi1

.

We assume each Ωi has at most M faces. So∑
k∈N(ir)

‖ε̄irk‖2
∗

≤ MC3h
−1/2H1/2|ēir |21,h,Ωir

+ M(C3)
32|σ|−2h−1/2H1/2|ēir−1 |21,h,Ωir−1

+ · · · + M(C3)
2r−1(2|σ|−2)r−1h−1/2H1/2|ēi1 |21,h,Ωi1

.

By the condition (2) of Assumption 4.1, we have∑
Ωir∈Dr

∑
j∈N(ir)

‖ε̄irj‖2
∗(5.20)

≤ MC3h
−1/2H1/2

∑
Ωir∈Dr

|ēir |21,h,Ωir

+M(C3)
32|σ|−2h−1/2H1/2

∑
Ωir−1∈Dr−1

|ēir−1 |21,h,Ωir−1

+ · · · + M(C3)
2r−1(2|σ|−2)r−1h−1/2H1/2

∑
Ωi1∈D1

|ēi1 |21,h,Ωi1
.

Summing up all subdomains by (5.20), we get

‖ε̄‖2
∗ =

N∑
r=1

∑
Ωir∈Dr

∑
j∈N(ir)

‖ε̄irj‖2
∗

≤ Mh−1/2H1/2
N∑
r=1

(C3)
2r−1(2|σ|−2)r−1a(ē, ē)

≤ (C1)
−1|σ|−2N (2(C3)

2)Nh−1/2H1/2a(ē, ē),
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where C1 is independent of h, H, N , and the choice of eigenvector (ē, ε̄). By (5.7),
we have

|σ|2‖ε̄‖2
∗ = ‖ε̄‖2

∗ − 4a(ē, ē)

≤ ‖ε̄‖2
∗ − 4C1|σ|2N (2(C3)

2)−Nh1/2H−1/2‖ε̄‖2
∗.

Moreover, by (5.5), ε̄ �= 0, so

|σ|2 ≤ 1 − 4C1|σ|2N (2(C3)
2)−Nh1/2H−1/2.

If |σ|2 > 1/2, then

|σ|2 ≤ 1 − 4C1(4(C3)
2)−Nh1/2H−1/2.

As a result,

|σ|2 ≤ max{1/2, 1 − 4C1(4(C3)
2)−Nh1/2H−1/2}.

Since

1 − 4C1(4(C3)
2)−Nh1/2H−1/2 ≥ 1/2,

when h tends to 0, we get

|σ|2 ≤ 1 − 4C1(4(C3)
2)−Nh1/2H−1/2.

Thus

|σ| ≤ (1 − 4C1(4(C3)
2)−Nh1/2H−1/2)1/2 ≤ 1 − 2C1(4(C3)

2)−Nh1/2H−1/2.

Let C0 = (4(C3)
2)−1; then

ρ(Ā) ≤ 1 − 2C1(C0)
Nh1/2H−1/2,(5.21)

where C0 ∈ (0, 1) and C1 are independent of h, H, and N .
By Lemma 3.6, (5.19), and (5.21) we finish this proof.

6. Numerical experiments. Now we carry out some numerical experiments to
check the convergence behavior of this method. We find that this method converges
quickly when the winding number N is not very large. But the convergence rate will
deteriorate when the winding number N goes up.

The domain in which our problems are defined is [0, L × H] × [0,M × H]. We
decompose the domain into L ×M subdomains. Each subdomain is a square whose
edge length is H. The problem is (2.1) and the exact solution u is x(x−L×H)y(y−
M ×H). We triangulate the domain uniformly and the mesh size is h.

We will consider four cases. In these cases, L×M is 10×2, 5×3, 5×5, and 7×7,
respectively. The winding numbers of these four cases are 1, 2, 3, and 4, respectively.
In addition we will modify H in each case.

We choose the initial guess g0
ij = 0 in each case (see (2.7)). The stop criterion is

‖un−u‖∞ ≤ 10−4. The iteration number is n. Let the initial error be e0 = ‖u0−u‖∞
and the final one be en = ‖un − u‖∞. Since the iteration number n is dependent on
e0, we compare the convergence speed to the convergence rate (en/e0)1/n instead of
n. The smaller (en/e0)1/n is, the quicker the convergence will be.

In this paper, we choose the relaxation parameter λ = O(h−1/2H−1/2) in theory.
Here we denote h−1/2H−1/2 by λ0. We search the optimal parameter λopt in each
experiment. We find that λopt/λ0 ≈ 0.2. Table 1 displays the numerical results.

It is seen from the table that the convergence rate of the DDM converges quickly
when the winding number is not very large, but it will deteriorate when the winding
number N goes up. This numerical result confirms our theoretical investigation.
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Table 1

L×M N h H λopt/λ0 n en (en/e0)1/n

0.01 0.3 0.24 8 6.6749e− 5 0.3805
10 × 2 1

0.01 0.2 0.25 6 6.4250e− 5 0.3623
0.01 0.3 0.20 10 7.3636e− 5 0.4965

5 × 3 2
0.01 0.2 0.25 7 4.0014e− 5 0.4250
0.01 0.3 0.16 14 8.2826e− 5 0.5647

5 × 5 3
0.01 0.2 0.20 10 6.6438e− 5 0.5166
0.01 0.3 0.13 24 6.7312e− 5 0.6688

7 × 7 4
0.01 0.2 0.16 18 3.9613e− 5 0.6214

7. Conclusion. The Robin-type nonoverlapping DDM is a convenient, applica-
ble, and highly parallel tool for solving the second order elliptic partial differential
equations. The convergence rate is 1−O(h1/2H−1/2) in certain cases when the lower
term of the equation is strictly positive (see [22]). In this paper, we point out the
convergence rate is 1−O((C0)

Nh1/2H−1/2) when the lower term of the equation van-
ishes. Here h is size of mesh, H is the size of subdomain, and N is the winding number
of domain decomposition (see Definition 4.1). C0 ∈ (0, 1) is independent of h, H, and
N . The numerical results in this paper support our theory. Given the fact claimed in
[22] that the convergence rate of this method cannot be better than 1−O(h1/2H−1/2)
whether or not the lower term is positive definite strictly, the result in this paper is
also sharp.

Appendix. Now we give the proofs of Lemmas 3.2, 3.4, and 3.5.
Proof of Lemma 3.2. It is easy to check that

〈x +
√
−1y, x +

√
−1y〉 ≥ 0,

where the equality holds if and only if x +
√
−1y = 0, and

〈x1 +
√
−1y1, x2 +

√
−1y2〉 = 〈x2 +

√
−1y2, x1 +

√
−1y1〉,

where z̄ means the conjugate complex number of z. Moreover

〈(x1 +
√
−1y1) + (x3 +

√
−1y3), x2 +

√
−1y2〉

= 〈x1 +
√
−1y1, x2 +

√
−1y2〉 + 〈x3 +

√
−1y3, x2 +

√
−1y2〉,

〈(a +
√
−1b)(x1 +

√
−1y1), x2 +

√
−1y2〉 = (a +

√
−1b)〈x1 +

√
−1y1, x2 +

√
−1y2〉.

So we have defined an inner product of complex linear space C ⊗ V . Meanwhile

‖x +
√
−1y‖2 = 〈x +

√
−1y, x +

√
−1y〉 = 〈x, x〉 + 〈y, y〉 = ‖x‖2 + ‖y‖2.

Proof of Lemma 3.4.

(1 ⊗ T1)(1 ⊗ T2)(x +
√
−1y) = (1 ⊗ T1)(T2x +

√
−1T2y)

= T1T2x +
√
−1T1T2y

= 1 ⊗ (T1T2)(x +
√
−1y),

so we get the conclusion.
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Proof of Lemma 3.5. By Lemma 3.2,

‖T̄‖2 = sup
x+

√
−1y 	=0

‖T̄ (x +
√
−1y)‖2

‖x +
√
−1y‖2

= sup
x+

√
−1y 	=0

‖Tx‖2 + ‖Ty‖2

‖x‖2 + ‖y‖2

≤ sup
x+

√
−1y 	=0

‖T‖2‖x‖2 + ‖T‖2‖y‖2

‖x‖2 + ‖y‖2
= ‖T‖2,

so

‖T̄‖ ≤ ‖T‖.

On the other hand, we know there is a vector x0 ∈ V such that ‖x0‖ = 1 and
‖Tx0‖ = ‖T‖, and also by Lemma 3.2,

‖T̄‖2 ≥ ‖T̄ (x0 +
√
−1x0)‖2

‖x0 +
√
−1x0‖2

=
2‖Tx0‖2

2‖x0‖2
= ‖T‖2.

So ‖T̄‖ = ‖T‖.
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Abstract. We consider multivariate integration in the weighted spaces of functions with mixed
first derivatives bounded in Lp norms and the weighted coefficients introduced via �q norms, where
p, q ∈ [1,∞]. The integration domain may be bounded or unbounded. The worst-case error and
randomized error are investigated for quasi-Monte Carlo quadrature rules. For the worst-case setting
the quadrature rule uses deterministic ((Tu), s)-sequences in base b, and for the randomized setting
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1. Introduction. In many practical problems arising in statistics [FW94, Gen92],
finance [PT96], and physics [Kei96], one often needs to approximate the integral of a
function f(x) over the s-dimensional unit cube,

(1) I(f) =

∫
[0,1]s

f(x)dx,

or over a bounded or unbounded s-dimensional box D with a nonnegative weight
function ρ(x),

(2) Iρ(f) =

∫
D

f(x)ρ(x)dx.

It is assumed in this article that D is an s-dimensional box of the form

(3) D = (a,b) := (a1, b1) × · · · × (as, bs) ⊆ Rs,

where each of the (ak, bk) may possibly be a finite, semi-infinite, or infinite interval.
In addition, the weight function ρ(x) is assumed to have product form

(4) ρ(x) =

s∏
k=1

ρk(xk)
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for nonnegative functions ρk, which are assumed to be probability density functions
on (ak, bk) for simplicity. After a suitable transformation, the integration problem in
(2) can be written as the form in (1). We call integration in (1) the classical problem.
In this article we concentrate mainly on the classical problem, and then extend the
results to the general problem.

For the classical problem with large s the integral is often approximated by algo-
rithms of the following form:

(5) Qn(f) =
1

n

n−1∑
j=0

f(xj),

where the point set P = {x0,x1, . . . ,xn−1} is carefully chosen from the unit cube
[0, 1]s. In this article P is chosen by quasi-Monte Carlo and randomized quasi-Monte
Carlo methods known as (T,m, s)-nets and (T, s)-sequences [Nie92, Chapter 4] and
their scrambled versions [Owe95]. For fixed dimension s, quasi-Monte Carlo methods
are usually considered to be more accurate than Monte Carlo methods, but for Monte
Carlo methods it can be much easier to estimate accuracy. Randomized Monte Carlo
methods combine the best of Monte Carlo and quasi-Monte Carlo methods [Owe95,
Owe97a, Owe97b, Owe98, YM99, HY00, HHY04].

It is interesting to investigate the performance of quasi-Monte Carlo and ran-
domized quasi-Monte Carlo methods for high or very high dimensional integration.
This problem is related to the concepts of tractability and strong tractability [SW98].
Tractability means that one can reduce the initial error by a factor ε ∈ (0, 1) by using
a number of function values which are polynomial in s and ε−1. Strong tractability
means that the number of samples is independent of s and depends polynomially on
ε−1. The smallest (or the infimum of) power of ε−1 is called the strong exponent
of tractability. See [SW98] for a more precise description of tractability and strong
tractability.

Strong tractability for integration is related to the class of integrands. There
have been a few investigations in recent years concentrating on the strong tractability
problem of quasi-Monte Carlo and randomized quasi-Monte Carlo methods based
on (T,m, s)-nets and (T, s)-sequences for reproducing kernel Hilbert spaces [DP05,
Wan03, YH01, YH05].

However, as pointed out in [Slo02], it is necessary to consider integration problems
for Banach spaces of functions since the reproducing kernel Hilbert space methods are
too restrictive for some classes of problems. For example, integrals from mathematical
finance are typically with respect to probability measures over unbounded domains.
After mapping to the unit cube most problems of this kind yield integrands whose
derivatives are integrable, but not square integrable.

Consider the European put option as a simple one-dimensional example. The
payoff is given by

g(z) = max(K − S0 exp{(r − σ2/2)τ + σ
√
τz}, 0),

where S0 is the initial asset price, τ is the time to maturity, r is the interest rate, σ
is the volatility, K is the strike price, and z is a random variable with the standard
Gaussian distribution, Φ(z). The fair price of the option is the mean or expected

value of the payoff, i.e.,
∫∞
−∞ g(z)Φ′(z) dz =

∫ 1

0
f(x) dx, where f(x) = g(Φ−1(x)).

The integral in terms of x after a variable transformation is the classical integration
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problem. The integral of the pth power of the first derivative of f is∫ 1

0

|f ′(x)|p dx =

∫ ∞

−∞
|g′(z)|p[Φ′(z)]1−p dz

= (2π)(p−1)/2

∫ ∞

−∞
|g′(z)|pe(p−1)z2/2 dz.

For the example in question g′(z) decays exponentially to zero as z → −∞, is zero for
z large enough, and has a jump discontinuity where g(z) becomes positive. Thus, g′(z)
is p-integrable for all p ≥ 1; however, due to the term [Φ′(z)]1−p, the function f ′ is
integrable, but not square integrable. In fact, it is not p-integrable for any p > 1. The
same conclusion holds if other fatter tailed distributions, such as the variance-gamma,
are substituted for the Gaussian distribution.

Therefore, a fundamental difficulty arises in applying the Hilbert space results to
such problems. Recently, there have been some studies of the tractability problem for
weighted integration based on general quadrature rules and lattice rules for weighted
Banach spaces of functions whose mixed partial derivatives are bounded in Lp norms
for p ∈ [1,∞]; see [HSW04a, HSW04b, HSW04c]. We think that it is also interesting
to consider the quadrature rules that use (T,m, s)-nets and (T, s)-sequences for these
spaces.

This article studies the tractability problems for weighted Banach spaces of inte-
grands, in which two quasi-Monte Carlo rules are considered. One uses deterministic
Niederreiter (T, s)-sequences, and another uses randomly scrambled Niederreiter digi-
tal (T,m, s)-nets. We refer to [Nie88] for Niederreiter sequences and [Nie92, Chapter
4; NX01, Chapter 8] for constructions of digital nets. For deterministic Niederre-
iter sequence rules we assume that the integrands f lie in a weighted Banach space,

F (1)
p,q,γ,s, of functions whose mixed anchored first derivatives are bounded in Lp norms,

and the weighted coefficients, γ = {γk}k, are introduced via �q norms over the index
u, where p, q ∈ [1,∞]. This space is the same as that in [HSW04b]. For the randomly
scrambled Niederreiter net rules, the class of integrands is a weighted Banach space,

F (2)
p,q,γ,s, of functions whose unanchored mixed first derivatives are bounded in Lp

norms and the weighted coefficients, γ = {γk}k, are introduced via �q norms, where
p, q ∈ [1,∞].

Note that the spaces F (1)
p,q,γ,s and F (2)

p,q,γ,s have the same smoothness. But the

space F (1)
p,q,γ,s works technically better for the worst-case setting, and the space F (2)

p,q,γ,s

works technically better for the randomized setting.
The reason for using Niederreiter sequences is that Niederreiter sequences are

telescoping; i.e., to obtain a sequence in dimension s + 1, it suffices to add the last
component xj

s+1 to the term of the s-dimensional sequence (xj
1, . . . , x

j
s) for j = 1, 2, . . ..

Moreover, for any nonempty subset u of {1, . . . , s}, the projection of the s-dimensional
Niederreiter (T, s)-sequence onto the axes in u forms a |u|-dimensional Niederreiter
sequence with quality parameter [Nie88]

(6) Tu =
∑
k∈u

[deg(gk) − 1],

where g1, . . . , gs denote the first s monic irreducible polynomials over the finite field
Fb. This allows us to write the Niederreiter sequence and net as ((Tu), s)-sequence
and ((Tu),m, s)-net, respectively, where (Tu) denotes a (2s− 1)-dimensional vector of
the quality parameters corresponding to all nonempty subsets u of {1, . . . , s}. From
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[Nie92, Wan03] one has the following upper bound on deg(gk):

(7) deg(gk) ≤ logb k + logb logb(k + b) + 2, k = 1, 2, . . . .

These properties make Niederreiter sequences suitable for tractability studies.
Note that very similar properties hold for some other sequences, such as Sobol

sequences [Sob67, Sob69], Halton sequences [Hal60, HW02], generalized Niederreiter
sequences [Nie92, Tez95], and certain constructions by Niederreiter and Xing [NX01].
Hence results very similar to the one presented in this article hold for those sequences.
For instance, the Sobol sequence (in base 2) also has the telescopic property. And
for any nonempty subset u of {1, . . . , s}, the projection of the s-dimensional Sobol
(T, s)-sequence onto the axes in u forms a |u|-dimensional Sobol sequence with quality
parameter [Sob67]

Tu =
∑
k∈u

[deg(Pk) − 1],

where P1, . . . , Ps denote the first s primitive polynomials. From [Sob69, Wan03] the
degree deg(Pk) can be bounded by

deg(Pk) ≤ log2 k + log2 log2(k + 1) + log2 log2 log2(k + 3) + C, k = 1, 2, . . . ,

where C is a constant independent of k and s. Hence very similar strong tractability
results to the one presented for Niederreiter sequences hold for Sobol sequences but
the sufficient conditions are slightly stronger.

The main results of this article are Theorems 1 to 4, which provide sufficient

conditions on strong tractability for F (1)
p,q,γ,s in the worst-case setting and F (2)

p,q,γ,s in
the randomized setting. These results are summarized in Table 1, where p∗ and q∗

denote the conjugates of p and q, i.e.,

1

p
+

1

p∗
= 1,

1

q
+

1

q∗
= 1.

The asymptotic orders of the quadrature errors are given under the assumption that
the sufficient condition for strong tractability holds. The parameter ε is an arbitrary
positive number. For comparison, related results in [HSW04b, Wan03, YH05] are also
listed in the table.

The following points are worth noting about these results:
(i) The spaces considered in [Wan03] are the weighted reproducing kernel Hilbert

spaces, and the original weights γk in [Wan03] are the square of our weights.
Therefore, the space in [Wan03] in which the weights are replaced with γ2

k

becomes F (1)
2,2,γ,s. Our results substantially extend and improve upon the re-

sults of [Wan03] by considering more general spaces of integrands and deriving
weaker sufficient conditions for strong tractability.

(ii) The setting in [YH05] is the randomized worst case, and the quadrature rule is
based on a randomly scrambled Niederreiter sequence. Moreover, the weighted

Sobolev–Hilbert spaces, HSH
s,γ , are nearly the same as F (1)

2,2,γ,s. The sufficient
condition there for strong tractability is somewhat weaker than the one in the
present article. We do not know yet whether the condition for the worst-case
setting in this article can be weakened or not.
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Table 1

Summary results in the present article and [HSW04b, Wan03, YH05].

Sufficient condition for
Setting Article Space Rule strong tractability Error

Worst case Present F(1)
p,q,γ,s sequence

∞∑
k=1

γa
kk ln k < ∞ O(n−1/a+ε)

(1 ≤ a ≤ q∗)

Worst case [HSW04b] F(1)
p,q,γ,s lattice

∞∑
k=1

γa
k < ∞ O(n−1/a+ε)

(1 ≤ a ≤ q∗)

Worst case [Wan03] F(1)
2,2,γ,s sequence

∞∑
k=1

γkk ln k < ∞ O(n−1+ε)

Randomized
worst case

[YH05] HSH
s,γ sequence

∞∑
k=1

γ2
k(k ln k)2 < ∞ O(n−1+ε)

Randomized Present F(2)
p,q,γ,s net

∞∑
k=1

γ2
k(k ln k)2 < ∞ O(n−1+ε)

(1 ≤ p ≤ ∞)

∞∑
k=1

γ2
k(k ln k)3 < ∞ O(n−3/2+ε)

(2 ≤ p ≤ ∞)

Randomized [YH05] HSH
s,γ net

∞∑
k=1

γ2
k(k ln k)3 < ∞ O(n−3/2+ε)

(iii) Compared with the lattice rules in [HSW04b], our sufficient condition for
digital sequences in the worst-case setting is somewhat more stringent. In
fact, we can conclude that our condition

∑∞
k=1 γ

a
kk ln k < ∞ (1 ≤ a ≤ q∗)

is roughly equivalent to
∑∞

k=1 γ
a/2
k < ∞ (1 ≤ a ≤ q∗) from the following

Lemma 1, provided that γ1 ≥ γ2 ≥ · · · ≥ 0.
(iv) As far as we are aware, there have been few studies on randomized settings

in literature. Sloan and Woźniakowski [SW01] studied the randomized error
of the classical Monte Carlo algorithm for weighted Korobov spaces. Yue and
Hickernell [YH05] studied the randomized error of the quasi-Monte Carlo
algorithm based on scrambled Niederreiter nets and sequences for weighted
Sobolev–Hilbert spaces. The result of the randomized error for p = q = 2 in
this article is the same as that of [YH05]. Therefore, the results of this article
extend the result of [YH05] by considering more general spaces of integrands.

(v) Compared with the condition with a = 1 in the worst-case setting for F (1)
p,q,γ,s,

the condition in the randomized setting for F (2)
p,q,γ,s is weaker for p ≥ 1.

However, the results in the randomized setting are just for Niederreiter digital
nets, unlike Niederreiter sequences in the worst-case setting.

Lemma 1. Let {γk} be a nonnegative nonincreasing sequence, and let λk be a
sequence satisfying

c̃r,δk
r−δ ≤ λk ≤ cr,δk

r+δ ∀δ ∈
(

0,
1

r

)
, k = 1, 2, . . . ,
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where c̃r,δ and cr,δ are two nonnegative constants depending only on r and δ. Then

L̃r,δ

[ ∞∑
k=1

γ
a(1+δ)
1+r

k

] 1+r
1+δ

≤
∞∑
k=1

γa
kλk ≤ Lr,δ

[ ∞∑
k=1

γ
a(1−rδ)

1+r

k

] 1+r
1−rδ

,

where L̃r,δ and Lr,δ are two nonnegative constants depending only on r and δ.
The proof of Lemma 1 is given in the appendix.
The article proceeds as follows: Section 2 considers the strong tractability of

quasi-Monte Carlo rules that use deterministic Niederreiter sequences for the classical
problem. Section 3 considers strong tractability of quasi-Monte Carlo rules that use
the randomly scrambled Niederreiter digital nets for the classical problem. Section 4
extends the strong tractability results for the classical problem to the weighted inte-
gration over a general domain. Some concluding remarks are given in section 5, where
it is shown that similar results to the one presented in previous sections hold for the
Banach spaces of finite-order weights.

2. Tractability in worst-case settings for the classical problem. In this
section, we deal with the strong tractability problem of multivariate integration using
the deterministic Niederreiter sequence for the classical problem. We first introduce
the spaces of our integrands, which are defined as in [HSW04a]. We briefly recall the
definition as follows.

For a given p ∈ [1,∞], let Hp,k be the space of absolutely continuous functions
h : [0, 1] → R with p-integrable first derivatives, i.e., h′(x) ∈ Lp([0, 1]). Let Hs

p =
⊗s

k=1Hp,k be the space consisting of linear combinations of functions of the following
tensor product form:

f : [0, 1]s → R and f(x) =

s∏
k=1

hk(xk) with hk ∈ Hp,k.

Take a sequence γ = {γk}k of positive numbers, and let γ∅ = 1 and γu =
∏

k∈u γk for
nonempty subset u ⊆ {1, . . . , s}. Let c be a fixed point in [0, 1]s and define the mixed
anchored first derivative f ′

u,c of f(x) for any nonempty subset u by

f ′
u,c(xu) :=

(∏
k∈u

∂

∂xk

)
f(xu, cū),

where (xu, cū) denotes the s-dimensional vector whose kth component is xk if k ∈ u,

and is ck if k ∈ ū. Given an additional parameter q ∈ [1,∞], define the space F (1)
p,q,γ,s

to be the completion of Hs
p with respect to the norm

(8) ‖f‖p,q,γ,s :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ∑
u⊆{1,...,s}

γ−q
u ‖f ′

u,c‖
q
Lp

)1/q

for q < ∞,

max
u⊆{1,...,s}

{γ−1
u ‖f ′

u,c‖Lp} for q = ∞,

where the sum is over all 2s subsets of coordinates of [0, 1]s, and f ′
∅,c = f(c).
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For the significance of the weights γk we refer to, e.g., [SW98, NW01] and note
that in some articles, including [SW98, NW01, Wan03], p = q = 2 and the definition
of ‖ · ‖2,2,γ,s uses γ−1

u instead of γ−2
u . Hence, our weights γk in (8) for p = q = 2 are

the square roots of those in [SW98, NW01, Wan03].

For the weighted Banach space F (1)
p,q,γ,s defined above, the worst-case error of the

quasi-Monte Carlo quadrature Qn is defined as

(9) ewo(Qn,F (1)
p,q,γ,s) := sup

‖f‖p,q,γ,s≤1

|I(f) −Qn(f)|.

An expression for ewo(Qn,F (1)
p,q,γ,s) is given in [HSW04a], in which the functions

Mu(x, t) are important. For each k ∈ {1, . . . , s} let

Mk(x, t) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if ck ≤ t < x,

−1 if x ≤ t < ck,

0 otherwise,

and for each subset u of {1, . . . , s} let

Mu(xu, tu) :=
∏
k∈u

Mk(xk, tk)

with the convention that M∅ ≡ 1. It is shown in [HSW04c] that

f(x) =
∑

u⊆{1,...,s}

∫
[0,1]u

f ′
u,c(tu)Mu(xu, tu)dtu.

Define

(10) hu(tu) := I(Mu(·, tu)) −Qn(Mu(·, tu)).

When c = 1, then hu(tu) has the following expression:

(11) hu(tu) = vol([0, tu)) − 1

n

n−1∑
j=0

1[0,tu)(x
j
u).

For the case where c is in the interior of the unit cube [0, 1]s, hu(tu) has a similar
expression replacing the cube [0, tu) by a certain box, which is described below. Note
that the anchor c ∈ (0, 1)s partitions the unit cube [0, 1]s into 2s quadrants. Given a
t = (t1, . . . , ts)

T in one of these quadrants, let B(t; c) denote the box with one corner
at t and the opposite corner given by the unique vertex of [0, 1]s that lies in the same
quadrant as t. Then hu(tu) can be expressed as

(12) hu(tu) = vol(Bu(tu; cu)) − 1

n

n−1∑
j=0

1Bu(tu;cu)(x
j
u),

where Bu(tu; cu) is the projection of B(t; c) onto the axes in u.
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In terms of the functions hu the worst-case error ewo(Qn,F (1)
p,q,γ,s) in (9) is given

by [HSW04a]

(13) ewo(Qn,F (1)
p,q,γ,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∑
u �=∅

γq∗

u ‖hu‖q
∗

Lp∗

)1/q∗

for q > 1,

max
u �=∅

{γu‖hu‖Lp∗ } for q = 1,

where p∗ and q∗ are the conjugates of p and q, respectively.
The result in the following lemma will be used several times in the proofs of the

main theorems in this article.
Lemma 2. Let α, β, θ > 0 and τ ≥ 1. For the first n points of a Niederreiter

((Tu), s)-sequence in base b, define

(14) Φ(α, β, θ, τ) :=
∑

∅�=u⊆1,...,s

γα
u b

βTu(θ ln(τn))|u|.

If the γk satisfy

(15)

∞∑
k=1

γα
k (k ln k)β < ∞,

then for any fixed ε > 0 there exists a constant Cε independent of s and n such that

Φ(α, β, θ, τ) ≤ Cεn
ε.

Proof. This lemma can be proved by an argument similar to that used in [Wan03,
Theorem 4].

Now we can proceed to prove the strong tractability result of multivariate inte-
gration using Niederreiter sequences in the worst-case setting.

Theorem 1. Assume p, q ∈ [1,∞]. Let F (1)
p,q,γ,s be the Banach space of functions f

with norm (8). Assume that the quasi-Monte Carlo quadrature Qn uses a Niederreiter
((Tu), s)-sequence in a prime power base b. If

(16)

∞∑
k=1

γa
kk ln k < ∞

for any a ∈ [1, q∗], then the corresponding integration is strongly tractable in the
worst-case setting, and for any fixed ε > 0 there exists a constant C independent of s
and n such that

(17) ewo(Qn,F (1)
p,q,γ,s) ≤ Cn−1/a+ε.

Proof. It follows from the expression in (13) for the worst-case error and the fact
‖hu‖Lp∗ ≤ ‖hu‖L∞ for any p∗ ∈ [1,∞] that it is sufficient to consider the case with
p∗ = ∞. For the case of c = 1,

‖hu‖L∞ = sup
tu∈[0,1]u

∣∣∣∣vol([0, tu)) − 1

n

n−1∑
j=0

1[0,tu)(x
j
u)

∣∣∣∣ = D∗
u,∞(P )
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due to the expression (11), where D∗
u,∞(P ) is the local star discrepancy of P corre-

sponding to the subset u. Note that if {xj}j≥0 is a Niederreiter ((Tu), s)-sequence in
base b, then its projection onto the axes in u is a Niederreiter (Tu, |u|)-sequence in
base b, where Tu is as given by (6). It follows from [Wan03, Lemma 1] that

D∗
u,∞(P ) ≤ n−1bTu(θ ln(bn))|u|,

where θ = b/ ln b. Noting that ‖hu‖L∞ = D∗
u,∞(P ) ≤ 1, we then have the following

for q ∈ [1,∞] and any ã ∈ [1, q∗]:

(∑
u

γq∗

u ‖hu‖q
∗

L∞

)1/q∗

≤
(∑

u

γq∗

u ‖hu‖ãL∞

)1/q∗

≤
(∑

u

γq∗/ã
u ‖hu‖L∞

)ã/q∗

≤ n−ã/q∗

(∑
u

γq∗/ã
u bTu(θ ln(bn))|u|

)ã/q∗

= n−ã/q∗ [Φ(q∗/ã, 1, θ, b)]ã/q
∗
.

Set a = q∗/ã, and then a ∈ [1, q∗] since 1 ≤ ã ≤ q∗. It follows from (13) that

ewo(Qn,F (1)
p,q,γ,s) ≤ n−1/a[Φ(a, 1, θ, b)]1/a.

Applying Lemma 2 to Φ(a, 1, θ, b) gives the upper bound (17) for ewo(Qn,F (1)
p,q,γ,s) if

condition (16) holds.
For the case with c in the interior of the unit cube [0, 1]s, from expression (12)

we have

‖hu‖L∞ = sup
tu∈[0,1]u

∣∣∣∣∣∣vol(Bu(tu; cu)) − 1

n

n−1∑
j=0

1Bu(tu;cu)(x
j
u)

∣∣∣∣∣∣
≤ sup

Ju

∣∣∣∣∣∣vol(Ju) − 1

n

n−1∑
j=0

1Ju(xj
u)

∣∣∣∣∣∣ = Du,∞(P ),

where Ju denotes subintervals of [0, 1]s of the form
∏

k∈u[αk, βk), and Du,∞(P ) is
the local extreme discrepancy (or unanchored discrepancy) of P corresponding to the
subset u. From Proposition 2.4 in [Nie92] we have

Du,∞(P ) ≤ 2|u|D∗
u,∞(P ).

Then the upper bound for ewo(Qn,F (1)
p,q,γ,s) follows from the previous argument for

c = 1.
Note that the initial error in multivariate integration in the space F (1)

p,q,γ,s is

ewo(0,F (1)
p,q,γ,s) =

⎛
⎝ ∑

u⊆{1,...,s}
γq∗

u ‖vol(Bu(·; cu))‖q
∗

Lp∗

⎞
⎠1/q∗

.

By the definition of Bu(tu; cu) it can be verified that
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‖vol(Bu(·; cu))‖p
∗

Lp∗
=

∑
v⊆u

(∏
k∈v

∫ ck

0

tp
∗

k dtk

)( ∏
k∈u−v

∫ 1

ck

(1 − tk)
p∗
dtk

)

= (p∗ + 1)−|u|
∑
v⊆u

(∏
k∈v

cp
∗+1

k

)( ∏
k∈u−v

(1 − ck)
p∗+1

)

= (p∗ + 1)−|u|
∏
k∈u

[
cp

∗+1
k + (1 − ck)

p∗+1
]
.

It follows that

ewo(0,F (1)
p,q,γ,s) =

⎡
⎣ ∑
u⊆{1,...,s}

γq∗

u (p∗+1)−|u|q∗/p∗ ∏
k∈u

(
cp

∗+1
k +(1−ck)

p∗+1
)q∗/p∗

⎤
⎦1/q∗

=

s∏
k=1

[
1+γq∗

k (p∗ + 1)−q∗/p∗
(
cp

∗+1
k +(1−ck)

p∗+1
)q∗/p∗]1/q∗

,

which is uniformly bounded in s under condition (16). From this factor and the upper
bound for the worst-case error above, we assert that the multivariate integration is
strongly tractable in the worst-case setting. This concludes the proof.

Remark 1. From Theorem 1 the following facts are observed:
(i) If condition (16) holds for a = 1, then the worst-case error is O(n−1+ε), and

in the case with p = q = 2, this result is the same as that obtained in [Wan03]
for reproducing kernel Hilbert spaces. Therefore, our result in Theorem 1 is
an extension of that in [Wan03] to arbitrary p and q.

(ii) Although the convergence rate for a > 1 is smaller than that for a = 1, by in-
troducing the number a ∈ (1, q∗], the sequence of weights {γk}k is transformed
at the same time and the strong tractability condition is weaker. Therefore,
when considering the question of strong tractability, this theorem allows one
to accept a lower convergence rate in turn for less restrictive conditions on
the weights. This was done in [HSW04b].

3. Tractability in randomized settings for the classical problem. In this
section we consider the strong tractability problem of integration using randomly
scrambled Niederreiter digital net rules in randomized settings for the classical prob-

lem. The function spaces F (2)
p,q,γ,s defined below have slightly different norms than

F (1)
p,q,γ,s considered in the previous section although the smoothness assumptions are

the same. The reason for this is that the arguments for the randomized setting are dif-
ferent from that used in the previous section. In analyzing the randomized error, the
mean square error of the quadrature rule is expressed in terms of Fourier coefficients
of the integrand under the orthogonormal system of multivariate Haar wavelets. By
making use of integration by parts, each of the Fourier coefficients is expressed by an
integral of the product of two functions: one is the unanchored mixed first derivative
of the integral, and another is defined via the Haar wavelet.

For p ∈ [1,∞] let Hs
p be defined as in the previous section. Given an additional

parameter q ∈ [1,∞] and a sequence γ = {γk}k of positive numbers, F (2)
p,q,γ,s is defined
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to be the completion of Hs
p with respect to the norm

(18) ‖f‖p,q,γ,s :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ∑
u⊆{1,...,s}

γ−q
u ‖f ′

u‖
q
Lp

)1/q

for q < ∞,

max
u⊆{1,...,s}

{γ−1
u ‖f ′

u‖Lp
} for q = ∞,

where γ∅ = 1, γu =
∏

k∈u γk, the derivative f ′
u(x) for u = ∅ is defined by

f ′
u(x) :=

(∏
k∈u

∂

∂xk

)
f(x),

and f ′
∅(x) denotes f(x). For p = q = 2 the space becomes the Sobolev space considered

in section 3.1 of [SW01].
For the weighted Banach spaces defined above, we define the randomized error of

the quadrature rule Qn as

(19) era(Qn,F (2)
p,q,γ,s) := sup

‖f‖p,q,γ,s≤1

√
E|I(f) −Qn(f)|2,

where the expectation E is taken with respect to the random samples.
In what follows, we first give some background about the randomly scrambled

digital sequences and Haar wavelets. Then we deal with the randomized error of the
quadrature rules.

3.1. Randomly scrambled digital sequences. The sequence {xj}j≥0 of
points in the unit cube [0, 1]s is generated in the following way, which is called scram-
bling [Owe95, Owe00]. Let b ≥ 2 be a prime power base. The kth component of the
jth point xj = (xj

1, . . . , x
j
s)

T is determined by the b-ary expression

xj
k =

xjk1

b
+

xjk2

b2
+ · · · .

Here, the digits xjkl are generated by⎛
⎜⎝ xjk1

xjk2

...

⎞
⎟⎠ = LkCk

⎛
⎜⎝ j1

j2
...

⎞
⎟⎠ + ek mod b, k = 1, . . . , s,

where (j1, j2, . . .)
T is the vector of b-ary digits of j ∈ Z+, i.e., j = j1 +j2b+j3b

2 + · · · ,
the Ck are the prescribed ∞ × ∞ generator matrices, the Lk are lower triangular
∞ × ∞ scrambling matrices, and the ek are ∞ × 1 digital shifts. The scrambling
matrices and shifts are chosen randomly.

Choosing the first n = bm, m ∈ Z+, points of a digital sequence in base b gives a
digital net in base b. The quality of the digital net is defined below.

For a vector � = (�1, �2, . . .)
T ∈ Z∞

+ with ‖�‖1 :=
∑

α �α < ∞, let C(�) be the
‖�‖1×∞ matrix formed by the first �1 rows of C1 followed by the first �2 rows of C2,
etc. For any integer m ∈ Z+ let C(�,m) denote the ‖�‖1 ×m matrix formed by the
first m columns of C(�). Define

Tu := min{T ≥ 0 : rank(C(�,m)) = ‖�‖1 ∀m,∀� with U(�) ⊆ u, ‖�‖1 = m− T}.
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Smaller values of Tu correspond to better nets. Note that the quality measure in-
troduced here is the same as the Tu in (6). See [Owe95, Owe00] for a more detailed
explanation of the scrambled scheme, and [Nie92, Chapter 4; NX01, Chapter 8] for
constructions of digital nets and sequences.

3.2. Haar wavelets. To deal with the randomized error of the randomly scram-
bled digital net rules, we use Haar wavelets. Multidimensional Haar wavelets are
tensor products of one-dimensional wavelets. We refer to [Wal02, Chapter 5] for one-
dimensional Haar wavelets and to [Ent97, Ent98] for earlier work on Haar wavelets
and nets.

We first introduce some notation. For any ν ∈ Z+ define the function

lg(ν) :=

{
�logb(ν)� + 1 if ν > 0,

0 if ν = 0,

which means that the base b representation of ν has lg(ν) digits if one ignores leading
zeros. Let ν̃ denote the leading digit of ν when written in base b, and define

zν := νb1−lg(ν) − ν̃.

For any ν = (ν1, . . . , νs)
T ∈ Zs

+ define

lg(ν) := (lg(ν1), . . . , lg(νs))
T , zν := (zν1 , . . . , zνs)

T .

Also, let U(ν) denote the set of all k for which νk > 0 and let |U(ν)| denote the car-
dinality of U(ν). Moreover, for u ⊆ {1, . . . , s} let 1u denote the s-dimensional vector
whose kth component is 1 for k ∈ u and 0 otherwise. For any x = (x1, . . . , xs)

T ,y =
(y1, . . . , ys)

T ∈ [0, 1]s, and � = (�1, . . . , �s)
T ∈ Zs

+, let δ(x,y, �) = 1 if the first �k
digits of xk and yk are the same for all k = 1, . . . , s, and let δ(x,y, �) = 0 otherwise.

Multidimensional Haar wavelets ψν(x) for ν ∈ Zs
+ are piecewise constant func-

tions, which are defined as

(20) ψν(x) := b(‖lg(ν)‖1−|U(ν)|)/2 exp

(
2πi

b

s∑
k=1

ν̃kx•klg(νk)

)
δ(x, zν , lg(ν) − 1U(ν)),

where x•k	 denotes the �th b-ary digit of the kth component of x, and i :=
√
−1. Note

that the support of ψν is a box, S(ν), of volume b|U(ν)|−‖lg(ν)‖1 . In fact,

(21) S(ν) =
∏

k∈U(ν)

[
zνk

, zνk
+ b1−lg(νk)

)
× [0, 1){1,...,s}\U(ν).

It is known that {ψν(x)}ν is a sequence of complex-valued, integrable, orthogonor-
mal basis functions. Any f ∈ L2([0, 1]s) can be represented as an infinite series

(22) f(x) =
∑

ν

F (ν)ψν(x), x ∈ [0, 1]s,

where the F (ν) are Fourier coefficients given by

(23) F (ν) :=

∫
[0,1]s

f(x)ψν(x)dx;
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here ψν(x) denotes the complex conjugate of ψν(x). The following facts will play an
important role in our randomized error analysis. For each ν ∈ Z+ and any x ∈ [0, 1]
let

ξν(x) :=

∫ x

0

ψν(t)dt.

For each ν ∈ Zs
+ and any x ∈ [0, 1]s let

(24) ξν(x) :=
∏

k∈U(ν)

ξνk
(xk).

Note that the support of ξν is the same as that of ψν .
The following upper bounds on the different norms of ξν can be verified by im-

mediate calculations, which are omitted here.
Lemma 3. For each ν ∈ Zs

+,

‖ξν‖L1
≤ 2−|U(ν)|b−3(‖lg(ν)‖1−|U(ν)|)/2,

‖ξν‖L2
≤ 3−|U(ν)|/2b−‖lg(ν)‖1+|U(ν)|,

‖ξν‖L∞ ≤ b−(‖lg(ν)‖1−|U(ν)|)/2.

3.3. Upper bounds for the randomized error. This subsection will give
upper bounds for the randomized error defined in (19) for different values of p ∈ [1,∞],
and find sufficient conditions under which multivariate integration using the randomly
scrambled Niederreiter digital nets is strongly tractable in the randomized setting.

Lemma 4. Let ψν(x), ν ∈ Zs
+, be the Haar wavelets defined by (20), and let Qn

be the quasi-Monte Carlo quadrature that uses randomly scrambled digital nets with
n = bm, m ∈ Z+. By MSE(Qn, f) denote the mean square error of the approximation
Qn, i.e.,

MSE(Qn, f) = E|I(f) −Qn(f)|2.

Then for any f ∈ L2([0, 1]s)

MSE(Qn, f) =
∑
ν �=0

|F (ν)|2E[Qn(ψν)Qn(ψν)]

≤
∑

ν:‖lg(ν)‖1+TU (ν)>m

|F (ν)|23|U(ν)|bTU(ν)−m,
(25)

where the F (ν) are the coefficients of f under the Haar wavelets.
Proof. Making use of the expansion in (22) and noting that F (0) = I(f) yields

I(f) −Qn(f) = − 1

n

n−1∑
j=0

∑
ν �=0

F (ν)ψν(xj) = −
∑
ν �=0

F (ν)Qn(ψν),

and then

|I(f) −Qn(f)|2 =
∑
ν �=0

∑
ω �=0

F (ν)F (ω)Qn(ψν)Qn(ψω).
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It is proved in [HD04, Lemma 10] that for scrambled digital nets

E[Qn(ψν)Qn(ψω)] = 0 for ν = ω,

E[Qn(ψν)Qn(ψν)] = 0 for ‖lg(ν)‖1 + TU(ν) ≤ m,

E[Qn(ψν)Qn(ψν)] ≤ 3|U(ν)|bTU(ν)−m for ‖lg(ν)‖1 + TU(ν) > m.

The results in (25) then follow immediately from the facts mentioned above.

For f ∈ F (2)
p,q,γ,s, by making use of integration by parts we can express the Fourier

coefficients F (ν) in terms of the functions ξν defined in (24) as follows:

(26) F (ν) = (−1)|U(ν)|
∫
S(ν)

ξν(x)f ′
U(ν)(x)dx,

where S(ν) is the support of ξν given in (21). By Hölder’s inequality applied to (26),

(27) |F (ν)| ≤ ‖f ′
U(ν)‖Lp,S(ν)‖ξν‖Lp∗ ,

where

‖f ′
U(ν)‖Lp,S(ν) :=

(∫
S(ν)

|f ′
U(ν)(x)|pdx

)1/p

, ‖ξν‖Lp∗ :=

(∫
[0,1]s

|ξν(x)|p∗
dx

)1/p∗

.

It follows from (25) that

MSE(Qn, f) ≤ n−1
∑

ν:‖lg(ν)‖1+TU(ν)>m

‖f ′
U(ν)‖2

Lp,S(ν)‖ξν‖2
Lp∗

3|U(ν)|bTU(ν)

= n−1
∑
u �=∅

∑
ν: U(ν)=u,

‖lg(ν)‖1+Tu>m

3|u|bTu‖f ′
u‖2

Lp,S(ν)‖ξν‖2
Lp∗

.
(28)

For simplicity in notation, we define Lu,m as the set of s-dimensional vector � with
integer components �k > 0 for k ∈ u, �k = 0 for k ∈ ū, and ‖�‖1 > m − Tu, and for
each � define Nu,� as the set of s-dimensional integer vector ν with U(ν) = u and
lg(ν) = �, i.e.,

(29) Lu,m := {� = (�1, . . . , �s)
T : ‖lg(�)‖1 > m− Tu, �k > 0∀k ∈ u, �k = 0∀k ∈ ū},

(30) Nu,� := {ν = (ν1, . . . , νs)
T : U(ν) = u, lg(ν) = �}.

The inner sum in the last expression in (28) can be written as follows:

(31) Ψu,m,p :=
∑

�∈Lu,m

∑
ν∈Nu,�

3|u|bTu‖f ′
u‖2

Lp,S(ν)‖ξν‖2
Lp∗

.

Then (28) becomes

(32) MSE(Qn, f) ≤ n−1
∑
u �=∅

Ψu,m,p.

Before stating the main results for the randomized strong tractability, we give
the following lemma that will be used in the proof of Theorem 2. This lemma can be
proved by the binomial theory.
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Lemma 5. Let m, t, r, and b be integers with m ≥ t ≥ 0, r ≥ 1, and b ≥ 2. Then
for η ∈ (0,∞)

(33) Ω(η,m, t, r) :=

∞∑
l=m−t+1

(
l − 1

r − 1

)
b−ηl <

(
bηm

bη − 1

)r

b−η(m−t).

Theorem 2. Let p, q ∈ [1,∞]. Let F (2)
p,q,γ,s be the Banach space of functions with

norm (18). Let Qn be the quasi-Monte Carlo quadrature that uses randomly scrambled
Niederreiter digital ((Tu),m, s)-nets in prime power base b.

(i) For p ∈ [1,∞], if

(34)
∞∑
k=1

γ2
k(k ln k)2 < ∞,

then the corresponding integration is strongly tractable in the randomized setting, and
for any fixed ε > 0, there exists a constant C independent of s and n such that

(35) era(Qn,F (2)
p,q,γ,s) ≤ Cn−1+ε.

(ii) In particular, for p ∈ [2,∞], if

(36)
∞∑
k=1

γ2
k(k ln k)3 < ∞,

then the corresponding integration is strongly tractable in the randomized setting, and
for any fixed ε > 0, there exists a constant C independent of s and n such that

(37) era(Qn,F (2)
p,q,γ,s) ≤ Cn− 3

2+ε.

Proof. For item (i), we first note that F (2)
p,q,γ,s ⊆ F (2)

2,q,γ,s for any p > 2, and then

(38) era(Qn,F (2)
p,q,γ,s) ≤ era(Qn,F (2)

2,q,γ,s) ∀p > 2.

Hence it is sufficient to consider the case p ∈ [1, 2]. In this case we have p∗ ∈ (1,∞]
and

‖ξν‖2
Lp∗

≤ ‖ξν‖2
L∞ ≤ b−‖lg(ν)‖1+|U(ν)|

by Lemma 3. Then by the definition (31) of Ψu,m,p,

Ψu,m,p ≤
∑

�∈Lu,m

∑
ν∈Nu,�

(3b)|u|bTu−‖�‖1‖f ′
u‖2

Lp,S(ν)‖ξν‖2
Lp∗

≤ (3b)|u|bTu

∑
�∈Lu,m

b−‖�‖1

⎛
⎝ ∑

ν∈Nu,�

∫
S(ν)

|f ′
u(x)|pdx

⎞
⎠

2
p

,

(39)

where the last inequality holds due to 2
p ≥ 1. By the definition of the support S(ν)

in (21), for a fixed |s|-dimensional vector � = (�1, . . . , �s)
T with �k > 0 for k ∈ u and

�k = 0 for k ∈ ū we have

(40)
∑

ν∈Nu,�

∫
S(ν)

|f ′
u(x)|pdx = (b− 1)|u|

∫
[0,1]s

|f ′
u(x)|pdx = (b− 1)|u|‖f ′

u‖
p
Lp

.
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Moreover, note that for a given positive integer l with l > m − Tu there is a total
number

(
l−1
|u|−1

)
of the vectors � in Lu,� such that ‖�‖1 = l. Therefore, (39) becomes

Ψu,m,p ≤ ‖f ′
u‖2

Lp
[3b(b− 1)]|u|bTu

∞∑
l=m−Tu+1

(
l − 1

|u| − 1

)
b−

p
2 l

= ‖f ′
u‖2

Lp
[3b(b− 1)]|u|bTuΩ(1,m, Tu, |u|),

(41)

where Ω is as defined in Lemma 5. Making use of the inequality in Lemma 5 and the
fact m = logb n = lnn/ ln b in (41) yields

(42) Ψu,m,p ≤ n−1‖f ′
u‖2

Lp
b2Tu(θ1 lnn)|u|,

where θ1 = 3b2/ ln b. Applying this inequality to (32) we have

MSE(Qn, f) ≤ n−2
∑
u �=∅

‖f ′
u‖2

Lp
b2Tu(θ1 lnn)|u|.

Therefore, for q ∈ [1,∞], by Hölder’s inequality and the definition of norm in (18) we
have the following:

MSE(Qn, f) ≤ n−2

[∑
u �=∅

(
γ−2
u ‖f ′

u‖2
Lp

)q
] 1

q
[∑

u �=∅

(
γ2
ub

2Tu(θ1 lnn)|u|
)q∗

] 1
q∗

≤ n−2‖f‖2
p,q,γ,s

[∑
u �=∅

(
γ2
ub

2Tu(θ1 lnn)|u|
)q∗

] 1
q∗

≤ n−2‖f‖2
p,q,γ,s

∑
u �=∅

γ2
ub

2Tu(θ1 lnn)|u|

= n−2‖f‖2
p,q,γ,sΦ(2, 2, θ1, 1),

where Φ is defined by (14). It follows from Lemma 2 that for any fixed ε > 0, there
exists a constant C independent of s and n such that

era(Qn,F (2)
p,q,γ,s) = sup

‖f‖p,q,γ,s≤1

√
MSE(Qn, f) ≤ Cn−1+ε

under condition (34).

We now consider the initial error in the space F (2)
p,q,γ,s with p ∈ [1, 2]. Note from

(27) and Lemma 3 that

|F (0)|2 ≤
∑

ν

|F (ν)|2 ≤
∑
u

∑
ν:U(ν)=u

‖f ′
u‖2

Lp,S(ν)‖ξν‖2
Lp∗

≤
∑
u

∑
�u

∑
ν:lg(ν)=�u

b|u|−‖�u‖1‖f ′
u‖2

Lp,S(ν)

≤
∑
u

∑
�u

b|u|−‖�u‖1

( ∑
ν:lg(ν)=�u

∫
S(ν)

|f ′
u(x)|pdx

)2
p

=
∑
u

∑
�u

[b(b− 1)]|u|b−‖�u‖1‖f ′
u‖2

Lp
,
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where �u denotes the s-dimensional integer vector with components �k > 0 for k ∈ u
and �k = 0 for k ∈ ū. Because

∑
�u

b−‖�u‖1 =

∞∑
l=|u|

(
l − 1

|u| − 1

)
b−l = (b− 1)−|u|,

we then have

|F (0)|2 ≤
∑
u

‖f ′
u‖2

Lp
b|u|

≤
[∑

u

(
γ−2
u ‖f ′

u‖2
Lp

)q
] 1

q
[∑

u

(
γ2
ub

2|u|
)q∗

] 1
q∗

≤ ‖f‖2
p,q,γ,s

s∏
k=1

(
1 + (bγk)

2q∗
) 1

q∗
.

Therefore,

ewo(0,F (1)
p,q,γ,s) = sup

‖f‖p,q,γ,s≤1

|F (0)| ≤
s∏

k=1

(
1 + (bγk)

2q∗
) 1

q∗
,

which is uniformly bounded in s under condition (34). It follows that the multivariate
integration is strongly tractable in the randomized setting.

As for item (ii), it is also sufficient to consider the case p = 2 due to (38). For
p = 2 (p∗ = 2), from (31), (40), and Lemma 3 we have

Ψu,m,2 ≤ b2|u|+Tu

∑
�∈Lu,m

∑
ν∈Nu,�

b−2‖�‖1‖f ′
u‖2

L2,S(ν)

= b2|u|+Tu

∑
�∈Lu,m

b−2‖�‖1(b− 1)|u|‖f ′
u‖2

L2

= ‖f ′
u‖2

L2
[b2(b− 1)]|u|bTu

∞∑
l=m−Tu+1

(
l − 1

|u| − 1

)
b−2l

= ‖f ′
u‖2

L2
[b2(b− 1)]|u|bTuΩ(2,m, Tu, |u|).

From Lemma 5 we then have

Ψu,m,2 ≤ n−2‖f ′
u‖2

L2
(θ2 lnn)|u|b3Tu ,

where θ2 = b4/[(b + 1) ln b]. Therefore, from (32),

MSE(Qn, f) ≤ n−3
∑
u �=∅

‖f ′
u‖2

L2
b3Tu(θ2 lnn)|u|.

For q ∈ [1,∞], by Hölder’s inequality

MSE(Qn, f) ≤ n−3‖f‖2
2,q,γ,s

[∑
u �=∅

(
γ2
ub

3Tu(θ2 lnn)|u|
)q∗

] 1
q∗

≤ n−3‖f‖2
2,q,γ,s

∑
u �=∅

γ2
ub

3Tu(θ2 lnn)|u|

= n−3‖f‖2
2,q,γ,sΦ(2, 3, θ2, 1).
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Applying Lemma 2 to Φ(2, 3, θ2, 1) gives the desired result for the case p = 2 and then
for p ∈ (2,∞]. This completes the proof for the theorem.

Remark 2. For different values of p in [2,∞], we have two kinds of sufficient
conditions for strong tractability in the randomized setting. The convergence rates
are different under these two conditions. The condition under which the rate is higher
is a little bit stronger.

Remark 3. The results in Theorem 2 are just for randomly scrambled Niederreiter
digital nets but not for sequences. The difficulty for randomly scrambled sequences
is the calculation of the expectation E[Qn(ψν)Qn(ψν)].

4. Weighted integration over a general domain. In this section, we extend
the results presented in the previous two sections to the weighted integration problem
over a general domain in (3), i.e., D = (a1, b1) × · · · × (as, bs) and the general weight
function ρ defined in (4).

4.1. Worst-case error analysis. The general problem for the worst case of
integration can be reduced to the classical problem with domain [0, 1]s and uniform
weight ρ ≡ 1. Specifically, we define the following transformations:

(43) Wk(x) :=

∫ x

ak

ρk(z)dz, k = 1, . . . , s.

Then Wk : (ak, bk) → [0, 1] is onto and increasing. Define

W (x) = (W1(x1), . . . ,Ws(xs))
T

and d = W (c) for a given anchor c ∈ D. By W−1 denote the inverse transformation
of W .

By these transformations the integral Iρ(f) =
∫
D
f(x)ρ(x)dx may be written as

(44)

∫
[0,1]s

g(y)dy, where g(y) = f(W−1(y)).

Let F (1)
p,q,γ,s be the weighted Banach space of functions defined on D with the

corresponding norm of the form (8). The worst-case error

ewo(Qn,F (1)
p,q,γ,s) = sup

‖f‖p,q,γ,s≤1

|Iρ(f) −Qn(f)|

is still of the form (13) [HSW04a], where

hu(tu) = Iρ(Mu(·, tu)) −Qn(Mu(·, tu)), tu ∈ Du :=
∏
k∈u

(ak, bk).

Denote the |u|-dimensional vectors du = (Wk(ck))k∈u, yu = (Wk(tk))k∈u, zju =
(Wk(x

j
k))k∈u. By u− denote the subset of u containing those indices k for which

tk < ck. Then hu(tu) can be expressed as

hu(tu) = (−1)u−

⎡
⎣vol(Bu(yu,du)) − 1

n

n−1∑
j=0

1Bu(yu,du)(z
j
u)

⎤
⎦ ,
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where Bu is defined as in section 2. It follows that for p ∈ [1,∞] with conjugate p∗

‖hu‖Lp∗ =

(∫
Du

|hu(tu)|p∗
ρu(tu)dtu

) 1
p∗

=

⎛
⎜⎝∫

[0,1]u

∣∣∣∣∣∣vol(Bu(yu,du)) − 1

n

n−1∑
j=0

1Bu(yu,du)(z
j
u)

∣∣∣∣∣∣
p∗

dyu

⎞
⎟⎠

1
p∗

= Du,p∗(z0, . . . , zn−1),

which is the local Lp∗ anchored discrepancy of the point set {z0, . . . , zn−1}. It is
known that [Nie92]

Du,p∗(z0, . . . , zn−1) ≤ κD∗
u,∞(z0, . . . , zn−1),

where κ = 1 if d = W (c) = 1 and κ = 2|u| if d = W (c), is in the interior of the unit
cube [0, 1]s. Therefore, we have the following strong tractability result immediately
following from Theorem 1.

Theorem 3. Let p, q ∈ [1,∞] and F (1)
p,q,γ,s be defined as in section 2 for functions

on the domain D = (a,b). Assume that {zj}j≥0 is a Niederreiter ((Tu), s)-sequence
in base b, and {xj}j≥0 is the transformed sequence according to the transformations
in (43). If

∞∑
k=1

γa
kk ln k < ∞

for any a ∈ [1, q∗], then the corresponding integration is strongly tractable in the
worst-case setting, and for any fixed ε > 0, where C is some constant independent of
s and n such that

ewo(Qn,F (1)
p,q,γ,s) ≤ Cn− 1

a+ε.

4.2. Randomized error analysis. Here we note that the assumption,

‖f‖p,q,γ,s < ∞, in the space F (2)
p,q,γ,s defined in section 3 might be too restrictive

when D is unbounded. To alleviate this problem, we consider a modification follow-
ing the approach from [HSW04b].

Consider a transformation of variables

y = W (x) = (W1(x1), . . . ,Ws(xs))
T ,

where each Wk is a cumulative distribution function on interval (ak, bk) with density
wk(xk) = W ′

k(xk). Then integral Iρ(f) =
∫
D
f(x)ρ(x)dx may be written as

(45)

∫
[0,1]s

g(y)dy, where g(y) = f(W−1(y))φ(W−1(y)),

φ(x) =
ρ(x)

w(x)
, and w(x) =

s∏
k=1

wk(xk).

See [HSW04b] for a discussion about the necessity of introducing w(x).
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We now suppose that {z0, . . . , zn−1} is a randomly scrambled digital net, and the

integral of g in (45) is approximated by n−1
∑n−1

j=0 g(zj). This is equivalent to the
rule

(46) Qn(f) =
1

n

n−1∑
j=0

f(W−1(zj))φ(W−1(zj))

for Iρ(f). By Lemma 4 the error of this approximation has the following upper bound:∑
ν:‖lg(ν)‖1+TU(ν)>m

|G(ν)|23|U(ν)|bTU(ν)−m,

where the G(ν) are the Fourier coefficients of g(y) = f(W−1(y))φ(W−1(y)) under
the Haar wavelets ψν . In terms of ξν defined in (24) G(ν) can be expressed as

G(ν) = (−1)|U(ν)|
∫
S(ν)

ξν(y)g′U(ν)(y)dy,

where S(ν) is the support of the wavelet ψν , which is given in (21). Now for each
nonempty subset u ⊆ {1, . . . , s},

g′u(y) =
1

wu(W−1(y))

∂|u|(fφ)(x)

∂xu

∣∣∣∣
x=W −1(y)

,

where fφ just denotes the multiplication of the two functions, and wu(x) =
∏

k∈u

wk(xk). Applying Hölder’s inequality yields the following:

|G(ν)| ≤
(∫

S(ν)

∣∣∣∣∣ ∂
|u|(fφ)(x)

∂xu

∣∣∣∣
x=W −1(y)

1

wu(W−1(y))

∣∣∣∣∣
p

dy

) 1
p

×
(∫

[0,1]s
|ξν(y)|p∗

dy

) 1
p∗

.

Define the norm

(47) ‖f‖p,q,γ,s,ρ,w :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ∑
u⊆{1,...,s}

γ−q
u ‖(fρ/w)′uw

−1
u ‖qLp

) 1
q

for q < ∞,

max
u⊆{1,...,s}

{
γ−1
u ‖(fρ/w)′uw

−1
u ‖Lp

}
for q = ∞.

Then we modify the space F (2)
p,q,γ,s to F (2)

p,q,γ,s,ρ,w, i.e., we let F (2)
p,q,γ,s,ρ,w be the

weighted Banach space of all absolutely continuous functions f defined on D with
‖f‖p,q,γ,s,ρ,w < ∞. The randomized error is defined as

era(Qn,F (2)
p,q,γ,s,ρ,w) := sup

‖f‖p,q,γ,s,ρ,w≤1

√
E|Iρ(f) −Qn(f)|2.

From Theorem 2 we have the strong tractability results of integration over the general
domain in the randomized setting.
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Theorem 4. Consider the integration problem of approximating integral (2) by

rule (46) with randomly scrambled Niederreiter digital nets in base b. Let F (2)
p,q,γ,s,ρ,w

be defined as above.
(i) For p ∈ [1,∞], if

∞∑
k=1

γ2
k(k ln k)2 < ∞,

then the corresponding integration is strongly tractable in the randomized setting, and
for any fixed ε > 0, where C is some constant independent of s and n such that

era(Qn,F (2)
p,q,γ,s,ρ,w) ≤ Cn−1+ε.

(ii) In particular, for p ∈ [2,∞], if

∞∑
k=1

γ2
k(k ln k)3 < ∞,

then the corresponding integration is strongly tractable in the randomized setting, and
for any fixed ε > 0, where C is some constant independent of s and n such that

era(Qn,F (2)
p,q,γ,s,ρ,w) ≤ Cn− 3

2+ε.

5. Concluding remarks. We have considered the strong tractability problems
for multivariate integration using deterministic and randomly scrambled Niederreiter
sequences. The spaces of integrands are weighted Banach spaces with parameters
p, q, γ, s. The definitions of these spaces are slightly different in the worst-case and
randomized settings. The main results of this article are summarized below.

Each of the conditions we found for strong tractability in worst-case and random-
ized settings is of the form

∑∞
k=1 γ

α
k (k ln k)β < ∞ for some positive numbers α and

β. The values of α and β are determined by p or q. The larger α and smaller β
imply weaker conditions of strong tractability. In the worst-case setting, the param-
eter p has little influence on the convergence rate of the worst-case error; however,
the parameter q plays a significant role in determining strong tractability. In the
randomized setting, only the parameter p plays a significant role in determining both
strong tractability and convergence rate of the randomized error.

The factors (k ln k)β in each term of the summation in the strong tractability
conditions come from the quality parameter vector (Tu) of a Niederreiter sequence
due to its telescopic property. These factors make the strong tractability conditions
in this article slightly stronger than the conditions on integration using lattice rules. It
is shown in [HSW04b, Theorem 3] that integration using lattice rules for the weighted
Banach spaces is strongly tractable under the condition that

∑∞
k=1 γ

a
k < ∞ for a ∈

[1, q∗], and the convergence rate of the worst-case error is O(n−1/a+ε). We do not
know yet whether integration using Niederreiter sequences is strongly tractable under
the same condition as using lattice rules, but this is an interesting question worth
pursuing.

The functions considered in this article depend on successive variables. We asso-
ciate the first variable x1 to the weight γ1, the second variable x2 to the weight γ2, the
variables xu to the weights γu =

∏
k∈u γk, and so on. Although dimension-dependent

weights are sometimes used in practice, we have some philosophical difficulties with
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them. What this means is that a function that just depends on, say, the first five
variables, could have its norm decrease as the nominal dimension, s, changes just
because the weights change. On the other hand, weights not in product form are
important; see, e.g., the work of [SWW04] and others on finite-order weights and
tractability. We observe that each of the results in Theorems 1 to 4 holds for the
Banach spaces of finite-order weights after a modification to the sufficient condition.
This modification can be made according to the following lemma, compared with the
proofs of Theorems 1 to 4.

Lemma 6. Let the finite-order weights {γs,u} be of order d∗, i.e.,

d∗ = min{d : γs,u = 0 ∀s and ∀u with |u| > d}.

Let α, β, θ > 0 and τ ≥ 1. For the first n points of a Niederreiter ((Tu), s)-sequence
in base b, define

(48) Φ(α, β, θ, τ) :=
∑

∅�=u⊆{1,...,s},|u|≤d∗

γα
s,ub

βTu(θ ln(τn))|u|.

If the weights {γs,u} satisfy

(49) Mα,β := sup
s=1,2,...

∑
∅�=u⊆{1,...,s},|u|≤d∗

γα
s,u

∏
k∈u

[k ln(k + b)]β < ∞,

then for any fixed ε > 0 there exists a constant Cε independent of s and n such that

Φ(α, β, θ, τ) ≤ Cεn
ε.

Proof. From (6), (7), and (49) we have

Φ(α, β, θ, τ) ≤
∑

∅�=u⊆{1,...,s},|u|≤d∗

(
θ̃ ln(τn)

)|u|
γα
s,u

∏
k∈u

[k ln(k + b)]β

=

d∗∑
r=1

(
θ̃ ln(τn)

)r ∑
|u|=r

γα
s,u

∏
k∈u

[k ln(k + b)]β ≤ Mα,β

d∗∑
r=1

(
θ̃ ln(τn)

)r

,

where θ̃ = θ(b/ ln b)β . For any fixed ε > 0 define

Bε = max
r=1,2,...,d∗

[
r!(θ̃/ε)r

]
,

and we then have

Φ(α, β, θ, τ) ≤ Mα,βBε

d∗∑
r=1

(ε ln(τn))r

r!
≤ Mα,βBεe

ε ln(τn) = Cεn
ε,

where Cε = MBε. This completes the proof for the lemma.
Therefore, we have the following modification:

1. For the Banach space, F (1)
p,q,γ,s, of finite-order weights γ = {γs,u} with order

d∗, condition (16) is modified by

Ma,1 = sup
s=1,2,...

∑
∅�=u⊆{1,...,s},|u|≤d∗

γa
s,u

∏
k∈u

[k ln(k + b)] < ∞.
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2. For the Banach space, F (2)
p,q,γ,s, of finite-order weights γ = {γs,u} with order

d∗, conditions (34) and (36) are modified by

M2,2 = sup
s=1,2,...

∑
∅�=u⊆{1,...,s},|u|≤d∗

γ2
s,u

∏
k∈u

[k ln(k + b)]2 < ∞

and

M2,3 = sup
s=1,2,...

∑
∅�=u⊆{1,...,s},|u|≤d∗

γ2
s,u

∏
k∈u

[k ln(k + b)]3 < ∞,

respectively.

Appendix: Proof of Lemma 1. First we have

sup
k
{γβ

k k} ≤
∞∑
k=1

γβ
k ∀β > 0,

since for any integer K > 0

∞∑
k=1

γβ
k ≥

K∑
k=1

γβ
k ≥ Kγβ

K .

Now for any δ, δ′ > 0 applying the assumption on λk we have

∞∑
k=1

γa
kλk ≤ sup

k

{
γ

ar(1+δ)
1+r

k cr,δk
r+δ′

} ∞∑
k=1

γ
a(1−rδ)

1+r

k

≤
∞∑
k=1

γa
kcr,δ′k

r+δ′ =

∞∑
k=1

cr,δ′k
r+δ′γ

ar(1+δ)
1+r

k γ
a(1−rδ)

1+r

k .

We choose δ′ such that r + δ′ = r(1 + δ)/(1 − rδ), and then we have

sup
k

{
γ

ar(1+δ)
1+r

k kr+δ′
}

=

[
sup
k

γ
a(1−rδ)

1+r

k k

] r(1+δ)
1−rδ

≤
[ ∞∑
k=1

γ
a(1−rδ)

1+r

k

] r(1+δ)
1−rδ

.

It follows that

∞∑
k=1

γa
kλk ≤ cr,δ′

[ ∞∑
k=1

γ
a(1−rδ)

1+r

k

] r(1+δ)
1−rδ +1

,

which gives the right-hand side of the desired result.
As for the left-hand side of the desired result, we write for any δ > 0

∞∑
k=1

γ
a(1+δ)
1+r

k =

∞∑
k=1

γ
a(1+δ)
1+r

k k
(r−δ)(1+δ)

1+r k
(δ−r)(1+δ)

1+r .

Applying Hölder’s inequality yields

∞∑
k=1

γ
a(1+δ)
1+r

k ≤
[ ∞∑
k=1

γa
kk

r−δ

] 1+δ
1+r

[ ∞∑
k=1

k
(1+δ)(δ−r)

r−δ

] r−δ
1+r

=

[ ∞∑
k=1

γa
kk

r−δ

] 1+δ
1+r

[ ∞∑
k=1

k−(1+δ)

] r−δ
1+r

.
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Noting that
∑∞

k=1 k
−(1+δ) < ∞ and applying the assumption on λk again yields

∞∑
k=1

γ
a(1+δ)
1+r

k ≤
[ ∞∑
k=1

γa
kλk

] 1+δ
1+r

ĉr,δ,

which gives the left-hand side of the desired result. The proof of Lemma 1 is com-
plete.
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[SW01] I. H. Sloan and H. Woźniakowski, Tractability of multivariate integration for
weighted Korobov classes, J. Complexity, 17 (2001), pp. 697–721.

[Tez95] S. Tezuka, Uniform Random Numbers: Theory and Practice, Kluwer Academic Pub-
lishers, Dordrecht, 1995.

[Wal02] D. F. Walnut, An Introduction to Wavelet Analysis, Birkhäuser Boston, Cambridge,
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Abstract. In this paper, a new approach for the numerical computation of delay differential
equations (DDEs) is introduced. The essential idea consists of obtaining numerical integrators that
use a code expressly developed for linear DDEs, in contrast with the conventional approach of using
a code for ordinary differential equations. Specifically, two numerical schemes of this new class of
integrators are proposed and their numerical viability analyzed. It includes the estimation of the
convergence rate, the evaluation of the computational cost of the schemes, and a simulation study. It
is proved that these one-step explicit integrators converge uniformly with order two to the solution of
nonlinear DDEs and are able to integrate stiff equations in a satisfactory way with low computational
cost.
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1. Introduction. In recent years interest has increased in the numerical solu-
tion of delay differential equations (DDEs) with constant delay. Such interest was
motivated by their applicability in the mathematical modeling of several physical,
chemical, and biological processes, where they provide the best and sometimes the
only realistic simulation of the observable phenomena [7, 17, 30].

There exists a variety of such numerical integrators, which essentially have two
main ingredients [2]: (1) the emulation of the method of the steps in order to obtain
piecewise ordinary differential equations (ODEs), and (2) the application of a variable
step-size ODE code with a suitable approximation of the retarded solutions. Examples
include the schemes proposed in [8, 21, 23, 25, 27, 33, 34, 41], which use several
ODE codes (e.g., Euler, Runge–Kutta, multisteps, and local linearization (LL)) and
several ways to approximate the retarded solutions (e.g., polynomial functions, θ-
methods, continuous extensions of Runge–Kutta, and LL methods). Although the
convergence and linear stability of these methods have been well studied, it is not
the case of the preserving qualitative features of such methods [2]. It is well known
[13, 39] that, in general, conventional numerical integrators for ODEs do not preserve
the dynamical properties of the original ODEs. Therefore, it is expected that the
numerical integrators for DDEs derived from the above-mentioned ODE codes do not
preserve the dynamic properties of the original DDEs either.

It is also well known that for the stability analysis of ODEs, as well as for DDEs,
there are two main techniques [2]: (1) the Lyapunov theory, and (2) the stability the-
ory in first approximation. The latter, simpler one is based on the local linearization
of the differential equations. This kind of linearization is also the main component of
the so-called LL integrators for ODEs. In recent papers [26, 15], it has been shown
that this type of scheme preserves the dynamical properties of the original equations
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much better than the conventional numerical integrators. For instance, under quite
general conditions, they do not have spurious equilibrium points and preserve the lo-
cal stability of the exact solution at hyperbolic equilibrium points and periodic orbits.
On the other hand, this linearization approach has been the key for the construction
of efficient and stable numerical schemes for the integration and estimation of various
classes of random dynamical systems (see [28, 29, 36, 37] and the references therein).
Specifically, in the framework of stochastic and random differential equations, simu-
lations studies have shown that the LL integrators have similar stability properties to
the conventional implicit integrators with the computational efficiency of the explicit
ones (see, for instance, [5, 10, 9]). In addition, in the framework of the nonlinear
filtering problems the LL filters have similar features (see, for instance, [35]). In all
cases, the piecewise linearization of the vector fields that define the differential equa-
tions to be integrated is the keystone in the construction of the LL integrators and,
at the same time, the main difference with the conventional numerical integrators
(which are typically derived from a primary expansion of the unknown solution in
power series). Thus, the application of this LL approach for the integration of DDEs
is also attractive.

The goal of this paper is to study the numerical viability of the LL approach for
defining a new type of numerical integrators for DDEs, leaving the qualitative analysis
of them for a future paper. The essential ideas of this approach are (1) approximate
linearly the vector field of the DDE in order to obtain a piecewise linear DDE, and (2)
compute the solution of such linear equations by the variation-of-constants formula
with a suitable approximation of the retarded solutions.

The paper is organized as follow. In section 2, the LL method is introduced and
two numerical schemes are proposed. In section 3, the convergence of the method is
studied, while in the last section a simulation study is carried out in order to illustrate
the performance of the method.

2. LL method. Let f : R × R
m × R

m −→ R
m be a differentiable function and

let x(t) be the solution of the m-dimensional DDE

dx (t)

dt
= f (t,x (t) ,xt(−τ)) , t ∈ [t0, T ] ,(2.1)

xt0 (s) = ϕ (s) , s ∈ [−τ, 0] ,(2.2)

at the point t ∈ [t0 − τ, T ], where τ > 0 is a constant delay, ϕ : [−τ, 0] −→ R
m is a

given initial function, and xt : [−τ, 0] −→ R
m is the segment function defined as

xt(s) := x(t + s), s ∈ [−τ, 0] ,

for all t ∈ [t0, T ]. Lipschitz and smoothness conditions on the function f are also
assumed in order to ensure a unique solution for (2.1)–(2.2).

Let (t)h = {t0 < t1 < · · · < tn < · · · ≤ T} be a partition of the time interval [t0, T ]
such that

sup
n

(tn+1 − tn) ≤ h < 1,(2.3)

and define

nt := max{n = 0, 1, 2, . . . , : tn ≤ t and tn ∈ (t)h}

for t ∈ [t0, T ]. Throughout this paper it will be assumed that condition h < τ holds.
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Suppose that, for all tn ∈ (t)h, yn ∈ R
m is a point close to x (tn). For all

t ∈ [t0, T ], let ỹt : [−τ, 0] −→ R
m be a segment function that approximates to xt,

such that ỹtn(0) = yn for all tn ∈ (t)h.
In addition, let us consider the first order Taylor expansion of the function f

around the point (tn,yn, ỹtn(−τ)),

f (s,u,v) ≈ f(tn,yn, ỹtn(−τ)) + fx(tn,yn, ỹtn(−τ))(u − yn)

+ fxt(tn,yn, ỹtn(−τ))(v − ỹtn(−τ)) + ft(tn,yn, ỹtn(−τ))(s− tn)

for s ∈ R and u,v ∈ R
m, where fx, fxt

, and ft denote the partial derivatives of f with
respect to the variables x, xt, and t, respectively. Taking into account that f can be
linearly approximated by its first order Taylor expansion, the solution of (2.1)–(2.2)
can be locally approximated on each interval [tn, tn+1) by the solution of the linear
DDE

dz (t)

dt
= Anz(t) + Bnzt(−τ) + cnt− cntn + dn

−Anyn − Bnỹtn(−τ), t ∈ [tn, tn+1),

ztn (s) = ỹtn(s), s ∈ [−τ, 0] ,(2.4)

which is given by [20]

z(t) = eAn(t−tn)

{
yn +

∫ t−tn

0

e−Anu(Bn(ỹtn (u− τ) − ỹtn (−τ)) + cnu + dn

−Anyn)du

}
,(2.5)

where An = fx(tn,yn, ỹtn(−τ)), Bn = fxt
(tn,yn, ỹtn(−τ)) are constant matrices,

cn = ft(tn,yn, ỹtn(−τ)), dn = f(tn,yn, ỹtn(−τ)) are constant vectors, and tn, tn+1 ∈
(t)h. Further, by using the identity

∫ Δ

0

e−Anudu An = −(e−AnΔ − I), Δ ≥ 0,(2.6)

and simple rules from the integral calculus, the above expression can be conveniently
rewritten as

z(t) = yn + Φ(tn,yn, t− tn; ỹtn),(2.7)

where

Φ(tn,yn, t− tn; ỹtn) =

∫ t−tn

0

eAn(t−tn−u)(Bn(ỹtn (u− τ) − ỹtn (−τ)) + dn)du

+

∫ t−tn

0

∫ u

0

eAn(t−tn−u)cndrdu.(2.8)

In this way, by setting y0 = x(t0) and iteratively evaluating the expression (2.7)
at tn+1 (for n = 0, 1, . . . ) a sequence of points

yn+1 = yn + Φ(tn,yn, tn+1 − tn; ỹtn)
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can be obtained as an approximation to the solution x of (2.1)–(2.2) at each point
tn+1 ∈ (t)h. This just defines the local linear discretization of a DDE. More precisely,
we have the following definition.

Definition 2.1. For a time discretization (t)h, the local linear discretization
of the solution of (2.1)–(2.2) at each point tn+1 ∈ (t)h is defined by the recursive
expression

yn+1 = yn + Φ(tn,yn, tn+1 − tn; ỹtn),(2.9)

where ỹtn : [−τ, 0] −→ R
m is a segment function that approximate to xtn , such that

ỹtn(0) = yn.
Moreover, an approximation for x in the whole interval [t0 − τ, T ] is stated in the

definition below.
Definition 2.2. For a time discretization (t)h, the local linear approximation of

the solution of (2.1)–(2.2) is defined by the function

y (t) = ynt + Φ(tnt ,ynt , t− tnt ; ỹtnt
)(2.10)

for all t ∈ [t0, T ] and by

y (t) = ϕ (t)

for t ∈ [t0 − τ, t0]. Here, ynt
denotes the LL discretization (2.9) at nt, and ỹtnt

is the
segment function of Definition 2.1.

In addition, for t ∈ [t0, T ], let yt : [−τ, 0] −→ R
m be the segment function defined

as

yt(s) := y(t + s), s ∈ [−τ, 0] ,

where y(t + s) is the LL approximation (2.10) evaluated at the point t + s.
It is clear that the LL approximation is a continuous function that coincides with

the LL discretization at each point of the time discretization (t)h.
As can be noted from the definition, to compute the LL discretization at the

time tn+1, a suitable approximation ỹtn to xtn is assumed to be given. Based on the
choice of such an approximation, different kinds of LL schemes could be defined. In
the following subsections, two LL schemes will be introduced.

2.1. Natural LL scheme. Let us consider the numerical scheme that is defined
in a natural way by taking ỹt(s) as the LL approximation yt(s) for all s ∈ [−τ, 0] and
t + s ∈ [t0, T ]. Specifically, the scheme shall be defined through the expression (2.9)
with ỹtn ≡ ytn for all tn ∈ (t)h \t0, and ỹt0(s) ≡ ϕ̃(s) for all s ∈ [−τ, 0], where ϕ̃ is
an approximation to ϕ that shall be defined below.

In this subsection, and only here, it is assumed that the points in the time dis-
cretization (t)h are equidistant, i.e., tn+1 − tn = h = τ

N0
, for a fixed N0 ∈ N+.

Consider the times tn, n = 0, . . . , N0, for which t0 ≤ tn ≤ t0 + τ , and denote
sn = tn− τ . Suppose that in the interval [sn, sn+1], the initial function ϕ in (2.2) can
be exponentially approximated by the function

ϕ̃ (sn + u) = ϕ (sn) + LeTnuR, u ∈ [0, h] ,(2.11)

where Tn, L, and R are certain constant matrices such that LeTnuR ∈ R
m. For

instance, when ϕ(sn+u) is approximated by the interpolating polynomial
∑p

i=0 αi,nu
i
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these matrices can be chosen as

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0m×m p!αp,n (p− 1)!αp−1,n · · · 2α2,n α1,n

0 0 1 · · · 0 0

0 0 0
. . .

...
...

...
...

...
. . . 1 0

0 0 · · · 0 0 1
0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(m+p)×(m+p),

L = (Im,0m×p), and Rᵀ = (01×m+p−1, 1), where the coefficients αi,n are obtained
from interpolating conditions. The statement above is straightforwardly derived from
Lemma 6.1 in the appendix and the expression

p∑
i=0

αi,nu
i = α0,n +

∫ u

0

α1,nds +

p∑
i=2

i!αi,n

∫ u

0

∫ s1

0

. . .

∫ si−1

0

dsidsi−1 . . . ds1,(2.12)

with α0,n = ϕ (sn).
Taking into account that ỹtn(u− τ) = ϕ̃ (sn + u) it follows that

Φ(tn,yn, h; ỹtn) =

∫ h

0

eAn(h−u)(BnLe
TnuR + dn)du +

∫ h

0

∫ u

0

eAn(h−u)cndrdu,

which, by (2.6), can be rewritten as

Φ(tn,yn, h; ỹtn) =

∫ h

0

∫ u

0

eAn(h−u)BnLe
TnrTnRdrdu +

∫ h

0

eAn(h−u)BnLRdu

+

∫ h

0

eAn(h−u)dndu +

∫ h

0

∫ u

0

eAn(h−u)cndrdu.

Now, since LR = 0m×1, by Lemma 6.1 it is obtained that

Φ(tn,yn, h; ỹtn) = L0e
T0,nhR0,

where

T0,n =

⎛
⎜⎜⎝

An BnL cn dn

0 Tn 0 TnR
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , tn ∈ [t0, t0 + τ ],

L0 = (Im,0m×m+p+2), and Rᵀ
0= (01×2m+p+1, 1). Therefore, for t0 ≤ tn ≤ t0 + τ , the

expression

yn+1 = yn + L0e
T0,nhR0, n = 0, . . . , N0 − 1,

defines an LL discretization, while the expression

y (t) = ynt
+ L0e

T0,n(t−tnt )R0, n = 0, . . . , N0 − 1,(2.13)

defines an LL approximation for all t ∈ [t0, t0 + τ ].
Taking into account the analogy between the expressions (2.13) and (2.11), the

procedure above can be used to extend the LL approximation to t0 +τ ≤ tn ≤ t0 +2τ ,
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and so on. In this way, for t0 + kτ ≤ tn ≤ t0 + (k + 1) τ with k = 1, 2, . . . , we obtain
the expression

yn+1 = yn + Lke
Tk,nhRk, n = kN0, . . . , (k + 1)N0 − 1,

which defines the natural LL scheme. Here, the matrices Tk,n, Lk, and Rk are recur-
sively defined by

Tk,n =

⎛
⎜⎜⎝

An BnLk−1 cn dn

0 Tk−1,n 0 Tk−1,nRk−1

0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , tn ∈ [t0 + kτ, t0 + (k + 1)τ ],

Lk= (Lk−1,0m+2), and Rᵀ
k= (01×m+2,R

ᵀ
k−1).

Note that the natural LL scheme produces the exact solution of linear DDEs with
polynomial or exponential initial condition. Thus, obviously, the numerical solution
provided by it preserves the stability properties of linear DDEs. However, observe
also that the dimension of the matrices Tk,n increases with k, which increases the
computational cost of the scheme when τ � T . In this case, the use of Krylov
subspace methods [22] to compute these high dimensional exponential matrices are
highly recommended in order to reduce the computational cost of the natural LL
scheme.

2.2. Polynomial LL scheme. Let us consider a piecewise polynomial approx-
imation ỹtn(s) to ytn(s) for all s ∈ [−τ, 0] defined in such a way that ỹtn(0) = ytn(0)
and

ỹtn (u− τ) = α0,n +

p∑
i=1

αi,nu
i, u ∈ [0, hn],(2.14)

where the coefficients αi,n are obtained from either interpolating or smoothness con-
ditions, hn = tn+1 − tn and tn+1, tn ∈ (t)h.

1 By taking into account the integral
representation (2.12) for polynomials and that ỹtn (−τ) = α0,n, the function Φ can
be rewritten as

Φ(tn,yn, hn; ỹtn) =

∫ hn

0

eAn(hn−u)dndu +

∫ hn

0

∫ u

0

eAn(hn−u) (cn + Bnα1,n) dsdu

+

p∑
i=2

(i!αi,n)

∫ hn

0

∫ u

0

∫ s1

0

. . .

∫ si−1

0

eAn(hn−u)Bndsidsi−1 . . . ds1du.

Then, from Lemma 6.1 it follows that

Φ(tn,ytn , hn; ỹtn) = LeTnhnR,

where Tn ∈ R
(m+p+1)×(m+p+1) is given by

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

An p!Bnαp,n (p− 1)!Bnαp−1,n · · · 2Bnα2,n cn + Bnα1,n dn

0 0 1 · · · 0 0 0

0 0 0
. . .

...
...

...
...

...
...

. . . 1 0 0
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1Note that no specification for the piecewise polynomial ỹtn is given for s ∈ (hn+1 − τ, 0).
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L = (Im,0m×p+1), and Rᵀ= (01×m+p, 1). Therefore, for all tn ∈ (t)h, the expression

yn+1 = yn + LeTnhnR(2.15)

defines the polynomial LL scheme.
Note that, in contrast to the natural LL scheme, the polynomial LL scheme is

defined in terms of a matrix exponential of fixed dimension for all tn. Therefore, this
scheme is computationally feasible and its numerical implementation is reduced to
using a convenient algorithm to compute matrix exponentials, e.g., those based on
rational Padé approximations [18], the Schur decomposition [18], or Krylov subspace
methods [22] (for a recent review see [38]). The selection of one of them will mainly
depend on the size and structure of the matrices Tn. For instance, for many low-
dimensional systems of equations it is enough to use the algorithm developed in [40],
which takes advantage of the special structure of the matrices Tn, whereas for large
systems of equations the Krylov subspace methods are strongly recommended.

2.3. LL schemes for equations with multiple delays. Let f : R×
∏d+1

i=1 R
m

−→ R
m be a differentiable function. Consider the m-dimensional DDE with d con-

stant delays defined by

dx (t)

dt
= f (t,x (t) ,xt(−τ1), . . . ,xt(−τd)) , t ∈ [t0, T ] ,

xto (s) = ϕ (s) , s ∈ [−τ, 0] ,

where ϕ : [−τ, 0] −→ R
m is a given initial function with τ = maxi=1,...,d {τi} , and

τi > 0, i = 1, . . . , d, are constant delays. xt is a segment function defined as at the
beginning of section 2.

By following the same ideas of the previous subsections, the definitions of the LL
discretization and LL approximation are easily extended to equations with multiple
delays. In this case, the expressions (2.9) and (2.10) are also obtained but with Φ
defined by the form

Φ(tn,yn, hn; ỹ1
tn , . . . , ỹ

d
tn) =

∫ hn

0

eAn(hn−u)

(
d∑

i=1

Bi
n(ỹi

tn (u− τi) − ỹi
tn (−τi)) + dn

)
du

+

∫ hn

0

∫ u

0

eAn(hn−u)cndrdu,(2.16)

where ỹi
tn : [−τi, 0] −→ R

m is the segment function defined by

ỹi
tn(s) := ỹi(tn + s), s ∈ [−τi, 0] ,

and ỹi : [tn − τi, tn] −→ R
m is a suitable approximation to x(t) for all t ∈ [tn − τi, tn]

such that ỹi(tn) = yn. In expression (2.16), tn, tn+1 ∈ (t)h, hn = tn+1 − tn,

An= fx(tn,yn, ỹ
1
tn(−τ1), . . . , ỹ

d
tn(−τd)), Bi

n= fxt(−τi)(tn,yn, ỹ
1
tn(−τ1), . . . , ỹ

d
tn(−τd))

are constant matrices and

cn = ft(tn,yn, ỹ
1
tn(−τ1), . . . , ỹ

d
tn(−τd)), dn = f(tn,yn, ỹ

1
tn(−τ1), . . . , ỹ

d
tn(−τd))

are constant vectors. ft, fx, and fxt(−τi) denote, respectively, the partial derivatives
of f with respect to the variables t, x, and xt(−τi).

In this way, the LL schemes proposed in the subsections above are easily extended
to DDEs with multiple delays.
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3. Convergence analysis. For the sake of simplicity, in this section it is as-
sumed that there is a single delay. Suppose also that the initial function ϕ in (2.2)
satisfies the boundedness and Lipschitz conditions

sup
−τ≤s≤0

‖ϕ(s)‖ ≤ M0(3.1)

and

‖ϕ(s2) − ϕ(s1)‖ ≤ M1(s2 − s1)(3.2)

for −τ ≤ s1 ≤ s2 ≤ 0; and the function f in (2.1) and its first partial derivatives
satisfy the Lipschitz conditions

‖f(t,u1,v1) − f(t,u2,v2)‖ ≤ λ0(‖u1 − u2‖ + ‖v1 − v2‖),(3.3)

‖fx(t,u1,v1) − fx(t,u2,v2)‖ ≤ λ1(‖u1 − u2‖ + ‖v1 − v2‖),(3.4)

‖fxt(t,u1,v1) − fxt(t,u2,v2)‖ ≤ λ2(‖u1 − u2‖ + ‖v1 − v2‖),(3.5)

‖ft(t,u1,v1) − ft(t,u2,v2)‖ ≤ λ3(‖u1 − u2‖ + ‖v1 − v2‖)(3.6)

for all u1,u2,v1,v2 ∈ R
m, t ∈ R. Further, suppose that f and its first and second

partial derivatives satisfy the linear growth and boundedness conditions

‖f(t,u,v)‖ + ‖ft(t,u,v)‖ ≤ K0(1 + ‖u‖ + ‖v‖),(3.7)

‖fx(t,u,v)‖ + ‖fxt
(t,u,v)‖ ≤ K1,(3.8)

and

‖fxx(t,u,v)‖ + ‖fxxt(t,u,v)‖ + ‖fxtxt(t,u,v)‖
+ ‖ftt(t,u,v)‖ + ‖ftx(t,u,v)‖ + ‖ftxt

(t,u,v)‖ ≤ K2(3.9)

for all u,v ∈ R
m, t ∈ R.

3.1. Local truncation error. In this subsection, the local truncation error of
the LL discretization shall be derived. With that proposal the next two lemmas shall
be used. The first one establishes a uniform bound and Lipschitz condition for the
solution of the DDE, whereas the second one states a Lipschitz-type condition for the
function Φ with respect to its second and fourth arguments.

Lemma 3.1. Assuming that conditions (3.1), (3.2), and (3.7) hold, there exist
positive constants C0 and C1 such that

sup
t0−τ≤t≤T

‖x(t)‖ ≤ C0(3.10)

and

‖x(s2) − x(s1)‖ ≤ C1(s2 − s1)(3.11)

hold for t0 − τ ≤ s1 ≤ s2 ≤ T , where x is the solution of (2.1)–(2.2).
Proof. From the integral form of (2.1)–(2.2) it follows that

‖x(t)‖ ≤ ‖ϕ(0)‖ +

∫ t

t0

‖f (s,x (s) ,xs(−τ))‖ ds, t ≥ t0,
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which by conditions (3.1) and (3.7) leads to

‖x(t)‖ ≤ M0 +

∫ t

t0

K0(1 + ‖x (s)‖ + ‖xs(−τ)‖)ds.

Hence

sup
t0−τ≤u≤t

‖x(u)‖ ≤ M0 +

∫ t

t0

K0

(
1 + 2 sup

t0−τ≤u≤s
‖x(u)‖

)
ds,

and (3.10) follows from the Gronwall inequality.
On the other hand, for t0 − τ ≤ s1 ≤ s2 ≤ t0 inequality (3.11) follows from

condition (3.2), whereas for t0 ≤ s1 ≤ s2 ≤ T we obtain

‖x(s2) − x(s1)‖ ≤
∫ s2

s1

‖f (s,x (s) ,xs(−τ))‖ ds

≤ (s2 − s1)K0

(
1 + sup

s1≤s≤s2

(‖x (s)‖ + ‖xs(−τ)‖)
)
,

which by (3.10) gives

‖x(s2) − x(s1)‖ ≤ K0(1 + 2C0)(s2 − s1),

and so we conclude the proof.
Lemma 3.2. Let tn, tn+1 ∈ (t)h and hn = tn+1−tn. Under conditions (3.1)–(3.8),

there exists a positive constant P such that

‖Φ(tn,v, hn; ztn) − Φ (tn,x (tn) , hn;xtn)‖

≤ hnP

(
‖v − x(tn)‖ + sup

s∈[0,hn]

‖ztn(s− τ) − xtn(s− τ)‖
)
,

where x is the solution of (2.1)–(2.2), Φ is defined as in (2.8), v ∈ R
m,ztn : [−τ, 0] −→

R
m is a segment function defined as

ztn(s) := z(tn + s), s ∈ [−τ, 0] ,

and z : [tn − τ, tn] −→ R
m is a function.

Proof. Define

Rn := Φ(tn,v, hn; ztn) − Φ (tn,x (tn) , hn;xtn) ,

which in turn can be written as

Rn =

∫ hn

0

eAn(hn−u)(Bn(ztn (u− τ) − ztn (−τ)) + ucn + dn)du

−
∫ hn

0

eAn(hn−u)(Bn (xtn (u− τ) − xtn (−τ)) + ucn + dn)du,

where An = fx (tn,v, ztn(−τ)), Bn = fxt (tn,v, ztn(−τ)), An = fx (tn,x (tn) ,xtn(−τ)),
Bn = fxt (tn,x (tn) ,xtn(−τ)) are constant matrices and cn = ft (tn,v, ztn(−τ)) ,
dn = f (tn,v, ztn(−τ)), cn = ft (tn,x (tn) ,xtn(−τ)) , dn = f (tn,x (tn) ,xtn(−τ)) are
constant vectors.
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By using Lemma 6.3 in the appendix we obtain

‖Rn‖ ≤
∫ hn

0

∥∥∥eAn(hn−u)−eAn(hn−u)
∥∥∥ (

∥∥Bn

∥∥ ‖xtn(u− τ)−xtn (−τ)‖+u ‖cn‖+
∥∥dn

∥∥)du

+

∫ hn

0

∥∥∥eAn(hn−u)
∥∥∥ (

∥∥Bnztn (−τ) − Bnxtn (−τ)
∥∥ + u ‖cn − cn‖ +

∥∥dn − dn

∥∥
+
∥∥Bnztn (u− τ) − Bnxtn (u− τ)

∥∥)du.

From the finite increments inequality, conditions (3.8), (3.4), and constraint (2.3) it
is follows that ∥∥∥eAn(hn−u) − eAn(hn−u)

∥∥∥ ≤ eK1hnhn

∥∥An − An

∥∥
≤ eK1λ1hnΓn,

where

Γn = ‖v − x(tn)‖ + sup
u∈[0,hn]

‖ztn (u− τ) − xtn (u− τ)‖ .

In addition, from Lemmas 6.3 and 3.1 and conditions (3.5) and (3.8) it is follows that∥∥Bnztn (u− τ) − Bnxtn (u− τ)
∥∥ ≤ ‖Bn‖ ‖ztn (u− τ) − xtn (u− τ)‖

+
∥∥Bn − Bn

∥∥ ‖xtn (u− τ)‖

≤ (K1 + λ2C0) Γn

for all u ∈ [0, hn]. By using the two previous inequalities, Lemma 3.1, and conditions
(3.3), (3.6), (3.7), and (3.8) we obtain

‖Rn‖ ≤ Γn

∫ hn

0

eK1λ1hn(2K1C0 + K0(1 + 2C0)u + K0(1 + 2C0))du

+Γn

∫ hn

0

eK1(2(K1 + λ2C0) + λ0 + λ3u)du

≤ hnP Γn,

where P = 2eK1λ1 (K1C0 + K0(1 + 2C0))+ eK1(2(K1 +λ2C0)+λ0 +λ3). Constraint
(2.3) has also been used to obtain P .

Let us denote by Ln+1 the local truncation error of the LL discretization at tn+1,
i.e.,

Ln+1 = ‖x (tn+1) − x (tn) − Φ(tn,x (tn) , hn; ỹtn)‖ ,(3.12)

where tn, tn+1 ∈ (t)h, hn = tn+1 − tn, x is the solution of (2.1)–(2.2), and Φ, ỹtn are
defined as in Definition 2.1.

Theorem 3.3. Suppose that conditions (3.1)–(3.9) hold. Then

Ln+1 ≤ Lh3
n + Phn sup

s∈[0,hn]

‖ỹtn(s− τ) − xtn(s− τ)‖ ,

where L and P are positive constants.
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Proof. Let u and v be the solutions of the nonautonomous ODEs

du(t)

dt
= f(t,u(t),xt(−τ)), t ∈ [tn, tn+1],(3.13)

u(tn) = x(tn),

and

dv(t)

dt
= g(t,v(t),xt(−τ)), t ∈ [tn, tn+1],

v(tn) = x(tn),

respectively, where function g is the first order Taylor expansion of the function f
around the point (tn,x(tn),xtn(−τ)). That is,

g(t,v(t),xt(−τ)) = An (v (t) − x (tn)) + Bn (xt (−τ) − xtn (−τ)) + cn(t− tn) + dn,

where An = fx(tn,x(tn),xtn(−τ)), Bn = fxt(tn,x (tn) ,xtn (−τ)) are constant matri-
ces and cn = ft(tn,x (tn) ,xtn (−τ)), dn = f(tn,x(tn),xtn(−τ)) are constant vectors.
In addition, let

ε := sup
t∈[tn,tn+1]

∥∥∥∥dv(t)

dt
− f(t,v(t),xt(−τ))

∥∥∥∥(3.14)

= sup
t∈[tn,tn+1]

‖g(t,v(t),xt(−τ)) − f(t,v(t),xt(−τ))‖ .

By applying the Taylor formulae with Lagrange remainder for functions defined
on a Banach space [12] and condition (3.9) we obtain

ε ≤ 3

2
K2 sup

t∈[tn,tn+1]

(‖t− tn‖2
+ ‖v(t) − v (tn)‖2

+ ‖xt(−τ) − xtn(−τ)‖2
).

Moreover, by using Lemma 3.1, conditions (3.7)–(3.8), and constraint (2.3) we obtain

‖v(t) − v (tn)‖ = ‖Φ(tn,v (tn) , t− tn;xtn)‖

≤
∫ t−tn

0

∥∥∥eAn(t−tn−u)
∥∥∥ (‖dn‖ + ‖cn‖u)du

+

∫ t−tn

0

∥∥∥eAn(t−tn−u)
∥∥∥ ‖Bn‖ ‖xtn (u− τ) − xtn (−τ)‖ du

≤ C2hn,

where C2 = 2eK1(K0(1 + 2C0) + K1C0). However, Lemma 3.1 also implies that

‖xt(−τ) − xtn(−τ)‖ ≤ C1hn.

Therefore,

ε ≤ 3

2
K2(1 + C2

2 + C2
1 )h2

n.

Now, by applying Lemma 6.2 to the functions u and v (i.e., by using (3.13) and
(3.14) for the first and second differential inequality in that lemma, respectively) it is
obtained that

‖u(t) − v(t)‖ ≤ ε

λ0
(eλ0(t−tn) − 1)
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for t ∈ [tn, tn+1]. Moreover, from the mean value theorem it follows that

(eλ0(t−tn) − 1) ≤ λ0e
λ0(t−tn)(t− tn),

which implies that

‖u(t) − v(t)‖ ≤ εeλ0(t−tn)(t− tn).

Taking into account that u ≡ x in [tn, tn+1] and that

v(t) ≡ x(tn) + Φ (tn,x (tn) , t− tn;xtn)

we obtain

ln+1 = ‖x (tn+1) − x (tn) − Φ(tn,x (tn) , hn;xtn)‖
≤ Lh3

n,

with L = 3
2K2(1 + C2

2 + C2
1 )eλ0 . Constraint (2.3) has been again used to obtain L.

The proof is completed by applying Lemma 3.2 to the second term of the
inequality

Ln+1 ≤ ln+1 + ‖Φ(tn,x (tn) , hn; ỹtn) − Φ(tn,x (tn) , hn;xtn)‖ .

3.2. Uniform convergence. The main result of this subsection is stated in the
following theorem.

Theorem 3.4. For t ∈ [t0, T ], let yt : [−τ, 0] −→ R
m be the segment function

defined as

yt(s) := y(t + s), s ∈ [−τ, 0] ,

where y(t + s) is the LL approximation of the DDE (2.1)–(2.2) at the point t + s.
Further, let ỹtn : [−τ, 0] −→ R

m be a segment function defined as

ỹtn(s) := ỹ(tn + s), s ∈ [−τ, 0] ,

where ỹ(tn + s) is an approximation of y(tn + s) such that

sup
u∈[0,hn]

‖ytn(u− τ) − ỹtn(u− τ)‖ ≤ Crh
r
n(3.15)

and ỹtn(0) = y(tn) for all tn ∈ (t)h, with Cr > 0 and r ∈ N+. Then, under conditions
(3.1)–(3.9), there exists a positive constant M such that

‖x (t) − y (t)‖ ≤ Mhmin{2,r}

for every t ∈ [t0 − τ, T ], where x is the solution of (2.1)–(2.2).
Proof. Suppose that the numerical integration has reached tn and let En be a

uniform bound on ‖x (t) − y (t)‖ for every t ∈ [t0 − τ, tn].
By definition of LL approximation

x (t) − y (t) = x(t) − y (tn) − Φ(tn,y (tn) , t− tn; ỹtn) + x(tn) − x (tn)

+ Φ(tn,x (tn) , t− tn; ỹtn) − Φ(tn,x (tn) , t− tn; ỹtn)
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for t ∈ [tn, tn+1], and thus

‖x (t) − y (t)‖ ≤ ‖x (tn) − y (tn)‖ + Ln+1 + Rn+1,(3.16)

where Ln+1 denotes the local truncation error (3.12) and

Rn+1 = ‖Φ(tn,x (tn) , t− tn; ỹtn) − Φ(tn,y (tn) , t− tn; ỹtn)‖ .

Taking into account that

sup
u∈[0,hn]

‖ỹtn(u− τ) − xtn(u− τ)‖ ≤ sup
u∈[0,hn]

‖xtn(u− τ) − ytn(u− τ)‖

+ sup
u∈[0,hn]

‖ytn(u− τ) − ỹtn(u− τ)‖

≤ En + Crh
r
n(3.17)

we obtain

Ln+1 ≤ Lh3
n + hnP (En + Crh

r
n)(3.18)

and

Rn+1 ≤ ‖Φ(tn,x (tn) , t− tn; ỹtn) − Φ(tn,x (tn) , t− tn;xtn)‖
+ ‖Φ (tn,x (tn) , t− tn;xtn) − Φ(tn,y (tn) , t− tn; ỹtn)‖

≤ hnP
{
‖x(tn) − y(tn)‖ + 2 sup

u∈[0,hn]

‖ỹtn(u− τ) − xtn(u− τ)‖
}

≤ hnP (3En + 2Crh
r
n)(3.19)

for t ∈ [tn, tn+1]. Here, (3.15), Theorem 3.3, and Lemma 3.2 were used to derive
(3.17), (3.18), and (3.19).

Thus, from (3.16), (3.18), and (3.19) and constraint (2.3) we obtain

‖x (t) − y (t)‖ ≤ (1 + hP1)En + L1h
min{3,r+1},

where P1 = 4P and L1 = L+3PCr. Note that this expression gives an error bound for
all t ∈ [tn, tn+1] . Therefore, by definition of En, that bound also holds for t ∈ [t0, tn].
Thus,

En+1 ≤ (1 + hP1)En + L1h
min{3,r+1}.

Finally, by induction, the last inequality implies that

En+1 ≤ ((1 + hP1)
n+1 − 1)

hP1
L1h

min{3,r+1}

≤ M hmin{2,r},

where M = L1(e
P1(T−t0) − 1)/P1. This completes the proof.

Thus, we are ready to analyze the convergence rate of the two LL schemes intro-
duced in the previous section. Denote by Cr[−τ, 0] the class of functions on [−τ, 0]

with continuous derivatives up to order r, and by Cr
[−τ, 0] the class of functions with

continuous r-derivatives everywhere in [−τ, 0] except at a finite number of points.
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For the natural LL scheme it is obvious that maxu∈[0,hn] ‖ytn(u− τ) − ỹtn(u− τ)‖
= 0 for all tn ∈ (t)h whenever the initial condition ϕ is either a piecewise polynomial
or an exponential function. However, if ϕ ∈Cr[−τ, 0], the function ϕ can be approxi-
mated by a piecewise interpolating polynomial of order r and so condition (3.15) holds
for all tn ∈ (t)h ∩ [t0, t0 + τ ], and maxu∈[0,hn] ‖ytn(u− τ) − ỹtn(u− τ)‖ = 0 for all
tn ∈ (t)h ∩ [t0 + τ, T ]. Thus, in the first case the order of convergence of the natural
LL scheme is two, while in the second case it is min{2, r}.

However, for the polynomial LL schemes, the convergence analysis is not so sim-
ple. Note that the first derivative of the LL approximation y satisfies (2.4) for each
t ∈ [tn, tn+1), and thus its rth derivative is not continuous at all of the points tn ∈ (t)h
for all r ∈ N+. That is, yt ∈ Cr

[−τ, 0]. Therefore, the conventional results from the
approximation theory are not straightforward applicable and additional results are
needed. For example, the next theorem deals with the case of interpolating polyno-
mials for y.

Theorem 3.5. Let ỹ be the order r polynomial that interpolate y in r points si
on [tn − τ, tn+1 − τ ] for each tn ∈ (t)h. Then

sup
u∈[0,hn]

‖ytn(u− τ) − ỹtn(u− τ)‖ ≤ Cr,nh
r
n,

where

Cr,n = Dr

(
1 + sup

u∈[0,hn]

‖λr(u + tn − τ)‖
)

sup
u∈[0,hn]

∥∥∥∥drytn

dsr
(u− τ)

∥∥∥∥ .
Here, λr(t) =

∑r
i=1 |

∏
j �=i(t−sj)/

∏
j �=i(si−sj)| is the well-known Lebesgue function

[14],
drytn

dsr (u− τ) denotes the rth derivative of ytn evaluated at (u−τ), and Dr is a
positive constant depending only on r.

Proof. Let Pr be the space of polynomials of order r on [tn−τ, tn+1−τ ]. Then, by
Theorem XII.5 in [14] for the polynomial approximation of functions with continuous
derivatives on a bounded interval except at a finite number of points, there exists
p ∈ Pr such that

‖y − p‖∞ ≤ Dr

∥∥∥∥drydtr

∥∥∥∥
∞

(tn+1 − tn)r,(3.20)

where ‖.‖∞ denotes the uniform norm on [tn−τ, tn+1−τ ] and Dr is a positive constant
depending only on r.

Let Iry(t) be an order r polynomial that interpolates y in r points si on [tn −
τ, tn+1 − τ ]. Taking into account the Lagrange form

Iry(t) =

r∑
i=1

y(si)li(t), with li(t) =
∏
j �=i

(t− sj)/
∏
j �=i

(si − sj)

of that polynomial, it is follows that

‖Iry‖∞ ≤ ‖y‖∞ ‖λr‖∞ ,(3.21)

where λr(t) =
∑r

i=1 |li(t)| is the Lebesgue function.
Now, by taking into account that Irp = p for all p ∈ Pr, and using the inequalities

(3.20) and (3.21) we obtain

‖y − Iry‖∞ ≤ ‖y − p‖∞ + ‖Ir(p − y)‖∞
≤ (1 + ‖λr‖∞) ‖p − y‖∞
≤ Cr,nh

r
n.
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The proof is completed by noting that ỹ ≡ Iry.
In this way, if Cr,n were bounded for all n, Theorems 3.4 and 3.5 would imply the

order of convergence min{2, r} for the interpolating polynomial LL schemes. Accord-
ingly, the polynomial LL scheme (2.15) with linear interpolation would provide the
best performance with respect to the trade-off between convergence rate and compu-
tational cost. For this kind of LL approximation, the next theorem states an upper
bound for its second derivative in such a way that condition (3.15) in Theorem 3.4
holds for r = 2.

Theorem 3.6. For all tn ∈ (t)h, let

ỹtn (u− τ) = α0,n + α1,nu, with u ∈ [0, hn],

be a piecewise linear interpolant of y, where α0,n = ytn (−τ) and α1,n = (ytn+1
(−τ)−

ytn (−τ))/hn. Then

sup
u∈[0,hn]

‖λ2(u + tn − τ)‖ = 1,

and, under conditions (3.7)–(3.8), we obtain

sup
u∈[0,hn]

∥∥∥∥d2ytn

ds2
(u− τ)

∥∥∥∥ ≤ M,

where M is a constant independent of n.
Proof. By definition

λ2(u + tn − τ) =

∣∣∣∣u + tn − tn+1

tn − tn+1

∣∣∣∣ +

∣∣∣∣ u

tn+1 − tn

∣∣∣∣
=

tn+1 − tn − u

tn+1 − tn
+

u

tn+1 − tn

= 1

for u ∈ [0, hn], which implies the first assertion of the theorem.
To prove the second one, the boundedness and Lipschitz condition for the LL

approximation y shall be derived first and afterward bounds for the first and second
derivatives of y.

From the definition of LL approximation

y(t) = y(t0) +

nt−1∑
n=0

Φ(tn,yn, hn; ỹtn) + Φ(tnt ,ynt , t− tnt ; ỹtnt
),

where

Φ(tn,yn, t−tn; ỹtn) =

∫ t−tn

0

eAn(t−tn−u)

(
Bn(ytn+1 (−τ)−ytn (−τ))

u

hn
+dn+cnu

)
du

with An = fx(tn,yn,ytn(−τ)), Bn = fxt(tn,yn,ytn(−τ)), cn = ft(tn,yn,ytn(−τ)),
and dn = f(tn,yn,ytn(−τ)) for all tn ∈ (t)h.
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Now, by using conditions (3.7)–(3.8) and constraint (2.3) it follows that

Rn(t) = ‖Φ(tn,yn, t− tn; ỹtn)‖

≤
∫ t−tn

0

∥∥∥eAn(t−tn−u)
∥∥∥(‖Bn‖

∥∥ytn+1 (−τ)−ytn (−τ)
∥∥∥∥∥∥ u

hn

∥∥∥∥+ ‖dn‖+ ‖cn‖u
)
du

≤ eK1K1

∫ t−tn

0

∥∥ytn+1
(−τ) − ytn (−τ)

∥∥ du
+ eK1K0

∫ t−tn

0

(1 + ‖yn‖ + ‖ytn (−τ)‖)(1 + u)du

≤ 2eK1K1

∫ t

tn

sup
t0−τ≤s≤u

‖y (s)‖ du

+ (1 + hn)eK1K0

∫ t

tn

(
1 + 2 sup

t0−τ≤s≤u
‖y (s)‖

)
du.(3.22)

In this way,

‖y(t)‖ ≤ ‖y(t0)‖ +

nt−1∑
n=0

Rn(hn) + Rnt
(t− tnt

)

≤ ‖y(t0)‖ + 2eK1

nt−1∑
n=0

(
K1

∫ tn+1

tn

sup
t0−τ≤s≤u

‖y (s)‖ du

+K0

∫ tn+1

tn

(1 + 2 sup
t0−τ≤s≤u

‖y (s)‖)du
)

+ 2eK1

(
K1

∫ t

tnt

sup
t0−τ≤s≤u

‖y (s)‖ du

+K0

∫ t

tnt

(1 + 2 sup
t0−τ≤s≤u

‖y (s)‖)du
)

≤ ‖y(t0)‖+2eK1

(
K1

∫ t

t0

sup
t0−τ≤s≤u

‖y (s)‖ du+K0

∫ t

t0

(1 + 2 sup
t0−τ≤s≤u

‖y (s)‖)du
)

≤ M1 + M2

∫ t

t0

sup
t0−τ≤s≤u

‖y (s)‖ du,

where M1 = ‖y(t0)‖ + 2eK1K0(T − t0) and M2 = 2eK1(K1 + 2K0). Therefore

sup
t0−τ≤s≤t

‖y (s)‖ ≤ M1 + M2

∫ t

t0

sup
t0−τ≤s≤u

‖y (s)‖ du.

Now, by applying the Gronwall inequality we obtain

sup
t0−τ≤t≤T

‖y (t)‖ ≤ M3,(3.23)

where M3 = M1M2e
M2(T−t0) is a positive constant.
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Let s2 = tns2
+ Δ2 and s1 = tns1

+ Δ1 be two points in [t0, T ] such that s2 ≥ s1.
Thus,

y(s2) − y(s1) = Φ(tns1
,yns1

, hns1
; ỹtns1

) − Φ(tns1
,yns1

,Δ1; ỹtns1
)

+

ns2
−1∑

n=ns1
+1

Φ(tn,yn, hn; ỹtn) + Φ(tns2
,yns2

,Δ2; ỹtns2
).

From (3.22) it is straightforward to obtain

‖Φ(tn,yn, hn; ỹtn)‖ = M4hn,

where M4 = 2eK1(K1M3 + K0(1 + 2M3)), while the inequality

∥∥∥Φ(tns1
,yns1

, hns1
; ỹtns1

) − Φ(tns1
,yns1

,Δ1; ỹtns1
)
∥∥∥ ≤ M4(hns1

− Δ1)

can be derived by following the same steps used to obtain (3.22). Then

‖y(s2) − y(s1)‖ ≤ M4

⎛
⎝hns1

− Δ1 +

ns2
−1∑

n=ns1+1

hn + Δ2

⎞
⎠

≤ M4

⎛
⎝tns1

+1 − tns1
− Δ1 +

ns2
−1∑

n=ns1
+1

(tn+1 − tn) + s2 − tns2

⎞
⎠

≤ M4(s2 − s1).(3.24)

By definition, for each tn ∈ (t)h, the LL approximation y satisfies the linear DDE
(2.4), which can be written in terms of the nonautonomous ODE

dz (t)

dt
= gn(t, z(t)), t ∈ [tn, tn+1),(3.25)

z(tn) = ỹtn(0),

where

gn(t, z(t)) = Anz(t) + Bn(ytn+1 (−τ) − ytn (−τ))
(t− tn)

hn

+ cn(t− tn) + dn − Anyn.

Hence, ∥∥∥∥dz (t)

dt

∥∥∥∥ = ‖gn(t, z(t))‖

≤ 2(‖An‖ + ‖Bn‖) sup
t0−τ≤t≤T

‖y (t)‖ + ‖cnhn + dn‖

for all t ∈ [tn, tn+1). However, from conditions (3.7)–(3.8) and constraint (2.3) it is
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obtained that

‖cnhn + dn‖ ≤ (1 + hn)K0

(
1 + 2 sup

t0−τ≤t≤T
‖y (t)‖

)
≤ 2K0(1 + 2M3)

and ‖An‖+‖Bn‖ ≤ K1. Thus, by taking into account that z(t) ≡ y(t) for t ∈ [tn, tn+1)
and tn, tn+1 ∈ (t)h, it is obtained that

sup
tn≤t≤tn+1

∥∥∥∥dy (t)

dt

∥∥∥∥ ≤ M5,(3.26)

where M5 = 2K1M3 + 2K0(1 + 2M3) is a positive constant independent of n.
Now, by taking the derivative in (3.25) we obtain

d2z (t)

dt2
= gn

t (t, z(t)) + gn
z (t, z(t))

dz (t)

dt
,

where gn
t and gn

z denote the partial derivatives of gn with respect to t and z, respec-
tively. Thus,

∥∥∥∥d2z (t)

dt2

∥∥∥∥ ≤ ‖gn
t (t, z(t))‖ + ‖gn

z (t, z(t))‖
∥∥∥∥dz (t)

dt

∥∥∥∥(3.27)

for t ∈ [tn, tn+1). From conditions (3.7)–(3.8) and (3.23)–(3.24) it follows that

‖gn
t (u, z(u))‖ ≤ 1

hn
‖Bn‖

∥∥ytn+1
(−τ) − ytn (−τ)

∥∥ + ‖cn‖

≤ 1

hn
K1

∥∥ytn+1
(−τ) − ytn (−τ)

∥∥ + K0

(
1 + 2 sup

t0−τ≤t≤T
‖y (t)‖

)
≤ K1M4 + K0(1 + 2M3)(3.28)

and

‖gn
z (u, z(u))‖ ≤ K1(3.29)

for u ∈ [tn, tn+1]. Finally, by using (3.26), (3.28), and (3.29) in (3.27), and by taking
into account that z(t) ≡ y(t) for t ∈ [tn, tn+1) and tn, tn+1 ∈ (t)h, we obtain

sup
tn≤t≤tn+1

∥∥∥∥d2y (t)

dt2

∥∥∥∥ ≤ M6,

where M6 = K1(M4 + M5) + K0(1 + 2M3) is a positive constant independent of n.
Thus, the proof is complete.
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4. Simulation results. In this section the performance of the LL method is
illustrated by means of numerical simulations. To do so, we shall use the polynomial
LL scheme (2.15) with linear interpolation and fixed step-size h. Specifically, in each
interval [tn − τi, tn+1 − τi], the LL approximation y is approximated by the function

ỹ (tn + s− τi) = y (tn − τi) + αi
1,ns

with s ∈ [0, h] and αi
1,n = (y (tn+1 − τi)−y (tn − τi))/h for each delay τi; and the LL

scheme is defined by the iteration

ytn+1 = ytn + h(ytn)(4.1)

for all tn ∈ (t)h, where the vector h(ytn) is obtained from the expression⎡
⎣ F g1 h(ytn)

0 1 g2

0 0 1

⎤
⎦ = ehTn

with

Tn =

⎡
⎣ An cn +

∑d
i=1 Bi

nα
i
1,n dn

0 0 1
0 0 0

⎤
⎦ ∈ R

(m+2)×(m+2).

Here, the matrix ehTn is computed by the rational Padé approximation with the
“scaling and squaring” procedure (see Algorithm 11.3.1 in [18] for details).

Two DDEs with a variety of complexity were selected. This includes nonlinear
equations with single and multiple delays, with low order discontinuities, and stiff
equations.

Example 1. The first example is an epidemic model due to Cooke [31]. It de-
scribes the fraction of a population that is infected by a virus at time t through the
equation

dx (t)

dt
= bx (t− 7) (1 − x (t)) − cx (t) , t ∈ [0, 70] .(4.2)

Here b and c are positive constants. If b > c, then the solution x (t) = 1 − c/b is an
equilibrium point. The equation is integrated for b = 2, c = 1 and initial condition
function x (t) = 0.8 for t ∈ [−7, 0].

Figure 4.1 shows the numerical solution converging to the equilibrium point. Fig-
ure 4.2 shows the maximum errors of the LL scheme (4.1) in the computation of the
solution of (4.2) in (t)h for h = 0.1, 0.01, 0.001 and the straight line that fits these
points in the minimum square sense. The slope of that line is 2, which agrees with
the theoretical estimate obtained in the previous section. For a “true” solution we
used the trajectory obtained by the LL scheme with h = 0.00001. For a comparison,
Figure 4.2 also shows the results obtained by the polynomial LL scheme with first and
third order interpolating polynomial ỹ, i.e., schemes of the form (2.15) with p = 0
and p = 2, respectively. In each case, the slope of their respective lines are 1 and 2,
which also agrees with the theoretical estimate.

Example 2. The second example is the stiff DDE proposed in [6] to describe the
dynamic of an antiviral immune response. The disease dynamic is governed by the
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Fig. 4.1. Numerical solution for Example 1 with b = 2, c = 1 obtained by the LL scheme (4.1)
with h = 0.01. The straight line represents the equilibrium point x (t) = 1 − c/b.
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Fig. 4.2. Maximum errors of interpolating polynomial LL schemes produced in the integration
of Example 1 at the points (t)h, with h = 10−1, 10−2, 10−3. The slopes of the straight line that
fits these points are 1, 2, and 2 for the schemes with interpolating polynomials of grade p = 0, 1, 2,
respectively.
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Table 4.1

Values of the parameters in the DDE of Example 2.

j/a aj a1j a2j a3j

0 − 0.15 2 16

1 83 9.4 × 109 8 × 1028 0.1

2 5 10−15 1 10−18

3 6.6 × 1014 1.2 10−19 1.7 × 1030

4 3 × 1011 2.7 × 1016 5.3 × 1033 3

5 0.4 2 16 0.4

6 2.5 × 107 5.3 × 1027 1.6 × 1014 4.3 × 10−22

7 5 × 10−13 1 0.4 8.5 × 106

8 2.3 × 109 10−18 10−18 8.6 × 1011

9 0.052 2.7 × 1016 8 × 1032 0.043

system of ten-dimensional DDEs,

dx1

dt
= a1x2 + a2a3x2x7 − a4x1x10 − a5x1 − a6x1(a7 − x2 − x3),

dx2

dt
= a8x1(a7 − x2 − x3) − a3x2x7 − a9x2,

dx3

dt
= a3x2x7 + a9x2 − a10x3,

dx4

dt
= a11a12x1 − a13x4,

dx5

dt
= a14((1 − x3/a7)a15x4(t− τ1)x5(t− τ1) − x4x5) − a16x4x5x7 + a17(a18 − x5),

dx6

dt
= a19((1 − x3/a7)a20x4(t− τ2)x6(t− τ2) − x4x6) − a21x4x6x8 + a22(a23 − x6),

dx7

dt
= a24((1 − x3/a7)a25x4(t− τ3)x5(t− τ3)x7(t− τ3) − x4x5x7) − a26x2x7

+ a27(a28 − x7),

dx8

dt
= a29((1 − x3/a7)a30x4(t− τ4)x6(t− τ4)x8(t− τ4) − x4x6x8) + a31(a32 − x8),

dx9

dt
= a33(1 − x3/a7)a34x4(t− τ5)x6(t− τ5)x8(t− τ5) + a35(a36 − x9),

dx10

dt
= a37x9 − a38x10x1 − a39x10,

with five time delays τ1 = τ2 = 0.6, τ3 = τ4 = 2, and τ5 = 3, and initial conditions
x1(t) = 2.9 × 10−16, x2(t) = x3(t) = x4(t) = 0, x5(t) = a18, x6(t) = a23, x7(t) = a28,
x8(t) = a32, x9(t) = a36, and x10(t) = a36a37a39 for all t ∈ [− τ5, 0]. The parameters
ai are given in Table 4.1.

That equation has been used as a test example to compare the performance of
numerical integrators in the case of multidimensional stiff equations with multiple
delays. It has been reported in [6] that a number of them fail to produce a numerical
solution after t = 110 because the appearance of sharp picks in the solution. Figure 4.3
illustrates this problem. In this case, the explicit continuous extension Runge–Kutta
(2, 3) scheme with step-size h = 0.01 was used.

On the contrary, Figure 4.4 shows the numerical solution until t = 150 obtained
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Fig. 4.3. Approximate solution of Example 2 computed by the continuous extension Runge–
Kutta (2, 3) scheme with step-size h = 0.01.
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h = 0.01.
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Table 4.2

Maximum of the relative errors (%) produced by the LL scheme (4.1) in the integration of
Example 2 on the interval [0, 150] with different step-size h.

h/x 1 2 3 4 5 6 7 8 9 10
0.1 17.86 0.0377 0.0478 0.7256 0.3140 0.5269 1.3753 0.6410 0.6258 1.7621
0.01 0.13 0.0004 0.0035 0.0780 0.0031 0.0054 0.0120 0.0730 0.0071 0.0132

by the LL scheme (4.1) with the same step-size. Table 4.2 presents the maximum of
the relative errors of the LL scheme in (t)h versus h for each variable. For a “true”
solution we used the trajectory obtained by the LL scheme with h = 0.00001. The
time for computing such a solution (until t = 100) was 1.7 times longer than the
time used by the Runge–Kutta scheme mentioned above. Thus, no small step-size is
necessary to integrate that equation with an adequate precision and computational
cost, which reveals the potential of the LL method to integrate stiff DDEs.

5. Conclusions. The local linearization approach for the numerical integration
of DDEs was introduced and two numerical schemes were considered. The first one,
called the natural LL scheme, preserves the stability of multidimensional linear DDEs
with multiple delays, but its computational cost is high in the case that the smallest
delay of the DDE is much lower than the final integration time. On the contrary,
according to the simulation study carried out, the computational cost of the polyno-
mial LL scheme is comparable to the cost of the conventional explicit integrators but
with the advantage of integrating stiff systems. This last result agrees with similar
performances of the LL integrators of other classes of differential equations (ordinary,
random, and stochastic). The two LL schemes proposed in this paper are explicit and
have second order of convergence. Nevertheless, high order schemes of this family can
also be derived by just following the same ideas that have been used to construct high
order LL integrators for ODEs and SDEs [15, 16].

6. Appendix. The following result is a generalization of Theorem 1 in [40].
Lemma 6.1 (Theorem 1 in [11]). Let n, d1, d2, . . . , dn be positive integers and

A an n× n block triangular matrix defined by

A =

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

0 A22 . . . A2n

0 0
. . .

...
0 0 0 Ann

⎞
⎟⎟⎟⎠ ,

where (Alj) are dl × dj matrices, with l, j = 1, . . . , n . Then for t � 0

eAt=

⎛
⎜⎜⎜⎝

B11(t) B12(t) . . . B1n(t)
0 B22(t) . . . B2n(t)

0 0
. . .

...
0 0 0 Bnn(t)

⎞
⎟⎟⎟⎠ ,

with

Bll(t) = eAllt, l = 1, . . . , n,

Blj(t) =

∫ t

0

M(l,j)(t, s1)ds1, l = 1, . . . , n− 1, j = l + 1,
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Blj(t) =

∫ t

0

M(l,j)(t, s1)ds1

+

j−l−1∑
k=1

∫ t

0

∫ s1

0

. . .

∫ sk

0

∑
l<i1<···<ik<j

M(l,i1,...,ik,j)(t, s1, . . . , sk+1)dsk+1 . . . ds1,

l = 1, . . . , n− 2, j = l + 2, . . . , n,

where, for any multi-index (i1, . . . , ik) ∈ N
k and vector (s1, . . . , sk) ∈ R

k, the matrices
M(i1,...,ik)(s1, . . . , sk) are defined by

M(i1,...,ik)(s1, . . . , sk) =

(
k−1∏
r=1

eAirir (sr−sr+1)Airir+1

)
eAikik

sk .

The thesis of the next lemma is known as the fundamental inequality in the
framework of ODEs.

Lemma 6.2 (fundamental inequality; Theorem 2 in [24, p. 6]). Let f (t,x) :
[t0, t1] ×D −→ R

m, D ⊂ R
m, be a continuous function that satisfies

‖f (t,x) − f (t,y)‖ ≤ λ0 ‖x − y‖ , λ0 ≥ 0,

for all t ∈ [t0, t1] and x,y ∈D. Let u (t) and v(t) be functions such that∥∥∥∥du (t)

dt
− f (t,u(t))

∥∥∥∥ ≤ ε1,∥∥∥∥dv (t)

dt
− f (t,v(t))

∥∥∥∥ ≤ ε2

for all t ∈ [t0, t1]. Set

p (t) = u (t) − v (t) and ε = ε1 + ε2.

Then

‖p(t)‖ ≤ eλ0(t−t0) ‖p(t0)‖ +
ε

λ0
(eλ0(t−t0) − 1)

for all t ∈ [t0, t1].
Lemma 6.3. Let A, C be n×m matrices, and let B, D be m× r matrices. Then

‖AB − CD‖ ≤ ‖A − C‖ ‖D‖ + ‖A‖ ‖B − D‖ .

Proof. The lemma is obtained by applying the triangular inequality to the identity
AB − CD = (A − C)D + A(B − D).
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Abstract. In this paper, we first give an error expansion of the weak error associated to a
discretely killed Brownian motion in a cone that writes as an intersection of half spaces. We exploit
this result to derive an original correction method to improve the initial convergence rate. This
method is based on the sensitivity of the underlying Dirichlet problem w.r.t. the domain and turns
out to be a numerically cheaper and sharper alternative to standard extrapolation techniques.
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1. Introduction: Statement of the problem. Let (Xt)t∈[0,T ] be a d-dimen-
sional diffusion process. For a real valued functional ψ of the process, the numerical
estimation of QT := E[ψ

(
(Xt)t∈[0,T ]

)
] arises in a large class of problems. In financial

mathematics, QT corresponds to the price of an option with possibly path-dependent
pay-off ψ if one assumes the dynamics of the underlying asset is given by X; see,
e.g., [KS98]. For some ψ, QT is also the probabilistic representation of the solution
of a linear PDE. This is the well-known Feynman–Kac formula; see [Fre85]. In this
context, the probabilistic approximation is particularly adapted in large dimensions.

Concerning the numerical estimation of QT , the easiest case is ψ
(
(Xt)t∈[0,T ]

)
=

f(XT ), i.e. when QT corresponds to the price of a European option with pay-off f
or to the solution of a Cauchy problem in a PDE setting. This problem has been
analyzed in detail by Talay and Tubaro [TT90] and then by Bally and Talay [BT96a],
[BT96b]. These works provide an expansion of the weak error when the process is
discretized with the Euler scheme.

We are going to deal with the trickier case ψ
(
(Xt)t∈[0,T ]

)
= f(XT )1∀t∈[0,T ]: Xt∈D,

D being a given domain (i.e., an open connected subset) of R
d. This is an irregular

functional of the path. In this framework, QT corresponds to the price of a barrier
option (see Andersen and Brotherton-Ratcliffe [ABR96] for references on the subject)
or to the solution of a Cauchy–Dirichlet problem. Assuming the domain is smooth,
Gobet and the author [Gob00], [GM04] obtained bounds for the weak error associated
to the discretely killed Euler scheme but no error expansion. In this work, we derive
an error expansion for the special case of the Brownian motion (Black–Scholes setting)
and an intersection of half spaces (nonsmooth domains). Even though this context
can seem quite restrictive, it already induces a major difficulty w.r.t. the previous
works. Namely, for the proofs one has to handle the singularities of the heat kernel
in a cone.
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Let (Xt)t∈[0,T ] be a d-dimensional Brownian motion (BM) with dynamics

Xt = x + μt + σWt(1.1)

with fixed initial data x and terminal time T . Here W is a standard d-dimensional BM
defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with the usual assumptions
on (Ft)t∈[0,T ]. We assume σσ∗ to be positive definite.

Let D be a domain of R
d. Define τ := inf{t ≥ 0 : Xt �∈ D}. Consider a regular

time mesh of the interval [0, T ] with N time steps, (ti = ih)i∈[[0,N ]], h = T/N being
the step size. Introduce τN := inf{ti ≥ 0 : Xti �∈ D}. For a measurable nonnegative
function f and an initial point x ∈ D, denoting Ex[.] = E[.|X0 = x], we refer to the
quantity

Err(T, h, f, x) = Ex[f(XT )1τN>T ] − Ex[f(XT )1τ>T ]

as the weak error associated to the discrete time killing of X w.r.t. the domain D.
Note that since τN > τ a.s., Err(T, h, f, x) ≥ 0.

The discrete approximation of the exit time allows us to define a simple Monte
Carlo procedure to estimate the previous quantity. In this context, Err(T, h, f, x) can
thus be seen as the error associated to the discretization of the exit time.

Let us first recall some controls on Err(T, h, f, x) given in the literature. In
[GM04] and Chapter I of [Men04], we proved, in the wider framework of killed diffu-
sion processes approximated by their corresponding Euler schemes, that for smooth
domains and functions f satisfying either some support condition w.r.t. D or some
smoothness properties and compatibility conditions, one had that Err(T, h, f, x) was
upper and lower bounded at order 1/2 w.r.t. h. We also showed in [GM05] that, for a
large class of Itô processes, the upper bound holds true for an intersection of smooth
domains.

Still in [GM04], we stated an expansion and correction result for Err(T, h, f, x)
in the special case of the half space in a Brownian framework. In this work, we
extend these results to the case of an intersection of half spaces which is of particular
interest in mathematical finance since the domain of a multiasset barrier option is
often defined as a product domain.

Let D ⊂ R
d be a domain of the form D = ∩m

i=1D
i, m ∈ [[1, d]], where the

(Di)i∈[[1,m]] are d-dimensional half spaces with nonempty intersection. Under suitable
smoothness properties up to the boundary for v(t, x) := Ex[f(XT−t)1τ>T−t], we
obtain an error expansion at order 1

2 w.r.t. h for Err(T, h, f, x).
As emphasized in [GM04], the leading term in the weak error is still the one

associated to the overshoot of the killed process above the boundary (the overshoot
being defined as the distance to the boundary of the process when it exits the domain).

In the special case of Brownian motion, for half spaces or intersections of half
spaces forming a cone, we are able to obtain the asymptotic distribution of the over-
shoot, extending previous results obtained by Siegmund [Sie79]. To derive the error
expansion we then use usual techniques based on Taylor’s expansions. The smooth-
ness of v is needed for this last step. From a theoretical point of view, the main
difficulty is analytical and consists in having good smoothness properties of v up to
the boundary of a nonsmooth domain.

From a numerical point of view, the error expansion is the preliminary step for
a procedure that aims to improve the convergence rate. A standard one in this
framework is the Romberg extrapolation; see Talay and Tubaro [TT90] and section 3
for details.
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In this paper, we propose an alternative correction method based on the recent
work of Costantini, El Karoui, and Gobet [CKG03] concerning the sensitivity of the
Dirichlet problem w.r.t. the domain. Unlike the Romberg extrapolation, we do not
need to refine the time step and thus the procedure is computationally cheaper. Note
also that the empirical variance associated to the Monte Carlo estimator is by con-
struction smaller. We simply proceed to the simulation w.r.t. a more constrained
domain. Namely, instead of killing the process when it exits from D at one of the
discretization times, we kill it when it leaves Dh := ∩m

i=1D
i
h, Di

h := {y ∈ R
d :

y − Ci

√
hni ∈ Di}, where ni denotes the inner unit normal associated to the half

space Di. We will see that, for suitable positive constants Ci, this new choice of
discrete time killing allows us to remove the leading term in the error development.

We mention that in a one-dimensional setting, both the expansion result and
the correction procedure could be derived by direct computations from the work of
Broadie, Glasserman, and Kou [BGK99].

For the sake of completeness, let us also mention that concerning the weak ap-
proximation of killed or reflected diffusion processes, another approach to improve the
initial convergence rate can be found in Gobet [Gob01]. The techniques introduced
therein strongly rely on some explicit transition probabilities for the Brownian motion
in a half space and cannot be easily adapted to the orthant case.

Outline of the paper. We state our main results in section 2. Numerical results
are presented in section 3. They confirm that the correction procedure is rather
accurate and also numerically extends to a wider context for the underlying processes
and domains. The proofs of the main results are developed in section 4. In section
5 we give some smoothness properties of v in nonsmooth domains. We conclude
in section 6 evoking possible extensions and open problems. Appendices A and B
are respectively devoted to the proofs of technical points concerning the asymptotic
behavior of the overshoot and the killed heat kernel in a nonsmooth domain.

2. Main results.

2.1. Current working assumptions. We suppose our domain satisfies the
following assumption:

(D) D = ∩m
j=1D

j ∀j ∈ [[1,m]], Dj := {y ∈ R
d : yj > bj0}, where m ∈ [[1, d]].

We introduce the following:
(BM) The d-dimensional process (Xs)s≥0 has the form Xs := x + σ0Ws, where

W is a standard d-dimensional BM and σ0σ
∗
0 =

(
Σ 0
0 Id−m

)
is assumed to be

positive definite and Σ is a correlation matrix with coefficients (ρij)(i,j)∈[[1,m]]2 .
The integer m ∈ [[1, d]] is the same as in assumption (D).

Suppose (BM), (D) are in force. For a given positive measurable function f we
define ∀(t, y) ∈ [0, T ] × R

d, v(t, y) := Ey[f(XT−t)1τ>T−t].
In the following, for an open set U ⊂ R

d we denote by Ck+α
b (Ū), k ∈ N∗, α ∈

(0, 1), the space of functions possessing k bounded and uniformly α-Hölder continuous

spatial derivatives in Ū . We also introduce C
k/2+α/2,k+α
b ([0, T ] × Ū), k ∈ N∗, α ∈

(0, 1), the space of functions possessing k bounded and uniformly α-Hölder continuous
spatial derivatives in [0, T ]×Ū and 	k/2
 bounded and uniformly (1k=1+α)/2-Hölder
continuous time derivatives in [0, T ] × Ū . Continuity is intended w.r.t. the parabolic
metric; i.e., ∀(P,Q) = ((t, x), (t′, x′)) ∈ ([0, T ]× Ū)2, d(P,Q) = (|t− t′|+ |x−x′|2)1/2.

Now, under (BM), (D), we assume the following:
(S) The function f vanishes on the boundary. The associated function v belongs
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to C
1/2+α/2,1+α
b ([0, T ] × D̄) ∩ C1,2([0, T ) × D), α > 0; i.e., there exists a

constant C > 0, s.t.

|v|∞,[0,T ]×D̄ + |∇v|∞,[0,T ]×D̄ +

sup
(x, y) ∈ D̄2,

(s, t) ∈ [0, T ]2

|∇v(s, x) −∇v(t, y)|
|s− t|α/2 + |x− y|α + sup

(s, t) ∈ [0, T ]2, x ∈ D̄

|v(s, x) − v(t, x)|
|s− t| 1+α

2

≤ C.

In particular, (S) means that the function f is at least C1+α
b (D̄). We specify in

section 5 sufficient conditions on f to obtain (S) in special cases.
We mention that the previous assumptions on f , i.e., that it is a smooth function

vanishing on the boundary, are essentially technical. Numerically speaking they seem
to have little influence; see section 3 for details.

2.2. Statement of the main theorems.
Theorem 2.1 (error expansion for the correlated Brownian motion in an or-

thant). Assume (BM), (D), and (S). For h small enough the error writes

Err (T, h, f, x) = C1

√
h + o(

√
h)

with C1 = C0

∑m
i=1Ex[1τ i≤T,∧j∈[[1,m]]\{i}τj>τ i(∂yi

v(τ i, Xτ i))], τ i := inf{s ≥ 0 : Xi
s =

bi0}, C0 =
E0[s

2

τ+ ]

2E0[sτ+ ] , where s0 := 0,∀n ≥ 1, sn :=
∑n

i=1 G
i, the Gi being i.i.d. standard

centered normal variables and τ+ := inf{n ≥ 0 : sn > 0}.
One knows from [Sie79] and [AGP95] that

E0[s
2

τ+ ]

2E0[sτ+ ] = − ζ(1/2)√
2π

= 0.5823 . . . , where

ζ denotes Riemann’s Zeta function.
Under our current assumptions (BM), (D), (S), the next theorem improves the

accuracy of the numerical procedure by removing the term of order 1
2 in the error.

For this, the simulation of (Xti)0≤i≤N is performed in a modified domain, namely,

Dh := {y ∈ R
d : ∀i ∈ [[1,m]], yi > bi0 + C0

√
h} instead of D := {y ∈ R

d : ∀i ∈
[[1,m]], yi > bi0}.

We denote τNDh (resp., τDh) the discrete (resp., continuous) exit time from this
domain Dh.

Theorem 2.2. Assume (BM), (D), (S). For h small enough we have

Err′(T, h, f, x) := Ex[f(XT )1τN

Dh
>T ] − Ex[f(XT )1τ>T ] = o(

√
h).

Remark 2.1. Consider now the more general case Xs = x + μs + σWs, D :=
{x ∈ R

d : (Ax)i > bi ∀i ∈ [[1,m]]}, where A = (a1 a2 . . . am)∗ is of rank m. Using
Girsanov’s theorem and a rotation of coordinates using a matrix Λ (with the ith row
equal to σ∗ai

‖σ∗ai‖ for i ∈ [[1,m]] and the remaining rows forming an orthonormal basis

of {Span((σ∗aj)j∈[[1,m]])}⊥) preserving the Wiener measure, one obtains that for a
Borelian bounded function f

Err(T, h, f, x) = E0[f
x
0 (W̌T )(1τN

Dx
0
>T − 1τDx

0
>T )],

where W̌ is a centered d-dimensional Brownian motion with covariance matrix σ0σ
∗
0 =(

Σ 0
0 Id−m

)
, and ∀(i, j) ∈ [[1,m]]2, Σij = 〈σ∗ai, σ

∗aj〉/(‖σ∗ai‖‖σ∗aj‖). The domain

Dx
0 writes Dx

0 := ∩m
j=1D

x,j
0 , where ∀ j ∈ [[1,m]], Dx,j

0 := {y ∈ R
d : yj > bx,j0 }, bx,j0 =
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bj−aj ·x
‖σ∗aj‖ . Denoting τDx,j

0
:= inf{s ≥ 0 : W̌s �∈ Dx,j

0 }, τN
Dx,j

0

:= inf{si ≥ 0 : W̌si �∈
Dx,j

0 }, we have τDx
0

:= ∧m
j=1τDx,j

0
, τNDx

0
:= ∧m

j=1τ
N
Dx,j

0

. The function fx
0 writes fx

0 (y) =

exp(σ−1μ · Λ−1y − ‖σ−1μ‖2

2 T )f(x + σΛ−1y).

Introduce, ∀(t, y) ∈ [0, T ]×Dx
0 , v

x
0 (t, y) = Ey[f

x
0 (W̌T−t)1τDx

0
>T−t]. If assumption

(S) is fulfilled by vx0 (one could weaken the boundedness condition in (S) to an
exponential growth condition), then the former error expansion remains valid. We can
as in the previous theorem remove the leading term of the error by simulating w.r.t.
Dh := {x ∈ R

d : (Ax)i > (b + C0e
√
h)i, i ∈ [[1,m]]}, e = (‖σ∗a1‖, . . . , ‖σ∗am‖)∗.

Remark 2.2. In the half space case, i.e., for m = 1, the above transformation
illustrates that the problem is essentially one-dimensional. This last aspect still holds
true for a domain delimited by parallel hyperplanes. This is the reason why we did
not take this case into consideration in (D).

3. Numerical results. In this section we provide some numerical tests and
compare the method from Theorem 2.2 with the usual Romberg correction that we
briefly recall.

From Theorem 2.1, we derive 1√
2−1

E[f(XT )(
√

21τ2N>T−1τN>T )]−E[f(XT )1τ>T ]

= o(
√
h). The Romberg extrapolation technique consists in approximating by a Monte

Carlo method the first term in the left-hand side of the previous equation.
We point out that our correction is numerically less expensive than the Romberg

procedure that requires refining the time step. The Monte Carlo estimator deriving
from Theorem 2.2 also has by construction a smaller empirical variance.

Bidimensional cone. We consider a two-dimensional risky asset following the

Black–Scholes–Merton dynamics, S1
t = S1

0 exp(σ1W
1
t +(r−σ2

1

2 )t), S2
t = S2

0 exp(σ2(ρW
1
t

+(1−ρ2)1/2W 2
t )+(r− σ2

2

2 )t), where W = (W 1,W 2) is a standard bidimensional BM.
For a fixed final time T , a given strike K, and threshold B, put D := {(s1, s2) ∈ R

2 :
s1 > B, s2 > B}. We are interested in computing E[e−rT1τ>Tϕ(ST )], where ϕ is a
smooth approximation of the indicator function that one expects in the case of a digi-
tal barrier option. We take ϕ(s) := 1�

K,ε(s1)1
�
K,ε(s2) with 1�

K,ε(s1) = 0 if s1 ≤ K− ε,
1�
K,ε(s1) = 1 if s1 ≥ K, and in between we use the smooth interpolating function

1�
K,ε(s1) = 10ε−3(s1 − (K − ε))3 − 15ε−4(s1 − (K − ε))4 + 6ε−5(s1 − (K − ε))5. As

soon as K > B + ε, the previous function ϕ satisfies conditions that guarantee (S)
is fulfilled up to an exponential growth condition; see assumption (F), section 5.2,
Proposition 5.3, and Remark 2.1.

For r = .04, σ1 = σ2 = .3, ρ = .5, S1
0 = S2

0 = 100 = K, B = 90, T = 1, ε = 5 we
compute the standard Monte Carlo approximation, the Romberg approximation, and
the correction proposed in Theorem 2.2 for 106 paths (see Figure 1). The reference
value has been computed with 106 paths and 15000 times steps with the Monte Carlo
procedure.

The width of the 95% confidence interval is essentially equal to 1.5 10−3. Fur-
thermore we also observe that the associated empirical variance is lower than the one
of the Romberg extrapolation.

From a numerical point of view a natural question concerns the behavior of the
o(
√
h) appearing in Theorem 2.2. We have not experimentally emphasized a constant

exponent; anyhow it turns out that the numerical rest is smaller than O(h3/2).

Experiments in higher dimensions. Set d ∈ N∗, d > 2. Let Xs = x + σ0Ws,
where W is a d-dimensional standard BM and ∀(i, j) ∈ [[1, d]]2, (σ0σ

∗
0)ij = 1i=j +
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N = 30 .128099 .0828428 .0815582 .0843068
N = 60 .114797 .0837263 .0834953 .0843068
N = 90 .108789 .0835279 .0835393 .0843068
N = 120 .105514 .0838578 .083296 .0843068
N = 150 .102956 .0840968 .082859 .0843068
N = 180 .101663 .0839845 .0836351 .0843068
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N = 120 .0943122 .0768126 .128758 .0771784
N = 150 .0922929 .0770106 .124373 .0771784
N = 180 .0912674 .0769148 .119289 .0771784

Fig. 2.

α
d−11i �=j , α ∈ [0, 1), so that σ0σ

∗
0 has dominant diagonal and is thus positive definite.

We take D := {x ∈ R
d : xi > 0 ∀i ∈ [[1, d]]} and we are interested in approximating the

quantity Ex[f(XT )1τ>T ], where ∀x ∈ D, f(x) =
∏d

i=1 1K<Si
0 exp(sxi). Here S0 ∈ R

d

is a fixed vector and s is a fixed scale factor. Note that f is not as smooth as required
in (S).

The results in Figure 2 have been obtained with d = 5, T = 1, K = 100, α = s =
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.05, Si
0 = 95 exp(sxi), xi = .85 ∀i ∈ [[1, d]]. The reference value has been computed

with the standard Monte Carlo procedure for 2 × 106 paths and 2 × 104 steps. We
used 106 paths for the other Monte Carlo computations.

The size of the 95% confidence interval is essentially equal to 1.5 10−3.
Even though we are not under the assumptions of the main theorems, the correc-

tion technique gives a good result. It is still sharper and provides smaller empirical
variance than the Romberg extrapolation.

Numerical correction in a non-Brownian setting. We introduce in this
section an algorithm that aims to extend the correction method of Theorem 2.2 to
the diffusion case and to a wider class of domains. Namely, we assume in the following
that D is a Lipschitz domain. In particular, the inner normal unit is defined a.e. on
∂D. Let (Xs)s≥0 be a diffusion process with dynamics

Xt = x +

∫ t

0

b(Xs)ds +

∫ t

0

σ(Xs)dWs,(3.1)

where b, σ are bounded and Lipschitz continuous. We approximate it by its Eu-
ler scheme XN

t = x +
∫ t

0
b(XN

φ(s))ds +
∫ t

0
σ(XN

φ(s))dWs, φ(s) := inf{ti ≥ 0 : ti ≤
s < ti+1} and define the discrete exit time τN := inf{ti ≥ 0 : XN

ti �∈ D}. Note
that the Euler scheme is locally in time nothing else but a Brownian motion with
constant drift and diffusion coefficients. Thus, on the set τN > ti, i ∈ [[0, N −
1]], and for XN

ti in a neighborhood of the boundary s.t. Π∂D is a.e. well defined,
mimicking the procedure introduced in Theorem 2.2, we heuristically extend the
correction by killing the Euler scheme in ti+1 whenever it is outside Dh(XN

ti ) :=

D\V∂D(C0

√
h‖σ∗(XN

ti )n(Π∂D(XN
ti ))‖), where ∀a > 0, V∂D(a) := {y ∈ R

d : d(y, ∂D) ≤
a}.

From an algorithmic point of view, the computation of n(Π∂D(XN
ti )) can be very

demanding. Anyhow, on {τN > ti} for a given η > 0 s.t. XN
ti ∈ D\V∂D(h1/2−η) we

derive from Bernstein’s inequality (cf. Lemma 4.1) and standard computations that
P[τN = ti+1|Fti ] ≤ C exp(−ch−η). It is therefore useless to refine the simulation
procedure for those events.

We sum up this heuristic correction in the following algorithm.
Algorithm 3.1 (empirical correction in a diffusion framework).

- Assume X follows the dynamics of (3.1).
- Fix η > 0 and set

(i) XN
0 = x.

(ii) ∀i ∈ [[0, N − 1]] s.t. τN > ti, X
N
ti+1

:= XN
ti + b(XN

ti )h + σ(XN
ti )(Wti+1 −Wti).

- If Xti ∈ V∂D(h1/2−η) and Xti+1
�∈ Dh(XN

ti ): Kill the path.

- If Xti �∈ V∂D(h1/2−η) and Xti+1 �∈ D: Kill the path (rare event).
- If i + 1 �= N and no killing, iterate step (ii).

We first give some results that illustrate that the proposed extension has a good
numerical behavior. Namely, we take b(x) = (bi(x))i∈[[1,d]] = (sin(xi))i∈[[1,d]], σ(x) =
(σij(x))(i,j)∈[[1,d]]2 = (1i=j + sin(xi)/(2(d − 1))1j �=i)(i,j)∈[[1,d]]2 in (3.1) and a domain
corresponding to a hypercube. For f(x) = 1 (corresponding to the estimation of
the complementary distribution function of the exit time), d = 3, D = (−1, 1.5) ×
(−1.5, 1)× (−2, 2.5), T = 1, X0 = 0, we compute a reference value using the Romberg
technique with N = 12000 and 2 × 106 paths. We obtain for 106 paths the results in
Figure 3.

The size of the 95% confidence interval is still essentially equal to 1.5 10−3. For
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this example, our correction is significantly more accurate.
We conclude this subsection giving a less favorable case. Take X a standard

bidimensional BM, D = B(0, 1) ⊂ R
2, and f(y) = ( 1

2 − ‖y‖2)+. The 95% confidence
interval associated to the reference value computed for NMCR = 2× 106, NR = 14400
by a standard Monte Carlo method is IC(NMCR, NR) = [.0203672, .0204871].

With NMC = 106 paths, the previous correction algorithm gives the following:

N = 15 N = 30 N = 60

IC (NMC,N) [.019911, .0202323] [.01999915, .020314] [.0200514, .0203743]

N = 120 N = 240 N = 480

IC (NMC,N) [.0200527, .0203756] [.0199975, .0203202] [.0199531, .0202749]

Even though most of the intervals IC(NMC , N) do not intersect IC(NMCR, NR), they
are quite close to it. This is promising because the computational time employed to
get the above estimates is significantly reduced w.r.t. to the one needed to obtain
IC(NMCR, NR). Furthermore, the fact that the quantity to estimate is small brings
additional numerical difficulty.

4. Proof of the main results.

4.1. Additional notation and usual controls. For smooth functions g(t, x),
the notation Hg(t, x) stands for the Hessian matrix of g w.r.t. x. Time derivatives are

denoted by ∂β
t g(t, x), β ∈ N∗.

We will keep the same notation C (or C ′) for all finite, nonnegative constants
which will appear in our computations: they may depend on D, T , σ0, or f , but they
will not depend on the number of time steps N and the initial value x. We reserve the
notation c and c′ for constants that are also independent of T and f . Other possible
dependences for the constants are explicitly indicated.

In the following Opol(h) (resp., O(h)) stands for every quantity R(h) such that
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∀n ∈ N, for some C > 0, one has |R(h)| ≤ Chn (resp., |R(h)| ≤ Ch) (uniformly in
x).

Lemma 4.1 (Bernstein’s inequality). Assume (BM). Consider two stopping
times S, S′ upper bounded by T with 0 ≤ S′ − S ≤ Δ ≤ T . Then for any p ≥ 1, there
are some constants c > 0 and C, such that for any η ≥ 0, one has a.s.

P[ sup
t∈[S,S′]

‖Xt −XS‖ ≥ η
∣∣ FS ] ≤C exp

(
−c

η2

Δ

)
,

E[ sup
t∈[S,S′]

‖Xt −XS‖p
∣∣ FS ] ≤CΔp/2.

For a proof of the first inequality we refer to Chapter 3, section 3 in [RY99]. The
other inequality easily follows from the first one or from the BDG inequalities.

4.2. Proof of Theorem 2.1 (expansion result). Let us briefly outline the
scheme of the proof. First, we write the error as a sum of increments of the function
v. Using Taylor expansions, we then introduce the overshoot terms of the process in
the previous development (the overshoot being defined as the distance of the process
to the domain when it exits the domain). We finally conclude using the asymptotic
independence of the rescaled overshoot, as well as its integrability properties, and the
discrete exit time.

Step 1: Decomposition of the error. Recalling that the function v vanishes
on Dc, we write

Err(T, h, f, x) = Ex[v(T ∧ τN ,ΠD̄(XT∧τN ))] − v(0, x)

=

N−1∑
i=0

Ex[
(
v(ti+1 ∧ τN ,ΠD̄(Xti+1∧τN )) − v(ti ∧ τN ,ΠD̄(Xti∧τN ))

)
]

=

N−1∑
i=0

Ex[1τN>ti

(
v(ti+1,ΠD̄(Xti+1)) − v(ti, Xti)

)
].

Introduce ∀t ∈ [0, T ), τt := inf{s ≥ t : Xs �∈ D}. Recall also that the function v
satisfies the PDE{

(∂tv + 1
2 tr(Hvσ0σ

∗
0))(t, y) = 0, (t, y) ∈ [0, T ) ×D,

v(t, .)|∂D = 0, t ∈ [0, T ], v(T, y) = f(y), y ∈ D̄.
(4.1)

Hence, (v(s ∧ τt, Xs∧τt))s∈[t,T ] is a martingale. We have

Err(T, h, f, x) =

N−1∑
i=0

Ex[1τN>ti1τti<ti+1(v(ti+1,ΠD̄(Xti+1)) − v(τti , Xτti
))].

Define now ∀j ∈ [[1,m]], τ jt := inf{s ≥ t : Xj
s = bj0}. Since P[τ jti = τkti |Fti ] =

0, j �= k, one gets P[Xti+1 �∈ D|Fti ] =
∑m

j=1 E[1τti<ti+1,τti=τj
ti

P[Xti+1 �∈ D|Fτj
ti

]|Fti ]

≥ 1
2P[τti < ti+1|Fti ]. Hence,

N−1∑
i=0

Px[τN > ti, τti ≤ ti+1] ≤ 2

N−1∑
i=0

Px[τN = ti+1] ≤ 2.(4.2)
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This last identity will be frequently used from now on to isolate the remainders; see,
e.g., the last equality below.

Using (S) and Lemma 4.1 we obtain

Err(T, h, f, x) =

N−1∑
i=0

Ex[1τN>ti,τti<ti+1
{∇v(τti , Xτti

) · (ΠD̄(Xti+1) −Xτti
)

+o(h1/2)}] =

N−1∑
i=0

m∑
j=1

Ex[1τN>ti,τ
j
ti
<ti+1,τti=τj

ti

∂xjv(τ
j
ti , Xτj

ti

)(Xj
ti+1

− bj0)
+] + o(h1/2).

For the last equality we used the explicit expression of the projection on D̄, namely,
ΠD̄(y) = (b10 + (y1 − b10)

+, . . . , bm0 + (ym − bm0 )+, ym+1, . . . , yd) and also that ∀(j, k) ∈
[[1,m]]2, j �= k, ∀s ∈ [0, T ], ∂xk

v(s, y)|y∈Rd:yj=bj0
= 0. This is a simple consequence

of the fact that v vanishes on Dc. By symmetry, assumption (S), and the previous
arguments we derive

Err(T, h, f, x) =

m∑
j=1

Ex[1τN≤T∂xjv(τ
N ,ΠD̄(XτN ))(Xj

τN − bj0)
−] + R + o(h1/2),

(4.3)

where

|R| :=

∣∣∣∣∣∣
N−1∑
i=0

m∑
j=1

Ex[1τN>ti1τj
ti
<ti+1,τti �=τj

ti

∂xj
v(τ jti ,ΠD̄(Xτj

ti

))(Xj
ti+1

− bj0)
−]

∣∣∣∣∣∣
≤ C

√
h

N−1∑
i=0

m∑
j=1

∑
k∈[[1,m]], k �=j

Ex[1τN>ti1τj
ti
<ti+1,τti=τk

ti

|∂xjv(τ
j
ti ,ΠD̄(Xτj

ti

))|].

Define ∀η > 0, V jk(hη) := {y ∈ R
d : |yl − bl0| ≤ hη, l ∈ {j, k}}. Put also COjk :=

{y ∈ R
d : yl = bl0, l ∈ {j, k}}. In short, V jk(hη) is a neighborhood of width hη of the

corner COjk. Note that ∀(t, y) ∈ [0, T ]×COjk ∩ D̄, ∇v(t, y) = 0. Thus, from Lemma
4.1, assumption (S), and (4.2) we derive that for h small enough

|R| ≤ C
√
h

N−1∑
i=0

m∑
j=1

∑
k∈[[1,m]], k �=j

Ex[1τN>ti1Xti
∈V jk(h1/4)1τj

ti
<ti+1,τti=τk

ti

×|∂xjv(τ
j
ti ,ΠD̄(Xτj

ti

)) − ∂xjv(τ
j
ti ,ΠD̄(ΠCOjk(Xτj

ti

)))|] + Opol(h)

≤ C
√
h

N−1∑
i=0

m∑
j=1

∑
k∈[[1,m]], k �=j

Ex[1τN>ti1X
τ
j
ti

∈V jk(h1/8)1τj
ti
<ti+1,τti=τk

ti

×|Xτj
ti

− ΠCOjk(Xτj
ti

)|α] + Opol(h) = O(h
1
2+α

8 ) := o(h1/2).

Plugging this last estimate into (4.3), we have

Err(T, h, f, x) =

m∑
j=1

Ex[1τN≤T∂xjv(τ
N ,ΠD̄(XτN ))(Xj

τN − bj0)
−] + o(h1/2)

:=

m∑
j=1

Ej + o(h1/2).

(4.4)
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Remark 4.1. We emphasize that, up to now, we have not used the specific Brow-
nian dynamics of the process X. The expansion (4.4) is valid for the error associated
to the discretization of a diffusion process approximated by its discretely killed Euler
scheme, provided that the process is nonadherent to the boundary and that (S) is
fulfilled for the associated function v.

Step 2: Use of the asymptotic independence of the hitting time and
the overshoot in the Brownian case. We now detail the asymptotic behavior of
E1. The other terms could be handled in exactly the same way. The following lemma,
whose proof is postponed to Appendix A and strongly relies on the Brownian setting,
is the main tool needed.

Lemma 4.2. Assume (BM), (D). Put ∀i ∈ [[1,m]], τ i := inf{t ≥ 0 : Xi
t =

bi0}, τN,i := inf{tj := jh ≥ 0 : Xi
tj ≤ bi0}. One has ∀y ∈ R

+,∗,

Px[
√
h
−1

(X1
τN − b10)

− ≥ y, τN ≤ t, τN,1 ≤ ∧m
i=2τ

N,i]
−→
N

(1 −H(y))Px[τ1 ≤ t, τ1 < ∧m
i=2τ

i],

where, using the notation of Theorem 2.1, H(y) := (E0[sτ+ ])−1
∫ y

0
dzP0[sτ+ > z]. The

limit is uniform on [0, T ].

In order to isolate the rescaled overshoot ZN :=
√
h
−1

(X1
τN − b10)

− in E1, we
rewrite the components X2, . . . , Xm, of the correlated part of X in terms of X1 and an
additional correlated (m−1)-dimensional BM X̃ independent of X1 and (Xi)i∈[[m+1,d]].

Namely, ∀i ∈ [[2,m]], Xi
s = ρ1iX

1
s +(1−ρ2

1i)
1/2X̃i−1

s , X̃i−1
0 = (xi

0−ρ1ix
1
0)/(1−ρ2

1i)
1/2.

Set also (ρ1.X
1
s + (1− ρ2

1.)
1/2X̃ .−1

s )2,m := (ρ12X
1
s + (1− ρ2

12)
1/2X̃1

s , . . . , ρ1mX1
s + (1−

ρ2
1m)1/2X̃m−1

s ) = (X2
s , . . . , X

m
s ) := X2,m

s , Xm+1,d
s := (Xm+1

s , . . . , Xd
s ).

For notational convenience we introduce ∀y ∈ R
d−1, ΠD̄2,d(y) := (b20 + (y1 −

b20)
+, . . . , bm0 + (ym−1 − bm0 )+, ym, . . . , yd−1). The term E1, defined in (4.4), writes

E1 =
√
hEx[ZN1τN≤T∂x1v(τ

N , b10,ΠD̄2,d((ρ1.(b
1
0 −

√
hZN )

+(1 − ρ2
1.)

1/2X̃ .−1
τN )2,m, Xm+1,d

τN ))]

=
√
hEx[ZN1τN≤T∂x1v(τ

N , b10,ΠD̄2,d((ρ1.b
1
0 + (1 − ρ2

1.)
1/2X̃ .−1

τN )2,m, Xm+1,d
τN ))] + R1,

where

R1 :=
√
hEx[ZN1τN≤T

(
∂x1

v(τN , b10,ΠD̄2,d((ρ1.(b
1
0 −

√
hZN )

+(1 − ρ2
1.)

1/2X̃ .−1
τN )2,m, Xm+1,d

τN ))

−∂x1v(τ
N , b10,ΠD̄2,d((ρ1.b

1
0 + (1 − ρ2

1.)
1/2X̃ .−1

τN )2,m, Xm+1,d
τN ))

)
].

Under (S) the function ∂x1v is continuous and bounded. Proposition 6 from [GM04]
gives the uniform integrability of ZN on the event τN,1 ≤ T . We thus derive from
Lemma 4.2 by convergence in law that for h small enough

E1 =
√
hE[Z]Ex[1τ1≤T,∧m

j=2
τj>τ1∂x1v(τ

1, Xτ1)] + o(
√
h) + R1,

where the distribution function of Z is given by H defined in Lemma 4.2. Recalling

that E[Z] =
E[s2

τ+ ]

2E[sτ+ ] = C0, we obtain E1 =
√
hC0E[1τ1≤T,∧m

j=2
τj>τ1∂x1v(τ

1, Xτ1)] +

o(
√
h) + R1. Now, from assumption (S) we have |R1| ≤ Ch

1+α
2 Ex[Z1+α

N 1τN,1≤T ].

Thus, by Proposition 6 in [GM04] we have R1 = O(h
1+α

2 ), which completes the proof.
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Remark 4.2. The controls in the previous proof as well as the residual terms
appearing in the computations are locally uniform w.r.t. the domain D.

Remark 4.3. To conclude this section, we would like to emphasize that the main
difficulty in applying the previous theorem consists in finding conditions on f that
guarantee that (S) is fulfilled. We provide some sufficient conditions in section 5 but
in all generality this is far from easy.

4.3. Proof of Theorem 2.2 (correction result). In this subsection we detail
how the arguments from Costantini, El Karoui, and Gobet (see [CKG03]) can be
employed to prove our correction result. We write

Err′(T, h, f, x) = Ex[f(XT )1τN

Dh
>T ] − Ex[f(XT )1τ

Dh>T ]

+Ex[f(XT )1τ
Dh>T ] − Ex[f(XT )1τ>T ] := E1 + E2.

From Remark 4.2 we derive that one could show just like in Theorem 2.1 that even
though the domain depends on h we have E1 = C1

√
h + o(

√
h), where C1 denotes

the constant introduced in the quoted theorem. For E2 we adapt some ideas from
[CKG03] concerning the sensitivity of the Dirichlet problem w.r.t. the domain.

For a given c ∈ R
d, let us denote ∀η > 0, Dη := {y ∈ R

d : y − ηc ∈ D}.
We define τDη

:= inf{s > 0 : Xs �∈ Dη} and we introduce ∀ x ∈ D the mapping
J x
c : η −→ Ex[f(XT )1τDη>T ]. We show below that under the assumptions of Theorem

2.2, the mapping J x
c is differentiable in η = 0 and for c = (1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
d−m

), one has

∂ηJ x
c (η)|η=0 = −Ex[∇v(τ,Xτ ).c1τ<T ]

= −
m∑
i=1

Ex[∂xiv(τ
i, Xτ i)1τ i≤T,∧j �=iτj>τ i ].

(4.5)

From (4.5) we then derive that E2 = J x
c (C0

√
h)−J x

c (0) = ∂ηJ x
c (0)C0

√
h+ o(

√
h) =

−C1

√
h + o(

√
h) which proves the theorem.

Proof of (4.5). Let us define Xη
s := Xs − ηc, τD,η = inf{s > 0 : Xη

s �∈ D}.
Note that τDη

= τD,η. Denoting Δη := Ex[f(Xη
T + ηc)1τD,η>T ] − v(0, x), we have to

identify the limit of Δη/η as η −→ 0. We have

Δη = Ex[f(Xη
T + ηc)1τD,η>T ] − Ex[f(Xη

T )1τD,η>T ]

+Ex[f(Xη
T )1τD,η>T − v(T ∧ τD,η, XT∧τD,η )]

+Ex[v(T ∧ τD,η, XT∧τD,η )] − v(0, x) := Δη,1 + Δη,2 + Δη,3.

Since (Mt)t∈[0,T ] := (v(t ∧ τ,X0,x
t∧τ ))t∈[0,T ] is a martingale and τD,η < τ , we readily

get Δη,3 = 0.
Note that f(Xη

T )1τD,η>T = v(T ∧ τD,η, Xη
T∧τD,η ). One also has τDη

−→
η−→0, a.s

τ .

From assumption (S), v is continuously differentiable. Thus, one gets limη−→0 Δη,2/η
= −Ex[∇v(T ∧ τ,XT∧τ ).c].

On the other hand, since we assumed f to be continuously differentiable we obtain
limη−→0 Δη,1/η = Ex[∇f(XT ).c 1τ>T ]. Recalling ∀x ∈ D̄, v(T, x) = f(x) we write

∂ηJ x
c (η)|η=0 = −Ex

[(
∇v(T ∧ τ,XT∧τ ) −∇f(XT )1τ>T

)
.c
]

= −Ex[1τ≤T∇v(τ,Xτ ).c]

which for c = (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
d−m

) proves (4.5).
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Remark 4.4. We mention that in the special case of a half space, an alternative
proof based on the explicit expression of the hitting time densities is possible; see
Chapter III of [Men04].

5. Some smoothness properties of v under (D): Sufficient conditions to
fulfill (S). In the whole section we assume (BM), (D). We deal only with the case
d ≥ 2,m ≥ 2. Indeed, for m = 1 the domain D is smooth and standard results, based
on the explicit expression of the density of the killed BM, can be used to derive the
required smoothness in (S).

This section is divided into two parts. In subsection 5.1 we recall the explicit
expression of the killed heat kernel under (D) and also state a control of its derivatives
in dimension 2. Using these results and some standard PDE techniques we then derive
in subsection 5.2 some sufficient conditions to get (S) when d = m = 2.

5.1. Explicit expression of the heat kernel under (D) and associated
controls. Note first that

Px[τ > t,Xt ∈ [y, y + dy)]/dy = |det(σ−1
0 )|Px̃[τ̃ > t, X̃t ∈ [z, z + dz)]/dz,(5.1)

where x̃ = σ−1
0 x, z = σ−1

0 y, X̃t = x̃ + Wt with W standard BM, D̃ := {z ∈ R
d :

(σ0z)i > bi0}, and τ̃ := inf{s ≥ 0 : X̃s �∈ D̃}.
Equation (5.1) gives the expression of the killed density of X under (D) in func-

tion of the density of the killed standard BM in a convex cone D̃ that writes as an
intersection of half spaces. The domain D̃ is piecewise C∞ and hence the trace of
the cone on the unit sphere S

d−1 with center at the vertex of D̃ is a normal domain
in the sense of Chavel [Cha84] (see definition on page 16 of this reference). Denoting
this trace by Γ := D̃ ∩ S

d−1, we derive from page 169 of the above reference that
we have a Sturm–Liouville spectral decomposition of the Laplace–Beltrami operator
for the elliptic Dirichlet problem on Γ; i.e., the normalized eigenfunctions (mj)j∈N∗

of ΔSd−1 form an orthonormal basis of L2(Γ) and the eigenvalues (λj)j∈N∗ are s.t.
0 < λ1 < λ2 ≤ λ3 ≤ · · · ↑ +∞.

As a direct consequence of (2.2) in Bañuelos and Smits [BS97], we derive the
following proposition.

Proposition 5.1. Let D̃ be a cone with origin 0 that writes as a nonempty
intersection of half spaces. One has

∀(t, x, y) ∈ R
+∗ × D̃2, x = rθ, y = ρη, (θ, η) ∈ (Sd−1)2, (ρ, r) ∈ (R+∗)2,

Px[X̃t ∈ dy, τ̃ > t] =
e−

ρ2+r2

2t

t(ρr)
d
2−1

+∞∑
j=1

Iνj

(ρr
t

)
mj(θ)mj(η)ρ

d−1dρdσ(η)

:= qt(x,y)dy, νj = (λj + (d2 − 1)2)1/2,

where λj (resp., mj) are the eigenvalues (resp., the normalized eigenfunctions) of
ΔSd−1 on Γ for the elliptic Dirichlet problem and Iν denotes the modified Bessel func-
tion of order ν.

Remark 5.1. The result of Proposition 5.1 is standard in the bidimensional case.
It is in that case a simple extension of the well-known method of images that consists,
for special angles, in writing the killed heat kernel as a suitable sum of standard
Gaussian kernels alternating heat sources and sinks in order to satisfy the boundary
conditions. We refer to Carslaw and Jaeger [CJ59] or to Iyengar [Iye85] for details.
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Remark 5.2. In the special case d = m = 2 the eigenvalues (resp., the normalized

eigenfunctions) write λj = (πj/ω)2 (resp., mj(θ) =
√

2
ω sin(πjω arg(θ))), where ω ∈

(0, 2π) is the angle of the cone. For m > 2, we do not have such an explicit expression,
but analysis techniques (see Weyl’s lemma [Cha84, p. 172]) give some controls on the
behavior of these eigenvalues; see also Remark B.2.

Lemma 5.2 (radial control of the derivatives when d = m = 2). For a given
ω ∈ (0, π), let D̃ := {x = (r cos θ, r sin θ) ∈ R

2 : r > 0, θ ∈ (0, ω)}. Note
that D̃ is a convex cone. ∀ R > 0, T > 0, there exist positive constants C :=
C(R, T ), c, ξ s.t. ∀(t, x, y) ∈ (0, T ] × (D̃ ∩ B(0, R)) × D̃, x = (r cos θ, r sin θ), y =
(ρ cos η, ρ sin η), (θ, η) ∈ (0, ω)2, (ρ, r) ∈ (R+∗)2, one has

qt(x, y) + |∂tqt(x, y)| + |∇xqt(x, y)| ≤
C

tξ
exp

(
−c

|r − ρ|2
t

)

and ∃α0 := α0(ω) > 0,

sup
(x, x′) ∈ (D̃ ∩ B(0, R))2

|∇qt(x, y) −∇qt(x
′, y)|

|x− x′|α0
≤ C

tξ
exp

(
−c

|r − ρ|2 ∧ |r′ − ρ|2
t

)
.

The proof of the above lemma is postponed to Appendix B.

5.2. Derivation of (S) when d = m = 2. In Remark 5.1 we mentioned
that for special angles of the cone, one could express the killed heat kernel q in
terms of a sum of standard Gaussian kernels. To be precise, this can be done when
the angle of the cone writes ω = π/m0,m0 ∈ N∗. For our original problem (4.1),
one can establish a connection between the killed heat kernel q and the density of
the killed BM in the orthant thanks to (5.1). One therefore deduces that for some
particular correlation coefficients, corresponding to angles that have the previous form,
under suitable assumptions on the final condition f one has the “usual” smoothness
properties for the solution v of problem (4.1), and hence (S) is satisfied. We now
give a smoothness result for the solution v of (4.1) for general correlation coefficients.
Using the notation of section 2.1, we introduce the following assumption:

(F) The function f ∈ C2+α
b (D̄), α > 0, f |∂D = Tr(Hfσ0σ

∗
0)|∂D = 0, and

d(supp(f), b0) ≥ 2ε > 0.
Proposition 5.3. Assume (D), (BM), (F). For D := {x ∈ R

2 : x1 > b10, x2 >

b20}, σ0σ
∗
0 =

(
1 ρ
ρ 1

)
, ρ ∈ (−1, 1), there exists α′ > 0 s.t. the unique solution v of (4.1)

belongs to C
1/2+α′/2,1+α′

b ([0, T ] × D̄). In particular, (S) is satisfied.
Proof. From Proposition 5.1 we derive that problem (4.1) has a unique solution

v ∈ C1,2([0, T ) × D) ∩ C0
b ([0, T ] × D̄), where C0

b ([0, T ] × D̄) denotes the space of
bounded continuous functions on [0, T ] × D̄.

Let us now note that as a consequence of the support condition in (F) and the

radial control of Lemma 5.2 there exists α0 > 0 s.t. v ∈ C
1/2+α0/2,1+α0

b ([0, T ] ×
B(b0, ε) ∩ D̄). Choose now D1 to be a C3 domain s.t. d(D̄1, b0) ≥ ε/3 > 0 and {x ∈
R

2 : |x − b0| ≥ ε, x ∈ ∂D} = {x ∈ R
2 : |x − b0| ≥ ε, x ∈ ∂D1}. From the techniques

used in Chapter IV of Friedman [Fri64] to prove the boundary Schauder estimates and

Theorem 5.2 in Chapter 4 in [LSU68], we derive that v ∈ C
1+α/2,2+α
b ([0, T ] × D̄1).

Put α′ := α ∧ α0. The proof is complete.

6. Conclusion. In this paper we obtained an expansion result for the weak
error in the special case of a discretely killed Brownian motion in an orthant provided
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we had smoothness properties of the solution of the underlying Cauchy–Dirichlet
problem. We exploited the explicit asymptotic distribution of the overshoot above
the boundary that had previously been characterized as the leading term of the weak
error; see [GM04]. Finally, the correction method we introduced has given promising
results. A natural question concerns its possible extension to a wider framework than
the Brownian one. The theoretical analysis of Algorithm 3.1 introduced to this end
will concern further research.

The main motivation that led us to deal with conical cases comes from mathe-
matical finance. Indeed, with multiassets, one often defines the domain of a barrier
option as a product domain. For the moment we are only able to treat in whole
generality the case of bidimensional domains in a Black–Scholes framework.

Concerning further extensions in bigger dimensions, the key point concerns the
smoothness properties of the underlying function v(t, x) = Ex[f(XT−t)1τ>T−t]. Any-
how, for some special angles, or equivalently for special correlation coefficients, we can
extend the method of images to express the transition density as a sum of standard
Gaussian kernels. In that case, under suitable assumptions on f , we have the usual
smoothness properties on v, and both the expansion and correction results hold true.

Let us mention that the proof of the main results would work if v had a uniform
Hölder continuous first spatial derivative with exponential growth only in a neighbor-
hood of the boundary. This could allow us to relax the boundedness assumption on
f .

Appendix A. Asymptotic behavior of the overshoot. This section is dedi-
cated to the proof of Lemma 4.2 introduced in section 4.2 concerning the asymptotic
behavior of the overshoot. In the following, we freely use the notation introduced in
Theorem 2.1 and Lemma 4.2.

A.1. Asymptotic independence of the overshoot and the exit time. We
first state a one-dimensional result due to Siegmund [Sie79].

Lemma A.1 (asymptotic independence of the overshoot and the discrete exit
time). Let W be a standard linear BM. Put x > 0 and consider the domain D :=
] −∞, x[. We have for any y ≥ 0

lim
h−→0

P0[τ
N ≤ t, (WτN − x) ≤ y

√
h] = P0[τ ≤ t]H(y).(A.1)

The limit is uniform in t ∈ [0, T ].
Proof. Equation (A.1) is a direct consequence of Lemma 3 in [Sie79] for a fixed t.

We derive the uniformity on [0, T ] using Dini-like arguments noting that the left-hand
side of (A.1) defines a sequence of (discontinuous) increasing functions and that the
simple limit is continuous (see, e.g., problem 7.2.3 in [Die71] or subsection A.2).

From now on, we assume m ≥ 2 and proceed to the proof.
Proof of Lemma 4.2. Let us first show that ∀(t, y) ∈ [0, T ] × R

+,∗, ζN (t) :=

Px[
√
h
−1

(X1
τN,1 − b10)

− ≥ y, τN ≤ t, τN,1 ≤ ∧m
i=2τ

N,i] −→
N

(1 − H(y))Px[τ1 ≤
t,∧m

i=2τ
i > τ1] := ζ(t). We write

ζN (t) = Px[
√
h
−1

(X1
τN,1 − b10)

− ≥ y, τN,1 ≤ t]

−Px[
√
h
−1

(X1
τN,1 − b10)

− ≥ y, τN,1 ≤ t, τN,1 > ∧m
i=2τ

N,i]
:= (ζ1

N − ζ2
N )(t).

(A.2)
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From Lemma A.1 one gets

ζ1
N (t) −→

N
ζ1(t) := (1 −H(y))Px[τ1 ≤ t](A.3)

uniformly on [0, T ]. Let us turn to the control of ζ2
N . As a consequence of the strong

Markov property of X, we have

ζ2
N (t) = Ex[1∧m

i=2
τN,i≤t1τN,1>∧m

i=2
τN,iP[

√
h
−1

(X1
τN,1 − b10)

− ≥ y, τN,1 ≤ t|F∧m
i=2

τN,i ]]

:= Ex[1∧m
i=2

τN,i≤t1τN,1>∧m
i=2

τN,iξN (X1
∧m

i=2
τN,i ,∧m

i=2τ
N,i, t)]

with ξN (X1
∧m

i=2
τN,i ,∧m

i=2τ
N,i, t) = PX1

∧m
i=2

τN,i
[
√
h
−1

(X̃1
τ̃N,1 − b10)

− ≥ y, τ̃N,1 ≤ t −

∧m
i=2τ

N,i], where (X̃1
t )t≥0 is a standard BM with starting point X1

∧m
i=2

τN,i and τ̃N,1 :=

inf{ti := ih ≥ 0 : X̃1
ti ≤ b10}.

For a given arbitrary compact interval K := [K,K] ⊂ (b10,+∞) we split ζ2
N (t) into

two parts.

ζ2
N (t) = Ex[1∧m

i=2
τN,i≤t1τN,1>∧m

i=2
τN,i1X1

∧m
i=2

τN,i
∈KξN (X1

∧m
i=2

τN,i ,∧m
i=2τ

N,i, t)]

+ Ex[1∧m
i=2

τN,i≤t1τN,1>∧m
i=2

τN,i1X1

∧m
i=2

τN,i
�∈KξN (X1

∧m
i=2

τN,i ,∧m
i=2τ

N,i, t)]

:= ζ21
N (t) + ζ22

N (t).

Fix ε > 0. We now show that one can choose K(ε), N0 := N0(ε,K(ε)) s.t. for N ≥ N0,

ζ2
N (t) = (1 −H(y))Px[∧m

i=2τ
i < τ1, τ1 ≤ t] + O(ε).(A.4)

Control of ζ21
N (t). Write first

ζ21
N (t) =

(
ζ21
N (t) − (1 −H(y))Px[∧m

i=2τ
i < τ1, τ1 ≤ t,X1

∧m
i=2

τ i ∈ K]
)

+(1 −H(y))Px[∧m
i=2τ

i < τ1, τ1 ≤ t] −R(t,K),

where R(t,K) = (1 −H(y))Px[∧m
i=2τ

i < τ1, τ1 ≤ t,X1
∧m

i=2
τ i /∈ K]. Note that

0 ≤ R(t,K) ≤ Px

[
∧m
i=2 τ

i ≤ T,X1
∧m

i=2
τ i ≥ K

]
+Px

[
∧m
i=2 τ

i ≤ T,X1
∧m

i=2
τ i ∈ (b10,K]

]
:= R1(K) + R2(K).

Lemma 4.1 readily gives R1(K) ≤ C exp(−c (K−x1)
2

T ). On the other hand, R2(K) −→
K−→b10

0. Hence, for ε > 0 we can choose K = K(ε) s.t.

ζ21
N (t) =

(
ζ21
N (t) − (1 −H(y))Px[∧m

i=2τ
i < τ1, τ1 ≤ t,X1

∧m
i=2

τ i ∈ K]
)

+(1 −H(y))Px[∧m
i=2τ

i < τ1, τ1 ≤ t] + O(ε)
:= δN (t) + (1 −H(y))Px[∧m

i=2τ
i < τ1, τ1 ≤ t] + O(ε).

For the term δN (t) we introduce the following lemma whose proof is postponed to the
end of the section.

Lemma A.2. Let X̃1 be a standard BM with starting point x̃ in a given compact
interval K = [K,K] ⊂ (b10,+∞). Then

Px̃[
√
h
−1

(X̃1
τ̃N,1 − b10)

− ≥ y, τ̃N,1 ≤ u] −→
N

(1 −H(y))Px̃[τ̃1 ≤ u]
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uniformly on (x̃, u) ∈ K × [0, T ].
From Lemma A.2, ∀ε > 0, ∃Ñ0 := Ñ0(K(ε), ε), s.t. N ≥ Ñ0

δN (t) = (1 −H(y))

{
Ex[1∧m

i=2
τN,i≤t1∧m

i=2
τN,i<τN,11X1

∧m
i=2

τN,i
∈K

×PX1

∧m
i=2

τN,i
[τ̃1 ≤ t− ∧m

i=2τ
N,i]] − Px[∧m

i=2τ
i < τ1, τ1 ≤ t,X1

∧m
i=2

τ i ∈ K]

}
+ O(ε)

:= (1 −H(y))

(
Ex[1∧m

i=2
τN,i≤t1∧m

i=2
τN,i<τN,11X1

∧m
i=2

τN,i
∈Kξt(X

1
∧m

i=2
τN,i ,∧m

i=2τ
N,i)]

− Ex[1∧m
i=2

τ i≤t1∧m
i=2

τ i<τ11X1

∧m
i=2

τi
∈Kξt(X

1
∧m

i=2
τ i ,∧m

i=2τ
i)]

)
+ O(ε).

Note that ξt(x, u) := Px[τ̃ ≤ t−u] is continuous in (x, u) ∈ (b10,+∞)×[0, t]. Recall that

τN,i a.s−→
N

τ i, i ∈ [[1,m]], and by continuity X1
∧m

i=2
τN,i

a.s−→
N

X1
∧m

i=2
τ i . One can check that

the law of (τ1,∧m
i=2τ

i, X1
∧m

i=2
τ i) is absolutely continuous w.r.t. the Lebesgue measure.

We thus derive by convergence in law that for N large enough

δN (t) = O(ε), ζ21
N (t) = (1 −H(y))Px[∧m

i=2τ
i < τ1, τ1 ≤ t] + O(ε).(A.5)

Control of ζ22
N (t). The arguments we use to control this term are quite similar to

those introduced to treat the terms R1(K), R2(K) above.
Indeed, since ξN ∈ [0, 1] one gets

ζ22
N (t) ≤ Px[∧m

i=2τ
N,i ≤ T,X1

∧m
i=2

τN,i ≥ K] + Px[∧m
i=2τ

N,i ≤ T,X1
∧m

i=2
τN,i ∈ (b10,K]]

:= RN
1 (K) + RN

2 (K).

From Lemma 4.1 we get RN
1 (K) ≤ C exp(−c (K−x1)

2

T ). The previous choice of K
gives RN

1 (K) = O(ε). Write now RN
2 (K) := (RN

2 (K) − R2(K)) + R2(K). On the
one hand, the former choice of K yields R2(K) = O(ε). On the other hand, for the

difference (RN
2 − R2)(K), since τN,i a.s−→

N
τ i, i ∈ [[2,m]], X1

∧m
i=2

τN,i

a.s−→
N

X1
∧m

i=2
τ i ,

with the same arguments we employed to control δN (t), we derive by convergence in
law ∃N0 := N0(K, ε), N ≥ N0, |(RN

2 − R2)(K)| ≤ ε. Hence, for N := N(K, ε) large
enough, we write ζ22

N (t) = O(ε) which together with (A.5) gives (A.4). From (A.4),
(A.3), and (A.2) we derive the simple convergence of ζN to ζ for a fixed t ∈ [0, T ].

The uniformity in t ∈ [0, T ] derives from the fact that ζN (t) is a cumulative
distribution function with continuous limit; see also the arguments at the beginning
of the proof of Lemma A.1.

A.2. Proof of Lemma A.2. Let us define ∀(x, u) ∈ (K := [K,K])× [0, T ], K >

b10, ΨN (x, u) = Px[
√
h
−1

(X̃1
τ̃N,1 − b10)

− ≥ y, τ̃N,1 ≤ u]. For a fixed x ∈ K, Lemma A.1
yields that ΨN (x, u) −→

N
(1 − H(y))Px[τ1 ≤ u] := Ψ(x, u) uniformly on u ∈ [0, T ].

Let us now show that for a fixed u ∈ [0, T ] we have the uniform convergence w.r.t.
x ∈ K. Write

ΨN (x, u) = Px[
√
h
−1

(X̃1
τ̃N,1 − b10)

− ≥ y] − Px[
√
h
−1

(X̃1
τ̃N,1 − b10)

− ≥ y, τ̃N,1 > u]
:= Ψ1

N (x) − Ψ2
N (x, u).
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With the notation of Theorem 2.1, introducing ∀a ≥ 0, τ̄a := inf{n ∈ N : sn > a},
we write Ψ1

N (x) = Px[
√
h
−1

(X̃1
τ̃N,1 − b10)

− ≥ y] = P0[(sτ̄
(x−b1

0
)/

√
h
− (x − b10)/

√
h) ≥

y]. Equation (19) from [Sie79] gives limb→∞ P0[sτ̄b − b ≥ y] = 1 − H(y). Hence,
Ψ1

N (x) −→
N

(1 − H(y)) uniformly on x ∈ K. We develop Ψ2
N like in the proof of

Lemma 3 from the same reference, controlling that we can isolate uniform rests.
Recalling φ(u) := inf{ti ≥ 0 : ti ≤ u < ti+1}, we get

Ψ2
N (x, u) = P[(sτ̄

(x−b1
0
)/

√
h
− (x− b10)/

√
h) ≥ y, τ̄(x−b10)/

√
h > φ(u)/h]

=

∫ ∞

0

P[τ̄(x−b10)/
√
h > φ(u)/h, (x− b10)/

√
h− sφ(u)/h ∈ [z, z + dz)]

×P[sτ̄z − z ≥ y].

We split the above integral into three terms Ψ21
N ,Ψ22

N ,Ψ23
N respectively associated to

the intervals (0, ε(x− b10)/
√
h), (ε(x− b10)/

√
h, (x− b10)/(ε

√
h)), ((x− b10)/(ε

√
h),∞)

for an arbitrary ε ∈ (0, 1). One has

Ψ21
N (x, u) ≤ P

[
(1 − ε)(x− b10)√

h
√
φ(u)/h

≤ N (0, 1) ≤ x− b10√
h
√
φ(u)/h

]

≤ P

[
(1 − ε)(x− b10)

T 1/2
≤ N (0, 1) ≤ x− b10

T 1/2

]
≤ Cε(K−b10)

T 1/2

uniformly for x ∈ K. We also have

Ψ23
N (x, u) ≤ P

[
N (0, 1) ≤ (1 − ε−1)

x− b10
φ(u)1/2

]
≤ P

[
N (0, 1) ≤ (1 − ε−1)

K − b10
T 1/2

]

≤ CT 1/2

K − b10

ε

1 − ε
,

which is still uniform w.r.t. x ∈ K. From these computations we derive that for N large
enough, Ψ22

N (x, u) = (1 −H(y))Px[τ̃N,1 > u] + O(ε), where the rest is uniform w.r.t.
K. It therefore remains to show Px[τ̃N,1 > u] := γN (u, x) −→

N
γ(u, x) := Px[τ̃1 > u]

uniformly on K. We note that 1 − γN (u, x) = P0[supi∈[[0,φ(u)/h]] X̃
1
ti ≥ (x − b10)] is

decreasing in x, so that γN (u, .) is increasing. Since the simple limit is continuous,
we derive the uniformity using the same arguments as in the proof of Lemma A.1.

Now, we have shown that for a fixed parameter x ∈ K, u ∈ [0, T ], we have the
uniform convergence w.r.t. the other. Let us now show the joint uniform convergence.
The limit Ψ is uniformly continuous on K × [0, T ]. This reads

∀ε > 0,∃η := η(ε),∀(x, x′) × (t, t′) ∈ K2 × [0, T ]2, |t− t′| + |x− x′| ≤ η,
|Ψ(x, t) − Ψ(x′, t′)| ≤ ε.

(A.6)

In particular, |t − t′| ≤ η ⇒ supx∈K |Ψ(x, t) − Ψ(x, t′)| ≤ ε. Let us now consider a
regular grid Λ := {si}i∈[[1,a]] of [0, T ] with step s = si+1 − si ≤ η. Since for a fixed
t ∈ [0, T ] we have uniform convergence in space,

∀ε > 0, ∃Ñ0 = max
i∈[[1,a]]

Ñ0(si), N ≥ Ñ0, sup
i∈[[1,a]]

sup
x∈K

|ΨN (x, si) − Ψ(x, si)| ≤ ε.(A.7)



2628 STÉPHANE MENOZZI

Noting that both ΨN (x, .),Ψ(x, .) are increasing functions we derive from (A.6), (A.7)

∀t ∈ [si, si+1], Ψ(x, si) − Ψ(x, si+1) + Ψ(x, si+1) − ΨN (x, si+1)
≤ Ψ(x, t) − ΨN (x, t) ≤ Ψ(x, si+1) − Ψ(x, si) + Ψ(x, si) − ΨN (x, si),
∀ε > 0,∃N0, N ≥ N0, supt∈[0,T ] supx∈K |Ψ(x, t) − ΨN (x, t)| ≤ ε,

which shows the joint uniformity and completes the proof.

Appendix B. Results about the killed heat kernel: Proof of Lemma
5.2. One of the key tools in the proof of the lemma is the following identity:

∀x > 0, ∀μ > ν ≥ 0, Iμ(x) < Iν(x).(B.1)

Relation (B.1) was proved by Jones in [Jon68]. From identity 9.6.34 in Abramowitz
and Stegun we also get that exp(z) = I0(z) + 2

∑∞
n=1 In(z). Hence, from the explicit

expression of the killed heat kernel (see Proposition 5.1 and Remark 5.2) and recalling
that νn := nπ/ω > n, (B.1) yields

qt(x, y) ≤ 2 exp(− r2+ρ2

2t )

tω

∑∞
n=1 Iνn

(
rρ
t

)
≤ 2 exp(− r2+ρ2

2t )

tω

∑∞
n=1 In

(
rρ
t

)
≤ exp(− |r−ρ|2

2t )

tω .

Put At :=
∑∞

n=1 ∂t(sin(νnθ) sin(νnη)Iνn

(
rρ
t

)
). From the recurrence relations on mod-

ified Bessel functions (see formula 9.6.26 in [AS72]) one gets |At| ≤ rρ
2t2

∑∞
n=1(Iνn+1 +

Iνn−1)
(
rρ
t

)
≤ C rρ

t2 exp
(
rρ
t

)
. Thus,

exp
(
− r2+ρ2

2t

)
|At| ≤ C rρ

t2 exp
(
− |r−ρ|2

2t

)
≤ C(R

2

t2 + R|r−ρ|
t2 ) exp

(
−c |r−ρ|2

2t

)
≤ C(R

2

t2 + R
t3/2 ) exp

(
−c |r−ρ|2

t

)
≤ C

tξ
exp

(
−c |r−ρ|2

t

)
,

which gives the result for the time derivative.
The boundedness and Hölder continuity of the gradient is somehow trickier to

obtain. Let us show these properties for the partial derivative of the heat kernel w.r.t.
the first parameter. They could be obtained for the other one exactly in the same
way. Bare hand calculations yield

∂x1qt(x, y) = −x1

t qt(x, y) + ρ
t2ω exp

(
− r2+ρ2

2t

) ∞∑
n=1

sin(νnη)

×
{
sin((νn − 1)θ)Iνn−1

(
rρ
t

)
+ sin((νn + 1)θ)Iνn+1

(
rρ
t

)}
.

The previous arguments give the stated control for |∂x1qt(x, y)|.
Now, the most “singular” term in the expression of ∂x1qt(x, y) is the one involving

the modified Bessel functions of lowest order. Thus, we have to prove the Hölder
continuity of

gt(x, y) := ρ
t2ω exp

(
− r2+ρ2

2t

) ∞∑
n=1

sin(νnη) sin((νn − 1)θ)Iνn−1

(rρ
t

)
:= ρ

t2ω exp
(
− r2+ρ2

2t

)
Bt(x, y).

Still by direct computation we get that

|∇xBt(x, y)| ≤
Cρ

t

{
exp

(rρ
t

)
+

∞∑
n=1

Iνn−2

(rρ
t

)}
.
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Now, since z ∈ R
+∗, from equation 9.6.20 in [AS72]

Iν(z) =
1

π

∫ π

0

exp(z cos(γ)) cos(νγ)dγ − sin(νπ)

π

∫ ∞

0

exp(−z cosh(t) − νt)dt.

From this expression it is easily seen that ∀n ∈ N, z > 0, In(z) = I−n(z), and
∀ν > 0, ∀ε > 0

|Iν − I−ν |(z) ≤ C

∫ ∞

0

exp(−z cosh(t)) exp(νt)dt

= C

∫ 1

0

exp
(
−z

2
(u−1 + u)

)
u−(1+ν)du ≤ Cz−(ν+ε)

∫ 1

0

u−(1−ε)du ≤ C

ε
z−(ν+ε).

Thus, for all ε > 0

|∇xBt(x, y)| ≤
Cρ

t

{
exp

(rρ
t

)
+ ε−1

(rρ
t

)−(2−ν1+ε)

1ν1<2

}
.(B.2)

Take (x, x′) ∈ (B(0, R) ∩ D̃)2, s.t. r < r′. For α0 ∈ (0, 1] to be specified later on,

|gt(x,y)−gt(x
′,y)|

|x−x′|α0
≤ ρ

t2ω exp
(
−ρ2

2t

) [∣∣∣exp
(
− r′2

2t

)
− exp

(
− r2

2t

)∣∣∣ |Bt(x, y)|

+ exp
(
− r′2

2t

)
|Bt(x

′, y) −Bt(x, y)|
]
× |x− x′|−α0 := (A1

t + A2
t )(x, x

′).

Recalling that |x− x′| ≥ |r − r′| and |Bt(x, y)| ≤ C exp
(
rρ
t

)
we derive

A1
t (x, x

′) ≤ Cρ
t3 exp

(
−ρ2

2t

)
sups∈[r,r′] exp

(
− s2

2t

)
|r − r′|1−α0 × exp

(
rρ
t

)
≤ C

tξ
exp

(
−c |r−ρ|2

t

)
.

(B.3)

We also have A2
t (x, x

′) ≤ Cρ
t2 exp(− r′2+ρ2

2t ) supu∈[0,1] |∇xBt(ux + (1 − u)x′, y)||x −
x′|1−α0 . Hence, from (B.2) we get

A2
t (x, x

′) ≤ Cρ2

t3 exp
(
− r′2+ρ2

2t

){
exp

(
r′ρ
t

)
+ ε−1

(
rρ
t

)−(2−ν1+ε)
1ν1<2

}
×|x− x′|1−α0 .

If ν1 ≥ 2, the above control together with (B.3) give the statement of the proposition
with α0 = 1; i.e., the gradient is Lipschitz continuous. So from now on, we consider
the case ν1 < 2.

If |x− x′| ≤ r, we derive from the previous expression that for ν1 > ε

A2
t (x, x

′) ≤ C
(1∧ε)tξ

exp
(
−c |r

′−ρ|2
t

)
(1 + r1−α0−(2−ν1+ε))

≤ C
(1∧ε)tξ

exp
(
−c |r

′−ρ|2
t

)
(1 + rν1−1−ε−α0).

(B.4)
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On the other hand, if |x− x′| > r, we write

A2
t (x, x

′) ≤ Cρ
t2 exp

(
− r′2+ρ2

2t

)
|Bt(x, y) −Bt(x

′, y)| × |x− x′|−α0

≤ Cρ
t2 exp

(
− r′2+ρ2

2t

)(∑∞
n=1(νn − 1)Iνn−1

(
rρ
t

)
+

∑∞
n=1

∣∣∣Iνn−1

(
rρ
t

)
− Iνn−1

(
r′ρ
t

)∣∣∣)× |x− x′|−α0

:= Cρ
t2 exp

(
− r′2+ρ2

2t

)
(D1

t + D2
t ).

(B.5)

From the recurrence relations on modified Bessel functions, see equation 9.6.26 in
[AS72], and since |x− x′| > r one gets

D1
t ≤ Crρ

t

∑
n≥1(Iνn−2 + Iνn)

(
rρ
t

)
r−α0 ≤ Cr1−α0ρ

(1∧ε)t exp
(
ρr
t

){(
rρ
t

)−(2−ν1+ε)
+ 1

}
≤ C

1∧ε exp
(
rρ
t

){
ρ
t +

(
ρ
t

)ν1−1−ε
rν1−1−ε−α0

}
.

(B.6)

Recall now formula 9.6.18 from [AS72]; i.e.,

∀ν > −1/2, Iν(z) =
( 1
2z)

ν

π1/2Γ(ν + 1
2 )

∫ 1

−1

(1 − u2)ν−1/2 cosh(zu)du.

Hence,

D2
t ≤ C

{∣∣∣Iν1−1

(
rρ
t

)
− Iν1−1

(
r′ρ
t

)∣∣∣ + ρ|r−r′|
t exp

(
r′ρ
t

)}
|x− x′|−α0

≤ C
{(

ρ
t

)ν1−1 |rν1−1 − r′
ν1−1| +

(
ρ
t

)ν1 |r − r′| + ρ|r−r′|
t

}
exp

(
r′ρ
t

)
|r − r′|−α0

≤ C
{(

ρ
t

)ν1−1 |r − r′|ν1−1−α0 +
(
ρ
t

)ν1
+ ρ

t

}
exp

(
r′ρ
t

)
.

(B.7)

Plugging (B.6) and (B.7) into (B.5) we derive that for |x− x′| > r

A2
t (x, x

′) ≤ C

(1 ∧ ε)tξ
exp

(
−c

|r′ − ρ|2
t

){
1 + |r − r′|ν1−1−α0 + rν1−1−ε−α0

}
.(B.8)

Take now ε > 0 s.t. ν1 − 1 − ε > 0. Set α0 = ν1 − 1 − ε. From (B.4) and (B.8) the
proof is complete.

Remark B.1. The spectral theory suggests our previous Hölder constant for the
gradient is somehow optimal. Indeed, if φ1 denotes the first eigenfunction of the
elliptic Dirichlet problem for the Laplacian in a bidimensional truncated cone of an-
gle ω and vertex 0, we have from Example 4.6.5 in Davies [Dav89] that φ1(x) =
O(rν1), ν1 = π/ω when x −→ 0 nontangentially, and the heat kernel also writes
qt(x, y) =

∑∞
i=1 exp(−Eit)φi(x)φi(y), where the (Ei)i∈N∗ are the eigenvalues of the

Laplacian in the truncated cone (0 < E1 ≤ E2 ≤ · · · ↑ ∞) and the (φi)i∈N∗ the
orthonormal eigenfunctions.

The spectral decomposition of the heat kernel also suggests that we cannot expect
more spatial smoothness than that of the elliptic problem. A general study of this kind
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of problem is far from easy. A Sobolev approach can be found in Dauge [Dau88] and
Kozlov, Maz’ya, and Rossmann [KMR97]. The possible application of their arguments
to the parabolic case will concern further research.

Remark B.2. The control of the time derivative stated in Lemma 5.2 holds true
up to d = 4 without major changes in the proof. The main tool needed is Weyl’s
asymptotic lemma that gives some controls on the behavior of the eigenfunctions that
appear in Proposition 5.1; see [Cha84, p. 172]. The remaining computations are rather
similar to the previous ones.
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A UNIFIED APPROACH FOR UZAWA ALGORITHMS∗

CONSTANTIN BACUTA†

Abstract. We present a unified approach in analyzing Uzawa iterative algorithms for saddle
point problems. We study the classical Uzawa method, the augmented Lagrangian method, and two
versions of inexact Uzawa algorithms. The target application is the Stokes system, but other saddle
point systems, e.g., arising from mortar methods or Lagrange multipliers methods, can benefit from
our study. We prove convergence of Uzawa algorithms and find optimal rates of convergence in an
abstract setting on finite- or infinite-dimensional Hilbert spaces. The results can be used to design
multilevel or adaptive algorithms for solving saddle point problems. The discrete spaces do not have
to satisfy the LBB stability condition.

Key words. Uzawa algorithms, saddle point system, multilevel methods, augmented Lagrangian
method, Stokes problem
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1. Introduction. In this paper, we provide a unified approach for Uzawa meth-
ods for linear saddle point systems. Such systems arise in solving various partial
differential equations (PDEs) or systems of PDEs at the continuous level or at the
discrete level. Typical examples of such PDEs are second-order elliptic problems,
Stokes equations, and elasticity problems. We analyze the classical Uzawa Method
(UM) [1], the augmented Lagrangian Uzawa method (ALUM) [14], the inexact Uzawa
method (IUM) [7, 13], and a modified (or multilevel) inexact Uzawa method (MIUM)
under a general approach on abstract Hilbert spaces. The motivation for considering
abstract versions of Uzawa algorithms on infinite-dimensional Hilbert spaces is that
the analysis at the continuous level of an algorithm for solving a PDE gives the right
strategy for discretizing the PDE. In addition, the convergence factors of certain mul-
tilevel or adaptive algorithms for solving saddle point systems depend on the stability
parameters of the continuous problem, and in many cases the discrete LBB stability
condition is not required to be satisfied (see [4, 12] or section 6). Next, we formulate
the general framework of the saddle point problem to be studied in this paper and
indicate the way the paper is organized.

We let V and P be two Hilbert spaces with inner products a(·, ·) and (·, ·), with
the corresponding induced norms | · |V = | · | = a(·, ·)1/2 and ‖ · ‖P = ‖ · ‖ = (·, ·)1/2.
The dual parings on V∗ ×V and P ∗ × P are denoted by 〈·, ·〉 and (·, ·), respectively.
Here, V∗ and P ∗ denote the dual of V and P , respectively. We identify P ∗ and P as
Hilbert spaces so that (·, ·) represents both the inner product on P and the duality
between P ∗ and P . In applications to Stokes systems, V = (H1

0 )d(d = 2, 3, . . . ), P is
a subspace of L2 of codimension one and (·, ·) is the standard inner product on L2.
Next, we consider that b(·, ·) is a continuous bilinear form on V × P , satisfying the
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inf-sup condition. More precisely, we assume that

inf
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = m > 0(1.1)

and

sup
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = M < ∞.(1.2)

For f ∈ V∗, g ∈ P ∗, we consider the following variational problem:
Find (u, p) ∈ V × P such that

a(u,v) + b(v, p) = 〈f ,v〉 for all v ∈ V,
b(u, q) = (g, q) for all q ∈ P.

(1.3)

It is known that the above variational problem has a unique solution for any f ∈ V∗,
g ∈ P ∗ (see [9, 10, 15] or Lemma 2.1). With the forms a and b, we associate two
linear operators A : V → V ∗ and B : V → P defined by

〈Au,v〉 = a(u,v) for all u,v ∈ V

and

(Bu, q) = b(u, q) for all u ∈ V, q ∈ P.

Let B∗ : P → V ∗ be the dual operator of B defined by

〈B∗q,v〉 = (q,Bv) = (Bv, q) = b(v, q) for all v ∈ V, q ∈ P.

The problem (1.3) is equivalent to the following problem:
Find (u, p) ∈ V × P such that

Au + B∗p = f ,
Bu = g.

(1.4)

In this framework, we analyze Uzawa algorithms for solving the system (1.3) or (1.4).
We consider that the form a gives the inner product and the norm on V. A more
general case of (1.3) is considered in [9, 10, 15]. Our particular assumptions for
the form a give rise to a simplified analysis. For the general case, we obtain sharp
convergence estimates only in terms of the two constants m and M .

The rest of the paper is organized as follows. In section 2, we analyze the conver-
gence of the classical Uzawa algorithm. The augmented Lagrangian Uzawa method
is analyzed in section 3 (Fortin and Glowinski [14]). In section 4, we shall investi-
gate the convergence of the inexact Uzawa algorithm (Bramble, Pasciak, and Vassilev
[7] and Elman and Golub [13]) in the above abstract framework. Applications to
discretizations on stable pairs are presented in section 5. A modified inexact Uzawa
algorithm with applications in constructing multilevel methods and adaptive methods
for solving (1.3) is illustrated in section 6. In section 7, we present applications of our
abstract results to the Stokes system.
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2. The abstract Uzawa algorithm. We begin this section with two lemmas
which provide basic properties of norms and operators introduced in section 1. The
proofs are based on the Riesz representation theorem (see, e.g., [20]). For complete-
ness, we include the proofs.

Lemma 2.1. The operator A : V → V ∗ is invertible and the Schur complement
operator BA−1B∗ : P → P is symmetric and a positive definite operator satisfying

(BA−1B∗p, p) = sup
v∈V

b(v, p)2

|v|2 ,(2.1)

m2‖p‖2 ≤ (BA−1B∗p, p) ≤ M2‖p‖2, p ∈ P.(2.2)

Consequently, the problem (1.3) (or (1.4)) has a unique solution.
Proof. From the definition of A, we get that A is a bounded injective operator.

Using the Riesz representation theorem, it follows that A is also a surjective operator.
Let us further note that A satisfies

〈Au,v〉 = a(u,v) = a(v,u) = 〈Av,u〉,

and the changes of variable Au = u∗ and Av = v∗ lead to

〈u∗, A−1v∗〉 = 〈v∗, A−1u∗〉, u∗,v∗ ∈ V∗.(2.3)

Using (2.3), we obtain

(BA−1B∗p, q) = 〈B∗q,A−1B∗p〉 = 〈B∗p,A−1B∗q〉
= (BA−1B∗q, p) = (p,BA−1B∗q), p, q ∈ P.

To prove (2.1), we let p ∈ P be fixed and consider the following problem:
Find u ∈ V such that

a(u,v) = b(v, p) for all v ∈ V.(2.4)

Since the functional v → b(v, p) is continuous on V, by the Riesz representation
theorem we have that the unique solution u of (2.4) satisfies

a(u,u) = ‖v → b(v, p)‖2
V∗ = sup

v∈V

b(v, p)2

|v|2 .(2.5)

On the other hand, from (2.4) we have

Au = B∗p or u = A−1B∗p

and

a(u,u) = 〈Au,u〉 = 〈B∗p,A−1B∗p〉 = (p,BA−1B∗p).(2.6)

Thus, (2.1) follows from (2.5) and (2.6). The estimate (2.2) follows imediately from
(2.1), (1.1), and (1.2).

To prove the existence and uniqueness of (1.3) (or (1.4)), we substitute u from
the first equation of (1.4) into the second equation of (1.4). The resulting equation
in p,

BA−1B∗p = BA−1f − g,
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has a unique solution due to the fact that BA−1B∗ : P → P is symmetric and a
positive definite operator.

Remark 2.2. From the general theory of symmetric operators and Lemma 2.1,
we have that σ(BA−1B∗) ⊂ [m2,M2] and m2,M2 ∈ σ(BA−1B∗). In the finite-
dimensional case, m2 and M2 are the extreme eigenvalues of the Schur complement
BA−1B∗.

Lemma 2.3. The following norm estimates are valid:

‖φ‖2
V∗ = a(A−1φ,A−1φ) = |A−1φ|2, φ ∈ V∗,(2.7)

‖Au‖V∗ = |u|, u ∈ V,(2.8)

‖B∗q‖V∗ = |A−1B∗q| = (BA−1B∗q, q)1/2 ≤ M‖q‖, q ∈ P,(2.9)

‖B‖ = M, hence ‖Bu‖ ≤ M |u|, u ∈ V.(2.10)

Proof. By the Riesz representation theorem, we have that for any φ ∈ V∗ the
problem

Find u ∈ V such that

〈Au,v〉 = a(u,v) = 〈φ,v〉 for all v ∈ V(2.11)

has a unique solution, and the solution u satisfies

a(u,u) = sup
v∈V

〈φ,v〉2
a(v,v)

= ‖φ‖2
V∗ .(2.12)

From (2.11), we have that u = A−1φ, which combined with (2.12) gives (2.7). The
equality (2.8) is a consequence of (2.7), and (2.9) follows from (2.8) and (2.2). The
last estimate follows from the definition of B and the assumption in (1.2).

Next, we present the Uzawa algorithm [1] for solving the solution of the abstract
problem (1.3). Given a parameter α > 0, called a relaxation parameter, the Uzawa
algorithm for approximating the solution (u, p) of (1.3) can be described as follows.

Algorithm 2.4 (Uzawa method (UM)). Let p0 be any approximation for p, and
for k = 1, 2, . . . , construct (uk, pk) by

a(uk,v) = (f ,v) − b(v, pk−1), v ∈ V,

pk = pk−1 + α(Buk − g).
(2.13)

The convergence of the UM is discussed for particular cases in, e.g., [10, 14, 15, 17].
It shows that the UM is convergent for small enough α and that the convergence rate
is the same as the convergence rate of the Richardson iterative methods for the Schur
complement BA−1B∗. For completeness, we include the proof.

Theorem 2.5. Let (u, p) be the solution of (1.3) and let (uk, pk) be the sequence
of approximations built by the UM (2.13). Then, the following holds.

(i) The sequences u − uk and p− pk satisfy

a(u − uk,u − uk)
1/2 ≤ M ‖p− pk−1‖,

‖p− pk‖ ≤ ‖I − αBA−1B∗‖ ‖p− pk−1‖.

(ii) For α < 2
M2 , the UM is convergent and

‖I − αBA−1B∗‖ = max{|1 − αm2|, |1 − αM2|} < 1.
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(iii) For α = 1
M2 , the convergence factor is ‖I − αBA−1B∗‖ = 1 − m2

M2 .
(iv) The optimal convergence factor is achieved for

αopt =
2

M2 + m2
and ‖I − αoptBA−1B∗‖ =

M2 −m2

M2 + m2
.

Proof. From the first equation of (1.3) and the first equation of (2.13), we have
that

a(u − uk,v) = b(v, pk−1 − p) for all v ∈ V.(2.14)

The above relation implies

|u − uk|2 = a(u − uk,u − uk) = (BA−1B∗(pk−1 − p), (pk−1 − p))

≤ M2‖pk−1 − p‖2,

which proves the first part of (i). From the second equation of (1.4) and the second
equation of (2.13), we have that

p− pk = p− pk−1 + αB(u − uk).

Combining with (2.14), we get

p− pk = (I − αBA−1B∗)(p− pk−1),(2.15)

which gives the second part of (i). From Lemma 2.1, we have that (I −αBA−1B∗) is
a symmetric operator, and for any p ∈P, p 
= 0,

1 − αM2 ≤ ((I − αBA−1B∗)p, p)

‖p‖2
≤ 1 − αm2,

which justifies part (ii). The rest of the proof follows from (ii).

3. Augmented Lagrangian Uzawa algorithm. The main idea of the aug-
mented Lagrangian method, introduced by Fortin and Glowinski [14], is to use the
constraint condition for the variable p and another tuning parameter ρ > 0 in order
to improve the convergence factor of the Uzawa algorithm. We will consider the ap-
proach for abstract Hilbert spaces V and P and prove sharp convergence estimates
for the corresponding Uzawa algorithm.

Let (u, p) be the solution of the variational problem (1.3). Then, from the second
equation of (1.4), we have that

(Bu, Bv) = (g,Bv), v ∈ V.

Thus, for any ρ > 0, (u, p) is also a solution of

a(u,v) + ρ(Bu, Bv) + b(v, p) = 〈f ,v〉 + ρ(g,Bv),
b(u, q) = (g, q).

(3.1)

Using the notation

aρ(u,v) := a(u,v) + ρ(Bu, Bv) and fρ := f + ρB∗g,

we have that

aρ(u,v) + b(v, p) = 〈fρ,v〉, v ∈ V,
b(u, q) = (g, q), q ∈ P.

(3.2)
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With the form aρ, we associate the linear operator Aρ : V → V ∗,

〈Aρu,v〉 = aρ(u,v) for all u,v ∈ V.

Thus, an equivalent form of (3.2) is

Aρu + B∗p = fρ,
Bu = g.

(3.3)

Since aρ(·, ·) and a(·, ·) give rise to equivalent norms on V, we have that (3.2) (or
(3.3)) has a unique solution. Consequently, problems (1.3) and (3.2) are equivalent.
In what follows, the Uzawa algorithm applied to (3.2) will be called the augmented
Lagrangian Uzawa method (ALUM).

Given a relaxation parameter α > 0, the augmented Lagrangian Uzawa algorithm
for approximating the solution (u, p) of (1.3) is as follows.

Algorithm 3.1 (ALUM). Let p0 be any approximation for p, and for k =
1, 2, . . . , construct (uk, pk) by

aρ(uk,v) = (fρ,v) − b(v, pk−1), v ∈ V,

pk = pk−1 + α(Buk − g).

To study the convergence of (3.1), we shall calculate first

Mρ := sup
p∈P

sup
v∈V

b(v, p)

‖p‖(aρ(v,v))1/2
(3.4)

and

mρ := inf
p∈P

sup
v∈V

b(v, p)

‖p‖(aρ(v,v))1/2
.(3.5)

Theorem 3.2. For any ρ > 0, we have

BA−1
ρ B∗ =

(
ρI + (BA−1B∗)−1

)−1
,(3.6)

M2
ρ =

1

ρ + 1
M2

and m2
ρ =

1

ρ + 1
m2

.(3.7)

Proof. To prove (3.6), we need two identities. First, we note that for any invertible
linear operator C : P → P such that I + ρC is also invertible, we have(

ρI + C−1
)−1

= C − ρC(I + ρC)−1C.(3.8)

This can be proved by checking that the proposed inverse verifies the algebraic defini-
tion of the inverse. The second identity is based on the Sherman–Morrison–Woodbury
formula and can be proved again just by algebraic manipulations:

(A + ρB∗B)−1 = A−1 − ρA−1B∗(I + ρBA−1B∗)−1BA−1.(3.9)

From (3.9), we get

B(A + ρB∗B)−1B∗ = BA−1B∗

− ρBA−1B∗(I + ρBA−1B∗)−1BA−1B∗.
(3.10)
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If we take C = BA−1B∗ in (3.8) and combine it with (3.10), we obtain (3.6). To
verify (3.7), we notice that by applying Lemma 2.1 with aρ instead of a we have

sup
v∈V

b(v, p)2

‖p‖2 aρ(v,v)
= (BA−1

ρ B∗p, p), p ∈ P.(3.11)

Thus, we get

M2
ρ = sup

p∈P

(BA−1
ρ B∗p, p)

(p, p)
= sup

p∈P

(
(ρI + (BA−1B∗)−1 )−1p, p

)
(p, p)

=
1

inf
q∈P

((ρI+(BA−1B∗)−1)q,q)
(q,q)

=
1

ρ + inf
q∈P

((BA−1B∗)−1q,q)
(q,q)

=

⎛
⎜⎝ρ +

1

sup
r∈P

(BA−1B∗r,r)
(r,r)

⎞
⎟⎠

−1

=

(
ρ +

1

M2

)−1

.

Here, we have used the changes of variable (ρI + (BA−1B∗)−1 )−1/2p = q and
(BA−1B∗)−1/2q = r. The proof for mρ is similar.

The above result gives formulas for the inf-sup and sup-sup constants for the
ALUM in terms of m,M , and ρ. In applications, the constant m is more difficult to
obtain. The following theorem gives the convergence rate of the ALUM.

Theorem 3.3. Let (u, p) be the solution of (1.3) and let (uk, pk) be the sequence
of approximations built by Algorithm 3.1. Then, the following holds true:

(i) The sequences u − uk and p− pk satisfy

aρ(u − uk,u − uk)
1/2 ≤ Mρ ‖p− pk−1‖,

‖p− pk‖ ≤ ‖I − αBA−1
ρ B∗‖ ‖p− pk−1‖.

(ii) For α < 2
M2

ρ
, the ALUM is convergent and

‖I − αBA−1
ρ B∗‖ = max{|1 − αm2

ρ|, |1 − αM2
ρ |} < 1.

(iii) For α = 1
M2

ρ
, the convergence factor is

‖I − αBA−1
ρ B∗‖ =

(
1 − m2

M2

)
1

m2ρ + 1
.

(iv) The optimal convergence factor is achieved for αopt = 2
M2

ρ+m2
ρ

and

‖I − αoptBA−1
ρ B∗‖ =

M2
ρ −m2

ρ

M2
ρ + m2

ρ

=

(
1 − m2

M2

)
1

2m2ρ + 1 + m2/M2
.

Proof. The result is a direct consequence of Theorem 2.5 and (3.7).
A similar result for the discrete version of the Stokes system can be found in [19].

As it was pointed out in [14] and [19], the choice of a very large ρ improves on the
rate of convergence of the ALUM, but at the same time, the operator Aρ becomes
more difficult to invert. For the continuous and discrete Stokes system, estimates for
the convergence factor of the ALUM were recently obtained by Nochetto and Pyo in
[16]. The question raised in [16] on how much we can improve the rate of convergence
of the ALUM if information about the spectral value m is available can be easily
answered now by comparing part (iii) and part (iv) of Theorem 3.3 or Theorem 7.1.
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4. Inexact Uzawa method. Throughout the rest of the paper we will keep
the notation and assumptions of section 2. In this section, following the ideas in
[7, 13], we shall introduce and investigate the convergence of an abstract inexact
Uzawa algorithm where the exact solve of the elliptic problem (the action of A−1)
is replaced by an approximation process, which might not be a linear operator. We
describe the approximate inverse of A as a map C : V∗ → V which, for φ ∈ V∗,
returns an approximation of ξ = A−1φ such that

|Cφ−A−1φ|V ≤ δ‖φ‖V∗ for all φ ∈ V∗(4.1)

for some δ ∈ (0, 1). We notice here that (4.1) is a strong condition for the infinite-
dimensional case. The condition can be weakened by requiring to be satisfied only
for certain values φ ∈ V∗. If V and P are finite-dimensional spaces, then C can be
considered as a linear or nonlinear process for inverting A and (4.1) is a reasonable
assumption (see [7]). One example of nonlinear process C is the approximate inverse
associated with the preconditioned conjugate gradient algorithm. A practical case
would be to consider Cφ = ξnum, where ξnum is the numerical approximation of ξ
defined by

a(ξ,v) = 〈φ,v〉 for all v ∈ V.

In any case, if Aξ = φ and Cφ is defined by Cφ = ξap, an approximation of ξ, then,
according to (2.7), the assumption (4.1) is equivalent to

|ξap − ξ|V ≤ δ|ξ|V for all ξ ∈ V.(4.2)

The inexact Uzawa algorithm for approximating the solution (u, p) of (1.3) is as
follows.

Algorithm 4.1 (inexact Uzawa method (IUM)). Let (u0, p0) be any approxima-
tion for (u, p), and for k = 1, 2, . . . , construct (uk, pk) by

uk = uk−1 + C(f −Auk−1 −B∗pk−1),

pk = pk−1 + α(Buk − g).

Before we study the stability and convergence rate of Algorithm 4.1 we shall
introduce the following notation. For k = 0, 1, . . . , let euk = u − uk, e

p
k = p− pk, and

Ek =

(
|euk |
‖epk‖

)
.

Let

M :=

(
δ M(1 + δ)

αMδ γ + αM2δ

)
,

where γ := ‖I − αBA−1B∗‖ = max{|1 − αm2|, |1 − αM2|}. On R2 we introduce the
inner product [·, ·]w defined by[(

x1

x2

)
,

(
y1

y2

)]
w

= w1x1y1 + w2x2y2,

where w1, w2 are any two positive numbers such that

w1

w2
=

αδ

1 + δ
,
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and δ is a positive number such that (4.1) is satisfied. We note that M is symmetric
with respect to the [·, ·]w inner product. We will denote the norm induced by [·, ·]w
with ‖ · ‖w.

Theorem 4.2. Let 0 < α < 2/M2 and assume that C satisfies (4.1) with

δ <
1 − γ

1 − γ + 2αM2
.(4.3)

Then, the IUM converges. If r is the spectral radius of the matrix M, then 0 < r < 1
and

‖Ek‖w ≤ rk ‖E0‖w, k = 1, 2, . . . .(4.4)

Proof. We follow the proof of a similar result in [7] for the finite-dimensional case.
From the first equation of (1.4) and the first equation of Algorithm 4.1, we have

euk = euk−1 − C(Aeuk−1 + B∗epk−1)

= (A−1 − C)(Aeuk−1 + B∗epk−1) −A−1B∗epk−1.
(4.5)

From the second equation of (1.4) and the second equation of Algorithm 4.1, we get

epk = epk−1 + αBeuk .(4.6)

If we substitute euk from (4.5) into (4.6), then

epk = (I − αBA−1B∗)epk−1 + αB(A−1 − C)(Aeuk−1 + B∗epk−1).(4.7)

From (4.5) and (4.7), by the triangle inequality, and from the estimates (2.9) and
(2.10) and the assumption (4.1), we obtain

|euk | ≤ δ |euk−1| + M(1 + δ) ‖epk−1‖

and

‖epk‖ ≤ αMδ |euk−1| + (γ + αM2δ)‖epk−1‖.

Using the notation introduced above, we have

Ek ≤ M Ek−1,(4.8)

where (
x1

x2

)
≤

(
y1

y2

)
means x1 ≤ y1 and x2 ≤ y2. From (4.8), we deduce

Ek ≤ Mk E0.(4.9)

Since M is symmetric with respect to [·, ·]w-inner product, we have

‖Ek‖2
w = [Ek, Ek]w ≤ [Mk E0,M

k E0]w = [M2k E0, E0]w ≤ r2k ‖E0‖2
w,

which proves (4.2). To complete the proof, we have to show that r ∈ (0, 1), provided
that 0 < α < 2/M2 and (4.3) holds. The characteristic equation of the matrix M is

λ2 − λ(δ + γ + αM2δ) + δ(γ − αM2) = 0.
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Since M has positive entries, the characteristic equation has real roots and the largest
(positive) root agrees with the spectral radius of M. Consequently,

r =
1

2

(
δ + γ + αM2δ +

√
(δ + γ + αM2δ)2 − 4δ(γ − αM2)

)
.

Using that γ = max{|1−αm2|, |1−αM2|} and α ∈ (0, 2/M2), it is easy to verify
that the function δ → r = r(δ) is an increasing function on (0, 1) and that r = 1 for

δ = δ0 :=
1 − γ

1 − γ + 2αM2
.(4.10)

This completes the proof of the theorem.
Remark 4.3. For 0 < α ≤ 2

M2+m2 we have that γ = 1 − αm2 and the threshold
δ0 becomes

δ0 =
m2

m2 + 2M2
,

which is independent of α. For 2
M2+m2 ≤ α < 2

M2 we have that γ = αM2 − 1 and the
threshold δ0 becomes

δ0 =
2 − αM2

2 + αM2
.

Nevertheless, the optimal (maximal) value of δ0 as the function of α ∈ [ 2
M2+m2 ,

2
M2 )

is δ0 = m2

m2+2M2 and is achieved for α = 2
M2+m2 . Thus, a good choice for α (indepen-

dent of m) is α = 1/M2. In this case we still have δ0 = m2

m2+2M2 .
Remark 4.4. We can apply the IUM for the augmented Lagrangian formulation.

The only changes in Algorithm 4.1 is that A is replaced by Aρ and f is replaced by fρ.
The convergence analysis follows from Theorem 4.2. Let us further notice that in this
case |euk |2 = aρ(e

u
k , e

u
k ) and for α = 1/M2

ρ the threshold δ0 which assures convergence
for the IUM is

δ0(ρ) =
m2

ρ

m2
ρ + 2M2

ρ

=
m2 + ρm2M2

m2 + 2M2 + 3ρm2M2
→ 1

3
as ρ → ∞.

Thus, if the IUM for the augmented Lagrangian formulation is applied with sufficiently
large ρ, α = 1/M2

ρ and with the approximation operator C satisfying

‖C −A−1
ρ ‖ ≤ δ0(ρ) < 1/3,

then the method converges.
Remark 4.5. A different approach in analyzing the IUM in the finite-dimensional

case is presented by Cheng in [11]. From his analysis for α = 1 and M = 1, it follows
that the IUM converges (with a different estimate for the convergence factor), under
the weaker assumption that δ < δ0 = 1/3. Cheng’s result for the infinite-dimensional
case seems not to have been investigated. A positive answer for this problem would
be an interesting result, since in practice it is difficult to estimate the spectral value
m.
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5. Discretization with the inf-sup condition. In this section we assume that
the variational form of a PDE (or system of PDEs) leads to (1.3) and let Vh and Ph be
two finite-dimensional spaces, Vh ⊂ V, Ph ⊂ P , with good approximation properties.
We further assume that

inf
p∈Ph

sup
v∈Vh

b(v, p)

‖p‖ |v| = m(h) > 0 and sup
p∈Ph

sup
v∈Vh

b(v, p)

‖p‖ |v| = M(h).(5.1)

For an overview of numerical methods for solving saddle point systems, we refer the
reader to the recently published review paper [5] by Benzi, Golub, and Liesen.

From Lemma 2.1 and Remark 2.2 we see that m(h),M(h) are the lowest and the
largest eigenvalues of the Schur complement BhA

−1
h B∗

h associated with the discrete
spaces Vh and Ph. Then (see, e.g., [9, 15]), the discrete variational problem

Find (uh, ph) ∈ Vh × Ph such that

a(uh,v) + b(v, ph) = 〈f ,v〉, v ∈ Vh,
b(uh, q) = (g, q), q ∈ Ph,

(5.2)

has a unique solution and

|u − uh| + ‖p− ph‖ ≤ c

(
inf

v∈Vh

|u − v| + inf
q∈Ph

‖p− q‖
)
,

where c is a constant depending only on m(h) and M(h). In this case, the exact or
inexact Uzawa algorithms can be applied for the discrete variational problem (5.2)
on Vh × Ph; see, e.g., [7]. The convergence factors depend on m(h) and M(h) and
could deteriorate as h → 0 if the pair (Vh, Ph) is not stable. We recall here that a
pair (Vh, Ph), or more precisely a family of pairs {(Vh, Ph)}h, is called stable if m(h)
defined in (5.1) satisfies

m(h) ≥ m > 0,

with m independent of h. In the next section we use the inexact Uzawa algorithm
at the continuous level to construct algorithms which avoid building stable pairs
(Vh, Ph).

6. Modified inexact Uzawa method. Eliminating the discrete inf-sup
condition. We shall apply the IUM to construct discrete approximations (uk, pk) ∈
(Vk, Pk), where Vk ⊂ V and Pk ⊂ P are finite-dimensional spaces such that the pairs
(Vk, Pk) do not have to be stable pairs.

The algorithm proposed in this section can be used for building multilevel or
adaptive methods for solving the system (1.3). Adaptive methods for saddle point
problems have been the subject for recent research in numerical analysis (see, e.g.,
[12, 4]). Our new approach, combined with standard techniques of a posteriori error
estimate theory, could lead to new and efficient adaptive algorithms for solving saddle
point systems. To describe our new algorithm, we assume that a sequence of nested
subspaces,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V,

was determined and for k = 1, 2, . . . , a linear or nonlinear process Ck : V∗ → Vk

approximating A−1 is available such that for a fixed φ ∈ V∗, Ckφ ∈ Vk is an ap-
proximation of ξ = A−1φ. To construct a good approximate inverse Ck : V∗ → Vk
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one might need to increase the space Vk−1 to a space with better approximation
properties using an adaptive method. Thus, the embedding assumption Vk−1 ⊂ Vk

is needed. On the other hand, in the proposed algorithms, the variable p is updated
at the continuous level and no inversion is used. Thus, the Pk’s are just subsets of
the space P and do not have to be nested.

The modified inexact Uzawa algorithm for approximating the solution (u, p) of
(1.3) can be stated now as follows.

Algorithm 6.1 (modified inexact Uzawa method (MIUM)). Let u0 ∈ V0 be any
approximation for u and let p0 ∈ P be any approximation for p. For k = 1, 2, . . . ,
construct (uk, pk), with uk ∈ Vk, by

uk = uk−1 + Ck(f −Auk−1 −B∗pk−1),

pk = pk−1 + α(Buk − g).
(6.1)

Theorem 6.2. Let 0 < α < 2/M2, γ = max{|1 − αm2|, |1 − αM2|} = ‖I −
αBA−1B∗‖, and assume that for k = 1, 2, . . . , Ck satisfies

‖(Ck −A−1)(f −Auk−1 −B∗pk−1)‖V ≤ δ‖(f −Auk−1 −B∗pk−1)‖V∗ ,(6.2)

with

δ <
1 − γ

1 − γ + 2αM2
.(6.3)

Then, the MIUM converges and the convergence rate is given by (4.4).
Proof. It is similar to the proof of Theorem 4.2.
We notice here that, for a fixed α, the threshold δ which assures the convergence

of the MIUM depends only on the constants m and M . In the case g = 0, we have
pk ∈ Pk := BVk. Nevertheless, no matter the choice of the spaces Vk, Pk, the pairs
(Vk, Pk) do not have to be stable pairs.

For the rest of this section, the first equation in (6.1) will be considered in a
variational form as follows. Let dk ∈ Vk be the solution of

a(dk,v) = 〈f,v〉 − a(uk−1, v) − b(v, pk−1), v ∈ Vk.(6.4)

Take d̃k := Ck(f − Auk−1 − B∗pk−1) to be an approximation of dk. For example,
d̃k could be a numerical approximation of dk. Let us assume that Dk−1 ∈ V is the
solution of the continuous problem

a(Dk−1,v) = 〈f,v〉 − a(uk−1, v) − b(v, pk−1), v ∈ V.(6.5)

From the Riesz representation theorem

‖(f −Auk−1 −B∗pk−1)‖V∗ = |Dk−1|V.

Thus, the assumption (6.2) can be rewritten as

|d̃k − Dk−1|V ≤ δ |Dk−1|V.(6.6)

Since dk ∈ Vk is the Galerkin approximation of Dk−1 ∈ V, we have that |dk|V ≤
|Dk−1|V. A sufficient condition for the assumption (6.2) is

|d̃k − Dk−1|V ≤ δ |dk|V.(6.7)
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6.1. Multilevel exact Uzawa. In this subsection we assume that the problem
(6.4) can be solved exactly on Vk, i.e., d̃k = dk. Then, uk = uk−1 + dk and
consequently,

a(uk,v) = 〈f,v〉 − b(v, pk−1), v ∈ Vk.

If Uk−1 ∈ V satisfies

a(Uk−1,v) = 〈f,v〉 − b(v, pk−1), v ∈ V,

then Dk−1 = Uk−1 − uk−1 and (6.6) is equivalent to

|uk − Uk−1|V ≤ δ |uk−1 − Uk−1|V.(6.8)

If ηk > 0 is a computable estimator for |uk − Uk−1|V, i.e.,

|uk − Uk−1|V ≤ ηk,(6.9)

then, using (6.7), we get that a sufficient condition for (6.8) is

ηk ≤ δ |uk − uk−1|V.(6.10)

Algorithm 6.3 (multilevel exact Uzawa). Let p0 ∈ P be any approximation for
p. For k = 1, 2, . . . , construct (uk, pk), with uk ∈ Vk, by

a(uk,v) = 〈f,v〉 − b(v, pk−1), v ∈ Vk,

pk = pk−1 + α(Buk − g).

As a consequence of Theorem 6.2 we have the following.
Corollary 6.4. Let 0 < α < 2/M2, γ = ‖I − αBA−1B∗‖, and assume that

(6.8) or (6.9)–(6.10) are satisfied with δ < 1−γ
1−γ+2αM2 . Then, the multilevel exact

Uzawa algorithm converges and the convergence rate is given by (4.4).

6.2. Multilevel inexact Uzawa. In this subsection, we assume that the prob-
lem (6.4) can be solved on each Vk with an absolute error εk ∈ [0, δ) , i.e.,

|dk − d̃k|V ≤ εk|dk|V.(6.11)

If ηk > 0 is a computable estimator for |dk − Dk−1|V, i.e.,

|dk − Dk−1|V ≤ ηk,(6.12)

then a computable sufficient condition for (6.6) is

ηk ≤ δ − εk
1 + εk

|d̃k|V.(6.13)

Indeed, from (6.7) and (6.11)–(6.13) and the triangle inequality we have

|d̃k − Dk−1|V ≤ |dk − Dk−1|V + |dk − d̃k|V
≤ ηk + εk|dk|V ≤ δk − εk

1 + εk
|d̃k|V + εk|dk|V

≤ δk − εk
1 + εk

(1 + εk)|dk|V + εk|dk|V = δk|dk|V ≤ δk |Dk−1|V.

We conclude this subsection with a corollary and some remarks.
Corollary 6.5. Let 0 < α < 2/M2, γ = ‖I−αBA−1B∗‖, and let dk, d̃k satisfy

(6.11)–(6.13) with δ < 1−γ
1−γ+2αM2 . Then, the MIUM converges and the convergence

rate is given by (4.4).
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6.3. Multilevel and adaptive interpretation of the inexact Uzawa algo-
rithm. We note that the modified inexact Uzawa algorithm can be interpreted as a
multilevel algorithm. We consider that a sequence {Mk} of approximating subspaces
of V is constructed such that Mk is strictly larger than Mk−1 and that Mk is built
from Mk−1 by a uniform refinement strategy (see, e.g., [3, 6, 8, 19]). Based on this
existing sequence of nested subspaces of V, we can now build a sequence {Vk} so
that (6.6) holds as follows.

Take V0 = M0, and for any positive integer k, assuming that Vk−1 = Mj is
known, define Vk+i := Mj for i = 0, 1, . . . as long as (6.13) is satisfied for k replaced
by k+ i. In other words, we update uk−1 without enlarging the space Vk−1 as long as
(6.13) is satisfied. When (6.13) fails to hold, we solve for the uk on the next discrete
level space.

The modified inexact Uzawa algorithm can be also interpreted as an adaptive
method. We construct the sequence {Vk} (so that (6.6) holds) by starting with a
subspace V0 of V with good approximation properties and by building the sequence
{Vk}k≥1 in a similar manner. If (6.13) fails to hold for Vk = Vk−1, then the new
discrete space Vk is constructed by using an adaptive strategy which assures that
(6.13) and consequently (6.6) hold.

7. Applications to the Stokes system. We consider the stationary Stokes
equations

−Δu −∇p = f in Ω,
div u = g in Ω,

(7.1)

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and g satisfying the con-
straint ∫

Ω

g dx = 0.

In this section we apply the abstract Uzawa results presented in the previous sections
to solve (7.1).

Let V := (H1
0 (Ω))d, d = 2 or = 3, and

P = L2
0(Ω) :=

{
h ∈ L2(Ω)|

∫
Ω

h dx = 0

}
.

We assume that f ∈ (L2(Ω))d and g ∈ L2(Ω). The variational formulation of (7.1)
becomes

Find u ∈ V, p ∈ P such that

(∇u,∇v) +(div v, p) = (f ,v), v ∈ V.
(div u, q) = (g, q), q ∈ P,

(7.2)

where (·, ·) represents the standard L2-inner product. We will denote by a(·, ·) and
b(·, ·) the bilinear forms

a(u,v) := (∇u,∇v) =
d∑

i=1

(∇ui,∇vi)

and

b(v, p) := (div v, p), v ∈ V, p ∈ P.
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We note that, for Ω smooth enough, we have

a(u,v) := (∇u,∇v) = (curlu, curlv) + (div u,div v), u,v ∈ V.(7.3)

We denote the norm induced by a with | · |V or | · |. The norm on P is the L2-
standard norm and is simply denoted by ‖·‖. With the above notation, the variational
formulation of (7.1) becomes (1.3).

It is known that for Ω smooth enough, the following LBB condition holds. More
precisely, we have

inf
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = c0 > 0.(7.4)

On the other hand, from (7.3) we get that

sup
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = 1.(7.5)

We notice that for the Stokes problem the operator A : V → V∗ consists of d copies
of −Δ : H1

0 (Ω) → H−1(Ω), Bv = div v, B∗p = −∇p, and for ρ > 0,

aρ(u,v) := a(u,v) + ρ(div u,div v), u,v ∈ V.

The next two theorems are direct consequences of Theorems 2.5 and 3.3, respectively.
Theorem 7.1. Let (u, p) be the solution of (7.2) and let (uk, pk) be the sequence

of approximations built by the UM (2.13). Then the statements (i)–(iv) of Theorem
2.5 hold with m = c0 and M = 1.

Theorem 7.2. Let (u, p) be the solution of (7.2) and let (uk, pk) be the sequence
of approximations built by the ALUM (3.1). Then the statements (i)–(iv) of Theorem
3.3 hold with m = c0 and M = 1.

According to section 5, both the UM and ALUM can be applied to any discretiza-
tion of (7.2), provided that (Vh, Ph), with Vh ⊂ V and Ph ⊂ P , is a stable pair.
Let us assume that a fixed pair (Vh, Ph) satisfies the discrete inf-sup and sup-sup
conditions with constants m(h) = cd > 0 and M(h) = 1. If Qh : P → Ph is the
L2-orthogonal projection, then, with the new spaces, the operators associated with
the forms a and b are Ah and Bh, respectively, where Ah : Vh → V∗

h consists of
d copies of the discrete Laplacian and Bhv = Qh div v. Thus, the update for the
pressure becomes

pk = pk−1 + α Qh(div uk − g).

The analysis of the discrete versions of the UM and the ALUM can be carried on
similarly. The only difference in describing the convergence of the two algorithms for
the discrete case is that c0 in Theorems 7.1 and 7.2 is replaced by cd.

The inexact Uzawa algorithm can be also applied for the discretization of (7.2)
on (Vh,Ph) (see, e.g., [7]). Taking for example Ch : V∗

h → Vh to be a preconditioner

for Ah such that (4.1) is satisfied with δ <
c2d

2+c2d
, we have that the IUM converges for

any α ∈ (0, 2). We can also apply the inexact Uzawa algorithm for the augmented
Lagrangian Uzawa formulation on (Vh,Ph) (see Remark 4.4).

According to Corollary 6.5, the MIUM for solving (7.2) can be also applied for
any δ < c20/(2 + c20). The main difficulty in doing so is to find the sequence of spaces
{Vk} such that (6.6) or (6.13) is satisfied. Residual-type a posteriori estimators ηk
(see, e.g., [2], [18]) could be involved in finding the right sequence {Vk}. Constructing
and testing multilevel or adaptive algorithms for solving the Stokes system based on
the MIUM remains a challenging new problem and is a subject for future work.
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8. Conclusion. The paper gives a unified analysis approach of various Uzawa-
like algorithms for solving continuous or discrete saddle point problems. The conver-
gence condition and the convergence factors depend upon the extreme spectral bounds
of the Schur complement BA−1B∗ only. To the best of our knowledge, the result con-
cerning the optimal convergence factor of the ALUM for the infinite-dimensional case
is new. The analysis of the modified inexact Uzawa algorithm at the continuous level,
which was introduced in section 6, gives a general strategy for solving saddle point
systems. Our inexact Uzawa algorithm is similar to the algorithm for solving the
Stokes system presented in [4]. The differences are in the way the error bounds are
imposed (see (6.6), (6.13)) and the way the pressure is updated. Our analysis, com-
bined with standard techniques of a posteriori error estimates, could lead to new and
efficient adaptive algorithms for solving saddle point systems. The main difficulty in
implementing concrete algorithms based on the MIUM is finding error estimators ηk
such that the conditions (6.6) or (6.13) are satisfied. Finding spaces {Vk} such that
conditions similar to (6.6) are satisfied will be the focus of our future work.

Acknowledgment. The author would like to thank the two reviewers for the
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Abstract. We consider discrete schemes for a nonlinear model of non-Fickian diffusion in
viscoelastic polymers. The model is motivated by, but not the same as, that proposed by Cohen,
White, and Witelski in SIAM J. Appl. Math., 55 (1995), pp. 348–368. The spatial discretization is
effected with both the symmetric and nonsymmetric interior penalty discontinuous Galerkin finite
element method, and the time discretization is of Crank–Nicolson type. We also discuss two means
of handling the nonlinearity: either implicitly, which requires the solution of nonlinear equations at
each time level, or through a linearization based on extrapolating from previous time levels. The
same optimal orders of convergence are proven in both cases and, to verify this, some numerical
results are also given for the linearized scheme.
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1. Introduction. In [24] Thomas and Windle demonstrated by experiment that
the diffusion of organic penetrants into glassy polymers does not obey the classical
Fick’s law. At moderate temperatures the profile of diffusing penetrant (methanol in
their case) forms a steep front which travels at a constant speed into the polymer.
In [25] they developed a model for this “anomalous” diffusion in terms of an ordinary
differential equation for the fractional swelling of the polymer.

However, in order to have more predictive value, a mathematical model for this
behavior in the form of a partial differential equation is more desirable. Such a model
has been proposed by Cohen, White, and Witelski in [6] (see also the references
therein). Recognizing that viscoelastic stress relaxation effects are significant in poly-
mers, they add such a term to Fick’s law and drive this stress through a nonlinear
relaxation equation which is adjoined to the diffusion equation. Solving the system
then results in a heat equation with a nonlinear viscoelastic memory term in the
form of a Volterra integral—typical of continuum models of polymers (see, e.g., [8] for
polymer theory and [14] for a similar model of heat conduction).

In terms of the underlying physics, it seems that high levels of penetrant concen-
tration can cause a rubber-glass phase change. The polymer’s viscoelastic properties
change dramatically across this transition layer, and this can cause sharp fronts to
develop in the diffusing penetrant.

The model proposed in [6] seems to be difficult to handle in terms of obtaining
estimates and so, as a stepping stone to that model, we deal here with a simpler
version which involves a vector of stresses in the diffusion equation, rather than (as
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in [6]) the gradient of a scalar stress. The reason this is a simplification can be better
explained once we have seen the equations.

Our model is as follows. For an open bounded domain Ω ⊂ R
d (d = 2 or 3) and

a time interval I := (0, T ), for some T > 0, we want to find the “concentration,”
u : Ω × I → R, and viscoelastic stress, σ : Ω × I → R

d, such that in Ω × I,

ut(t) −∇ ·D∇u(t) = f(t) + ∇ ·Kσ(t),(1)

σt(t) + γ(u)σ(t) = μ∇u(t),(2)

where σ = (σ1, . . . , σd)
T . These are subject to the initial conditions,

u(x, 0) = ŭ(x) and σ(x, 0) = σ̆(x),(3)

and the boundary conditions,

u(x, t) = 0 on ΓD × I and

(D∇u(x, t) + Kσ(x, t)) · n(x) = g(x, t) on ΓN × I,
(4)

where ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, ΓN has outward normal n, and ΓD is closed
with positive surface measure. Note that in (1) and (2), and usually below, we drop
the x dependence.

In [6] the vector of stresses, σ, is replaced by the gradient of a scalar stress, ∇σ.
Our model is a simplification because, in weak form, we can generate the term (σ,∇u)
in both equations and therefore easily merge them as a starting point for estimates.
This is clearly illustrated below in Theorem 1.1.

In our equations D, K, and μ are positive constants. Also, the nonlinear function

γ(u) =
1

2
(γR + γG) +

1

2
(γR − γG) tanh

(
u− uRG

Δ

)
,(5)

with constants γR � γG > 0, models the sharp change in material properties across
the rubber-glass transition. The sharpness of the change is controlled by the positive
constant Δ, and the location of the change is controlled by the constant transition
concentration uRG. Regions where u � uRG correspond to the “glassy” phase while
regions where u � uRG are “rubbery.” When u is in or near a Δ-neighborhood of
uRG the polymer is in a nebulous phase transition state.

Since this simplified model is motivated by a diffusion problem we have continued
to refer to u as a concentration. However, because the underlying physics may have
been lost in the simplification, it may not actually have the correct physical properties.

We note that

0 < γG � γ(y) � γR ∀y ∈ R(6)

and

γ′(y) =
γR − γG

2Δ
sech2

(
y − uRG

Δ

)
,(7)

so that

0 � γ′(y) � C ′
γ :=

γR − γG
2Δ

∀y ∈ R.(8)
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Also,

γ′′(y) = −
(
γR − γG

Δ2

)
tanh

(
y − uRG

Δ

)
sech2

(
y − uRG

Δ

)
,

which gives

|γ′′(y)| � C ′′
γ :=

γR − γG
Δ2

∀y ∈ R.(9)

We also note that we can solve (2) to get

σ(t) = σ̆e−
∫ t
0
γ(u(ξ)) dξ + μ

∫ t

0

e−
∫ t
s
γ(u(ξ)) dξ∇u(s) ds(10)

and use this in (1) to arrive at (assuming σ̆ = 0)

ut(t) −∇ ·D∇u(t) = f(t) + ∇ · μK
∫ t

0

e−
∫ t
s
γ(u(ξ)) dξ∇u(s) ds.(11)

We recognize this as a parabolic partial differential equation with a nonlinear Volterra-
type memory term typical of that arising in viscoelasticity theory. We could work
directly with this formulation in constructing our numerical approximation, but we
prefer to work with the system, (1) with (2), since we then need not be concerned with
the discretization of the Volterra integral. Also, representing viscoelasticity through
evolution equations for internal variables is often preferred to the use of Volterra
integrals. See, for example, [11, 10, 3]. It is important to realize that introducing
internal variables does not introduce more unknowns and lead to a more complex
scheme than would result from using the Volterra formulation directly. In the latter
case the “history” in the Volterra integral needs to be stored and updated at each time
step. This is exactly analogous to storing the previous value of the internal variable
and then updating it through a time-stepping scheme.

This is the third in a series of papers extending the (spatially) discontinuous
Galerkin (DG) finite element method (FEM) to viscoelasticity problems. In [16] we
considered an elliptic stress analysis problem with memory and in [17] we extended
this to a second-order hyperbolic problem with memory. Both of these deal only with
linear problems, but below we “complete the set” by considering a parabolic problem
and including a physically relevant nonlinearity.

DG methods offer several advantages. The lack of continuity constraints between
the local approximations allows for an easy implementation of mesh adaptivity. Unlike
the classical continuous FEM, the DG method can handle unstructured nonconform-
ing meshes with several hanging nodes per edge (or face). In addition, increasing the
polynomial degree does not require any major modification of the software. It is rela-
tively easy as well to have polynomial degrees that vary from one mesh element to the
next. Finally, one inherent property of DG methods is the local mass conservation.
While this property is essential in many flow and transport problems, it remains to
be seen that local mass conservation is important for non-Fickian polymer diffusion
problems. A deeper numerical investigation is needed. This will be the object of
future work.

The layout of this article is as follows. In section 2 the equations are spatially
discretized using an interior penalty DG FEM, and we consider both the symmetric
and nonsymmetric variants. The time discretization is a standard Crank–Nicolson
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method with a choice of treatments for the nonlinear term. Either this term is ap-
proximated in an implicit way, which involves a nonlinear equation set at each time
level, or it is handled by extrapolating the current approximation of u to the current
time level from the two previous time levels (similarly to [5]). Special care is needed
at the first time step, but we can show optimal second-order convergence in each case.
The error estimates are contained in section 3 and some numerical experiments are
given in section 4. We finish with some comments regarding our model and approach
in section 5, as well as discuss the potential for extending this work to Cohen, White,
and Witelski’s model.

For background on the DG FEM we refer the reader to [18, 21, 9, 20], and for the
numerical analysis of generic parabolic problems with memory we refer the reader to
[5, 12, 23, 26, 13] (but there are many others).

However, apart from [17], we are not aware of any error analysis for numerical
approximations to viscoelasticity problems where the Volterra integral is replaced
with internal variable evolution equations, such as (2).

Our notation is standard. For ω ⊆ Ω̄ we use (·, ·)ω to denote the L2(ω) inner
product and simply write (·, ·) when ω = Ω. Also, we use ‖ · ‖p,ω to denote the Hp(ω)
norm and write ‖ · ‖m as an abbreviation for ‖ · ‖m,Ω.

We set Hp(Ω) := (Hp(Ω))d, but in the notation just described we do not distin-
guish between inner products and norms on Hp(Ω) (as used for u) and inner products
and norms on Hp(Ω) (as used for σ).

Since our functions are time dependent we take the usual approach of thinking
of them as maps from I to some underlying Banach space, X. For 1 � p < ∞ the
Lp(0, t;X) norms are given by

‖v‖Lp(0,t;X) :=

(∫ t

0

‖v(t)‖pX dt

)1/p

,

with the usual “ess sup” modification when p = ∞.
To finish this introduction we derive a stability estimate for this problem; the

proof is a model of how to proceed with the estimates for the discrete scheme that
follows. To begin we note that if

V := {v ∈ H1(Ω): v = 0 on ΓD},
then a variational formulation of (1)–(2) is as follows: find maps u : I → V and
σ : I → L2(Ω) such that

(ut(t), v) + (D∇u(t),∇v) + (Kσ(t),∇v) = L(t; v) ∀v ∈ V ,(12)

(σt(t) + γ(u)σ(t),w) = (μ∇u(t),w) ∀w ∈ L2(Ω),(13)

where

L(t; v) := (f(t), v) + (g(t), v)ΓN
.(14)

We can now state a basic stability estimate which does not require Gronwall’s
lemma.

Theorem 1.1 (basic stability). There exists a constant C > 0, independent of
T , such that, if (u,σ) is a solution of (12), (13), then

‖u(t)‖2
0 + ‖σ(t)‖2

0 +

∫ t

0

(
‖D1/2∇u(s)‖2

0 + ‖σ(s)‖2
0

)
ds

� C
(
‖ŭ‖2

0 + ‖σ̆‖2
0 + ‖f‖2

L2(0,t;L2(Ω)) + ‖g‖2
L2(0,t;L2(ΓN ))

)
for all t > 0.
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Proof. Choose v = u in (12) and w = (K/μ)σ(t) in (13) and add the resulting
equations to get

(ut(t), u(t)) + (D∇u(t),∇u(t)) + (Kσ(t),∇u(t))

+
K

μ
(σt(t),σ(t)) +

K

μ
(γ(u)σ(t),σ(t)) − (Kσ(t),∇u(t))

= (f(t), u(t)) + (g(t), u(t))ΓN
.

Hence, using Poincaré’s inequality

d

dt
‖u(t)‖2

0 +
K

μ

d

dt
‖σ(t)‖2

0 + 2‖D1/2∇u(t)‖2
0 +

2K

μ
(γ(u)σ(t),σ(t))

� 2C‖f(t)‖0‖D1/2∇u(t)‖0 + 2C‖g(t)‖0,ΓN
‖D1/2∇u(t)‖0

� 2C2‖f(t)‖2
0 + 2C2‖g(t)‖2

0,ΓN
+ ‖D1/2∇u(t)‖2

0.

Integrating then gives

‖u(t)‖2
0 +

K

μ
‖σ(t)‖2

0 +

∫ t

0

(
‖D1/2∇u(s)‖2

0 +
2KγG

μ
‖σ(s)‖2

0

)
ds

� ‖ŭ‖2
0 +

K

μ
‖σ̆‖2

0 + 2C2
(
‖f‖2

L2(0,t;L2(Ω)) + ‖g‖2
L2(0,t;L2(ΓN ))

)
.

This concludes the proof.
Last in this section, we recall Young’s inequality in the form

ab � ap

pεp
+

εqbq

q
(15)

for all a, b � 0, ε > 0, and p, q ∈ (1,∞) such that 1/p + 1/q = 1.

2. The numerical scheme. The first step is to establish notation for the spatial
discretization. Let Eh = {E} be a nondegenerate quasiuniform subdivision of Ω, where
E is a triangle if d = 2, or a tetrahedron if d = 3. The nondegeneracy requirement is
that there exists ρ > 0 such that if hE = diam(E), then E contains a ball of radius
ρhE in its interior. Let h = max{hE : E ∈ Eh}; the quasiuniformity requirement is
that there exists τ > 0 such that h/hE � τ for all E ∈ Eh. We denote by Γh the set
of interior edges (faces for d = 3) of Eh. With each edge (or face) e, we associate a
unit normal vector ne. For a boundary edge e, ne is taken to be the unit outward
vector normal to ∂Ω.

We now define the average and the jump operators. For each of the interior edges,
suppose that e is shared by Ee

1 and Ee
2 such that ne points from Ee

1 to Ee
2 and for a

boundary edge, suppose that e belongs to Ee
1 . We define the averaging operator {·}

by

{w} :=

⎧⎨
⎩

1
2 (w|Ee

1
)|e + 1

2 (w|Ee
2
)|e if e ⊂ Ω,

(w|Ee
1
)|e if e ⊂ ∂Ω

and the jump operator [·] by

[w] :=

⎧⎨
⎩

(w|Ee
1
)|e − (w|Ee

2
)|e if e ⊂ Ω,

(w|Ee
1
)|e if e ⊂ ∂Ω.
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The distinction between [·] and −[·] can be made because each edge ea has a unit
normal associated with it. The “direction” in which the jump takes place is unimpor-
tant.

These operators are well defined if w|Ei
a
∈ H

1
2+ε(Ei

a) for i = 1, 2 and ε > 0.
Below, we use |e| to denote the (d− 1)-dimensional surface measure of the edge/face
e. We also frequently use the estimate, |e| � Chd−1 which arises as a consequence of
our assumptions.

Define the broken spaces for any integer r > 0 as

Dr(Eh) = {v ∈ L2(Ω) : v|E ∈ Pr(E) ∀E ∈ Eh},
Dr(Eh) = Dr(Eh)d,

Hn(Eh) = {v ∈ L2(Ω) : v|E ∈ Hn(E) ∀E ∈ Eh}.
For these finite element spaces we have the following interpolation-error estimates.
If v ∈ Hn(Eh) ∩ C(Ω̄) and μ = min{r + 1, n} then there is an interpolant v̂ ∈
Dr(Eh) ∩ C(Ω̄) such that for each E ∈ Eh,

‖v − v̂‖m,E � Chμ−m
E ‖v‖n,E for n � m � 0,(16)

‖v − v̂‖m,γ � Ch
μ−m−1/2
E ‖v‖n,E for m = 0, 1 and n � m,(17)

where γ ⊆ ∂E.
Define the bilinear forms

Jδ,β
0 (w, v) =

∑
e∈Γh∪ΓD

δ

|e|β
∫
e

[w][v] for β � (d− 1)−1,

A(w, v) =
∑
E

∫
E

D∇w · ∇v + Jδ,β
0 (w, v) −

∑
e∈Γh∪ΓD

∫
e

{D∇w · ne}[v]

+ κ
∑

e∈Γh∪ΓD

∫
e

{D∇v · ne}[w].

Here κ is a switch: we set κ = 1 to obtain the nonsymmetric DG scheme, and κ = −1
to obtain the symmetric scheme. Following from these definitions are the norm and
seminorm

‖v‖A :=
(
|v|2E + Jδ,β

0 (v, v)
) 1

2

and |v|E :=

( ∑
E∈Eh

∫
E

D∇v · ∇v dE

) 1
2

.

We will need the following estimates.
Lemma 2.1. We have

‖v‖0 � Cf‖v‖A ∀v ∈ H1(Eh)(18)

and

‖v‖0,ΓN
� Cgh

−1/2‖v‖A ∀v ∈ Dr(Eh),

for constants Cf and Cg, independent of h.
Proof. For the first inequality we refer to [9, Lemma 6.2], and for the second

inequality we use the first one with Sobolev interpolation to get

‖v‖2
0,ΓN

=
∑
e∈ΓN

‖v‖2
0,e � C

∑
E

h−1‖v‖0,E‖∇v‖0,E � Ch−1(C2
f + D−1)‖v‖2

A.

This completes the proof.
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We note that if u(t) ∈ C(Ω̄) for each t, then

(ut(t), v) + A(u(t), v) = L(t; v) −
∑
E

(Kσ(t),∇v)E

+
∑

e∈Γh∪ΓD

∫
e

{Kσ(t) · ne}[v] ∀v ∈ Dr(Eh),(19)

and

(σt(t) + γ(u)σ(t),w) =
∑
E

(μ∇u(t),w)E ∀w ∈ Dr−1(Eh).(20)

The first of these arises by elementwise partial integration and “adding zero” (see,
e.g., [21]).

To construct a fully discrete approximation we set k = T/N for some N ∈ N, and
write ti = ik. To ease notation we define

∂twi :=
w(ti) − w(ti−1)

k
and w̄i :=

w(ti) + w(ti−1)

2
.

The fully discrete approximations, uh and σh, to u and σ are continuous and piecewise
linear in time, and discontinuous in space. We set uh

i := uh(ti) and σh
i := σh(ti).

An issue is how to handle the nonlinearity, γ(u), in the numerical scheme. We
offer two possibilities by approximating γ(u)|(ti−1,ti) by γ(Bi,nu

h) for n = 1 or 2,
where

Bi,1u
h := ūh

i and Bi,2u
h := Eiu

h,

with Ei an extrapolation operator defined by

Eiu
h :=

{
uh

0 for i = 1;
3
2u

h
i−1 − 1

2u
h
i−2 for i = 2, . . . , N.

In the first case we approximate γ(u)|(ti−1,ti) by taking the true average, ūh
i , of the

discrete solution. This will result in a nonlinear system to be solved at each time level.
To linearize this system, the second method linearly extrapolates to the average based
on the two previous solutions. This is not possible at the first time step and so this
first step will require special treatment in the error estimation. This extrapolation
technique is widely used in coupled flow and transport problems such as miscible
displacement. See, for example, [7] and [19].

The fully discrete approximations (i.e., for n = 1 or 2) are based on sampling
(19) and (20) at the temporal midpoints, ti−1/2. They are defined as follows: for each

i = 1, 2, . . . , N , find a pair {uh
i ,σ

h
i } ∈ Dr(Eh) ×Dr−1(Eh) such that

(∂tu
h
i , v) + A(ūh

i , v) = Li(v) −
∑
E

(Kσ̄h
i ,∇v)E

+
∑

e∈Γh∪ΓD

∫
e

{Kσ̄h
i · ne}[v] ∀v ∈ Dr(Eh),(21)

and

(∂tσ
h
i + γ(Bi,nu

h)σ̄h
i ,w) =

∑
E

(μ∇ūh
i ,w)E ∀w ∈ Dr−1(Eh),(22)
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where

Li(v) :=
1

2

(
L(ti; v) + L(ti−1; v)

)
,

and the discrete initial data are given by

(uh
0 , v) = (ŭ, v) ∀v ∈ Dr(Eh),

(σh
0 ,w) = (σ̆,w) ∀w ∈ Dr−1(Eh).

We now give a stability estimate for this discrete approximation and note that
Gronwall’s lemma is not used. We also note that the “h−1” factor appearing in front of
the boundary term is a weakness in the proof and is not observed in computations. It
appears that the removal of this factor is an open problem (although, see Remark 3.6
later).

Theorem 2.2 (discrete basic stability). If β � (d− 1)−1 and h � ĥ we have for
m = 1, 2, . . . , N that

‖uh
m‖2

0 +
K

μ
‖σh

m‖2
0 + C�k

m∑
i=1

(
‖ūh

i ‖2
A + 2K‖σ̄h

i ‖2
0

)

� ‖ŭ‖2
0 +

K

μ
‖σ̆‖2

0 + 6k

m∑
i=1

(
C2

f‖f̄i‖2
0 + C2

gh
−1‖ḡi‖2

0,ΓN

)
,

provided that

δ � 3Cĥ(d−1)β−1 max

{
4D

1 − C�
,

μK

2γG − 2μC�

}
,

where C� < min{1, γG/μ} is some chosen positive constant, C is independent of h,
and Cf and Cg are those in Lemma 2.1.

Proof. Choose v = ūh
i in (21) and w = (K/μ)σ̄h

i in (22) and note that

(∂tu
h
i , ū

h
i ) =

1

2k
‖uh

i ‖2
0 −

1

2k
‖uh

i−1‖2
0,

(∂tσ
h
i , σ̄

h
i ) =

1

2k
‖σh

i ‖2
0 −

1

2k
‖σh

i−1‖2
0,

A(ūh
i , ū

h
i ) =

∑
E

(D∇ūh
i ,∇ūh

i )E + Jδ,β
0 (ūh

i , ū
h
i )

+ (κ− 1)
∑

e∈Γh∪ΓD

∫
e

{D∇ūh
i · ne}[ūh

i ].

Adding the two resulting equations then gives

1

2k
‖uh

i ‖2
0 −

1

2k
‖uh

i−1‖2
0 +

K

2kμ
‖σh

i ‖2
0 −

K

2kμ
‖σh

i−1‖2
0 + ‖ūh

i ‖2
A +

K

μ
(γ(Bi,nu

h)σ̄h
i , σ̄

h
i )

= Li(ū
h
i ) − (κ− 1)

∑
e∈Γh∪ΓD

∫
e

{D∇ūh
i · ne}[ūh

i ] +
∑

e∈Γh∪ΓD

∫
e

{Kσ̄h
i · ne}[ūh

i ],

and summing over i = 1, . . . ,m and multiplying by 2k yields

‖uh
m‖2

0 +
K

μ
‖σh

m‖2
0 + 2k

m∑
i=1

‖ūh
i ‖2

A + 2k

m∑
i=1

K

μ
(γ(Bi,nu

h)σ̄h
i , σ̄

h
i )

= ‖uh
0‖2

0 +
K

μ
‖σh

0‖2
0 + 2k

m∑
i=1

Li(ū
h
i ) + I + II,
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where

I = 2k

m∑
i=1

∑
e∈Γh∪ΓD

∫
e

{Kσ̄h
i · ne}[ūh

i ],

II = 2k

m∑
i=1

(1 − κ)
∑

e∈Γh∪ΓD

∫
e

{D∇ūh
i · ne}[ūh

i ].

Now, using ‖σ̄h
i · ne‖0,∂E � Ch−1/2‖σ̄h

i ‖0,E and recalling that |e| � Chd−1, for I we
have

|I| � 2k

m∑
i=1

∑
e∈Γh∪ΓD

K‖{σ̄h
i · ne}‖0,e‖[ūh

i ]‖0,e,

� 2ε1k

m∑
i=1

∑
e∈Γh∪ΓD

K2

(
|e|β
δ

)
‖{σ̄h

i · ne}‖2
0,e +

k

2ε1

m∑
i=1

∑
e∈Γh∪ΓD

(
δ

|e|β

)
‖[ūh

i ]‖2
0,e,

� 2ε1k

m∑
i=1

K2Ch(d−1)β−1

δ
‖σ̄h

i ‖2
0 +

k

2ε1

m∑
i=1

Jδ,β
0 (ūh

i , ū
h
i ).

Similarly, since |κ− 1| � 2,

|II| � 4k

m∑
i=1

∑
e∈Γh∪ΓD

(
|e|β
δ

)1/2

‖{D∇ūh
i · ne}‖0,e

(
δ

|e|β

)1/2

‖[ūh
i ]‖0,e,

� 2ε2k

m∑
i=1

∑
E

DCh(d−1)β−1

δ
‖D1/2∇ūh

i ‖2
0,E +

2k

ε2

m∑
i=1

Jδ,β
0 (ūh

i , ū
h
i ).

With these we arrive at

‖uh
m‖2

0 +
K

μ
‖σh

m‖2
0 +

(
2 − 1

2ε1
− 2

ε2

)
k

m∑
i=1

‖ūh
i ‖2

A + 2k

m∑
i=1

K

μ
(γ(Bi,nu

h)σ̄h
i , σ̄

h
i )

� ‖uh
0‖2

0 +
K

μ
‖σh

0‖2
0 + 2k

∣∣∣∣∣
m∑
i=1

Li(ū
h
i )

∣∣∣∣∣
+ 2k

m∑
i=1

Ch(d−1)β−1

δ

(
K2ε1‖σ̄h

i ‖2
0 + Dε2‖ūh

i ‖2
A
)
.

Now, using Lemma 2.1,

2k

∣∣∣∣∣
m∑
i=1

Li(ū
h
i )

∣∣∣∣∣ = k

∣∣∣∣∣
m∑
i=1

(
L(ti; ū

h
i ) + L(ti−1; ū

h
i )
)∣∣∣∣∣

= k

∣∣∣∣∣
m∑
i=1

(
(f(ti), ū

h
i ) + (f(ti−1), ū

h
i ) + (g(ti), ū

h
i )ΓN

+ (g(ti−1), ū
h
i )ΓN

)∣∣∣∣∣
= 2k

∣∣∣∣∣
m∑
i=1

(
(f̄i, ū

h
i ) + (ḡi, ū

h
i )ΓN

)∣∣∣∣∣
� 2k

m∑
i=1

Cf‖f̄i‖0‖ūh
i ‖A + 2k

m∑
i=1

Cgh
−1/2‖ḡi‖0,ΓN

‖ūh
i ‖A
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� ε3k

m∑
i=1

C2
f‖f̄i‖2

0 + ε3k

m∑
i=1

C2
gh

−1‖ḡi‖2
0,ΓN

+
2k

ε3

m∑
i=1

‖ūh
i ‖2

A.

With this and (6), we now have

‖uh
m‖2

0 +
K

μ
‖σh

m‖2
0 +

(
2 − 1

2ε1
− 2

ε2
− 2

ε3

)
k

m∑
i=1

‖ūh
i ‖2

A + 2k

m∑
i=1

KγG
μ

‖σ̄h
i ‖2

0

� ‖uh
0‖2

0 +
K

μ
‖σh

0‖2
0 + ε3k

m∑
i=1

(
C2

f‖f̄i‖2
0 + C2

gh
−1‖ḡi‖2

0,ΓN

)

+ 2k

m∑
i=1

Ch(d−1)β−1

δ

(
K2ε1‖σ̄h

i ‖2
0 + Dε2‖ūh

i ‖2
A
)
.

Setting ε2 = ε3 = 6 and ε1 = 3/2 means that we can write this as

‖uh
m‖2

0 +
K

μ
‖σh

m‖2
0 +

(
1 − 12DCĥ(d−1)β−1

δ

)
k

m∑
i=1

‖ūh
i ‖2

A

+

(
γG
μ

− 3KCĥ(d−1)β−1

2δ

)
2Kk

m∑
i=1

‖σ̄h
i ‖2

0

� ‖uh
0‖2

0 +
K

μ
‖σh

0‖2
0 + 6k

m∑
i=1

(
C2

f‖f̄i‖2
0 + C2

gh
−1‖ḡi‖2

0,ΓN

)
,

and choosing some positive constant C� < min{1, γG/μ} and requiring that

δ � 3Cĥ(d−1)β−1 max

{
4D

1 − C�
,

μK

2γG − 2μC�

}
,

we arrive at the theorem.
Since this is a finite dimensional problem, we can infer existence from uniqueness

in the linear case where n = 2. Since this is the more practical of the two algorithms
we are content with this. Also, at least for the original model of Cohen et al., [6], it
seems from [2] that such analysis for the nonlinear problem is highly nontrivial.

Theorem 2.3 (discrete existence and uniqueness). Under the conditions of The-
orem 2.2, the discrete solution exists for n = 2 and is unique.

Remark 2.4. The condition that δ “be large enough” in Theorem 2.2 can be
removed in the nonsymmetric case, κ = 1, by requiring a small enough time step,
k. To see this note that the term II in the proof vanishes and that the second term
in the bound for I can be moved to the left with an appropriate choice of ε1. After
applying the triangle inequality to ‖σ̄h

i ‖2
0, the term ‖σh

m‖2
0 can also be moved to the

left if k is small enough, and the remaining terms are bounded by a discrete Gronwall
inequality.

3. Error estimate. In this section we derive error estimates for our schemes
encompassing the cases κ = ±1 and n = 1 or 2. First we need some standard Taylor
series estimates, and it is convenient to define

Δiv :=
vt(ti) + vt(ti−1)

2
− v(ti) − v(ti−1)

k
,

which we recognize as (the negative of) the error in the trapezium rule.
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Lemma 3.1 (Taylor estimates). Whenever v has the indicated regularity we have
positive constants, C, independent of h and k such that

‖v(ti−1/2) − v̄i‖0 � Ck3/2‖vtt‖L2(ti−1,ti;L2(Ω)),(23)

‖v(k/2) − v(0)‖0 � Ck‖vt‖L∞(0,k/2;L2(Ω)),(24) ∥∥∥∥v(ti−1/2) −
3v(ti−1) − v(ti−2)

2

∥∥∥∥
0

� Ck3/2‖vtt‖L2(ti−2,ti−1/2;L2(Ω)),(25)

‖vt(ti−1/2) − ∂tvi‖0 � Ck3/2‖vttt‖L2(ti−1,ti;L2(Ω)),(26)

and

‖Δiv‖0 � Ck3/2‖vttt‖L2(ti−1,ti;L2(Ω)),(27)

from the Peano kernel theorem applied to the trapezoidal rule for numerical integra-
tion.

We define

χi := uh
i − u⊥(ti), ηi := σh

i − σ∗(ti),

ξ(ti) := u(ti) − u⊥(ti), θ(ti) := σ(ti) − σ∗(ti),

where σ∗ ∈ Dr−1(Eh) is the nodal interpolant to σ, and u⊥ ∈ Dr(Eh) is the elliptic
projection of u defined by

A(u⊥, v) = A(u, v) ∀v ∈ Dr(Eh).(28)

Proposition 3.2 (estimates for the elliptic projection). If u ∈ C(Ω̄) and u⊥ ∈
Dr(Eh) is defined through (28) for κ = ±1, we have for m = 0, 1, 2, . . . and t ≥ 0 that∥∥∥∥ ∂m

∂tm

(
u(t) − u⊥(t)

)∥∥∥∥
A

� Chs

∥∥∥∥∂mu

∂tm
(t)

∥∥∥∥
s+1

,(29) ∥∥∥∥ ∂m

∂tm

(
u(t) − u⊥(t)

)∥∥∥∥
0

� Chs

∥∥∥∥∂mu

∂tm
(t)

∥∥∥∥
s+1

,(30) ∥∥∥∥∂mu⊥

∂tm
(t)

∥∥∥∥
A

� C

∥∥∥∥∂mu

∂tm
(t)

∥∥∥∥
2

,(31)

whenever ∂mu(t)/∂tm ∈ Hs+1(Ω) and 1 � s � r.
When m = 0 the proof of (29) is given in [21] (the “NIPG” scheme) for the

nonsymmetric case, κ = 1, and can be readily established for κ = −1 by similar
arguments. The nonoptimal (30) then follows from (29) and (18) (an optimal L2

estimate is also given in [21], but we do not need it here). The stability estimate,
(31), follows from

‖u⊥(t)‖A � ‖u(t) − u⊥(t)‖A + ‖u(t)‖A,

along with (29) (with s = 1) and the fact that [u(t)] = 0. The estimates then follow
for m � 1 by differentiating (28).

For use later, we note also that

‖σ∗(t)‖L∞(Ω) � C‖σ(t)‖L∞(Ω).(32)
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The next result is a lemma that deals with the error generated by the nonlinear term.

Lemma 3.3 (nonlinearity error). For n = 1 or 2 we have∣∣∣(((γ(u)σ)i) − γ(Bi,nu
h)σ̄∗

i , η̄i

)∣∣∣
� Ch2r

ε

(
‖σ‖2

L∞(0,T ;Hr(Ω)) + ‖σ‖2
L∞(0,T ;L∞(Ω))‖u‖2

L∞(0,T ;Hr+1(Ω))

)
+

Ck3

ε

(
‖(γ(u)σ)tt‖2

L2(ti−1,ti;L2(Ω)) + ‖σtt‖2
L2(ti−1,ti;L2(Ω))

)
+

C

ε
‖σ‖2

L∞(0,T ;L∞(Ω))‖χi−1‖2
0

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C

ε
‖σ‖2

L∞(0,T ;L∞(Ω))

(
k3‖utt‖2

L2(ti−1,ti;H2(Ω)) + ‖χi‖2
0

)
+

γGε

2
‖η̄i‖2

0

for n = 1, i = 1, . . . , N,

Ck2

ε
‖σ‖2

L∞(0,T ;L∞(Ω))‖ut‖2
L∞(0,k/2;H2(Ω)) +

γGε

2
‖η1‖2

0 +
γGε

2
‖η0‖2

0

for n = 2, i = 1,

C

ε
‖σ‖2

L∞(0,T ;L∞(Ω))

(
k3‖utt‖2

L2(ti−2,ti−1/2;H2(Ω)) + ‖χi−2‖2
0

)
+

γGε

2
‖η̄i‖2

0

for n = 2, i = 2, . . . , N,

for a constant C independent of h, k, and ε and for all ε > 0.

Proof. We have, from (23) in Lemma 3.1,∣∣∣((γ(u)σ(ti)) − γ(Bi,nu
h)σ̄∗

i , η̄i

)∣∣∣ � ‖η̄i‖0

(
‖γ(u)σ(ti) − γ(u(ti−1/2))σ(ti−1/2)‖0

+ ‖γ(u(ti−1/2))σ(ti−1/2) − γ(Bi,nu
h)σ̄∗

i ‖0

)
,

� Ck3/2‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω))‖η̄i‖0

+ ‖η̄i‖0

(
‖γ(u(ti−1/2))(σ(ti−1/2) − σ̄∗

i )‖0

+ ‖γ(u(ti−1/2)) − γ(Bi,nu
h)‖0‖σ̄∗

i ‖L∞(Ω)

)
,

� Ck3/2‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω))‖η̄i‖0

+ γR‖η̄i‖0

(
‖σ(ti−1/2) − σ̄i‖0 + ‖σ̄i − σ̄∗

i ‖0

)
+ C ′

γ‖η̄i‖0‖σ̄∗
i ‖L∞(Ω)‖u(ti−1/2) − Bi,nu

h‖0,

where we observed, using (8), that

‖γ(u(ti−1/2)) − γ(Bi,nu
h)‖0 =

∥∥∥∥
∫ 1

0

γ′(su(ti−1/2) + (1 − s)Bi,nu
h) ds (u(ti−1/2)

−Bi,nu
h)

∥∥∥∥
0

� C ′
γ‖u(ti−1/2) − Bi,nu

h‖0.

Using (23), (24), and (25) from Lemma 3.1, along with (16) and (32), we therefore
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arrive at∣∣∣((γ(u)σ(ti)) − γ(Bi,nu
h)σ̄∗

i , η̄i

)∣∣∣ � Ck3/2‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω))‖η̄i‖0

+ γR‖η̄i‖0

(
Ck3/2‖σtt‖L2(ti−1,ti;L2(Ω)) + Chr‖σ‖L∞(0,T ;Hr(Ω))

)
+ C‖η̄i‖0‖σ‖L∞(0,T ;L∞(Ω))‖u(ti−1/2) − Bi,nu

h‖0.

Now, using Proposition 3.2,

‖u(ti−1/2) − Bi,nu
h‖0 � ‖u(ti−1/2) − u⊥(ti−1/2)‖0 + ‖u⊥(ti−1/2) − Bi,nu

⊥‖0

+ ‖Bi,nu
⊥ − Bi,nu

h‖0,

� Chr‖u‖L∞(0,T ;Hr+1(Ω)) + ‖u⊥(ti−1/2) − Bi,nu
⊥‖0 + ‖Bi,nχ‖0,

and this is as far as we can get without distinguishing between n = 1 and n = 2.
So, first, for n = 1 we have

‖u(ti−1/2) − Bi,1u
h‖0 � Chr‖u‖L∞(0,T ;Hr+1(Ω)) + Ck3/2‖utt‖L2(ti−1,ti;H2(Ω))

+
1

2
‖χi‖0 +

1

2
‖χi−1‖0,

where we used (23) from Lemma 3.1 and (30) with m = 0.
Second, using (24) from Lemma 3.1, in the case n = 2 we have when i = 1 that

‖u(ti−1/2) − Bi,2u
h‖0 � Chr‖u‖L∞(0,T ;Hr+1(Ω)) + Ck‖ut‖L∞(0,k/2;H2(Ω)) + ‖χ0‖0,

while if i > 1, with (25) from Lemma 3.1,

‖u(ti−1/2) − Bi,2u
h‖0 � Chr‖u‖L∞(0,T ;Hr+1(Ω)) + Ck3/2‖utt‖L2(ti−2,ti−1/2;H2(Ω))

+
3

2
‖χi−1‖0 +

1

2
‖χi−2‖0.

Assembling these estimates then gives∣∣∣(((γ(u)σ)i) − γ(Bi,nu
h)σ̄∗

i , η̄i

)∣∣∣
� Ck3/2

(
‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω)) + γR‖σtt‖L2(ti−1,ti;L2(Ω))

)
‖η̄i‖0

+ Chr
(
‖σ‖L∞(0,T ;L∞(Ω))‖u‖L∞(0,T ;Hr+1(Ω)) + γR‖σ‖L∞(0,T ;Hr(Ω))

)
‖η̄i‖0

+ ‖η̄i‖0‖σ‖L∞(0,T ;L∞(Ω)) ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ck3/2‖utt‖L2(ti−1,ti;H2(Ω)) + 1
2‖χi‖0 + 1

2‖χi−1‖0

for n = 1, i � 1;

Ck‖ut‖L∞(0,k/2;H2(Ω)) + ‖χ0‖0

for n = 2, i = 1;

Ck3/2‖utt‖L2(ti−2,ti−1/2;H2(Ω))

+ 3
2‖χi−1‖0 + 1

2‖χi−2‖0

for n = 2, i > 1.

Several applications of Young’s inequality then complete the proof.
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Before giving the error estimate we recall from, e.g., [1, Theorem 4.12] that if
Ω ⊂ R

d for d = 2 or 3 satisfies a cone condition, then ‖v‖L∞(Ω) � C‖v‖m for
m > d/2. Moreover,

H1(Ω) ↪→ Lq(Ω) for

{
2 � q < ∞ if d = 2,
2 � q � 6 if d = 3,

(33)

and then ‖v‖Lq(Ω) � C‖v‖1 for all v ∈ H1(Ω). Also, if (X, ‖ · ‖X) is a Banach space
then, for v : I → X, we have

‖v‖L∞(0,τ ;X) � C(τ)
(
‖v(0)‖X + ‖vt‖Lp(0,τ ;X)

)
∀τ ∈ Ī(34)

and for 1 � p � ∞.
Now we can state the error estimate. The regularity requirements stated in this

are given simply as they appear in the proof and in Lemma 3.3. We return to this
point later.

Theorem 3.4 (error estimate). Let ĥ � diam(Ω) and k̂ � T be positive constants
and for r � 1 assume that ŭ ∈ Hr+1(Ω), σ̆ ∈ Hr(Ω),

• u ∈ W 1
∞(I;Hr+1(Ω)) ∩H2(I;H2(Ω)) ∩H3(I;L2(Ω)),

• σ ∈ L∞(I; L∞(Ω)) ∩W 1
∞(I; Hr(Ω)) ∩H3(I; L2(Ω)),

• (γ(u)σ)tt ∈ L2(I; L2(Ω));

then for β � (d − 1)−1, h � ĥ, ĥ(d−1)β−1/δ small enough (for n = 1 and 2), and

k � k̂, where k̂ is small enough (for n = 1 only), we have a positive constant, C,
independent of h and k such that

‖u(tm) − uh
m‖0 + ‖σ(tm) − σh

m‖0 +

(
k

m∑
i=1

‖ūi − ūh
i ‖2

A + ‖σ̄i − σ̄h
i ‖2

0

)1/2

� C(hr + k2)

for each m = 1, . . . , N .
Proof. We average (19) between ti and ti−1 and subtract it from (21), and do the

same with (20) and (22). Adding the results of these then gives an error equation,

(∂tχi, v) + (∂tηi,w) + A(χ̄i, v) = (Δiu, v) + (Δiσ,w) + (∂tξi, v) + (∂tθi,w) + A(ξ̄i, v)

−
∑
E

(Kη̄i,∇v)E +
∑
E

(Kθ̄i,∇v)E

+
∑
E

(μ∇χ̄i,w)E −
∑
E

(μ∇ξ̄i,w)E

+
∑

e∈Γh∪ΓD

∫
e

{Kη̄i · ne}[v] −
∑

e∈Γh∪ΓD

∫
e

{Kθ̄i · ne}[v]

+ (γ(u)σ(ti) − γ(Bi,nu
h)σ̄h

i ,w) ∀v ∈ Dr(Eh) and ∀w ∈ Dr−1(Eh).

We now choose v = χ̄i and w = (K/μ)η̄i, multiply by 2k, and sum over i = 1, . . . ,m �
N to get

‖χm‖2
0+

K

μ
‖ηm‖2

0 + 2k

m∑
i=1

‖χ̄i‖2
A + 2k

m∑
i=1

K

μ
(γ(Bi,nu

h)η̄i, η̄i)

= ‖χ0‖2
0 +

K

μ
‖η0‖2

0 + 2k

m∑
i=1

(Δiu, χ̄i) + 2k

m∑
i=1

K

μ
(Δiσ, η̄i)
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+ 2k

m∑
i=1

(∂tξi, χ̄i) + 2k

m∑
i=1

A(ξ̄i, χ̄i) +
2Kk

μ

m∑
i=1

(∂tθi, η̄i)

+ 2k

m∑
i=1

∑
E

(Kθ̄i,∇χ̄i)E − 2k

m∑
i=1

∑
E

(K∇ξ̄i, η̄i)E

+ 2k

m∑
i=1

(1 − κ)
∑

e∈Γh∪ΓD

∫
e

{D∇χ̄i · ne}[χ̄i]

+ 2k

m∑
i=1

∑
e∈Γh∪ΓD

∫
e

{Kη̄i · ne}[χ̄i] − 2k

m∑
i=1

∑
e∈Γh∪ΓD

∫
e

{Kθ̄i · ne}[χ̄i]

+
2Kk

μ

m∑
i=1

(γ(u)σ(ti) − γ(Bi,nu
h)σ̄∗

i , η̄i),

= T1 + · · · + T13.

We now take each term in turn. By the L2(Ω) projection we have (χ0, v) = (ξ(0), v)
for all v ∈ Dr(Eh), which, from (30), results in

|T1| = ‖χ0‖2
0 � ‖ξ(0)‖2

0 � Ch2r‖ŭ‖2
r+1.

Similarly, we have (η0,w) = (θ(0),w) for all w ∈ Dr−1(Eh) and, from (16), this gives

|T2| = ‖η0‖2
0 � ‖θ(0)‖2

0 � Ch2r‖σ̆‖2
r.

For T3 and T4 we appeal to (27) from Lemma 3.1 and (18) to get

|T3| � Ck

ε3

m∑
i=1

‖Δiu‖2
0 + ε3k

m∑
i=1

‖χ̄i‖2
A � Ck4

ε3
‖uttt‖2

L2(0,tm;L2(Ω)) + ε3k

m∑
i=1

‖χ̄i‖2
A,

and

|T4| � Kk

μγGε4

m∑
i=1

‖Δiσ‖2
0 + ε4k

m∑
i=1

KγG
μ

‖η̄i‖2
0,

� Ck4

ε4
‖σttt‖2

L2(0,tm;L2(Ω)) + ε4k

m∑
i=1

KγG
μ

‖η̄i‖2
0.

Using (18), (30), and (26) from Lemma 3.1, we have for T5 that

|T5| � Ck

ε5

m∑
i=1

(
‖∂tξi − ξt(ti−1/2)‖2

0 + ‖ξt(ti−1/2)‖2
0

)
+ ε5k

m∑
i=1

‖χ̄i‖2
A,

� Ck4

ε5
‖uttt‖L2(0,tm;H2(Ω)) +

Ctmh2r

ε5
‖ut‖2

L∞(0,tm;Hr+1(Ω)) + ε5k

m∑
i=1

‖χ̄i‖2
A,

where we used (18) and (31) to get ‖ξttt‖0 � C‖uttt‖2.
Now, T6 = 0 from (28) and for T7 we argue similarly as for T5 and obtain

|T7| � Kk

μγGε7

m∑
i=1

‖∂tθi‖2
0 + ε7k

m∑
i=1

KγG
μ

‖η̄i‖2
0,

� Ck4

ε7
‖σttt‖L2(0,tm;L2(Ω)) +

Ctmh2r

ε7
‖σt‖2

L∞(0,tm;Hr(Ω)) + ε7k

m∑
i=1

KγG
μ

‖η̄i‖2
0,
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where we used the estimate ‖θttt‖0 � C‖σttt‖0. For T8,

|T8| � Ck

ε8D2

m∑
i=1

‖θ̄i‖2
0 + ε8k

m∑
i=1

‖χ̄i‖2
A � Ctmh2r

ε8
‖σ‖2

L∞(0,tm;Hr(Ω)) + ε8k

m∑
i=1

‖χ̄i‖2
A,

and for T9,

|T9| � 2k

m∑
i=1

K

D
‖ξ̄i‖A‖η̄i‖0 � k

ε9

m∑
i=1

μK

γGD2
‖ξ̄i‖2

A + ε9k

m∑
i=1

KγG
μ

‖η̄i‖2
0,

� Ctmh2r

ε9
‖u‖2

L∞(0,tm;Hr+1(Ω)) + ε9k

m∑
i=1

KγG
μ

‖η̄i‖2
0.

We now note that T10 = 0 if κ = 1 (the nonsymmetric scheme) and in general we
have

|T10| � 2(1 − κ)k

m∑
i=1

∑
e∈Γh∪ΓD

(
|e|β
δ

)1/2

‖{D∇χ̄i · ne}‖0,e

(
δ

|e|β

)1/2

‖[χ̄i]‖0,e,

� 2(1 − κ)k

m∑
i=1

Ch(d−1)β/2−1/2

δ1/2
‖D1/2∇χ̄i‖0 Jδ,β

0 (χ̄i, χ̄i)
1/2,

� (1 − κ)ε10k

m∑
i=1

Ch(d−1)β−1

δ
‖χ̄i‖2

A +
(1 − κ)k

ε10

m∑
i=1

‖χ̄i‖2
A.

For T11 a similar argument produces

|T11| � ε11k

m∑
i=1

Ch(d−1)β−1

δ
‖η̄i‖2

0 +
k

ε11

m∑
i=1

‖χ̄i‖2
A,

and, for T12,

|T12| � ε12k

m∑
i=1

Ch(d−1)β

δ

(∑
E

‖θ̄i‖L2(∂E)

)2

+
k

ε12

m∑
i=1

Jδ,β
0 (χ̄i, χ̄i),

� Ctmε12h
2r−1+(d−1)β

δ
‖σ‖2

L∞(0,tm;Hr(Ω)) +
k

ε12

m∑
i=1

Jδ,β
0 (χ̄i, χ̄i).

Setting ε10 = 2 and choosing

ε3 + ε5 + ε8 +
1

ε12
=

1

4
, ε4 + ε7 + ε9 = 1, and ε11 = 4,

we then assemble these estimates and obtain

‖χm‖2
0 +

K

μ
‖ηm‖2

0 +

(
1

2
− 4Cĥ(d−1)β−1

δ

)
k

m∑
i=1

‖χ̄i‖2
A

+

(
1 − 4μCĥ(d−1)β−1

δKγG

)
k

m∑
i=1

KγG
μ

‖η̄i‖2
0

� C(h2r + k4) +
2kK

μ

m∑
i=1

∣∣∣(γ(u)σ(ti) − γ(Bi,nu
h)σ̄∗

i , η̄i

)∣∣∣ ,
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where we recalled that β � (d − 1)−1. Now we make several appeals to Lemma 3.3.

First, when n = 1 we have, for k ≤ k̂, that

(
1 − Ck̂

ε

)
‖χm‖2

0 +
K

μ
‖ηm‖2

0 +

(
1

2
− 4Cĥ(d−1)β−1

δ

)
k

m∑
i=1

‖χ̄i‖2
A

+

(
1 − 4μCĥ(d−1)β−1

δKγG
− ε

)
k

m∑
i=1

KγG
μ

‖η̄i‖2
0 � C(h2r + k4) +

Ck

ε

m−1∑
i=0

‖χi‖2
0.

Choosing ε = 1/2, k̂, and ĥ(d−1)β−1/δ small enough, an application of Gronwall’s
lemma then results in

‖χm‖2
0 + ‖ηm‖2

0 + k

m∑
i=1

‖χ̄i‖2
A + k

m∑
i=1

‖η̄i‖2
0 � C(h2r + k4).

Second, for the linearized scheme where n = 2, we have by Lemma 3.3 for m = 1 and
with ε = (2γGk)−1 that

‖χ1‖2
0 +

K

2μ
‖η1‖2

0 +

(
1

2
− 4Cĥ(d−1)β−1

δ

)
k‖χ̄1‖2

A

+

(
1 − 4μCĥ(d−1)β−1

δKγG

)
k
KγG
μ

‖η̄1‖2
0 � C(h2r + k4) + Ck2‖χ0‖2

0 + C‖η0‖2
0.

Now use the estimates given above for T1 and T2 and again select ĥ(d−1)β−1/δ small
enough to get

‖χ1‖2
0 + ‖η1‖2

0 + k‖χ̄1‖2
A + k‖η̄1‖2

0 � C(h2r + k4).

On the other hand, for m > 1 we estimate the first term in the sum (corresponding
to i = 1) in T13 by choosing ε = 1/k in Lemma 3.3 and then use the estimates just
obtained. For the remaining terms we choose ε = 1/2. With empty sums set to zero,
we then have for m = 2, 3, 4, . . . that

‖χm‖2
0 +

K

μ
‖ηm‖2

0 +

(
1

2
− 4Cĥ(d−1)β−1

δ

)
k

m∑
i=1

‖χ̄i‖2
A

+

(
1

2
− 4μCĥ(d−1)β−1

δKγG

)
k

m∑
i=1

KγG
μ

‖η̄i‖2
0 � C(h2r + k4) + Ck

m−1∑
i=2

‖χi‖2
0,

by the same estimates for the initial conditions as used previously. Once again, we
choose ĥ(d−1)β−1/δ small enough and use Gronwall’s lemma to arrive at

‖χm‖2
0 + ‖ηm‖2

0 + k

m∑
i=1

‖χ̄i‖2
A + k

m∑
i=1

‖η̄i‖2
0 � C(h2r + k4).

We now see that this inequality holds for all m ∈ {1, . . . , N} in both of the cases
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n = 1 and n = 2. By the triangle inequality we then have

‖u(tm) − uh
m‖0 + ‖σ(tm) − σh

i ‖0 +

(
k

m∑
i=1

‖ū(ti) − ūh
i ‖2

A

)1/2

+

(
k

m∑
i=1

‖σ̄(ti) − σ̄h
i ‖2

0

)1/2

� ‖ξ(tm)‖0 + ‖θ(tm)‖0 +

(
k

m∑
i=1

‖ξ̄(ti)‖2
A

)1/2

+

(
k

m∑
i=1

‖θ̄(ti)‖2
0

)1/2

+ ‖χ(tm)‖0 + ‖η(tm)‖0 +

(
k

m∑
i=1

‖χ̄(ti)‖2
A

)1/2

+

(
k

m∑
i=1

‖η̄(ti)‖2
0

)1/2

,

and our estimates, along with (16) and (30) and the fact that (a2 + b2)1/2 � a+ b for
a, b � 0, then complete the proof.

Note that due to the much larger number of terms involved this proof used Gron-
wall’s inequality, unlike the proof of Theorem 2.2. It is possible that more careful
estimation could remove the need for an exponentially large “Gronwall constant” in
the error estimate, but we leave this as a problem for another time.

If we replace the Dr(Eh)-approximation of u by a standard conforming piecewise
polynomial finite element space containing the essential boundary condition, then the
DG FEM schemes presented above reduce to a standard continuous Galerkin (CG)
FEM. An error estimate of the form presented in Theorem 3.4 then continues to hold
(as a special case).

Corollary 3.5. For a CG finite element approximation of the problem we also
have

‖u(tm) − uh
m‖0 + ‖σ(tm) − σh

m‖0 +

(
k

m∑
i=1

‖ūi − ūh
i ‖2

A + ‖σ̄i − σ̄h
i ‖2

0

)1/2

� C(hr + k2)

for each m = 1, . . . , N .
Remark 3.6. If (u,σ) is a solution of (12), (13), then we could use Theorems

1.1 and 3.4 to show that

‖uh
m‖2

0 + ‖σh
m‖2

0 ≤ C(u).

This would follow from the triangle inequality and is the closest we can get to a sta-
bility estimate. However, to get “data” on the right-hand side we would need stability
estimates on higher derivatives of the exact solutions.

Theorem 3.4 naturally contains some regularity assumptions on both u and σ.
Since, via (10), we can replace the system (1) and (2) by the single (11) we can expect
that the regularity of σ can be tied into that of u. In this direction, for the case of
piecewise linear spatial approximation (r = 1), we have the following claim (see [15]
for details).

Proposition 3.7. For r = 1 the regularity requirements of Theorem 3.4 can be
replaced by

u ∈ H2(I;H2(Ω)) ∩ L1(I;W
1
∞(Ω)) ∩ L∞(I;W 1

4 (Ω)) ∩W 1
8 (I;L8(Ω))

∩W 2
4 (I;L4(Ω)) ∩H3(I;L2(Ω)) ∩H1(I;W 1

4 (Ω))

and σ̆ ∈ L∞(Ω) ∩ H1(Ω).
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Table 1

Tabulated errors for N = 2, δ = 102, and β = 3.

κ = −1 κ = 1
M E EOC E EOC
1 2.032013 2.026638
2 1.837297 0.1453 1.837534 0.1413
4 1.532320 0.2619 1.532354 0.2620
8 0.863881 0.8268 0.863874 0.8269

16 0.447608 0.9486 0.447608 0.9486
32 0.225955 0.9862 0.225955 0.9862

Table 2

Tabulated errors for M = 8, δ = 104, and β = 2.

κ = −1 κ = 1
N E EOC E EOC
1 8.845824 × 10−2 8.845825 × 10−2

2 2.561600 × 10−2 1.7879 2.561600 × 10−2 1.7879
4 6.598674 × 10−3 1.9568 6.598677 × 10−3 1.9568
8 1.660746 × 10−3 1.9903 1.660747 × 10−3 1.9903

16 4.166057 × 10−4 1.9951 4.166061 × 10−4 1.9951
32 1.049564 × 10−4 1.9889 1.049566 × 10−4 1.9889
64 2.707173 × 10−5 1.9549 2.707180 × 10−5 1.9549

4. Numerical experiments. We anticipate that the linearized scheme is the
one that is of most interest and so first quote from [4] just a few numerical results to
illustrate Theorem 3.4 in the case r = 1. The data common to these first results are
D = K = μ = 1, γR = 10, γG = 0.1, Δ = 0.1, Ω = (0, 1)2, and I = (0, T ) for T = 1,
and in each case the loads and boundary conditions are designed so that the problem
has a known exact solution. (To achieve this we added a function h = h(x, t) to the
right of (2).) The resulting errors,

E := k
N∑
i=1

(
‖ūi − ūh

i ‖2
A,+‖σ̄i − σ̄h

i ‖2
0

)1/2
,

are tabulated along with the estimated order of convergence (EOC). In the tables,
M denotes a uniform M ×M space mesh and N is the number of time intervals.

Table 1 shows results for the solutions

u(x, t) = t sin(2πx) sin(2πy), σ(x, t) = t

(
sin(2πx)
cos(2πy)

)
in the case ΓD = {x = 0 or y = 0} when uRG = 0.5. In this case there is no time
discretization error and we observe O(h) convergence.

On the other hand, for the solutions

u(x, t) = t3x, σ(x, t) = t2
(

1
1

)
,

there is no space discretization error and for ΓD = {x = 0} with uRG = 0.5 we
observe, in Table 2, O(k2) convergence.

Cohen, White, and Witelski’s model [6] produces solutions which exhibit very
sharp changes in u, and these fronts become steeper as time advances. It seems that
the near-discontinuity in u is driven by the fact that their scalar stress equation is

σt + γ(u)σ = μu,
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Fig. 1. Computed surfaces showing u at t = 10 for the data Ω := (0, 1)2, f = 0, g = 1,
ΓN := {y = 0 or y = 1}, ŭ = −0.5x(x − 1), σ̆ = 0, D = 10−1, K = 10−4, μ = 104, Δ = 10−3,
and uRG = 0.5. The figure on the left corresponds to γR = γG = 5000 and the one on the right to
γR = 104 and γG = 10−3.

whereas ours is a vector equation given by (2) and has the gradient of u on the right.
Because of this, solutions to our model exhibit sharp changes in ∇u rather than u
itself, and we illustrate this in Figure 1 (16 × 16 elements, 50 time steps, β = 2,
δ = 102, κ = −1).

The surface plot on the left corresponds to linear non-Fickian behavior where we
choose γG = γR so as to remove the nonlinear term in (5). The figure on the right
shows the effect of the nonlinearity when γR � γG, and we can see steep changes
in ∇u.

5. Conclusion. The numerical experiments support the error estimate in The-
orem 3.4 and so we conclude that the linearization derived from the extrapolation
is an effective method of approximating the solution to this type of problem. Also,
on examining the estimates in Lemma 3.3, we see that the linearized scheme does
not require any additional regularity assumptions. Hence, we conclude that it should
always be preferred over the nonlinear scheme.

As we mentioned earlier in section 1, our model is a simplification of the original
model proposed in [6]. Nonetheless, preliminary numerical experiments (not included
here) with the CG FEM indicate that it is capable of capturing the same basic phe-
nomena of steep traveling fronts. An error analysis for the model in [6] is currently
being undertaken and, when this is complete, we expect to give more extensive nu-
merical demonstrations for both models.

On a closing note, the problem we have studied is a generalization of a parabolic
analogue to the dynamic solids problem considered in [17] to the case of nonlinear
relaxation time. It is an ongoing project to extend our results to the dynamic case
and to other types of nonlinearities (see, for example, the nonlinear relaxation time
discussed in [22]).
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AN H1(Ph)-COERCIVE DISCONTINUOUS GALERKIN
FORMULATION FOR THE POISSON PROBLEM: 1D ANALYSIS∗

K. G. VAN DER ZEE† , E. H. VAN BRUMMELEN† , AND R. DE BORST†

Abstract. Coercivity of the bilinear form in a continuum variational problem is a fundamental
property for finite-element discretizations: By the classical Lax–Milgram theorem, any conforming
discretization of a coercive variational problem is stable; i.e., discrete approximations are well-posed
and possess unique solutions, irrespective of the specifics of the underlying approximation space.
Based on the prototypical one-dimensional Poisson problem, we establish in this work that most con-
current discontinuous Galerkin formulations for second-order elliptic problems represent instances of
a generic conventional formulation and that this generic formulation is noncoercive. Consequently,
all conventional discontinuous Galerkin formulations are a fortiori noncoercive, and typically their
well-posedness is contingent on approximation-space-dependent stabilization parameters. Moreover,
we present a new symmetric nonconventional discontinuous Galerkin formulation based on element
Green’s functions and the data local to the edges. We show that the new discontinuous Galerkin
formulation is coercive on the broken Sobolev space H1(Ph), viz., the space of functions that are
elementwise in the H1 Sobolev space. The coercivity of the new formulation is supported by cal-
culations of discrete inf-sup constants, and numerical results are presented to illustrate the optimal
convergence behavior in the energy-norm and in the L2(Ω)-norm.
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1. Introduction. The recent renewal of interest in discontinuous Galerkin (DG)
methods for second-order elliptic boundary value problems can be attributed to twofold
reasons. First, DG methods provide robust finite-element discretizations for hyper-
bolic conservation laws, as the interelement discontinuities enable an extension of
Godunov’s method for finite-volume methods. However, to extend these techniques
to singularly perturbed elliptic problems, an appropriate treatment for the elliptic part
of the operator is required. Second, the absence of interelement-continuity constraints
renders DG methods ideally suited for hp adaptivity, e.g., based on a posteriori er-
ror estimation; see, for instance, [1, 8]. A comprehensive overview of the historical
development of DG methods is provided in [7].

A framework for analyzing DG formulations for elliptic problems has recently
been erected in [2]. Although the analysis in [2] clarifies basic properties of the dif-
ferent formulations, it does not seem to warrant a clear preference. The literature
on DG methods for elliptic problems is dominated by formulations that possess edge
terms composed of linear combinations of the jumps and averages of the test and trial
functions and their normal derivatives. That is, denoting by u and v the test and
trial functions, and by [[ · ]] and {·} the jump and average of (·) at an interelement
edge, these formulations contain terms conforming to {∂nu}[[v]], [[u]][[v]], [[∂nu]][[∂nv]],
etc., where ∂n represents the normal derivative. We refer to such formulations as
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conventional DG formulations and to the corresponding edge terms as conventional
edge terms. Symmetric examples of such formulations are the global element method
(GEM; see [10, 12]) and the interior penalty DG formulation (IPDG; cf. [2, 10, 12]).
Nonsymmetric examples are the celebrated Baumann and Oden DG formulation
(BODG [3]), the stabilized DG formulation (SDG [14]), the nonsymmetric interior
penalty DG formulation (NIPDG [13]), and the family of formulations considered by
Larson and Niklasson (LNDG [9]).

The essential deficiency of conventional DG formulations is that their bilinear
form is not strongly coercive (and simultaneously continuous) on a continuum (infinite-
dimensional) broken space, in contrast to the bilinear form in the classical continuous
Galerkin (CG) formulation. For conciseness, we say that these methods are noncoer-
cive. In particular, this implies that finite-element approximations can be ill-posed,
despite well-posedness of the underlying continuum problem. Furthermore, a sequence
of nested stable approximations need not converge monotonously, as the constants
in the error-estimates are approximation-space-dependent, and cannot be bounded
uniformly. Conventional DG formulations can be coercive on discrete approximation
spaces. However, this generally requires stability parameters which increase unbound-
edly as the approximation space is refined. For example, for broken polynomial spaces
the stability parameters are typically proportional to a monomial of the polynomial
degree. Moreover, conventional DG formulations are in general subject to the as-
sumption that the solution resides in H2(Ω), whereas a formulation allowing solutions
in H1(Ω) would be more natural from the classical CG formulation perspective.1

Nonsymmetric conventional DG formulations can be well-posed without stability
parameters. However, such formulations derive their well-posedness from weak coer-
civity. Moreover, for nonsymmetric formulations the error converges suboptimally in
the L2(Ω)-norm for even-degree broken polynomial spaces. It has been conjectured
that this behavior emanates from the nonsymmetry of the formulation; see [3, 9, 10].

Alternatively, DG formulations can be constructed by introducing nonconven-
tional edge terms. We remark that the support of such terms is not necessarily re-
stricted to the edges. Examples of such DG formulations are the lift-operator-based
schemes in [2]. These include, among others, the Bassi and Rebay DG formula-
tion (BRDG [4, 5]) and the local DG formulation (LDG [6]). However, lift-operators
are explicitly defined using a discrete (finite-element) space. As a consequence, the
continuum formulation with lift-operators, although consistent at a discrete level, is
inconsistent at the continuum level. Therefore, for each approximation space, the
edge-traces need to be lifted accordingly and the extension to a consistent continuum
formulation is nonobvious.

A recent example of another nonconventional formulation is the discontinuous
finite-element formulation based on second-order derivatives in [15]. This formulation
resembles a least-squares form. However, it is based on second-order derivatives,
thereby implicitly restricting the admissible functions to H2(Ω) and, moreover, it is
unknown if the bilinear form is simultaneously coercive and continuous.

In this paper, we first establish on the basis of the prototypical one-dimensional
Poisson problem that a conventional DG formulation with a coercive bilinear form
is nonexistent. We then present a new nonconventional symmetric DG formulation
based on element Green’s functions and the data local to the edges. The essential ad-
vantage of our new DG formulation is that it is coercive on the (infinite-dimensional)

1More precisely, only H3/2+ε(Ω) regularity is required. This ensures that the edge terms in
conventional DG formulations are well defined.
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broken Sobolev space H1(Ph), the space of functions that are elementwise in the
H1 Sobolev space. On account of its coercivity, approximations of the new formula-
tion inherit their well-posedness from the continuum formulation; i.e., well-posedness
of the approximation problem is ensured for any approximation space and, in partic-
ular, for the usual broken polynomial spaces. Furthermore, optimal error estimates
hold with constants that can be bounded uniformly independent of the specifics of
the approximation space. Finally, we demonstrate that the new DG formulation is
equivalent with the classical CG formulation, thus allowing solutions in H1(Ω).

The contents of this paper are arranged as follows: section 2 presents the elliptic
model problem, viz., the Poisson problem. Furthermore, mathematical preliminaries
for DG formulations of the Poisson problem are given. Section 3 reviews elementary
existence and uniqueness theorems for linear variational problems, to establish the
differences between coercivity and weak coercivity, and to furnish the basis for our
analysis in the ensuing sections. In section 4 we present the generic conventional
DG formulation, and we prove its noncoerciveness. In section 5 we introduce the
new DG formulation and we demonstrate its coercivity. Furthermore, we establish
its equivalence with the classical CG formulation. Numerical results are presented
in section 6. The coercivity of the new formulation is supported by calculations of
discrete inf-sup constants. Moreover, the convergence behavior in the energy-norm
and in the L2(Ω)-norm is investigated. Finally, section 7 contains concluding remarks.

2. Problem statement. In this work, we shall restrict ourselves to the simplest
prototypical model problem for second-order elliptic boundary value problems, viz.,
the linear one-dimensional Poisson problem.

2.1. Poisson problem. Let Ω ⊂ R be a bounded open interval. Its two-point
boundary ∂Ω consists of two disjoint parts, ΓD (nonempty) and ΓN (possibly empty)
on which Dirichlet and Neumann boundary conditions are imposed, respectively. The
unit normal n at the boundary ∂Ω is defined to be outward with respect to the
interval Ω.

Within this one-dimensional setting, we formulate the Poisson problem: Given
an arbitrary ū ∈ H1(Ω) with ū = gD on ΓD,

(2.1)
Find u = ū + u0 ∈ ū + H1

0,D(Ω) :

Bc(u0, v) = Lc(v) ∀v ∈ H1
0,D(Ω) ,

where the bilinear form Bc : H1(Ω) × H1(Ω) → R and the linear functional Lc :
H1(Ω) → R are defined as

Bc(u, v) :=

∫
Ω

du

dx

dv

dx
dx ,(2.2a)

Lc(v) :=

∫
Ω

fv dx +
∑
e∈ΓN

(
gN v

)
e
− Bc(ū, v) .(2.2b)

We define H1
0,D(Ω) to be the subspace of functions in the Sobolev space H1(Ω) which

vanish on the Dirichlet boundary ΓD, i.e.,

H1
0,D(Ω) := {u ∈ H1(Ω) : u = 0 on ΓD} .

For f ∈ L2(Ω), Problem (2.1) possesses a unique solution u ∈ H2(Ω) which, moreover,
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uniquely solves the boundary value problem

(2.3a)

(2.3b)

(2.3c)

−d2u

dx2
= f in Ω ,

u = gD on ΓD ,

∂nu = gN on ΓN ,

where ∂n(·) denotes the normal derivative d
dn (·).

The variational problem (2.1) constitutes the classical CG formulation of the Pois-
son problem. It is well-posed (stable); i.e., there exists a unique solution u ∈ H1(Ω)
which, moreover, depends continuously on the auxiliary data. The well-posedness
follows from the classical Lax–Milgram theorem on account of coercivity of the
bilinear functional Bc(·, ·); see section 3. A conforming approximation to the
continuum problem (2.1) is obtained by replacing H1

0,D(Ω) by a closed, generally

finite-dimensional, subspace Ĥ1
0,D(Ω) ⊂ H1

0,D(Ω). The corresponding approximate

solution û ∈ ū + Ĥ1
0,D(Ω) can be extracted by solving the following approximate

problem:

(2.4)
Find û = ū + û0 ∈ ū + Ĥ1

0,D(Ω) :

Bc(û0, v) = Lc(v) ∀v ∈ Ĥ1
0,D(Ω) .

As the coercivity of the underlying continuum problem transfers to the approximate
problem, the approximate problem is automatically well-posed irrespective of the
specifics of the approximation space Ĥ1

0,D(Ω). This is a particularly favorable prop-
erty which enables, for example, subsequent stable approximations in an hp-adaptive
finite element procedure. We emphasize that coercivity is generally lost in a DG
formulation.

2.2. Broken Sobolev spaces. To facilitate the ensuing consideration of DG
formulations, we introduce a finite-element partition. Let Ph := Ph(Ω) denote such
a partition of the interval Ω; i.e., Ph is a finite collection of open nonoverlapping
subintervals (elements) K, such that

Ω = int

( ⋃
K∈Ph

K

)
.

The mesh parameter h associated with Ph is defined as

h := max
K∈Ph

hK ,

where hK is the length of element K. The set of all (element) edges, Γ := Γ(Ph), can
be divided into complementary subsets:

Γ = ΓD ∪ ΓN ∪ ΓI ,

where ΓI := ΓI(Ph) is the set of interior edges. We define a unit normal ne at each
edge e ∈ Γ. This normal coincides with the unit outward normal of Ω for boundary
edges e ∈ ∂Ω = ΓD ∪ΓN and we set ne := −1 for interior edges e ∈ ΓI . For example,
if e is an interior edge then we have (∂nu)e = du

dn

∣∣
e

= −du
dx

∣∣
e
. We will further denote

by Ke the set of elements sharing edge e ∈ Γ, that is,

Ke :=
{
K ∈ Ph : ∂K ∩ e = e

}
.
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Note that for boundary and interior edges e, the set Ke contains one element and two
elements, respectively.

The functional setting of DG formulations is provided by the so-called (parti-
tion Ph dependent) broken Sobolev spaces Hm(Ph) [10]. For any positive integer m,
the broken Sobolev space Hm(Ph) is defined as

(2.5) Hm(Ph) := {v ∈ L2(Ω) : v
∣∣
K

∈ Hm(K) ∀K ∈ Ph} ;

in other words, Hm(Ph) consists of functions for which the restriction to each element
K ∈ Ph is in Hm(K). Equipped with the broken inner product

(u, v)Hm(Ph) :=
∑

K∈Ph

(u, v)Hm(K) ,

Hm(Ph) is a Hilbert space. The corresponding norm will be denoted ‖ · ‖Hm(Ph). Note
that functions in a broken Sobolev space are generally discontinuous at the interior
edges.

Functions in H1(Ph) have traces on Γ. These are single-valued at boundary
edges and double-valued at interior edges. To handle the traces, we introduce for
each boundary edge e ∈ ∂Ω the usual boundary trace (·)e as

ue := lim
s↓0

u(e− ne s) ,

and we introduce for each interior edge e ∈ ΓI the ±-trace, (·)±e , as

u±
e := lim

s↓0
u(e± s) .

Furthermore, we define the average {·}e and the jump [[·]]e for each interior edge e ∈ ΓI
in the usual manner:

{u}e := 1
2 (u+

e + u−
e ) ,

[[u]]e := u+
e − u−

e .

These trace operators are bounded in R for functions in H1(Ph); that is, trace in-
equalities hold.

2.3. DG formulations of the Poisson problem. Let H := H(Ph) be a broken

space subordinate to the partition Ph and Ĥ := Ĥ(Ph) ⊂ H(Ph) a finite-dimensional
subspace. The generic form of a continuum DG formulation is given by the following
abstract Galerkin variational problem:

(2.6)
Find u ∈ H :

B(u, v) = L (v) ∀v ∈ H .

Clearly, the continuum DG formulation should be consistent with the Poisson prob-
lem; i.e., the solution of (2.1) must comply with (2.6). The generic form of the
corresponding approximate DG problem is given by

(2.7)
Find û ∈ Ĥ :

B(û, v) = L (v) ∀v ∈ Ĥ .
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We will refer to the broken space associated with a particular DG problem as its
DG space.

The conventional approach to constructing consistent DG formulations premises
that f ∈ L2(Ω) and, accordingly, u ∈ H2(Ω) ⊂ H2(Ph) ⊂ H. Multiplication of (2.3a)
with v ∈ H, integration on Ω, and elementwise integration by parts then yield

∑
K∈Ph

∫
K

du

dx

dv

dx
dx−

∑
e∈ΓI

(
∂nu[[v]]

)
e
−
∑
e∈ΓD

(
(∂nu)v

)
e

=

∫
Ω

fv dx +
∑
e∈ΓN

(
gN v

)
e

∀v ∈ H .

For u ∈ H2(Ω), (∂nu)e is well defined for e ∈ ΓI . However, for u in the DG space H,
(∂nu)e is not uniquely defined at the interior edges. Therefore, (∂nu)e is conventionally
replaced by {∂nu}e. On account of {∂nu}e = (∂nu)e for u ∈ H2(Ω), this replacement
preserves consistency. In addition, the bilinear form can be augmented with other
products of edge values and/or edge derivatives, for instance, {∂nv}e[[u]]e for e ∈
ΓI . Most concurrent DG formulations are the result of such an augmentation and,
accordingly, we will refer to such augmentations as conventional edge terms, and to
the corresponding variational statements as conventional DG formulations. A precise
definition is provided in section 4. Alternatively, the bilinear form can be endowed
with other consistency-preserving edge terms, e.g., based on lift operators [4,5,6]. We
collectively refer to such terms as nonconventional edge terms.

The above exposition furnishes the context for the problem considered in this
paper. Our first objective is to establish that all conventional DG formulations are
necessarily noncoercive, in contrast to the classical CG formulation. Conventional DG
formulations are contingent on weak coercivity for their well-posedness. However, at
variance with coercivity, weak coercivity does not transfer to subspaces and, conse-
quently, well-posedness of the continuum DG formulation does not generally imply
well-posedness of corresponding approximate DG problems. Moreover, we introduce a
new nonconventional symmetric DG formulation based on element Green’s functions
that is coercive on the broken Sobolev space H1(Ph).

3. Existence and uniqueness theorems for linear variational problems.
In this section we review elementary existence theorems pertaining to the well-posedness
of linear variational problems. These theorems form the basis for our analysis in sec-
tion 4 and section 5. Furthermore, a priori error estimates are given for Galerkin
approximations.

Section 3.1 is concerned with the generalized Lax–Milgram theorem. This theorem
provides the fundament for the classical Lax–Milgram theorem in section 3.2.

3.1. The generalized Lax–Milgram theorem. The generalized Lax–Mil-
gram theorem gives necessary and sufficient conditions for the well-posedness of a
generic linear variational problem. Its proof can be found in [11,16].2

Theorem 1 (generalized Lax–Milgram). Let H be a real Hilbert space with
corresponding norm ‖ · ‖H . Consider a continuous bilinear form B : H × H → R;
i.e., there exists a positive constant Cb such that

|B(u, v)| ≤ Cb‖u‖H‖v‖H ∀u, v ∈ H .

2The necessity of (3.1) is shown in [16].
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If and only if B(·, ·) is weakly coercive on H ×H, i.e., there exists a constant γ > 0
such that

inf
u∈H\{0}

sup
v∈H\{0}

B(u, v)

‖u‖H ‖v‖H
≥ γ ,(3.1a)

sup
u∈H

B(u, v) > 0 ∀v ∈ H \ {0} ,(3.1b)

then for every continuous linear functional L : H → R, problem (2.6) has a unique
solution u ∈ H.

Inequality (3.1a) is known as the inf-sup condition, and the supremum over all
numbers γ in compliance with (3.1a) is referred to as the inf-sup constant.

Let Ĥ ⊂ H be a closed subspace associated with an approximate variational
problem. As a closed subspace of a Hilbert space is itself a Hilbert space, well-
posedness of the approximate problem on Ĥ is settled identically by Theorem 1 with
H replaced by Ĥ. The corresponding inf-sup constant γ̂ then generally depends on
the approximation space Ĥ, i.e., γ̂ := γ̂(Ĥ). Moreover, if the approximate problem is

well-posed, its solution û ∈ Ĥ complies with the a priori estimate

(3.2) ‖u− û‖H ≤ (1+Cb/γ̂) inf
v∈Ĥ

‖u− v‖H .

It is to be noted that weak coercivity on H ×H does not imply weak coercivity on
Ĥ × Ĥ. Therefore, well-posedness of the continuum problem does not imply well-
posedness of corresponding approximate problems. On account of the dependence
of γ̂ on Ĥ, it moreover holds that if we consider a sequence of asymptotically dense
nested approximation spaces Ĥ(1) ⊂ Ĥ(2) ⊂ · · · ⊆ H, Ĥ(m) → H as m → ∞,
then the corresponding approximations û(m) need not converge, or need not converge
monotonously.

3.2. The classical Lax–Milgram theorem. A theorem on the well-posedness
of linear Galerkin variational problems with more restrictive conditions and stronger
implications is provided by the classical Lax–Milgram theorem (see, e.g., [11, 16]).

Theorem 2 (classical Lax–Milgram). Let B : H × H → R be a continuous,
(strongly) coercive bilinear form on H; i.e., there exists a positive constant κ such
that

|B(u, u)| ≥ κ‖u‖2
H ∀u ∈ H .(3.3)

Then for every continuous linear functional L : H → R, the variational problem (2.6)
possesses a unique solution u ∈ H.

Coercivity on H is a sufficient condition for weak coercivity on H ×H. As coer-
civity transfers to subspaces Ĥ ⊂ H, it holds that well-posedness of the continuum
problem implies well-posedness of approximate problems based on conforming sub-
spaces. Moreover, the subspace approximation û ∈ Ĥ satisfies the a priori estimate

‖u− û‖H ≤ Cb/κ inf
v∈Ĥ

‖u− v‖H ,(3.4)

where Cb and κ denote the continuity and coercivity constant of the bilinear form
on H ×H, respectively. It is to be noted that the constants in (3.4) are independent

of the approximation space. Hence, if Ĥ(2) ⊂ H is a larger approximation space than
Ĥ(1) ⊂ Ĥ(2), then the error (measured in ‖ · ‖H) of the corresponding approximate
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solution û(2) ∈ Ĥ(2) is at most equal to that of the approximate solution û(1) ∈ Ĥ(1).
In particular, this implies that if we consider a sequence of asymptotically dense nested
approximation spaces Ĥ(1) ⊂ Ĥ(2) ⊂ · · · ⊆ H and Ĥ(m) → H as m → ∞, then the
error ‖u− û(m)‖H converges monotonously to 0 as m increases.

Let us consider an arbitrary variational continuum problem. Under the condition
of coercivity of the bilinear form, conforming approximate problems are well-posed if
the continuum problem is well-posed. The premise of coercivity not only provides a
sufficient condition; it is also necessary.

Proposition 3. Consider a continuous linear functional L : H → R and con-
tinuous bilinear form B : H ×H → R. If and only if B(·, ·) is coercive on H, then
well-posedness of the continuum problem (2.6) implies well-posedness of the approxi-
mate problem (2.7).

Proof. (i) Forward implication: By Theorem 2, coercivity on H ensures that the
continuum problem (2.6) and the approximate problem (2.7) are well-posed.

(ii) Reverse implication: We show the proof by contradiction. We assume that
B(·, ·) is weakly coercive on H ×H, but not coercive, and then construct a subspace

Ĥ ⊂ H in which the approximate problem is ill-posed. As H is a closed space,
noncoercivity implies the existence of a ū ∈ H \ {0} such that B(ū, ū) = 0. Taking

the approximate space as the one-dimensional space Ĥ = span {ū}, it follows that

inf
u∈Ĥ\{0}

sup
v∈Ĥ\{0}

B(u, v)

‖u‖H‖v‖H
=

B(ū, ū)

‖ū‖2
H

= 0 ;

i.e., weak coercivity does not hold on Ĥ×Ĥ. By Theorem 1 weak coercivity on Ĥ×Ĥ
is necessary for well-posedness of the approximate problem.

4. Conventional DG formulations. This section is concerned with an analysis
of the generic properties of conventional DG formulations. To this end, we introduce a
generic consistent conventional DG formulation in section 4.1. Section 4.2 establishes
the existence of well-posed conventional DG formulations. Section 4.3 proves that
consistent conventional DG formulations are necessarily noncoercive.

4.1. Generic conventional DG formulation. Consider the following bilinear
form BΛ(·, ·) and linear functional LΛ(·):3

BΛ(u, v) :=
∑

K∈Ph

∫
K

du

dx

dv

dx
dx +

∑
e∈Γ

(
uTΛv

)
e
,(4.1a)

LΛ(v) :=

∫
Ω

fv dx +
∑
e∈ΓD

(
gDΛ̄v̄

)
e
+
∑
e∈ΓN

(
gN Λ̄v̄

)
e
,(4.1b)

3For notational transparency, in a composition of terms with a subscript (·)e, we suppress the
subscript of the individual terms and append it to enclosing parentheses. For example, (gDΛ̄v̄)e is
to be interpreted as gDeΛ̄ev̄e. Moreover, we occasionally suppress the subscript (·)e entirely if the
dependence is apparent from the context.
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where boldfaced variables, such as v, and boldfaced overlined variables, such as v̄,
denote (column-) vectors containing values at edge e according to

ve :=

⎧⎨
⎩
(
h− 1

2 [[v]], h
1
2 {∂nv}, h

1
2 [[∂nv]], h

− 1
2 {v}

)T
e
, e ∈ ΓI ,(

h− 1
2 v, h

1
2 ∂nv

)T
e
, e ∈ ∂Ω ,

(4.2a)

v̄e :=

⎧⎨
⎩
(
h−1 v, ∂nv

)T
e
, e ∈ ΓD ,(

v, h ∂nv
)T
e
, e ∈ ΓN .

(4.2b)

The matrices Λe ∈ R
4×4 (e ∈ ΓI), and Λe ∈ R

2×2, Λ̄e ∈ R
1×2 (e ∈ ∂Ω) specify

bilinear relations between edge values and edge derivatives of u and v. A conventional
edge term can now be precisely defined as any term in the bilinear form conforming
to (uTΛv)e for all e ∈ Γ, and any term in the linear form conforming to (gDΛ̄v̄)e
for e ∈ ΓD or (gN Λ̄v̄)e for e ∈ ΓN .

The constants h : Γ → R in (4.2) are local mesh parameters introduced to min-
imize the mesh dependence of the matrices. Typically, for e ∈ ΓI , he is set to the
average of the lengths of the elements sharing edge e and for e ∈ ∂Ω it is set to half
the length of the element contiguous to edge e; i.e.,

he = 1
2

∑
K∈Ke

hK ∀e ∈ Γ .(4.3)

To provide a functional setting for conventional DG formulations, we introduce
the norm ‖ · ‖HΛ

,

(4.4) ‖u‖2
HΛ

:=
∑

K∈Ph

|u|21,K +
∑
e∈Γ

(
uTDΛu

)
e
,

where the seminorm | · |1,K is defined by

|u|21,K :=

∫
K

(du

dx

)2

dx ,

and DΛ(= DΛe) is a diagonal matrix in R
4×4 for e ∈ ΓI and in R

2×2 for e ∈ ∂Ω with
diagonal entries

(4.5) (DΛ)ii :=
∑

j

(∣∣(SΛ)ij
∣∣+∣∣(AΛ)ij

∣∣) with SΛ := 1
2

(
Λ+ΛT

)
, AΛ := 1

2

(
Λ−ΛT

)
;

i.e., DΛ is obtained from Λ by lumping the absolute values of its symmetric part SΛ

and its antisymmetric part AΛ to the diagonal.4 The matrices Λ and DΛ are then
related by

(4.6)
∣∣uTΛv

∣∣ = ∣∣∑i,jui(SΛij + AΛij)vj

∣∣ ≤∑i,j |ui| (|SΛij | + |AΛij |) |vj |

≤
√∑

i,j(|SΛij | + |AΛij |)u2
i

√∑
i,j(|SΛij | + |AΛij |)v2

j =
√

uTDΛu
√

vTDΛv .

4Strictly speaking, ‖ · ‖HΛ
is a norm only if (DΛ)11 > 0 for e ∈ ΓI ∪ ΓD. This implies that the

bilinear form incorporates [[u]]e and/or [[v]]e on ΓI and ue and/or ve on ΓD. However, in Proposition 4
it will be shown that any consistent formulation necessarily contains such terms. Hence, there is no
loss of generality in proceeding under the assumption that ‖ · ‖HΛ

provides a norm.
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The second inequality in (4.6) follows from the discrete Schwartz inequality, viz.,∑
|xiyi| ≤

√∑
x2
i

√∑
y2
i . We now define the space HΛ as the completion of H2(Ph)

under norm ‖ · ‖HΛ
:

HΛ := HΛ(Ph) = H2(Ph)
‖·‖HΛ .(4.7)

The Hilbert space HΛ defined in this manner provides the appropriate space for the
generic conventional DG formulation:

Find u ∈ HΛ :
BΛ(u, v) = LΛ(v) ∀v ∈ HΛ .

(4.8)

The appropriateness of HΛ is rigorously settled in section 4.2. Let us note that HΛ is
a generalization of the space used in [3].

4.2. Well-posedness results for the continuum formulation. Under cer-
tain conditions on the matrices Λ and Λ̄, (4.8) provides a consistent, well-posed weak
formulation of (2.3). The proposition below specifies necessary and sufficient condi-
tions on the matrices Λ and Λ̄ for consistency with (2.3).

Proposition 4 (consistency of conventional DG). If and only if the matrices Λ, Λ̄
are of the form

Λe =

⎛
⎜⎜⎝

α δ γu ζ1

−1 0 0 0
γl ε β ζ2

0 0 0 0

⎞
⎟⎟⎠

e

∀e ∈ ΓI ,(4.9a)

Λe =

(
α δ
−1 0

)
e

, Λ̄e =
(
α δ

)
e

∀e ∈ ΓD ,(4.9b)

Λe =

(
0 0
ε β

)
e

, Λ̄e =
(
ε+1 β

)
e

∀e ∈ ΓN(4.9c)

for certain fixed parameters αe, βe, γ
u
e , γ

l
e, δe, εe, ζ

1
e , ζ

2
e ∈ R (for all e ∈ Γ), then the

corresponding conventional DG formulation (4.8) is consistent with (2.3); i.e., the
solution u ∈ H2(Ω) ⊂ HΛ of (2.3) complies with (4.8).

Proof. (i) Forward implication: Let u ∈ H2(Ω) solve (2.3). Multiplying (2.3a) by
an arbitrary v ∈ HΛ, integrating on Ω, and invoking integration by parts, elementwise,
we obtain ∑

K∈Ph

∫
K

du

dx

dv

dx
dx =

∫
Ω

fv dx +
∑
e∈ΓI

(
∂nu[[v]]

)
e
+
∑
e∈∂Ω

(
(∂nu)v

)
e
.(4.10)

From (4.1a) and (4.10) it follows that

(4.11) BΛ(u, v) =

∫
Ω

fv dx +
∑
e∈ΓI

(
∂nu[[v]]

)
e
+

∑
e∈ΓD∪ΓN

(
(∂nu)v

)
e
+
∑
e∈Γ

(
uTΛv

)
e
.

The boundary conditions (2.3b) and (2.3c) imply that ue = (gD)e for e ∈ ΓD and
(∂nu)e = (gN )e for e ∈ ΓN . Moreover, on account of the C1-continuity of functions
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in H2(Ω), the solution u complies with [[u]]e = [[∂nu]]e = 0 and {∂nu}e = (∂nu)e for
e ∈ ΓI . Hence, upon replacing Λ in (4.11) with (4.9), we obtain

BΛ(u, v) =

∫
Ω

fv dx+
∑
e∈ΓD

(
αgDv/h+ δgD∂nv

)
e
+
∑
e∈ΓN

(
gN v+ εgN v+βhgN∂nv

)
e
.

By (4.1b) and (4.9), for any v ∈ HΛ,

LΛ(v) =

∫
Ω

fv dx +
∑
e∈ΓD

(
αgDv/h + δgD∂nv

)
e
+
∑
e∈ΓN

(
gN v + εgN v + βhgN∂nv

)
e
,

and, hence, BΛ(u, v) = LΛ(v) for all v ∈ HΛ.
(ii) Reverse implication: By (4.1b), (4.8), and (4.11),∑

e∈ΓI

(
∂nu[[v]]

)
e
+
∑
e∈∂Ω

(
(∂nu)v

)
e
+
∑
e∈Γ

(
uTΛv

)
e

=
∑
e∈ΓD

(
gDΛ̄v̄

)
e
+
∑
e∈ΓN

(
gN Λ̄v̄

)
e

∀v ∈ HΛ .

Upon rearranging the summations, replacing ue according to its definition (4.2), and
invoking the boundary conditions in (2.3) and [[u]]e = [[∂nu]]e = 0, {∂nu}e = (∂nu)e,
and {u}e = ue for e ∈ ΓI , we obtain

(4.12)∑
e∈ΓI

(
∂nu[[v]]+(0, h

1
2 ∂nu, 0, h

− 1
2 u)Λv

)
e
+
∑
e∈ΓD

(
(∂nu)v+(h− 1

2 gD, h
1
2 ∂nu)Λv

)
e

+
∑
e∈ΓN

(
gN v + (h− 1

2 u, h
1
2 gN )Λv

)
e

=
∑
e∈ΓD

(
gDΛ̄v̄

)
e
+
∑
e∈ΓN

(
gN Λ̄v̄

)
e

for all v ∈ HΛ. Selecting a v ∈ HΛ such that [[v]]e = 1 for some edge e ∈ ΓI and such
that all other edge terms vanish, we obtain the identity(

∂nu + (∂nu)Λ21 + uΛ41/h
)
e

= 0 .

Therefore, (Λ21)e = −1 and (Λ41)e = 0. Similarly, by making appropriate choices for
the test function v ∈ HΛ in (4.12), the precise form (4.9) can be established.

To establish the conditions on the matrices Λ, Λ̄ in (4.9) for well-posedness, we
appeal to the generalized Lax–Milgram theorem, Theorem 1. In particular, we estab-
lish the conditions for continuity of LΛ(·), and for continuity and weak coercivity of
BΛ(·, ·). Continuity of the bilinear form is in fact independent of the precise form
of Λ. This is asserted by the following proposition.

Proposition 5 (continuity of BΛ). The bilinear form BΛ(·, ·) given in (4.1a) is
continuous on HΛ, i.e.,

|BΛ(u, v)| ≤ Cb‖u‖HΛ
‖v‖HΛ

∀u, v ∈ HΛ ,

with continuity constant Cb = 1.
Proof. First, note that

|BΛ(u, v)| ≤
∑

K∈Ph

∫
K

∣∣∣du
dx

dv

dx

∣∣∣ dx +
∑
e∈Γ

∣∣uTΛv
∣∣
e
.
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From the Schwarz inequality and (4.6) it follows that

|BΛ(u, v)| ≤
∑

K∈Ph

|u|1,K |v|1,K +
∑
e∈Γ

(√
uTDΛu

√
vTDΛv

)
e
.

Application of the discrete Schwarz inequality then yields

|BΛ(u, v)| ≤
( ∑

K∈Ph

|u|21,K +
∑
e∈Γ

(
uTDΛu

)
e

)1/2( ∑
K∈Ph

|v|21,K

+
∑
e∈Γ

(
vTDΛv

)
e

)1/2

.

In a similar manner it can be shown that for all f ∈ [HΛ]′, LΛ(·) is a continuous
functional on HΛ. Hence, it remains to derive the conditions on the matrices Λe in
(4.9) which yield BΛ(·, ·) weakly coercive on HΛ ×HΛ. Sufficient conditions for weak
coercivity are established in Proposition 6. As the proof is rather elaborate, it is
transferred to Appendix A.

Proposition 6 (weak coercivity of BΛ). If the parameters in the matrices Λe

in (4.9) satisfy the algebraic conditions

α ∈ R,

β, γu, γl, δ, ε ∈ R :

β, γu, γl, ε = 0 ∧ 4 > |δ| �= 0,

or δβ − εγu �= 0 ∧ 4 > 1
2 |δ+1| + 1

2 |δ−1| + |ε|,
ζ1, ζ2 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

∀e ∈ ΓI ,(4.13a)

α ∈ R, 4 > |δ| �= 0 ∀e ∈ ΓD ,(4.13b)

β ∈ R, ε = 0 ∀e ∈ ΓN ,(4.13c)

then the corresponding bilinear form BΛ(·, ·) in (4.1a) is weakly coercive on HΛ ×HΛ

with an inf-sup constant γΛ > 0.
Let us note that {δ : 4 > |δ|} = {δ : 4 > 1

2 |δ+1|+ 1
2 |δ− 1|}. Proposition 6 gener-

alizes the proof of weak coercivity of the BODG in [3] to any consistent conventional
DG formulation. We remark that although the conditions in (4.13) are unrestrictive,
they can in fact be further weakened.

In conclusion, by the generalized Lax–Milgram theorem, Theorem 1, if the ma-
trices Λ, Λ̄ conform to (4.9) and (4.13), then for every f ∈ [HΛ]′ the corresponding
conventional DG formulation (4.8) is well-posed and consistent with (2.3). In Table 1,
we have summarized the parameter choices for several conventional DG formulations

Table 1

Parameters in the matrices Λ, Λ̄ in (4.9) for several conventional DG formulations.

DG formulation α β γu, γl δ ε ζ1, ζ2

GEM [10,12] 0 0 0 −1 0 0
IPDG [2,10,12] α 0 0 −1 0 0

BODG [3] 0 0 0 1 0 0
NIPDG [13] α 0 0 1 0 0

SDG [14] 0 β 0 1 0 0
LNDG [9] α 0 0 δ 0 0
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u1

u2
...xe − μ1 xe − μ2

xe + μ1xe + μ2

Kl Kr

xe

Fig. 1. Example of a Cauchy sequence {ui} in HΛ satisfying (4.15).

that have appeared in the literature. It can be verified that all formulations, except
LNDG, satisfy immediately the conditions in (4.13). LNDG requires the auxiliary
condition 4 > |δ| �= 0.

4.3. Noncoercivity of consistent conventional DG formulations. The ex-
position in section 3 motivates the pursuit of a consistent formulation that is coercive
on HΛ, rather than only weakly coercive. However, the proposition below asserts
that a coercive consistent conventional DG formulation is nonexistent; i.e., of the
DG formulations in compliance with (4.9), none is coercive.

Proposition 7 (noncoercivity of BΛ). The bilinear form BΛ(·, ·) in (4.1a)
with Λ subject to the consistency requirement (4.9) is noncoercive on HΛ; i.e., a
positive constant κ such that

(4.14) |BΛ(u, u)| ≥ κ‖u‖2
HΛ

∀u ∈ HΛ

is nonexistent.
Proof. We show the existence of a Cauchy sequence {ui} in HΛ such that

BΛ(ui, ui) → 0 and ‖ui‖HΛ
→ C ≥ 1 as i → ∞. Consider an interior edge e ∈ ΓI and

the left and right elements Kl,Kr ∈ Ke contiguous to this edge.5 The Cauchy sequence
is chosen such that its elements ui ∈ HΛ have local support (supp(ui) ⊂ Kl ∪Kr with
strict inclusion) and, moreover,

|ui|1,Kl
, |ui|1,Kr

→ 0 ,(4.15a)

{ui}e = 0 , [[ui]]e → 0 ,(4.15b)

h
1
2
e {ui

n}e = 1 , [[ui
n]]e = 0 .(4.15c)

An example of a sequence satisfying (4.15) is the sequence u1, u2, . . . depicted in
Figure 1. The support of ui is the closed interval in R with length 2μi centered
at e. The length of the support set forms a Cauchy sequence {μi} in R with limit
limi→∞ μi = 0. Moreover, within the support set, ui is an asymmetric, piecewise
linear function.

From the consistency conditions (4.9) on Λe and the properties (4.15) of the
sequence {ui} it follows that

BΛ(ui, ui) = |ui|21,Kl
+ |ui|21,Kr

+
(
h− 1

2 [[ui]] 1 0 0

)
e

(
α δ γu ζ1

−1 0 0 0

γl ε β ζ2

0 0 0 0

)
e

(
h− 1

2 [[ui]]
1
0
0

)
e

= |ui|21,Kl
+ |ui|21,Kr

+
(
α[[ui]]

2
/h + (δ−1)h− 1

2 [[ui]]
)
e
,

5If there are no interior edges (ΓI = ∅), a proof of noncoercivity can be established similarly by
considering a Dirichlet boundary edge.
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and, hence, BΛ(ui, ui) → 0 as i → ∞. Furthermore, the norm of ui reduces to

‖ui‖2

HΛ
= |ui|21,Kl

+ |ui|21,Kr
+
(
h− 1

2 [[ui]] 1 0 0

)
e

(
(DΛ)11 0 0 ···

0 (DΛ)22
0 ···
···

)
e

(
h− 1

2 [[ui]]
1
0
0

)
e

= |ui|21,Kl
+ |ui|21,Kr

+
(
(DΛ)11[[u

i]]
2
/h + (DΛ)22

)
e
.

Thus, as i → ∞,

‖ui‖2

HΛ
→ (DΛ)22 =

(
1
2 |δ+1| + 1

2 |δ−1| + |ε|
)
e
≥ 1 .

The identity follows by replacing (DΛ)22 in accordance with (4.5) and (4.9a).

5. A new symmetric DG formulation with H1(Ph)-coercivity. In this
section we present a new nonconventional coercive symmetric DG formulation based
on element Green’s functions. Section 5.1 presents the variational formulation. In
section 5.2 we establish continuity properties of the corresponding bilinear and linear
forms. Finally, in section 5.3 we demonstrate consistency and, most importantly,
well-posedness on account of coercivity on H1(Ph).

5.1. Weak formulation with element Green’s functions. By Proposition 7,
a coercive DG formulation must contain nonconventional edge terms. Below, we
present a formulation based on element Green’s functions.

Consider an edge e ∈ ΓI ∪ ΓD, and a contiguous element K ∈ Ke. The two-
point boundary of K is denoted by ∂K = {e, ē}. With the pair (K, e) we associate a
function φK,e : K → R by the auxiliary boundary-value problem

(5.1a) −d2φK,e

dx2
=

φK,e =

0{ −ne nK

0

in K,

on e ,

on ē ,
(5.1b)

where nK is the unit outward normal of K. For each edge e and each K ∈ Ke,
the solutions of (5.1) are linear functions on K; see Figure 2. Specifically, φK,e corre-
sponds to the element Dirichlet-to-Neumann Green’s function for the one-dimensional
Laplacian. To corroborate this assertion, we multiply (5.1a) with u ∈ H2(K) and in-
tegrate on K. Upon performing integration by parts twice, and invoking the boundary
conditions (5.1b), we obtain

(∂nu)e =

∫
K

−d2u

dx2
φK,e dx−

∑
{e,ē}

(
u

dφK

dx
nK

)
,

J K

e ē

φJ,e

φK,e φK,ē

Fig. 2. Several solutions of auxiliary problem (5.1).
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which shows that the “Neumann value” ∂nu at e is readily expressed in terms of the
Laplacian and “Dirichlet” values of u at e and ē.

For each edge e ∈ ΓI ∪ ΓD we define the functionals Φe : H1(Ph) → R and
Φ̄e : [H1

0,D(Ω)]′ → R as

Φe(u) :=
∑

K∈Ke

θK,e

∫
K

du

dx

dφK,e

dx
dx ,(5.2a)

Φ̄e(f) :=
∑

K∈Ke

θK,e

∫
K

fφK,e dx .(5.2b)

The functionals constitute weighted combinations of contributions of elements that
share edge e. The partition-dependent constants θK,e ∈ R (for K ∈ Ke) are defined as

(5.3) θK,e := hK/
∑
J∈Ke

hJ .

Trivially, θK,e = 1 for e ∈ ΓD, K ∈ Ke. It is to be noted that the following partition-
of-unity property holds:

(5.4)
∑

K∈Ke

θK,e = 1 ∀e ∈ ΓI ∪ ΓD .

Equations (5.2)–(5.4) enable us to condense the new DG formulation into the following
variational problem:

Find u ∈ H1(Ph) :
BΦ(u, v) = LΦ(v) ∀v ∈ H1(Ph) ,

(5.5)

where

BΦ(u, v) :=
∑

K∈Ph

∫
K

du

dx

dv

dx
dx +

∑
e∈ΓI

(
α[[u]][[v]]/h + [[u]]Φ(v) + Φ(u)[[v]]

)
e

(5.6a)

+
∑
e∈ΓD

(
αuv/h + uΦ(v) + Φ(u)v

)
e
,

LΦ(v) :=

∫
Ω

fv dx +
∑
e∈ΓI

(
Φ̄(f)[[v]]

)
e

(5.6b)

+
∑
e∈ΓD

(
αgDv/h + gDΦ(v) + Φ̄(f)v

)
e
+
∑
e∈ΓN

(
gN v

)
e
.

Note that in a composition of terms with a subscript (·)e, we adhere to the standing
notational convention that the subscript of the individual terms is suppressed and
appended to the enclosing parenthesis instead.

Let us allude to the fact that the edge terms involving Φ and Φ̄ are nonconven-
tional. The parameters αe ∈ R (e ∈ ΓI ∪ ΓD) are associated with conventional edge
terms, viz., jumps of u and v at edge e. The rationale for adding these terms is
elucidated by the coercivity analysis in section 5.3. The local mesh parameter he can
in principle be selected in a similar manner as in conventional DG formulations; cf.
(4.3). In what follows, we stipulate only that he ≤ 1

2

∑
K∈Ke

hK .



2686 K. VAN DER ZEE, E. VAN BRUMMELEN, AND R. DE BORST

5.2. Continuity properties of BBBΦ and LLL Φ. To facilitate the ensuing analy-
sis, we equip H1(Ph) with the energy norm ||| · ||| according to

|||u|||2 :=
∑

K∈Ph

|u|21,K +
∑
e∈ΓI

(
[[u]]

2
/h
)
e
+
∑
e∈ΓD

(
u2/h

)
e
.

The norm ||| · ||| is equivalent to ‖ · ‖H1(Ph). We then have the following proposition.

Proposition 8 (continuity of BΦ). The bilinear form BΦ(·, ·) given in (5.6a) is
continuous on H1(Ph), i.e.,

|BΦ(u, v)| ≤ Cb|||u||||||v||| ∀u, v ∈ H1(Ph) ,

with, in particular, continuity constant Cb = max
{
2, 1+maxe∈ΓI∪ΓD αe

}
.

Proof. First note that

|BΦ(u, v)| ≤
∑

K∈Ph

∫
K

∣∣∣du
dx

dv

dx

∣∣∣ dx +
∑
e∈ΓI

(
α
∣∣[[u]][[v]]

∣∣/h +
∣∣[[u]]Φ(v)

∣∣+ ∣∣Φ(u)[[v]]
∣∣)

e

+
∑
e∈ΓD

(
α
∣∣uv∣∣/h +

∣∣uΦ(v)
∣∣+ ∣∣Φ(u)v

∣∣)
e
.

Application of the Schwarz inequality to the first term and subsequent application of
the discrete Schwarz inequality yield

|BΦ(u, v)| ≤
( ∑

K∈Ph

|u|21,K +
∑
e∈ΓI

(
(1+α)[[u]]

2
/h + hΦ(u)2

)
e

+
∑
e∈ΓD

(
(1+α)u2/h + hΦ(u)2

)
e

)1/2 (
· · ·
)1/2

,

where the dots (· · · ) represent an identical term with u replaced by v. Moreover, by
consecutively applying the inequality

(
θx + (1−θ)y

)2 ≤ θx2 + (1−θ)y2 , x, y ∈ R , 0 ≤ θ ≤ 1 ,

the Schwarz inequality, the identity |φK,e|21,K = 1/hK for the | · |1,K norm of φK,e,

definition (5.3), and he ≤ 1
2

∑
K∈Ke

hK , we derive the following important inequality:

(5.7) Φe(u)
2

=

( ∑
K∈Ke

θK,e

∫
K

du

dx

dφK,e

dx
dx

)2

≤
∑

K∈Ke

θK,e

(∫
K

du

dx

dφK,e

dx
dx

)2

≤
∑

K∈Ke

θK,e|u|21,K |φK,e|21,K ≤
∑

K∈Ke

(∑
J∈Ke

hJ

)−1

|u|21,K ≤ 1

2he

∑
K∈Ke

|u|21,K .
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Therefore,

|BΦ(u, v)| ≤
( ∑

K∈Ph

|u|21,K +
∑
e∈ΓI

(
(1+α)[[u]]

2
/h + 1

2

∑
K∈Ke

|u|21,K
)
e

+
∑
e∈ΓD

(
(1+α)u2/h + 1

2

∑
K∈Ke

|u|21,K
)
e

)1/2 (
· · ·
)1/2

≤
(

2
∑

K∈Ph

|u|21,K +
∑
e∈ΓI

(
(1+α)[[u]]

2
/h
)
e

+
∑
e∈ΓD

(
(1+α)u2/h

)
e

)1/2 (
· · ·
)1/2

.

Before addressing the continuity of the linear form LΦ(·), we introduce a function
splitting in H1(Ph). For any v ∈ H1(Ph), we define its discontinuous part vd :=
vd(v) ∈ H1(Ph) as

vd =
∑
e∈ΓI

(
[[v]]e
∑

K∈Ke
θK,eEK(−φK,e)

)
+
∑
e∈ΓD

(
ve
∑

K∈Ke
θK,eEK(−φK,e)

)
,

where we have introduced the trivial-extension operators EK : H1(K) → H1(Ph),

EK(φ) =

⎧⎨
⎩
φ in K ,

0 in Ω \K .

Note that vd is an elementwise linear function. The continuous part vc := vc(v) ∈
H1

0,D(Ω) is now defined as the completion of the splitting

vc = v − vd ∀v ∈ H1(Ph) .(5.8)

To corroborate that vd and vc indeed represent the discontinuous and the continuous
parts of v, respectively, we note that

[[vd]]e = [[v]]e , [[vc]]e = 0 ∀e ∈ ΓI ,(5.9a)

vd
e = ve , vc

e = 0 ∀e ∈ ΓD ,(5.9b)

vd
e = 0 , vc

e = ve ∀e ∈ ΓN .(5.9c)

In Figure 3, we illustrate for an example function v the corresponding vd and vc.
Proposition 9 (continuity of LΦ). For f ∈ [H1

0,D(Ω)]′, the linear functional LΦ(·)
in (5.6b) is continuous on H1(Ph).

Proof. First note that

(5.10)
∑
e∈ΓI

(
Φ̄(f)[[v]]

)
e
+
∑
e∈ΓD

(
Φ̄(f)v

)
e

=
∑
e∈ΓI

(
[[v]]e
∑

K∈Ke
θK,e

∫
K
fφK,e dx

)

+
∑
e∈ΓD

(
ve
∑

K∈Ke
θK,e

∫
K
fφK,e dx

)
=

∫
Ω

f(−vd) dx .
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ΓNΓD

v

vd

vc

Fig. 3. Illustration of vd and vc for an example function v ∈ H1(Ph) on a domain for which
the left boundary is ΓD and the right boundary is ΓN .

As v − vd = vc, we obtain for LΦ(v)

LΦ(v) =

∫
Ω

fvc dx +
∑
e∈ΓD

(
αgDv/h+gDΦ(v)

)
e
+
∑
e∈ΓN

(
gN v

)
e
,(5.11)

which can be bounded as follows

|LΦ(v)| ≤
∣∣∣∣
∫

Ω

fvc dx

∣∣∣∣+ ∑
e∈ΓD

(
|gD|
(
α|v|/h+|Φ(v)|

))
e
+
∑
e∈ΓN

(
|gN ||v|

)
e
.

Since vc ∈ H1
0,D(Ω), the first term is bounded for f ∈ [H1

0,D(Ω)]′. The other terms
can also be bounded using (5.7) and the usual trace inequalities.

5.3. Well-posedness results for the continuum formulation. At variance
with conventional DG formulations, the new DG formulation is consistent with the
more general Poisson problem (2.1).

Proposition 10 (consistency with classical CG formulation). For all f in the
dual space [H1

0,D(Ω)]′, the DG formulation (5.5) is consistent with (2.1), i.e., if u ∈
H1(Ω) is the solution of (2.1), then u satisfies (5.5).

Proof. Let u ∈ H1(Ω) solve (2.1) and let v be an arbitrary function in H1(Ph).
On account of [[u]]e = 0 for e ∈ ΓI and u = gD on ΓD, it follows from (5.6a) that

BΦ(u, v) =
∑

K∈Ph

∫
K

du

dx

dv

dx
dx +

∑
e∈ΓI

(
Φ(u)[[v]]

)
e

+
∑
e∈ΓD

(
αgDv/h + gDΦ(v) + Φ(u)v

)
e
.

Moreover, in analogy with (5.10), it holds that
(5.12)∑

e∈ΓI

(
Φ(u)[[v]]

)
e
+
∑
e∈ΓD

(
Φ(u)v

)
e

=
∑

K∈Ph

∫
K

du

dx

d(−vd)

dx
dx ∀u, v ∈ H1(Ph) .
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As v − vd = vc, we obtain

BΦ(u, v) =

∫
Ω

du

dx

dvc

dx
dx +

∑
e∈ΓD

(
αgDv/h + gDΦ(v)

)
e
,

where the sum of integrals is replaced by an integral over Ω, which is admissible
because u ∈ H1(Ω) and vc ∈ H1

0,D(Ω). Recalling from (2.1) that∫
Ω

du

dx

dvc

dx
dx =

∫
Ω

fvc dx +
∑
e∈ΓN

(
gN vc

)
e
,

we finally obtain from (5.9c) that

BΦ(u, v) =

∫
Ω

fvc dx +
∑
e∈ΓD

(
αgDv/h + gDΦ(v)

)
e
+
∑
e∈ΓN

(
gN v

)
e
.

Hence, BΦ(u, v) can be identified with LΦ(v) according to (5.11) for all v ∈
H1(Ph).

We remark that consistency can be established for any choice of θK,e in the
operators Φ and Φ̄ in (5.2), provided that the partition-of-unity property (5.4) holds.

A fundamental property of the bilinear form BΦ(·, ·) in (5.6a) is its coercivity
on H1(Ph).

Proposition 11 (coercivity of BΦ). If the parameter αe > 1 for all e ∈ ΓI∪ΓD,
then the bilinear form BΦ(·, ·) in (5.6a) is coercive on H1(Ph), i.e.,

|BΦ(u, u)| ≥ κ|||u|||2 ∀u ∈ H1(Ph) ,

with, in particular, coercivity constant

κ = min
e∈ΓI∪ΓD

1
2

(
(αe−1) + 2 −

√
(αe−1)2 + 4

)
∈ (0, 1).(5.13)

Note that αe can be chosen such that κ in (5.13) is bounded away from 0.
Proof. Consider an arbitrary u ∈ H1(Ph). We show that there exists a κ in the

interval 0 < κ < 1 such that BΦ(u, u) − κ|||u|||2 ≥ 0. First, we observe that

BΦ(u, u) − κ|||u|||2 = (1−κ)
∑

K∈Ph

|u|21,K +
∑
e∈ΓI

(
(α−κ)[[u]]

2
/h + 2[[u]]Φ(u)

)
e

+
∑
e∈ΓD

(
(α−κ)u2/h + 2uΦ(u)

)
e
.

Application of the Young inequality yields

BΦ(u, u) − κ|||u|||2 ≥ (1−κ)
∑

K∈Ph

|u|21,K

+
∑
e∈ΓI

(
(α−κ)[[u]]

2
/h− [[u]]

2

(1−κ)h
− (1−κ)hΦ(u)2

)
e

+
∑
e∈ΓD

(
(α−κ)u2/h − u2

(1−κ)h
− (1−κ)hΦ(u)2

)
e

.
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We now invoke (5.7) to obtain

BΦ(u, u) − κ|||u|||2 ≥ (1−κ)
∑

K∈Ph

|u|21,K

+
∑
e∈ΓI

((
α−κ− 1

1−κ

)
[[u]]

2
/h− 1

2 (1−κ)
∑

K∈Ke
|u|21,K

)
e

+
∑
e∈ΓD

((
α−κ− 1

1−κ

)
u2/h − 1

2 (1−κ)
∑

K∈Ke
|u|21,K

)
e

.

The summations over the elements cancel, except for the contributions of elements
contiguous to Neumann boundaries, and, hence,

(5.14)

BΦ(u, u) − κ|||u|||2 ≥
∑
e∈ΓI

((
α−κ− 1

1−κ

)
[[u]]

2
/h
)
e
+
∑
e∈ΓD

((
α−κ− 1

1−κ

)
u2/h

)
e

+ 1
2 (1−κ)

∑
e∈ΓN

∑
K∈Ke

|u|21,K .

If αe > 1 for all e ∈ ΓI ∪ ΓD and κ complies with (5.13), then αe−κ− 1
1−κ ≥ 0 for all

e ∈ ΓI ∪ΓD. Furthermore, for 0 < κ < 1 the final term in the right member of (5.14)

is nonnegative and, therefore, BΦ(u, u) − κ|||u|||2 ≥ 0.
By the classical Lax–Milgram theorem, Theorem 2, we can now conclude that if

αe > 1 for all e ∈ ΓI ∪ΓD, then for all f ∈ [H1
0,D(Ω)]′ the new DG formulation (5.5) is

well-posed and consistent with (2.1). Moreover, by virtue of the coercivity of the new
DG formulation, conforming approximations in H1(Ph) inherit their well-posedness
from the continuum formulation, and optimal error estimates hold with uniformly
bounded constants.

6. Numerical experiments. In this section we present numerical results for
the new DG formulation. First, we investigate the sharpness of the estimate of the
coercivity constant (5.13) by means of discrete inf-sup calculations. Next, we illustrate
the optimal convergence behavior of the new formulation in appropriate norms.

6.1. Discrete inf-sup calculations. The estimate of the coercivity constant κ
in (5.13) represents a lower bound. That is, a κ̄ > κ possibly exists such that

|BΦ(u, u)| ≥ κ̄|||u|||2 for all u ∈ H1(Ph). An upper bound to the coercivity constant
can be determined by establishing the discrete coercivity constant, viz., the coercivity
constant in a finite-dimensional subspace Ĥ ⊂ H1(Ph), according to

κ̂ := κ̂(Ĥ) = inf
u∈Ĥ\{0}

BΦ(u, u)

|||u|||2 .

For a symmetric bilinear form on a finite-dimensional subspace Ĥ, the coercivity
constant coincides with the discrete inf-sup constant

γ̂ := γ̂(Ĥ) = inf
u∈Ĥ\{0}

sup
v∈Ĥ\{0}

BΦ(u, v)

|||u||| |||v||| ,

which can be determined numerically by means of the procedure in [10]. Note that

the discrete coercivity constants pertaining to a sequence of nested subspaces Ĥ(1) ⊂



A COERCIVE DG FORMULATION 2691

in
f-
su

p
co

n
st

a
n
t
γ̂

parameter α

0
0 0.5

1

1 1.5 2 2.5 3 3.5 4

0.8

0.6

0.4

0.2

N(Ph) = 2
N(Ph) = 4
N(Ph) = 8
N(Ph) = 128
Lower bound (5.13)

Fig. 4. Discrete inf-sup constant γ̂ versus the parameter α for broken polynomial spaces on
uniform partitions with N(Ph) elements. The inf-sup constant γ̂ is p independent.

Ĥ(2) ⊂ · · · ⊆ H1(Ph) form a nonincreasing sequence κ̂(1) ≥ κ̂(2) ≥ · · · ≥ κ̄. Hence,
the discrepancy between the discrete inf-sup constants corresponding to a sequence
of nested subspaces and the estimate (5.13) provides a measure of the sharpness of
the estimate.

To assess the sharpness of (5.13), we compute the discrete inf-sup constant of the
bilinear form in the new DG formulation (5.5) for the Poisson problem on the open unit
domain Ω = (0, 1) with Dirichlet boundary conditions, i.e., ∂Ω = ΓD = {0, 1}. We
restrict ourselves to uniform partitions Ph of N(Ph) elements, and finite-dimensional
approximation spaces consisting of broken polynomials with a uniform distribution of
the polynomial degree p:

Ĥ = P
p(Ph) :=

{
u ∈ L2(Ω) : u|K ∈ P

p(K) ∀K ∈ Ph
}
.

Moreover, we use a uniform distribution of the parameter αe (=: α) for all e ∈ ΓD∪ΓI .
The results are displayed in Figure 4. In addition, the figure plots the lower

bound κ according to (5.13). The numerical results convey that the computed inf-sup
constants are independent of the polynomial degree p (results not displayed). They
do, however, depend on N(Ph) and α. It appears that for large N(Ph) the discrete
inf-sup constants indeed converge to the lower bound and, hence, the estimate of the
coercivity constant κ in (5.13) is apparently sharp.

6.2. Error convergence behavior. We consider the new DG formulation for
the Poisson problem (5.5) on the open unit domain Ω = (0, 1) with homogeneous
Dirichlet boundary conditions. The prescribed data f is selected such that the solution
is u(x) = sin(πx). We consider uniform partitions Ph with N(Ph) elements. The

approximation spaces Ĥ are the same as used in the inf-sup calculations above.
Figure 5 plots the error in the approximations. The figure indicates that the

approximate solutions û are pointwise exact at the interior and boundary edges. This
behavior is characteristic for the classical CG method (2.4). Similarly, it can be proven

that if P
1(Ph) ⊂ Ĥ, i.e., if the approximation space contains the piecewise linear

functions, then the DG approximation exhibits the same behavior. In Appendix B we
elaborate the pointwise exactness for approximations to the new DG formulation (5.5).
In particular, the pointwise exactness implies that

(6.1) û ∈ Ĥ ∩ {u ∈ H1(Ω) : u = gD on ΓD} .
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Fig. 5. Pointwise error for broken polynomial spaces of order p = 1 (left) and p = 2 (right) on
uniform partitions with N(Ph) elements.
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Fig. 6. Error in the energy-norm (left), |||u− û|||, and in the L2(Ω)-norm (right), ‖u− û‖L2(Ω),

versus the dimension of the approximation space dim(Ĥ) for broken polynomial spaces of order
p = 1, . . . , 5 on uniform partitions.

Moreover, û is then identical to the approximate solution of the classical CG formu-
lation (2.4) on Ĥ1

0,D(Ω) = Ĥ ∩H1
0,D(Ω) with ū ∈ P

1(Ω). Another implication is that
the approximations are independent of the parameters αe (provided that αe > 1 so
that the approximate problem is well posed), because the terms associated with αe

vanish from the formulation; cf. Eqs. (5.5) and (5.6).
Figure 6 plots the energy-norm and the L2(Ω)-norm of the error versus the di-

mension of the approximation space, dim(Ĥ) := (p+1)N(Ph), for polynomial orders
p = 1, 2, . . . , 5. The figures corroborate the optimal convergence behavior of the new
DG formulation in both norms.

7. Conclusions. We established on the basis of the prototypical Poisson prob-
lem that most concurrent DG finite-element methods for second-order elliptic differ-
ential equations can be condensed into a generic conventional DG formulation. By
means of this generic formulation, we showed that a coercive conventional DG formu-
lation is nonexistent. Conventional DG formulations are contingent on weak coercivity
for their well-posedness. However, as weak coercivity does not transfer to subspaces,
well-posedness of the continuum problem does not generally imply well-posedness of
approximate problems based on conforming subspaces.



A COERCIVE DG FORMULATION 2693

We then presented a new nonconventional symmetric DG formulation that is
coercive on the broken Sobolev space H1(Ph). The new formulation is based on
element Green’s functions and the data local to the edges. On account of its coercivity,
conforming approximations of the new formulation inherit their well-posedness from
the continuum formulation, and optimal error estimates hold with approximation-
space-independent constants. Furthermore, the new DG formulation is consistent
with the classical CG formulation in that it admits solutions in H1(Ph) ⊃ H1(Ω),
rather than H2(Ph) which is common for conventional DG formulations.

We derived a lower bound for the coercivity constant of the bilinear form in the
new formulation. The sharpness of this estimate was confirmed by means of numer-
ical computations of discrete inf-sup constants. Furthermore, numerical experiments
were conducted to assess the convergence behavior of the new formulation. The re-
sults corroborate that the formulation yields optimal convergence in the energy-norm
and in the L2(Ω)-norm. Moreover, the results demonstrate that discrete approxima-
tions in subspaces that contain the piecewise linear functions are identical to classical
CG approximations.

It is anticipated that the main attributes of the proposed DG formulation can be
extended to higher-dimensional settings. Essentially, the Green’s function provides a
decomposition of the broken space into the continuous functions and their orthogonal
complement. This decomposition can be used to construct a bilinear form that is
both consistent and coercive. The generalization of the Green’s function to higher
dimensions is complex, but there is no fundamental obstacle that precludes such a
generalization.

Appendix A. Proof of Proposition 6. The proof is supported by the following
lemma.

Lemma 12. If there exist a linear continuous operator v(·) : HΛ → HΛ dependent

only on the edge values ue, and a constant C1 > 1
2 , such that(

Λ(u + vu)
)
e

= C1

(
DΛu

)
e
,(A.1a)

1
2

∑
K∈Ph

|vu|21,K ≤
∑
e∈Γ

(
uTDΛu

)
e
,(A.1b)

‖vu‖HΛ
≤ CΛ‖u‖HΛ

(A.1c)

for all e ∈ Γ, then BΛ(·, ·) satisfies the inf-sup condition on HΛ ×HΛ.
Note that (A.1c) just expresses the continuity of the operator v(·). Bold-faced

variables and the matrix DΛ are defined in (4.2) and (4.5), respectively.
Proof. By the Young inequality and (A.1a) and (A.1b) it holds that

BΛ(u, u + vu) =
∑

K∈Ph

(
|u|21,K +

∫
K
u′v′u dx

)
+
∑
e∈Γ

(
uTΛ(u + vu)

)
e

≥
∑

K∈Ph

(
(1 − 1

2ε )|u|
2
1,K − ε

2 |vu|
2
1,K

)
+ C1

∑
e∈Γ

(
uTDΛu

)
e

≥ (1 − 1
2ε )

∑
K∈Ph

|u|21,K + (C1 − ε)
∑
e∈Γ

(
uTDΛu

)
e

for all ε > 0. Recalling the definition of ‖ · ‖HΛ
according to (4.4), we note that for

all C1 > 1
2 there exists an ε > 1

2 such that BΛ(u, u+vu) ≥ (C1−ε)‖u‖2
HΛ

> 0. Using
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this in the inf-sup condition, we obtain

sup
v∈HΛ\{0}

BΛ(u, v)

‖u‖HΛ
‖v‖HΛ

≥ BΛ(u, u+vu)

‖u‖HΛ
‖u+vu‖HΛ

≥
(C1−ε)‖u‖2

HΛ

‖u‖HΛ

(
‖u‖HΛ

+‖vu‖HΛ

)
≥ C1−ε

1+CΛ
> 0 .

To prove that the inf-sup condition (3.1a) holds, we establish that under the
conditions (4.13) there exists an operator v(·) : HΛ → HΛ in compliance with the
premises of Lemma 12. The existence is verified by construction. Simple linear
algebra conveys that if and only if the parameters in the matrices Λe in (4.9) satisfy

δβ − εγu �= 0 or β, γu, γl, δ, ε = 0

ζ1, ζ2 = 0

}
∀e ∈ ΓI ,(A.2a)

δ �= 0 ∀e ∈ ΓD ,(A.2b)

ε = 0 ∀e ∈ ΓN ,(A.2c)

then for each u ∈ HΛ, (A.1a) admits a (nonunique) solution (vu)e for any C1 ∈ R.
Thus, (A.1a) yields the values of vu at the edges e ∈ Γ. The kernel of the matrix Λ
in (A.1a) accommodates arbitrary {vu}e for e ∈ ΓI and arbitrary (vu)e for e ∈ ΓN .
We set (vu)e = 0 for e ∈ ΓN .

To facilitate the proof, we introduce an auxiliary operator v̄(·) from HΛ to P
1(Ph),

viz., the space of piecewise linear functions on the partition Ph. The operator v̄(·)
associates with each u ∈ HΛ the function v̄u ∈ P

1(Ph) such that

[[v̄u]]e = [[vu]]e ∀e ∈ ΓI ,(
v̄u
)
e

=
(
vu
)
e

∀e ∈ ΓD ,(
v̄u
)
e

= 0 ∀e ∈ ΓN ,

with [[vu]]e the previously determined jumps at edges. Specifically, we define v̄u as

lim
K�x→e

(
v̄u
∣∣
K

)
(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2ne nKhK [[vu]]e/he ∀e ∈ ∂K ∩ ΓI ,

1
2hK(vu)e/he ∀e ∈ ∂K ∩ ΓD ,

0 ∀e ∈ ∂K ∩ ΓN .

(A.3)

We can now define v(·) as the map u → vu, where vu is the limit of a Cauchy se-
quence {viu} in HΛ with the properties

viu
∣∣
K

→ v̄u
∣∣
K

in H1(K) ∀K ∈ Ph ,

[[∂nv
i
u]]e → [[∂nvu]]e in R ∀e ∈ ΓI ,

{∂nviu}e → {∂nvu}e in R ∀e ∈ ΓI ,(
∂nv

i
u

)
e
→
(
∂nvu

)
e

in R ∀e ∈ ∂Ω ,

where {∂nvu}e and [[∂nvu]]e refer to the previously determined average derivatives and
derivative jumps at edges. Such a Cauchy sequence can be constructed in a similar
manner as the sequence in the proof of Proposition 7. The operator v(·) thus defined
complies with (A.1a).
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To ascertain that v(·) satisfies (A.1b), we note that by (4.9) and (A.2), the second
equation in the linear system (A.1a) yields(

h− 1
2 [[vu]]

)
e

= −
(
h− 1

2 [[u]] + C1(DΛ)22 h
1
2 {∂nu}

)
e

∀e ∈ ΓI ,(A.4a) (
h− 1

2 vu
)
e

= −
(
h− 1

2u + C1(DΛ)22 h
1
2 ∂nu

)
e

∀e ∈ ΓD ,(A.4b)

with, in particular,

1 ≤
(
(DΛ)22

)
e

=

{(
1
2 |δ + 1| + 1

2 |δ − 1| + |ε|
)
e

∀e ∈ ΓI ,(
1
2 |δ + 1| + 1

2 |δ − 1|
)
e

∀e ∈ ΓD .
(A.5)

Equations (A.3) and (A.4) yield

∣∣∣∣dv̄udx

∣∣∣
K

∣∣∣∣2 =

∣∣∣∣ ∑
e∈∂K

(
v̄u|K nK

)
e
/hK

∣∣∣∣2 ≤ 2
∑
e∈∂K

(
v̄u|K

)2
e
/h2

K

≤
∑

e∈∂K∩ΓI

1
2

(
[[u]]/h + C1(DΛ)22{∂nu}

)2

e
+

∑
e∈∂K∩ΓD

1
2

(
u/h + C1(DΛ)22∂nu

)2

e
.

From the relation he = 1
2

∑
K∈Ke

hK in (4.3) it follows that

1
2

∑
K∈Ph

|v̄u|21,K ≤ 1
2

∑
K∈Ph

hK

(∑
e∈∂K∩ΓI

1
2

(
[[u]]/h + C1(DΛ)22{∂nu}

)2

e

+
∑

e∈∂K∩ΓD
1
2

(
u/h + C1(DΛ)22∂nu

)2

e

)
≤
∑
e∈ΓI

(
[[u]]

2
/h + C2

1(DΛ)222h{∂nu}2
)
e

+
∑
e∈ΓD

(
u2/h + C2

1(DΛ)222h(∂nu)2
)
e

≤ max
{

1, C2
1 max
e∈ΓI∪ΓD

(
(DΛ)22

)
e

}∑
e∈Γ

(
uTDΛu

)
e
.

Moreover, under the conditions (4.13) it holds that(
4 > 1

2 |δ+1| + 1
2 |δ−1| + |ε| ∧ ε �= 0

)
or

(
4 > |δ| �= 0 ∧ ε = 0

)
∀e ∈ ΓI ,

4 > |δ| ∀e ∈ ΓD .

Inequality (A.5) then yields 1 ≤ maxe∈ΓI∪ΓD ((DΛ)22)e < 4. As viu|K → v̄iu|K in
H1(Ph) as i → ∞, there exists a C1 > 1

2 such that C2
1 maxe∈ΓI∪ΓD ((DΛ)22)e < 1 and

hence (A.1b) holds.
To establish (A.1c), we denote by Λ− the (square) generalized inverse for the

matrix Λ in equation (A.1a). We can then write

vu = Λ−(C1DΛ − Λ)u ,

and, thus,

vu
TDΛvu =

∥∥D1
2

ΛΛ−(C1DΛ − Λ)u
∥∥2 ≤

∥∥D1
2

ΛΛ−(C1DΛ − Λ)D
− 1

2

Λ

∥∥2︸ ︷︷ ︸
=:C2

(
uTDΛu

)
,
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where ‖ · ‖ represents the usual Euclidian vector norm, and the corresponding matrix
norm. Condition (A.1c) can then be verified straightforwardly:

‖vu‖2
HΛ

=
∑

K∈Ph

|vu|21,K +
∑
e∈Γ

(
vu

TDΛvu

)
e
≤ (2+C2)

∑
e∈Γ

(
uTDΛu

)
e
≤ (2+C2)‖u‖2

HΛ
.

The second condition for weak coercivity of BΛ(·, ·), i.e.,

sup
u∈HΛ

BΛ(u, v) > 0 ∀v ∈ HΛ \ {0} ,

is easily established by means of the relation BΛ(u, v) = BΛT (v, u). Under the con-
ditions in (4.13), we can construct an operator u(·) : HΛ → HΛ, in a similar manner
as the operator v(·) above, such that

sup
u∈HΛ

BΛT (v, u) ≥ BΛT (v, v + uv) > 0 .

Appendix B. Pointwise exactness of approximations. In this section we
establish that the new DG formulation is pointwise exact on all edges Γ = ΓI ∪ ∂Ω
if the discrete approximation space contains the piecewise linear polynomials, i.e.,
P

1(Ph) ⊆ Ĥ ⊂ H1(Ph).

Let û ∈ Ĥ be the solution of the approximation problem BΦ(û, v) = LΦ(v) for

all v ∈ Ĥ. First, we show that the jumps of û are zero and that the Dirichlet boundary
traces comply with the Dirichlet boundary condition, i.e.,

(B.1) [[û]]e = 0 ∀e ∈ ΓI , û = gD on ΓD .

Consider an arbitrary edge ē ∈ ΓI ∪ ΓD. We construct a discontinuous test func-
tion w = w(ē) ∈ P

1(Ph) such that wc = 0, wd = w (cf. section 5.2 for the splitting
v = vc + vd into a continuous and a discontinuous part), and

(B.2)

α[[w]]/h + Φ(w) = 0 ∀e ∈ ΓI \ {ē} ,

αw/h + Φ(w) = 0 ∀e ∈ ΓD \ ē ,
α[[w]]/h + Φ(w) = 1 if ē ∈ ΓI ,

αw/h + Φ(w) = 1 if ē ∈ ΓD .

It can be shown that the system of equations (B.2) admits a unique solution under
the (sufficient) condition αe > 1. This condition is satisfied by assumption; see
Proposition 11. As w ∈ P

1(Ph) ⊂ Ĥ, it holds that BΦ(û, w) = LΦ(w). From (5.11),
(5.12), and w = 0 on ΓN , it follows that∑

e∈ΓI

((
α[[w]]/h + Φ(w)

)
[[û]]
)
e
+
∑
e∈ΓD

((
αw/h + Φ(w)

)(
û− gD

))
e

= 0 .

Equation (B.1) now follows straightforwardly from the conditions (B.2).
We next establish that û is exact on Neumann edges ΓN . Let eN denote the

Neumann edge and eD the complementary Dirichlet edge. Further, let ϕN ∈ H1
0,D(Ω)

be the linear function which is |Ω| at eN and which vanishes at eD. Using ϕN in (2.1),
we obtain for the exact solution

(B.3) u(eN ) =

∫
Ω

fϕN dx + gD(eD) + |Ω|gN (eN ) .



A COERCIVE DG FORMULATION 2697

ϕ

L R

ē

Fig. 7. Global Green’s function ϕ with respect to edge ē.

Moreover, as ϕN ∈ P
1(Ph) ⊂ Ĥ, it holds that BΦ(û, ϕN ) = LΦ(ϕN ). On account of

[[ϕN ]]e = [[û]]e = 0 for e ∈ ΓI , ϕN (eD) = 0, and û(eD) = gD(eD), this implies

∑
K∈Ph

∫
K

dû

dx

dϕN
dx

dx =

∫
Ω

fϕN dx + |Ω|gN (eN ) .

The left side evaluates to û(eN )−û(eD), which is identical to û(eN )−gD(eD) by virtue
of the previously established coincidence of û(eD) and gD(eD). We then conclude
from (B.3) that û(eN ) = u(eN ).

Finally, we establish that û is exact on interior edges ΓI . We consider an arbitrary
edge ē ∈ ΓI and define L = L(ē) and R = R(ē) to be the open subsets of Ω left and
right of edge ē; see Figure 7. Furthermore, we define ϕ = ϕ(ē) ∈ H1

0,D(Ω) to be the
global Green’s function corresponding to ē, viz., a hat function for which the jump in
the derivative at ē equals −1. Inserting ϕ in (2.1), we obtain the following relation
for the exact solution at edge ē:

(B.4) u(ē) =

∫
Ω

fϕ dx +
∑
e∈ΓD

ϑ(e)gD(e) +
∑
e∈ΓN

ϑ(e)u(e) ,

where ϑ(e) := |R|/|Ω| if e is a left edge, and ϑ(e) := |L|/|Ω| if e is a right edge.
Moreover, the identity BΦ(û, ϕ) = LΦ(ϕ) yields

∑
K∈Ph

∫
K

dû

dx

dϕ

dx
dx =

∫
Ω

fϕ dx .

The left side evaluates to û(e)−
∑

e∈∂Ω ϑ(e)û(e). As û is exact on the boundary edges,
we finally conclude from (B.4) that û(e) = u(e).
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